1 /*
   2  * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "jvmtifiles/jvmtiEnv.hpp"
  32 #include "logging/log.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/access.inline.hpp"
  37 #include "oops/arrayOop.inline.hpp"
  38 #include "oops/constantPool.inline.hpp"
  39 #include "oops/instanceMirrorKlass.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "oops/objArrayOop.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/typeArrayOop.inline.hpp"
  44 #include "prims/jvmtiEventController.hpp"
  45 #include "prims/jvmtiEventController.inline.hpp"
  46 #include "prims/jvmtiExport.hpp"
  47 #include "prims/jvmtiImpl.hpp"
  48 #include "prims/jvmtiTagMap.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/frame.inline.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/jniHandles.inline.hpp"
  55 #include "runtime/mutex.hpp"
  56 #include "runtime/mutexLocker.hpp"
  57 #include "runtime/reflectionUtils.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadSMR.hpp"
  60 #include "runtime/vframe.hpp"
  61 #include "runtime/vmThread.hpp"
  62 #include "runtime/vmOperations.hpp"
  63 #include "utilities/macros.hpp"
  64 #if INCLUDE_ZGC
  65 #include "gc/z/zGlobals.hpp"
  66 #endif
  67 
  68 // JvmtiTagHashmapEntry
  69 //
  70 // Each entry encapsulates a reference to the tagged object
  71 // and the tag value. In addition an entry includes a next pointer which
  72 // is used to chain entries together.
  73 
  74 class JvmtiTagHashmapEntry : public CHeapObj<mtInternal> {
  75  private:
  76   friend class JvmtiTagMap;
  77 
  78   oop _object;                          // tagged object
  79   jlong _tag;                           // the tag
  80   JvmtiTagHashmapEntry* _next;          // next on the list
  81 
  82   inline void init(oop object, jlong tag) {
  83     _object = object;
  84     _tag = tag;
  85     _next = NULL;
  86   }
  87 
  88   // constructor
  89   JvmtiTagHashmapEntry(oop object, jlong tag) { init(object, tag); }
  90 
  91  public:
  92 
  93   // accessor methods
  94   inline oop* object_addr() { return &_object; }
  95   inline oop object()       { return NativeAccess<ON_PHANTOM_OOP_REF>::oop_load(object_addr()); }
  96   // Peek at the object without keeping it alive. The returned object must be
  97   // kept alive using a normal access if it leaks out of a thread transition from VM.
  98   inline oop object_peek()  {
  99     return NativeAccess<ON_PHANTOM_OOP_REF | AS_NO_KEEPALIVE>::oop_load(object_addr());
 100   }
 101   inline jlong tag() const  { return _tag; }
 102 
 103   inline void set_tag(jlong tag) {
 104     assert(tag != 0, "can't be zero");
 105     _tag = tag;
 106   }
 107 
 108   inline bool equals(oop object) {
 109     return oopDesc::equals(object, object_peek());
 110   }
 111 
 112   inline JvmtiTagHashmapEntry* next() const        { return _next; }
 113   inline void set_next(JvmtiTagHashmapEntry* next) { _next = next; }
 114 };
 115 
 116 
 117 // JvmtiTagHashmap
 118 //
 119 // A hashmap is essentially a table of pointers to entries. Entries
 120 // are hashed to a location, or position in the table, and then
 121 // chained from that location. The "key" for hashing is address of
 122 // the object, or oop. The "value" is the tag value.
 123 //
 124 // A hashmap maintains a count of the number entries in the hashmap
 125 // and resizes if the number of entries exceeds a given threshold.
 126 // The threshold is specified as a percentage of the size - for
 127 // example a threshold of 0.75 will trigger the hashmap to resize
 128 // if the number of entries is >75% of table size.
 129 //
 130 // A hashmap provides functions for adding, removing, and finding
 131 // entries. It also provides a function to iterate over all entries
 132 // in the hashmap.
 133 
 134 class JvmtiTagHashmap : public CHeapObj<mtInternal> {
 135  private:
 136   friend class JvmtiTagMap;
 137 
 138   enum {
 139     small_trace_threshold  = 10000,                  // threshold for tracing
 140     medium_trace_threshold = 100000,
 141     large_trace_threshold  = 1000000,
 142     initial_trace_threshold = small_trace_threshold
 143   };
 144 
 145   static int _sizes[];                  // array of possible hashmap sizes
 146   int _size;                            // actual size of the table
 147   int _size_index;                      // index into size table
 148 
 149   int _entry_count;                     // number of entries in the hashmap
 150 
 151   float _load_factor;                   // load factor as a % of the size
 152   int _resize_threshold;                // computed threshold to trigger resizing.
 153   bool _resizing_enabled;               // indicates if hashmap can resize
 154 
 155   int _trace_threshold;                 // threshold for trace messages
 156 
 157   JvmtiTagHashmapEntry** _table;        // the table of entries.
 158 
 159   // private accessors
 160   int resize_threshold() const                  { return _resize_threshold; }
 161   int trace_threshold() const                   { return _trace_threshold; }
 162 
 163   // initialize the hashmap
 164   void init(int size_index=0, float load_factor=4.0f) {
 165     int initial_size =  _sizes[size_index];
 166     _size_index = size_index;
 167     _size = initial_size;
 168     _entry_count = 0;
 169     _trace_threshold = initial_trace_threshold;
 170     _load_factor = load_factor;
 171     _resize_threshold = (int)(_load_factor * _size);
 172     _resizing_enabled = true;
 173     size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
 174     _table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
 175     if (_table == NULL) {
 176       vm_exit_out_of_memory(s, OOM_MALLOC_ERROR,
 177         "unable to allocate initial hashtable for jvmti object tags");
 178     }
 179     for (int i=0; i<initial_size; i++) {
 180       _table[i] = NULL;
 181     }
 182   }
 183 
 184   // hash a given key (oop) with the specified size
 185   static unsigned int hash(oop key, int size) {
 186     const oop obj = Access<>::resolve(key);
 187     const unsigned int hash = Universe::heap()->hash_oop(obj);
 188     return hash % size;
 189   }
 190 
 191   // hash a given key (oop)
 192   unsigned int hash(oop key) {
 193     return hash(key, _size);
 194   }
 195 
 196   // resize the hashmap - allocates a large table and re-hashes
 197   // all entries into the new table.
 198   void resize() {
 199     int new_size_index = _size_index+1;
 200     int new_size = _sizes[new_size_index];
 201     if (new_size < 0) {
 202       // hashmap already at maximum capacity
 203       return;
 204     }
 205 
 206     // allocate new table
 207     size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
 208     JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
 209     if (new_table == NULL) {
 210       warning("unable to allocate larger hashtable for jvmti object tags");
 211       set_resizing_enabled(false);
 212       return;
 213     }
 214 
 215     // initialize new table
 216     int i;
 217     for (i=0; i<new_size; i++) {
 218       new_table[i] = NULL;
 219     }
 220 
 221     // rehash all entries into the new table
 222     for (i=0; i<_size; i++) {
 223       JvmtiTagHashmapEntry* entry = _table[i];
 224       while (entry != NULL) {
 225         JvmtiTagHashmapEntry* next = entry->next();
 226         oop key = entry->object_peek();
 227         assert(key != NULL, "jni weak reference cleared!!");
 228         unsigned int h = hash(key, new_size);
 229         JvmtiTagHashmapEntry* anchor = new_table[h];
 230         if (anchor == NULL) {
 231           new_table[h] = entry;
 232           entry->set_next(NULL);
 233         } else {
 234           entry->set_next(anchor);
 235           new_table[h] = entry;
 236         }
 237         entry = next;
 238       }
 239     }
 240 
 241     // free old table and update settings.
 242     os::free((void*)_table);
 243     _table = new_table;
 244     _size_index = new_size_index;
 245     _size = new_size;
 246 
 247     // compute new resize threshold
 248     _resize_threshold = (int)(_load_factor * _size);
 249   }
 250 
 251 
 252   // internal remove function - remove an entry at a given position in the
 253   // table.
 254   inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
 255     assert(pos >= 0 && pos < _size, "out of range");
 256     if (prev == NULL) {
 257       _table[pos] = entry->next();
 258     } else {
 259       prev->set_next(entry->next());
 260     }
 261     assert(_entry_count > 0, "checking");
 262     _entry_count--;
 263   }
 264 
 265   // resizing switch
 266   bool is_resizing_enabled() const          { return _resizing_enabled; }
 267   void set_resizing_enabled(bool enable)    { _resizing_enabled = enable; }
 268 
 269   // debugging
 270   void print_memory_usage();
 271   void compute_next_trace_threshold();
 272 
 273  public:
 274 
 275   // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
 276   // The preferred size is rounded down to an actual size.
 277   JvmtiTagHashmap(int size, float load_factor=0.0f) {
 278     int i=0;
 279     while (_sizes[i] < size) {
 280       if (_sizes[i] < 0) {
 281         assert(i > 0, "sanity check");
 282         i--;
 283         break;
 284       }
 285       i++;
 286     }
 287 
 288     // if a load factor is specified then use it, otherwise use default
 289     if (load_factor > 0.01f) {
 290       init(i, load_factor);
 291     } else {
 292       init(i);
 293     }
 294   }
 295 
 296   // create a JvmtiTagHashmap with default settings
 297   JvmtiTagHashmap() {
 298     init();
 299   }
 300 
 301   // release table when JvmtiTagHashmap destroyed
 302   ~JvmtiTagHashmap() {
 303     if (_table != NULL) {
 304       os::free((void*)_table);
 305       _table = NULL;
 306     }
 307   }
 308 
 309   // accessors
 310   int size() const                              { return _size; }
 311   JvmtiTagHashmapEntry** table() const          { return _table; }
 312   int entry_count() const                       { return _entry_count; }
 313 
 314   // find an entry in the hashmap, returns NULL if not found.
 315   inline JvmtiTagHashmapEntry* find(oop key) {
 316     unsigned int h = hash(key);
 317     JvmtiTagHashmapEntry* entry = _table[h];
 318     while (entry != NULL) {
 319       if (entry->equals(key)) {
 320          return entry;
 321       }
 322       entry = entry->next();
 323     }
 324     return NULL;
 325   }
 326 
 327 
 328   // add a new entry to hashmap
 329   inline void add(oop key, JvmtiTagHashmapEntry* entry) {
 330     assert(key != NULL, "checking");
 331     assert(find(key) == NULL, "duplicate detected");
 332     unsigned int h = hash(key);
 333     JvmtiTagHashmapEntry* anchor = _table[h];
 334     if (anchor == NULL) {
 335       _table[h] = entry;
 336       entry->set_next(NULL);
 337     } else {
 338       entry->set_next(anchor);
 339       _table[h] = entry;
 340     }
 341 
 342     _entry_count++;
 343     if (log_is_enabled(Debug, jvmti, objecttagging) && entry_count() >= trace_threshold()) {
 344       print_memory_usage();
 345       compute_next_trace_threshold();
 346     }
 347 
 348     // if the number of entries exceed the threshold then resize
 349     if (entry_count() > resize_threshold() && is_resizing_enabled()) {
 350       resize();
 351     }
 352   }
 353 
 354   // remove an entry with the given key.
 355   inline JvmtiTagHashmapEntry* remove(oop key) {
 356     unsigned int h = hash(key);
 357     JvmtiTagHashmapEntry* entry = _table[h];
 358     JvmtiTagHashmapEntry* prev = NULL;
 359     while (entry != NULL) {
 360       if (entry->equals(key)) {
 361         break;
 362       }
 363       prev = entry;
 364       entry = entry->next();
 365     }
 366     if (entry != NULL) {
 367       remove(prev, h, entry);
 368     }
 369     return entry;
 370   }
 371 
 372   // iterate over all entries in the hashmap
 373   void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
 374 };
 375 
 376 // possible hashmap sizes - odd primes that roughly double in size.
 377 // To avoid excessive resizing the odd primes from 4801-76831 and
 378 // 76831-307261 have been removed. The list must be terminated by -1.
 379 int JvmtiTagHashmap::_sizes[] =  { 4801, 76831, 307261, 614563, 1228891,
 380     2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
 381 
 382 
 383 // A supporting class for iterating over all entries in Hashmap
 384 class JvmtiTagHashmapEntryClosure {
 385  public:
 386   virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
 387 };
 388 
 389 
 390 // iterate over all entries in the hashmap
 391 void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
 392   for (int i=0; i<_size; i++) {
 393     JvmtiTagHashmapEntry* entry = _table[i];
 394     JvmtiTagHashmapEntry* prev = NULL;
 395     while (entry != NULL) {
 396       // obtain the next entry before invoking do_entry - this is
 397       // necessary because do_entry may remove the entry from the
 398       // hashmap.
 399       JvmtiTagHashmapEntry* next = entry->next();
 400       closure->do_entry(entry);
 401       entry = next;
 402      }
 403   }
 404 }
 405 
 406 // debugging
 407 void JvmtiTagHashmap::print_memory_usage() {
 408   intptr_t p = (intptr_t)this;
 409   tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
 410 
 411   // table + entries in KB
 412   int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
 413     entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
 414 
 415   int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
 416   tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
 417     entry_count(), hashmap_usage, weak_globals_usage);
 418 }
 419 
 420 // compute threshold for the next trace message
 421 void JvmtiTagHashmap::compute_next_trace_threshold() {
 422   _trace_threshold = entry_count();
 423   if (trace_threshold() < medium_trace_threshold) {
 424     _trace_threshold += small_trace_threshold;
 425   } else {
 426     if (trace_threshold() < large_trace_threshold) {
 427       _trace_threshold += medium_trace_threshold;
 428     } else {
 429       _trace_threshold += large_trace_threshold;
 430     }
 431   }
 432 }
 433 
 434 // create a JvmtiTagMap
 435 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
 436   _env(env),
 437   _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
 438   _free_entries(NULL),
 439   _free_entries_count(0)
 440 {
 441   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
 442   assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
 443 
 444   _hashmap = new JvmtiTagHashmap();
 445 
 446   // finally add us to the environment
 447   ((JvmtiEnvBase *)env)->release_set_tag_map(this);
 448 }
 449 
 450 
 451 // destroy a JvmtiTagMap
 452 JvmtiTagMap::~JvmtiTagMap() {
 453 
 454   // no lock acquired as we assume the enclosing environment is
 455   // also being destroryed.
 456   ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
 457 
 458   JvmtiTagHashmapEntry** table = _hashmap->table();
 459   for (int j = 0; j < _hashmap->size(); j++) {
 460     JvmtiTagHashmapEntry* entry = table[j];
 461     while (entry != NULL) {
 462       JvmtiTagHashmapEntry* next = entry->next();
 463       delete entry;
 464       entry = next;
 465     }
 466   }
 467 
 468   // finally destroy the hashmap
 469   delete _hashmap;
 470   _hashmap = NULL;
 471 
 472   // remove any entries on the free list
 473   JvmtiTagHashmapEntry* entry = _free_entries;
 474   while (entry != NULL) {
 475     JvmtiTagHashmapEntry* next = entry->next();
 476     delete entry;
 477     entry = next;
 478   }
 479   _free_entries = NULL;
 480 }
 481 
 482 // create a hashmap entry
 483 // - if there's an entry on the (per-environment) free list then this
 484 // is returned. Otherwise an new entry is allocated.
 485 JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(oop ref, jlong tag) {
 486   assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
 487   JvmtiTagHashmapEntry* entry;
 488   if (_free_entries == NULL) {
 489     entry = new JvmtiTagHashmapEntry(ref, tag);
 490   } else {
 491     assert(_free_entries_count > 0, "mismatched _free_entries_count");
 492     _free_entries_count--;
 493     entry = _free_entries;
 494     _free_entries = entry->next();
 495     entry->init(ref, tag);
 496   }
 497   return entry;
 498 }
 499 
 500 // destroy an entry by returning it to the free list
 501 void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
 502   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
 503   // limit the size of the free list
 504   if (_free_entries_count >= max_free_entries) {
 505     delete entry;
 506   } else {
 507     entry->set_next(_free_entries);
 508     _free_entries = entry;
 509     _free_entries_count++;
 510   }
 511 }
 512 
 513 // returns the tag map for the given environments. If the tag map
 514 // doesn't exist then it is created.
 515 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
 516   JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map_acquire();
 517   if (tag_map == NULL) {
 518     MutexLocker mu(JvmtiThreadState_lock);
 519     tag_map = ((JvmtiEnvBase*)env)->tag_map();
 520     if (tag_map == NULL) {
 521       tag_map = new JvmtiTagMap(env);
 522     }
 523   } else {
 524     DEBUG_ONLY(Thread::current()->check_possible_safepoint());
 525   }
 526   return tag_map;
 527 }
 528 
 529 // iterate over all entries in the tag map.
 530 void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
 531   hashmap()->entry_iterate(closure);
 532 }
 533 
 534 // returns true if the hashmaps are empty
 535 bool JvmtiTagMap::is_empty() {
 536   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
 537   return hashmap()->entry_count() == 0;
 538 }
 539 
 540 
 541 // Return the tag value for an object, or 0 if the object is
 542 // not tagged
 543 //
 544 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
 545   JvmtiTagHashmapEntry* entry = tag_map->hashmap()->find(o);
 546   if (entry == NULL) {
 547     return 0;
 548   } else {
 549     return entry->tag();
 550   }
 551 }
 552 
 553 
 554 // A CallbackWrapper is a support class for querying and tagging an object
 555 // around a callback to a profiler. The constructor does pre-callback
 556 // work to get the tag value, klass tag value, ... and the destructor
 557 // does the post-callback work of tagging or untagging the object.
 558 //
 559 // {
 560 //   CallbackWrapper wrapper(tag_map, o);
 561 //
 562 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
 563 //
 564 // } // wrapper goes out of scope here which results in the destructor
 565 //      checking to see if the object has been tagged, untagged, or the
 566 //      tag value has changed.
 567 //
 568 class CallbackWrapper : public StackObj {
 569  private:
 570   JvmtiTagMap* _tag_map;
 571   JvmtiTagHashmap* _hashmap;
 572   JvmtiTagHashmapEntry* _entry;
 573   oop _o;
 574   jlong _obj_size;
 575   jlong _obj_tag;
 576   jlong _klass_tag;
 577 
 578  protected:
 579   JvmtiTagMap* tag_map() const      { return _tag_map; }
 580 
 581   // invoked post-callback to tag, untag, or update the tag of an object
 582   void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
 583                                        JvmtiTagHashmapEntry* entry, jlong obj_tag);
 584  public:
 585   CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
 586     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
 587            "MT unsafe or must be VM thread");
 588 
 589     // object to tag
 590     _o = o;
 591 
 592     // object size
 593     _obj_size = (jlong)_o->size() * wordSize;
 594 
 595     // record the context
 596     _tag_map = tag_map;
 597     _hashmap = tag_map->hashmap();
 598     _entry = _hashmap->find(_o);
 599 
 600     // get object tag
 601     _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
 602 
 603     // get the class and the class's tag value
 604     assert(SystemDictionary::Class_klass()->is_mirror_instance_klass(), "Is not?");
 605 
 606     _klass_tag = tag_for(tag_map, _o->klass()->java_mirror());
 607   }
 608 
 609   ~CallbackWrapper() {
 610     post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
 611   }
 612 
 613   inline jlong* obj_tag_p()                     { return &_obj_tag; }
 614   inline jlong obj_size() const                 { return _obj_size; }
 615   inline jlong obj_tag() const                  { return _obj_tag; }
 616   inline jlong klass_tag() const                { return _klass_tag; }
 617 };
 618 
 619 
 620 
 621 // callback post-callback to tag, untag, or update the tag of an object
 622 void inline CallbackWrapper::post_callback_tag_update(oop o,
 623                                                       JvmtiTagHashmap* hashmap,
 624                                                       JvmtiTagHashmapEntry* entry,
 625                                                       jlong obj_tag) {
 626   if (entry == NULL) {
 627     if (obj_tag != 0) {
 628       // callback has tagged the object
 629       assert(Thread::current()->is_VM_thread(), "must be VMThread");
 630       entry = tag_map()->create_entry(o, obj_tag);
 631       hashmap->add(o, entry);
 632     }
 633   } else {
 634     // object was previously tagged - the callback may have untagged
 635     // the object or changed the tag value
 636     if (obj_tag == 0) {
 637 
 638       JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
 639       assert(entry_removed == entry, "checking");
 640       tag_map()->destroy_entry(entry);
 641 
 642     } else {
 643       if (obj_tag != entry->tag()) {
 644          entry->set_tag(obj_tag);
 645       }
 646     }
 647   }
 648 }
 649 
 650 // An extended CallbackWrapper used when reporting an object reference
 651 // to the agent.
 652 //
 653 // {
 654 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
 655 //
 656 //   (*callback)(wrapper.klass_tag(),
 657 //               wrapper.obj_size(),
 658 //               wrapper.obj_tag_p()
 659 //               wrapper.referrer_tag_p(), ...)
 660 //
 661 // } // wrapper goes out of scope here which results in the destructor
 662 //      checking to see if the referrer object has been tagged, untagged,
 663 //      or the tag value has changed.
 664 //
 665 class TwoOopCallbackWrapper : public CallbackWrapper {
 666  private:
 667   bool _is_reference_to_self;
 668   JvmtiTagHashmap* _referrer_hashmap;
 669   JvmtiTagHashmapEntry* _referrer_entry;
 670   oop _referrer;
 671   jlong _referrer_obj_tag;
 672   jlong _referrer_klass_tag;
 673   jlong* _referrer_tag_p;
 674 
 675   bool is_reference_to_self() const             { return _is_reference_to_self; }
 676 
 677  public:
 678   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
 679     CallbackWrapper(tag_map, o)
 680   {
 681     // self reference needs to be handled in a special way
 682     _is_reference_to_self = (referrer == o);
 683 
 684     if (_is_reference_to_self) {
 685       _referrer_klass_tag = klass_tag();
 686       _referrer_tag_p = obj_tag_p();
 687     } else {
 688       _referrer = referrer;
 689       // record the context
 690       _referrer_hashmap = tag_map->hashmap();
 691       _referrer_entry = _referrer_hashmap->find(_referrer);
 692 
 693       // get object tag
 694       _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
 695       _referrer_tag_p = &_referrer_obj_tag;
 696 
 697       // get referrer class tag.
 698       _referrer_klass_tag = tag_for(tag_map, _referrer->klass()->java_mirror());
 699     }
 700   }
 701 
 702   ~TwoOopCallbackWrapper() {
 703     if (!is_reference_to_self()){
 704       post_callback_tag_update(_referrer,
 705                                _referrer_hashmap,
 706                                _referrer_entry,
 707                                _referrer_obj_tag);
 708     }
 709   }
 710 
 711   // address of referrer tag
 712   // (for a self reference this will return the same thing as obj_tag_p())
 713   inline jlong* referrer_tag_p()        { return _referrer_tag_p; }
 714 
 715   // referrer's class tag
 716   inline jlong referrer_klass_tag()     { return _referrer_klass_tag; }
 717 };
 718 
 719 // tag an object
 720 //
 721 // This function is performance critical. If many threads attempt to tag objects
 722 // around the same time then it's possible that the Mutex associated with the
 723 // tag map will be a hot lock.
 724 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
 725   MutexLocker ml(lock());
 726 
 727   // resolve the object
 728   oop o = JNIHandles::resolve_non_null(object);
 729 
 730   // see if the object is already tagged
 731   JvmtiTagHashmap* hashmap = _hashmap;
 732   JvmtiTagHashmapEntry* entry = hashmap->find(o);
 733 
 734   // if the object is not already tagged then we tag it
 735   if (entry == NULL) {
 736     if (tag != 0) {
 737       entry = create_entry(o, tag);
 738       hashmap->add(o, entry);
 739     } else {
 740       // no-op
 741     }
 742   } else {
 743     // if the object is already tagged then we either update
 744     // the tag (if a new tag value has been provided)
 745     // or remove the object if the new tag value is 0.
 746     if (tag == 0) {
 747       hashmap->remove(o);
 748       destroy_entry(entry);
 749     } else {
 750       entry->set_tag(tag);
 751     }
 752   }
 753 }
 754 
 755 // get the tag for an object
 756 jlong JvmtiTagMap::get_tag(jobject object) {
 757   MutexLocker ml(lock());
 758 
 759   // resolve the object
 760   oop o = JNIHandles::resolve_non_null(object);
 761 
 762   return tag_for(this, o);
 763 }
 764 
 765 
 766 // Helper class used to describe the static or instance fields of a class.
 767 // For each field it holds the field index (as defined by the JVMTI specification),
 768 // the field type, and the offset.
 769 
 770 class ClassFieldDescriptor: public CHeapObj<mtInternal> {
 771  private:
 772   int _field_index;
 773   int _field_offset;
 774   char _field_type;
 775  public:
 776   ClassFieldDescriptor(int index, char type, int offset) :
 777     _field_index(index), _field_offset(offset), _field_type(type) {
 778   }
 779   int field_index()  const  { return _field_index; }
 780   char field_type()  const  { return _field_type; }
 781   int field_offset() const  { return _field_offset; }
 782 };
 783 
 784 class ClassFieldMap: public CHeapObj<mtInternal> {
 785  private:
 786   enum {
 787     initial_field_count = 5
 788   };
 789 
 790   // list of field descriptors
 791   GrowableArray<ClassFieldDescriptor*>* _fields;
 792 
 793   // constructor
 794   ClassFieldMap();
 795 
 796   // add a field
 797   void add(int index, char type, int offset);
 798 
 799   // returns the field count for the given class
 800   static int compute_field_count(InstanceKlass* ik);
 801 
 802  public:
 803   ~ClassFieldMap();
 804 
 805   // access
 806   int field_count()                     { return _fields->length(); }
 807   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
 808 
 809   // functions to create maps of static or instance fields
 810   static ClassFieldMap* create_map_of_static_fields(Klass* k);
 811   static ClassFieldMap* create_map_of_instance_fields(oop obj);
 812 };
 813 
 814 ClassFieldMap::ClassFieldMap() {
 815   _fields = new (ResourceObj::C_HEAP, mtInternal)
 816     GrowableArray<ClassFieldDescriptor*>(initial_field_count, true);
 817 }
 818 
 819 ClassFieldMap::~ClassFieldMap() {
 820   for (int i=0; i<_fields->length(); i++) {
 821     delete _fields->at(i);
 822   }
 823   delete _fields;
 824 }
 825 
 826 void ClassFieldMap::add(int index, char type, int offset) {
 827   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
 828   _fields->append(field);
 829 }
 830 
 831 // Returns a heap allocated ClassFieldMap to describe the static fields
 832 // of the given class.
 833 //
 834 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(Klass* k) {
 835   HandleMark hm;
 836   InstanceKlass* ik = InstanceKlass::cast(k);
 837 
 838   // create the field map
 839   ClassFieldMap* field_map = new ClassFieldMap();
 840 
 841   FilteredFieldStream f(ik, false, false);
 842   int max_field_index = f.field_count()-1;
 843 
 844   int index = 0;
 845   for (FilteredFieldStream fld(ik, true, true); !fld.eos(); fld.next(), index++) {
 846     // ignore instance fields
 847     if (!fld.access_flags().is_static()) {
 848       continue;
 849     }
 850     field_map->add(max_field_index - index, fld.signature()->char_at(0), fld.offset());
 851   }
 852   return field_map;
 853 }
 854 
 855 // Returns a heap allocated ClassFieldMap to describe the instance fields
 856 // of the given class. All instance fields are included (this means public
 857 // and private fields declared in superclasses and superinterfaces too).
 858 //
 859 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
 860   HandleMark hm;
 861   InstanceKlass* ik = InstanceKlass::cast(obj->klass());
 862 
 863   // create the field map
 864   ClassFieldMap* field_map = new ClassFieldMap();
 865 
 866   FilteredFieldStream f(ik, false, false);
 867 
 868   int max_field_index = f.field_count()-1;
 869 
 870   int index = 0;
 871   for (FilteredFieldStream fld(ik, false, false); !fld.eos(); fld.next(), index++) {
 872     // ignore static fields
 873     if (fld.access_flags().is_static()) {
 874       continue;
 875     }
 876     field_map->add(max_field_index - index, fld.signature()->char_at(0), fld.offset());
 877   }
 878 
 879   return field_map;
 880 }
 881 
 882 // Helper class used to cache a ClassFileMap for the instance fields of
 883 // a cache. A JvmtiCachedClassFieldMap can be cached by an InstanceKlass during
 884 // heap iteration and avoid creating a field map for each object in the heap
 885 // (only need to create the map when the first instance of a class is encountered).
 886 //
 887 class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> {
 888  private:
 889    enum {
 890      initial_class_count = 200
 891    };
 892   ClassFieldMap* _field_map;
 893 
 894   ClassFieldMap* field_map() const          { return _field_map; }
 895 
 896   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
 897   ~JvmtiCachedClassFieldMap();
 898 
 899   static GrowableArray<InstanceKlass*>* _class_list;
 900   static void add_to_class_list(InstanceKlass* ik);
 901 
 902  public:
 903   // returns the field map for a given object (returning map cached
 904   // by InstanceKlass if possible
 905   static ClassFieldMap* get_map_of_instance_fields(oop obj);
 906 
 907   // removes the field map from all instanceKlasses - should be
 908   // called before VM operation completes
 909   static void clear_cache();
 910 
 911   // returns the number of ClassFieldMap cached by instanceKlasses
 912   static int cached_field_map_count();
 913 };
 914 
 915 GrowableArray<InstanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
 916 
 917 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
 918   _field_map = field_map;
 919 }
 920 
 921 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
 922   if (_field_map != NULL) {
 923     delete _field_map;
 924   }
 925 }
 926 
 927 // Marker class to ensure that the class file map cache is only used in a defined
 928 // scope.
 929 class ClassFieldMapCacheMark : public StackObj {
 930  private:
 931    static bool _is_active;
 932  public:
 933    ClassFieldMapCacheMark() {
 934      assert(Thread::current()->is_VM_thread(), "must be VMThread");
 935      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
 936      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
 937      _is_active = true;
 938    }
 939    ~ClassFieldMapCacheMark() {
 940      JvmtiCachedClassFieldMap::clear_cache();
 941      _is_active = false;
 942    }
 943    static bool is_active() { return _is_active; }
 944 };
 945 
 946 bool ClassFieldMapCacheMark::_is_active;
 947 
 948 
 949 // record that the given InstanceKlass is caching a field map
 950 void JvmtiCachedClassFieldMap::add_to_class_list(InstanceKlass* ik) {
 951   if (_class_list == NULL) {
 952     _class_list = new (ResourceObj::C_HEAP, mtInternal)
 953       GrowableArray<InstanceKlass*>(initial_class_count, true);
 954   }
 955   _class_list->push(ik);
 956 }
 957 
 958 // returns the instance field map for the given object
 959 // (returns field map cached by the InstanceKlass if possible)
 960 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
 961   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 962   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
 963 
 964   Klass* k = obj->klass();
 965   InstanceKlass* ik = InstanceKlass::cast(k);
 966 
 967   // return cached map if possible
 968   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 969   if (cached_map != NULL) {
 970     assert(cached_map->field_map() != NULL, "missing field list");
 971     return cached_map->field_map();
 972   } else {
 973     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
 974     cached_map = new JvmtiCachedClassFieldMap(field_map);
 975     ik->set_jvmti_cached_class_field_map(cached_map);
 976     add_to_class_list(ik);
 977     return field_map;
 978   }
 979 }
 980 
 981 // remove the fields maps cached from all instanceKlasses
 982 void JvmtiCachedClassFieldMap::clear_cache() {
 983   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 984   if (_class_list != NULL) {
 985     for (int i = 0; i < _class_list->length(); i++) {
 986       InstanceKlass* ik = _class_list->at(i);
 987       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 988       assert(cached_map != NULL, "should not be NULL");
 989       ik->set_jvmti_cached_class_field_map(NULL);
 990       delete cached_map;  // deletes the encapsulated field map
 991     }
 992     delete _class_list;
 993     _class_list = NULL;
 994   }
 995 }
 996 
 997 // returns the number of ClassFieldMap cached by instanceKlasses
 998 int JvmtiCachedClassFieldMap::cached_field_map_count() {
 999   return (_class_list == NULL) ? 0 : _class_list->length();
1000 }
1001 
1002 // helper function to indicate if an object is filtered by its tag or class tag
1003 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
1004                                               jlong klass_tag,
1005                                               int heap_filter) {
1006   // apply the heap filter
1007   if (obj_tag != 0) {
1008     // filter out tagged objects
1009     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
1010   } else {
1011     // filter out untagged objects
1012     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
1013   }
1014   if (klass_tag != 0) {
1015     // filter out objects with tagged classes
1016     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
1017   } else {
1018     // filter out objects with untagged classes.
1019     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
1020   }
1021   return false;
1022 }
1023 
1024 // helper function to indicate if an object is filtered by a klass filter
1025 static inline bool is_filtered_by_klass_filter(oop obj, Klass* klass_filter) {
1026   if (klass_filter != NULL) {
1027     if (obj->klass() != klass_filter) {
1028       return true;
1029     }
1030   }
1031   return false;
1032 }
1033 
1034 // helper function to tell if a field is a primitive field or not
1035 static inline bool is_primitive_field_type(char type) {
1036   return (type != 'L' && type != '[');
1037 }
1038 
1039 // helper function to copy the value from location addr to jvalue.
1040 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
1041   switch (value_type) {
1042     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
1043     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
1044     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
1045     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
1046     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
1047     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
1048     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
1049     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
1050     default: ShouldNotReachHere();
1051   }
1052 }
1053 
1054 // helper function to invoke string primitive value callback
1055 // returns visit control flags
1056 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
1057                                          CallbackWrapper* wrapper,
1058                                          oop str,
1059                                          void* user_data)
1060 {
1061   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
1062 
1063   typeArrayOop s_value = java_lang_String::value(str);
1064 
1065   // JDK-6584008: the value field may be null if a String instance is
1066   // partially constructed.
1067   if (s_value == NULL) {
1068     return 0;
1069   }
1070   // get the string value and length
1071   // (string value may be offset from the base)
1072   int s_len = java_lang_String::length(str);
1073   bool is_latin1 = java_lang_String::is_latin1(str);
1074   jchar* value;
1075   if (s_len > 0) {
1076     if (!is_latin1) {
1077       value = s_value->char_at_addr(0);
1078     } else {
1079       // Inflate latin1 encoded string to UTF16
1080       jchar* buf = NEW_C_HEAP_ARRAY(jchar, s_len, mtInternal);
1081       for (int i = 0; i < s_len; i++) {
1082         buf[i] = ((jchar) s_value->byte_at(i)) & 0xff;
1083       }
1084       value = &buf[0];
1085     }
1086   } else {
1087     // Don't use char_at_addr(0) if length is 0
1088     value = (jchar*) s_value->base(T_CHAR);
1089   }
1090 
1091   // invoke the callback
1092   jint res = (*cb)(wrapper->klass_tag(),
1093                    wrapper->obj_size(),
1094                    wrapper->obj_tag_p(),
1095                    value,
1096                    (jint)s_len,
1097                    user_data);
1098 
1099   if (is_latin1 && s_len > 0) {
1100     FREE_C_HEAP_ARRAY(jchar, value);
1101   }
1102   return res;
1103 }
1104 
1105 // helper function to invoke string primitive value callback
1106 // returns visit control flags
1107 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
1108                                                   CallbackWrapper* wrapper,
1109                                                   oop obj,
1110                                                   void* user_data)
1111 {
1112   assert(obj->is_typeArray(), "not a primitive array");
1113 
1114   // get base address of first element
1115   typeArrayOop array = typeArrayOop(obj);
1116   BasicType type = TypeArrayKlass::cast(array->klass())->element_type();
1117   void* elements = array->base(type);
1118 
1119   // jvmtiPrimitiveType is defined so this mapping is always correct
1120   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
1121 
1122   return (*cb)(wrapper->klass_tag(),
1123                wrapper->obj_size(),
1124                wrapper->obj_tag_p(),
1125                (jint)array->length(),
1126                elem_type,
1127                elements,
1128                user_data);
1129 }
1130 
1131 // helper function to invoke the primitive field callback for all static fields
1132 // of a given class
1133 static jint invoke_primitive_field_callback_for_static_fields
1134   (CallbackWrapper* wrapper,
1135    oop obj,
1136    jvmtiPrimitiveFieldCallback cb,
1137    void* user_data)
1138 {
1139   // for static fields only the index will be set
1140   static jvmtiHeapReferenceInfo reference_info = { 0 };
1141 
1142   assert(obj->klass() == SystemDictionary::Class_klass(), "not a class");
1143   if (java_lang_Class::is_primitive(obj)) {
1144     return 0;
1145   }
1146   Klass* klass = java_lang_Class::as_Klass(obj);
1147 
1148   // ignore classes for object and type arrays
1149   if (!klass->is_instance_klass()) {
1150     return 0;
1151   }
1152 
1153   // ignore classes which aren't linked yet
1154   InstanceKlass* ik = InstanceKlass::cast(klass);
1155   if (!ik->is_linked()) {
1156     return 0;
1157   }
1158 
1159   // get the field map
1160   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
1161 
1162   // invoke the callback for each static primitive field
1163   for (int i=0; i<field_map->field_count(); i++) {
1164     ClassFieldDescriptor* field = field_map->field_at(i);
1165 
1166     // ignore non-primitive fields
1167     char type = field->field_type();
1168     if (!is_primitive_field_type(type)) {
1169       continue;
1170     }
1171     // one-to-one mapping
1172     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1173 
1174     // get offset and field value
1175     int offset = field->field_offset();
1176     address addr = (address)klass->java_mirror() + offset;
1177     jvalue value;
1178     copy_to_jvalue(&value, addr, value_type);
1179 
1180     // field index
1181     reference_info.field.index = field->field_index();
1182 
1183     // invoke the callback
1184     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
1185                      &reference_info,
1186                      wrapper->klass_tag(),
1187                      wrapper->obj_tag_p(),
1188                      value,
1189                      value_type,
1190                      user_data);
1191     if (res & JVMTI_VISIT_ABORT) {
1192       delete field_map;
1193       return res;
1194     }
1195   }
1196 
1197   delete field_map;
1198   return 0;
1199 }
1200 
1201 // helper function to invoke the primitive field callback for all instance fields
1202 // of a given object
1203 static jint invoke_primitive_field_callback_for_instance_fields(
1204   CallbackWrapper* wrapper,
1205   oop obj,
1206   jvmtiPrimitiveFieldCallback cb,
1207   void* user_data)
1208 {
1209   // for instance fields only the index will be set
1210   static jvmtiHeapReferenceInfo reference_info = { 0 };
1211 
1212   // get the map of the instance fields
1213   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
1214 
1215   // invoke the callback for each instance primitive field
1216   for (int i=0; i<fields->field_count(); i++) {
1217     ClassFieldDescriptor* field = fields->field_at(i);
1218 
1219     // ignore non-primitive fields
1220     char type = field->field_type();
1221     if (!is_primitive_field_type(type)) {
1222       continue;
1223     }
1224     // one-to-one mapping
1225     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1226 
1227     // get offset and field value
1228     int offset = field->field_offset();
1229     address addr = (address)obj + offset;
1230     jvalue value;
1231     copy_to_jvalue(&value, addr, value_type);
1232 
1233     // field index
1234     reference_info.field.index = field->field_index();
1235 
1236     // invoke the callback
1237     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
1238                      &reference_info,
1239                      wrapper->klass_tag(),
1240                      wrapper->obj_tag_p(),
1241                      value,
1242                      value_type,
1243                      user_data);
1244     if (res & JVMTI_VISIT_ABORT) {
1245       return res;
1246     }
1247   }
1248   return 0;
1249 }
1250 
1251 
1252 // VM operation to iterate over all objects in the heap (both reachable
1253 // and unreachable)
1254 class VM_HeapIterateOperation: public VM_Operation {
1255  private:
1256   ObjectClosure* _blk;
1257  public:
1258   VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
1259 
1260   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
1261   void doit() {
1262     // allows class files maps to be cached during iteration
1263     ClassFieldMapCacheMark cm;
1264 
1265     // make sure that heap is parsable (fills TLABs with filler objects)
1266     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1267 
1268     // Verify heap before iteration - if the heap gets corrupted then
1269     // JVMTI's IterateOverHeap will crash.
1270     if (VerifyBeforeIteration) {
1271       Universe::verify();
1272     }
1273 
1274     // do the iteration
1275     // If this operation encounters a bad object when using CMS,
1276     // consider using safe_object_iterate() which avoids perm gen
1277     // objects that may contain bad references.
1278     Universe::heap()->object_iterate(_blk);
1279   }
1280 
1281 };
1282 
1283 
1284 // An ObjectClosure used to support the deprecated IterateOverHeap and
1285 // IterateOverInstancesOfClass functions
1286 class IterateOverHeapObjectClosure: public ObjectClosure {
1287  private:
1288   JvmtiTagMap* _tag_map;
1289   Klass* _klass;
1290   jvmtiHeapObjectFilter _object_filter;
1291   jvmtiHeapObjectCallback _heap_object_callback;
1292   const void* _user_data;
1293 
1294   // accessors
1295   JvmtiTagMap* tag_map() const                    { return _tag_map; }
1296   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
1297   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
1298   Klass* klass() const                            { return _klass; }
1299   const void* user_data() const                   { return _user_data; }
1300 
1301   // indicates if iteration has been aborted
1302   bool _iteration_aborted;
1303   bool is_iteration_aborted() const               { return _iteration_aborted; }
1304   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
1305 
1306  public:
1307   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
1308                                Klass* klass,
1309                                jvmtiHeapObjectFilter object_filter,
1310                                jvmtiHeapObjectCallback heap_object_callback,
1311                                const void* user_data) :
1312     _tag_map(tag_map),
1313     _klass(klass),
1314     _object_filter(object_filter),
1315     _heap_object_callback(heap_object_callback),
1316     _user_data(user_data),
1317     _iteration_aborted(false)
1318   {
1319   }
1320 
1321   void do_object(oop o);
1322 };
1323 
1324 // invoked for each object in the heap
1325 void IterateOverHeapObjectClosure::do_object(oop o) {
1326   // check if iteration has been halted
1327   if (is_iteration_aborted()) return;
1328 
1329   // instanceof check when filtering by klass
1330   if (klass() != NULL && !o->is_a(klass())) {
1331     return;
1332   }
1333   // prepare for the calllback
1334   CallbackWrapper wrapper(tag_map(), o);
1335 
1336   // if the object is tagged and we're only interested in untagged objects
1337   // then don't invoke the callback. Similiarly, if the object is untagged
1338   // and we're only interested in tagged objects we skip the callback.
1339   if (wrapper.obj_tag() != 0) {
1340     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
1341   } else {
1342     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
1343   }
1344 
1345   // invoke the agent's callback
1346   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
1347                                                        wrapper.obj_size(),
1348                                                        wrapper.obj_tag_p(),
1349                                                        (void*)user_data());
1350   if (control == JVMTI_ITERATION_ABORT) {
1351     set_iteration_aborted(true);
1352   }
1353 }
1354 
1355 // An ObjectClosure used to support the IterateThroughHeap function
1356 class IterateThroughHeapObjectClosure: public ObjectClosure {
1357  private:
1358   JvmtiTagMap* _tag_map;
1359   Klass* _klass;
1360   int _heap_filter;
1361   const jvmtiHeapCallbacks* _callbacks;
1362   const void* _user_data;
1363 
1364   // accessor functions
1365   JvmtiTagMap* tag_map() const                     { return _tag_map; }
1366   int heap_filter() const                          { return _heap_filter; }
1367   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
1368   Klass* klass() const                             { return _klass; }
1369   const void* user_data() const                    { return _user_data; }
1370 
1371   // indicates if the iteration has been aborted
1372   bool _iteration_aborted;
1373   bool is_iteration_aborted() const                { return _iteration_aborted; }
1374 
1375   // used to check the visit control flags. If the abort flag is set
1376   // then we set the iteration aborted flag so that the iteration completes
1377   // without processing any further objects
1378   bool check_flags_for_abort(jint flags) {
1379     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
1380     if (is_abort) {
1381       _iteration_aborted = true;
1382     }
1383     return is_abort;
1384   }
1385 
1386  public:
1387   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
1388                                   Klass* klass,
1389                                   int heap_filter,
1390                                   const jvmtiHeapCallbacks* heap_callbacks,
1391                                   const void* user_data) :
1392     _tag_map(tag_map),
1393     _klass(klass),
1394     _heap_filter(heap_filter),
1395     _callbacks(heap_callbacks),
1396     _user_data(user_data),
1397     _iteration_aborted(false)
1398   {
1399   }
1400 
1401   void do_object(oop o);
1402 };
1403 
1404 // invoked for each object in the heap
1405 void IterateThroughHeapObjectClosure::do_object(oop obj) {
1406   // check if iteration has been halted
1407   if (is_iteration_aborted()) return;
1408 
1409   // apply class filter
1410   if (is_filtered_by_klass_filter(obj, klass())) return;
1411 
1412   // prepare for callback
1413   CallbackWrapper wrapper(tag_map(), obj);
1414 
1415   // check if filtered by the heap filter
1416   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
1417     return;
1418   }
1419 
1420   // for arrays we need the length, otherwise -1
1421   bool is_array = obj->is_array();
1422   int len = is_array ? arrayOop(obj)->length() : -1;
1423 
1424   // invoke the object callback (if callback is provided)
1425   if (callbacks()->heap_iteration_callback != NULL) {
1426     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
1427     jint res = (*cb)(wrapper.klass_tag(),
1428                      wrapper.obj_size(),
1429                      wrapper.obj_tag_p(),
1430                      (jint)len,
1431                      (void*)user_data());
1432     if (check_flags_for_abort(res)) return;
1433   }
1434 
1435   // for objects and classes we report primitive fields if callback provided
1436   if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
1437     jint res;
1438     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
1439     if (obj->klass() == SystemDictionary::Class_klass()) {
1440       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
1441                                                                     obj,
1442                                                                     cb,
1443                                                                     (void*)user_data());
1444     } else {
1445       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
1446                                                                       obj,
1447                                                                       cb,
1448                                                                       (void*)user_data());
1449     }
1450     if (check_flags_for_abort(res)) return;
1451   }
1452 
1453   // string callback
1454   if (!is_array &&
1455       callbacks()->string_primitive_value_callback != NULL &&
1456       obj->klass() == SystemDictionary::String_klass()) {
1457     jint res = invoke_string_value_callback(
1458                 callbacks()->string_primitive_value_callback,
1459                 &wrapper,
1460                 obj,
1461                 (void*)user_data() );
1462     if (check_flags_for_abort(res)) return;
1463   }
1464 
1465   // array callback
1466   if (is_array &&
1467       callbacks()->array_primitive_value_callback != NULL &&
1468       obj->is_typeArray()) {
1469     jint res = invoke_array_primitive_value_callback(
1470                callbacks()->array_primitive_value_callback,
1471                &wrapper,
1472                obj,
1473                (void*)user_data() );
1474     if (check_flags_for_abort(res)) return;
1475   }
1476 };
1477 
1478 
1479 // Deprecated function to iterate over all objects in the heap
1480 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
1481                                     Klass* klass,
1482                                     jvmtiHeapObjectCallback heap_object_callback,
1483                                     const void* user_data)
1484 {
1485   // EA based optimizations on tagged objects are already reverted.
1486   JVMTIEscapeBarrier eb(JavaThread::current(),
1487       object_filter == JVMTI_HEAP_OBJECT_UNTAGGED || object_filter == JVMTI_HEAP_OBJECT_EITHER);
1488   eb.deoptimize_objects_all_threads();
1489   MutexLocker ml(Heap_lock);
1490   IterateOverHeapObjectClosure blk(this,
1491                                    klass,
1492                                    object_filter,
1493                                    heap_object_callback,
1494                                    user_data);
1495   VM_HeapIterateOperation op(&blk);
1496   VMThread::execute(&op);
1497 }
1498 
1499 
1500 // Iterates over all objects in the heap
1501 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
1502                                        Klass* klass,
1503                                        const jvmtiHeapCallbacks* callbacks,
1504                                        const void* user_data)
1505 {
1506   // EA based optimizations on tagged objects are already reverted.
1507   JVMTIEscapeBarrier eb(JavaThread::current(), !(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED));
1508   eb.deoptimize_objects_all_threads();
1509   MutexLocker ml(Heap_lock);
1510   IterateThroughHeapObjectClosure blk(this,
1511                                       klass,
1512                                       heap_filter,
1513                                       callbacks,
1514                                       user_data);
1515   VM_HeapIterateOperation op(&blk);
1516   VMThread::execute(&op);
1517 }
1518 
1519 // support class for get_objects_with_tags
1520 
1521 class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
1522  private:
1523   JvmtiEnv* _env;
1524   jlong* _tags;
1525   jint _tag_count;
1526 
1527   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
1528   GrowableArray<uint64_t>* _tag_results;    // collected tags
1529 
1530  public:
1531   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
1532     _env = env;
1533     _tags = (jlong*)tags;
1534     _tag_count = tag_count;
1535     _object_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<jobject>(1,true);
1536     _tag_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<uint64_t>(1,true);
1537   }
1538 
1539   ~TagObjectCollector() {
1540     delete _object_results;
1541     delete _tag_results;
1542   }
1543 
1544   // for each tagged object check if the tag value matches
1545   // - if it matches then we create a JNI local reference to the object
1546   // and record the reference and tag value.
1547   //
1548   void do_entry(JvmtiTagHashmapEntry* entry) {
1549     for (int i=0; i<_tag_count; i++) {
1550       if (_tags[i] == entry->tag()) {
1551         // The reference in this tag map could be the only (implicitly weak)
1552         // reference to that object. If we hand it out, we need to keep it live wrt
1553         // SATB marking similar to other j.l.ref.Reference referents. This is
1554         // achieved by using a phantom load in the object() accessor.
1555         oop o = entry->object();
1556         assert(o != NULL && Universe::heap()->is_in_reserved(o), "sanity check");
1557         jobject ref = JNIHandles::make_local(JavaThread::current(), o);
1558         _object_results->append(ref);
1559         _tag_results->append((uint64_t)entry->tag());
1560       }
1561     }
1562   }
1563 
1564   // return the results from the collection
1565   //
1566   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1567     jvmtiError error;
1568     int count = _object_results->length();
1569     assert(count >= 0, "sanity check");
1570 
1571     // if object_result_ptr is not NULL then allocate the result and copy
1572     // in the object references.
1573     if (object_result_ptr != NULL) {
1574       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
1575       if (error != JVMTI_ERROR_NONE) {
1576         return error;
1577       }
1578       for (int i=0; i<count; i++) {
1579         (*object_result_ptr)[i] = _object_results->at(i);
1580       }
1581     }
1582 
1583     // if tag_result_ptr is not NULL then allocate the result and copy
1584     // in the tag values.
1585     if (tag_result_ptr != NULL) {
1586       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
1587       if (error != JVMTI_ERROR_NONE) {
1588         if (object_result_ptr != NULL) {
1589           _env->Deallocate((unsigned char*)object_result_ptr);
1590         }
1591         return error;
1592       }
1593       for (int i=0; i<count; i++) {
1594         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
1595       }
1596     }
1597 
1598     *count_ptr = count;
1599     return JVMTI_ERROR_NONE;
1600   }
1601 };
1602 
1603 // return the list of objects with the specified tags
1604 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
1605   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1606 
1607   TagObjectCollector collector(env(), tags, count);
1608   {
1609     // iterate over all tagged objects
1610     MutexLocker ml(lock());
1611     entry_iterate(&collector);
1612   }
1613   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
1614 }
1615 
1616 
1617 // ObjectMarker is used to support the marking objects when walking the
1618 // heap.
1619 //
1620 // This implementation uses the existing mark bits in an object for
1621 // marking. Objects that are marked must later have their headers restored.
1622 // As most objects are unlocked and don't have their identity hash computed
1623 // we don't have to save their headers. Instead we save the headers that
1624 // are "interesting". Later when the headers are restored this implementation
1625 // restores all headers to their initial value and then restores the few
1626 // objects that had interesting headers.
1627 //
1628 // Future work: This implementation currently uses growable arrays to save
1629 // the oop and header of interesting objects. As an optimization we could
1630 // use the same technique as the GC and make use of the unused area
1631 // between top() and end().
1632 //
1633 
1634 // An ObjectClosure used to restore the mark bits of an object
1635 class RestoreMarksClosure : public ObjectClosure {
1636  public:
1637   void do_object(oop o) {
1638     if (o != NULL) {
1639       markWord mark = o->mark();
1640       if (mark.is_marked()) {
1641         o->init_mark();
1642       }
1643     }
1644   }
1645 };
1646 
1647 // ObjectMarker provides the mark and visited functions
1648 class ObjectMarker : AllStatic {
1649  private:
1650   // saved headers
1651   static GrowableArray<oop>* _saved_oop_stack;
1652   static GrowableArray<markWord>* _saved_mark_stack;
1653   static bool _needs_reset;                  // do we need to reset mark bits?
1654 
1655  public:
1656   static void init();                       // initialize
1657   static void done();                       // clean-up
1658 
1659   static inline void mark(oop o);           // mark an object
1660   static inline bool visited(oop o);        // check if object has been visited
1661 
1662   static inline bool needs_reset()            { return _needs_reset; }
1663   static inline void set_needs_reset(bool v)  { _needs_reset = v; }
1664 };
1665 
1666 GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
1667 GrowableArray<markWord>* ObjectMarker::_saved_mark_stack = NULL;
1668 bool ObjectMarker::_needs_reset = true;  // need to reset mark bits by default
1669 
1670 // initialize ObjectMarker - prepares for object marking
1671 void ObjectMarker::init() {
1672   assert(Thread::current()->is_VM_thread(), "must be VMThread");
1673 
1674   // prepare heap for iteration
1675   Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1676 
1677   // create stacks for interesting headers
1678   _saved_mark_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<markWord>(4000, true);
1679   _saved_oop_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(4000, true);
1680 
1681   if (UseBiasedLocking) {
1682     BiasedLocking::preserve_marks();
1683   }
1684 }
1685 
1686 // Object marking is done so restore object headers
1687 void ObjectMarker::done() {
1688   // iterate over all objects and restore the mark bits to
1689   // their initial value
1690   RestoreMarksClosure blk;
1691   if (needs_reset()) {
1692     Universe::heap()->object_iterate(&blk);
1693   } else {
1694     // We don't need to reset mark bits on this call, but reset the
1695     // flag to the default for the next call.
1696     set_needs_reset(true);
1697   }
1698 
1699   // now restore the interesting headers
1700   for (int i = 0; i < _saved_oop_stack->length(); i++) {
1701     oop o = _saved_oop_stack->at(i);
1702     markWord mark = _saved_mark_stack->at(i);
1703     o->set_mark(mark);
1704   }
1705 
1706   if (UseBiasedLocking) {
1707     BiasedLocking::restore_marks();
1708   }
1709 
1710   // free the stacks
1711   delete _saved_oop_stack;
1712   delete _saved_mark_stack;
1713 }
1714 
1715 // mark an object
1716 inline void ObjectMarker::mark(oop o) {
1717   assert(Universe::heap()->is_in(o), "sanity check");
1718   assert(!o->mark().is_marked(), "should only mark an object once");
1719 
1720   // object's mark word
1721   markWord mark = o->mark();
1722 
1723   if (o->mark_must_be_preserved(mark)) {
1724     _saved_mark_stack->push(mark);
1725     _saved_oop_stack->push(o);
1726   }
1727 
1728   // mark the object
1729   o->set_mark(markWord::prototype().set_marked());
1730 }
1731 
1732 // return true if object is marked
1733 inline bool ObjectMarker::visited(oop o) {
1734   return o->mark().is_marked();
1735 }
1736 
1737 // Stack allocated class to help ensure that ObjectMarker is used
1738 // correctly. Constructor initializes ObjectMarker, destructor calls
1739 // ObjectMarker's done() function to restore object headers.
1740 class ObjectMarkerController : public StackObj {
1741  public:
1742   ObjectMarkerController() {
1743     ObjectMarker::init();
1744   }
1745   ~ObjectMarkerController() {
1746     ObjectMarker::done();
1747   }
1748 };
1749 
1750 
1751 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
1752 // (not performance critical as only used for roots)
1753 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
1754   switch (kind) {
1755     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
1756     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
1757     case JVMTI_HEAP_REFERENCE_MONITOR:      return JVMTI_HEAP_ROOT_MONITOR;
1758     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
1759     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
1760     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
1761     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
1762     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
1763   }
1764 }
1765 
1766 // Base class for all heap walk contexts. The base class maintains a flag
1767 // to indicate if the context is valid or not.
1768 class HeapWalkContext {
1769  private:
1770   bool _valid;
1771  public:
1772   HeapWalkContext(bool valid)                   { _valid = valid; }
1773   void invalidate()                             { _valid = false; }
1774   bool is_valid() const                         { return _valid; }
1775 };
1776 
1777 // A basic heap walk context for the deprecated heap walking functions.
1778 // The context for a basic heap walk are the callbacks and fields used by
1779 // the referrer caching scheme.
1780 class BasicHeapWalkContext: public HeapWalkContext {
1781  private:
1782   jvmtiHeapRootCallback _heap_root_callback;
1783   jvmtiStackReferenceCallback _stack_ref_callback;
1784   jvmtiObjectReferenceCallback _object_ref_callback;
1785 
1786   // used for caching
1787   oop _last_referrer;
1788   jlong _last_referrer_tag;
1789 
1790  public:
1791   BasicHeapWalkContext() : HeapWalkContext(false) { }
1792 
1793   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
1794                        jvmtiStackReferenceCallback stack_ref_callback,
1795                        jvmtiObjectReferenceCallback object_ref_callback) :
1796     HeapWalkContext(true),
1797     _heap_root_callback(heap_root_callback),
1798     _stack_ref_callback(stack_ref_callback),
1799     _object_ref_callback(object_ref_callback),
1800     _last_referrer(NULL),
1801     _last_referrer_tag(0) {
1802   }
1803 
1804   // accessors
1805   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
1806   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
1807   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
1808 
1809   oop last_referrer() const               { return _last_referrer; }
1810   void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
1811   jlong last_referrer_tag() const         { return _last_referrer_tag; }
1812   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
1813 };
1814 
1815 // The advanced heap walk context for the FollowReferences functions.
1816 // The context is the callbacks, and the fields used for filtering.
1817 class AdvancedHeapWalkContext: public HeapWalkContext {
1818  private:
1819   jint _heap_filter;
1820   Klass* _klass_filter;
1821   const jvmtiHeapCallbacks* _heap_callbacks;
1822 
1823  public:
1824   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
1825 
1826   AdvancedHeapWalkContext(jint heap_filter,
1827                            Klass* klass_filter,
1828                            const jvmtiHeapCallbacks* heap_callbacks) :
1829     HeapWalkContext(true),
1830     _heap_filter(heap_filter),
1831     _klass_filter(klass_filter),
1832     _heap_callbacks(heap_callbacks) {
1833   }
1834 
1835   // accessors
1836   jint heap_filter() const         { return _heap_filter; }
1837   Klass* klass_filter() const      { return _klass_filter; }
1838 
1839   const jvmtiHeapReferenceCallback heap_reference_callback() const {
1840     return _heap_callbacks->heap_reference_callback;
1841   };
1842   const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
1843     return _heap_callbacks->primitive_field_callback;
1844   }
1845   const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
1846     return _heap_callbacks->array_primitive_value_callback;
1847   }
1848   const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
1849     return _heap_callbacks->string_primitive_value_callback;
1850   }
1851 };
1852 
1853 // The CallbackInvoker is a class with static functions that the heap walk can call
1854 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
1855 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
1856 // mode is for the newer FollowReferences function which supports a lot of
1857 // additional callbacks.
1858 class CallbackInvoker : AllStatic {
1859  private:
1860   // heap walk styles
1861   enum { basic, advanced };
1862   static int _heap_walk_type;
1863   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
1864   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
1865 
1866   // context for basic style heap walk
1867   static BasicHeapWalkContext _basic_context;
1868   static BasicHeapWalkContext* basic_context() {
1869     assert(_basic_context.is_valid(), "invalid");
1870     return &_basic_context;
1871   }
1872 
1873   // context for advanced style heap walk
1874   static AdvancedHeapWalkContext _advanced_context;
1875   static AdvancedHeapWalkContext* advanced_context() {
1876     assert(_advanced_context.is_valid(), "invalid");
1877     return &_advanced_context;
1878   }
1879 
1880   // context needed for all heap walks
1881   static JvmtiTagMap* _tag_map;
1882   static const void* _user_data;
1883   static GrowableArray<oop>* _visit_stack;
1884 
1885   // accessors
1886   static JvmtiTagMap* tag_map()                        { return _tag_map; }
1887   static const void* user_data()                       { return _user_data; }
1888   static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
1889 
1890   // if the object hasn't been visited then push it onto the visit stack
1891   // so that it will be visited later
1892   static inline bool check_for_visit(oop obj) {
1893     if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
1894     return true;
1895   }
1896 
1897   // invoke basic style callbacks
1898   static inline bool invoke_basic_heap_root_callback
1899     (jvmtiHeapRootKind root_kind, oop obj);
1900   static inline bool invoke_basic_stack_ref_callback
1901     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
1902      int slot, oop obj);
1903   static inline bool invoke_basic_object_reference_callback
1904     (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
1905 
1906   // invoke advanced style callbacks
1907   static inline bool invoke_advanced_heap_root_callback
1908     (jvmtiHeapReferenceKind ref_kind, oop obj);
1909   static inline bool invoke_advanced_stack_ref_callback
1910     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
1911      jmethodID method, jlocation bci, jint slot, oop obj);
1912   static inline bool invoke_advanced_object_reference_callback
1913     (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
1914 
1915   // used to report the value of primitive fields
1916   static inline bool report_primitive_field
1917     (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
1918 
1919  public:
1920   // initialize for basic mode
1921   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1922                                              GrowableArray<oop>* visit_stack,
1923                                              const void* user_data,
1924                                              BasicHeapWalkContext context);
1925 
1926   // initialize for advanced mode
1927   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1928                                                 GrowableArray<oop>* visit_stack,
1929                                                 const void* user_data,
1930                                                 AdvancedHeapWalkContext context);
1931 
1932    // functions to report roots
1933   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
1934   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
1935     jmethodID m, oop o);
1936   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
1937     jmethodID method, jlocation bci, jint slot, oop o);
1938 
1939   // functions to report references
1940   static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
1941   static inline bool report_class_reference(oop referrer, oop referree);
1942   static inline bool report_class_loader_reference(oop referrer, oop referree);
1943   static inline bool report_signers_reference(oop referrer, oop referree);
1944   static inline bool report_protection_domain_reference(oop referrer, oop referree);
1945   static inline bool report_superclass_reference(oop referrer, oop referree);
1946   static inline bool report_interface_reference(oop referrer, oop referree);
1947   static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
1948   static inline bool report_field_reference(oop referrer, oop referree, jint slot);
1949   static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
1950   static inline bool report_primitive_array_values(oop array);
1951   static inline bool report_string_value(oop str);
1952   static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
1953   static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
1954 };
1955 
1956 // statics
1957 int CallbackInvoker::_heap_walk_type;
1958 BasicHeapWalkContext CallbackInvoker::_basic_context;
1959 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
1960 JvmtiTagMap* CallbackInvoker::_tag_map;
1961 const void* CallbackInvoker::_user_data;
1962 GrowableArray<oop>* CallbackInvoker::_visit_stack;
1963 
1964 // initialize for basic heap walk (IterateOverReachableObjects et al)
1965 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1966                                                      GrowableArray<oop>* visit_stack,
1967                                                      const void* user_data,
1968                                                      BasicHeapWalkContext context) {
1969   _tag_map = tag_map;
1970   _visit_stack = visit_stack;
1971   _user_data = user_data;
1972   _basic_context = context;
1973   _advanced_context.invalidate();       // will trigger assertion if used
1974   _heap_walk_type = basic;
1975 }
1976 
1977 // initialize for advanced heap walk (FollowReferences)
1978 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1979                                                         GrowableArray<oop>* visit_stack,
1980                                                         const void* user_data,
1981                                                         AdvancedHeapWalkContext context) {
1982   _tag_map = tag_map;
1983   _visit_stack = visit_stack;
1984   _user_data = user_data;
1985   _advanced_context = context;
1986   _basic_context.invalidate();      // will trigger assertion if used
1987   _heap_walk_type = advanced;
1988 }
1989 
1990 
1991 // invoke basic style heap root callback
1992 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
1993   // if we heap roots should be reported
1994   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
1995   if (cb == NULL) {
1996     return check_for_visit(obj);
1997   }
1998 
1999   CallbackWrapper wrapper(tag_map(), obj);
2000   jvmtiIterationControl control = (*cb)(root_kind,
2001                                         wrapper.klass_tag(),
2002                                         wrapper.obj_size(),
2003                                         wrapper.obj_tag_p(),
2004                                         (void*)user_data());
2005   // push root to visit stack when following references
2006   if (control == JVMTI_ITERATION_CONTINUE &&
2007       basic_context()->object_ref_callback() != NULL) {
2008     visit_stack()->push(obj);
2009   }
2010   return control != JVMTI_ITERATION_ABORT;
2011 }
2012 
2013 // invoke basic style stack ref callback
2014 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
2015                                                              jlong thread_tag,
2016                                                              jint depth,
2017                                                              jmethodID method,
2018                                                              int slot,
2019                                                              oop obj) {
2020   // if we stack refs should be reported
2021   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
2022   if (cb == NULL) {
2023     return check_for_visit(obj);
2024   }
2025 
2026   CallbackWrapper wrapper(tag_map(), obj);
2027   jvmtiIterationControl control = (*cb)(root_kind,
2028                                         wrapper.klass_tag(),
2029                                         wrapper.obj_size(),
2030                                         wrapper.obj_tag_p(),
2031                                         thread_tag,
2032                                         depth,
2033                                         method,
2034                                         slot,
2035                                         (void*)user_data());
2036   // push root to visit stack when following references
2037   if (control == JVMTI_ITERATION_CONTINUE &&
2038       basic_context()->object_ref_callback() != NULL) {
2039     visit_stack()->push(obj);
2040   }
2041   return control != JVMTI_ITERATION_ABORT;
2042 }
2043 
2044 // invoke basic style object reference callback
2045 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
2046                                                                     oop referrer,
2047                                                                     oop referree,
2048                                                                     jint index) {
2049 
2050   BasicHeapWalkContext* context = basic_context();
2051 
2052   // callback requires the referrer's tag. If it's the same referrer
2053   // as the last call then we use the cached value.
2054   jlong referrer_tag;
2055   if (referrer == context->last_referrer()) {
2056     referrer_tag = context->last_referrer_tag();
2057   } else {
2058     referrer_tag = tag_for(tag_map(), referrer);
2059   }
2060 
2061   // do the callback
2062   CallbackWrapper wrapper(tag_map(), referree);
2063   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
2064   jvmtiIterationControl control = (*cb)(ref_kind,
2065                                         wrapper.klass_tag(),
2066                                         wrapper.obj_size(),
2067                                         wrapper.obj_tag_p(),
2068                                         referrer_tag,
2069                                         index,
2070                                         (void*)user_data());
2071 
2072   // record referrer and referrer tag. For self-references record the
2073   // tag value from the callback as this might differ from referrer_tag.
2074   context->set_last_referrer(referrer);
2075   if (referrer == referree) {
2076     context->set_last_referrer_tag(*wrapper.obj_tag_p());
2077   } else {
2078     context->set_last_referrer_tag(referrer_tag);
2079   }
2080 
2081   if (control == JVMTI_ITERATION_CONTINUE) {
2082     return check_for_visit(referree);
2083   } else {
2084     return control != JVMTI_ITERATION_ABORT;
2085   }
2086 }
2087 
2088 // invoke advanced style heap root callback
2089 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
2090                                                                 oop obj) {
2091   AdvancedHeapWalkContext* context = advanced_context();
2092 
2093   // check that callback is provided
2094   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2095   if (cb == NULL) {
2096     return check_for_visit(obj);
2097   }
2098 
2099   // apply class filter
2100   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2101     return check_for_visit(obj);
2102   }
2103 
2104   // setup the callback wrapper
2105   CallbackWrapper wrapper(tag_map(), obj);
2106 
2107   // apply tag filter
2108   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2109                                  wrapper.klass_tag(),
2110                                  context->heap_filter())) {
2111     return check_for_visit(obj);
2112   }
2113 
2114   // for arrays we need the length, otherwise -1
2115   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2116 
2117   // invoke the callback
2118   jint res  = (*cb)(ref_kind,
2119                     NULL, // referrer info
2120                     wrapper.klass_tag(),
2121                     0,    // referrer_class_tag is 0 for heap root
2122                     wrapper.obj_size(),
2123                     wrapper.obj_tag_p(),
2124                     NULL, // referrer_tag_p
2125                     len,
2126                     (void*)user_data());
2127   if (res & JVMTI_VISIT_ABORT) {
2128     return false;// referrer class tag
2129   }
2130   if (res & JVMTI_VISIT_OBJECTS) {
2131     check_for_visit(obj);
2132   }
2133   return true;
2134 }
2135 
2136 // report a reference from a thread stack to an object
2137 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
2138                                                                 jlong thread_tag,
2139                                                                 jlong tid,
2140                                                                 int depth,
2141                                                                 jmethodID method,
2142                                                                 jlocation bci,
2143                                                                 jint slot,
2144                                                                 oop obj) {
2145   AdvancedHeapWalkContext* context = advanced_context();
2146 
2147   // check that callback is provider
2148   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2149   if (cb == NULL) {
2150     return check_for_visit(obj);
2151   }
2152 
2153   // apply class filter
2154   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2155     return check_for_visit(obj);
2156   }
2157 
2158   // setup the callback wrapper
2159   CallbackWrapper wrapper(tag_map(), obj);
2160 
2161   // apply tag filter
2162   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2163                                  wrapper.klass_tag(),
2164                                  context->heap_filter())) {
2165     return check_for_visit(obj);
2166   }
2167 
2168   // setup the referrer info
2169   jvmtiHeapReferenceInfo reference_info;
2170   reference_info.stack_local.thread_tag = thread_tag;
2171   reference_info.stack_local.thread_id = tid;
2172   reference_info.stack_local.depth = depth;
2173   reference_info.stack_local.method = method;
2174   reference_info.stack_local.location = bci;
2175   reference_info.stack_local.slot = slot;
2176 
2177   // for arrays we need the length, otherwise -1
2178   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2179 
2180   // call into the agent
2181   int res = (*cb)(ref_kind,
2182                   &reference_info,
2183                   wrapper.klass_tag(),
2184                   0,    // referrer_class_tag is 0 for heap root (stack)
2185                   wrapper.obj_size(),
2186                   wrapper.obj_tag_p(),
2187                   NULL, // referrer_tag is 0 for root
2188                   len,
2189                   (void*)user_data());
2190 
2191   if (res & JVMTI_VISIT_ABORT) {
2192     return false;
2193   }
2194   if (res & JVMTI_VISIT_OBJECTS) {
2195     check_for_visit(obj);
2196   }
2197   return true;
2198 }
2199 
2200 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
2201 // only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
2202 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
2203                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
2204                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
2205                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
2206                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
2207                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
2208 
2209 // invoke the object reference callback to report a reference
2210 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
2211                                                                        oop referrer,
2212                                                                        oop obj,
2213                                                                        jint index)
2214 {
2215   // field index is only valid field in reference_info
2216   static jvmtiHeapReferenceInfo reference_info = { 0 };
2217 
2218   AdvancedHeapWalkContext* context = advanced_context();
2219 
2220   // check that callback is provider
2221   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2222   if (cb == NULL) {
2223     return check_for_visit(obj);
2224   }
2225 
2226   // apply class filter
2227   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2228     return check_for_visit(obj);
2229   }
2230 
2231   // setup the callback wrapper
2232   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
2233 
2234   // apply tag filter
2235   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2236                                  wrapper.klass_tag(),
2237                                  context->heap_filter())) {
2238     return check_for_visit(obj);
2239   }
2240 
2241   // field index is only valid field in reference_info
2242   reference_info.field.index = index;
2243 
2244   // for arrays we need the length, otherwise -1
2245   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2246 
2247   // invoke the callback
2248   int res = (*cb)(ref_kind,
2249                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
2250                   wrapper.klass_tag(),
2251                   wrapper.referrer_klass_tag(),
2252                   wrapper.obj_size(),
2253                   wrapper.obj_tag_p(),
2254                   wrapper.referrer_tag_p(),
2255                   len,
2256                   (void*)user_data());
2257 
2258   if (res & JVMTI_VISIT_ABORT) {
2259     return false;
2260   }
2261   if (res & JVMTI_VISIT_OBJECTS) {
2262     check_for_visit(obj);
2263   }
2264   return true;
2265 }
2266 
2267 // report a "simple root"
2268 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
2269   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
2270          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
2271 
2272   if (is_basic_heap_walk()) {
2273     // map to old style root kind
2274     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
2275     return invoke_basic_heap_root_callback(root_kind, obj);
2276   } else {
2277     assert(is_advanced_heap_walk(), "wrong heap walk type");
2278     return invoke_advanced_heap_root_callback(kind, obj);
2279   }
2280 }
2281 
2282 
2283 // invoke the primitive array values
2284 inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
2285   assert(obj->is_typeArray(), "not a primitive array");
2286 
2287   AdvancedHeapWalkContext* context = advanced_context();
2288   assert(context->array_primitive_value_callback() != NULL, "no callback");
2289 
2290   // apply class filter
2291   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2292     return true;
2293   }
2294 
2295   CallbackWrapper wrapper(tag_map(), obj);
2296 
2297   // apply tag filter
2298   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2299                                  wrapper.klass_tag(),
2300                                  context->heap_filter())) {
2301     return true;
2302   }
2303 
2304   // invoke the callback
2305   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
2306                                                   &wrapper,
2307                                                   obj,
2308                                                   (void*)user_data());
2309   return (!(res & JVMTI_VISIT_ABORT));
2310 }
2311 
2312 // invoke the string value callback
2313 inline bool CallbackInvoker::report_string_value(oop str) {
2314   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
2315 
2316   AdvancedHeapWalkContext* context = advanced_context();
2317   assert(context->string_primitive_value_callback() != NULL, "no callback");
2318 
2319   // apply class filter
2320   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
2321     return true;
2322   }
2323 
2324   CallbackWrapper wrapper(tag_map(), str);
2325 
2326   // apply tag filter
2327   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2328                                  wrapper.klass_tag(),
2329                                  context->heap_filter())) {
2330     return true;
2331   }
2332 
2333   // invoke the callback
2334   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
2335                                          &wrapper,
2336                                          str,
2337                                          (void*)user_data());
2338   return (!(res & JVMTI_VISIT_ABORT));
2339 }
2340 
2341 // invoke the primitive field callback
2342 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
2343                                                     oop obj,
2344                                                     jint index,
2345                                                     address addr,
2346                                                     char type)
2347 {
2348   // for primitive fields only the index will be set
2349   static jvmtiHeapReferenceInfo reference_info = { 0 };
2350 
2351   AdvancedHeapWalkContext* context = advanced_context();
2352   assert(context->primitive_field_callback() != NULL, "no callback");
2353 
2354   // apply class filter
2355   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2356     return true;
2357   }
2358 
2359   CallbackWrapper wrapper(tag_map(), obj);
2360 
2361   // apply tag filter
2362   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2363                                  wrapper.klass_tag(),
2364                                  context->heap_filter())) {
2365     return true;
2366   }
2367 
2368   // the field index in the referrer
2369   reference_info.field.index = index;
2370 
2371   // map the type
2372   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
2373 
2374   // setup the jvalue
2375   jvalue value;
2376   copy_to_jvalue(&value, addr, value_type);
2377 
2378   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
2379   int res = (*cb)(ref_kind,
2380                   &reference_info,
2381                   wrapper.klass_tag(),
2382                   wrapper.obj_tag_p(),
2383                   value,
2384                   value_type,
2385                   (void*)user_data());
2386   return (!(res & JVMTI_VISIT_ABORT));
2387 }
2388 
2389 
2390 // instance field
2391 inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
2392                                                              jint index,
2393                                                              address value,
2394                                                              char type) {
2395   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
2396                                 obj,
2397                                 index,
2398                                 value,
2399                                 type);
2400 }
2401 
2402 // static field
2403 inline bool CallbackInvoker::report_primitive_static_field(oop obj,
2404                                                            jint index,
2405                                                            address value,
2406                                                            char type) {
2407   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
2408                                 obj,
2409                                 index,
2410                                 value,
2411                                 type);
2412 }
2413 
2414 // report a JNI local (root object) to the profiler
2415 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
2416   if (is_basic_heap_walk()) {
2417     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
2418                                            thread_tag,
2419                                            depth,
2420                                            m,
2421                                            -1,
2422                                            obj);
2423   } else {
2424     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
2425                                               thread_tag, tid,
2426                                               depth,
2427                                               m,
2428                                               (jlocation)-1,
2429                                               -1,
2430                                               obj);
2431   }
2432 }
2433 
2434 
2435 // report a local (stack reference, root object)
2436 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
2437                                                    jlong tid,
2438                                                    jint depth,
2439                                                    jmethodID method,
2440                                                    jlocation bci,
2441                                                    jint slot,
2442                                                    oop obj) {
2443   if (is_basic_heap_walk()) {
2444     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
2445                                            thread_tag,
2446                                            depth,
2447                                            method,
2448                                            slot,
2449                                            obj);
2450   } else {
2451     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
2452                                               thread_tag,
2453                                               tid,
2454                                               depth,
2455                                               method,
2456                                               bci,
2457                                               slot,
2458                                               obj);
2459   }
2460 }
2461 
2462 // report an object referencing a class.
2463 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
2464   if (is_basic_heap_walk()) {
2465     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2466   } else {
2467     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
2468   }
2469 }
2470 
2471 // report a class referencing its class loader.
2472 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
2473   if (is_basic_heap_walk()) {
2474     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2475   } else {
2476     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2477   }
2478 }
2479 
2480 // report a class referencing its signers.
2481 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
2482   if (is_basic_heap_walk()) {
2483     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
2484   } else {
2485     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
2486   }
2487 }
2488 
2489 // report a class referencing its protection domain..
2490 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
2491   if (is_basic_heap_walk()) {
2492     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2493   } else {
2494     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2495   }
2496 }
2497 
2498 // report a class referencing its superclass.
2499 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
2500   if (is_basic_heap_walk()) {
2501     // Send this to be consistent with past implementation
2502     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2503   } else {
2504     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
2505   }
2506 }
2507 
2508 // report a class referencing one of its interfaces.
2509 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
2510   if (is_basic_heap_walk()) {
2511     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
2512   } else {
2513     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
2514   }
2515 }
2516 
2517 // report a class referencing one of its static fields.
2518 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
2519   if (is_basic_heap_walk()) {
2520     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2521   } else {
2522     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2523   }
2524 }
2525 
2526 // report an array referencing an element object
2527 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
2528   if (is_basic_heap_walk()) {
2529     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2530   } else {
2531     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2532   }
2533 }
2534 
2535 // report an object referencing an instance field object
2536 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
2537   if (is_basic_heap_walk()) {
2538     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
2539   } else {
2540     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
2541   }
2542 }
2543 
2544 // report an array referencing an element object
2545 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
2546   if (is_basic_heap_walk()) {
2547     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2548   } else {
2549     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2550   }
2551 }
2552 
2553 // A supporting closure used to process simple roots
2554 class SimpleRootsClosure : public OopClosure {
2555  private:
2556   jvmtiHeapReferenceKind _kind;
2557   bool _continue;
2558 
2559   jvmtiHeapReferenceKind root_kind()    { return _kind; }
2560 
2561  public:
2562   void set_kind(jvmtiHeapReferenceKind kind) {
2563     _kind = kind;
2564     _continue = true;
2565   }
2566 
2567   inline bool stopped() {
2568     return !_continue;
2569   }
2570 
2571   void do_oop(oop* obj_p) {
2572     // iteration has terminated
2573     if (stopped()) {
2574       return;
2575     }
2576 
2577     oop o = NativeAccess<AS_NO_KEEPALIVE>::oop_load(obj_p);
2578     // ignore null
2579     if (o == NULL) {
2580       return;
2581     }
2582 
2583     assert(Universe::heap()->is_in_reserved(o), "should be impossible");
2584 
2585     jvmtiHeapReferenceKind kind = root_kind();
2586     if (kind == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) {
2587       // SystemDictionary::oops_do reports the application
2588       // class loader as a root. We want this root to be reported as
2589       // a root kind of "OTHER" rather than "SYSTEM_CLASS".
2590       if (!o->is_instance() || !InstanceKlass::cast(o->klass())->is_mirror_instance_klass()) {
2591         kind = JVMTI_HEAP_REFERENCE_OTHER;
2592       }
2593     }
2594 
2595     // invoke the callback
2596     _continue = CallbackInvoker::report_simple_root(kind, o);
2597 
2598   }
2599   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2600 };
2601 
2602 // A supporting closure used to process JNI locals
2603 class JNILocalRootsClosure : public OopClosure {
2604  private:
2605   jlong _thread_tag;
2606   jlong _tid;
2607   jint _depth;
2608   jmethodID _method;
2609   bool _continue;
2610  public:
2611   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
2612     _thread_tag = thread_tag;
2613     _tid = tid;
2614     _depth = depth;
2615     _method = method;
2616     _continue = true;
2617   }
2618 
2619   inline bool stopped() {
2620     return !_continue;
2621   }
2622 
2623   void do_oop(oop* obj_p) {
2624     // iteration has terminated
2625     if (stopped()) {
2626       return;
2627     }
2628 
2629     oop o = *obj_p;
2630     // ignore null
2631     if (o == NULL) {
2632       return;
2633     }
2634 
2635     // invoke the callback
2636     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
2637   }
2638   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2639 };
2640 
2641 
2642 // A VM operation to iterate over objects that are reachable from
2643 // a set of roots or an initial object.
2644 //
2645 // For VM_HeapWalkOperation the set of roots used is :-
2646 //
2647 // - All JNI global references
2648 // - All inflated monitors
2649 // - All classes loaded by the boot class loader (or all classes
2650 //     in the event that class unloading is disabled)
2651 // - All java threads
2652 // - For each java thread then all locals and JNI local references
2653 //      on the thread's execution stack
2654 // - All visible/explainable objects from Universes::oops_do
2655 //
2656 class VM_HeapWalkOperation: public VM_Operation {
2657  private:
2658   enum {
2659     initial_visit_stack_size = 4000
2660   };
2661 
2662   bool _is_advanced_heap_walk;                      // indicates FollowReferences
2663   JvmtiTagMap* _tag_map;
2664   Handle _initial_object;
2665   GrowableArray<oop>* _visit_stack;                 // the visit stack
2666 
2667   bool _collecting_heap_roots;                      // are we collecting roots
2668   bool _following_object_refs;                      // are we following object references
2669 
2670   bool _reporting_primitive_fields;                 // optional reporting
2671   bool _reporting_primitive_array_values;
2672   bool _reporting_string_values;
2673 
2674   GrowableArray<oop>* create_visit_stack() {
2675     return new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(initial_visit_stack_size, true);
2676   }
2677 
2678   // accessors
2679   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
2680   JvmtiTagMap* tag_map() const                     { return _tag_map; }
2681   Handle initial_object() const                    { return _initial_object; }
2682 
2683   bool is_following_references() const             { return _following_object_refs; }
2684 
2685   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
2686   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
2687   bool is_reporting_string_values() const          { return _reporting_string_values; }
2688 
2689   GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
2690 
2691   // iterate over the various object types
2692   inline bool iterate_over_array(oop o);
2693   inline bool iterate_over_type_array(oop o);
2694   inline bool iterate_over_class(oop o);
2695   inline bool iterate_over_object(oop o);
2696 
2697   // root collection
2698   inline bool collect_simple_roots();
2699   inline bool collect_stack_roots();
2700   inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
2701 
2702   // visit an object
2703   inline bool visit(oop o);
2704 
2705  public:
2706   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2707                        Handle initial_object,
2708                        BasicHeapWalkContext callbacks,
2709                        const void* user_data);
2710 
2711   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2712                        Handle initial_object,
2713                        AdvancedHeapWalkContext callbacks,
2714                        const void* user_data);
2715 
2716   ~VM_HeapWalkOperation();
2717 
2718   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
2719   void doit();
2720 };
2721 
2722 
2723 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2724                                            Handle initial_object,
2725                                            BasicHeapWalkContext callbacks,
2726                                            const void* user_data) {
2727   _is_advanced_heap_walk = false;
2728   _tag_map = tag_map;
2729   _initial_object = initial_object;
2730   _following_object_refs = (callbacks.object_ref_callback() != NULL);
2731   _reporting_primitive_fields = false;
2732   _reporting_primitive_array_values = false;
2733   _reporting_string_values = false;
2734   _visit_stack = create_visit_stack();
2735 
2736 
2737   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2738 }
2739 
2740 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2741                                            Handle initial_object,
2742                                            AdvancedHeapWalkContext callbacks,
2743                                            const void* user_data) {
2744   _is_advanced_heap_walk = true;
2745   _tag_map = tag_map;
2746   _initial_object = initial_object;
2747   _following_object_refs = true;
2748   _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
2749   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
2750   _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
2751   _visit_stack = create_visit_stack();
2752 
2753   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2754 }
2755 
2756 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
2757   if (_following_object_refs) {
2758     assert(_visit_stack != NULL, "checking");
2759     delete _visit_stack;
2760     _visit_stack = NULL;
2761   }
2762 }
2763 
2764 // an array references its class and has a reference to
2765 // each element in the array
2766 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
2767   objArrayOop array = objArrayOop(o);
2768 
2769   // array reference to its class
2770   oop mirror = ObjArrayKlass::cast(array->klass())->java_mirror();
2771   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2772     return false;
2773   }
2774 
2775   // iterate over the array and report each reference to a
2776   // non-null element
2777   for (int index=0; index<array->length(); index++) {
2778     oop elem = array->obj_at(index);
2779     if (elem == NULL) {
2780       continue;
2781     }
2782 
2783     // report the array reference o[index] = elem
2784     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
2785       return false;
2786     }
2787   }
2788   return true;
2789 }
2790 
2791 // a type array references its class
2792 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
2793   Klass* k = o->klass();
2794   oop mirror = k->java_mirror();
2795   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2796     return false;
2797   }
2798 
2799   // report the array contents if required
2800   if (is_reporting_primitive_array_values()) {
2801     if (!CallbackInvoker::report_primitive_array_values(o)) {
2802       return false;
2803     }
2804   }
2805   return true;
2806 }
2807 
2808 #ifdef ASSERT
2809 // verify that a static oop field is in range
2810 static inline bool verify_static_oop(InstanceKlass* ik,
2811                                      oop mirror, int offset) {
2812   address obj_p = (address)mirror + offset;
2813   address start = (address)InstanceMirrorKlass::start_of_static_fields(mirror);
2814   address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize);
2815   assert(end >= start, "sanity check");
2816 
2817   if (obj_p >= start && obj_p < end) {
2818     return true;
2819   } else {
2820     return false;
2821   }
2822 }
2823 #endif // #ifdef ASSERT
2824 
2825 // a class references its super class, interfaces, class loader, ...
2826 // and finally its static fields
2827 inline bool VM_HeapWalkOperation::iterate_over_class(oop java_class) {
2828   int i;
2829   Klass* klass = java_lang_Class::as_Klass(java_class);
2830 
2831   if (klass->is_instance_klass()) {
2832     InstanceKlass* ik = InstanceKlass::cast(klass);
2833 
2834     // Ignore the class if it hasn't been initialized yet
2835     if (!ik->is_linked()) {
2836       return true;
2837     }
2838 
2839     // get the java mirror
2840     oop mirror = klass->java_mirror();
2841 
2842     // super (only if something more interesting than java.lang.Object)
2843     InstanceKlass* java_super = ik->java_super();
2844     if (java_super != NULL && java_super != SystemDictionary::Object_klass()) {
2845       oop super = java_super->java_mirror();
2846       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
2847         return false;
2848       }
2849     }
2850 
2851     // class loader
2852     oop cl = ik->class_loader();
2853     if (cl != NULL) {
2854       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
2855         return false;
2856       }
2857     }
2858 
2859     // protection domain
2860     oop pd = ik->protection_domain();
2861     if (pd != NULL) {
2862       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
2863         return false;
2864       }
2865     }
2866 
2867     // signers
2868     oop signers = ik->signers();
2869     if (signers != NULL) {
2870       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
2871         return false;
2872       }
2873     }
2874 
2875     // references from the constant pool
2876     {
2877       ConstantPool* pool = ik->constants();
2878       for (int i = 1; i < pool->length(); i++) {
2879         constantTag tag = pool->tag_at(i).value();
2880         if (tag.is_string() || tag.is_klass() || tag.is_unresolved_klass()) {
2881           oop entry;
2882           if (tag.is_string()) {
2883             entry = pool->resolved_string_at(i);
2884             // If the entry is non-null it is resolved.
2885             if (entry == NULL) {
2886               continue;
2887             }
2888           } else if (tag.is_klass()) {
2889             entry = pool->resolved_klass_at(i)->java_mirror();
2890           } else {
2891             // Code generated by JIT and AOT compilers might not resolve constant
2892             // pool entries.  Treat them as resolved if they are loaded.
2893             assert(tag.is_unresolved_klass(), "must be");
2894             constantPoolHandle cp(Thread::current(), pool);
2895             Klass* klass = ConstantPool::klass_at_if_loaded(cp, i);
2896             if (klass == NULL) {
2897               continue;
2898             }
2899             entry = klass->java_mirror();
2900           }
2901           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
2902             return false;
2903           }
2904         }
2905       }
2906     }
2907 
2908     // interfaces
2909     // (These will already have been reported as references from the constant pool
2910     //  but are specified by IterateOverReachableObjects and must be reported).
2911     Array<InstanceKlass*>* interfaces = ik->local_interfaces();
2912     for (i = 0; i < interfaces->length(); i++) {
2913       oop interf = interfaces->at(i)->java_mirror();
2914       if (interf == NULL) {
2915         continue;
2916       }
2917       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
2918         return false;
2919       }
2920     }
2921 
2922     // iterate over the static fields
2923 
2924     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
2925     for (i=0; i<field_map->field_count(); i++) {
2926       ClassFieldDescriptor* field = field_map->field_at(i);
2927       char type = field->field_type();
2928       if (!is_primitive_field_type(type)) {
2929         oop fld_o = mirror->obj_field(field->field_offset());
2930         assert(verify_static_oop(ik, mirror, field->field_offset()), "sanity check");
2931         if (fld_o != NULL) {
2932           int slot = field->field_index();
2933           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
2934             delete field_map;
2935             return false;
2936           }
2937         }
2938       } else {
2939          if (is_reporting_primitive_fields()) {
2940            address addr = (address)mirror + field->field_offset();
2941            int slot = field->field_index();
2942            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
2943              delete field_map;
2944              return false;
2945           }
2946         }
2947       }
2948     }
2949     delete field_map;
2950 
2951     return true;
2952   }
2953 
2954   return true;
2955 }
2956 
2957 // an object references a class and its instance fields
2958 // (static fields are ignored here as we report these as
2959 // references from the class).
2960 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
2961   // reference to the class
2962   if (!CallbackInvoker::report_class_reference(o, o->klass()->java_mirror())) {
2963     return false;
2964   }
2965 
2966   // iterate over instance fields
2967   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
2968   for (int i=0; i<field_map->field_count(); i++) {
2969     ClassFieldDescriptor* field = field_map->field_at(i);
2970     char type = field->field_type();
2971     if (!is_primitive_field_type(type)) {
2972       oop fld_o = o->obj_field(field->field_offset());
2973       // ignore any objects that aren't visible to profiler
2974       if (fld_o != NULL) {
2975         assert(Universe::heap()->is_in_reserved(fld_o), "unsafe code should not "
2976                "have references to Klass* anymore");
2977         int slot = field->field_index();
2978         if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
2979           return false;
2980         }
2981       }
2982     } else {
2983       if (is_reporting_primitive_fields()) {
2984         // primitive instance field
2985         address addr = (address)o + field->field_offset();
2986         int slot = field->field_index();
2987         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
2988           return false;
2989         }
2990       }
2991     }
2992   }
2993 
2994   // if the object is a java.lang.String
2995   if (is_reporting_string_values() &&
2996       o->klass() == SystemDictionary::String_klass()) {
2997     if (!CallbackInvoker::report_string_value(o)) {
2998       return false;
2999     }
3000   }
3001   return true;
3002 }
3003 
3004 
3005 // Collects all simple (non-stack) roots except for threads;
3006 // threads are handled in collect_stack_roots() as an optimization.
3007 // if there's a heap root callback provided then the callback is
3008 // invoked for each simple root.
3009 // if an object reference callback is provided then all simple
3010 // roots are pushed onto the marking stack so that they can be
3011 // processed later
3012 //
3013 inline bool VM_HeapWalkOperation::collect_simple_roots() {
3014   SimpleRootsClosure blk;
3015 
3016   // JNI globals
3017   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
3018   JNIHandles::oops_do(&blk);
3019   if (blk.stopped()) {
3020     return false;
3021   }
3022 
3023   // Preloaded classes and loader from the system dictionary
3024   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
3025   SystemDictionary::oops_do(&blk);
3026   CLDToOopClosure cld_closure(&blk, false);
3027   ClassLoaderDataGraph::always_strong_cld_do(&cld_closure);
3028   if (blk.stopped()) {
3029     return false;
3030   }
3031 
3032   // Inflated monitors
3033   blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
3034   ObjectSynchronizer::oops_do(&blk);
3035   if (blk.stopped()) {
3036     return false;
3037   }
3038 
3039   // threads are now handled in collect_stack_roots()
3040 
3041   // Other kinds of roots maintained by HotSpot
3042   // Many of these won't be visible but others (such as instances of important
3043   // exceptions) will be visible.
3044   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3045   Universe::oops_do(&blk);
3046   if (blk.stopped()) {
3047     return false;
3048   }
3049 
3050   return true;
3051 }
3052 
3053 // Walk the stack of a given thread and find all references (locals
3054 // and JNI calls) and report these as stack references
3055 inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
3056                                                       JNILocalRootsClosure* blk)
3057 {
3058   oop threadObj = java_thread->threadObj();
3059   assert(threadObj != NULL, "sanity check");
3060 
3061   // only need to get the thread's tag once per thread
3062   jlong thread_tag = tag_for(_tag_map, threadObj);
3063 
3064   // also need the thread id
3065   jlong tid = java_lang_Thread::thread_id(threadObj);
3066 
3067 
3068   if (java_thread->has_last_Java_frame()) {
3069 
3070     // vframes are resource allocated
3071     Thread* current_thread = Thread::current();
3072     ResourceMark rm(current_thread);
3073     HandleMark hm(current_thread);
3074 
3075     RegisterMap reg_map(java_thread);
3076     frame f = java_thread->last_frame();
3077     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
3078 
3079     bool is_top_frame = true;
3080     int depth = 0;
3081     frame* last_entry_frame = NULL;
3082 
3083     while (vf != NULL) {
3084       if (vf->is_java_frame()) {
3085 
3086         // java frame (interpreted, compiled, ...)
3087         javaVFrame *jvf = javaVFrame::cast(vf);
3088 
3089         // the jmethodID
3090         jmethodID method = jvf->method()->jmethod_id();
3091 
3092         if (!(jvf->method()->is_native())) {
3093           jlocation bci = (jlocation)jvf->bci();
3094           StackValueCollection* locals = jvf->locals();
3095           for (int slot=0; slot<locals->size(); slot++) {
3096             if (locals->at(slot)->type() == T_OBJECT) {
3097               oop o = locals->obj_at(slot)();
3098               if (o == NULL) {
3099                 continue;
3100               }
3101 
3102               // stack reference
3103               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
3104                                                    bci, slot, o)) {
3105                 return false;
3106               }
3107             }
3108           }
3109 
3110           StackValueCollection* exprs = jvf->expressions();
3111           for (int index=0; index < exprs->size(); index++) {
3112             if (exprs->at(index)->type() == T_OBJECT) {
3113               oop o = exprs->obj_at(index)();
3114               if (o == NULL) {
3115                 continue;
3116               }
3117 
3118               // stack reference
3119               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
3120                                                    bci, locals->size() + index, o)) {
3121                 return false;
3122               }
3123             }
3124           }
3125 
3126           // Follow oops from compiled nmethod
3127           if (jvf->cb() != NULL && jvf->cb()->is_nmethod()) {
3128             blk->set_context(thread_tag, tid, depth, method);
3129             jvf->cb()->as_nmethod()->oops_do(blk);
3130           }
3131         } else {
3132           blk->set_context(thread_tag, tid, depth, method);
3133           if (is_top_frame) {
3134             // JNI locals for the top frame.
3135             java_thread->active_handles()->oops_do(blk);
3136           } else {
3137             if (last_entry_frame != NULL) {
3138               // JNI locals for the entry frame
3139               assert(last_entry_frame->is_entry_frame(), "checking");
3140               last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
3141             }
3142           }
3143         }
3144         last_entry_frame = NULL;
3145         depth++;
3146       } else {
3147         // externalVFrame - for an entry frame then we report the JNI locals
3148         // when we find the corresponding javaVFrame
3149         frame* fr = vf->frame_pointer();
3150         assert(fr != NULL, "sanity check");
3151         if (fr->is_entry_frame()) {
3152           last_entry_frame = fr;
3153         }
3154       }
3155 
3156       vf = vf->sender();
3157       is_top_frame = false;
3158     }
3159   } else {
3160     // no last java frame but there may be JNI locals
3161     blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
3162     java_thread->active_handles()->oops_do(blk);
3163   }
3164   return true;
3165 }
3166 
3167 
3168 // Collects the simple roots for all threads and collects all
3169 // stack roots - for each thread it walks the execution
3170 // stack to find all references and local JNI refs.
3171 inline bool VM_HeapWalkOperation::collect_stack_roots() {
3172   JNILocalRootsClosure blk;
3173   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
3174     oop threadObj = thread->threadObj();
3175     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
3176       // Collect the simple root for this thread before we
3177       // collect its stack roots
3178       if (!CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD,
3179                                                threadObj)) {
3180         return false;
3181       }
3182       if (!collect_stack_roots(thread, &blk)) {
3183         return false;
3184       }
3185     }
3186   }
3187   return true;
3188 }
3189 
3190 // visit an object
3191 // first mark the object as visited
3192 // second get all the outbound references from this object (in other words, all
3193 // the objects referenced by this object).
3194 //
3195 bool VM_HeapWalkOperation::visit(oop o) {
3196   // mark object as visited
3197   assert(!ObjectMarker::visited(o), "can't visit same object more than once");
3198   ObjectMarker::mark(o);
3199 
3200   // instance
3201   if (o->is_instance()) {
3202     if (o->klass() == SystemDictionary::Class_klass()) {
3203       if (!java_lang_Class::is_primitive(o)) {
3204         // a java.lang.Class
3205         return iterate_over_class(o);
3206       }
3207     } else {
3208       return iterate_over_object(o);
3209     }
3210   }
3211 
3212   // object array
3213   if (o->is_objArray()) {
3214     return iterate_over_array(o);
3215   }
3216 
3217   // type array
3218   if (o->is_typeArray()) {
3219     return iterate_over_type_array(o);
3220   }
3221 
3222   return true;
3223 }
3224 
3225 void VM_HeapWalkOperation::doit() {
3226   ResourceMark rm;
3227   ObjectMarkerController marker;
3228   ClassFieldMapCacheMark cm;
3229 
3230   assert(visit_stack()->is_empty(), "visit stack must be empty");
3231 
3232   // the heap walk starts with an initial object or the heap roots
3233   if (initial_object().is_null()) {
3234     // If either collect_stack_roots() or collect_simple_roots()
3235     // returns false at this point, then there are no mark bits
3236     // to reset.
3237     ObjectMarker::set_needs_reset(false);
3238 
3239     // Calling collect_stack_roots() before collect_simple_roots()
3240     // can result in a big performance boost for an agent that is
3241     // focused on analyzing references in the thread stacks.
3242     if (!collect_stack_roots()) return;
3243 
3244     if (!collect_simple_roots()) return;
3245 
3246     // no early return so enable heap traversal to reset the mark bits
3247     ObjectMarker::set_needs_reset(true);
3248   } else {
3249     visit_stack()->push(initial_object()());
3250   }
3251 
3252   // object references required
3253   if (is_following_references()) {
3254 
3255     // visit each object until all reachable objects have been
3256     // visited or the callback asked to terminate the iteration.
3257     while (!visit_stack()->is_empty()) {
3258       oop o = visit_stack()->pop();
3259       if (!ObjectMarker::visited(o)) {
3260         if (!visit(o)) {
3261           break;
3262         }
3263       }
3264     }
3265   }
3266 }
3267 
3268 // iterate over all objects that are reachable from a set of roots
3269 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
3270                                                  jvmtiStackReferenceCallback stack_ref_callback,
3271                                                  jvmtiObjectReferenceCallback object_ref_callback,
3272                                                  const void* user_data) {
3273   JavaThread* jt = JavaThread::current();
3274   JVMTIEscapeBarrier eb(jt, true);
3275   eb.deoptimize_objects_all_threads();
3276   MutexLocker ml(Heap_lock);
3277   BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
3278   VM_HeapWalkOperation op(this, Handle(), context, user_data);
3279   VMThread::execute(&op);
3280 }
3281 
3282 // iterate over all objects that are reachable from a given object
3283 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
3284                                                              jvmtiObjectReferenceCallback object_ref_callback,
3285                                                              const void* user_data) {
3286   oop obj = JNIHandles::resolve(object);
3287   Handle initial_object(Thread::current(), obj);
3288 
3289   MutexLocker ml(Heap_lock);
3290   BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
3291   VM_HeapWalkOperation op(this, initial_object, context, user_data);
3292   VMThread::execute(&op);
3293 }
3294 
3295 // follow references from an initial object or the GC roots
3296 void JvmtiTagMap::follow_references(jint heap_filter,
3297                                     Klass* klass,
3298                                     jobject object,
3299                                     const jvmtiHeapCallbacks* callbacks,
3300                                     const void* user_data)
3301 {
3302   oop obj = JNIHandles::resolve(object);
3303   JavaThread* jt = JavaThread::current();
3304   Handle initial_object(jt, obj);
3305   // EA based optimizations that are tagged or reachable from initial_object are already reverted.
3306   JVMTIEscapeBarrier eb(jt,
3307       initial_object.is_null() && !(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED));
3308   eb.deoptimize_objects_all_threads();
3309   MutexLocker ml(Heap_lock);
3310   AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
3311   VM_HeapWalkOperation op(this, initial_object, context, user_data);
3312   VMThread::execute(&op);
3313 }
3314 
3315 
3316 void JvmtiTagMap::weak_oops_do(BoolObjectClosure* is_alive, OopClosure* f) {
3317   // No locks during VM bring-up (0 threads) and no safepoints after main
3318   // thread creation and before VMThread creation (1 thread); initial GC
3319   // verification can happen in that window which gets to here.
3320   assert(Threads::number_of_threads() <= 1 ||
3321          SafepointSynchronize::is_at_safepoint(),
3322          "must be executed at a safepoint");
3323   if (JvmtiEnv::environments_might_exist()) {
3324     JvmtiEnvIterator it;
3325     for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
3326       JvmtiTagMap* tag_map = env->tag_map_acquire();
3327       if (tag_map != NULL && !tag_map->is_empty()) {
3328         tag_map->do_weak_oops(is_alive, f);
3329       }
3330     }
3331   }
3332 }
3333 
3334 void JvmtiTagMap::do_weak_oops(BoolObjectClosure* is_alive, OopClosure* f) {
3335 
3336   // does this environment have the OBJECT_FREE event enabled
3337   bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
3338 
3339   // counters used for trace message
3340   int freed = 0;
3341   int moved = 0;
3342 
3343   JvmtiTagHashmap* hashmap = this->hashmap();
3344 
3345   // reenable sizing (if disabled)
3346   hashmap->set_resizing_enabled(true);
3347 
3348   // if the hashmap is empty then we can skip it
3349   if (hashmap->_entry_count == 0) {
3350     return;
3351   }
3352 
3353   // now iterate through each entry in the table
3354 
3355   JvmtiTagHashmapEntry** table = hashmap->table();
3356   int size = hashmap->size();
3357 
3358   JvmtiTagHashmapEntry* delayed_add = NULL;
3359 
3360   for (int pos = 0; pos < size; ++pos) {
3361     JvmtiTagHashmapEntry* entry = table[pos];
3362     JvmtiTagHashmapEntry* prev = NULL;
3363 
3364     while (entry != NULL) {
3365       JvmtiTagHashmapEntry* next = entry->next();
3366 
3367       // has object been GC'ed
3368       if (!is_alive->do_object_b(entry->object_peek())) {
3369         // grab the tag
3370         jlong tag = entry->tag();
3371         guarantee(tag != 0, "checking");
3372 
3373         // remove GC'ed entry from hashmap and return the
3374         // entry to the free list
3375         hashmap->remove(prev, pos, entry);
3376         destroy_entry(entry);
3377 
3378         // post the event to the profiler
3379         if (post_object_free) {
3380           JvmtiExport::post_object_free(env(), tag);
3381         }
3382 
3383         ++freed;
3384       } else {
3385         f->do_oop(entry->object_addr());
3386         oop new_oop = entry->object_peek();
3387 
3388         // if the object has moved then re-hash it and move its
3389         // entry to its new location.
3390         unsigned int new_pos = JvmtiTagHashmap::hash(new_oop, size);
3391         if (new_pos != (unsigned int)pos) {
3392           if (prev == NULL) {
3393             table[pos] = next;
3394           } else {
3395             prev->set_next(next);
3396           }
3397           if (new_pos < (unsigned int)pos) {
3398             entry->set_next(table[new_pos]);
3399             table[new_pos] = entry;
3400           } else {
3401             // Delay adding this entry to it's new position as we'd end up
3402             // hitting it again during this iteration.
3403             entry->set_next(delayed_add);
3404             delayed_add = entry;
3405           }
3406           moved++;
3407         } else {
3408           // object didn't move
3409           prev = entry;
3410         }
3411       }
3412 
3413       entry = next;
3414     }
3415   }
3416 
3417   // Re-add all the entries which were kept aside
3418   while (delayed_add != NULL) {
3419     JvmtiTagHashmapEntry* next = delayed_add->next();
3420     unsigned int pos = JvmtiTagHashmap::hash(delayed_add->object_peek(), size);
3421     delayed_add->set_next(table[pos]);
3422     table[pos] = delayed_add;
3423     delayed_add = next;
3424   }
3425 
3426   log_debug(jvmti, objecttagging)("(%d->%d, %d freed, %d total moves)",
3427                                   hashmap->_entry_count + freed, hashmap->_entry_count, freed, moved);
3428 }