1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "memory/metaspaceShared.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/universe.inline.hpp"
  47 #include "oops/instanceKlass.hpp"
  48 #include "oops/objArrayOop.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/symbol.hpp"
  51 #include "oops/verifyOopClosure.hpp"
  52 #include "prims/jvm_misc.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/jvmtiThreadState.hpp"
  55 #include "prims/privilegedStack.hpp"
  56 #include "runtime/arguments.hpp"
  57 #include "runtime/atomic.inline.hpp"
  58 #include "runtime/biasedLocking.hpp"
  59 #include "runtime/commandLineFlagConstraintList.hpp"
  60 #include "runtime/commandLineFlagRangeList.hpp"
  61 #include "runtime/deoptimization.hpp"
  62 #include "runtime/fprofiler.hpp"
  63 #include "runtime/frame.inline.hpp"
  64 #include "runtime/globals.hpp"
  65 #include "runtime/init.hpp"
  66 #include "runtime/interfaceSupport.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/jniPeriodicChecker.hpp"
  70 #include "runtime/memprofiler.hpp"
  71 #include "runtime/mutexLocker.hpp"
  72 #include "runtime/objectMonitor.hpp"
  73 #include "runtime/orderAccess.inline.hpp"
  74 #include "runtime/osThread.hpp"
  75 #include "runtime/safepoint.hpp"
  76 #include "runtime/sharedRuntime.hpp"
  77 #include "runtime/statSampler.hpp"
  78 #include "runtime/stubRoutines.hpp"
  79 #include "runtime/sweeper.hpp"
  80 #include "runtime/task.hpp"
  81 #include "runtime/thread.inline.hpp"
  82 #include "runtime/threadCritical.hpp"
  83 #include "runtime/vframe.hpp"
  84 #include "runtime/vframeArray.hpp"
  85 #include "runtime/vframe_hp.hpp"
  86 #include "runtime/vmThread.hpp"
  87 #include "runtime/vm_operations.hpp"
  88 #include "runtime/vm_version.hpp"
  89 #include "services/attachListener.hpp"
  90 #include "services/management.hpp"
  91 #include "services/memTracker.hpp"
  92 #include "services/threadService.hpp"
  93 #include "trace/traceMacros.hpp"
  94 #include "trace/tracing.hpp"
  95 #include "utilities/defaultStream.hpp"
  96 #include "utilities/dtrace.hpp"
  97 #include "utilities/events.hpp"
  98 #include "utilities/macros.hpp"
  99 #include "utilities/preserveException.hpp"
 100 #if INCLUDE_ALL_GCS
 101 #include "gc/cms/concurrentMarkSweepThread.hpp"
 102 #include "gc/g1/concurrentMarkThread.inline.hpp"
 103 #include "gc/parallel/pcTasks.hpp"
 104 #endif // INCLUDE_ALL_GCS
 105 #if INCLUDE_JVMCI
 106 #include "jvmci/jvmciCompiler.hpp"
 107 #include "jvmci/jvmciRuntime.hpp"
 108 #endif
 109 #ifdef COMPILER1
 110 #include "c1/c1_Compiler.hpp"
 111 #endif
 112 #ifdef COMPILER2
 113 #include "opto/c2compiler.hpp"
 114 #include "opto/idealGraphPrinter.hpp"
 115 #endif
 116 #if INCLUDE_RTM_OPT
 117 #include "runtime/rtmLocking.hpp"
 118 #endif
 119 
 120 #ifdef DTRACE_ENABLED
 121 
 122 // Only bother with this argument setup if dtrace is available
 123 
 124   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 125   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 126 
 127   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 128     {                                                                      \
 129       ResourceMark rm(this);                                               \
 130       int len = 0;                                                         \
 131       const char* name = (javathread)->get_thread_name();                  \
 132       len = strlen(name);                                                  \
 133       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 134         (char *) name, len,                                                \
 135         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 136         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 137         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 138     }
 139 
 140 #else //  ndef DTRACE_ENABLED
 141 
 142   #define DTRACE_THREAD_PROBE(probe, javathread)
 143 
 144 #endif // ndef DTRACE_ENABLED
 145 
 146 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 147 // Current thread is maintained as a thread-local variable
 148 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 149 #endif
 150 
 151 // Class hierarchy
 152 // - Thread
 153 //   - VMThread
 154 //   - WatcherThread
 155 //   - ConcurrentMarkSweepThread
 156 //   - JavaThread
 157 //     - CompilerThread
 158 
 159 // ======= Thread ========
 160 // Support for forcing alignment of thread objects for biased locking
 161 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 162   if (UseBiasedLocking) {
 163     const int alignment = markOopDesc::biased_lock_alignment;
 164     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 165     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 166                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 167                                                          AllocFailStrategy::RETURN_NULL);
 168     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 169     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 170            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 171            "JavaThread alignment code overflowed allocated storage");
 172     if (TraceBiasedLocking) {
 173       if (aligned_addr != real_malloc_addr) {
 174         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 175                       p2i(real_malloc_addr), p2i(aligned_addr));
 176       }
 177     }
 178     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 179     return aligned_addr;
 180   } else {
 181     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 182                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 183   }
 184 }
 185 
 186 void Thread::operator delete(void* p) {
 187   if (UseBiasedLocking) {
 188     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 189     FreeHeap(real_malloc_addr);
 190   } else {
 191     FreeHeap(p);
 192   }
 193 }
 194 
 195 
 196 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 197 // JavaThread
 198 
 199 
 200 Thread::Thread() {
 201   // stack and get_thread
 202   set_stack_base(NULL);
 203   set_stack_size(0);
 204   set_self_raw_id(0);
 205   set_lgrp_id(-1);
 206   DEBUG_ONLY(clear_suspendible_thread();)
 207 
 208   // allocated data structures
 209   set_osthread(NULL);
 210   set_resource_area(new (mtThread)ResourceArea());
 211   DEBUG_ONLY(_current_resource_mark = NULL;)
 212   set_handle_area(new (mtThread) HandleArea(NULL));
 213   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 214   set_active_handles(NULL);
 215   set_free_handle_block(NULL);
 216   set_last_handle_mark(NULL);
 217 
 218   // This initial value ==> never claimed.
 219   _oops_do_parity = 0;
 220 
 221   // the handle mark links itself to last_handle_mark
 222   new HandleMark(this);
 223 
 224   // plain initialization
 225   debug_only(_owned_locks = NULL;)
 226   debug_only(_allow_allocation_count = 0;)
 227   NOT_PRODUCT(_allow_safepoint_count = 0;)
 228   NOT_PRODUCT(_skip_gcalot = false;)
 229   _jvmti_env_iteration_count = 0;
 230   set_allocated_bytes(0);
 231   _vm_operation_started_count = 0;
 232   _vm_operation_completed_count = 0;
 233   _current_pending_monitor = NULL;
 234   _current_pending_monitor_is_from_java = true;
 235   _current_waiting_monitor = NULL;
 236   _num_nested_signal = 0;
 237   omFreeList = NULL;
 238   omFreeCount = 0;
 239   omFreeProvision = 32;
 240   omInUseList = NULL;
 241   omInUseCount = 0;
 242 
 243 #ifdef ASSERT
 244   _visited_for_critical_count = false;
 245 #endif
 246 
 247   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 248                          Monitor::_safepoint_check_sometimes);
 249   _suspend_flags = 0;
 250 
 251   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 252   _hashStateX = os::random();
 253   _hashStateY = 842502087;
 254   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 255   _hashStateW = 273326509;
 256 
 257   _OnTrap   = 0;
 258   _schedctl = NULL;
 259   _Stalled  = 0;
 260   _TypeTag  = 0x2BAD;
 261 
 262   // Many of the following fields are effectively final - immutable
 263   // Note that nascent threads can't use the Native Monitor-Mutex
 264   // construct until the _MutexEvent is initialized ...
 265   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 266   // we might instead use a stack of ParkEvents that we could provision on-demand.
 267   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 268   // and ::Release()
 269   _ParkEvent   = ParkEvent::Allocate(this);
 270   _SleepEvent  = ParkEvent::Allocate(this);
 271   _MutexEvent  = ParkEvent::Allocate(this);
 272   _MuxEvent    = ParkEvent::Allocate(this);
 273 
 274 #ifdef CHECK_UNHANDLED_OOPS
 275   if (CheckUnhandledOops) {
 276     _unhandled_oops = new UnhandledOops(this);
 277   }
 278 #endif // CHECK_UNHANDLED_OOPS
 279 #ifdef ASSERT
 280   if (UseBiasedLocking) {
 281     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 282     assert(this == _real_malloc_address ||
 283            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 284            "bug in forced alignment of thread objects");
 285   }
 286 #endif // ASSERT
 287 }
 288 
 289 void Thread::initialize_thread_current() {
 290 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 291   assert(_thr_current == NULL, "Thread::current already initialized");
 292   _thr_current = this;
 293 #endif
 294   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 295   ThreadLocalStorage::set_thread(this);
 296   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 297 }
 298 
 299 void Thread::clear_thread_current() {
 300   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 301 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 302   _thr_current = NULL;
 303 #endif
 304   ThreadLocalStorage::set_thread(NULL);
 305 }
 306 
 307 void Thread::record_stack_base_and_size() {
 308   set_stack_base(os::current_stack_base());
 309   set_stack_size(os::current_stack_size());
 310   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 311   // in initialize_thread(). Without the adjustment, stack size is
 312   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 313   // So far, only Solaris has real implementation of initialize_thread().
 314   //
 315   // set up any platform-specific state.
 316   os::initialize_thread(this);
 317 
 318   // Set stack limits after thread is initialized.
 319   if (is_Java_thread()) {
 320     ((JavaThread*) this)->set_stack_overflow_limit();
 321     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 322   }
 323 #if INCLUDE_NMT
 324   // record thread's native stack, stack grows downward
 325   MemTracker::record_thread_stack(stack_end(), stack_size());
 326 #endif // INCLUDE_NMT
 327 }
 328 
 329 
 330 Thread::~Thread() {
 331   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 332   ObjectSynchronizer::omFlush(this);
 333 
 334   EVENT_THREAD_DESTRUCT(this);
 335 
 336   // stack_base can be NULL if the thread is never started or exited before
 337   // record_stack_base_and_size called. Although, we would like to ensure
 338   // that all started threads do call record_stack_base_and_size(), there is
 339   // not proper way to enforce that.
 340 #if INCLUDE_NMT
 341   if (_stack_base != NULL) {
 342     MemTracker::release_thread_stack(stack_end(), stack_size());
 343 #ifdef ASSERT
 344     set_stack_base(NULL);
 345 #endif
 346   }
 347 #endif // INCLUDE_NMT
 348 
 349   // deallocate data structures
 350   delete resource_area();
 351   // since the handle marks are using the handle area, we have to deallocated the root
 352   // handle mark before deallocating the thread's handle area,
 353   assert(last_handle_mark() != NULL, "check we have an element");
 354   delete last_handle_mark();
 355   assert(last_handle_mark() == NULL, "check we have reached the end");
 356 
 357   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 358   // We NULL out the fields for good hygiene.
 359   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 360   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 361   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 362   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 363 
 364   delete handle_area();
 365   delete metadata_handles();
 366 
 367   // osthread() can be NULL, if creation of thread failed.
 368   if (osthread() != NULL) os::free_thread(osthread());
 369 
 370   delete _SR_lock;
 371 
 372   // clear Thread::current if thread is deleting itself.
 373   // Needed to ensure JNI correctly detects non-attached threads.
 374   if (this == Thread::current()) {
 375     clear_thread_current();
 376   }
 377 
 378   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 379 }
 380 
 381 // NOTE: dummy function for assertion purpose.
 382 void Thread::run() {
 383   ShouldNotReachHere();
 384 }
 385 
 386 #ifdef ASSERT
 387 // Private method to check for dangling thread pointer
 388 void check_for_dangling_thread_pointer(Thread *thread) {
 389   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 390          "possibility of dangling Thread pointer");
 391 }
 392 #endif
 393 
 394 ThreadPriority Thread::get_priority(const Thread* const thread) {
 395   ThreadPriority priority;
 396   // Can return an error!
 397   (void)os::get_priority(thread, priority);
 398   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 399   return priority;
 400 }
 401 
 402 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 403   debug_only(check_for_dangling_thread_pointer(thread);)
 404   // Can return an error!
 405   (void)os::set_priority(thread, priority);
 406 }
 407 
 408 
 409 void Thread::start(Thread* thread) {
 410   // Start is different from resume in that its safety is guaranteed by context or
 411   // being called from a Java method synchronized on the Thread object.
 412   if (!DisableStartThread) {
 413     if (thread->is_Java_thread()) {
 414       // Initialize the thread state to RUNNABLE before starting this thread.
 415       // Can not set it after the thread started because we do not know the
 416       // exact thread state at that time. It could be in MONITOR_WAIT or
 417       // in SLEEPING or some other state.
 418       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 419                                           java_lang_Thread::RUNNABLE);
 420     }
 421     os::start_thread(thread);
 422   }
 423 }
 424 
 425 // Enqueue a VM_Operation to do the job for us - sometime later
 426 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 427   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 428   VMThread::execute(vm_stop);
 429 }
 430 
 431 
 432 // Check if an external suspend request has completed (or has been
 433 // cancelled). Returns true if the thread is externally suspended and
 434 // false otherwise.
 435 //
 436 // The bits parameter returns information about the code path through
 437 // the routine. Useful for debugging:
 438 //
 439 // set in is_ext_suspend_completed():
 440 // 0x00000001 - routine was entered
 441 // 0x00000010 - routine return false at end
 442 // 0x00000100 - thread exited (return false)
 443 // 0x00000200 - suspend request cancelled (return false)
 444 // 0x00000400 - thread suspended (return true)
 445 // 0x00001000 - thread is in a suspend equivalent state (return true)
 446 // 0x00002000 - thread is native and walkable (return true)
 447 // 0x00004000 - thread is native_trans and walkable (needed retry)
 448 //
 449 // set in wait_for_ext_suspend_completion():
 450 // 0x00010000 - routine was entered
 451 // 0x00020000 - suspend request cancelled before loop (return false)
 452 // 0x00040000 - thread suspended before loop (return true)
 453 // 0x00080000 - suspend request cancelled in loop (return false)
 454 // 0x00100000 - thread suspended in loop (return true)
 455 // 0x00200000 - suspend not completed during retry loop (return false)
 456 
 457 // Helper class for tracing suspend wait debug bits.
 458 //
 459 // 0x00000100 indicates that the target thread exited before it could
 460 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 461 // 0x00080000 each indicate a cancelled suspend request so they don't
 462 // count as wait failures either.
 463 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 464 
 465 class TraceSuspendDebugBits : public StackObj {
 466  private:
 467   JavaThread * jt;
 468   bool         is_wait;
 469   bool         called_by_wait;  // meaningful when !is_wait
 470   uint32_t *   bits;
 471 
 472  public:
 473   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 474                         uint32_t *_bits) {
 475     jt             = _jt;
 476     is_wait        = _is_wait;
 477     called_by_wait = _called_by_wait;
 478     bits           = _bits;
 479   }
 480 
 481   ~TraceSuspendDebugBits() {
 482     if (!is_wait) {
 483 #if 1
 484       // By default, don't trace bits for is_ext_suspend_completed() calls.
 485       // That trace is very chatty.
 486       return;
 487 #else
 488       if (!called_by_wait) {
 489         // If tracing for is_ext_suspend_completed() is enabled, then only
 490         // trace calls to it from wait_for_ext_suspend_completion()
 491         return;
 492       }
 493 #endif
 494     }
 495 
 496     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 497       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 498         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 499         ResourceMark rm;
 500 
 501         tty->print_cr(
 502                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 503                       jt->get_thread_name(), *bits);
 504 
 505         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 506       }
 507     }
 508   }
 509 };
 510 #undef DEBUG_FALSE_BITS
 511 
 512 
 513 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 514                                           uint32_t *bits) {
 515   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 516 
 517   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 518   bool do_trans_retry;           // flag to force the retry
 519 
 520   *bits |= 0x00000001;
 521 
 522   do {
 523     do_trans_retry = false;
 524 
 525     if (is_exiting()) {
 526       // Thread is in the process of exiting. This is always checked
 527       // first to reduce the risk of dereferencing a freed JavaThread.
 528       *bits |= 0x00000100;
 529       return false;
 530     }
 531 
 532     if (!is_external_suspend()) {
 533       // Suspend request is cancelled. This is always checked before
 534       // is_ext_suspended() to reduce the risk of a rogue resume
 535       // confusing the thread that made the suspend request.
 536       *bits |= 0x00000200;
 537       return false;
 538     }
 539 
 540     if (is_ext_suspended()) {
 541       // thread is suspended
 542       *bits |= 0x00000400;
 543       return true;
 544     }
 545 
 546     // Now that we no longer do hard suspends of threads running
 547     // native code, the target thread can be changing thread state
 548     // while we are in this routine:
 549     //
 550     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 551     //
 552     // We save a copy of the thread state as observed at this moment
 553     // and make our decision about suspend completeness based on the
 554     // copy. This closes the race where the thread state is seen as
 555     // _thread_in_native_trans in the if-thread_blocked check, but is
 556     // seen as _thread_blocked in if-thread_in_native_trans check.
 557     JavaThreadState save_state = thread_state();
 558 
 559     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 560       // If the thread's state is _thread_blocked and this blocking
 561       // condition is known to be equivalent to a suspend, then we can
 562       // consider the thread to be externally suspended. This means that
 563       // the code that sets _thread_blocked has been modified to do
 564       // self-suspension if the blocking condition releases. We also
 565       // used to check for CONDVAR_WAIT here, but that is now covered by
 566       // the _thread_blocked with self-suspension check.
 567       //
 568       // Return true since we wouldn't be here unless there was still an
 569       // external suspend request.
 570       *bits |= 0x00001000;
 571       return true;
 572     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 573       // Threads running native code will self-suspend on native==>VM/Java
 574       // transitions. If its stack is walkable (should always be the case
 575       // unless this function is called before the actual java_suspend()
 576       // call), then the wait is done.
 577       *bits |= 0x00002000;
 578       return true;
 579     } else if (!called_by_wait && !did_trans_retry &&
 580                save_state == _thread_in_native_trans &&
 581                frame_anchor()->walkable()) {
 582       // The thread is transitioning from thread_in_native to another
 583       // thread state. check_safepoint_and_suspend_for_native_trans()
 584       // will force the thread to self-suspend. If it hasn't gotten
 585       // there yet we may have caught the thread in-between the native
 586       // code check above and the self-suspend. Lucky us. If we were
 587       // called by wait_for_ext_suspend_completion(), then it
 588       // will be doing the retries so we don't have to.
 589       //
 590       // Since we use the saved thread state in the if-statement above,
 591       // there is a chance that the thread has already transitioned to
 592       // _thread_blocked by the time we get here. In that case, we will
 593       // make a single unnecessary pass through the logic below. This
 594       // doesn't hurt anything since we still do the trans retry.
 595 
 596       *bits |= 0x00004000;
 597 
 598       // Once the thread leaves thread_in_native_trans for another
 599       // thread state, we break out of this retry loop. We shouldn't
 600       // need this flag to prevent us from getting back here, but
 601       // sometimes paranoia is good.
 602       did_trans_retry = true;
 603 
 604       // We wait for the thread to transition to a more usable state.
 605       for (int i = 1; i <= SuspendRetryCount; i++) {
 606         // We used to do an "os::yield_all(i)" call here with the intention
 607         // that yielding would increase on each retry. However, the parameter
 608         // is ignored on Linux which means the yield didn't scale up. Waiting
 609         // on the SR_lock below provides a much more predictable scale up for
 610         // the delay. It also provides a simple/direct point to check for any
 611         // safepoint requests from the VMThread
 612 
 613         // temporarily drops SR_lock while doing wait with safepoint check
 614         // (if we're a JavaThread - the WatcherThread can also call this)
 615         // and increase delay with each retry
 616         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 617 
 618         // check the actual thread state instead of what we saved above
 619         if (thread_state() != _thread_in_native_trans) {
 620           // the thread has transitioned to another thread state so
 621           // try all the checks (except this one) one more time.
 622           do_trans_retry = true;
 623           break;
 624         }
 625       } // end retry loop
 626 
 627 
 628     }
 629   } while (do_trans_retry);
 630 
 631   *bits |= 0x00000010;
 632   return false;
 633 }
 634 
 635 // Wait for an external suspend request to complete (or be cancelled).
 636 // Returns true if the thread is externally suspended and false otherwise.
 637 //
 638 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 639                                                  uint32_t *bits) {
 640   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 641                              false /* !called_by_wait */, bits);
 642 
 643   // local flag copies to minimize SR_lock hold time
 644   bool is_suspended;
 645   bool pending;
 646   uint32_t reset_bits;
 647 
 648   // set a marker so is_ext_suspend_completed() knows we are the caller
 649   *bits |= 0x00010000;
 650 
 651   // We use reset_bits to reinitialize the bits value at the top of
 652   // each retry loop. This allows the caller to make use of any
 653   // unused bits for their own marking purposes.
 654   reset_bits = *bits;
 655 
 656   {
 657     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 658     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 659                                             delay, bits);
 660     pending = is_external_suspend();
 661   }
 662   // must release SR_lock to allow suspension to complete
 663 
 664   if (!pending) {
 665     // A cancelled suspend request is the only false return from
 666     // is_ext_suspend_completed() that keeps us from entering the
 667     // retry loop.
 668     *bits |= 0x00020000;
 669     return false;
 670   }
 671 
 672   if (is_suspended) {
 673     *bits |= 0x00040000;
 674     return true;
 675   }
 676 
 677   for (int i = 1; i <= retries; i++) {
 678     *bits = reset_bits;  // reinit to only track last retry
 679 
 680     // We used to do an "os::yield_all(i)" call here with the intention
 681     // that yielding would increase on each retry. However, the parameter
 682     // is ignored on Linux which means the yield didn't scale up. Waiting
 683     // on the SR_lock below provides a much more predictable scale up for
 684     // the delay. It also provides a simple/direct point to check for any
 685     // safepoint requests from the VMThread
 686 
 687     {
 688       MutexLocker ml(SR_lock());
 689       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 690       // can also call this)  and increase delay with each retry
 691       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 692 
 693       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 694                                               delay, bits);
 695 
 696       // It is possible for the external suspend request to be cancelled
 697       // (by a resume) before the actual suspend operation is completed.
 698       // Refresh our local copy to see if we still need to wait.
 699       pending = is_external_suspend();
 700     }
 701 
 702     if (!pending) {
 703       // A cancelled suspend request is the only false return from
 704       // is_ext_suspend_completed() that keeps us from staying in the
 705       // retry loop.
 706       *bits |= 0x00080000;
 707       return false;
 708     }
 709 
 710     if (is_suspended) {
 711       *bits |= 0x00100000;
 712       return true;
 713     }
 714   } // end retry loop
 715 
 716   // thread did not suspend after all our retries
 717   *bits |= 0x00200000;
 718   return false;
 719 }
 720 
 721 #ifndef PRODUCT
 722 void JavaThread::record_jump(address target, address instr, const char* file,
 723                              int line) {
 724 
 725   // This should not need to be atomic as the only way for simultaneous
 726   // updates is via interrupts. Even then this should be rare or non-existent
 727   // and we don't care that much anyway.
 728 
 729   int index = _jmp_ring_index;
 730   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 731   _jmp_ring[index]._target = (intptr_t) target;
 732   _jmp_ring[index]._instruction = (intptr_t) instr;
 733   _jmp_ring[index]._file = file;
 734   _jmp_ring[index]._line = line;
 735 }
 736 #endif // PRODUCT
 737 
 738 // Called by flat profiler
 739 // Callers have already called wait_for_ext_suspend_completion
 740 // The assertion for that is currently too complex to put here:
 741 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 742   bool gotframe = false;
 743   // self suspension saves needed state.
 744   if (has_last_Java_frame() && _anchor.walkable()) {
 745     *_fr = pd_last_frame();
 746     gotframe = true;
 747   }
 748   return gotframe;
 749 }
 750 
 751 void Thread::interrupt(Thread* thread) {
 752   debug_only(check_for_dangling_thread_pointer(thread);)
 753   os::interrupt(thread);
 754 }
 755 
 756 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 757   debug_only(check_for_dangling_thread_pointer(thread);)
 758   // Note:  If clear_interrupted==false, this simply fetches and
 759   // returns the value of the field osthread()->interrupted().
 760   return os::is_interrupted(thread, clear_interrupted);
 761 }
 762 
 763 
 764 // GC Support
 765 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 766   jint thread_parity = _oops_do_parity;
 767   if (thread_parity != strong_roots_parity) {
 768     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 769     if (res == thread_parity) {
 770       return true;
 771     } else {
 772       guarantee(res == strong_roots_parity, "Or else what?");
 773       return false;
 774     }
 775   }
 776   return false;
 777 }
 778 
 779 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 780   active_handles()->oops_do(f);
 781   // Do oop for ThreadShadow
 782   f->do_oop((oop*)&_pending_exception);
 783   handle_area()->oops_do(f);
 784 }
 785 
 786 void Thread::nmethods_do(CodeBlobClosure* cf) {
 787   // no nmethods in a generic thread...
 788 }
 789 
 790 void Thread::metadata_handles_do(void f(Metadata*)) {
 791   // Only walk the Handles in Thread.
 792   if (metadata_handles() != NULL) {
 793     for (int i = 0; i< metadata_handles()->length(); i++) {
 794       f(metadata_handles()->at(i));
 795     }
 796   }
 797 }
 798 
 799 void Thread::print_on(outputStream* st) const {
 800   // get_priority assumes osthread initialized
 801   if (osthread() != NULL) {
 802     int os_prio;
 803     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 804       st->print("os_prio=%d ", os_prio);
 805     }
 806     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 807     ext().print_on(st);
 808     osthread()->print_on(st);
 809   }
 810   debug_only(if (WizardMode) print_owned_locks_on(st);)
 811 }
 812 
 813 // Thread::print_on_error() is called by fatal error handler. Don't use
 814 // any lock or allocate memory.
 815 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 816   if (is_VM_thread())                 st->print("VMThread");
 817   else if (is_Compiler_thread())      st->print("CompilerThread");
 818   else if (is_Java_thread())          st->print("JavaThread");
 819   else if (is_GC_task_thread())       st->print("GCTaskThread");
 820   else if (is_Watcher_thread())       st->print("WatcherThread");
 821   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 822   else                                st->print("Thread");
 823 
 824   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 825             p2i(stack_end()), p2i(stack_base()));
 826 
 827   if (osthread()) {
 828     st->print(" [id=%d]", osthread()->thread_id());
 829   }
 830 }
 831 
 832 #ifdef ASSERT
 833 void Thread::print_owned_locks_on(outputStream* st) const {
 834   Monitor *cur = _owned_locks;
 835   if (cur == NULL) {
 836     st->print(" (no locks) ");
 837   } else {
 838     st->print_cr(" Locks owned:");
 839     while (cur) {
 840       cur->print_on(st);
 841       cur = cur->next();
 842     }
 843   }
 844 }
 845 
 846 static int ref_use_count  = 0;
 847 
 848 bool Thread::owns_locks_but_compiled_lock() const {
 849   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 850     if (cur != Compile_lock) return true;
 851   }
 852   return false;
 853 }
 854 
 855 
 856 #endif
 857 
 858 #ifndef PRODUCT
 859 
 860 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 861 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 862 // no threads which allow_vm_block's are held
 863 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 864   // Check if current thread is allowed to block at a safepoint
 865   if (!(_allow_safepoint_count == 0)) {
 866     fatal("Possible safepoint reached by thread that does not allow it");
 867   }
 868   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 869     fatal("LEAF method calling lock?");
 870   }
 871 
 872 #ifdef ASSERT
 873   if (potential_vm_operation && is_Java_thread()
 874       && !Universe::is_bootstrapping()) {
 875     // Make sure we do not hold any locks that the VM thread also uses.
 876     // This could potentially lead to deadlocks
 877     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 878       // Threads_lock is special, since the safepoint synchronization will not start before this is
 879       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 880       // since it is used to transfer control between JavaThreads and the VMThread
 881       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 882       if ((cur->allow_vm_block() &&
 883            cur != Threads_lock &&
 884            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 885            cur != VMOperationRequest_lock &&
 886            cur != VMOperationQueue_lock) ||
 887            cur->rank() == Mutex::special) {
 888         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 889       }
 890     }
 891   }
 892 
 893   if (GCALotAtAllSafepoints) {
 894     // We could enter a safepoint here and thus have a gc
 895     InterfaceSupport::check_gc_alot();
 896   }
 897 #endif
 898 }
 899 #endif
 900 
 901 bool Thread::is_in_stack(address adr) const {
 902   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 903   address end = os::current_stack_pointer();
 904   // Allow non Java threads to call this without stack_base
 905   if (_stack_base == NULL) return true;
 906   if (stack_base() >= adr && adr >= end) return true;
 907 
 908   return false;
 909 }
 910 
 911 bool Thread::is_in_usable_stack(address adr) const {
 912   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 913   size_t usable_stack_size = _stack_size - stack_guard_size;
 914 
 915   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 916 }
 917 
 918 
 919 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 920 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 921 // used for compilation in the future. If that change is made, the need for these methods
 922 // should be revisited, and they should be removed if possible.
 923 
 924 bool Thread::is_lock_owned(address adr) const {
 925   return on_local_stack(adr);
 926 }
 927 
 928 bool Thread::set_as_starting_thread() {
 929   // NOTE: this must be called inside the main thread.
 930   return os::create_main_thread((JavaThread*)this);
 931 }
 932 
 933 static void initialize_class(Symbol* class_name, TRAPS) {
 934   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 935   InstanceKlass::cast(klass)->initialize(CHECK);
 936 }
 937 
 938 
 939 // Creates the initial ThreadGroup
 940 static Handle create_initial_thread_group(TRAPS) {
 941   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 942   instanceKlassHandle klass (THREAD, k);
 943 
 944   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 945   {
 946     JavaValue result(T_VOID);
 947     JavaCalls::call_special(&result,
 948                             system_instance,
 949                             klass,
 950                             vmSymbols::object_initializer_name(),
 951                             vmSymbols::void_method_signature(),
 952                             CHECK_NH);
 953   }
 954   Universe::set_system_thread_group(system_instance());
 955 
 956   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 957   {
 958     JavaValue result(T_VOID);
 959     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 960     JavaCalls::call_special(&result,
 961                             main_instance,
 962                             klass,
 963                             vmSymbols::object_initializer_name(),
 964                             vmSymbols::threadgroup_string_void_signature(),
 965                             system_instance,
 966                             string,
 967                             CHECK_NH);
 968   }
 969   return main_instance;
 970 }
 971 
 972 // Creates the initial Thread
 973 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 974                                  TRAPS) {
 975   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 976   instanceKlassHandle klass (THREAD, k);
 977   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 978 
 979   java_lang_Thread::set_thread(thread_oop(), thread);
 980   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 981   thread->set_threadObj(thread_oop());
 982 
 983   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 984 
 985   JavaValue result(T_VOID);
 986   JavaCalls::call_special(&result, thread_oop,
 987                           klass,
 988                           vmSymbols::object_initializer_name(),
 989                           vmSymbols::threadgroup_string_void_signature(),
 990                           thread_group,
 991                           string,
 992                           CHECK_NULL);
 993   return thread_oop();
 994 }
 995 
 996 static void call_initializeSystemClass(TRAPS) {
 997   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
 998   instanceKlassHandle klass (THREAD, k);
 999 
1000   JavaValue result(T_VOID);
1001   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1002                          vmSymbols::void_method_signature(), CHECK);
1003 }
1004 
1005 char java_runtime_name[128] = "";
1006 char java_runtime_version[128] = "";
1007 
1008 // extract the JRE name from sun.misc.Version.java_runtime_name
1009 static const char* get_java_runtime_name(TRAPS) {
1010   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1011                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1012   fieldDescriptor fd;
1013   bool found = k != NULL &&
1014                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1015                                                         vmSymbols::string_signature(), &fd);
1016   if (found) {
1017     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1018     if (name_oop == NULL) {
1019       return NULL;
1020     }
1021     const char* name = java_lang_String::as_utf8_string(name_oop,
1022                                                         java_runtime_name,
1023                                                         sizeof(java_runtime_name));
1024     return name;
1025   } else {
1026     return NULL;
1027   }
1028 }
1029 
1030 // extract the JRE version from sun.misc.Version.java_runtime_version
1031 static const char* get_java_runtime_version(TRAPS) {
1032   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1033                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1034   fieldDescriptor fd;
1035   bool found = k != NULL &&
1036                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1037                                                         vmSymbols::string_signature(), &fd);
1038   if (found) {
1039     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1040     if (name_oop == NULL) {
1041       return NULL;
1042     }
1043     const char* name = java_lang_String::as_utf8_string(name_oop,
1044                                                         java_runtime_version,
1045                                                         sizeof(java_runtime_version));
1046     return name;
1047   } else {
1048     return NULL;
1049   }
1050 }
1051 
1052 // General purpose hook into Java code, run once when the VM is initialized.
1053 // The Java library method itself may be changed independently from the VM.
1054 static void call_postVMInitHook(TRAPS) {
1055   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1056   instanceKlassHandle klass (THREAD, k);
1057   if (klass.not_null()) {
1058     JavaValue result(T_VOID);
1059     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1060                            vmSymbols::void_method_signature(),
1061                            CHECK);
1062   }
1063 }
1064 
1065 static void reset_vm_info_property(TRAPS) {
1066   // the vm info string
1067   ResourceMark rm(THREAD);
1068   const char *vm_info = VM_Version::vm_info_string();
1069 
1070   // java.lang.System class
1071   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1072   instanceKlassHandle klass (THREAD, k);
1073 
1074   // setProperty arguments
1075   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1076   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1077 
1078   // return value
1079   JavaValue r(T_OBJECT);
1080 
1081   // public static String setProperty(String key, String value);
1082   JavaCalls::call_static(&r,
1083                          klass,
1084                          vmSymbols::setProperty_name(),
1085                          vmSymbols::string_string_string_signature(),
1086                          key_str,
1087                          value_str,
1088                          CHECK);
1089 }
1090 
1091 
1092 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1093                                     bool daemon, TRAPS) {
1094   assert(thread_group.not_null(), "thread group should be specified");
1095   assert(threadObj() == NULL, "should only create Java thread object once");
1096 
1097   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1098   instanceKlassHandle klass (THREAD, k);
1099   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1100 
1101   java_lang_Thread::set_thread(thread_oop(), this);
1102   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1103   set_threadObj(thread_oop());
1104 
1105   JavaValue result(T_VOID);
1106   if (thread_name != NULL) {
1107     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1108     // Thread gets assigned specified name and null target
1109     JavaCalls::call_special(&result,
1110                             thread_oop,
1111                             klass,
1112                             vmSymbols::object_initializer_name(),
1113                             vmSymbols::threadgroup_string_void_signature(),
1114                             thread_group, // Argument 1
1115                             name,         // Argument 2
1116                             THREAD);
1117   } else {
1118     // Thread gets assigned name "Thread-nnn" and null target
1119     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1120     JavaCalls::call_special(&result,
1121                             thread_oop,
1122                             klass,
1123                             vmSymbols::object_initializer_name(),
1124                             vmSymbols::threadgroup_runnable_void_signature(),
1125                             thread_group, // Argument 1
1126                             Handle(),     // Argument 2
1127                             THREAD);
1128   }
1129 
1130 
1131   if (daemon) {
1132     java_lang_Thread::set_daemon(thread_oop());
1133   }
1134 
1135   if (HAS_PENDING_EXCEPTION) {
1136     return;
1137   }
1138 
1139   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1140   Handle threadObj(THREAD, this->threadObj());
1141 
1142   JavaCalls::call_special(&result,
1143                           thread_group,
1144                           group,
1145                           vmSymbols::add_method_name(),
1146                           vmSymbols::thread_void_signature(),
1147                           threadObj,          // Arg 1
1148                           THREAD);
1149 }
1150 
1151 // NamedThread --  non-JavaThread subclasses with multiple
1152 // uniquely named instances should derive from this.
1153 NamedThread::NamedThread() : Thread() {
1154   _name = NULL;
1155   _processed_thread = NULL;
1156   _gc_id = GCId::undefined();
1157 }
1158 
1159 NamedThread::~NamedThread() {
1160   if (_name != NULL) {
1161     FREE_C_HEAP_ARRAY(char, _name);
1162     _name = NULL;
1163   }
1164 }
1165 
1166 void NamedThread::set_name(const char* format, ...) {
1167   guarantee(_name == NULL, "Only get to set name once.");
1168   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1169   guarantee(_name != NULL, "alloc failure");
1170   va_list ap;
1171   va_start(ap, format);
1172   jio_vsnprintf(_name, max_name_len, format, ap);
1173   va_end(ap);
1174 }
1175 
1176 void NamedThread::initialize_named_thread() {
1177   set_native_thread_name(name());
1178 }
1179 
1180 void NamedThread::print_on(outputStream* st) const {
1181   st->print("\"%s\" ", name());
1182   Thread::print_on(st);
1183   st->cr();
1184 }
1185 
1186 
1187 // ======= WatcherThread ========
1188 
1189 // The watcher thread exists to simulate timer interrupts.  It should
1190 // be replaced by an abstraction over whatever native support for
1191 // timer interrupts exists on the platform.
1192 
1193 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1194 bool WatcherThread::_startable = false;
1195 volatile bool  WatcherThread::_should_terminate = false;
1196 
1197 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1198   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1199   if (os::create_thread(this, os::watcher_thread)) {
1200     _watcher_thread = this;
1201 
1202     // Set the watcher thread to the highest OS priority which should not be
1203     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1204     // is created. The only normal thread using this priority is the reference
1205     // handler thread, which runs for very short intervals only.
1206     // If the VMThread's priority is not lower than the WatcherThread profiling
1207     // will be inaccurate.
1208     os::set_priority(this, MaxPriority);
1209     if (!DisableStartThread) {
1210       os::start_thread(this);
1211     }
1212   }
1213 }
1214 
1215 int WatcherThread::sleep() const {
1216   // The WatcherThread does not participate in the safepoint protocol
1217   // for the PeriodicTask_lock because it is not a JavaThread.
1218   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1219 
1220   if (_should_terminate) {
1221     // check for termination before we do any housekeeping or wait
1222     return 0;  // we did not sleep.
1223   }
1224 
1225   // remaining will be zero if there are no tasks,
1226   // causing the WatcherThread to sleep until a task is
1227   // enrolled
1228   int remaining = PeriodicTask::time_to_wait();
1229   int time_slept = 0;
1230 
1231   // we expect this to timeout - we only ever get unparked when
1232   // we should terminate or when a new task has been enrolled
1233   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1234 
1235   jlong time_before_loop = os::javaTimeNanos();
1236 
1237   while (true) {
1238     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1239                                             remaining);
1240     jlong now = os::javaTimeNanos();
1241 
1242     if (remaining == 0) {
1243       // if we didn't have any tasks we could have waited for a long time
1244       // consider the time_slept zero and reset time_before_loop
1245       time_slept = 0;
1246       time_before_loop = now;
1247     } else {
1248       // need to recalculate since we might have new tasks in _tasks
1249       time_slept = (int) ((now - time_before_loop) / 1000000);
1250     }
1251 
1252     // Change to task list or spurious wakeup of some kind
1253     if (timedout || _should_terminate) {
1254       break;
1255     }
1256 
1257     remaining = PeriodicTask::time_to_wait();
1258     if (remaining == 0) {
1259       // Last task was just disenrolled so loop around and wait until
1260       // another task gets enrolled
1261       continue;
1262     }
1263 
1264     remaining -= time_slept;
1265     if (remaining <= 0) {
1266       break;
1267     }
1268   }
1269 
1270   return time_slept;
1271 }
1272 
1273 void WatcherThread::run() {
1274   assert(this == watcher_thread(), "just checking");
1275 
1276   this->record_stack_base_and_size();
1277   this->set_native_thread_name(this->name());
1278   this->set_active_handles(JNIHandleBlock::allocate_block());
1279   while (true) {
1280     assert(watcher_thread() == Thread::current(), "thread consistency check");
1281     assert(watcher_thread() == this, "thread consistency check");
1282 
1283     // Calculate how long it'll be until the next PeriodicTask work
1284     // should be done, and sleep that amount of time.
1285     int time_waited = sleep();
1286 
1287     if (is_error_reported()) {
1288       // A fatal error has happened, the error handler(VMError::report_and_die)
1289       // should abort JVM after creating an error log file. However in some
1290       // rare cases, the error handler itself might deadlock. Here we try to
1291       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1292       //
1293       // This code is in WatcherThread because WatcherThread wakes up
1294       // periodically so the fatal error handler doesn't need to do anything;
1295       // also because the WatcherThread is less likely to crash than other
1296       // threads.
1297 
1298       for (;;) {
1299         if (!ShowMessageBoxOnError
1300             && (OnError == NULL || OnError[0] == '\0')
1301             && Arguments::abort_hook() == NULL) {
1302           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1303           fdStream err(defaultStream::output_fd());
1304           err.print_raw_cr("# [ timer expired, abort... ]");
1305           // skip atexit/vm_exit/vm_abort hooks
1306           os::die();
1307         }
1308 
1309         // Wake up 5 seconds later, the fatal handler may reset OnError or
1310         // ShowMessageBoxOnError when it is ready to abort.
1311         os::sleep(this, 5 * 1000, false);
1312       }
1313     }
1314 
1315     if (_should_terminate) {
1316       // check for termination before posting the next tick
1317       break;
1318     }
1319 
1320     PeriodicTask::real_time_tick(time_waited);
1321   }
1322 
1323   // Signal that it is terminated
1324   {
1325     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1326     _watcher_thread = NULL;
1327     Terminator_lock->notify();
1328   }
1329 }
1330 
1331 void WatcherThread::start() {
1332   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1333 
1334   if (watcher_thread() == NULL && _startable) {
1335     _should_terminate = false;
1336     // Create the single instance of WatcherThread
1337     new WatcherThread();
1338   }
1339 }
1340 
1341 void WatcherThread::make_startable() {
1342   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1343   _startable = true;
1344 }
1345 
1346 void WatcherThread::stop() {
1347   {
1348     // Follow normal safepoint aware lock enter protocol since the
1349     // WatcherThread is stopped by another JavaThread.
1350     MutexLocker ml(PeriodicTask_lock);
1351     _should_terminate = true;
1352 
1353     WatcherThread* watcher = watcher_thread();
1354     if (watcher != NULL) {
1355       // unpark the WatcherThread so it can see that it should terminate
1356       watcher->unpark();
1357     }
1358   }
1359 
1360   MutexLocker mu(Terminator_lock);
1361 
1362   while (watcher_thread() != NULL) {
1363     // This wait should make safepoint checks, wait without a timeout,
1364     // and wait as a suspend-equivalent condition.
1365     //
1366     // Note: If the FlatProfiler is running, then this thread is waiting
1367     // for the WatcherThread to terminate and the WatcherThread, via the
1368     // FlatProfiler task, is waiting for the external suspend request on
1369     // this thread to complete. wait_for_ext_suspend_completion() will
1370     // eventually timeout, but that takes time. Making this wait a
1371     // suspend-equivalent condition solves that timeout problem.
1372     //
1373     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1374                           Mutex::_as_suspend_equivalent_flag);
1375   }
1376 }
1377 
1378 void WatcherThread::unpark() {
1379   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1380   PeriodicTask_lock->notify();
1381 }
1382 
1383 void WatcherThread::print_on(outputStream* st) const {
1384   st->print("\"%s\" ", name());
1385   Thread::print_on(st);
1386   st->cr();
1387 }
1388 
1389 // ======= JavaThread ========
1390 
1391 #if INCLUDE_JVMCI
1392 
1393 jlong* JavaThread::_jvmci_old_thread_counters;
1394 
1395 bool jvmci_counters_include(JavaThread* thread) {
1396   oop threadObj = thread->threadObj();
1397   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1398 }
1399 
1400 void JavaThread::collect_counters(typeArrayOop array) {
1401   if (JVMCICounterSize > 0) {
1402     MutexLocker tl(Threads_lock);
1403     for (int i = 0; i < array->length(); i++) {
1404       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1405     }
1406     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1407       if (jvmci_counters_include(tp)) {
1408         for (int i = 0; i < array->length(); i++) {
1409           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1410         }
1411       }
1412     }
1413   }
1414 }
1415 
1416 #endif // INCLUDE_JVMCI
1417 
1418 // A JavaThread is a normal Java thread
1419 
1420 void JavaThread::initialize() {
1421   // Initialize fields
1422 
1423   set_saved_exception_pc(NULL);
1424   set_threadObj(NULL);
1425   _anchor.clear();
1426   set_entry_point(NULL);
1427   set_jni_functions(jni_functions());
1428   set_callee_target(NULL);
1429   set_vm_result(NULL);
1430   set_vm_result_2(NULL);
1431   set_vframe_array_head(NULL);
1432   set_vframe_array_last(NULL);
1433   set_deferred_locals(NULL);
1434   set_deopt_mark(NULL);
1435   set_deopt_nmethod(NULL);
1436   clear_must_deopt_id();
1437   set_monitor_chunks(NULL);
1438   set_next(NULL);
1439   set_thread_state(_thread_new);
1440   _terminated = _not_terminated;
1441   _privileged_stack_top = NULL;
1442   _array_for_gc = NULL;
1443   _suspend_equivalent = false;
1444   _in_deopt_handler = 0;
1445   _doing_unsafe_access = false;
1446   _stack_guard_state = stack_guard_unused;
1447 #if INCLUDE_JVMCI
1448   _pending_monitorenter = false;
1449   _pending_deoptimization = -1;
1450   _pending_failed_speculation = NULL;
1451   _pending_transfer_to_interpreter = false;
1452   _jvmci._alternate_call_target = NULL;
1453   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1454   if (JVMCICounterSize > 0) {
1455     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1456     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1457   } else {
1458     _jvmci_counters = NULL;
1459   }
1460 #endif // INCLUDE_JVMCI
1461   _reserved_stack_activation = NULL;  // stack base not known yet
1462   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1463   _exception_pc  = 0;
1464   _exception_handler_pc = 0;
1465   _is_method_handle_return = 0;
1466   _jvmti_thread_state= NULL;
1467   _should_post_on_exceptions_flag = JNI_FALSE;
1468   _jvmti_get_loaded_classes_closure = NULL;
1469   _interp_only_mode    = 0;
1470   _special_runtime_exit_condition = _no_async_condition;
1471   _pending_async_exception = NULL;
1472   _thread_stat = NULL;
1473   _thread_stat = new ThreadStatistics();
1474   _blocked_on_compilation = false;
1475   _jni_active_critical = 0;
1476   _pending_jni_exception_check_fn = NULL;
1477   _do_not_unlock_if_synchronized = false;
1478   _cached_monitor_info = NULL;
1479   _parker = Parker::Allocate(this);
1480 
1481 #ifndef PRODUCT
1482   _jmp_ring_index = 0;
1483   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1484     record_jump(NULL, NULL, NULL, 0);
1485   }
1486 #endif // PRODUCT
1487 
1488   set_thread_profiler(NULL);
1489   if (FlatProfiler::is_active()) {
1490     // This is where we would decide to either give each thread it's own profiler
1491     // or use one global one from FlatProfiler,
1492     // or up to some count of the number of profiled threads, etc.
1493     ThreadProfiler* pp = new ThreadProfiler();
1494     pp->engage();
1495     set_thread_profiler(pp);
1496   }
1497 
1498   // Setup safepoint state info for this thread
1499   ThreadSafepointState::create(this);
1500 
1501   debug_only(_java_call_counter = 0);
1502 
1503   // JVMTI PopFrame support
1504   _popframe_condition = popframe_inactive;
1505   _popframe_preserved_args = NULL;
1506   _popframe_preserved_args_size = 0;
1507   _frames_to_pop_failed_realloc = 0;
1508 
1509   pd_initialize();
1510 }
1511 
1512 #if INCLUDE_ALL_GCS
1513 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1514 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1515 #endif // INCLUDE_ALL_GCS
1516 
1517 JavaThread::JavaThread(bool is_attaching_via_jni) :
1518                        Thread()
1519 #if INCLUDE_ALL_GCS
1520                        , _satb_mark_queue(&_satb_mark_queue_set),
1521                        _dirty_card_queue(&_dirty_card_queue_set)
1522 #endif // INCLUDE_ALL_GCS
1523 {
1524   initialize();
1525   if (is_attaching_via_jni) {
1526     _jni_attach_state = _attaching_via_jni;
1527   } else {
1528     _jni_attach_state = _not_attaching_via_jni;
1529   }
1530   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1531 }
1532 
1533 bool JavaThread::reguard_stack(address cur_sp) {
1534   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1535       && _stack_guard_state != stack_guard_reserved_disabled) {
1536     return true; // Stack already guarded or guard pages not needed.
1537   }
1538 
1539   if (register_stack_overflow()) {
1540     // For those architectures which have separate register and
1541     // memory stacks, we must check the register stack to see if
1542     // it has overflowed.
1543     return false;
1544   }
1545 
1546   // Java code never executes within the yellow zone: the latter is only
1547   // there to provoke an exception during stack banging.  If java code
1548   // is executing there, either StackShadowPages should be larger, or
1549   // some exception code in c1, c2 or the interpreter isn't unwinding
1550   // when it should.
1551   guarantee(cur_sp > stack_reserved_zone_base(),
1552             "not enough space to reguard - increase StackShadowPages");
1553   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1554     enable_stack_yellow_reserved_zone();
1555     if (reserved_stack_activation() != stack_base()) {
1556       set_reserved_stack_activation(stack_base());
1557     }
1558   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1559     set_reserved_stack_activation(stack_base());
1560     enable_stack_reserved_zone();
1561   }
1562   return true;
1563 }
1564 
1565 bool JavaThread::reguard_stack(void) {
1566   return reguard_stack(os::current_stack_pointer());
1567 }
1568 
1569 
1570 void JavaThread::block_if_vm_exited() {
1571   if (_terminated == _vm_exited) {
1572     // _vm_exited is set at safepoint, and Threads_lock is never released
1573     // we will block here forever
1574     Threads_lock->lock_without_safepoint_check();
1575     ShouldNotReachHere();
1576   }
1577 }
1578 
1579 
1580 // Remove this ifdef when C1 is ported to the compiler interface.
1581 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1582 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1583 
1584 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1585                        Thread()
1586 #if INCLUDE_ALL_GCS
1587                        , _satb_mark_queue(&_satb_mark_queue_set),
1588                        _dirty_card_queue(&_dirty_card_queue_set)
1589 #endif // INCLUDE_ALL_GCS
1590 {
1591   initialize();
1592   _jni_attach_state = _not_attaching_via_jni;
1593   set_entry_point(entry_point);
1594   // Create the native thread itself.
1595   // %note runtime_23
1596   os::ThreadType thr_type = os::java_thread;
1597   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1598                                                      os::java_thread;
1599   os::create_thread(this, thr_type, stack_sz);
1600   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1601   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1602   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1603   // the exception consists of creating the exception object & initializing it, initialization
1604   // will leave the VM via a JavaCall and then all locks must be unlocked).
1605   //
1606   // The thread is still suspended when we reach here. Thread must be explicit started
1607   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1608   // by calling Threads:add. The reason why this is not done here, is because the thread
1609   // object must be fully initialized (take a look at JVM_Start)
1610 }
1611 
1612 JavaThread::~JavaThread() {
1613 
1614   // JSR166 -- return the parker to the free list
1615   Parker::Release(_parker);
1616   _parker = NULL;
1617 
1618   // Free any remaining  previous UnrollBlock
1619   vframeArray* old_array = vframe_array_last();
1620 
1621   if (old_array != NULL) {
1622     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1623     old_array->set_unroll_block(NULL);
1624     delete old_info;
1625     delete old_array;
1626   }
1627 
1628   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1629   if (deferred != NULL) {
1630     // This can only happen if thread is destroyed before deoptimization occurs.
1631     assert(deferred->length() != 0, "empty array!");
1632     do {
1633       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1634       deferred->remove_at(0);
1635       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1636       delete dlv;
1637     } while (deferred->length() != 0);
1638     delete deferred;
1639   }
1640 
1641   // All Java related clean up happens in exit
1642   ThreadSafepointState::destroy(this);
1643   if (_thread_profiler != NULL) delete _thread_profiler;
1644   if (_thread_stat != NULL) delete _thread_stat;
1645 
1646 #if INCLUDE_JVMCI
1647   if (JVMCICounterSize > 0) {
1648     if (jvmci_counters_include(this)) {
1649       for (int i = 0; i < JVMCICounterSize; i++) {
1650         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1651       }
1652     }
1653     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1654   }
1655 #endif // INCLUDE_JVMCI
1656 }
1657 
1658 
1659 // The first routine called by a new Java thread
1660 void JavaThread::run() {
1661   // initialize thread-local alloc buffer related fields
1662   this->initialize_tlab();
1663 
1664   // used to test validity of stack trace backs
1665   this->record_base_of_stack_pointer();
1666 
1667   // Record real stack base and size.
1668   this->record_stack_base_and_size();
1669 
1670   this->create_stack_guard_pages();
1671 
1672   this->cache_global_variables();
1673 
1674   // Thread is now sufficient initialized to be handled by the safepoint code as being
1675   // in the VM. Change thread state from _thread_new to _thread_in_vm
1676   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1677 
1678   assert(JavaThread::current() == this, "sanity check");
1679   assert(!Thread::current()->owns_locks(), "sanity check");
1680 
1681   DTRACE_THREAD_PROBE(start, this);
1682 
1683   // This operation might block. We call that after all safepoint checks for a new thread has
1684   // been completed.
1685   this->set_active_handles(JNIHandleBlock::allocate_block());
1686 
1687   if (JvmtiExport::should_post_thread_life()) {
1688     JvmtiExport::post_thread_start(this);
1689   }
1690 
1691   EventThreadStart event;
1692   if (event.should_commit()) {
1693     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1694     event.commit();
1695   }
1696 
1697   // We call another function to do the rest so we are sure that the stack addresses used
1698   // from there will be lower than the stack base just computed
1699   thread_main_inner();
1700 
1701   // Note, thread is no longer valid at this point!
1702 }
1703 
1704 
1705 void JavaThread::thread_main_inner() {
1706   assert(JavaThread::current() == this, "sanity check");
1707   assert(this->threadObj() != NULL, "just checking");
1708 
1709   // Execute thread entry point unless this thread has a pending exception
1710   // or has been stopped before starting.
1711   // Note: Due to JVM_StopThread we can have pending exceptions already!
1712   if (!this->has_pending_exception() &&
1713       !java_lang_Thread::is_stillborn(this->threadObj())) {
1714     {
1715       ResourceMark rm(this);
1716       this->set_native_thread_name(this->get_thread_name());
1717     }
1718     HandleMark hm(this);
1719     this->entry_point()(this, this);
1720   }
1721 
1722   DTRACE_THREAD_PROBE(stop, this);
1723 
1724   this->exit(false);
1725   delete this;
1726 }
1727 
1728 
1729 static void ensure_join(JavaThread* thread) {
1730   // We do not need to grap the Threads_lock, since we are operating on ourself.
1731   Handle threadObj(thread, thread->threadObj());
1732   assert(threadObj.not_null(), "java thread object must exist");
1733   ObjectLocker lock(threadObj, thread);
1734   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1735   thread->clear_pending_exception();
1736   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1737   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1738   // Clear the native thread instance - this makes isAlive return false and allows the join()
1739   // to complete once we've done the notify_all below
1740   java_lang_Thread::set_thread(threadObj(), NULL);
1741   lock.notify_all(thread);
1742   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1743   thread->clear_pending_exception();
1744 }
1745 
1746 
1747 // For any new cleanup additions, please check to see if they need to be applied to
1748 // cleanup_failed_attach_current_thread as well.
1749 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1750   assert(this == JavaThread::current(), "thread consistency check");
1751 
1752   HandleMark hm(this);
1753   Handle uncaught_exception(this, this->pending_exception());
1754   this->clear_pending_exception();
1755   Handle threadObj(this, this->threadObj());
1756   assert(threadObj.not_null(), "Java thread object should be created");
1757 
1758   if (get_thread_profiler() != NULL) {
1759     get_thread_profiler()->disengage();
1760     ResourceMark rm;
1761     get_thread_profiler()->print(get_thread_name());
1762   }
1763 
1764 
1765   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1766   {
1767     EXCEPTION_MARK;
1768 
1769     CLEAR_PENDING_EXCEPTION;
1770   }
1771   if (!destroy_vm) {
1772     if (uncaught_exception.not_null()) {
1773       EXCEPTION_MARK;
1774       // Call method Thread.dispatchUncaughtException().
1775       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1776       JavaValue result(T_VOID);
1777       JavaCalls::call_virtual(&result,
1778                               threadObj, thread_klass,
1779                               vmSymbols::dispatchUncaughtException_name(),
1780                               vmSymbols::throwable_void_signature(),
1781                               uncaught_exception,
1782                               THREAD);
1783       if (HAS_PENDING_EXCEPTION) {
1784         ResourceMark rm(this);
1785         jio_fprintf(defaultStream::error_stream(),
1786                     "\nException: %s thrown from the UncaughtExceptionHandler"
1787                     " in thread \"%s\"\n",
1788                     pending_exception()->klass()->external_name(),
1789                     get_thread_name());
1790         CLEAR_PENDING_EXCEPTION;
1791       }
1792     }
1793 
1794     // Called before the java thread exit since we want to read info
1795     // from java_lang_Thread object
1796     EventThreadEnd event;
1797     if (event.should_commit()) {
1798       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1799       event.commit();
1800     }
1801 
1802     // Call after last event on thread
1803     EVENT_THREAD_EXIT(this);
1804 
1805     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1806     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1807     // is deprecated anyhow.
1808     if (!is_Compiler_thread()) {
1809       int count = 3;
1810       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1811         EXCEPTION_MARK;
1812         JavaValue result(T_VOID);
1813         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1814         JavaCalls::call_virtual(&result,
1815                                 threadObj, thread_klass,
1816                                 vmSymbols::exit_method_name(),
1817                                 vmSymbols::void_method_signature(),
1818                                 THREAD);
1819         CLEAR_PENDING_EXCEPTION;
1820       }
1821     }
1822     // notify JVMTI
1823     if (JvmtiExport::should_post_thread_life()) {
1824       JvmtiExport::post_thread_end(this);
1825     }
1826 
1827     // We have notified the agents that we are exiting, before we go on,
1828     // we must check for a pending external suspend request and honor it
1829     // in order to not surprise the thread that made the suspend request.
1830     while (true) {
1831       {
1832         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1833         if (!is_external_suspend()) {
1834           set_terminated(_thread_exiting);
1835           ThreadService::current_thread_exiting(this);
1836           break;
1837         }
1838         // Implied else:
1839         // Things get a little tricky here. We have a pending external
1840         // suspend request, but we are holding the SR_lock so we
1841         // can't just self-suspend. So we temporarily drop the lock
1842         // and then self-suspend.
1843       }
1844 
1845       ThreadBlockInVM tbivm(this);
1846       java_suspend_self();
1847 
1848       // We're done with this suspend request, but we have to loop around
1849       // and check again. Eventually we will get SR_lock without a pending
1850       // external suspend request and will be able to mark ourselves as
1851       // exiting.
1852     }
1853     // no more external suspends are allowed at this point
1854   } else {
1855     // before_exit() has already posted JVMTI THREAD_END events
1856   }
1857 
1858   // Notify waiters on thread object. This has to be done after exit() is called
1859   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1860   // group should have the destroyed bit set before waiters are notified).
1861   ensure_join(this);
1862   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1863 
1864   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1865   // held by this thread must be released. The spec does not distinguish
1866   // between JNI-acquired and regular Java monitors. We can only see
1867   // regular Java monitors here if monitor enter-exit matching is broken.
1868   //
1869   // Optionally release any monitors for regular JavaThread exits. This
1870   // is provided as a work around for any bugs in monitor enter-exit
1871   // matching. This can be expensive so it is not enabled by default.
1872   //
1873   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1874   // ObjectSynchronizer::release_monitors_owned_by_thread().
1875   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1876     // Sanity check even though JNI DetachCurrentThread() would have
1877     // returned JNI_ERR if there was a Java frame. JavaThread exit
1878     // should be done executing Java code by the time we get here.
1879     assert(!this->has_last_Java_frame(),
1880            "should not have a Java frame when detaching or exiting");
1881     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1882     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1883   }
1884 
1885   // These things needs to be done while we are still a Java Thread. Make sure that thread
1886   // is in a consistent state, in case GC happens
1887   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1888 
1889   if (active_handles() != NULL) {
1890     JNIHandleBlock* block = active_handles();
1891     set_active_handles(NULL);
1892     JNIHandleBlock::release_block(block);
1893   }
1894 
1895   if (free_handle_block() != NULL) {
1896     JNIHandleBlock* block = free_handle_block();
1897     set_free_handle_block(NULL);
1898     JNIHandleBlock::release_block(block);
1899   }
1900 
1901   // These have to be removed while this is still a valid thread.
1902   remove_stack_guard_pages();
1903 
1904   if (UseTLAB) {
1905     tlab().make_parsable(true);  // retire TLAB
1906   }
1907 
1908   if (JvmtiEnv::environments_might_exist()) {
1909     JvmtiExport::cleanup_thread(this);
1910   }
1911 
1912   // We must flush any deferred card marks before removing a thread from
1913   // the list of active threads.
1914   Universe::heap()->flush_deferred_store_barrier(this);
1915   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1916 
1917 #if INCLUDE_ALL_GCS
1918   // We must flush the G1-related buffers before removing a thread
1919   // from the list of active threads. We must do this after any deferred
1920   // card marks have been flushed (above) so that any entries that are
1921   // added to the thread's dirty card queue as a result are not lost.
1922   if (UseG1GC) {
1923     flush_barrier_queues();
1924   }
1925 #endif // INCLUDE_ALL_GCS
1926 
1927   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1928   Threads::remove(this);
1929 }
1930 
1931 #if INCLUDE_ALL_GCS
1932 // Flush G1-related queues.
1933 void JavaThread::flush_barrier_queues() {
1934   satb_mark_queue().flush();
1935   dirty_card_queue().flush();
1936 }
1937 
1938 void JavaThread::initialize_queues() {
1939   assert(!SafepointSynchronize::is_at_safepoint(),
1940          "we should not be at a safepoint");
1941 
1942   SATBMarkQueue& satb_queue = satb_mark_queue();
1943   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1944   // The SATB queue should have been constructed with its active
1945   // field set to false.
1946   assert(!satb_queue.is_active(), "SATB queue should not be active");
1947   assert(satb_queue.is_empty(), "SATB queue should be empty");
1948   // If we are creating the thread during a marking cycle, we should
1949   // set the active field of the SATB queue to true.
1950   if (satb_queue_set.is_active()) {
1951     satb_queue.set_active(true);
1952   }
1953 
1954   DirtyCardQueue& dirty_queue = dirty_card_queue();
1955   // The dirty card queue should have been constructed with its
1956   // active field set to true.
1957   assert(dirty_queue.is_active(), "dirty card queue should be active");
1958 }
1959 #endif // INCLUDE_ALL_GCS
1960 
1961 void JavaThread::cleanup_failed_attach_current_thread() {
1962   if (get_thread_profiler() != NULL) {
1963     get_thread_profiler()->disengage();
1964     ResourceMark rm;
1965     get_thread_profiler()->print(get_thread_name());
1966   }
1967 
1968   if (active_handles() != NULL) {
1969     JNIHandleBlock* block = active_handles();
1970     set_active_handles(NULL);
1971     JNIHandleBlock::release_block(block);
1972   }
1973 
1974   if (free_handle_block() != NULL) {
1975     JNIHandleBlock* block = free_handle_block();
1976     set_free_handle_block(NULL);
1977     JNIHandleBlock::release_block(block);
1978   }
1979 
1980   // These have to be removed while this is still a valid thread.
1981   remove_stack_guard_pages();
1982 
1983   if (UseTLAB) {
1984     tlab().make_parsable(true);  // retire TLAB, if any
1985   }
1986 
1987 #if INCLUDE_ALL_GCS
1988   if (UseG1GC) {
1989     flush_barrier_queues();
1990   }
1991 #endif // INCLUDE_ALL_GCS
1992 
1993   Threads::remove(this);
1994   delete this;
1995 }
1996 
1997 
1998 
1999 
2000 JavaThread* JavaThread::active() {
2001   Thread* thread = Thread::current();
2002   if (thread->is_Java_thread()) {
2003     return (JavaThread*) thread;
2004   } else {
2005     assert(thread->is_VM_thread(), "this must be a vm thread");
2006     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2007     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2008     assert(ret->is_Java_thread(), "must be a Java thread");
2009     return ret;
2010   }
2011 }
2012 
2013 bool JavaThread::is_lock_owned(address adr) const {
2014   if (Thread::is_lock_owned(adr)) return true;
2015 
2016   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2017     if (chunk->contains(adr)) return true;
2018   }
2019 
2020   return false;
2021 }
2022 
2023 
2024 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2025   chunk->set_next(monitor_chunks());
2026   set_monitor_chunks(chunk);
2027 }
2028 
2029 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2030   guarantee(monitor_chunks() != NULL, "must be non empty");
2031   if (monitor_chunks() == chunk) {
2032     set_monitor_chunks(chunk->next());
2033   } else {
2034     MonitorChunk* prev = monitor_chunks();
2035     while (prev->next() != chunk) prev = prev->next();
2036     prev->set_next(chunk->next());
2037   }
2038 }
2039 
2040 // JVM support.
2041 
2042 // Note: this function shouldn't block if it's called in
2043 // _thread_in_native_trans state (such as from
2044 // check_special_condition_for_native_trans()).
2045 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2046 
2047   if (has_last_Java_frame() && has_async_condition()) {
2048     // If we are at a polling page safepoint (not a poll return)
2049     // then we must defer async exception because live registers
2050     // will be clobbered by the exception path. Poll return is
2051     // ok because the call we a returning from already collides
2052     // with exception handling registers and so there is no issue.
2053     // (The exception handling path kills call result registers but
2054     //  this is ok since the exception kills the result anyway).
2055 
2056     if (is_at_poll_safepoint()) {
2057       // if the code we are returning to has deoptimized we must defer
2058       // the exception otherwise live registers get clobbered on the
2059       // exception path before deoptimization is able to retrieve them.
2060       //
2061       RegisterMap map(this, false);
2062       frame caller_fr = last_frame().sender(&map);
2063       assert(caller_fr.is_compiled_frame(), "what?");
2064       if (caller_fr.is_deoptimized_frame()) {
2065         log_info(exceptions)("deferred async exception at compiled safepoint");
2066         return;
2067       }
2068     }
2069   }
2070 
2071   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2072   if (condition == _no_async_condition) {
2073     // Conditions have changed since has_special_runtime_exit_condition()
2074     // was called:
2075     // - if we were here only because of an external suspend request,
2076     //   then that was taken care of above (or cancelled) so we are done
2077     // - if we were here because of another async request, then it has
2078     //   been cleared between the has_special_runtime_exit_condition()
2079     //   and now so again we are done
2080     return;
2081   }
2082 
2083   // Check for pending async. exception
2084   if (_pending_async_exception != NULL) {
2085     // Only overwrite an already pending exception, if it is not a threadDeath.
2086     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2087 
2088       // We cannot call Exceptions::_throw(...) here because we cannot block
2089       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2090 
2091       if (log_is_enabled(Info, exceptions)) {
2092         ResourceMark rm;
2093         outputStream* logstream = LogHandle(exceptions)::info_stream();
2094         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2095           if (has_last_Java_frame()) {
2096             frame f = last_frame();
2097            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2098           }
2099         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2100       }
2101       _pending_async_exception = NULL;
2102       clear_has_async_exception();
2103     }
2104   }
2105 
2106   if (check_unsafe_error &&
2107       condition == _async_unsafe_access_error && !has_pending_exception()) {
2108     condition = _no_async_condition;  // done
2109     switch (thread_state()) {
2110     case _thread_in_vm: {
2111       JavaThread* THREAD = this;
2112       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2113     }
2114     case _thread_in_native: {
2115       ThreadInVMfromNative tiv(this);
2116       JavaThread* THREAD = this;
2117       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2118     }
2119     case _thread_in_Java: {
2120       ThreadInVMfromJava tiv(this);
2121       JavaThread* THREAD = this;
2122       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2123     }
2124     default:
2125       ShouldNotReachHere();
2126     }
2127   }
2128 
2129   assert(condition == _no_async_condition || has_pending_exception() ||
2130          (!check_unsafe_error && condition == _async_unsafe_access_error),
2131          "must have handled the async condition, if no exception");
2132 }
2133 
2134 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2135   //
2136   // Check for pending external suspend. Internal suspend requests do
2137   // not use handle_special_runtime_exit_condition().
2138   // If JNIEnv proxies are allowed, don't self-suspend if the target
2139   // thread is not the current thread. In older versions of jdbx, jdbx
2140   // threads could call into the VM with another thread's JNIEnv so we
2141   // can be here operating on behalf of a suspended thread (4432884).
2142   bool do_self_suspend = is_external_suspend_with_lock();
2143   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2144     //
2145     // Because thread is external suspended the safepoint code will count
2146     // thread as at a safepoint. This can be odd because we can be here
2147     // as _thread_in_Java which would normally transition to _thread_blocked
2148     // at a safepoint. We would like to mark the thread as _thread_blocked
2149     // before calling java_suspend_self like all other callers of it but
2150     // we must then observe proper safepoint protocol. (We can't leave
2151     // _thread_blocked with a safepoint in progress). However we can be
2152     // here as _thread_in_native_trans so we can't use a normal transition
2153     // constructor/destructor pair because they assert on that type of
2154     // transition. We could do something like:
2155     //
2156     // JavaThreadState state = thread_state();
2157     // set_thread_state(_thread_in_vm);
2158     // {
2159     //   ThreadBlockInVM tbivm(this);
2160     //   java_suspend_self()
2161     // }
2162     // set_thread_state(_thread_in_vm_trans);
2163     // if (safepoint) block;
2164     // set_thread_state(state);
2165     //
2166     // but that is pretty messy. Instead we just go with the way the
2167     // code has worked before and note that this is the only path to
2168     // java_suspend_self that doesn't put the thread in _thread_blocked
2169     // mode.
2170 
2171     frame_anchor()->make_walkable(this);
2172     java_suspend_self();
2173 
2174     // We might be here for reasons in addition to the self-suspend request
2175     // so check for other async requests.
2176   }
2177 
2178   if (check_asyncs) {
2179     check_and_handle_async_exceptions();
2180   }
2181 }
2182 
2183 void JavaThread::send_thread_stop(oop java_throwable)  {
2184   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2185   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2186   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2187 
2188   // Do not throw asynchronous exceptions against the compiler thread
2189   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2190   if (!can_call_java()) return;
2191 
2192   {
2193     // Actually throw the Throwable against the target Thread - however
2194     // only if there is no thread death exception installed already.
2195     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2196       // If the topmost frame is a runtime stub, then we are calling into
2197       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2198       // must deoptimize the caller before continuing, as the compiled  exception handler table
2199       // may not be valid
2200       if (has_last_Java_frame()) {
2201         frame f = last_frame();
2202         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2203           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2204           RegisterMap reg_map(this, UseBiasedLocking);
2205           frame compiled_frame = f.sender(&reg_map);
2206           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2207             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2208           }
2209         }
2210       }
2211 
2212       // Set async. pending exception in thread.
2213       set_pending_async_exception(java_throwable);
2214 
2215       if (log_is_enabled(Info, exceptions)) {
2216          ResourceMark rm;
2217         log_info(exceptions)("Pending Async. exception installed of type: %s",
2218                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2219       }
2220       // for AbortVMOnException flag
2221       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2222     }
2223   }
2224 
2225 
2226   // Interrupt thread so it will wake up from a potential wait()
2227   Thread::interrupt(this);
2228 }
2229 
2230 // External suspension mechanism.
2231 //
2232 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2233 // to any VM_locks and it is at a transition
2234 // Self-suspension will happen on the transition out of the vm.
2235 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2236 //
2237 // Guarantees on return:
2238 //   + Target thread will not execute any new bytecode (that's why we need to
2239 //     force a safepoint)
2240 //   + Target thread will not enter any new monitors
2241 //
2242 void JavaThread::java_suspend() {
2243   { MutexLocker mu(Threads_lock);
2244     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2245       return;
2246     }
2247   }
2248 
2249   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2250     if (!is_external_suspend()) {
2251       // a racing resume has cancelled us; bail out now
2252       return;
2253     }
2254 
2255     // suspend is done
2256     uint32_t debug_bits = 0;
2257     // Warning: is_ext_suspend_completed() may temporarily drop the
2258     // SR_lock to allow the thread to reach a stable thread state if
2259     // it is currently in a transient thread state.
2260     if (is_ext_suspend_completed(false /* !called_by_wait */,
2261                                  SuspendRetryDelay, &debug_bits)) {
2262       return;
2263     }
2264   }
2265 
2266   VM_ForceSafepoint vm_suspend;
2267   VMThread::execute(&vm_suspend);
2268 }
2269 
2270 // Part II of external suspension.
2271 // A JavaThread self suspends when it detects a pending external suspend
2272 // request. This is usually on transitions. It is also done in places
2273 // where continuing to the next transition would surprise the caller,
2274 // e.g., monitor entry.
2275 //
2276 // Returns the number of times that the thread self-suspended.
2277 //
2278 // Note: DO NOT call java_suspend_self() when you just want to block current
2279 //       thread. java_suspend_self() is the second stage of cooperative
2280 //       suspension for external suspend requests and should only be used
2281 //       to complete an external suspend request.
2282 //
2283 int JavaThread::java_suspend_self() {
2284   int ret = 0;
2285 
2286   // we are in the process of exiting so don't suspend
2287   if (is_exiting()) {
2288     clear_external_suspend();
2289     return ret;
2290   }
2291 
2292   assert(_anchor.walkable() ||
2293          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2294          "must have walkable stack");
2295 
2296   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2297 
2298   assert(!this->is_ext_suspended(),
2299          "a thread trying to self-suspend should not already be suspended");
2300 
2301   if (this->is_suspend_equivalent()) {
2302     // If we are self-suspending as a result of the lifting of a
2303     // suspend equivalent condition, then the suspend_equivalent
2304     // flag is not cleared until we set the ext_suspended flag so
2305     // that wait_for_ext_suspend_completion() returns consistent
2306     // results.
2307     this->clear_suspend_equivalent();
2308   }
2309 
2310   // A racing resume may have cancelled us before we grabbed SR_lock
2311   // above. Or another external suspend request could be waiting for us
2312   // by the time we return from SR_lock()->wait(). The thread
2313   // that requested the suspension may already be trying to walk our
2314   // stack and if we return now, we can change the stack out from under
2315   // it. This would be a "bad thing (TM)" and cause the stack walker
2316   // to crash. We stay self-suspended until there are no more pending
2317   // external suspend requests.
2318   while (is_external_suspend()) {
2319     ret++;
2320     this->set_ext_suspended();
2321 
2322     // _ext_suspended flag is cleared by java_resume()
2323     while (is_ext_suspended()) {
2324       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2325     }
2326   }
2327 
2328   return ret;
2329 }
2330 
2331 #ifdef ASSERT
2332 // verify the JavaThread has not yet been published in the Threads::list, and
2333 // hence doesn't need protection from concurrent access at this stage
2334 void JavaThread::verify_not_published() {
2335   if (!Threads_lock->owned_by_self()) {
2336     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2337     assert(!Threads::includes(this),
2338            "java thread shouldn't have been published yet!");
2339   } else {
2340     assert(!Threads::includes(this),
2341            "java thread shouldn't have been published yet!");
2342   }
2343 }
2344 #endif
2345 
2346 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2347 // progress or when _suspend_flags is non-zero.
2348 // Current thread needs to self-suspend if there is a suspend request and/or
2349 // block if a safepoint is in progress.
2350 // Async exception ISN'T checked.
2351 // Note only the ThreadInVMfromNative transition can call this function
2352 // directly and when thread state is _thread_in_native_trans
2353 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2354   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2355 
2356   JavaThread *curJT = JavaThread::current();
2357   bool do_self_suspend = thread->is_external_suspend();
2358 
2359   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2360 
2361   // If JNIEnv proxies are allowed, don't self-suspend if the target
2362   // thread is not the current thread. In older versions of jdbx, jdbx
2363   // threads could call into the VM with another thread's JNIEnv so we
2364   // can be here operating on behalf of a suspended thread (4432884).
2365   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2366     JavaThreadState state = thread->thread_state();
2367 
2368     // We mark this thread_blocked state as a suspend-equivalent so
2369     // that a caller to is_ext_suspend_completed() won't be confused.
2370     // The suspend-equivalent state is cleared by java_suspend_self().
2371     thread->set_suspend_equivalent();
2372 
2373     // If the safepoint code sees the _thread_in_native_trans state, it will
2374     // wait until the thread changes to other thread state. There is no
2375     // guarantee on how soon we can obtain the SR_lock and complete the
2376     // self-suspend request. It would be a bad idea to let safepoint wait for
2377     // too long. Temporarily change the state to _thread_blocked to
2378     // let the VM thread know that this thread is ready for GC. The problem
2379     // of changing thread state is that safepoint could happen just after
2380     // java_suspend_self() returns after being resumed, and VM thread will
2381     // see the _thread_blocked state. We must check for safepoint
2382     // after restoring the state and make sure we won't leave while a safepoint
2383     // is in progress.
2384     thread->set_thread_state(_thread_blocked);
2385     thread->java_suspend_self();
2386     thread->set_thread_state(state);
2387     // Make sure new state is seen by VM thread
2388     if (os::is_MP()) {
2389       if (UseMembar) {
2390         // Force a fence between the write above and read below
2391         OrderAccess::fence();
2392       } else {
2393         // Must use this rather than serialization page in particular on Windows
2394         InterfaceSupport::serialize_memory(thread);
2395       }
2396     }
2397   }
2398 
2399   if (SafepointSynchronize::do_call_back()) {
2400     // If we are safepointing, then block the caller which may not be
2401     // the same as the target thread (see above).
2402     SafepointSynchronize::block(curJT);
2403   }
2404 
2405   if (thread->is_deopt_suspend()) {
2406     thread->clear_deopt_suspend();
2407     RegisterMap map(thread, false);
2408     frame f = thread->last_frame();
2409     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2410       f = f.sender(&map);
2411     }
2412     if (f.id() == thread->must_deopt_id()) {
2413       thread->clear_must_deopt_id();
2414       f.deoptimize(thread);
2415     } else {
2416       fatal("missed deoptimization!");
2417     }
2418   }
2419 }
2420 
2421 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2422 // progress or when _suspend_flags is non-zero.
2423 // Current thread needs to self-suspend if there is a suspend request and/or
2424 // block if a safepoint is in progress.
2425 // Also check for pending async exception (not including unsafe access error).
2426 // Note only the native==>VM/Java barriers can call this function and when
2427 // thread state is _thread_in_native_trans.
2428 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2429   check_safepoint_and_suspend_for_native_trans(thread);
2430 
2431   if (thread->has_async_exception()) {
2432     // We are in _thread_in_native_trans state, don't handle unsafe
2433     // access error since that may block.
2434     thread->check_and_handle_async_exceptions(false);
2435   }
2436 }
2437 
2438 // This is a variant of the normal
2439 // check_special_condition_for_native_trans with slightly different
2440 // semantics for use by critical native wrappers.  It does all the
2441 // normal checks but also performs the transition back into
2442 // thread_in_Java state.  This is required so that critical natives
2443 // can potentially block and perform a GC if they are the last thread
2444 // exiting the GCLocker.
2445 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2446   check_special_condition_for_native_trans(thread);
2447 
2448   // Finish the transition
2449   thread->set_thread_state(_thread_in_Java);
2450 
2451   if (thread->do_critical_native_unlock()) {
2452     ThreadInVMfromJavaNoAsyncException tiv(thread);
2453     GCLocker::unlock_critical(thread);
2454     thread->clear_critical_native_unlock();
2455   }
2456 }
2457 
2458 // We need to guarantee the Threads_lock here, since resumes are not
2459 // allowed during safepoint synchronization
2460 // Can only resume from an external suspension
2461 void JavaThread::java_resume() {
2462   assert_locked_or_safepoint(Threads_lock);
2463 
2464   // Sanity check: thread is gone, has started exiting or the thread
2465   // was not externally suspended.
2466   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2467     return;
2468   }
2469 
2470   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2471 
2472   clear_external_suspend();
2473 
2474   if (is_ext_suspended()) {
2475     clear_ext_suspended();
2476     SR_lock()->notify_all();
2477   }
2478 }
2479 
2480 size_t JavaThread::_stack_red_zone_size = 0;
2481 size_t JavaThread::_stack_yellow_zone_size = 0;
2482 size_t JavaThread::_stack_reserved_zone_size = 0;
2483 size_t JavaThread::_stack_shadow_zone_size = 0;
2484 
2485 void JavaThread::create_stack_guard_pages() {
2486   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2487   address low_addr = stack_end();
2488   size_t len = stack_guard_zone_size();
2489 
2490   int allocate = os::allocate_stack_guard_pages();
2491   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2492 
2493   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2494     warning("Attempt to allocate stack guard pages failed.");
2495     return;
2496   }
2497 
2498   if (os::guard_memory((char *) low_addr, len)) {
2499     _stack_guard_state = stack_guard_enabled;
2500   } else {
2501     warning("Attempt to protect stack guard pages failed.");
2502     if (os::uncommit_memory((char *) low_addr, len)) {
2503       warning("Attempt to deallocate stack guard pages failed.");
2504     }
2505   }
2506 }
2507 
2508 void JavaThread::remove_stack_guard_pages() {
2509   assert(Thread::current() == this, "from different thread");
2510   if (_stack_guard_state == stack_guard_unused) return;
2511   address low_addr = stack_end();
2512   size_t len = stack_guard_zone_size();
2513 
2514   if (os::allocate_stack_guard_pages()) {
2515     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2516       _stack_guard_state = stack_guard_unused;
2517     } else {
2518       warning("Attempt to deallocate stack guard pages failed.");
2519     }
2520   } else {
2521     if (_stack_guard_state == stack_guard_unused) return;
2522     if (os::unguard_memory((char *) low_addr, len)) {
2523       _stack_guard_state = stack_guard_unused;
2524     } else {
2525       warning("Attempt to unprotect stack guard pages failed.");
2526     }
2527   }
2528 }
2529 
2530 void JavaThread::enable_stack_reserved_zone() {
2531   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2532   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2533 
2534   // The base notation is from the stack's point of view, growing downward.
2535   // We need to adjust it to work correctly with guard_memory()
2536   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2537 
2538   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2539   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2540 
2541   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2542     _stack_guard_state = stack_guard_enabled;
2543   } else {
2544     warning("Attempt to guard stack reserved zone failed.");
2545   }
2546   enable_register_stack_guard();
2547 }
2548 
2549 void JavaThread::disable_stack_reserved_zone() {
2550   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2551   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2552 
2553   // Simply return if called for a thread that does not use guard pages.
2554   if (_stack_guard_state == stack_guard_unused) return;
2555 
2556   // The base notation is from the stack's point of view, growing downward.
2557   // We need to adjust it to work correctly with guard_memory()
2558   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2559 
2560   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2561     _stack_guard_state = stack_guard_reserved_disabled;
2562   } else {
2563     warning("Attempt to unguard stack reserved zone failed.");
2564   }
2565   disable_register_stack_guard();
2566 }
2567 
2568 void JavaThread::enable_stack_yellow_reserved_zone() {
2569   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2570   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2571 
2572   // The base notation is from the stacks point of view, growing downward.
2573   // We need to adjust it to work correctly with guard_memory()
2574   address base = stack_red_zone_base();
2575 
2576   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2577   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2578 
2579   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2580     _stack_guard_state = stack_guard_enabled;
2581   } else {
2582     warning("Attempt to guard stack yellow zone failed.");
2583   }
2584   enable_register_stack_guard();
2585 }
2586 
2587 void JavaThread::disable_stack_yellow_reserved_zone() {
2588   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2589   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2590 
2591   // Simply return if called for a thread that does not use guard pages.
2592   if (_stack_guard_state == stack_guard_unused) return;
2593 
2594   // The base notation is from the stacks point of view, growing downward.
2595   // We need to adjust it to work correctly with guard_memory()
2596   address base = stack_red_zone_base();
2597 
2598   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2599     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2600   } else {
2601     warning("Attempt to unguard stack yellow zone failed.");
2602   }
2603   disable_register_stack_guard();
2604 }
2605 
2606 void JavaThread::enable_stack_red_zone() {
2607   // The base notation is from the stacks point of view, growing downward.
2608   // We need to adjust it to work correctly with guard_memory()
2609   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2610   address base = stack_red_zone_base() - stack_red_zone_size();
2611 
2612   guarantee(base < stack_base(), "Error calculating stack red zone");
2613   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2614 
2615   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2616     warning("Attempt to guard stack red zone failed.");
2617   }
2618 }
2619 
2620 void JavaThread::disable_stack_red_zone() {
2621   // The base notation is from the stacks point of view, growing downward.
2622   // We need to adjust it to work correctly with guard_memory()
2623   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2624   address base = stack_red_zone_base() - stack_red_zone_size();
2625   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2626     warning("Attempt to unguard stack red zone failed.");
2627   }
2628 }
2629 
2630 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2631   // ignore is there is no stack
2632   if (!has_last_Java_frame()) return;
2633   // traverse the stack frames. Starts from top frame.
2634   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2635     frame* fr = fst.current();
2636     f(fr, fst.register_map());
2637   }
2638 }
2639 
2640 
2641 #ifndef PRODUCT
2642 // Deoptimization
2643 // Function for testing deoptimization
2644 void JavaThread::deoptimize() {
2645   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2646   StackFrameStream fst(this, UseBiasedLocking);
2647   bool deopt = false;           // Dump stack only if a deopt actually happens.
2648   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2649   // Iterate over all frames in the thread and deoptimize
2650   for (; !fst.is_done(); fst.next()) {
2651     if (fst.current()->can_be_deoptimized()) {
2652 
2653       if (only_at) {
2654         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2655         // consists of comma or carriage return separated numbers so
2656         // search for the current bci in that string.
2657         address pc = fst.current()->pc();
2658         nmethod* nm =  (nmethod*) fst.current()->cb();
2659         ScopeDesc* sd = nm->scope_desc_at(pc);
2660         char buffer[8];
2661         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2662         size_t len = strlen(buffer);
2663         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2664         while (found != NULL) {
2665           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2666               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2667             // Check that the bci found is bracketed by terminators.
2668             break;
2669           }
2670           found = strstr(found + 1, buffer);
2671         }
2672         if (!found) {
2673           continue;
2674         }
2675       }
2676 
2677       if (DebugDeoptimization && !deopt) {
2678         deopt = true; // One-time only print before deopt
2679         tty->print_cr("[BEFORE Deoptimization]");
2680         trace_frames();
2681         trace_stack();
2682       }
2683       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2684     }
2685   }
2686 
2687   if (DebugDeoptimization && deopt) {
2688     tty->print_cr("[AFTER Deoptimization]");
2689     trace_frames();
2690   }
2691 }
2692 
2693 
2694 // Make zombies
2695 void JavaThread::make_zombies() {
2696   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2697     if (fst.current()->can_be_deoptimized()) {
2698       // it is a Java nmethod
2699       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2700       nm->make_not_entrant();
2701     }
2702   }
2703 }
2704 #endif // PRODUCT
2705 
2706 
2707 void JavaThread::deoptimized_wrt_marked_nmethods() {
2708   if (!has_last_Java_frame()) return;
2709   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2710   StackFrameStream fst(this, UseBiasedLocking);
2711   for (; !fst.is_done(); fst.next()) {
2712     if (fst.current()->should_be_deoptimized()) {
2713       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2714     }
2715   }
2716 }
2717 
2718 
2719 // If the caller is a NamedThread, then remember, in the current scope,
2720 // the given JavaThread in its _processed_thread field.
2721 class RememberProcessedThread: public StackObj {
2722   NamedThread* _cur_thr;
2723  public:
2724   RememberProcessedThread(JavaThread* jthr) {
2725     Thread* thread = Thread::current();
2726     if (thread->is_Named_thread()) {
2727       _cur_thr = (NamedThread *)thread;
2728       _cur_thr->set_processed_thread(jthr);
2729     } else {
2730       _cur_thr = NULL;
2731     }
2732   }
2733 
2734   ~RememberProcessedThread() {
2735     if (_cur_thr) {
2736       _cur_thr->set_processed_thread(NULL);
2737     }
2738   }
2739 };
2740 
2741 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2742   // Verify that the deferred card marks have been flushed.
2743   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2744 
2745   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2746   // since there may be more than one thread using each ThreadProfiler.
2747 
2748   // Traverse the GCHandles
2749   Thread::oops_do(f, cld_f, cf);
2750 
2751   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2752 
2753   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2754          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2755 
2756   if (has_last_Java_frame()) {
2757     // Record JavaThread to GC thread
2758     RememberProcessedThread rpt(this);
2759 
2760     // Traverse the privileged stack
2761     if (_privileged_stack_top != NULL) {
2762       _privileged_stack_top->oops_do(f);
2763     }
2764 
2765     // traverse the registered growable array
2766     if (_array_for_gc != NULL) {
2767       for (int index = 0; index < _array_for_gc->length(); index++) {
2768         f->do_oop(_array_for_gc->adr_at(index));
2769       }
2770     }
2771 
2772     // Traverse the monitor chunks
2773     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2774       chunk->oops_do(f);
2775     }
2776 
2777     // Traverse the execution stack
2778     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2779       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2780     }
2781   }
2782 
2783   // callee_target is never live across a gc point so NULL it here should
2784   // it still contain a methdOop.
2785 
2786   set_callee_target(NULL);
2787 
2788   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2789   // If we have deferred set_locals there might be oops waiting to be
2790   // written
2791   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2792   if (list != NULL) {
2793     for (int i = 0; i < list->length(); i++) {
2794       list->at(i)->oops_do(f);
2795     }
2796   }
2797 
2798   // Traverse instance variables at the end since the GC may be moving things
2799   // around using this function
2800   f->do_oop((oop*) &_threadObj);
2801   f->do_oop((oop*) &_vm_result);
2802   f->do_oop((oop*) &_exception_oop);
2803   f->do_oop((oop*) &_pending_async_exception);
2804 
2805   if (jvmti_thread_state() != NULL) {
2806     jvmti_thread_state()->oops_do(f);
2807   }
2808 }
2809 
2810 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2811   Thread::nmethods_do(cf);  // (super method is a no-op)
2812 
2813   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2814          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2815 
2816   if (has_last_Java_frame()) {
2817     // Traverse the execution stack
2818     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2819       fst.current()->nmethods_do(cf);
2820     }
2821   }
2822 }
2823 
2824 void JavaThread::metadata_do(void f(Metadata*)) {
2825   if (has_last_Java_frame()) {
2826     // Traverse the execution stack to call f() on the methods in the stack
2827     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2828       fst.current()->metadata_do(f);
2829     }
2830   } else if (is_Compiler_thread()) {
2831     // need to walk ciMetadata in current compile tasks to keep alive.
2832     CompilerThread* ct = (CompilerThread*)this;
2833     if (ct->env() != NULL) {
2834       ct->env()->metadata_do(f);
2835     }
2836     if (ct->task() != NULL) {
2837       ct->task()->metadata_do(f);
2838     }
2839   }
2840 }
2841 
2842 // Printing
2843 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2844   switch (_thread_state) {
2845   case _thread_uninitialized:     return "_thread_uninitialized";
2846   case _thread_new:               return "_thread_new";
2847   case _thread_new_trans:         return "_thread_new_trans";
2848   case _thread_in_native:         return "_thread_in_native";
2849   case _thread_in_native_trans:   return "_thread_in_native_trans";
2850   case _thread_in_vm:             return "_thread_in_vm";
2851   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2852   case _thread_in_Java:           return "_thread_in_Java";
2853   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2854   case _thread_blocked:           return "_thread_blocked";
2855   case _thread_blocked_trans:     return "_thread_blocked_trans";
2856   default:                        return "unknown thread state";
2857   }
2858 }
2859 
2860 #ifndef PRODUCT
2861 void JavaThread::print_thread_state_on(outputStream *st) const {
2862   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2863 };
2864 void JavaThread::print_thread_state() const {
2865   print_thread_state_on(tty);
2866 }
2867 #endif // PRODUCT
2868 
2869 // Called by Threads::print() for VM_PrintThreads operation
2870 void JavaThread::print_on(outputStream *st) const {
2871   st->print("\"%s\" ", get_thread_name());
2872   oop thread_oop = threadObj();
2873   if (thread_oop != NULL) {
2874     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2875     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2876     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2877   }
2878   Thread::print_on(st);
2879   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2880   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2881   if (thread_oop != NULL) {
2882     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2883   }
2884 #ifndef PRODUCT
2885   print_thread_state_on(st);
2886   _safepoint_state->print_on(st);
2887 #endif // PRODUCT
2888   if (is_Compiler_thread()) {
2889     CompilerThread* ct = (CompilerThread*)this;
2890     if (ct->task() != NULL) {
2891       st->print("   Compiling: ");
2892       ct->task()->print(st, NULL, true, false);
2893     } else {
2894       st->print("   No compile task");
2895     }
2896     st->cr();
2897   }
2898 }
2899 
2900 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2901   st->print("%s", get_thread_name_string(buf, buflen));
2902 }
2903 
2904 // Called by fatal error handler. The difference between this and
2905 // JavaThread::print() is that we can't grab lock or allocate memory.
2906 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2907   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2908   oop thread_obj = threadObj();
2909   if (thread_obj != NULL) {
2910     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2911   }
2912   st->print(" [");
2913   st->print("%s", _get_thread_state_name(_thread_state));
2914   if (osthread()) {
2915     st->print(", id=%d", osthread()->thread_id());
2916   }
2917   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2918             p2i(stack_end()), p2i(stack_base()));
2919   st->print("]");
2920   return;
2921 }
2922 
2923 // Verification
2924 
2925 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2926 
2927 void JavaThread::verify() {
2928   // Verify oops in the thread.
2929   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2930 
2931   // Verify the stack frames.
2932   frames_do(frame_verify);
2933 }
2934 
2935 // CR 6300358 (sub-CR 2137150)
2936 // Most callers of this method assume that it can't return NULL but a
2937 // thread may not have a name whilst it is in the process of attaching to
2938 // the VM - see CR 6412693, and there are places where a JavaThread can be
2939 // seen prior to having it's threadObj set (eg JNI attaching threads and
2940 // if vm exit occurs during initialization). These cases can all be accounted
2941 // for such that this method never returns NULL.
2942 const char* JavaThread::get_thread_name() const {
2943 #ifdef ASSERT
2944   // early safepoints can hit while current thread does not yet have TLS
2945   if (!SafepointSynchronize::is_at_safepoint()) {
2946     Thread *cur = Thread::current();
2947     if (!(cur->is_Java_thread() && cur == this)) {
2948       // Current JavaThreads are allowed to get their own name without
2949       // the Threads_lock.
2950       assert_locked_or_safepoint(Threads_lock);
2951     }
2952   }
2953 #endif // ASSERT
2954   return get_thread_name_string();
2955 }
2956 
2957 // Returns a non-NULL representation of this thread's name, or a suitable
2958 // descriptive string if there is no set name
2959 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2960   const char* name_str;
2961   oop thread_obj = threadObj();
2962   if (thread_obj != NULL) {
2963     oop name = java_lang_Thread::name(thread_obj);
2964     if (name != NULL) {
2965       if (buf == NULL) {
2966         name_str = java_lang_String::as_utf8_string(name);
2967       } else {
2968         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2969       }
2970     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2971       name_str = "<no-name - thread is attaching>";
2972     } else {
2973       name_str = Thread::name();
2974     }
2975   } else {
2976     name_str = Thread::name();
2977   }
2978   assert(name_str != NULL, "unexpected NULL thread name");
2979   return name_str;
2980 }
2981 
2982 
2983 const char* JavaThread::get_threadgroup_name() const {
2984   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2985   oop thread_obj = threadObj();
2986   if (thread_obj != NULL) {
2987     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2988     if (thread_group != NULL) {
2989       // ThreadGroup.name can be null
2990       return java_lang_ThreadGroup::name(thread_group);
2991     }
2992   }
2993   return NULL;
2994 }
2995 
2996 const char* JavaThread::get_parent_name() const {
2997   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2998   oop thread_obj = threadObj();
2999   if (thread_obj != NULL) {
3000     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3001     if (thread_group != NULL) {
3002       oop parent = java_lang_ThreadGroup::parent(thread_group);
3003       if (parent != NULL) {
3004         // ThreadGroup.name can be null
3005         return java_lang_ThreadGroup::name(parent);
3006       }
3007     }
3008   }
3009   return NULL;
3010 }
3011 
3012 ThreadPriority JavaThread::java_priority() const {
3013   oop thr_oop = threadObj();
3014   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3015   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3016   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3017   return priority;
3018 }
3019 
3020 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3021 
3022   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3023   // Link Java Thread object <-> C++ Thread
3024 
3025   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3026   // and put it into a new Handle.  The Handle "thread_oop" can then
3027   // be used to pass the C++ thread object to other methods.
3028 
3029   // Set the Java level thread object (jthread) field of the
3030   // new thread (a JavaThread *) to C++ thread object using the
3031   // "thread_oop" handle.
3032 
3033   // Set the thread field (a JavaThread *) of the
3034   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3035 
3036   Handle thread_oop(Thread::current(),
3037                     JNIHandles::resolve_non_null(jni_thread));
3038   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3039          "must be initialized");
3040   set_threadObj(thread_oop());
3041   java_lang_Thread::set_thread(thread_oop(), this);
3042 
3043   if (prio == NoPriority) {
3044     prio = java_lang_Thread::priority(thread_oop());
3045     assert(prio != NoPriority, "A valid priority should be present");
3046   }
3047 
3048   // Push the Java priority down to the native thread; needs Threads_lock
3049   Thread::set_priority(this, prio);
3050 
3051   prepare_ext();
3052 
3053   // Add the new thread to the Threads list and set it in motion.
3054   // We must have threads lock in order to call Threads::add.
3055   // It is crucial that we do not block before the thread is
3056   // added to the Threads list for if a GC happens, then the java_thread oop
3057   // will not be visited by GC.
3058   Threads::add(this);
3059 }
3060 
3061 oop JavaThread::current_park_blocker() {
3062   // Support for JSR-166 locks
3063   oop thread_oop = threadObj();
3064   if (thread_oop != NULL &&
3065       JDK_Version::current().supports_thread_park_blocker()) {
3066     return java_lang_Thread::park_blocker(thread_oop);
3067   }
3068   return NULL;
3069 }
3070 
3071 
3072 void JavaThread::print_stack_on(outputStream* st) {
3073   if (!has_last_Java_frame()) return;
3074   ResourceMark rm;
3075   HandleMark   hm;
3076 
3077   RegisterMap reg_map(this);
3078   vframe* start_vf = last_java_vframe(&reg_map);
3079   int count = 0;
3080   for (vframe* f = start_vf; f; f = f->sender()) {
3081     if (f->is_java_frame()) {
3082       javaVFrame* jvf = javaVFrame::cast(f);
3083       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3084 
3085       // Print out lock information
3086       if (JavaMonitorsInStackTrace) {
3087         jvf->print_lock_info_on(st, count);
3088       }
3089     } else {
3090       // Ignore non-Java frames
3091     }
3092 
3093     // Bail-out case for too deep stacks
3094     count++;
3095     if (MaxJavaStackTraceDepth == count) return;
3096   }
3097 }
3098 
3099 
3100 // JVMTI PopFrame support
3101 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3102   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3103   if (in_bytes(size_in_bytes) != 0) {
3104     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3105     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3106     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3107   }
3108 }
3109 
3110 void* JavaThread::popframe_preserved_args() {
3111   return _popframe_preserved_args;
3112 }
3113 
3114 ByteSize JavaThread::popframe_preserved_args_size() {
3115   return in_ByteSize(_popframe_preserved_args_size);
3116 }
3117 
3118 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3119   int sz = in_bytes(popframe_preserved_args_size());
3120   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3121   return in_WordSize(sz / wordSize);
3122 }
3123 
3124 void JavaThread::popframe_free_preserved_args() {
3125   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3126   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3127   _popframe_preserved_args = NULL;
3128   _popframe_preserved_args_size = 0;
3129 }
3130 
3131 #ifndef PRODUCT
3132 
3133 void JavaThread::trace_frames() {
3134   tty->print_cr("[Describe stack]");
3135   int frame_no = 1;
3136   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3137     tty->print("  %d. ", frame_no++);
3138     fst.current()->print_value_on(tty, this);
3139     tty->cr();
3140   }
3141 }
3142 
3143 class PrintAndVerifyOopClosure: public OopClosure {
3144  protected:
3145   template <class T> inline void do_oop_work(T* p) {
3146     oop obj = oopDesc::load_decode_heap_oop(p);
3147     if (obj == NULL) return;
3148     tty->print(INTPTR_FORMAT ": ", p2i(p));
3149     if (obj->is_oop_or_null()) {
3150       if (obj->is_objArray()) {
3151         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3152       } else {
3153         obj->print();
3154       }
3155     } else {
3156       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3157     }
3158     tty->cr();
3159   }
3160  public:
3161   virtual void do_oop(oop* p) { do_oop_work(p); }
3162   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3163 };
3164 
3165 
3166 static void oops_print(frame* f, const RegisterMap *map) {
3167   PrintAndVerifyOopClosure print;
3168   f->print_value();
3169   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3170 }
3171 
3172 // Print our all the locations that contain oops and whether they are
3173 // valid or not.  This useful when trying to find the oldest frame
3174 // where an oop has gone bad since the frame walk is from youngest to
3175 // oldest.
3176 void JavaThread::trace_oops() {
3177   tty->print_cr("[Trace oops]");
3178   frames_do(oops_print);
3179 }
3180 
3181 
3182 #ifdef ASSERT
3183 // Print or validate the layout of stack frames
3184 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3185   ResourceMark rm;
3186   PRESERVE_EXCEPTION_MARK;
3187   FrameValues values;
3188   int frame_no = 0;
3189   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3190     fst.current()->describe(values, ++frame_no);
3191     if (depth == frame_no) break;
3192   }
3193   if (validate_only) {
3194     values.validate();
3195   } else {
3196     tty->print_cr("[Describe stack layout]");
3197     values.print(this);
3198   }
3199 }
3200 #endif
3201 
3202 void JavaThread::trace_stack_from(vframe* start_vf) {
3203   ResourceMark rm;
3204   int vframe_no = 1;
3205   for (vframe* f = start_vf; f; f = f->sender()) {
3206     if (f->is_java_frame()) {
3207       javaVFrame::cast(f)->print_activation(vframe_no++);
3208     } else {
3209       f->print();
3210     }
3211     if (vframe_no > StackPrintLimit) {
3212       tty->print_cr("...<more frames>...");
3213       return;
3214     }
3215   }
3216 }
3217 
3218 
3219 void JavaThread::trace_stack() {
3220   if (!has_last_Java_frame()) return;
3221   ResourceMark rm;
3222   HandleMark   hm;
3223   RegisterMap reg_map(this);
3224   trace_stack_from(last_java_vframe(&reg_map));
3225 }
3226 
3227 
3228 #endif // PRODUCT
3229 
3230 
3231 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3232   assert(reg_map != NULL, "a map must be given");
3233   frame f = last_frame();
3234   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3235     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3236   }
3237   return NULL;
3238 }
3239 
3240 
3241 Klass* JavaThread::security_get_caller_class(int depth) {
3242   vframeStream vfst(this);
3243   vfst.security_get_caller_frame(depth);
3244   if (!vfst.at_end()) {
3245     return vfst.method()->method_holder();
3246   }
3247   return NULL;
3248 }
3249 
3250 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3251   assert(thread->is_Compiler_thread(), "must be compiler thread");
3252   CompileBroker::compiler_thread_loop();
3253 }
3254 
3255 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3256   NMethodSweeper::sweeper_loop();
3257 }
3258 
3259 // Create a CompilerThread
3260 CompilerThread::CompilerThread(CompileQueue* queue,
3261                                CompilerCounters* counters)
3262                                : JavaThread(&compiler_thread_entry) {
3263   _env   = NULL;
3264   _log   = NULL;
3265   _task  = NULL;
3266   _queue = queue;
3267   _counters = counters;
3268   _buffer_blob = NULL;
3269   _compiler = NULL;
3270 
3271 #ifndef PRODUCT
3272   _ideal_graph_printer = NULL;
3273 #endif
3274 }
3275 
3276 bool CompilerThread::can_call_java() const {
3277   return _compiler != NULL && _compiler->is_jvmci();
3278 }
3279 
3280 // Create sweeper thread
3281 CodeCacheSweeperThread::CodeCacheSweeperThread()
3282 : JavaThread(&sweeper_thread_entry) {
3283   _scanned_nmethod = NULL;
3284 }
3285 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3286   JavaThread::oops_do(f, cld_f, cf);
3287   if (_scanned_nmethod != NULL && cf != NULL) {
3288     // Safepoints can occur when the sweeper is scanning an nmethod so
3289     // process it here to make sure it isn't unloaded in the middle of
3290     // a scan.
3291     cf->do_code_blob(_scanned_nmethod);
3292   }
3293 }
3294 
3295 
3296 // ======= Threads ========
3297 
3298 // The Threads class links together all active threads, and provides
3299 // operations over all threads.  It is protected by its own Mutex
3300 // lock, which is also used in other contexts to protect thread
3301 // operations from having the thread being operated on from exiting
3302 // and going away unexpectedly (e.g., safepoint synchronization)
3303 
3304 JavaThread* Threads::_thread_list = NULL;
3305 int         Threads::_number_of_threads = 0;
3306 int         Threads::_number_of_non_daemon_threads = 0;
3307 int         Threads::_return_code = 0;
3308 int         Threads::_thread_claim_parity = 0;
3309 size_t      JavaThread::_stack_size_at_create = 0;
3310 #ifdef ASSERT
3311 bool        Threads::_vm_complete = false;
3312 #endif
3313 
3314 // All JavaThreads
3315 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3316 
3317 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3318 void Threads::threads_do(ThreadClosure* tc) {
3319   assert_locked_or_safepoint(Threads_lock);
3320   // ALL_JAVA_THREADS iterates through all JavaThreads
3321   ALL_JAVA_THREADS(p) {
3322     tc->do_thread(p);
3323   }
3324   // Someday we could have a table or list of all non-JavaThreads.
3325   // For now, just manually iterate through them.
3326   tc->do_thread(VMThread::vm_thread());
3327   Universe::heap()->gc_threads_do(tc);
3328   WatcherThread *wt = WatcherThread::watcher_thread();
3329   // Strictly speaking, the following NULL check isn't sufficient to make sure
3330   // the data for WatcherThread is still valid upon being examined. However,
3331   // considering that WatchThread terminates when the VM is on the way to
3332   // exit at safepoint, the chance of the above is extremely small. The right
3333   // way to prevent termination of WatcherThread would be to acquire
3334   // Terminator_lock, but we can't do that without violating the lock rank
3335   // checking in some cases.
3336   if (wt != NULL) {
3337     tc->do_thread(wt);
3338   }
3339 
3340   // If CompilerThreads ever become non-JavaThreads, add them here
3341 }
3342 
3343 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3344   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3345 
3346   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3347     create_vm_init_libraries();
3348   }
3349 
3350   initialize_class(vmSymbols::java_lang_String(), CHECK);
3351 
3352   // Inject CompactStrings value after the static initializers for String ran.
3353   java_lang_String::set_compact_strings(CompactStrings);
3354 
3355   // Initialize java_lang.System (needed before creating the thread)
3356   initialize_class(vmSymbols::java_lang_System(), CHECK);
3357   // The VM creates & returns objects of this class. Make sure it's initialized.
3358   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3359   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3360   Handle thread_group = create_initial_thread_group(CHECK);
3361   Universe::set_main_thread_group(thread_group());
3362   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3363   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3364   main_thread->set_threadObj(thread_object);
3365   // Set thread status to running since main thread has
3366   // been started and running.
3367   java_lang_Thread::set_thread_status(thread_object,
3368                                       java_lang_Thread::RUNNABLE);
3369 
3370   // The VM preresolves methods to these classes. Make sure that they get initialized
3371   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3372   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3373   call_initializeSystemClass(CHECK);
3374 
3375   // get the Java runtime name after java.lang.System is initialized
3376   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3377   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3378 
3379   // an instance of OutOfMemory exception has been allocated earlier
3380   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3381   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3382   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3383   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3384   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3385   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3386   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3387   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3388 }
3389 
3390 void Threads::initialize_jsr292_core_classes(TRAPS) {
3391   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3392   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3393   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3394 }
3395 
3396 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3397   extern void JDK_Version_init();
3398 
3399   // Preinitialize version info.
3400   VM_Version::early_initialize();
3401 
3402   // Check version
3403   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3404 
3405   // Initialize library-based TLS
3406   ThreadLocalStorage::init();
3407 
3408   // Initialize the output stream module
3409   ostream_init();
3410 
3411   // Process java launcher properties.
3412   Arguments::process_sun_java_launcher_properties(args);
3413 
3414   // Initialize the os module
3415   os::init();
3416 
3417   // Record VM creation timing statistics
3418   TraceVmCreationTime create_vm_timer;
3419   create_vm_timer.start();
3420 
3421   // Initialize system properties.
3422   Arguments::init_system_properties();
3423 
3424   // So that JDK version can be used as a discriminator when parsing arguments
3425   JDK_Version_init();
3426 
3427   // Update/Initialize System properties after JDK version number is known
3428   Arguments::init_version_specific_system_properties();
3429 
3430   // Make sure to initialize log configuration *before* parsing arguments
3431   LogConfiguration::initialize(create_vm_timer.begin_time());
3432 
3433   // Parse arguments
3434   jint parse_result = Arguments::parse(args);
3435   if (parse_result != JNI_OK) return parse_result;
3436 
3437   os::init_before_ergo();
3438 
3439   jint ergo_result = Arguments::apply_ergo();
3440   if (ergo_result != JNI_OK) return ergo_result;
3441 
3442   // Final check of all ranges after ergonomics which may change values.
3443   if (!CommandLineFlagRangeList::check_ranges()) {
3444     return JNI_EINVAL;
3445   }
3446 
3447   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3448   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3449   if (!constraint_result) {
3450     return JNI_EINVAL;
3451   }
3452 
3453   if (PauseAtStartup) {
3454     os::pause();
3455   }
3456 
3457   HOTSPOT_VM_INIT_BEGIN();
3458 
3459   // Timing (must come after argument parsing)
3460   TraceTime timer("Create VM", TraceStartupTime);
3461 
3462   // Initialize the os module after parsing the args
3463   jint os_init_2_result = os::init_2();
3464   if (os_init_2_result != JNI_OK) return os_init_2_result;
3465 
3466   jint adjust_after_os_result = Arguments::adjust_after_os();
3467   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3468 
3469   // Initialize output stream logging
3470   ostream_init_log();
3471 
3472   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3473   // Must be before create_vm_init_agents()
3474   if (Arguments::init_libraries_at_startup()) {
3475     convert_vm_init_libraries_to_agents();
3476   }
3477 
3478   // Launch -agentlib/-agentpath and converted -Xrun agents
3479   if (Arguments::init_agents_at_startup()) {
3480     create_vm_init_agents();
3481   }
3482 
3483   // Initialize Threads state
3484   _thread_list = NULL;
3485   _number_of_threads = 0;
3486   _number_of_non_daemon_threads = 0;
3487 
3488   // Initialize global data structures and create system classes in heap
3489   vm_init_globals();
3490 
3491 #if INCLUDE_JVMCI
3492   if (JVMCICounterSize > 0) {
3493     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3494     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3495   } else {
3496     JavaThread::_jvmci_old_thread_counters = NULL;
3497   }
3498 #endif // INCLUDE_JVMCI
3499 
3500   // Attach the main thread to this os thread
3501   JavaThread* main_thread = new JavaThread();
3502   main_thread->set_thread_state(_thread_in_vm);
3503   main_thread->initialize_thread_current();
3504   // must do this before set_active_handles
3505   main_thread->record_stack_base_and_size();
3506   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3507 
3508   if (!main_thread->set_as_starting_thread()) {
3509     vm_shutdown_during_initialization(
3510                                       "Failed necessary internal allocation. Out of swap space");
3511     delete main_thread;
3512     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3513     return JNI_ENOMEM;
3514   }
3515 
3516   // Enable guard page *after* os::create_main_thread(), otherwise it would
3517   // crash Linux VM, see notes in os_linux.cpp.
3518   main_thread->create_stack_guard_pages();
3519 
3520   // Initialize Java-Level synchronization subsystem
3521   ObjectMonitor::Initialize();
3522 
3523   // Initialize global modules
3524   jint status = init_globals();
3525   if (status != JNI_OK) {
3526     delete main_thread;
3527     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3528     return status;
3529   }
3530 
3531   // Should be done after the heap is fully created
3532   main_thread->cache_global_variables();
3533 
3534   HandleMark hm;
3535 
3536   { MutexLocker mu(Threads_lock);
3537     Threads::add(main_thread);
3538   }
3539 
3540   // Any JVMTI raw monitors entered in onload will transition into
3541   // real raw monitor. VM is setup enough here for raw monitor enter.
3542   JvmtiExport::transition_pending_onload_raw_monitors();
3543 
3544   // Create the VMThread
3545   { TraceTime timer("Start VMThread", TraceStartupTime);
3546     VMThread::create();
3547     Thread* vmthread = VMThread::vm_thread();
3548 
3549     if (!os::create_thread(vmthread, os::vm_thread)) {
3550       vm_exit_during_initialization("Cannot create VM thread. "
3551                                     "Out of system resources.");
3552     }
3553 
3554     // Wait for the VM thread to become ready, and VMThread::run to initialize
3555     // Monitors can have spurious returns, must always check another state flag
3556     {
3557       MutexLocker ml(Notify_lock);
3558       os::start_thread(vmthread);
3559       while (vmthread->active_handles() == NULL) {
3560         Notify_lock->wait();
3561       }
3562     }
3563   }
3564 
3565   assert(Universe::is_fully_initialized(), "not initialized");
3566   if (VerifyDuringStartup) {
3567     // Make sure we're starting with a clean slate.
3568     VM_Verify verify_op;
3569     VMThread::execute(&verify_op);
3570   }
3571 
3572   Thread* THREAD = Thread::current();
3573 
3574   // At this point, the Universe is initialized, but we have not executed
3575   // any byte code.  Now is a good time (the only time) to dump out the
3576   // internal state of the JVM for sharing.
3577   if (DumpSharedSpaces) {
3578     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3579     ShouldNotReachHere();
3580   }
3581 
3582   // Always call even when there are not JVMTI environments yet, since environments
3583   // may be attached late and JVMTI must track phases of VM execution
3584   JvmtiExport::enter_start_phase();
3585 
3586   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3587   JvmtiExport::post_vm_start();
3588 
3589   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3590 
3591   // We need this for ClassDataSharing - the initial vm.info property is set
3592   // with the default value of CDS "sharing" which may be reset through
3593   // command line options.
3594   reset_vm_info_property(CHECK_JNI_ERR);
3595 
3596   quicken_jni_functions();
3597 
3598   // Must be run after init_ft which initializes ft_enabled
3599   if (TRACE_INITIALIZE() != JNI_OK) {
3600     vm_exit_during_initialization("Failed to initialize tracing backend");
3601   }
3602 
3603   // Set flag that basic initialization has completed. Used by exceptions and various
3604   // debug stuff, that does not work until all basic classes have been initialized.
3605   set_init_completed();
3606 
3607   LogConfiguration::post_initialize();
3608   Metaspace::post_initialize();
3609 
3610   HOTSPOT_VM_INIT_END();
3611 
3612   // record VM initialization completion time
3613 #if INCLUDE_MANAGEMENT
3614   Management::record_vm_init_completed();
3615 #endif // INCLUDE_MANAGEMENT
3616 
3617   // Compute system loader. Note that this has to occur after set_init_completed, since
3618   // valid exceptions may be thrown in the process.
3619   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3620   // set_init_completed has just been called, causing exceptions not to be shortcut
3621   // anymore. We call vm_exit_during_initialization directly instead.
3622   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3623 
3624 #if INCLUDE_ALL_GCS
3625   // Support for ConcurrentMarkSweep. This should be cleaned up
3626   // and better encapsulated. The ugly nested if test would go away
3627   // once things are properly refactored. XXX YSR
3628   if (UseConcMarkSweepGC || UseG1GC) {
3629     if (UseConcMarkSweepGC) {
3630       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3631     } else {
3632       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3633     }
3634   }
3635 #endif // INCLUDE_ALL_GCS
3636 
3637   // Always call even when there are not JVMTI environments yet, since environments
3638   // may be attached late and JVMTI must track phases of VM execution
3639   JvmtiExport::enter_live_phase();
3640 
3641   // Signal Dispatcher needs to be started before VMInit event is posted
3642   os::signal_init();
3643 
3644   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3645   if (!DisableAttachMechanism) {
3646     AttachListener::vm_start();
3647     if (StartAttachListener || AttachListener::init_at_startup()) {
3648       AttachListener::init();
3649     }
3650   }
3651 
3652   // Launch -Xrun agents
3653   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3654   // back-end can launch with -Xdebug -Xrunjdwp.
3655   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3656     create_vm_init_libraries();
3657   }
3658 
3659   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3660   JvmtiExport::post_vm_initialized();
3661 
3662   if (TRACE_START() != JNI_OK) {
3663     vm_exit_during_initialization("Failed to start tracing backend.");
3664   }
3665 
3666   if (CleanChunkPoolAsync) {
3667     Chunk::start_chunk_pool_cleaner_task();
3668   }
3669 
3670 #if INCLUDE_JVMCI
3671   if (EnableJVMCI) {
3672     const char* jvmciCompiler = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.compiler");
3673     if (jvmciCompiler != NULL) {
3674       JVMCIRuntime::save_compiler(jvmciCompiler);
3675     }
3676   }
3677 #endif // INCLUDE_JVMCI
3678 
3679   // initialize compiler(s)
3680 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3681   CompileBroker::compilation_init(CHECK_JNI_ERR);
3682 #endif
3683 
3684   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3685   // It is done after compilers are initialized, because otherwise compilations of
3686   // signature polymorphic MH intrinsics can be missed
3687   // (see SystemDictionary::find_method_handle_intrinsic).
3688   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3689 
3690 #if INCLUDE_MANAGEMENT
3691   Management::initialize(THREAD);
3692 
3693   if (HAS_PENDING_EXCEPTION) {
3694     // management agent fails to start possibly due to
3695     // configuration problem and is responsible for printing
3696     // stack trace if appropriate. Simply exit VM.
3697     vm_exit(1);
3698   }
3699 #endif // INCLUDE_MANAGEMENT
3700 
3701   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3702   if (MemProfiling)                   MemProfiler::engage();
3703   StatSampler::engage();
3704   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3705 
3706   BiasedLocking::init();
3707 
3708 #if INCLUDE_RTM_OPT
3709   RTMLockingCounters::init();
3710 #endif
3711 
3712   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3713     call_postVMInitHook(THREAD);
3714     // The Java side of PostVMInitHook.run must deal with all
3715     // exceptions and provide means of diagnosis.
3716     if (HAS_PENDING_EXCEPTION) {
3717       CLEAR_PENDING_EXCEPTION;
3718     }
3719   }
3720 
3721   {
3722     MutexLocker ml(PeriodicTask_lock);
3723     // Make sure the WatcherThread can be started by WatcherThread::start()
3724     // or by dynamic enrollment.
3725     WatcherThread::make_startable();
3726     // Start up the WatcherThread if there are any periodic tasks
3727     // NOTE:  All PeriodicTasks should be registered by now. If they
3728     //   aren't, late joiners might appear to start slowly (we might
3729     //   take a while to process their first tick).
3730     if (PeriodicTask::num_tasks() > 0) {
3731       WatcherThread::start();
3732     }
3733   }
3734 
3735   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3736 
3737   create_vm_timer.end();
3738 #ifdef ASSERT
3739   _vm_complete = true;
3740 #endif
3741   return JNI_OK;
3742 }
3743 
3744 // type for the Agent_OnLoad and JVM_OnLoad entry points
3745 extern "C" {
3746   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3747 }
3748 // Find a command line agent library and return its entry point for
3749 //         -agentlib:  -agentpath:   -Xrun
3750 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3751 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3752                                     const char *on_load_symbols[],
3753                                     size_t num_symbol_entries) {
3754   OnLoadEntry_t on_load_entry = NULL;
3755   void *library = NULL;
3756 
3757   if (!agent->valid()) {
3758     char buffer[JVM_MAXPATHLEN];
3759     char ebuf[1024] = "";
3760     const char *name = agent->name();
3761     const char *msg = "Could not find agent library ";
3762 
3763     // First check to see if agent is statically linked into executable
3764     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3765       library = agent->os_lib();
3766     } else if (agent->is_absolute_path()) {
3767       library = os::dll_load(name, ebuf, sizeof ebuf);
3768       if (library == NULL) {
3769         const char *sub_msg = " in absolute path, with error: ";
3770         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3771         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3772         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3773         // If we can't find the agent, exit.
3774         vm_exit_during_initialization(buf, NULL);
3775         FREE_C_HEAP_ARRAY(char, buf);
3776       }
3777     } else {
3778       // Try to load the agent from the standard dll directory
3779       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3780                              name)) {
3781         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3782       }
3783       if (library == NULL) { // Try the local directory
3784         char ns[1] = {0};
3785         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3786           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3787         }
3788         if (library == NULL) {
3789           const char *sub_msg = " on the library path, with error: ";
3790           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3791           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3792           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3793           // If we can't find the agent, exit.
3794           vm_exit_during_initialization(buf, NULL);
3795           FREE_C_HEAP_ARRAY(char, buf);
3796         }
3797       }
3798     }
3799     agent->set_os_lib(library);
3800     agent->set_valid();
3801   }
3802 
3803   // Find the OnLoad function.
3804   on_load_entry =
3805     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3806                                                           false,
3807                                                           on_load_symbols,
3808                                                           num_symbol_entries));
3809   return on_load_entry;
3810 }
3811 
3812 // Find the JVM_OnLoad entry point
3813 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3814   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3815   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3816 }
3817 
3818 // Find the Agent_OnLoad entry point
3819 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3820   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3821   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3822 }
3823 
3824 // For backwards compatibility with -Xrun
3825 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3826 // treated like -agentpath:
3827 // Must be called before agent libraries are created
3828 void Threads::convert_vm_init_libraries_to_agents() {
3829   AgentLibrary* agent;
3830   AgentLibrary* next;
3831 
3832   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3833     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3834     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3835 
3836     // If there is an JVM_OnLoad function it will get called later,
3837     // otherwise see if there is an Agent_OnLoad
3838     if (on_load_entry == NULL) {
3839       on_load_entry = lookup_agent_on_load(agent);
3840       if (on_load_entry != NULL) {
3841         // switch it to the agent list -- so that Agent_OnLoad will be called,
3842         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3843         Arguments::convert_library_to_agent(agent);
3844       } else {
3845         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3846       }
3847     }
3848   }
3849 }
3850 
3851 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3852 // Invokes Agent_OnLoad
3853 // Called very early -- before JavaThreads exist
3854 void Threads::create_vm_init_agents() {
3855   extern struct JavaVM_ main_vm;
3856   AgentLibrary* agent;
3857 
3858   JvmtiExport::enter_onload_phase();
3859 
3860   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3861     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3862 
3863     if (on_load_entry != NULL) {
3864       // Invoke the Agent_OnLoad function
3865       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3866       if (err != JNI_OK) {
3867         vm_exit_during_initialization("agent library failed to init", agent->name());
3868       }
3869     } else {
3870       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3871     }
3872   }
3873   JvmtiExport::enter_primordial_phase();
3874 }
3875 
3876 extern "C" {
3877   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3878 }
3879 
3880 void Threads::shutdown_vm_agents() {
3881   // Send any Agent_OnUnload notifications
3882   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3883   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3884   extern struct JavaVM_ main_vm;
3885   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3886 
3887     // Find the Agent_OnUnload function.
3888     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3889                                                    os::find_agent_function(agent,
3890                                                    false,
3891                                                    on_unload_symbols,
3892                                                    num_symbol_entries));
3893 
3894     // Invoke the Agent_OnUnload function
3895     if (unload_entry != NULL) {
3896       JavaThread* thread = JavaThread::current();
3897       ThreadToNativeFromVM ttn(thread);
3898       HandleMark hm(thread);
3899       (*unload_entry)(&main_vm);
3900     }
3901   }
3902 }
3903 
3904 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3905 // Invokes JVM_OnLoad
3906 void Threads::create_vm_init_libraries() {
3907   extern struct JavaVM_ main_vm;
3908   AgentLibrary* agent;
3909 
3910   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3911     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3912 
3913     if (on_load_entry != NULL) {
3914       // Invoke the JVM_OnLoad function
3915       JavaThread* thread = JavaThread::current();
3916       ThreadToNativeFromVM ttn(thread);
3917       HandleMark hm(thread);
3918       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3919       if (err != JNI_OK) {
3920         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3921       }
3922     } else {
3923       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3924     }
3925   }
3926 }
3927 
3928 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3929   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3930 
3931   JavaThread* java_thread = NULL;
3932   // Sequential search for now.  Need to do better optimization later.
3933   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3934     oop tobj = thread->threadObj();
3935     if (!thread->is_exiting() &&
3936         tobj != NULL &&
3937         java_tid == java_lang_Thread::thread_id(tobj)) {
3938       java_thread = thread;
3939       break;
3940     }
3941   }
3942   return java_thread;
3943 }
3944 
3945 
3946 // Last thread running calls java.lang.Shutdown.shutdown()
3947 void JavaThread::invoke_shutdown_hooks() {
3948   HandleMark hm(this);
3949 
3950   // We could get here with a pending exception, if so clear it now.
3951   if (this->has_pending_exception()) {
3952     this->clear_pending_exception();
3953   }
3954 
3955   EXCEPTION_MARK;
3956   Klass* k =
3957     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3958                                       THREAD);
3959   if (k != NULL) {
3960     // SystemDictionary::resolve_or_null will return null if there was
3961     // an exception.  If we cannot load the Shutdown class, just don't
3962     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3963     // and finalizers (if runFinalizersOnExit is set) won't be run.
3964     // Note that if a shutdown hook was registered or runFinalizersOnExit
3965     // was called, the Shutdown class would have already been loaded
3966     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3967     instanceKlassHandle shutdown_klass (THREAD, k);
3968     JavaValue result(T_VOID);
3969     JavaCalls::call_static(&result,
3970                            shutdown_klass,
3971                            vmSymbols::shutdown_method_name(),
3972                            vmSymbols::void_method_signature(),
3973                            THREAD);
3974   }
3975   CLEAR_PENDING_EXCEPTION;
3976 }
3977 
3978 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3979 // the program falls off the end of main(). Another VM exit path is through
3980 // vm_exit() when the program calls System.exit() to return a value or when
3981 // there is a serious error in VM. The two shutdown paths are not exactly
3982 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3983 // and VM_Exit op at VM level.
3984 //
3985 // Shutdown sequence:
3986 //   + Shutdown native memory tracking if it is on
3987 //   + Wait until we are the last non-daemon thread to execute
3988 //     <-- every thing is still working at this moment -->
3989 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3990 //        shutdown hooks, run finalizers if finalization-on-exit
3991 //   + Call before_exit(), prepare for VM exit
3992 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3993 //        currently the only user of this mechanism is File.deleteOnExit())
3994 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3995 //        post thread end and vm death events to JVMTI,
3996 //        stop signal thread
3997 //   + Call JavaThread::exit(), it will:
3998 //      > release JNI handle blocks, remove stack guard pages
3999 //      > remove this thread from Threads list
4000 //     <-- no more Java code from this thread after this point -->
4001 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4002 //     the compiler threads at safepoint
4003 //     <-- do not use anything that could get blocked by Safepoint -->
4004 //   + Disable tracing at JNI/JVM barriers
4005 //   + Set _vm_exited flag for threads that are still running native code
4006 //   + Delete this thread
4007 //   + Call exit_globals()
4008 //      > deletes tty
4009 //      > deletes PerfMemory resources
4010 //   + Return to caller
4011 
4012 bool Threads::destroy_vm() {
4013   JavaThread* thread = JavaThread::current();
4014 
4015 #ifdef ASSERT
4016   _vm_complete = false;
4017 #endif
4018   // Wait until we are the last non-daemon thread to execute
4019   { MutexLocker nu(Threads_lock);
4020     while (Threads::number_of_non_daemon_threads() > 1)
4021       // This wait should make safepoint checks, wait without a timeout,
4022       // and wait as a suspend-equivalent condition.
4023       //
4024       // Note: If the FlatProfiler is running and this thread is waiting
4025       // for another non-daemon thread to finish, then the FlatProfiler
4026       // is waiting for the external suspend request on this thread to
4027       // complete. wait_for_ext_suspend_completion() will eventually
4028       // timeout, but that takes time. Making this wait a suspend-
4029       // equivalent condition solves that timeout problem.
4030       //
4031       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4032                          Mutex::_as_suspend_equivalent_flag);
4033   }
4034 
4035   // Hang forever on exit if we are reporting an error.
4036   if (ShowMessageBoxOnError && is_error_reported()) {
4037     os::infinite_sleep();
4038   }
4039   os::wait_for_keypress_at_exit();
4040 
4041   // run Java level shutdown hooks
4042   thread->invoke_shutdown_hooks();
4043 
4044   before_exit(thread);
4045 
4046   thread->exit(true);
4047 
4048   // Stop VM thread.
4049   {
4050     // 4945125 The vm thread comes to a safepoint during exit.
4051     // GC vm_operations can get caught at the safepoint, and the
4052     // heap is unparseable if they are caught. Grab the Heap_lock
4053     // to prevent this. The GC vm_operations will not be able to
4054     // queue until after the vm thread is dead. After this point,
4055     // we'll never emerge out of the safepoint before the VM exits.
4056 
4057     MutexLocker ml(Heap_lock);
4058 
4059     VMThread::wait_for_vm_thread_exit();
4060     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4061     VMThread::destroy();
4062   }
4063 
4064   // clean up ideal graph printers
4065 #if defined(COMPILER2) && !defined(PRODUCT)
4066   IdealGraphPrinter::clean_up();
4067 #endif
4068 
4069   // Now, all Java threads are gone except daemon threads. Daemon threads
4070   // running Java code or in VM are stopped by the Safepoint. However,
4071   // daemon threads executing native code are still running.  But they
4072   // will be stopped at native=>Java/VM barriers. Note that we can't
4073   // simply kill or suspend them, as it is inherently deadlock-prone.
4074 
4075   VM_Exit::set_vm_exited();
4076 
4077   notify_vm_shutdown();
4078 
4079   delete thread;
4080 
4081 #if INCLUDE_JVMCI
4082   if (JVMCICounterSize > 0) {
4083     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4084   }
4085 #endif
4086 
4087   // exit_globals() will delete tty
4088   exit_globals();
4089 
4090   LogConfiguration::finalize();
4091 
4092   return true;
4093 }
4094 
4095 
4096 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4097   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4098   return is_supported_jni_version(version);
4099 }
4100 
4101 
4102 jboolean Threads::is_supported_jni_version(jint version) {
4103   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4104   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4105   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4106   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4107   if (version == JNI_VERSION_9) return JNI_TRUE;
4108   return JNI_FALSE;
4109 }
4110 
4111 
4112 void Threads::add(JavaThread* p, bool force_daemon) {
4113   // The threads lock must be owned at this point
4114   assert_locked_or_safepoint(Threads_lock);
4115 
4116   // See the comment for this method in thread.hpp for its purpose and
4117   // why it is called here.
4118   p->initialize_queues();
4119   p->set_next(_thread_list);
4120   _thread_list = p;
4121   _number_of_threads++;
4122   oop threadObj = p->threadObj();
4123   bool daemon = true;
4124   // Bootstrapping problem: threadObj can be null for initial
4125   // JavaThread (or for threads attached via JNI)
4126   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4127     _number_of_non_daemon_threads++;
4128     daemon = false;
4129   }
4130 
4131   ThreadService::add_thread(p, daemon);
4132 
4133   // Possible GC point.
4134   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4135 }
4136 
4137 void Threads::remove(JavaThread* p) {
4138   // Extra scope needed for Thread_lock, so we can check
4139   // that we do not remove thread without safepoint code notice
4140   { MutexLocker ml(Threads_lock);
4141 
4142     assert(includes(p), "p must be present");
4143 
4144     JavaThread* current = _thread_list;
4145     JavaThread* prev    = NULL;
4146 
4147     while (current != p) {
4148       prev    = current;
4149       current = current->next();
4150     }
4151 
4152     if (prev) {
4153       prev->set_next(current->next());
4154     } else {
4155       _thread_list = p->next();
4156     }
4157     _number_of_threads--;
4158     oop threadObj = p->threadObj();
4159     bool daemon = true;
4160     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4161       _number_of_non_daemon_threads--;
4162       daemon = false;
4163 
4164       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4165       // on destroy_vm will wake up.
4166       if (number_of_non_daemon_threads() == 1) {
4167         Threads_lock->notify_all();
4168       }
4169     }
4170     ThreadService::remove_thread(p, daemon);
4171 
4172     // Make sure that safepoint code disregard this thread. This is needed since
4173     // the thread might mess around with locks after this point. This can cause it
4174     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4175     // of this thread since it is removed from the queue.
4176     p->set_terminated_value();
4177   } // unlock Threads_lock
4178 
4179   // Since Events::log uses a lock, we grab it outside the Threads_lock
4180   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4181 }
4182 
4183 // Threads_lock must be held when this is called (or must be called during a safepoint)
4184 bool Threads::includes(JavaThread* p) {
4185   assert(Threads_lock->is_locked(), "sanity check");
4186   ALL_JAVA_THREADS(q) {
4187     if (q == p) {
4188       return true;
4189     }
4190   }
4191   return false;
4192 }
4193 
4194 // Operations on the Threads list for GC.  These are not explicitly locked,
4195 // but the garbage collector must provide a safe context for them to run.
4196 // In particular, these things should never be called when the Threads_lock
4197 // is held by some other thread. (Note: the Safepoint abstraction also
4198 // uses the Threads_lock to guarantee this property. It also makes sure that
4199 // all threads gets blocked when exiting or starting).
4200 
4201 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4202   ALL_JAVA_THREADS(p) {
4203     p->oops_do(f, cld_f, cf);
4204   }
4205   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4206 }
4207 
4208 void Threads::change_thread_claim_parity() {
4209   // Set the new claim parity.
4210   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4211          "Not in range.");
4212   _thread_claim_parity++;
4213   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4214   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4215          "Not in range.");
4216 }
4217 
4218 #ifdef ASSERT
4219 void Threads::assert_all_threads_claimed() {
4220   ALL_JAVA_THREADS(p) {
4221     const int thread_parity = p->oops_do_parity();
4222     assert((thread_parity == _thread_claim_parity),
4223            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4224   }
4225 }
4226 #endif // ASSERT
4227 
4228 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4229   int cp = Threads::thread_claim_parity();
4230   ALL_JAVA_THREADS(p) {
4231     if (p->claim_oops_do(is_par, cp)) {
4232       p->oops_do(f, cld_f, cf);
4233     }
4234   }
4235   VMThread* vmt = VMThread::vm_thread();
4236   if (vmt->claim_oops_do(is_par, cp)) {
4237     vmt->oops_do(f, cld_f, cf);
4238   }
4239 }
4240 
4241 #if INCLUDE_ALL_GCS
4242 // Used by ParallelScavenge
4243 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4244   ALL_JAVA_THREADS(p) {
4245     q->enqueue(new ThreadRootsTask(p));
4246   }
4247   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4248 }
4249 
4250 // Used by Parallel Old
4251 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4252   ALL_JAVA_THREADS(p) {
4253     q->enqueue(new ThreadRootsMarkingTask(p));
4254   }
4255   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4256 }
4257 #endif // INCLUDE_ALL_GCS
4258 
4259 void Threads::nmethods_do(CodeBlobClosure* cf) {
4260   ALL_JAVA_THREADS(p) {
4261     p->nmethods_do(cf);
4262   }
4263   VMThread::vm_thread()->nmethods_do(cf);
4264 }
4265 
4266 void Threads::metadata_do(void f(Metadata*)) {
4267   ALL_JAVA_THREADS(p) {
4268     p->metadata_do(f);
4269   }
4270 }
4271 
4272 class ThreadHandlesClosure : public ThreadClosure {
4273   void (*_f)(Metadata*);
4274  public:
4275   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4276   virtual void do_thread(Thread* thread) {
4277     thread->metadata_handles_do(_f);
4278   }
4279 };
4280 
4281 void Threads::metadata_handles_do(void f(Metadata*)) {
4282   // Only walk the Handles in Thread.
4283   ThreadHandlesClosure handles_closure(f);
4284   threads_do(&handles_closure);
4285 }
4286 
4287 void Threads::deoptimized_wrt_marked_nmethods() {
4288   ALL_JAVA_THREADS(p) {
4289     p->deoptimized_wrt_marked_nmethods();
4290   }
4291 }
4292 
4293 
4294 // Get count Java threads that are waiting to enter the specified monitor.
4295 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4296                                                          address monitor,
4297                                                          bool doLock) {
4298   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4299          "must grab Threads_lock or be at safepoint");
4300   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4301 
4302   int i = 0;
4303   {
4304     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4305     ALL_JAVA_THREADS(p) {
4306       if (!p->can_call_java()) continue;
4307 
4308       address pending = (address)p->current_pending_monitor();
4309       if (pending == monitor) {             // found a match
4310         if (i < count) result->append(p);   // save the first count matches
4311         i++;
4312       }
4313     }
4314   }
4315   return result;
4316 }
4317 
4318 
4319 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4320                                                       bool doLock) {
4321   assert(doLock ||
4322          Threads_lock->owned_by_self() ||
4323          SafepointSynchronize::is_at_safepoint(),
4324          "must grab Threads_lock or be at safepoint");
4325 
4326   // NULL owner means not locked so we can skip the search
4327   if (owner == NULL) return NULL;
4328 
4329   {
4330     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4331     ALL_JAVA_THREADS(p) {
4332       // first, see if owner is the address of a Java thread
4333       if (owner == (address)p) return p;
4334     }
4335   }
4336   // Cannot assert on lack of success here since this function may be
4337   // used by code that is trying to report useful problem information
4338   // like deadlock detection.
4339   if (UseHeavyMonitors) return NULL;
4340 
4341   // If we didn't find a matching Java thread and we didn't force use of
4342   // heavyweight monitors, then the owner is the stack address of the
4343   // Lock Word in the owning Java thread's stack.
4344   //
4345   JavaThread* the_owner = NULL;
4346   {
4347     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4348     ALL_JAVA_THREADS(q) {
4349       if (q->is_lock_owned(owner)) {
4350         the_owner = q;
4351         break;
4352       }
4353     }
4354   }
4355   // cannot assert on lack of success here; see above comment
4356   return the_owner;
4357 }
4358 
4359 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4360 void Threads::print_on(outputStream* st, bool print_stacks,
4361                        bool internal_format, bool print_concurrent_locks) {
4362   char buf[32];
4363   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4364 
4365   st->print_cr("Full thread dump %s (%s %s):",
4366                Abstract_VM_Version::vm_name(),
4367                Abstract_VM_Version::vm_release(),
4368                Abstract_VM_Version::vm_info_string());
4369   st->cr();
4370 
4371 #if INCLUDE_SERVICES
4372   // Dump concurrent locks
4373   ConcurrentLocksDump concurrent_locks;
4374   if (print_concurrent_locks) {
4375     concurrent_locks.dump_at_safepoint();
4376   }
4377 #endif // INCLUDE_SERVICES
4378 
4379   ALL_JAVA_THREADS(p) {
4380     ResourceMark rm;
4381     p->print_on(st);
4382     if (print_stacks) {
4383       if (internal_format) {
4384         p->trace_stack();
4385       } else {
4386         p->print_stack_on(st);
4387       }
4388     }
4389     st->cr();
4390 #if INCLUDE_SERVICES
4391     if (print_concurrent_locks) {
4392       concurrent_locks.print_locks_on(p, st);
4393     }
4394 #endif // INCLUDE_SERVICES
4395   }
4396 
4397   VMThread::vm_thread()->print_on(st);
4398   st->cr();
4399   Universe::heap()->print_gc_threads_on(st);
4400   WatcherThread* wt = WatcherThread::watcher_thread();
4401   if (wt != NULL) {
4402     wt->print_on(st);
4403     st->cr();
4404   }
4405   st->flush();
4406 }
4407 
4408 // Threads::print_on_error() is called by fatal error handler. It's possible
4409 // that VM is not at safepoint and/or current thread is inside signal handler.
4410 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4411 // memory (even in resource area), it might deadlock the error handler.
4412 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4413                              int buflen) {
4414   bool found_current = false;
4415   st->print_cr("Java Threads: ( => current thread )");
4416   ALL_JAVA_THREADS(thread) {
4417     bool is_current = (current == thread);
4418     found_current = found_current || is_current;
4419 
4420     st->print("%s", is_current ? "=>" : "  ");
4421 
4422     st->print(PTR_FORMAT, p2i(thread));
4423     st->print(" ");
4424     thread->print_on_error(st, buf, buflen);
4425     st->cr();
4426   }
4427   st->cr();
4428 
4429   st->print_cr("Other Threads:");
4430   if (VMThread::vm_thread()) {
4431     bool is_current = (current == VMThread::vm_thread());
4432     found_current = found_current || is_current;
4433     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4434 
4435     st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4436     st->print(" ");
4437     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4438     st->cr();
4439   }
4440   WatcherThread* wt = WatcherThread::watcher_thread();
4441   if (wt != NULL) {
4442     bool is_current = (current == wt);
4443     found_current = found_current || is_current;
4444     st->print("%s", is_current ? "=>" : "  ");
4445 
4446     st->print(PTR_FORMAT, p2i(wt));
4447     st->print(" ");
4448     wt->print_on_error(st, buf, buflen);
4449     st->cr();
4450   }
4451   if (!found_current) {
4452     st->cr();
4453     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4454     current->print_on_error(st, buf, buflen);
4455     st->cr();
4456   }
4457   st->cr();
4458   st->print_cr("Threads with active compile tasks:");
4459   print_threads_compiling(st, buf, buflen);
4460 }
4461 
4462 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4463   ALL_JAVA_THREADS(thread) {
4464     if (thread->is_Compiler_thread()) {
4465       CompilerThread* ct = (CompilerThread*) thread;
4466       if (ct->task() != NULL) {
4467         thread->print_name_on_error(st, buf, buflen);
4468         ct->task()->print(st, NULL, true, true);
4469       }
4470     }
4471   }
4472 }
4473 
4474 
4475 // Internal SpinLock and Mutex
4476 // Based on ParkEvent
4477 
4478 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4479 //
4480 // We employ SpinLocks _only for low-contention, fixed-length
4481 // short-duration critical sections where we're concerned
4482 // about native mutex_t or HotSpot Mutex:: latency.
4483 // The mux construct provides a spin-then-block mutual exclusion
4484 // mechanism.
4485 //
4486 // Testing has shown that contention on the ListLock guarding gFreeList
4487 // is common.  If we implement ListLock as a simple SpinLock it's common
4488 // for the JVM to devolve to yielding with little progress.  This is true
4489 // despite the fact that the critical sections protected by ListLock are
4490 // extremely short.
4491 //
4492 // TODO-FIXME: ListLock should be of type SpinLock.
4493 // We should make this a 1st-class type, integrated into the lock
4494 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4495 // should have sufficient padding to avoid false-sharing and excessive
4496 // cache-coherency traffic.
4497 
4498 
4499 typedef volatile int SpinLockT;
4500 
4501 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4502   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4503     return;   // normal fast-path return
4504   }
4505 
4506   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4507   TEVENT(SpinAcquire - ctx);
4508   int ctr = 0;
4509   int Yields = 0;
4510   for (;;) {
4511     while (*adr != 0) {
4512       ++ctr;
4513       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4514         if (Yields > 5) {
4515           os::naked_short_sleep(1);
4516         } else {
4517           os::naked_yield();
4518           ++Yields;
4519         }
4520       } else {
4521         SpinPause();
4522       }
4523     }
4524     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4525   }
4526 }
4527 
4528 void Thread::SpinRelease(volatile int * adr) {
4529   assert(*adr != 0, "invariant");
4530   OrderAccess::fence();      // guarantee at least release consistency.
4531   // Roach-motel semantics.
4532   // It's safe if subsequent LDs and STs float "up" into the critical section,
4533   // but prior LDs and STs within the critical section can't be allowed
4534   // to reorder or float past the ST that releases the lock.
4535   // Loads and stores in the critical section - which appear in program
4536   // order before the store that releases the lock - must also appear
4537   // before the store that releases the lock in memory visibility order.
4538   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4539   // the ST of 0 into the lock-word which releases the lock, so fence
4540   // more than covers this on all platforms.
4541   *adr = 0;
4542 }
4543 
4544 // muxAcquire and muxRelease:
4545 //
4546 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4547 //    The LSB of the word is set IFF the lock is held.
4548 //    The remainder of the word points to the head of a singly-linked list
4549 //    of threads blocked on the lock.
4550 //
4551 // *  The current implementation of muxAcquire-muxRelease uses its own
4552 //    dedicated Thread._MuxEvent instance.  If we're interested in
4553 //    minimizing the peak number of extant ParkEvent instances then
4554 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4555 //    as certain invariants were satisfied.  Specifically, care would need
4556 //    to be taken with regards to consuming unpark() "permits".
4557 //    A safe rule of thumb is that a thread would never call muxAcquire()
4558 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4559 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4560 //    consume an unpark() permit intended for monitorenter, for instance.
4561 //    One way around this would be to widen the restricted-range semaphore
4562 //    implemented in park().  Another alternative would be to provide
4563 //    multiple instances of the PlatformEvent() for each thread.  One
4564 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4565 //
4566 // *  Usage:
4567 //    -- Only as leaf locks
4568 //    -- for short-term locking only as muxAcquire does not perform
4569 //       thread state transitions.
4570 //
4571 // Alternatives:
4572 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4573 //    but with parking or spin-then-park instead of pure spinning.
4574 // *  Use Taura-Oyama-Yonenzawa locks.
4575 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4576 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4577 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4578 //    acquiring threads use timers (ParkTimed) to detect and recover from
4579 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4580 //    boundaries by using placement-new.
4581 // *  Augment MCS with advisory back-link fields maintained with CAS().
4582 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4583 //    The validity of the backlinks must be ratified before we trust the value.
4584 //    If the backlinks are invalid the exiting thread must back-track through the
4585 //    the forward links, which are always trustworthy.
4586 // *  Add a successor indication.  The LockWord is currently encoded as
4587 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4588 //    to provide the usual futile-wakeup optimization.
4589 //    See RTStt for details.
4590 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4591 //
4592 
4593 
4594 typedef volatile intptr_t MutexT;      // Mux Lock-word
4595 enum MuxBits { LOCKBIT = 1 };
4596 
4597 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4598   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4599   if (w == 0) return;
4600   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4601     return;
4602   }
4603 
4604   TEVENT(muxAcquire - Contention);
4605   ParkEvent * const Self = Thread::current()->_MuxEvent;
4606   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4607   for (;;) {
4608     int its = (os::is_MP() ? 100 : 0) + 1;
4609 
4610     // Optional spin phase: spin-then-park strategy
4611     while (--its >= 0) {
4612       w = *Lock;
4613       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4614         return;
4615       }
4616     }
4617 
4618     Self->reset();
4619     Self->OnList = intptr_t(Lock);
4620     // The following fence() isn't _strictly necessary as the subsequent
4621     // CAS() both serializes execution and ratifies the fetched *Lock value.
4622     OrderAccess::fence();
4623     for (;;) {
4624       w = *Lock;
4625       if ((w & LOCKBIT) == 0) {
4626         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4627           Self->OnList = 0;   // hygiene - allows stronger asserts
4628           return;
4629         }
4630         continue;      // Interference -- *Lock changed -- Just retry
4631       }
4632       assert(w & LOCKBIT, "invariant");
4633       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4634       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4635     }
4636 
4637     while (Self->OnList != 0) {
4638       Self->park();
4639     }
4640   }
4641 }
4642 
4643 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4644   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4645   if (w == 0) return;
4646   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4647     return;
4648   }
4649 
4650   TEVENT(muxAcquire - Contention);
4651   ParkEvent * ReleaseAfter = NULL;
4652   if (ev == NULL) {
4653     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4654   }
4655   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4656   for (;;) {
4657     guarantee(ev->OnList == 0, "invariant");
4658     int its = (os::is_MP() ? 100 : 0) + 1;
4659 
4660     // Optional spin phase: spin-then-park strategy
4661     while (--its >= 0) {
4662       w = *Lock;
4663       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4664         if (ReleaseAfter != NULL) {
4665           ParkEvent::Release(ReleaseAfter);
4666         }
4667         return;
4668       }
4669     }
4670 
4671     ev->reset();
4672     ev->OnList = intptr_t(Lock);
4673     // The following fence() isn't _strictly necessary as the subsequent
4674     // CAS() both serializes execution and ratifies the fetched *Lock value.
4675     OrderAccess::fence();
4676     for (;;) {
4677       w = *Lock;
4678       if ((w & LOCKBIT) == 0) {
4679         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4680           ev->OnList = 0;
4681           // We call ::Release while holding the outer lock, thus
4682           // artificially lengthening the critical section.
4683           // Consider deferring the ::Release() until the subsequent unlock(),
4684           // after we've dropped the outer lock.
4685           if (ReleaseAfter != NULL) {
4686             ParkEvent::Release(ReleaseAfter);
4687           }
4688           return;
4689         }
4690         continue;      // Interference -- *Lock changed -- Just retry
4691       }
4692       assert(w & LOCKBIT, "invariant");
4693       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4694       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4695     }
4696 
4697     while (ev->OnList != 0) {
4698       ev->park();
4699     }
4700   }
4701 }
4702 
4703 // Release() must extract a successor from the list and then wake that thread.
4704 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4705 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4706 // Release() would :
4707 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4708 // (B) Extract a successor from the private list "in-hand"
4709 // (C) attempt to CAS() the residual back into *Lock over null.
4710 //     If there were any newly arrived threads and the CAS() would fail.
4711 //     In that case Release() would detach the RATs, re-merge the list in-hand
4712 //     with the RATs and repeat as needed.  Alternately, Release() might
4713 //     detach and extract a successor, but then pass the residual list to the wakee.
4714 //     The wakee would be responsible for reattaching and remerging before it
4715 //     competed for the lock.
4716 //
4717 // Both "pop" and DMR are immune from ABA corruption -- there can be
4718 // multiple concurrent pushers, but only one popper or detacher.
4719 // This implementation pops from the head of the list.  This is unfair,
4720 // but tends to provide excellent throughput as hot threads remain hot.
4721 // (We wake recently run threads first).
4722 //
4723 // All paths through muxRelease() will execute a CAS.
4724 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4725 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4726 // executed within the critical section are complete and globally visible before the
4727 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4728 void Thread::muxRelease(volatile intptr_t * Lock)  {
4729   for (;;) {
4730     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4731     assert(w & LOCKBIT, "invariant");
4732     if (w == LOCKBIT) return;
4733     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4734     assert(List != NULL, "invariant");
4735     assert(List->OnList == intptr_t(Lock), "invariant");
4736     ParkEvent * const nxt = List->ListNext;
4737     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4738 
4739     // The following CAS() releases the lock and pops the head element.
4740     // The CAS() also ratifies the previously fetched lock-word value.
4741     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4742       continue;
4743     }
4744     List->OnList = 0;
4745     OrderAccess::fence();
4746     List->unpark();
4747     return;
4748   }
4749 }
4750 
4751 
4752 void Threads::verify() {
4753   ALL_JAVA_THREADS(p) {
4754     p->verify();
4755   }
4756   VMThread* thread = VMThread::vm_thread();
4757   if (thread != NULL) thread->verify();
4758 }