1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeHeapState.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "compiler/compilationPolicy.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "compiler/compilerEvent.hpp"
  37 #include "compiler/compilerOracle.hpp"
  38 #include "compiler/directivesParser.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "jfr/jfrEvents.hpp"
  41 #include "logging/log.hpp"
  42 #include "logging/logStream.hpp"
  43 #include "memory/allocation.inline.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/universe.hpp"
  46 #include "oops/methodData.hpp"
  47 #include "oops/method.inline.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "prims/nativeLookup.hpp"
  50 #include "prims/whitebox.hpp"
  51 #include "runtime/arguments.hpp"
  52 #include "runtime/atomic.hpp"
  53 #include "runtime/handles.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.inline.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/os.hpp"
  59 #include "runtime/safepointVerifiers.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/sweeper.hpp"
  62 #include "runtime/timerTrace.hpp"
  63 #include "runtime/vframe.inline.hpp"
  64 #include "utilities/debug.hpp"
  65 #include "utilities/dtrace.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/formatBuffer.hpp"
  68 #include "utilities/macros.hpp"
  69 #ifdef COMPILER1
  70 #include "c1/c1_Compiler.hpp"
  71 #endif
  72 #if INCLUDE_JVMCI
  73 #include "jvmci/jvmciEnv.hpp"
  74 #include "jvmci/jvmciRuntime.hpp"
  75 #endif
  76 #ifdef COMPILER2
  77 #include "opto/c2compiler.hpp"
  78 #endif
  79 
  80 #ifdef DTRACE_ENABLED
  81 
  82 // Only bother with this argument setup if dtrace is available
  83 
  84 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
  85   {                                                                      \
  86     Symbol* klass_name = (method)->klass_name();                         \
  87     Symbol* name = (method)->name();                                     \
  88     Symbol* signature = (method)->signature();                           \
  89     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
  90       (char *) comp_name, strlen(comp_name),                             \
  91       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
  92       (char *) name->bytes(), name->utf8_length(),                       \
  93       (char *) signature->bytes(), signature->utf8_length());            \
  94   }
  95 
  96 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
  97   {                                                                      \
  98     Symbol* klass_name = (method)->klass_name();                         \
  99     Symbol* name = (method)->name();                                     \
 100     Symbol* signature = (method)->signature();                           \
 101     HOTSPOT_METHOD_COMPILE_END(                                          \
 102       (char *) comp_name, strlen(comp_name),                             \
 103       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 104       (char *) name->bytes(), name->utf8_length(),                       \
 105       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 106   }
 107 
 108 #else //  ndef DTRACE_ENABLED
 109 
 110 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 111 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 112 
 113 #endif // ndef DTRACE_ENABLED
 114 
 115 bool CompileBroker::_initialized = false;
 116 volatile bool CompileBroker::_should_block = false;
 117 volatile int  CompileBroker::_print_compilation_warning = 0;
 118 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 119 
 120 // The installed compiler(s)
 121 AbstractCompiler* CompileBroker::_compilers[2];
 122 
 123 // The maximum numbers of compiler threads to be determined during startup.
 124 int CompileBroker::_c1_count = 0;
 125 int CompileBroker::_c2_count = 0;
 126 
 127 // An array of compiler names as Java String objects
 128 jobject* CompileBroker::_compiler1_objects = NULL;
 129 jobject* CompileBroker::_compiler2_objects = NULL;
 130 
 131 CompileLog** CompileBroker::_compiler1_logs = NULL;
 132 CompileLog** CompileBroker::_compiler2_logs = NULL;
 133 
 134 // These counters are used to assign an unique ID to each compilation.
 135 volatile jint CompileBroker::_compilation_id     = 0;
 136 volatile jint CompileBroker::_osr_compilation_id = 0;
 137 
 138 // Performance counters
 139 PerfCounter* CompileBroker::_perf_total_compilation = NULL;
 140 PerfCounter* CompileBroker::_perf_osr_compilation = NULL;
 141 PerfCounter* CompileBroker::_perf_standard_compilation = NULL;
 142 
 143 PerfCounter* CompileBroker::_perf_total_bailout_count = NULL;
 144 PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL;
 145 PerfCounter* CompileBroker::_perf_total_compile_count = NULL;
 146 PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL;
 147 PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL;
 148 
 149 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL;
 150 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL;
 151 PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL;
 152 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL;
 153 
 154 PerfStringVariable* CompileBroker::_perf_last_method = NULL;
 155 PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL;
 156 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL;
 157 PerfVariable*       CompileBroker::_perf_last_compile_type = NULL;
 158 PerfVariable*       CompileBroker::_perf_last_compile_size = NULL;
 159 PerfVariable*       CompileBroker::_perf_last_failed_type = NULL;
 160 PerfVariable*       CompileBroker::_perf_last_invalidated_type = NULL;
 161 
 162 // Timers and counters for generating statistics
 163 elapsedTimer CompileBroker::_t_total_compilation;
 164 elapsedTimer CompileBroker::_t_osr_compilation;
 165 elapsedTimer CompileBroker::_t_standard_compilation;
 166 elapsedTimer CompileBroker::_t_invalidated_compilation;
 167 elapsedTimer CompileBroker::_t_bailedout_compilation;
 168 
 169 int CompileBroker::_total_bailout_count            = 0;
 170 int CompileBroker::_total_invalidated_count        = 0;
 171 int CompileBroker::_total_compile_count            = 0;
 172 int CompileBroker::_total_osr_compile_count        = 0;
 173 int CompileBroker::_total_standard_compile_count   = 0;
 174 int CompileBroker::_total_compiler_stopped_count   = 0;
 175 int CompileBroker::_total_compiler_restarted_count = 0;
 176 
 177 int CompileBroker::_sum_osr_bytes_compiled         = 0;
 178 int CompileBroker::_sum_standard_bytes_compiled    = 0;
 179 int CompileBroker::_sum_nmethod_size               = 0;
 180 int CompileBroker::_sum_nmethod_code_size          = 0;
 181 
 182 long CompileBroker::_peak_compilation_time         = 0;
 183 
 184 CompileQueue* CompileBroker::_c2_compile_queue     = NULL;
 185 CompileQueue* CompileBroker::_c1_compile_queue     = NULL;
 186 
 187 
 188 
 189 class CompilationLog : public StringEventLog {
 190  public:
 191   CompilationLog() : StringEventLog("Compilation events", "jit") {
 192   }
 193 
 194   void log_compile(JavaThread* thread, CompileTask* task) {
 195     StringLogMessage lm;
 196     stringStream sstr(lm.buffer(), lm.size());
 197     // msg.time_stamp().update_to(tty->time_stamp().ticks());
 198     task->print(&sstr, NULL, true, false);
 199     log(thread, "%s", (const char*)lm);
 200   }
 201 
 202   void log_nmethod(JavaThread* thread, nmethod* nm) {
 203     log(thread, "nmethod %d%s " INTPTR_FORMAT " code [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",
 204         nm->compile_id(), nm->is_osr_method() ? "%" : "",
 205         p2i(nm), p2i(nm->code_begin()), p2i(nm->code_end()));
 206   }
 207 
 208   void log_failure(JavaThread* thread, CompileTask* task, const char* reason, const char* retry_message) {
 209     StringLogMessage lm;
 210     lm.print("%4d   COMPILE SKIPPED: %s", task->compile_id(), reason);
 211     if (retry_message != NULL) {
 212       lm.append(" (%s)", retry_message);
 213     }
 214     lm.print("\n");
 215     log(thread, "%s", (const char*)lm);
 216   }
 217 
 218   void log_metaspace_failure(const char* reason) {
 219     ResourceMark rm;
 220     StringLogMessage lm;
 221     lm.print("%4d   COMPILE PROFILING SKIPPED: %s", -1, reason);
 222     lm.print("\n");
 223     log(JavaThread::current(), "%s", (const char*)lm);
 224   }
 225 };
 226 
 227 static CompilationLog* _compilation_log = NULL;
 228 
 229 bool compileBroker_init() {
 230   if (LogEvents) {
 231     _compilation_log = new CompilationLog();
 232   }
 233 
 234   // init directives stack, adding default directive
 235   DirectivesStack::init();
 236 
 237   if (DirectivesParser::has_file()) {
 238     return DirectivesParser::parse_from_flag();
 239   } else if (CompilerDirectivesPrint) {
 240     // Print default directive even when no other was added
 241     DirectivesStack::print(tty);
 242   }
 243 
 244   return true;
 245 }
 246 
 247 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 248   CompilerThread* thread = CompilerThread::current();
 249   thread->set_task(task);
 250 #if INCLUDE_JVMCI
 251   if (task->is_blocking() && CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 252     task->set_jvmci_compiler_thread(thread);
 253   }
 254 #endif
 255   CompileLog*     log  = thread->log();
 256   if (log != NULL && !task->is_unloaded())  task->log_task_start(log);
 257 }
 258 
 259 CompileTaskWrapper::~CompileTaskWrapper() {
 260   CompilerThread* thread = CompilerThread::current();
 261   CompileTask* task = thread->task();
 262   CompileLog*  log  = thread->log();
 263   if (log != NULL && !task->is_unloaded())  task->log_task_done(log);
 264   thread->set_task(NULL);
 265   task->set_code_handle(NULL);
 266   thread->set_env(NULL);
 267   if (task->is_blocking()) {
 268     bool free_task = false;
 269     {
 270       MutexLocker notifier(thread, task->lock());
 271       task->mark_complete();
 272 #if INCLUDE_JVMCI
 273       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 274         if (!task->has_waiter()) {
 275           // The waiting thread timed out and thus did not free the task.
 276           free_task = true;
 277         }
 278         task->set_jvmci_compiler_thread(NULL);
 279       }
 280 #endif
 281       if (!free_task) {
 282         // Notify the waiting thread that the compilation has completed
 283         // so that it can free the task.
 284         task->lock()->notify_all();
 285       }
 286     }
 287     if (free_task) {
 288       // The task can only be freed once the task lock is released.
 289       CompileTask::free(task);
 290     }
 291   } else {
 292     task->mark_complete();
 293 
 294     // By convention, the compiling thread is responsible for
 295     // recycling a non-blocking CompileTask.
 296     CompileTask::free(task);
 297   }
 298 }
 299 
 300 /**
 301  * Check if a CompilerThread can be removed and update count if requested.
 302  */
 303 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
 304   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 305   if (!ReduceNumberOfCompilerThreads) return false;
 306 
 307   AbstractCompiler *compiler = ct->compiler();
 308   int compiler_count = compiler->num_compiler_threads();
 309   bool c1 = compiler->is_c1();
 310 
 311   // Keep at least 1 compiler thread of each type.
 312   if (compiler_count < 2) return false;
 313 
 314   // Keep thread alive for at least some time.
 315   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 316 
 317 #if INCLUDE_JVMCI
 318   if (compiler->is_jvmci()) {
 319     // Handles for JVMCI thread objects may get released concurrently.
 320     if (do_it) {
 321       assert(CompileThread_lock->owner() == ct, "must be holding lock");
 322     } else {
 323       // Skip check if it's the last thread and let caller check again.
 324       return true;
 325     }
 326   }
 327 #endif
 328 
 329   // We only allow the last compiler thread of each type to get removed.
 330   jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
 331                              : compiler2_object(compiler_count - 1);
 332   if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
 333     if (do_it) {
 334       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 335       compiler->set_num_compiler_threads(compiler_count - 1);
 336 #if INCLUDE_JVMCI
 337       if (compiler->is_jvmci()) {
 338         // Old j.l.Thread object can die when no longer referenced elsewhere.
 339         JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
 340         _compiler2_objects[compiler_count - 1] = NULL;
 341       }
 342 #endif
 343     }
 344     return true;
 345   }
 346   return false;
 347 }
 348 
 349 /**
 350  * Add a CompileTask to a CompileQueue.
 351  */
 352 void CompileQueue::add(CompileTask* task) {
 353   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 354 
 355   task->set_next(NULL);
 356   task->set_prev(NULL);
 357 
 358   if (_last == NULL) {
 359     // The compile queue is empty.
 360     assert(_first == NULL, "queue is empty");
 361     _first = task;
 362     _last = task;
 363   } else {
 364     // Append the task to the queue.
 365     assert(_last->next() == NULL, "not last");
 366     _last->set_next(task);
 367     task->set_prev(_last);
 368     _last = task;
 369   }
 370   ++_size;
 371 
 372   // Mark the method as being in the compile queue.
 373   task->method()->set_queued_for_compilation();
 374 
 375   if (CIPrintCompileQueue) {
 376     print_tty();
 377   }
 378 
 379   if (LogCompilation && xtty != NULL) {
 380     task->log_task_queued();
 381   }
 382 
 383   // Notify CompilerThreads that a task is available.
 384   MethodCompileQueue_lock->notify_all();
 385 }
 386 
 387 /**
 388  * Empties compilation queue by putting all compilation tasks onto
 389  * a freelist. Furthermore, the method wakes up all threads that are
 390  * waiting on a compilation task to finish. This can happen if background
 391  * compilation is disabled.
 392  */
 393 void CompileQueue::free_all() {
 394   MutexLocker mu(MethodCompileQueue_lock);
 395   CompileTask* next = _first;
 396 
 397   // Iterate over all tasks in the compile queue
 398   while (next != NULL) {
 399     CompileTask* current = next;
 400     next = current->next();
 401     {
 402       // Wake up thread that blocks on the compile task.
 403       MutexLocker ct_lock(current->lock());
 404       current->lock()->notify();
 405     }
 406     // Put the task back on the freelist.
 407     CompileTask::free(current);
 408   }
 409   _first = NULL;
 410 
 411   // Wake up all threads that block on the queue.
 412   MethodCompileQueue_lock->notify_all();
 413 }
 414 
 415 /**
 416  * Get the next CompileTask from a CompileQueue
 417  */
 418 CompileTask* CompileQueue::get() {
 419   // save methods from RedefineClasses across safepoint
 420   // across MethodCompileQueue_lock below.
 421   methodHandle save_method;
 422   methodHandle save_hot_method;
 423 
 424   MonitorLocker locker(MethodCompileQueue_lock);
 425   // If _first is NULL we have no more compile jobs. There are two reasons for
 426   // having no compile jobs: First, we compiled everything we wanted. Second,
 427   // we ran out of code cache so compilation has been disabled. In the latter
 428   // case we perform code cache sweeps to free memory such that we can re-enable
 429   // compilation.
 430   while (_first == NULL) {
 431     // Exit loop if compilation is disabled forever
 432     if (CompileBroker::is_compilation_disabled_forever()) {
 433       return NULL;
 434     }
 435 
 436     // If there are no compilation tasks and we can compile new jobs
 437     // (i.e., there is enough free space in the code cache) there is
 438     // no need to invoke the sweeper. As a result, the hotness of methods
 439     // remains unchanged. This behavior is desired, since we want to keep
 440     // the stable state, i.e., we do not want to evict methods from the
 441     // code cache if it is unnecessary.
 442     // We need a timed wait here, since compiler threads can exit if compilation
 443     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 444     // is not critical and we do not want idle compiler threads to wake up too often.
 445     locker.wait(5*1000);
 446 
 447     if (UseDynamicNumberOfCompilerThreads && _first == NULL) {
 448       // Still nothing to compile. Give caller a chance to stop this thread.
 449       if (CompileBroker::can_remove(CompilerThread::current(), false)) return NULL;
 450     }
 451   }
 452 
 453   if (CompileBroker::is_compilation_disabled_forever()) {
 454     return NULL;
 455   }
 456 
 457   CompileTask* task;
 458   {
 459     NoSafepointVerifier nsv;
 460     task = CompilationPolicy::policy()->select_task(this);
 461     if (task != NULL) {
 462       task = task->select_for_compilation();
 463     }
 464   }
 465 
 466   if (task != NULL) {
 467     // Save method pointers across unlock safepoint.  The task is removed from
 468     // the compilation queue, which is walked during RedefineClasses.
 469     Thread* thread = Thread::current();
 470     save_method = methodHandle(thread, task->method());
 471     save_hot_method = methodHandle(thread, task->hot_method());
 472 
 473     remove(task);
 474   }
 475   purge_stale_tasks(); // may temporarily release MCQ lock
 476   return task;
 477 }
 478 
 479 // Clean & deallocate stale compile tasks.
 480 // Temporarily releases MethodCompileQueue lock.
 481 void CompileQueue::purge_stale_tasks() {
 482   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 483   if (_first_stale != NULL) {
 484     // Stale tasks are purged when MCQ lock is released,
 485     // but _first_stale updates are protected by MCQ lock.
 486     // Once task processing starts and MCQ lock is released,
 487     // other compiler threads can reuse _first_stale.
 488     CompileTask* head = _first_stale;
 489     _first_stale = NULL;
 490     {
 491       MutexUnlocker ul(MethodCompileQueue_lock);
 492       for (CompileTask* task = head; task != NULL; ) {
 493         CompileTask* next_task = task->next();
 494         CompileTaskWrapper ctw(task); // Frees the task
 495         task->set_failure_reason("stale task");
 496         task = next_task;
 497       }
 498     }
 499   }
 500 }
 501 
 502 void CompileQueue::remove(CompileTask* task) {
 503   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 504   if (task->prev() != NULL) {
 505     task->prev()->set_next(task->next());
 506   } else {
 507     // max is the first element
 508     assert(task == _first, "Sanity");
 509     _first = task->next();
 510   }
 511 
 512   if (task->next() != NULL) {
 513     task->next()->set_prev(task->prev());
 514   } else {
 515     // max is the last element
 516     assert(task == _last, "Sanity");
 517     _last = task->prev();
 518   }
 519   --_size;
 520 }
 521 
 522 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 523   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 524   remove(task);
 525 
 526   // Enqueue the task for reclamation (should be done outside MCQ lock)
 527   task->set_next(_first_stale);
 528   task->set_prev(NULL);
 529   _first_stale = task;
 530 }
 531 
 532 // methods in the compile queue need to be marked as used on the stack
 533 // so that they don't get reclaimed by Redefine Classes
 534 void CompileQueue::mark_on_stack() {
 535   CompileTask* task = _first;
 536   while (task != NULL) {
 537     task->mark_on_stack();
 538     task = task->next();
 539   }
 540 }
 541 
 542 
 543 CompileQueue* CompileBroker::compile_queue(int comp_level) {
 544   if (is_c2_compile(comp_level)) return _c2_compile_queue;
 545   if (is_c1_compile(comp_level)) return _c1_compile_queue;
 546   return NULL;
 547 }
 548 
 549 void CompileBroker::print_compile_queues(outputStream* st) {
 550   st->print_cr("Current compiles: ");
 551 
 552   char buf[2000];
 553   int buflen = sizeof(buf);
 554   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 555 
 556   st->cr();
 557   if (_c1_compile_queue != NULL) {
 558     _c1_compile_queue->print(st);
 559   }
 560   if (_c2_compile_queue != NULL) {
 561     _c2_compile_queue->print(st);
 562   }
 563 }
 564 
 565 void CompileQueue::print(outputStream* st) {
 566   assert_locked_or_safepoint(MethodCompileQueue_lock);
 567   st->print_cr("%s:", name());
 568   CompileTask* task = _first;
 569   if (task == NULL) {
 570     st->print_cr("Empty");
 571   } else {
 572     while (task != NULL) {
 573       task->print(st, NULL, true, true);
 574       task = task->next();
 575     }
 576   }
 577   st->cr();
 578 }
 579 
 580 void CompileQueue::print_tty() {
 581   ResourceMark rm;
 582   stringStream ss;
 583   // Dump the compile queue into a buffer before locking the tty
 584   print(&ss);
 585   {
 586     ttyLocker ttyl;
 587     tty->print("%s", ss.as_string());
 588   }
 589 }
 590 
 591 CompilerCounters::CompilerCounters() {
 592   _current_method[0] = '\0';
 593   _compile_type = CompileBroker::no_compile;
 594 }
 595 
 596 #if INCLUDE_JFR && COMPILER2_OR_JVMCI
 597 // It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
 598 // in compiler/compilerEvent.cpp) and registers it with its serializer.
 599 //
 600 // c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
 601 // so if c2 is used, it should be always registered first.
 602 // This function is called during vm initialization.
 603 void register_jfr_phasetype_serializer(CompilerType compiler_type) {
 604   ResourceMark rm;
 605   static bool first_registration = true;
 606   if (compiler_type == compiler_jvmci) {
 607     // register serializer, phases will be added later lazily.
 608     GrowableArray<const char*>* jvmci_phase_names = new GrowableArray<const char*>(1);
 609     jvmci_phase_names->append("NOT_A_PHASE_NAME");
 610     CompilerEvent::PhaseEvent::register_phases(jvmci_phase_names);
 611     first_registration = false;
 612 #ifdef COMPILER2
 613   } else if (compiler_type == compiler_c2) {
 614     assert(first_registration, "invariant"); // c2 must be registered first.
 615     GrowableArray<const char*>* c2_phase_names = new GrowableArray<const char*>(PHASE_NUM_TYPES);
 616     for (int i = 0; i < PHASE_NUM_TYPES; i++) {
 617       c2_phase_names->append(CompilerPhaseTypeHelper::to_string((CompilerPhaseType)i));
 618     }
 619     CompilerEvent::PhaseEvent::register_phases(c2_phase_names);
 620     first_registration = false;
 621 #endif // COMPILER2
 622   }
 623 }
 624 #endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
 625 
 626 // ------------------------------------------------------------------
 627 // CompileBroker::compilation_init
 628 //
 629 // Initialize the Compilation object
 630 void CompileBroker::compilation_init_phase1(Thread* THREAD) {
 631   // No need to initialize compilation system if we do not use it.
 632   if (!UseCompiler) {
 633     return;
 634   }
 635   // Set the interface to the current compiler(s).
 636   _c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 637   _c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 638 
 639 #if INCLUDE_JVMCI
 640   if (EnableJVMCI) {
 641     // This is creating a JVMCICompiler singleton.
 642     JVMCICompiler* jvmci = new JVMCICompiler();
 643 
 644     if (UseJVMCICompiler) {
 645       _compilers[1] = jvmci;
 646       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 647         if (BootstrapJVMCI) {
 648           // JVMCI will bootstrap so give it more threads
 649           _c2_count = MIN2(32, os::active_processor_count());
 650         }
 651       } else {
 652         _c2_count = JVMCIThreads;
 653       }
 654       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 655       } else {
 656         _c1_count = JVMCIHostThreads;
 657       }
 658     }
 659   }
 660 #endif // INCLUDE_JVMCI
 661 
 662 #ifdef COMPILER1
 663   if (_c1_count > 0) {
 664     _compilers[0] = new Compiler();
 665   }
 666 #endif // COMPILER1
 667 
 668 #ifdef COMPILER2
 669   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 670     if (_c2_count > 0) {
 671       _compilers[1] = new C2Compiler();
 672       // Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
 673       // idToPhase mapping for c2 is in opto/phasetype.hpp
 674       JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
 675     }
 676   }
 677 #endif // COMPILER2
 678 
 679 #if INCLUDE_JVMCI
 680    // Register after c2 registration.
 681    // JVMCI CompilerPhaseType idToPhase mapping is dynamic.
 682    if (EnableJVMCI) {
 683      JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
 684    }
 685 #endif // INCLUDE_JVMCI
 686 
 687   // Start the compiler thread(s) and the sweeper thread
 688   init_compiler_sweeper_threads();
 689   // totalTime performance counter is always created as it is required
 690   // by the implementation of java.lang.management.CompilationMXBean.
 691   {
 692     // Ensure OOM leads to vm_exit_during_initialization.
 693     EXCEPTION_MARK;
 694     _perf_total_compilation =
 695                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 696                                                  PerfData::U_Ticks, CHECK);
 697   }
 698 
 699   if (UsePerfData) {
 700 
 701     EXCEPTION_MARK;
 702 
 703     // create the jvmstat performance counters
 704     _perf_osr_compilation =
 705                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 706                                                  PerfData::U_Ticks, CHECK);
 707 
 708     _perf_standard_compilation =
 709                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 710                                                  PerfData::U_Ticks, CHECK);
 711 
 712     _perf_total_bailout_count =
 713                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 714                                                  PerfData::U_Events, CHECK);
 715 
 716     _perf_total_invalidated_count =
 717                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 718                                                  PerfData::U_Events, CHECK);
 719 
 720     _perf_total_compile_count =
 721                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 722                                                  PerfData::U_Events, CHECK);
 723     _perf_total_osr_compile_count =
 724                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 725                                                  PerfData::U_Events, CHECK);
 726 
 727     _perf_total_standard_compile_count =
 728                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 729                                                  PerfData::U_Events, CHECK);
 730 
 731     _perf_sum_osr_bytes_compiled =
 732                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 733                                                  PerfData::U_Bytes, CHECK);
 734 
 735     _perf_sum_standard_bytes_compiled =
 736                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 737                                                  PerfData::U_Bytes, CHECK);
 738 
 739     _perf_sum_nmethod_size =
 740                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 741                                                  PerfData::U_Bytes, CHECK);
 742 
 743     _perf_sum_nmethod_code_size =
 744                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 745                                                  PerfData::U_Bytes, CHECK);
 746 
 747     _perf_last_method =
 748                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 749                                        CompilerCounters::cmname_buffer_length,
 750                                        "", CHECK);
 751 
 752     _perf_last_failed_method =
 753             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 754                                        CompilerCounters::cmname_buffer_length,
 755                                        "", CHECK);
 756 
 757     _perf_last_invalidated_method =
 758         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 759                                      CompilerCounters::cmname_buffer_length,
 760                                      "", CHECK);
 761 
 762     _perf_last_compile_type =
 763              PerfDataManager::create_variable(SUN_CI, "lastType",
 764                                               PerfData::U_None,
 765                                               (jlong)CompileBroker::no_compile,
 766                                               CHECK);
 767 
 768     _perf_last_compile_size =
 769              PerfDataManager::create_variable(SUN_CI, "lastSize",
 770                                               PerfData::U_Bytes,
 771                                               (jlong)CompileBroker::no_compile,
 772                                               CHECK);
 773 
 774 
 775     _perf_last_failed_type =
 776              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 777                                               PerfData::U_None,
 778                                               (jlong)CompileBroker::no_compile,
 779                                               CHECK);
 780 
 781     _perf_last_invalidated_type =
 782          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 783                                           PerfData::U_None,
 784                                           (jlong)CompileBroker::no_compile,
 785                                           CHECK);
 786   }
 787 }
 788 
 789 // Completes compiler initialization. Compilation requests submitted
 790 // prior to this will be silently ignored.
 791 void CompileBroker::compilation_init_phase2() {
 792   _initialized = true;
 793 }
 794 
 795 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
 796   Handle string = java_lang_String::create_from_str(name, CHECK_NH);
 797   Handle thread_group(THREAD, Universe::system_thread_group());
 798   return JavaCalls::construct_new_instance(
 799                        SystemDictionary::Thread_klass(),
 800                        vmSymbols::threadgroup_string_void_signature(),
 801                        thread_group,
 802                        string,
 803                        CHECK_NH);
 804 }
 805 
 806 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 807 // Stress testing. Revert optimizations based on escape analysis.
 808 class DeoptimizeObjectsALotThread : public JavaThread {
 809 
 810   static void deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS);
 811   void deoptimize_objects_alot_loop_single();
 812   void deoptimize_objects_alot_loop_all();
 813 
 814 public:
 815   DeoptimizeObjectsALotThread() : JavaThread(&deopt_objs_alot_thread_entry) { }
 816 
 817   bool is_hidden_from_external_view() const      { return true; }
 818 };
 819 
 820 void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) {
 821     DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread);
 822     bool enter_single_loop;
 823     {
 824       MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag);
 825       static int single_thread_count = 0;
 826       enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle;
 827     }
 828     if (enter_single_loop) {
 829       dt->deoptimize_objects_alot_loop_single();
 830     } else {
 831       dt->deoptimize_objects_alot_loop_all();
 832     }
 833   }
 834 
 835 // Revert optimizations for a single deoptee_thread which gets selected round robin
 836 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() {
 837   HandleMark hm(this);
 838   while (!this->is_terminated()) {
 839     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) {
 840       { // Begin new scope for escape barrier
 841         HandleMarkCleaner hmc(this);
 842         ResourceMark rm(this);
 843         EscapeBarrier eb(this, deoptee_thread, true);
 844         eb.deoptimize_objects(100);
 845       }
 846       // Now sleep after the escape barriers destructor resumed deoptee_thread.
 847       sleep(DeoptimizeObjectsALotInterval);
 848     }
 849   }
 850 }
 851 
 852 // Revert optimizations for all threads at once
 853 void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() {
 854   HandleMark hm(this);
 855   while (!is_terminated()) {
 856     { // Begin new scope for escape barrier
 857       HandleMarkCleaner hmc(this);
 858       ResourceMark rm(this);
 859       EscapeBarrier eb(this, true);
 860       eb.deoptimize_objects_all_threads();
 861     }
 862     // Now sleep after the escape barriers destructor resumed the java threads.
 863     sleep(DeoptimizeObjectsALotInterval);
 864   }
 865 }
 866 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
 867 
 868 
 869 JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, Thread* THREAD) {
 870   JavaThread* new_thread = NULL;
 871   {
 872     MutexLocker mu(THREAD, Threads_lock);
 873     switch (type) {
 874       case compiler_t:
 875         assert(comp != NULL, "Compiler instance missing.");
 876         if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 877           CompilerCounters* counters = new CompilerCounters();
 878           new_thread = new CompilerThread(queue, counters);
 879         }
 880         break;
 881       case sweeper_t:
 882         new_thread = new CodeCacheSweeperThread();
 883         break;
 884 #if defined(ASSERT) && COMPILER2_OR_JVMCI
 885       case deoptimizer_t:
 886         new_thread = new DeoptimizeObjectsALotThread();
 887         break;
 888 #endif // ASSERT
 889       default:
 890         ShouldNotReachHere();
 891     }
 892 
 893     // At this point the new CompilerThread data-races with this startup
 894     // thread (which I believe is the primoridal thread and NOT the VM
 895     // thread).  This means Java bytecodes being executed at startup can
 896     // queue compile jobs which will run at whatever default priority the
 897     // newly created CompilerThread runs at.
 898 
 899 
 900     // At this point it may be possible that no osthread was created for the
 901     // JavaThread due to lack of memory. We would have to throw an exception
 902     // in that case. However, since this must work and we do not allow
 903     // exceptions anyway, check and abort if this fails. But first release the
 904     // lock.
 905 
 906     if (new_thread != NULL && new_thread->osthread() != NULL) {
 907 
 908       java_lang_Thread::set_thread(JNIHandles::resolve_non_null(thread_handle), new_thread);
 909 
 910       // Note that this only sets the JavaThread _priority field, which by
 911       // definition is limited to Java priorities and not OS priorities.
 912       // The os-priority is set in the CompilerThread startup code itself
 913 
 914       java_lang_Thread::set_priority(JNIHandles::resolve_non_null(thread_handle), NearMaxPriority);
 915 
 916       // Note that we cannot call os::set_priority because it expects Java
 917       // priorities and we are *explicitly* using OS priorities so that it's
 918       // possible to set the compiler thread priority higher than any Java
 919       // thread.
 920 
 921       int native_prio = CompilerThreadPriority;
 922       if (native_prio == -1) {
 923         if (UseCriticalCompilerThreadPriority) {
 924           native_prio = os::java_to_os_priority[CriticalPriority];
 925         } else {
 926           native_prio = os::java_to_os_priority[NearMaxPriority];
 927         }
 928       }
 929       os::set_native_priority(new_thread, native_prio);
 930 
 931       java_lang_Thread::set_daemon(JNIHandles::resolve_non_null(thread_handle));
 932 
 933       new_thread->set_threadObj(JNIHandles::resolve_non_null(thread_handle));
 934       if (type == compiler_t) {
 935         new_thread->as_CompilerThread()->set_compiler(comp);
 936       }
 937       Threads::add(new_thread);
 938       Thread::start(new_thread);
 939     }
 940   }
 941 
 942   // First release lock before aborting VM.
 943   if (new_thread == NULL || new_thread->osthread() == NULL) {
 944     if (UseDynamicNumberOfCompilerThreads && type == compiler_t && comp->num_compiler_threads() > 0) {
 945       if (new_thread != NULL) {
 946         new_thread->smr_delete();
 947       }
 948       return NULL;
 949     }
 950     vm_exit_during_initialization("java.lang.OutOfMemoryError",
 951                                   os::native_thread_creation_failed_msg());
 952   }
 953 
 954   // Let go of Threads_lock before yielding
 955   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
 956 
 957   return new_thread;
 958 }
 959 
 960 
 961 void CompileBroker::init_compiler_sweeper_threads() {
 962   NMethodSweeper::set_sweep_threshold_bytes(static_cast<size_t>(SweeperThreshold * ReservedCodeCacheSize / 100.0));
 963   log_info(codecache, sweep)("Sweeper threshold: " SIZE_FORMAT " bytes", NMethodSweeper::sweep_threshold_bytes());
 964 
 965   // Ensure any exceptions lead to vm_exit_during_initialization.
 966   EXCEPTION_MARK;
 967 #if !defined(ZERO)
 968   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
 969 #endif // !ZERO
 970   // Initialize the compilation queue
 971   if (_c2_count > 0) {
 972     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
 973     _c2_compile_queue  = new CompileQueue(name);
 974     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
 975     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
 976   }
 977   if (_c1_count > 0) {
 978     _c1_compile_queue  = new CompileQueue("C1 compile queue");
 979     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
 980     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
 981   }
 982 
 983   char name_buffer[256];
 984 
 985   for (int i = 0; i < _c2_count; i++) {
 986     jobject thread_handle = NULL;
 987     // Create all j.l.Thread objects for C1 and C2 threads here, but only one
 988     // for JVMCI compiler which can create further ones on demand.
 989     JVMCI_ONLY(if (!UseJVMCICompiler || !UseDynamicNumberOfCompilerThreads || i == 0) {)
 990     // Create a name for our thread.
 991     sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
 992     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 993     thread_handle = JNIHandles::make_global(thread_oop);
 994     JVMCI_ONLY(})
 995     _compiler2_objects[i] = thread_handle;
 996     _compiler2_logs[i] = NULL;
 997 
 998     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 999       JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD);
1000       assert(ct != NULL, "should have been handled for initial thread");
1001       _compilers[1]->set_num_compiler_threads(i + 1);
1002       if (TraceCompilerThreads) {
1003         ResourceMark rm;
1004         MutexLocker mu(Threads_lock);
1005         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
1006       }
1007     }
1008   }
1009 
1010   for (int i = 0; i < _c1_count; i++) {
1011     // Create a name for our thread.
1012     sprintf(name_buffer, "C1 CompilerThread%d", i);
1013     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
1014     jobject thread_handle = JNIHandles::make_global(thread_oop);
1015     _compiler1_objects[i] = thread_handle;
1016     _compiler1_logs[i] = NULL;
1017 
1018     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
1019       JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD);
1020       assert(ct != NULL, "should have been handled for initial thread");
1021       _compilers[0]->set_num_compiler_threads(i + 1);
1022       if (TraceCompilerThreads) {
1023         ResourceMark rm;
1024         MutexLocker mu(Threads_lock);
1025         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
1026       }
1027     }
1028   }
1029 
1030   if (UsePerfData) {
1031     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
1032   }
1033 
1034   if (MethodFlushing) {
1035     // Initialize the sweeper thread
1036     Handle thread_oop = create_thread_oop("Sweeper thread", CHECK);
1037     jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1038     make_thread(sweeper_t, thread_handle, NULL, NULL, THREAD);
1039   }
1040 
1041 #if defined(ASSERT) && COMPILER2_OR_JVMCI
1042   if (DeoptimizeObjectsALot) {
1043     // Initialize and start the object deoptimizer threads
1044     const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll;
1045     for (int count = 0; count < total_count; count++) {
1046       Handle thread_oop = create_thread_oop("Deoptimize objects a lot single mode", CHECK);
1047       jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1048       make_thread(deoptimizer_t, thread_handle, NULL, NULL, THREAD);
1049     }
1050   }
1051 #endif // defined(ASSERT) && COMPILER2_OR_JVMCI
1052 }
1053 
1054 void CompileBroker::possibly_add_compiler_threads(Thread* THREAD) {
1055 
1056   julong available_memory = os::available_memory();
1057   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
1058   size_t available_cc_np  = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
1059          available_cc_p   = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
1060 
1061   // Only do attempt to start additional threads if the lock is free.
1062   if (!CompileThread_lock->try_lock()) return;
1063 
1064   if (_c2_compile_queue != NULL) {
1065     int old_c2_count = _compilers[1]->num_compiler_threads();
1066     int new_c2_count = MIN4(_c2_count,
1067         _c2_compile_queue->size() / 2,
1068         (int)(available_memory / (200*M)),
1069         (int)(available_cc_np / (128*K)));
1070 
1071     for (int i = old_c2_count; i < new_c2_count; i++) {
1072 #if INCLUDE_JVMCI
1073       if (UseJVMCICompiler) {
1074         // Native compiler threads as used in C1/C2 can reuse the j.l.Thread
1075         // objects as their existence is completely hidden from the rest of
1076         // the VM (and those compiler threads can't call Java code to do the
1077         // creation anyway). For JVMCI we have to create new j.l.Thread objects
1078         // as they are visible and we can see unexpected thread lifecycle
1079         // transitions if we bind them to new JavaThreads.
1080         if (!THREAD->can_call_java()) break;
1081         char name_buffer[256];
1082         sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
1083         Handle thread_oop;
1084         {
1085           // We have to give up the lock temporarily for the Java calls.
1086           MutexUnlocker mu(CompileThread_lock);
1087           thread_oop = create_thread_oop(name_buffer, THREAD);
1088         }
1089         if (HAS_PENDING_EXCEPTION) {
1090           if (TraceCompilerThreads) {
1091             ResourceMark rm;
1092             tty->print_cr("JVMCI compiler thread creation failed:");
1093             PENDING_EXCEPTION->print();
1094           }
1095           CLEAR_PENDING_EXCEPTION;
1096           break;
1097         }
1098         // Check if another thread has beaten us during the Java calls.
1099         if (_compilers[1]->num_compiler_threads() != i) break;
1100         jobject thread_handle = JNIHandles::make_global(thread_oop);
1101         assert(compiler2_object(i) == NULL, "Old one must be released!");
1102         _compiler2_objects[i] = thread_handle;
1103       }
1104 #endif
1105       JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
1106       if (ct == NULL) break;
1107       _compilers[1]->set_num_compiler_threads(i + 1);
1108       if (TraceCompilerThreads) {
1109         ResourceMark rm;
1110         MutexLocker mu(Threads_lock);
1111         tty->print_cr("Added compiler thread %s (available memory: %dMB, available non-profiled code cache: %dMB)",
1112                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_np/M));
1113       }
1114     }
1115   }
1116 
1117   if (_c1_compile_queue != NULL) {
1118     int old_c1_count = _compilers[0]->num_compiler_threads();
1119     int new_c1_count = MIN4(_c1_count,
1120         _c1_compile_queue->size() / 4,
1121         (int)(available_memory / (100*M)),
1122         (int)(available_cc_p / (128*K)));
1123 
1124     for (int i = old_c1_count; i < new_c1_count; i++) {
1125       JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
1126       if (ct == NULL) break;
1127       _compilers[0]->set_num_compiler_threads(i + 1);
1128       if (TraceCompilerThreads) {
1129         ResourceMark rm;
1130         MutexLocker mu(Threads_lock);
1131         tty->print_cr("Added compiler thread %s (available memory: %dMB, available profiled code cache: %dMB)",
1132                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_p/M));
1133       }
1134     }
1135   }
1136 
1137   CompileThread_lock->unlock();
1138 }
1139 
1140 
1141 /**
1142  * Set the methods on the stack as on_stack so that redefine classes doesn't
1143  * reclaim them. This method is executed at a safepoint.
1144  */
1145 void CompileBroker::mark_on_stack() {
1146   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1147   // Since we are at a safepoint, we do not need a lock to access
1148   // the compile queues.
1149   if (_c2_compile_queue != NULL) {
1150     _c2_compile_queue->mark_on_stack();
1151   }
1152   if (_c1_compile_queue != NULL) {
1153     _c1_compile_queue->mark_on_stack();
1154   }
1155 }
1156 
1157 // ------------------------------------------------------------------
1158 // CompileBroker::compile_method
1159 //
1160 // Request compilation of a method.
1161 void CompileBroker::compile_method_base(const methodHandle& method,
1162                                         int osr_bci,
1163                                         int comp_level,
1164                                         const methodHandle& hot_method,
1165                                         int hot_count,
1166                                         CompileTask::CompileReason compile_reason,
1167                                         bool blocking,
1168                                         Thread* thread) {
1169   guarantee(!method->is_abstract(), "cannot compile abstract methods");
1170   assert(method->method_holder()->is_instance_klass(),
1171          "sanity check");
1172   assert(!method->method_holder()->is_not_initialized(),
1173          "method holder must be initialized");
1174   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1175 
1176   if (CIPrintRequests) {
1177     tty->print("request: ");
1178     method->print_short_name(tty);
1179     if (osr_bci != InvocationEntryBci) {
1180       tty->print(" osr_bci: %d", osr_bci);
1181     }
1182     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1183     if (!hot_method.is_null()) {
1184       tty->print(" hot: ");
1185       if (hot_method() != method()) {
1186           hot_method->print_short_name(tty);
1187       } else {
1188         tty->print("yes");
1189       }
1190     }
1191     tty->cr();
1192   }
1193 
1194   // A request has been made for compilation.  Before we do any
1195   // real work, check to see if the method has been compiled
1196   // in the meantime with a definitive result.
1197   if (compilation_is_complete(method, osr_bci, comp_level)) {
1198     return;
1199   }
1200 
1201 #ifndef PRODUCT
1202   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1203     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1204       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1205       return;
1206     }
1207   }
1208 #endif
1209 
1210   // If this method is already in the compile queue, then
1211   // we do not block the current thread.
1212   if (compilation_is_in_queue(method)) {
1213     // We may want to decay our counter a bit here to prevent
1214     // multiple denied requests for compilation.  This is an
1215     // open compilation policy issue. Note: The other possibility,
1216     // in the case that this is a blocking compile request, is to have
1217     // all subsequent blocking requesters wait for completion of
1218     // ongoing compiles. Note that in this case we'll need a protocol
1219     // for freeing the associated compile tasks. [Or we could have
1220     // a single static monitor on which all these waiters sleep.]
1221     return;
1222   }
1223 
1224   if (TieredCompilation) {
1225     // Tiered policy requires MethodCounters to exist before adding a method to
1226     // the queue. Create if we don't have them yet.
1227     method->get_method_counters(thread);
1228   }
1229 
1230   // Outputs from the following MutexLocker block:
1231   CompileTask* task     = NULL;
1232   CompileQueue* queue  = compile_queue(comp_level);
1233 
1234   // Acquire our lock.
1235   {
1236     MutexLocker locker(thread, MethodCompileQueue_lock);
1237 
1238     // Make sure the method has not slipped into the queues since
1239     // last we checked; note that those checks were "fast bail-outs".
1240     // Here we need to be more careful, see 14012000 below.
1241     if (compilation_is_in_queue(method)) {
1242       return;
1243     }
1244 
1245     // We need to check again to see if the compilation has
1246     // completed.  A previous compilation may have registered
1247     // some result.
1248     if (compilation_is_complete(method, osr_bci, comp_level)) {
1249       return;
1250     }
1251 
1252     // We now know that this compilation is not pending, complete,
1253     // or prohibited.  Assign a compile_id to this compilation
1254     // and check to see if it is in our [Start..Stop) range.
1255     int compile_id = assign_compile_id(method, osr_bci);
1256     if (compile_id == 0) {
1257       // The compilation falls outside the allowed range.
1258       return;
1259     }
1260 
1261 #if INCLUDE_JVMCI
1262     if (UseJVMCICompiler && blocking) {
1263       // Don't allow blocking compiles for requests triggered by JVMCI.
1264       if (thread->is_Compiler_thread()) {
1265         blocking = false;
1266       }
1267 
1268       if (!UseJVMCINativeLibrary) {
1269         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1270         vframeStream vfst((JavaThread*) thread);
1271         for (; !vfst.at_end(); vfst.next()) {
1272           if (vfst.method()->is_static_initializer() ||
1273               (vfst.method()->method_holder()->is_subclass_of(SystemDictionary::ClassLoader_klass()) &&
1274                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1275             blocking = false;
1276             break;
1277           }
1278         }
1279       }
1280 
1281       // Don't allow blocking compilation requests to JVMCI
1282       // if JVMCI itself is not yet initialized
1283       if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1284         blocking = false;
1285       }
1286 
1287       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1288       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1289       // such as the DestroyJavaVM thread.
1290       if (JVMCI::in_shutdown()) {
1291         blocking = false;
1292       }
1293     }
1294 #endif // INCLUDE_JVMCI
1295 
1296     // We will enter the compilation in the queue.
1297     // 14012000: Note that this sets the queued_for_compile bits in
1298     // the target method. We can now reason that a method cannot be
1299     // queued for compilation more than once, as follows:
1300     // Before a thread queues a task for compilation, it first acquires
1301     // the compile queue lock, then checks if the method's queued bits
1302     // are set or it has already been compiled. Thus there can not be two
1303     // instances of a compilation task for the same method on the
1304     // compilation queue. Consider now the case where the compilation
1305     // thread has already removed a task for that method from the queue
1306     // and is in the midst of compiling it. In this case, the
1307     // queued_for_compile bits must be set in the method (and these
1308     // will be visible to the current thread, since the bits were set
1309     // under protection of the compile queue lock, which we hold now.
1310     // When the compilation completes, the compiler thread first sets
1311     // the compilation result and then clears the queued_for_compile
1312     // bits. Neither of these actions are protected by a barrier (or done
1313     // under the protection of a lock), so the only guarantee we have
1314     // (on machines with TSO (Total Store Order)) is that these values
1315     // will update in that order. As a result, the only combinations of
1316     // these bits that the current thread will see are, in temporal order:
1317     // <RESULT, QUEUE> :
1318     //     <0, 1> : in compile queue, but not yet compiled
1319     //     <1, 1> : compiled but queue bit not cleared
1320     //     <1, 0> : compiled and queue bit cleared
1321     // Because we first check the queue bits then check the result bits,
1322     // we are assured that we cannot introduce a duplicate task.
1323     // Note that if we did the tests in the reverse order (i.e. check
1324     // result then check queued bit), we could get the result bit before
1325     // the compilation completed, and the queue bit after the compilation
1326     // completed, and end up introducing a "duplicate" (redundant) task.
1327     // In that case, the compiler thread should first check if a method
1328     // has already been compiled before trying to compile it.
1329     // NOTE: in the event that there are multiple compiler threads and
1330     // there is de-optimization/recompilation, things will get hairy,
1331     // and in that case it's best to protect both the testing (here) of
1332     // these bits, and their updating (here and elsewhere) under a
1333     // common lock.
1334     task = create_compile_task(queue,
1335                                compile_id, method,
1336                                osr_bci, comp_level,
1337                                hot_method, hot_count, compile_reason,
1338                                blocking);
1339   }
1340 
1341   if (blocking) {
1342     wait_for_completion(task);
1343   }
1344 }
1345 
1346 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1347                                        int comp_level,
1348                                        const methodHandle& hot_method, int hot_count,
1349                                        CompileTask::CompileReason compile_reason,
1350                                        Thread* THREAD) {
1351   // Do nothing if compilebroker is not initalized or compiles are submitted on level none
1352   if (!_initialized || comp_level == CompLevel_none) {
1353     return NULL;
1354   }
1355 
1356   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1357   assert(comp != NULL, "Ensure we have a compiler");
1358 
1359   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1360   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1361   DirectivesStack::release(directive);
1362   return nm;
1363 }
1364 
1365 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1366                                          int comp_level,
1367                                          const methodHandle& hot_method, int hot_count,
1368                                          CompileTask::CompileReason compile_reason,
1369                                          DirectiveSet* directive,
1370                                          Thread* THREAD) {
1371 
1372   // make sure arguments make sense
1373   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1374   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1375   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1376   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1377   assert(!TieredCompilation || comp_level <= TieredStopAtLevel, "Invalid compilation level");
1378   // allow any levels for WhiteBox
1379   assert(WhiteBoxAPI || TieredCompilation || comp_level == CompLevel_highest_tier, "only CompLevel_highest_tier must be used in non-tiered");
1380   // return quickly if possible
1381 
1382   // lock, make sure that the compilation
1383   // isn't prohibited in a straightforward way.
1384   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1385   if (comp == NULL || !comp->can_compile_method(method) ||
1386       compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1387     return NULL;
1388   }
1389 
1390 #if INCLUDE_JVMCI
1391   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1392     return NULL;
1393   }
1394 #endif
1395 
1396   if (osr_bci == InvocationEntryBci) {
1397     // standard compilation
1398     CompiledMethod* method_code = method->code();
1399     if (method_code != NULL && method_code->is_nmethod()) {
1400       if (compilation_is_complete(method, osr_bci, comp_level)) {
1401         return (nmethod*) method_code;
1402       }
1403     }
1404     if (method->is_not_compilable(comp_level)) {
1405       return NULL;
1406     }
1407   } else {
1408     // osr compilation
1409 #ifndef TIERED
1410     // seems like an assert of dubious value
1411     assert(comp_level == CompLevel_highest_tier,
1412            "all OSR compiles are assumed to be at a single compilation level");
1413 #endif // TIERED
1414     // We accept a higher level osr method
1415     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1416     if (nm != NULL) return nm;
1417     if (method->is_not_osr_compilable(comp_level)) return NULL;
1418   }
1419 
1420   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1421   // some prerequisites that are compiler specific
1422   if (comp->is_c2()) {
1423     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NULL);
1424     // Resolve all classes seen in the signature of the method
1425     // we are compiling.
1426     Method::load_signature_classes(method, CHECK_AND_CLEAR_NULL);
1427   }
1428 
1429   // If the method is native, do the lookup in the thread requesting
1430   // the compilation. Native lookups can load code, which is not
1431   // permitted during compilation.
1432   //
1433   // Note: A native method implies non-osr compilation which is
1434   //       checked with an assertion at the entry of this method.
1435   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1436     bool in_base_library;
1437     address adr = NativeLookup::lookup(method, in_base_library, THREAD);
1438     if (HAS_PENDING_EXCEPTION) {
1439       // In case of an exception looking up the method, we just forget
1440       // about it. The interpreter will kick-in and throw the exception.
1441       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1442       CLEAR_PENDING_EXCEPTION;
1443       return NULL;
1444     }
1445     assert(method->has_native_function(), "must have native code by now");
1446   }
1447 
1448   // RedefineClasses() has replaced this method; just return
1449   if (method->is_old()) {
1450     return NULL;
1451   }
1452 
1453   // JVMTI -- post_compile_event requires jmethod_id() that may require
1454   // a lock the compiling thread can not acquire. Prefetch it here.
1455   if (JvmtiExport::should_post_compiled_method_load()) {
1456     method->jmethod_id();
1457   }
1458 
1459   // do the compilation
1460   if (method->is_native()) {
1461     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1462 #if defined(X86) && !defined(ZERO)
1463       // The following native methods:
1464       //
1465       // java.lang.Float.intBitsToFloat
1466       // java.lang.Float.floatToRawIntBits
1467       // java.lang.Double.longBitsToDouble
1468       // java.lang.Double.doubleToRawLongBits
1469       //
1470       // are called through the interpreter even if interpreter native stubs
1471       // are not preferred (i.e., calling through adapter handlers is preferred).
1472       // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
1473       // if the version of the methods from the native libraries is called.
1474       // As the interpreter and the C2-intrinsified version of the methods preserves
1475       // sNaNs, that would result in an inconsistent way of handling of sNaNs.
1476       if ((UseSSE >= 1 &&
1477           (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
1478            method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
1479           (UseSSE >= 2 &&
1480            (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
1481             method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
1482         return NULL;
1483       }
1484 #endif // X86 && !ZERO
1485 
1486       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1487       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1488       //
1489       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1490       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1491       AdapterHandlerLibrary::create_native_wrapper(method);
1492     } else {
1493       return NULL;
1494     }
1495   } else {
1496     // If the compiler is shut off due to code cache getting full
1497     // fail out now so blocking compiles dont hang the java thread
1498     if (!should_compile_new_jobs()) {
1499       CompilationPolicy::policy()->delay_compilation(method());
1500       return NULL;
1501     }
1502     bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1503     compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1504   }
1505 
1506   // return requested nmethod
1507   // We accept a higher level osr method
1508   if (osr_bci == InvocationEntryBci) {
1509     CompiledMethod* code = method->code();
1510     if (code == NULL) {
1511       return (nmethod*) code;
1512     } else {
1513       return code->as_nmethod_or_null();
1514     }
1515   }
1516   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1517 }
1518 
1519 
1520 // ------------------------------------------------------------------
1521 // CompileBroker::compilation_is_complete
1522 //
1523 // See if compilation of this method is already complete.
1524 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1525                                             int                 osr_bci,
1526                                             int                 comp_level) {
1527   bool is_osr = (osr_bci != standard_entry_bci);
1528   if (is_osr) {
1529     if (method->is_not_osr_compilable(comp_level)) {
1530       return true;
1531     } else {
1532       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1533       return (result != NULL);
1534     }
1535   } else {
1536     if (method->is_not_compilable(comp_level)) {
1537       return true;
1538     } else {
1539       CompiledMethod* result = method->code();
1540       if (result == NULL) return false;
1541       return comp_level == result->comp_level();
1542     }
1543   }
1544 }
1545 
1546 
1547 /**
1548  * See if this compilation is already requested.
1549  *
1550  * Implementation note: there is only a single "is in queue" bit
1551  * for each method.  This means that the check below is overly
1552  * conservative in the sense that an osr compilation in the queue
1553  * will block a normal compilation from entering the queue (and vice
1554  * versa).  This can be remedied by a full queue search to disambiguate
1555  * cases.  If it is deemed profitable, this may be done.
1556  */
1557 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1558   return method->queued_for_compilation();
1559 }
1560 
1561 // ------------------------------------------------------------------
1562 // CompileBroker::compilation_is_prohibited
1563 //
1564 // See if this compilation is not allowed.
1565 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1566   bool is_native = method->is_native();
1567   // Some compilers may not support the compilation of natives.
1568   AbstractCompiler *comp = compiler(comp_level);
1569   if (is_native &&
1570       (!CICompileNatives || comp == NULL || !comp->supports_native())) {
1571     method->set_not_compilable_quietly("native methods not supported", comp_level);
1572     return true;
1573   }
1574 
1575   bool is_osr = (osr_bci != standard_entry_bci);
1576   // Some compilers may not support on stack replacement.
1577   if (is_osr &&
1578       (!CICompileOSR || comp == NULL || !comp->supports_osr())) {
1579     method->set_not_osr_compilable("OSR not supported", comp_level);
1580     return true;
1581   }
1582 
1583   // The method may be explicitly excluded by the user.
1584   double scale;
1585   if (excluded || (CompilerOracle::has_option_value(method, "CompileThresholdScaling", scale) && scale == 0)) {
1586     bool quietly = CompilerOracle::should_exclude_quietly();
1587     if (PrintCompilation && !quietly) {
1588       // This does not happen quietly...
1589       ResourceMark rm;
1590       tty->print("### Excluding %s:%s",
1591                  method->is_native() ? "generation of native wrapper" : "compile",
1592                  (method->is_static() ? " static" : ""));
1593       method->print_short_name(tty);
1594       tty->cr();
1595     }
1596     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1597   }
1598 
1599   return false;
1600 }
1601 
1602 /**
1603  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1604  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1605  * The function also allows to generate separate compilation IDs for OSR compilations.
1606  */
1607 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1608 #ifdef ASSERT
1609   bool is_osr = (osr_bci != standard_entry_bci);
1610   int id;
1611   if (method->is_native()) {
1612     assert(!is_osr, "can't be osr");
1613     // Adapters, native wrappers and method handle intrinsics
1614     // should be generated always.
1615     return Atomic::add(&_compilation_id, 1);
1616   } else if (CICountOSR && is_osr) {
1617     id = Atomic::add(&_osr_compilation_id, 1);
1618     if (CIStartOSR <= id && id < CIStopOSR) {
1619       return id;
1620     }
1621   } else {
1622     id = Atomic::add(&_compilation_id, 1);
1623     if (CIStart <= id && id < CIStop) {
1624       return id;
1625     }
1626   }
1627 
1628   // Method was not in the appropriate compilation range.
1629   method->set_not_compilable_quietly("Not in requested compile id range");
1630   return 0;
1631 #else
1632   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1633   // only _compilation_id is incremented.
1634   return Atomic::add(&_compilation_id, 1);
1635 #endif
1636 }
1637 
1638 // ------------------------------------------------------------------
1639 // CompileBroker::assign_compile_id_unlocked
1640 //
1641 // Public wrapper for assign_compile_id that acquires the needed locks
1642 uint CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1643   MutexLocker locker(thread, MethodCompileQueue_lock);
1644   return assign_compile_id(method, osr_bci);
1645 }
1646 
1647 // ------------------------------------------------------------------
1648 // CompileBroker::create_compile_task
1649 //
1650 // Create a CompileTask object representing the current request for
1651 // compilation.  Add this task to the queue.
1652 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1653                                                 int                 compile_id,
1654                                                 const methodHandle& method,
1655                                                 int                 osr_bci,
1656                                                 int                 comp_level,
1657                                                 const methodHandle& hot_method,
1658                                                 int                 hot_count,
1659                                                 CompileTask::CompileReason compile_reason,
1660                                                 bool                blocking) {
1661   CompileTask* new_task = CompileTask::allocate();
1662   new_task->initialize(compile_id, method, osr_bci, comp_level,
1663                        hot_method, hot_count, compile_reason,
1664                        blocking);
1665   queue->add(new_task);
1666   return new_task;
1667 }
1668 
1669 #if INCLUDE_JVMCI
1670 // The number of milliseconds to wait before checking if
1671 // JVMCI compilation has made progress.
1672 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1673 
1674 // The number of JVMCI compilation progress checks that must fail
1675 // before unblocking a thread waiting for a blocking compilation.
1676 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1677 
1678 /**
1679  * Waits for a JVMCI compiler to complete a given task. This thread
1680  * waits until either the task completes or it sees no JVMCI compilation
1681  * progress for N consecutive milliseconds where N is
1682  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1683  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1684  *
1685  * @return true if this thread needs to free/recycle the task
1686  */
1687 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1688   MonitorLocker ml(thread, task->lock());
1689   int progress_wait_attempts = 0;
1690   int methods_compiled = jvmci->methods_compiled();
1691   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1692          ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1693     CompilerThread* jvmci_compiler_thread = task->jvmci_compiler_thread();
1694 
1695     bool progress;
1696     if (jvmci_compiler_thread != NULL) {
1697       // If the JVMCI compiler thread is not blocked or suspended, we deem it to be making progress.
1698       progress = jvmci_compiler_thread->thread_state() != _thread_blocked &&
1699         !jvmci_compiler_thread->is_external_suspend();
1700     } else {
1701       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1702       // that all JVMCI compiler threads are blocked on. We use the counter for
1703       // successful JVMCI compilations to determine whether JVMCI compilation
1704       // is still making progress through the JVMCI compiler queue.
1705       progress = jvmci->methods_compiled() != methods_compiled;
1706     }
1707 
1708     if (!progress) {
1709       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1710         if (PrintCompilation) {
1711           task->print(tty, "wait for blocking compilation timed out");
1712         }
1713         break;
1714       }
1715     } else {
1716       progress_wait_attempts = 0;
1717       if (jvmci_compiler_thread == NULL) {
1718         methods_compiled = jvmci->methods_compiled();
1719       }
1720     }
1721   }
1722   task->clear_waiter();
1723   return task->is_complete();
1724 }
1725 #endif
1726 
1727 /**
1728  *  Wait for the compilation task to complete.
1729  */
1730 void CompileBroker::wait_for_completion(CompileTask* task) {
1731   if (CIPrintCompileQueue) {
1732     ttyLocker ttyl;
1733     tty->print_cr("BLOCKING FOR COMPILE");
1734   }
1735 
1736   assert(task->is_blocking(), "can only wait on blocking task");
1737 
1738   JavaThread* thread = JavaThread::current();
1739 
1740   methodHandle method(thread, task->method());
1741   bool free_task;
1742 #if INCLUDE_JVMCI
1743   AbstractCompiler* comp = compiler(task->comp_level());
1744   if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) {
1745     // It may return before compilation is completed.
1746     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1747   } else
1748 #endif
1749   {
1750     MonitorLocker ml(thread, task->lock());
1751     free_task = true;
1752     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1753       ml.wait();
1754     }
1755   }
1756 
1757   if (free_task) {
1758     if (is_compilation_disabled_forever()) {
1759       CompileTask::free(task);
1760       return;
1761     }
1762 
1763     // It is harmless to check this status without the lock, because
1764     // completion is a stable property (until the task object is recycled).
1765     assert(task->is_complete(), "Compilation should have completed");
1766     assert(task->code_handle() == NULL, "must be reset");
1767 
1768     // By convention, the waiter is responsible for recycling a
1769     // blocking CompileTask. Since there is only one waiter ever
1770     // waiting on a CompileTask, we know that no one else will
1771     // be using this CompileTask; we can free it.
1772     CompileTask::free(task);
1773   }
1774 }
1775 
1776 /**
1777  * Initialize compiler thread(s) + compiler object(s). The postcondition
1778  * of this function is that the compiler runtimes are initialized and that
1779  * compiler threads can start compiling.
1780  */
1781 bool CompileBroker::init_compiler_runtime() {
1782   CompilerThread* thread = CompilerThread::current();
1783   AbstractCompiler* comp = thread->compiler();
1784   // Final sanity check - the compiler object must exist
1785   guarantee(comp != NULL, "Compiler object must exist");
1786 
1787   {
1788     // Must switch to native to allocate ci_env
1789     ThreadToNativeFromVM ttn(thread);
1790     ciEnv ci_env((CompileTask*)NULL);
1791     // Cache Jvmti state
1792     ci_env.cache_jvmti_state();
1793     // Cache DTrace flags
1794     ci_env.cache_dtrace_flags();
1795 
1796     // Switch back to VM state to do compiler initialization
1797     ThreadInVMfromNative tv(thread);
1798     ResetNoHandleMark rnhm;
1799 
1800     // Perform per-thread and global initializations
1801     comp->initialize();
1802   }
1803 
1804   if (comp->is_failed()) {
1805     disable_compilation_forever();
1806     // If compiler initialization failed, no compiler thread that is specific to a
1807     // particular compiler runtime will ever start to compile methods.
1808     shutdown_compiler_runtime(comp, thread);
1809     return false;
1810   }
1811 
1812   // C1 specific check
1813   if (comp->is_c1() && (thread->get_buffer_blob() == NULL)) {
1814     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1815     return false;
1816   }
1817 
1818   return true;
1819 }
1820 
1821 /**
1822  * If C1 and/or C2 initialization failed, we shut down all compilation.
1823  * We do this to keep things simple. This can be changed if it ever turns
1824  * out to be a problem.
1825  */
1826 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1827   // Free buffer blob, if allocated
1828   if (thread->get_buffer_blob() != NULL) {
1829     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1830     CodeCache::free(thread->get_buffer_blob());
1831   }
1832 
1833   if (comp->should_perform_shutdown()) {
1834     // There are two reasons for shutting down the compiler
1835     // 1) compiler runtime initialization failed
1836     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1837     warning("%s initialization failed. Shutting down all compilers", comp->name());
1838 
1839     // Only one thread per compiler runtime object enters here
1840     // Set state to shut down
1841     comp->set_shut_down();
1842 
1843     // Delete all queued compilation tasks to make compiler threads exit faster.
1844     if (_c1_compile_queue != NULL) {
1845       _c1_compile_queue->free_all();
1846     }
1847 
1848     if (_c2_compile_queue != NULL) {
1849       _c2_compile_queue->free_all();
1850     }
1851 
1852     // Set flags so that we continue execution with using interpreter only.
1853     UseCompiler    = false;
1854     UseInterpreter = true;
1855 
1856     // We could delete compiler runtimes also. However, there are references to
1857     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1858     // fail. This can be done later if necessary.
1859   }
1860 }
1861 
1862 /**
1863  * Helper function to create new or reuse old CompileLog.
1864  */
1865 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1866   if (!LogCompilation) return NULL;
1867 
1868   AbstractCompiler *compiler = ct->compiler();
1869   bool c1 = compiler->is_c1();
1870   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1871   assert(compiler_objects != NULL, "must be initialized at this point");
1872   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1873   assert(logs != NULL, "must be initialized at this point");
1874   int count = c1 ? _c1_count : _c2_count;
1875 
1876   // Find Compiler number by its threadObj.
1877   oop compiler_obj = ct->threadObj();
1878   int compiler_number = 0;
1879   bool found = false;
1880   for (; compiler_number < count; compiler_number++) {
1881     if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
1882       found = true;
1883       break;
1884     }
1885   }
1886   assert(found, "Compiler must exist at this point");
1887 
1888   // Determine pointer for this thread's log.
1889   CompileLog** log_ptr = &logs[compiler_number];
1890 
1891   // Return old one if it exists.
1892   CompileLog* log = *log_ptr;
1893   if (log != NULL) {
1894     ct->init_log(log);
1895     return log;
1896   }
1897 
1898   // Create a new one and remember it.
1899   init_compiler_thread_log();
1900   log = ct->log();
1901   *log_ptr = log;
1902   return log;
1903 }
1904 
1905 // ------------------------------------------------------------------
1906 // CompileBroker::compiler_thread_loop
1907 //
1908 // The main loop run by a CompilerThread.
1909 void CompileBroker::compiler_thread_loop() {
1910   CompilerThread* thread = CompilerThread::current();
1911   CompileQueue* queue = thread->queue();
1912   // For the thread that initializes the ciObjectFactory
1913   // this resource mark holds all the shared objects
1914   ResourceMark rm;
1915 
1916   // First thread to get here will initialize the compiler interface
1917 
1918   {
1919     ASSERT_IN_VM;
1920     MutexLocker only_one (thread, CompileThread_lock);
1921     if (!ciObjectFactory::is_initialized()) {
1922       ciObjectFactory::initialize();
1923     }
1924   }
1925 
1926   // Open a log.
1927   CompileLog* log = get_log(thread);
1928   if (log != NULL) {
1929     log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
1930                     thread->name(),
1931                     os::current_thread_id(),
1932                     os::current_process_id());
1933     log->stamp();
1934     log->end_elem();
1935   }
1936 
1937   // If compiler thread/runtime initialization fails, exit the compiler thread
1938   if (!init_compiler_runtime()) {
1939     return;
1940   }
1941 
1942   thread->start_idle_timer();
1943 
1944   // Poll for new compilation tasks as long as the JVM runs. Compilation
1945   // should only be disabled if something went wrong while initializing the
1946   // compiler runtimes. This, in turn, should not happen. The only known case
1947   // when compiler runtime initialization fails is if there is not enough free
1948   // space in the code cache to generate the necessary stubs, etc.
1949   while (!is_compilation_disabled_forever()) {
1950     // We need this HandleMark to avoid leaking VM handles.
1951     HandleMark hm(thread);
1952 
1953     CompileTask* task = queue->get();
1954     if (task == NULL) {
1955       if (UseDynamicNumberOfCompilerThreads) {
1956         // Access compiler_count under lock to enforce consistency.
1957         MutexLocker only_one(CompileThread_lock);
1958         if (can_remove(thread, true)) {
1959           if (TraceCompilerThreads) {
1960             tty->print_cr("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1961                           thread->name(), thread->idle_time_millis());
1962           }
1963           // Free buffer blob, if allocated
1964           if (thread->get_buffer_blob() != NULL) {
1965             MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1966             CodeCache::free(thread->get_buffer_blob());
1967           }
1968           return; // Stop this thread.
1969         }
1970       }
1971     } else {
1972       // Assign the task to the current thread.  Mark this compilation
1973       // thread as active for the profiler.
1974       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1975       // occurs after fetching the compile task off the queue.
1976       CompileTaskWrapper ctw(task);
1977       nmethodLocker result_handle;  // (handle for the nmethod produced by this task)
1978       task->set_code_handle(&result_handle);
1979       methodHandle method(thread, task->method());
1980 
1981       // Never compile a method if breakpoints are present in it
1982       if (method()->number_of_breakpoints() == 0) {
1983         // Compile the method.
1984         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1985           invoke_compiler_on_method(task);
1986           thread->start_idle_timer();
1987         } else {
1988           // After compilation is disabled, remove remaining methods from queue
1989           method->clear_queued_for_compilation();
1990           task->set_failure_reason("compilation is disabled");
1991         }
1992       }
1993 
1994       if (UseDynamicNumberOfCompilerThreads) {
1995         possibly_add_compiler_threads(thread);
1996         assert(!thread->has_pending_exception(), "should have been handled");
1997       }
1998     }
1999   }
2000 
2001   // Shut down compiler runtime
2002   shutdown_compiler_runtime(thread->compiler(), thread);
2003 }
2004 
2005 // ------------------------------------------------------------------
2006 // CompileBroker::init_compiler_thread_log
2007 //
2008 // Set up state required by +LogCompilation.
2009 void CompileBroker::init_compiler_thread_log() {
2010     CompilerThread* thread = CompilerThread::current();
2011     char  file_name[4*K];
2012     FILE* fp = NULL;
2013     intx thread_id = os::current_thread_id();
2014     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
2015       const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL);
2016       if (dir == NULL) {
2017         jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
2018                      thread_id, os::current_process_id());
2019       } else {
2020         jio_snprintf(file_name, sizeof(file_name),
2021                      "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
2022                      os::file_separator(), thread_id, os::current_process_id());
2023       }
2024 
2025       fp = fopen(file_name, "wt");
2026       if (fp != NULL) {
2027         if (LogCompilation && Verbose) {
2028           tty->print_cr("Opening compilation log %s", file_name);
2029         }
2030         CompileLog* log = new(ResourceObj::C_HEAP, mtCompiler) CompileLog(file_name, fp, thread_id);
2031         if (log == NULL) {
2032           fclose(fp);
2033           return;
2034         }
2035         thread->init_log(log);
2036 
2037         if (xtty != NULL) {
2038           ttyLocker ttyl;
2039           // Record any per thread log files
2040           xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
2041         }
2042         return;
2043       }
2044     }
2045     warning("Cannot open log file: %s", file_name);
2046 }
2047 
2048 void CompileBroker::log_metaspace_failure() {
2049   const char* message = "some methods may not be compiled because metaspace "
2050                         "is out of memory";
2051   if (_compilation_log != NULL) {
2052     _compilation_log->log_metaspace_failure(message);
2053   }
2054   if (PrintCompilation) {
2055     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
2056   }
2057 }
2058 
2059 
2060 // ------------------------------------------------------------------
2061 // CompileBroker::set_should_block
2062 //
2063 // Set _should_block.
2064 // Call this from the VM, with Threads_lock held and a safepoint requested.
2065 void CompileBroker::set_should_block() {
2066   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2067   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
2068 #ifndef PRODUCT
2069   if (PrintCompilation && (Verbose || WizardMode))
2070     tty->print_cr("notifying compiler thread pool to block");
2071 #endif
2072   _should_block = true;
2073 }
2074 
2075 // ------------------------------------------------------------------
2076 // CompileBroker::maybe_block
2077 //
2078 // Call this from the compiler at convenient points, to poll for _should_block.
2079 void CompileBroker::maybe_block() {
2080   if (_should_block) {
2081 #ifndef PRODUCT
2082     if (PrintCompilation && (Verbose || WizardMode))
2083       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
2084 #endif
2085     ThreadInVMfromNative tivfn(JavaThread::current());
2086   }
2087 }
2088 
2089 // wrapper for CodeCache::print_summary()
2090 static void codecache_print(bool detailed)
2091 {
2092   ResourceMark rm;
2093   stringStream s;
2094   // Dump code cache  into a buffer before locking the tty,
2095   {
2096     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2097     CodeCache::print_summary(&s, detailed);
2098   }
2099   ttyLocker ttyl;
2100   tty->print("%s", s.as_string());
2101 }
2102 
2103 // wrapper for CodeCache::print_summary() using outputStream
2104 static void codecache_print(outputStream* out, bool detailed) {
2105   ResourceMark rm;
2106   stringStream s;
2107 
2108   // Dump code cache into a buffer
2109   {
2110     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2111     CodeCache::print_summary(&s, detailed);
2112   }
2113 
2114   char* remaining_log = s.as_string();
2115   while (*remaining_log != '\0') {
2116     char* eol = strchr(remaining_log, '\n');
2117     if (eol == NULL) {
2118       out->print_cr("%s", remaining_log);
2119       remaining_log = remaining_log + strlen(remaining_log);
2120     } else {
2121       *eol = '\0';
2122       out->print_cr("%s", remaining_log);
2123       remaining_log = eol + 1;
2124     }
2125   }
2126 }
2127 
2128 void CompileBroker::post_compile(CompilerThread* thread, CompileTask* task, bool success, ciEnv* ci_env,
2129                                  int compilable, const char* failure_reason) {
2130   if (success) {
2131     task->mark_success();
2132     if (ci_env != NULL) {
2133       task->set_num_inlined_bytecodes(ci_env->num_inlined_bytecodes());
2134     }
2135     if (_compilation_log != NULL) {
2136       nmethod* code = task->code();
2137       if (code != NULL) {
2138         _compilation_log->log_nmethod(thread, code);
2139       }
2140     }
2141   } else if (AbortVMOnCompilationFailure) {
2142     if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2143       fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2144     }
2145     if (compilable == ciEnv::MethodCompilable_never) {
2146       fatal("Never compilable: %s", failure_reason);
2147     }
2148   }
2149   // simulate crash during compilation
2150   assert(task->compile_id() != CICrashAt, "just as planned");
2151 }
2152 
2153 static void post_compilation_event(EventCompilation& event, CompileTask* task) {
2154   assert(task != NULL, "invariant");
2155   CompilerEvent::CompilationEvent::post(event,
2156                                         task->compile_id(),
2157                                         task->compiler()->type(),
2158                                         task->method(),
2159                                         task->comp_level(),
2160                                         task->is_success(),
2161                                         task->osr_bci() != CompileBroker::standard_entry_bci,
2162                                         (task->code() == NULL) ? 0 : task->code()->total_size(),
2163                                         task->num_inlined_bytecodes());
2164 }
2165 
2166 int DirectivesStack::_depth = 0;
2167 CompilerDirectives* DirectivesStack::_top = NULL;
2168 CompilerDirectives* DirectivesStack::_bottom = NULL;
2169 
2170 // ------------------------------------------------------------------
2171 // CompileBroker::invoke_compiler_on_method
2172 //
2173 // Compile a method.
2174 //
2175 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2176   task->print_ul();
2177   if (PrintCompilation) {
2178     ResourceMark rm;
2179     task->print_tty();
2180   }
2181   elapsedTimer time;
2182 
2183   CompilerThread* thread = CompilerThread::current();
2184   ResourceMark rm(thread);
2185 
2186   if (LogEvents) {
2187     _compilation_log->log_compile(thread, task);
2188   }
2189 
2190   // Common flags.
2191   uint compile_id = task->compile_id();
2192   int osr_bci = task->osr_bci();
2193   bool is_osr = (osr_bci != standard_entry_bci);
2194   bool should_log = (thread->log() != NULL);
2195   bool should_break = false;
2196   const int task_level = task->comp_level();
2197   AbstractCompiler* comp = task->compiler();
2198 
2199   DirectiveSet* directive;
2200   {
2201     // create the handle inside it's own block so it can't
2202     // accidentally be referenced once the thread transitions to
2203     // native.  The NoHandleMark before the transition should catch
2204     // any cases where this occurs in the future.
2205     methodHandle method(thread, task->method());
2206     assert(!method->is_native(), "no longer compile natives");
2207 
2208     // Look up matching directives
2209     directive = DirectivesStack::getMatchingDirective(method, comp);
2210 
2211     // Update compile information when using perfdata.
2212     if (UsePerfData) {
2213       update_compile_perf_data(thread, method, is_osr);
2214     }
2215 
2216     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2217   }
2218 
2219   should_break = directive->BreakAtExecuteOption || task->check_break_at_flags();
2220   if (should_log && !directive->LogOption) {
2221     should_log = false;
2222   }
2223 
2224   // Allocate a new set of JNI handles.
2225   push_jni_handle_block();
2226   Method* target_handle = task->method();
2227   int compilable = ciEnv::MethodCompilable;
2228   const char* failure_reason = NULL;
2229   bool failure_reason_on_C_heap = false;
2230   const char* retry_message = NULL;
2231 
2232 #if INCLUDE_JVMCI
2233   if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
2234     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2235 
2236     TraceTime t1("compilation", &time);
2237     EventCompilation event;
2238     JVMCICompileState compile_state(task);
2239     JVMCIRuntime *runtime = NULL;
2240 
2241     if (JVMCI::in_shutdown()) {
2242       failure_reason = "in JVMCI shutdown";
2243       retry_message = "not retryable";
2244       compilable = ciEnv::MethodCompilable_never;
2245     } else if (compile_state.target_method_is_old()) {
2246       // Skip redefined methods
2247       failure_reason = "redefined method";
2248       retry_message = "not retryable";
2249       compilable = ciEnv::MethodCompilable_never;
2250     } else {
2251       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2252       methodHandle method(thread, target_handle);
2253       runtime = env.runtime();
2254       runtime->compile_method(&env, jvmci, method, osr_bci);
2255 
2256       failure_reason = compile_state.failure_reason();
2257       failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2258       if (!compile_state.retryable()) {
2259         retry_message = "not retryable";
2260         compilable = ciEnv::MethodCompilable_not_at_tier;
2261       }
2262       if (task->code() == NULL) {
2263         assert(failure_reason != NULL, "must specify failure_reason");
2264       }
2265     }
2266     post_compile(thread, task, task->code() != NULL, NULL, compilable, failure_reason);
2267     if (event.should_commit()) {
2268       post_compilation_event(event, task);
2269     }
2270 
2271   } else
2272 #endif // INCLUDE_JVMCI
2273   {
2274     NoHandleMark  nhm;
2275     ThreadToNativeFromVM ttn(thread);
2276 
2277     ciEnv ci_env(task);
2278     if (should_break) {
2279       ci_env.set_break_at_compile(true);
2280     }
2281     if (should_log) {
2282       ci_env.set_log(thread->log());
2283     }
2284     assert(thread->env() == &ci_env, "set by ci_env");
2285     // The thread-env() field is cleared in ~CompileTaskWrapper.
2286 
2287     // Cache Jvmti state
2288     bool method_is_old = ci_env.cache_jvmti_state();
2289 
2290     // Skip redefined methods
2291     if (method_is_old) {
2292       ci_env.record_method_not_compilable("redefined method", true);
2293     }
2294 
2295     // Cache DTrace flags
2296     ci_env.cache_dtrace_flags();
2297 
2298     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2299 
2300     TraceTime t1("compilation", &time);
2301     EventCompilation event;
2302 
2303     if (comp == NULL) {
2304       ci_env.record_method_not_compilable("no compiler", !TieredCompilation);
2305     } else if (!ci_env.failing()) {
2306       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2307         MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2308         while (WhiteBox::compilation_locked) {
2309           locker.wait();
2310         }
2311       }
2312       comp->compile_method(&ci_env, target, osr_bci, true, directive);
2313 
2314       /* Repeat compilation without installing code for profiling purposes */
2315       int repeat_compilation_count = directive->RepeatCompilationOption;
2316       while (repeat_compilation_count > 0) {
2317         task->print_ul("NO CODE INSTALLED");
2318         comp->compile_method(&ci_env, target, osr_bci, false , directive);
2319         repeat_compilation_count--;
2320       }
2321     }
2322 
2323     if (!ci_env.failing() && task->code() == NULL) {
2324       //assert(false, "compiler should always document failure");
2325       // The compiler elected, without comment, not to register a result.
2326       // Do not attempt further compilations of this method.
2327       ci_env.record_method_not_compilable("compile failed", !TieredCompilation);
2328     }
2329 
2330     // Copy this bit to the enclosing block:
2331     compilable = ci_env.compilable();
2332 
2333     if (ci_env.failing()) {
2334       failure_reason = ci_env.failure_reason();
2335       retry_message = ci_env.retry_message();
2336       ci_env.report_failure(failure_reason);
2337     }
2338 
2339     post_compile(thread, task, !ci_env.failing(), &ci_env, compilable, failure_reason);
2340     if (event.should_commit()) {
2341       post_compilation_event(event, task);
2342     }
2343   }
2344   // Remove the JNI handle block after the ciEnv destructor has run in
2345   // the previous block.
2346   pop_jni_handle_block();
2347 
2348   if (failure_reason != NULL) {
2349     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2350     if (_compilation_log != NULL) {
2351       _compilation_log->log_failure(thread, task, failure_reason, retry_message);
2352     }
2353     if (PrintCompilation) {
2354       FormatBufferResource msg = retry_message != NULL ?
2355         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2356         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2357       task->print(tty, msg);
2358     }
2359   }
2360 
2361   methodHandle method(thread, task->method());
2362 
2363   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2364 
2365   collect_statistics(thread, time, task);
2366 
2367   nmethod* nm = task->code();
2368   if (nm != NULL) {
2369     nm->maybe_print_nmethod(directive);
2370   }
2371   DirectivesStack::release(directive);
2372 
2373   if (PrintCompilation && PrintCompilation2) {
2374     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2375     tty->print("%4d ", compile_id);    // print compilation number
2376     tty->print("%s ", (is_osr ? "%" : " "));
2377     if (task->code() != NULL) {
2378       tty->print("size: %d(%d) ", task->code()->total_size(), task->code()->insts_size());
2379     }
2380     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2381   }
2382 
2383   Log(compilation, codecache) log;
2384   if (log.is_debug()) {
2385     LogStream ls(log.debug());
2386     codecache_print(&ls, /* detailed= */ false);
2387   }
2388   if (PrintCodeCacheOnCompilation) {
2389     codecache_print(/* detailed= */ false);
2390   }
2391   // Disable compilation, if required.
2392   switch (compilable) {
2393   case ciEnv::MethodCompilable_never:
2394     if (is_osr)
2395       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2396     else
2397       method->set_not_compilable_quietly("MethodCompilable_never");
2398     break;
2399   case ciEnv::MethodCompilable_not_at_tier:
2400     if (is_osr)
2401       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2402     else
2403       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2404     break;
2405   }
2406 
2407   // Note that the queued_for_compilation bits are cleared without
2408   // protection of a mutex. [They were set by the requester thread,
2409   // when adding the task to the compile queue -- at which time the
2410   // compile queue lock was held. Subsequently, we acquired the compile
2411   // queue lock to get this task off the compile queue; thus (to belabour
2412   // the point somewhat) our clearing of the bits must be occurring
2413   // only after the setting of the bits. See also 14012000 above.
2414   method->clear_queued_for_compilation();
2415 }
2416 
2417 /**
2418  * The CodeCache is full. Print warning and disable compilation.
2419  * Schedule code cache cleaning so compilation can continue later.
2420  * This function needs to be called only from CodeCache::allocate(),
2421  * since we currently handle a full code cache uniformly.
2422  */
2423 void CompileBroker::handle_full_code_cache(int code_blob_type) {
2424   UseInterpreter = true;
2425   if (UseCompiler || AlwaysCompileLoopMethods ) {
2426     if (xtty != NULL) {
2427       ResourceMark rm;
2428       stringStream s;
2429       // Dump code cache state into a buffer before locking the tty,
2430       // because log_state() will use locks causing lock conflicts.
2431       CodeCache::log_state(&s);
2432       // Lock to prevent tearing
2433       ttyLocker ttyl;
2434       xtty->begin_elem("code_cache_full");
2435       xtty->print("%s", s.as_string());
2436       xtty->stamp();
2437       xtty->end_elem();
2438     }
2439 
2440 #ifndef PRODUCT
2441     if (ExitOnFullCodeCache) {
2442       codecache_print(/* detailed= */ true);
2443       before_exit(JavaThread::current());
2444       exit_globals(); // will delete tty
2445       vm_direct_exit(1);
2446     }
2447 #endif
2448     if (UseCodeCacheFlushing) {
2449       // Since code cache is full, immediately stop new compiles
2450       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2451         NMethodSweeper::log_sweep("disable_compiler");
2452       }
2453     } else {
2454       disable_compilation_forever();
2455     }
2456 
2457     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2458   }
2459 }
2460 
2461 // ------------------------------------------------------------------
2462 // CompileBroker::update_compile_perf_data
2463 //
2464 // Record this compilation for debugging purposes.
2465 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2466   ResourceMark rm;
2467   char* method_name = method->name()->as_C_string();
2468   char current_method[CompilerCounters::cmname_buffer_length];
2469   size_t maxLen = CompilerCounters::cmname_buffer_length;
2470 
2471   const char* class_name = method->method_holder()->name()->as_C_string();
2472 
2473   size_t s1len = strlen(class_name);
2474   size_t s2len = strlen(method_name);
2475 
2476   // check if we need to truncate the string
2477   if (s1len + s2len + 2 > maxLen) {
2478 
2479     // the strategy is to lop off the leading characters of the
2480     // class name and the trailing characters of the method name.
2481 
2482     if (s2len + 2 > maxLen) {
2483       // lop of the entire class name string, let snprintf handle
2484       // truncation of the method name.
2485       class_name += s1len; // null string
2486     }
2487     else {
2488       // lop off the extra characters from the front of the class name
2489       class_name += ((s1len + s2len + 2) - maxLen);
2490     }
2491   }
2492 
2493   jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2494 
2495   int last_compile_type = normal_compile;
2496   if (CICountOSR && is_osr) {
2497     last_compile_type = osr_compile;
2498   }
2499 
2500   CompilerCounters* counters = thread->counters();
2501   counters->set_current_method(current_method);
2502   counters->set_compile_type((jlong) last_compile_type);
2503 }
2504 
2505 // ------------------------------------------------------------------
2506 // CompileBroker::push_jni_handle_block
2507 //
2508 // Push on a new block of JNI handles.
2509 void CompileBroker::push_jni_handle_block() {
2510   JavaThread* thread = JavaThread::current();
2511 
2512   // Allocate a new block for JNI handles.
2513   // Inlined code from jni_PushLocalFrame()
2514   JNIHandleBlock* java_handles = thread->active_handles();
2515   JNIHandleBlock* compile_handles = JNIHandleBlock::allocate_block(thread);
2516   assert(compile_handles != NULL && java_handles != NULL, "should not be NULL");
2517   compile_handles->set_pop_frame_link(java_handles);  // make sure java handles get gc'd.
2518   thread->set_active_handles(compile_handles);
2519 }
2520 
2521 
2522 // ------------------------------------------------------------------
2523 // CompileBroker::pop_jni_handle_block
2524 //
2525 // Pop off the current block of JNI handles.
2526 void CompileBroker::pop_jni_handle_block() {
2527   JavaThread* thread = JavaThread::current();
2528 
2529   // Release our JNI handle block
2530   JNIHandleBlock* compile_handles = thread->active_handles();
2531   JNIHandleBlock* java_handles = compile_handles->pop_frame_link();
2532   thread->set_active_handles(java_handles);
2533   compile_handles->set_pop_frame_link(NULL);
2534   JNIHandleBlock::release_block(compile_handles, thread); // may block
2535 }
2536 
2537 // ------------------------------------------------------------------
2538 // CompileBroker::collect_statistics
2539 //
2540 // Collect statistics about the compilation.
2541 
2542 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2543   bool success = task->is_success();
2544   methodHandle method (thread, task->method());
2545   uint compile_id = task->compile_id();
2546   bool is_osr = (task->osr_bci() != standard_entry_bci);
2547   nmethod* code = task->code();
2548   CompilerCounters* counters = thread->counters();
2549 
2550   assert(code == NULL || code->is_locked_by_vm(), "will survive the MutexLocker");
2551   MutexLocker locker(CompileStatistics_lock);
2552 
2553   // _perf variables are production performance counters which are
2554   // updated regardless of the setting of the CITime and CITimeEach flags
2555   //
2556 
2557   // account all time, including bailouts and failures in this counter;
2558   // C1 and C2 counters are counting both successful and unsuccessful compiles
2559   _t_total_compilation.add(time);
2560 
2561   if (!success) {
2562     _total_bailout_count++;
2563     if (UsePerfData) {
2564       _perf_last_failed_method->set_value(counters->current_method());
2565       _perf_last_failed_type->set_value(counters->compile_type());
2566       _perf_total_bailout_count->inc();
2567     }
2568     _t_bailedout_compilation.add(time);
2569   } else if (code == NULL) {
2570     if (UsePerfData) {
2571       _perf_last_invalidated_method->set_value(counters->current_method());
2572       _perf_last_invalidated_type->set_value(counters->compile_type());
2573       _perf_total_invalidated_count->inc();
2574     }
2575     _total_invalidated_count++;
2576     _t_invalidated_compilation.add(time);
2577   } else {
2578     // Compilation succeeded
2579 
2580     // update compilation ticks - used by the implementation of
2581     // java.lang.management.CompilationMXBean
2582     _perf_total_compilation->inc(time.ticks());
2583     _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
2584 
2585     if (CITime) {
2586       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2587       if (is_osr) {
2588         _t_osr_compilation.add(time);
2589         _sum_osr_bytes_compiled += bytes_compiled;
2590       } else {
2591         _t_standard_compilation.add(time);
2592         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2593       }
2594 
2595 #if INCLUDE_JVMCI
2596       AbstractCompiler* comp = compiler(task->comp_level());
2597       if (comp) {
2598         CompilerStatistics* stats = comp->stats();
2599         if (stats) {
2600           if (is_osr) {
2601             stats->_osr.update(time, bytes_compiled);
2602           } else {
2603             stats->_standard.update(time, bytes_compiled);
2604           }
2605           stats->_nmethods_size += code->total_size();
2606           stats->_nmethods_code_size += code->insts_size();
2607         } else { // if (!stats)
2608           assert(false, "Compiler statistics object must exist");
2609         }
2610       } else { // if (!comp)
2611         assert(false, "Compiler object must exist");
2612       }
2613 #endif // INCLUDE_JVMCI
2614     }
2615 
2616     if (UsePerfData) {
2617       // save the name of the last method compiled
2618       _perf_last_method->set_value(counters->current_method());
2619       _perf_last_compile_type->set_value(counters->compile_type());
2620       _perf_last_compile_size->set_value(method->code_size() +
2621                                          task->num_inlined_bytecodes());
2622       if (is_osr) {
2623         _perf_osr_compilation->inc(time.ticks());
2624         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2625       } else {
2626         _perf_standard_compilation->inc(time.ticks());
2627         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2628       }
2629     }
2630 
2631     if (CITimeEach) {
2632       float bytes_per_sec = 1.0 * (method->code_size() + task->num_inlined_bytecodes()) / time.seconds();
2633       tty->print_cr("%3d   seconds: %f bytes/sec : %f (bytes %d + %d inlined)",
2634                     compile_id, time.seconds(), bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2635     }
2636 
2637     // Collect counts of successful compilations
2638     _sum_nmethod_size      += code->total_size();
2639     _sum_nmethod_code_size += code->insts_size();
2640     _total_compile_count++;
2641 
2642     if (UsePerfData) {
2643       _perf_sum_nmethod_size->inc(     code->total_size());
2644       _perf_sum_nmethod_code_size->inc(code->insts_size());
2645       _perf_total_compile_count->inc();
2646     }
2647 
2648     if (is_osr) {
2649       if (UsePerfData) _perf_total_osr_compile_count->inc();
2650       _total_osr_compile_count++;
2651     } else {
2652       if (UsePerfData) _perf_total_standard_compile_count->inc();
2653       _total_standard_compile_count++;
2654     }
2655   }
2656   // set the current method for the thread to null
2657   if (UsePerfData) counters->set_current_method("");
2658 }
2659 
2660 const char* CompileBroker::compiler_name(int comp_level) {
2661   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2662   if (comp == NULL) {
2663     return "no compiler";
2664   } else {
2665     return (comp->name());
2666   }
2667 }
2668 
2669 #if INCLUDE_JVMCI
2670 void CompileBroker::print_times(AbstractCompiler* comp) {
2671   CompilerStatistics* stats = comp->stats();
2672   if (stats) {
2673     tty->print_cr("  %s {speed: %d bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
2674                 comp->name(), stats->bytes_per_second(),
2675                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2676                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2677                 stats->_nmethods_size, stats->_nmethods_code_size);
2678   } else { // if (!stats)
2679     assert(false, "Compiler statistics object must exist");
2680   }
2681   comp->print_timers();
2682 }
2683 #endif // INCLUDE_JVMCI
2684 
2685 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2686 #if INCLUDE_JVMCI
2687   elapsedTimer standard_compilation;
2688   elapsedTimer total_compilation;
2689   elapsedTimer osr_compilation;
2690 
2691   int standard_bytes_compiled = 0;
2692   int osr_bytes_compiled = 0;
2693 
2694   int standard_compile_count = 0;
2695   int osr_compile_count = 0;
2696   int total_compile_count = 0;
2697 
2698   int nmethods_size = 0;
2699   int nmethods_code_size = 0;
2700   bool printedHeader = false;
2701 
2702   for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2703     AbstractCompiler* comp = _compilers[i];
2704     if (comp != NULL) {
2705       if (per_compiler && aggregate && !printedHeader) {
2706         printedHeader = true;
2707         tty->cr();
2708         tty->print_cr("Individual compiler times (for compiled methods only)");
2709         tty->print_cr("------------------------------------------------");
2710         tty->cr();
2711       }
2712       CompilerStatistics* stats = comp->stats();
2713 
2714       if (stats) {
2715         standard_compilation.add(stats->_standard._time);
2716         osr_compilation.add(stats->_osr._time);
2717 
2718         standard_bytes_compiled += stats->_standard._bytes;
2719         osr_bytes_compiled += stats->_osr._bytes;
2720 
2721         standard_compile_count += stats->_standard._count;
2722         osr_compile_count += stats->_osr._count;
2723 
2724         nmethods_size += stats->_nmethods_size;
2725         nmethods_code_size += stats->_nmethods_code_size;
2726       } else { // if (!stats)
2727         assert(false, "Compiler statistics object must exist");
2728       }
2729 
2730       if (per_compiler) {
2731         print_times(comp);
2732       }
2733     }
2734   }
2735   total_compile_count = osr_compile_count + standard_compile_count;
2736   total_compilation.add(osr_compilation);
2737   total_compilation.add(standard_compilation);
2738 
2739   // In hosted mode, print the JVMCI compiler specific counters manually.
2740   if (!UseJVMCICompiler) {
2741     JVMCICompiler::print_compilation_timers();
2742   }
2743 #else // INCLUDE_JVMCI
2744   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2745   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2746   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2747 
2748   int standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2749   int osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2750 
2751   int standard_compile_count = CompileBroker::_total_standard_compile_count;
2752   int osr_compile_count = CompileBroker::_total_osr_compile_count;
2753   int total_compile_count = CompileBroker::_total_compile_count;
2754 
2755   int nmethods_size = CompileBroker::_sum_nmethod_code_size;
2756   int nmethods_code_size = CompileBroker::_sum_nmethod_size;
2757 #endif // INCLUDE_JVMCI
2758 
2759   if (!aggregate) {
2760     return;
2761   }
2762   tty->cr();
2763   tty->print_cr("Accumulated compiler times");
2764   tty->print_cr("----------------------------------------------------------");
2765                //0000000000111111111122222222223333333333444444444455555555556666666666
2766                //0123456789012345678901234567890123456789012345678901234567890123456789
2767   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2768   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2769                 standard_compilation.seconds(),
2770                 standard_compilation.seconds() / standard_compile_count);
2771   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2772                 CompileBroker::_t_bailedout_compilation.seconds(),
2773                 CompileBroker::_t_bailedout_compilation.seconds() / CompileBroker::_total_bailout_count);
2774   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2775                 osr_compilation.seconds(),
2776                 osr_compilation.seconds() / osr_compile_count);
2777   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2778                 CompileBroker::_t_invalidated_compilation.seconds(),
2779                 CompileBroker::_t_invalidated_compilation.seconds() / CompileBroker::_total_invalidated_count);
2780 
2781   AbstractCompiler *comp = compiler(CompLevel_simple);
2782   if (comp != NULL) {
2783     tty->cr();
2784     comp->print_timers();
2785   }
2786   comp = compiler(CompLevel_full_optimization);
2787   if (comp != NULL) {
2788     tty->cr();
2789     comp->print_timers();
2790   }
2791   tty->cr();
2792   tty->print_cr("  Total compiled methods    : %8d methods", total_compile_count);
2793   tty->print_cr("    Standard compilation    : %8d methods", standard_compile_count);
2794   tty->print_cr("    On stack replacement    : %8d methods", osr_compile_count);
2795   int tcb = osr_bytes_compiled + standard_bytes_compiled;
2796   tty->print_cr("  Total compiled bytecodes  : %8d bytes", tcb);
2797   tty->print_cr("    Standard compilation    : %8d bytes", standard_bytes_compiled);
2798   tty->print_cr("    On stack replacement    : %8d bytes", osr_bytes_compiled);
2799   double tcs = total_compilation.seconds();
2800   int bps = tcs == 0.0 ? 0 : (int)(tcb / tcs);
2801   tty->print_cr("  Average compilation speed : %8d bytes/s", bps);
2802   tty->cr();
2803   tty->print_cr("  nmethod code size         : %8d bytes", nmethods_code_size);
2804   tty->print_cr("  nmethod total size        : %8d bytes", nmethods_size);
2805 }
2806 
2807 // Print general/accumulated JIT information.
2808 void CompileBroker::print_info(outputStream *out) {
2809   if (out == NULL) out = tty;
2810   out->cr();
2811   out->print_cr("======================");
2812   out->print_cr("   General JIT info   ");
2813   out->print_cr("======================");
2814   out->cr();
2815   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2816   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2817   out->cr();
2818   out->print_cr("CodeCache overview");
2819   out->print_cr("--------------------------------------------------------");
2820   out->cr();
2821   out->print_cr("         Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
2822   out->print_cr("        Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
2823   out->print_cr("  Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
2824   out->cr();
2825 
2826   out->cr();
2827   out->print_cr("CodeCache cleaning overview");
2828   out->print_cr("--------------------------------------------------------");
2829   out->cr();
2830   NMethodSweeper::print(out);
2831   out->print_cr("--------------------------------------------------------");
2832   out->cr();
2833 }
2834 
2835 // Note: tty_lock must not be held upon entry to this function.
2836 //       Print functions called from herein do "micro-locking" on tty_lock.
2837 //       That's a tradeoff which keeps together important blocks of output.
2838 //       At the same time, continuous tty_lock hold time is kept in check,
2839 //       preventing concurrently printing threads from stalling a long time.
2840 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
2841   TimeStamp ts_total;
2842   TimeStamp ts_global;
2843   TimeStamp ts;
2844 
2845   bool allFun = !strcmp(function, "all");
2846   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2847   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2848   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2849   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2850   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2851   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2852   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2853   bool discard = !strcmp(function, "discard") || allFun;
2854 
2855   if (out == NULL) {
2856     out = tty;
2857   }
2858 
2859   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2860     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2861     out->cr();
2862     return;
2863   }
2864 
2865   ts_total.update(); // record starting point
2866 
2867   if (aggregate) {
2868     print_info(out);
2869   }
2870 
2871   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2872   // That prevents another thread from destroying our view on the CodeHeap.
2873   // When we request individual parts of the analysis via the jcmd interface, it is possible
2874   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2875   // updated the aggregated data. That's a tolerable tradeoff because we can't hold a lock
2876   // across user interaction.
2877   // Acquire this lock before acquiring the CodeCache_lock.
2878   // CodeHeapStateAnalytics_lock could be held by a concurrent thread for a long time,
2879   // leading to an unnecessarily long hold time of the CodeCache_lock.
2880   ts.update(); // record starting point
2881   MutexLocker mu1(CodeHeapStateAnalytics_lock, Mutex::_no_safepoint_check_flag);
2882   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2883 
2884   // If we serve an "allFun" call, it is beneficial to hold the CodeCache_lock
2885   // for the entire duration of aggregation and printing. That makes sure
2886   // we see a consistent picture and do not run into issues caused by
2887   // the CodeHeap being altered concurrently.
2888   Mutex* global_lock   = allFun ? CodeCache_lock : NULL;
2889   Mutex* function_lock = allFun ? NULL : CodeCache_lock;
2890   ts_global.update(); // record starting point
2891   MutexLocker mu2(global_lock, Mutex::_no_safepoint_check_flag);
2892   if (global_lock != NULL) {
2893     out->print_cr("\n__ CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2894     ts_global.update(); // record starting point
2895   }
2896 
2897   if (aggregate) {
2898     ts.update(); // record starting point
2899     MutexLocker mu3(function_lock, Mutex::_no_safepoint_check_flag);
2900     if (function_lock != NULL) {
2901       out->print_cr("\n__ CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2902     }
2903 
2904     ts.update(); // record starting point
2905     CodeCache::aggregate(out, granularity);
2906     if (function_lock != NULL) {
2907       out->print_cr("\n__ CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2908     }
2909   }
2910 
2911   if (usedSpace) CodeCache::print_usedSpace(out);
2912   if (freeSpace) CodeCache::print_freeSpace(out);
2913   if (methodCount) CodeCache::print_count(out);
2914   if (methodSpace) CodeCache::print_space(out);
2915   if (methodAge) CodeCache::print_age(out);
2916   if (methodNames) {
2917     // print_names() has shown to be sensitive to concurrent CodeHeap modifications.
2918     // Therefore, request  the CodeCache_lock before calling...
2919     MutexLocker mu3(function_lock, Mutex::_no_safepoint_check_flag);
2920     CodeCache::print_names(out);
2921   }
2922   if (discard) CodeCache::discard(out);
2923 
2924   if (global_lock != NULL) {
2925     out->print_cr("\n__ CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2926   }
2927   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
2928 }