1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/iterator.hpp"
  51 #include "memory/metaspaceShared.hpp"
  52 #include "memory/oopFactory.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "memory/universe.hpp"
  55 #include "oops/access.inline.hpp"
  56 #include "oops/instanceKlass.hpp"
  57 #include "oops/objArrayOop.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "oops/symbol.hpp"
  60 #include "oops/typeArrayOop.inline.hpp"
  61 #include "oops/verifyOopClosure.hpp"
  62 #include "prims/jvm_misc.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "prims/jvmtiThreadState.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/biasedLocking.hpp"
  68 #include "runtime/fieldDescriptor.inline.hpp"
  69 #include "runtime/flags/jvmFlagConstraintList.hpp"
  70 #include "runtime/flags/jvmFlagRangeList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/serviceThread.hpp"
  91 #include "runtime/sharedRuntime.hpp"
  92 #include "runtime/statSampler.hpp"
  93 #include "runtime/stubRoutines.hpp"
  94 #include "runtime/sweeper.hpp"
  95 #include "runtime/task.hpp"
  96 #include "runtime/thread.inline.hpp"
  97 #include "runtime/threadCritical.hpp"
  98 #include "runtime/threadSMR.inline.hpp"
  99 #include "runtime/threadStatisticalInfo.hpp"
 100 #include "runtime/timer.hpp"
 101 #include "runtime/timerTrace.hpp"
 102 #include "runtime/vframe.inline.hpp"
 103 #include "runtime/vframeArray.hpp"
 104 #include "runtime/vframe_hp.hpp"
 105 #include "runtime/vmThread.hpp"
 106 #include "runtime/vmOperations.hpp"
 107 #include "runtime/vm_version.hpp"
 108 #include "services/attachListener.hpp"
 109 #include "services/management.hpp"
 110 #include "services/memTracker.hpp"
 111 #include "services/threadService.hpp"
 112 #include "utilities/align.hpp"
 113 #include "utilities/copy.hpp"
 114 #include "utilities/defaultStream.hpp"
 115 #include "utilities/dtrace.hpp"
 116 #include "utilities/events.hpp"
 117 #include "utilities/macros.hpp"
 118 #include "utilities/preserveException.hpp"
 119 #include "utilities/singleWriterSynchronizer.hpp"
 120 #include "utilities/vmError.hpp"
 121 #if INCLUDE_JVMCI
 122 #include "jvmci/jvmci.hpp"
 123 #include "jvmci/jvmciEnv.hpp"
 124 #endif
 125 #ifdef COMPILER1
 126 #include "c1/c1_Compiler.hpp"
 127 #endif
 128 #ifdef COMPILER2
 129 #include "opto/c2compiler.hpp"
 130 #include "opto/idealGraphPrinter.hpp"
 131 #endif
 132 #if INCLUDE_RTM_OPT
 133 #include "runtime/rtmLocking.hpp"
 134 #endif
 135 #if INCLUDE_JFR
 136 #include "jfr/jfr.hpp"
 137 #endif
 138 
 139 // Initialization after module runtime initialization
 140 void universe_post_module_init();  // must happen after call_initPhase2
 141 
 142 #ifdef DTRACE_ENABLED
 143 
 144 // Only bother with this argument setup if dtrace is available
 145 
 146   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 147   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 150     {                                                                      \
 151       ResourceMark rm(this);                                               \
 152       int len = 0;                                                         \
 153       const char* name = (javathread)->get_thread_name();                  \
 154       len = strlen(name);                                                  \
 155       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 156         (char *) name, len,                                                \
 157         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 158         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 159         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 160     }
 161 
 162 #else //  ndef DTRACE_ENABLED
 163 
 164   #define DTRACE_THREAD_PROBE(probe, javathread)
 165 
 166 #endif // ndef DTRACE_ENABLED
 167 
 168 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 169 // Current thread is maintained as a thread-local variable
 170 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
 171 #endif
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const size_t alignment = markWord::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 181                                                          AllocFailStrategy::RETURN_NULL);
 182     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 183     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 184            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 185            "JavaThread alignment code overflowed allocated storage");
 186     if (aligned_addr != real_malloc_addr) {
 187       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                               p2i(real_malloc_addr),
 189                               p2i(aligned_addr));
 190     }
 191     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 192     return aligned_addr;
 193   } else {
 194     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 195                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 196   }
 197 }
 198 
 199 void Thread::operator delete(void* p) {
 200   if (UseBiasedLocking) {
 201     FreeHeap(((Thread*) p)->_real_malloc_address);
 202   } else {
 203     FreeHeap(p);
 204   }
 205 }
 206 
 207 void JavaThread::smr_delete() {
 208   if (_on_thread_list) {
 209     ThreadsSMRSupport::smr_delete(this);
 210   } else {
 211     delete this;
 212   }
 213 }
 214 
 215 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 216 // JavaThread
 217 
 218 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 219 
 220 Thread::Thread() {
 221 
 222   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 223 
 224   // stack and get_thread
 225   set_stack_base(NULL);
 226   set_stack_size(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, mtClass));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // Initial value of zero ==> never claimed.
 242   _threads_do_token = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   NOT_PRODUCT(_no_safepoint_count = 0;)
 254   NOT_PRODUCT(_skip_gcalot = false;)
 255   _jvmti_env_iteration_count = 0;
 256   set_allocated_bytes(0);
 257   _vm_operation_started_count = 0;
 258   _vm_operation_completed_count = 0;
 259   _current_pending_monitor = NULL;
 260   _current_pending_monitor_is_from_java = true;
 261   _current_waiting_monitor = NULL;
 262   _current_pending_raw_monitor = NULL;
 263   _num_nested_signal = 0;
 264   om_free_list = NULL;
 265   om_free_count = 0;
 266   om_free_provision = 32;
 267   om_in_use_list = NULL;
 268   om_in_use_count = 0;
 269 
 270 #ifdef ASSERT
 271   _visited_for_critical_count = false;
 272 #endif
 273 
 274   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 275                          Monitor::_safepoint_check_sometimes);
 276   _suspend_flags = 0;
 277 
 278   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 279   _hashStateX = os::random();
 280   _hashStateY = 842502087;
 281   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 282   _hashStateW = 273326509;
 283 
 284   _OnTrap   = 0;
 285   _Stalled  = 0;
 286   _TypeTag  = 0x2BAD;
 287 
 288   // Many of the following fields are effectively final - immutable
 289   // Note that nascent threads can't use the Native Monitor-Mutex
 290   // construct until the _MutexEvent is initialized ...
 291   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 292   // we might instead use a stack of ParkEvents that we could provision on-demand.
 293   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 294   // and ::Release()
 295   _ParkEvent   = ParkEvent::Allocate(this);
 296   _MuxEvent    = ParkEvent::Allocate(this);
 297 
 298 #ifdef CHECK_UNHANDLED_OOPS
 299   if (CheckUnhandledOops) {
 300     _unhandled_oops = new UnhandledOops(this);
 301   }
 302 #endif // CHECK_UNHANDLED_OOPS
 303 #ifdef ASSERT
 304   if (UseBiasedLocking) {
 305     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 306     assert(this == _real_malloc_address ||
 307            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 308            "bug in forced alignment of thread objects");
 309   }
 310 #endif // ASSERT
 311 
 312   // Notify the barrier set that a thread is being created. The initial
 313   // thread is created before the barrier set is available.  The call to
 314   // BarrierSet::on_thread_create() for this thread is therefore deferred
 315   // to BarrierSet::set_barrier_set().
 316   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 317   if (barrier_set != NULL) {
 318     barrier_set->on_thread_create(this);
 319   } else {
 320     // Only the main thread should be created before the barrier set
 321     // and that happens just before Thread::current is set. No other thread
 322     // can attach as the VM is not created yet, so they can't execute this code.
 323     // If the main thread creates other threads before the barrier set that is an error.
 324     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 325   }
 326 }
 327 
 328 void Thread::initialize_thread_current() {
 329 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 330   assert(_thr_current == NULL, "Thread::current already initialized");
 331   _thr_current = this;
 332 #endif
 333   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 334   ThreadLocalStorage::set_thread(this);
 335   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 336 }
 337 
 338 void Thread::clear_thread_current() {
 339   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 340 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 341   _thr_current = NULL;
 342 #endif
 343   ThreadLocalStorage::set_thread(NULL);
 344 }
 345 
 346 void Thread::record_stack_base_and_size() {
 347   // Note: at this point, Thread object is not yet initialized. Do not rely on
 348   // any members being initialized. Do not rely on Thread::current() being set.
 349   // If possible, refrain from doing anything which may crash or assert since
 350   // quite probably those crash dumps will be useless.
 351   set_stack_base(os::current_stack_base());
 352   set_stack_size(os::current_stack_size());
 353 
 354   // Set stack limits after thread is initialized.
 355   if (is_Java_thread()) {
 356     ((JavaThread*) this)->set_stack_overflow_limit();
 357     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 358   }
 359 }
 360 
 361 #if INCLUDE_NMT
 362 void Thread::register_thread_stack_with_NMT() {
 363   MemTracker::record_thread_stack(stack_end(), stack_size());
 364 }
 365 #endif // INCLUDE_NMT
 366 
 367 void Thread::call_run() {
 368   DEBUG_ONLY(_run_state = CALL_RUN;)
 369 
 370   // At this point, Thread object should be fully initialized and
 371   // Thread::current() should be set.
 372 
 373   assert(Thread::current_or_null() != NULL, "current thread is unset");
 374   assert(Thread::current_or_null() == this, "current thread is wrong");
 375 
 376   // Perform common initialization actions
 377 
 378   register_thread_stack_with_NMT();
 379 
 380   JFR_ONLY(Jfr::on_thread_start(this);)
 381 
 382   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 383     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 384     os::current_thread_id(), p2i(stack_end()),
 385     p2i(stack_base()), stack_size()/1024);
 386 
 387   // Perform <ChildClass> initialization actions
 388   DEBUG_ONLY(_run_state = PRE_RUN;)
 389   this->pre_run();
 390 
 391   // Invoke <ChildClass>::run()
 392   DEBUG_ONLY(_run_state = RUN;)
 393   this->run();
 394   // Returned from <ChildClass>::run(). Thread finished.
 395 
 396   // Perform common tear-down actions
 397 
 398   assert(Thread::current_or_null() != NULL, "current thread is unset");
 399   assert(Thread::current_or_null() == this, "current thread is wrong");
 400 
 401   // Perform <ChildClass> tear-down actions
 402   DEBUG_ONLY(_run_state = POST_RUN;)
 403   this->post_run();
 404 
 405   // Note: at this point the thread object may already have deleted itself,
 406   // so from here on do not dereference *this*. Not all thread types currently
 407   // delete themselves when they terminate. But no thread should ever be deleted
 408   // asynchronously with respect to its termination - that is what _run_state can
 409   // be used to check.
 410 
 411   assert(Thread::current_or_null() == NULL, "current thread still present");
 412 }
 413 
 414 Thread::~Thread() {
 415 
 416   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 417   // get started due to errors etc. Any active thread should at least reach post_run
 418   // before it is deleted (usually in post_run()).
 419   assert(_run_state == PRE_CALL_RUN ||
 420          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 421          "_run_state=%d", (int)_run_state);
 422 
 423   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 424   // set might not be available if we encountered errors during bootstrapping.
 425   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 426   if (barrier_set != NULL) {
 427     barrier_set->on_thread_destroy(this);
 428   }
 429 
 430   // stack_base can be NULL if the thread is never started or exited before
 431   // record_stack_base_and_size called. Although, we would like to ensure
 432   // that all started threads do call record_stack_base_and_size(), there is
 433   // not proper way to enforce that.
 434 #if INCLUDE_NMT
 435   if (_stack_base != NULL) {
 436     MemTracker::release_thread_stack(stack_end(), stack_size());
 437 #ifdef ASSERT
 438     set_stack_base(NULL);
 439 #endif
 440   }
 441 #endif // INCLUDE_NMT
 442 
 443   // deallocate data structures
 444   delete resource_area();
 445   // since the handle marks are using the handle area, we have to deallocated the root
 446   // handle mark before deallocating the thread's handle area,
 447   assert(last_handle_mark() != NULL, "check we have an element");
 448   delete last_handle_mark();
 449   assert(last_handle_mark() == NULL, "check we have reached the end");
 450 
 451   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 452   // We NULL out the fields for good hygiene.
 453   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 454   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 455 
 456   delete handle_area();
 457   delete metadata_handles();
 458 
 459   // SR_handler uses this as a termination indicator -
 460   // needs to happen before os::free_thread()
 461   delete _SR_lock;
 462   _SR_lock = NULL;
 463 
 464   // osthread() can be NULL, if creation of thread failed.
 465   if (osthread() != NULL) os::free_thread(osthread());
 466 
 467   // Clear Thread::current if thread is deleting itself and it has not
 468   // already been done. This must be done before the memory is deallocated.
 469   // Needed to ensure JNI correctly detects non-attached threads.
 470   if (this == Thread::current_or_null()) {
 471     Thread::clear_thread_current();
 472   }
 473 
 474   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 475 }
 476 
 477 #ifdef ASSERT
 478 // A JavaThread is considered "dangling" if it is not the current
 479 // thread, has been added the Threads list, the system is not at a
 480 // safepoint and the Thread is not "protected".
 481 //
 482 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 483   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 484          !((JavaThread *) thread)->on_thread_list() ||
 485          SafepointSynchronize::is_at_safepoint() ||
 486          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 487          "possibility of dangling Thread pointer");
 488 }
 489 #endif
 490 
 491 ThreadPriority Thread::get_priority(const Thread* const thread) {
 492   ThreadPriority priority;
 493   // Can return an error!
 494   (void)os::get_priority(thread, priority);
 495   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 496   return priority;
 497 }
 498 
 499 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 500   debug_only(check_for_dangling_thread_pointer(thread);)
 501   // Can return an error!
 502   (void)os::set_priority(thread, priority);
 503 }
 504 
 505 
 506 void Thread::start(Thread* thread) {
 507   // Start is different from resume in that its safety is guaranteed by context or
 508   // being called from a Java method synchronized on the Thread object.
 509   if (!DisableStartThread) {
 510     if (thread->is_Java_thread()) {
 511       // Initialize the thread state to RUNNABLE before starting this thread.
 512       // Can not set it after the thread started because we do not know the
 513       // exact thread state at that time. It could be in MONITOR_WAIT or
 514       // in SLEEPING or some other state.
 515       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 516                                           java_lang_Thread::RUNNABLE);
 517     }
 518     os::start_thread(thread);
 519   }
 520 }
 521 
 522 class InstallAsyncExceptionClosure : public HandshakeClosure {
 523   Handle _throwable; // The Throwable thrown at the target Thread
 524 public:
 525   InstallAsyncExceptionClosure(Handle throwable) : HandshakeClosure("InstallAsyncException"), _throwable(throwable) {}
 526 
 527   void do_thread(Thread* thr) {
 528     JavaThread* target = (JavaThread*)thr;
 529     // Note that this now allows multiple ThreadDeath exceptions to be
 530     // thrown at a thread.
 531     // The target thread has run and has not exited yet.
 532     target->send_thread_stop(_throwable());
 533   }
 534 };
 535 
 536 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 537   Handle throwable(Thread::current(), java_throwable);
 538   JavaThread* target = java_lang_Thread::thread(java_thread);
 539   InstallAsyncExceptionClosure vm_stop(throwable);
 540   Handshake::execute(&vm_stop, target);
 541 }
 542 
 543 
 544 // Check if an external suspend request has completed (or has been
 545 // cancelled). Returns true if the thread is externally suspended and
 546 // false otherwise.
 547 //
 548 // The bits parameter returns information about the code path through
 549 // the routine. Useful for debugging:
 550 //
 551 // set in is_ext_suspend_completed():
 552 // 0x00000001 - routine was entered
 553 // 0x00000010 - routine return false at end
 554 // 0x00000100 - thread exited (return false)
 555 // 0x00000200 - suspend request cancelled (return false)
 556 // 0x00000400 - thread suspended (return true)
 557 // 0x00001000 - thread is in a suspend equivalent state (return true)
 558 // 0x00002000 - thread is native and walkable (return true)
 559 // 0x00004000 - thread is native_trans and walkable (needed retry)
 560 //
 561 // set in wait_for_ext_suspend_completion():
 562 // 0x00010000 - routine was entered
 563 // 0x00020000 - suspend request cancelled before loop (return false)
 564 // 0x00040000 - thread suspended before loop (return true)
 565 // 0x00080000 - suspend request cancelled in loop (return false)
 566 // 0x00100000 - thread suspended in loop (return true)
 567 // 0x00200000 - suspend not completed during retry loop (return false)
 568 
 569 // Helper class for tracing suspend wait debug bits.
 570 //
 571 // 0x00000100 indicates that the target thread exited before it could
 572 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 573 // 0x00080000 each indicate a cancelled suspend request so they don't
 574 // count as wait failures either.
 575 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 576 
 577 class TraceSuspendDebugBits : public StackObj {
 578  private:
 579   JavaThread * jt;
 580   bool         is_wait;
 581   bool         called_by_wait;  // meaningful when !is_wait
 582   uint32_t *   bits;
 583 
 584  public:
 585   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 586                         uint32_t *_bits) {
 587     jt             = _jt;
 588     is_wait        = _is_wait;
 589     called_by_wait = _called_by_wait;
 590     bits           = _bits;
 591   }
 592 
 593   ~TraceSuspendDebugBits() {
 594     if (!is_wait) {
 595 #if 1
 596       // By default, don't trace bits for is_ext_suspend_completed() calls.
 597       // That trace is very chatty.
 598       return;
 599 #else
 600       if (!called_by_wait) {
 601         // If tracing for is_ext_suspend_completed() is enabled, then only
 602         // trace calls to it from wait_for_ext_suspend_completion()
 603         return;
 604       }
 605 #endif
 606     }
 607 
 608     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 609       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 610         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 611         ResourceMark rm;
 612 
 613         tty->print_cr(
 614                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 615                       jt->get_thread_name(), *bits);
 616 
 617         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 618       }
 619     }
 620   }
 621 };
 622 #undef DEBUG_FALSE_BITS
 623 
 624 
 625 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 626                                           uint32_t *bits) {
 627   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 628 
 629   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 630   bool do_trans_retry;           // flag to force the retry
 631 
 632   *bits |= 0x00000001;
 633 
 634   do {
 635     do_trans_retry = false;
 636 
 637     if (is_exiting()) {
 638       // Thread is in the process of exiting. This is always checked
 639       // first to reduce the risk of dereferencing a freed JavaThread.
 640       *bits |= 0x00000100;
 641       return false;
 642     }
 643 
 644     if (!is_external_suspend()) {
 645       // Suspend request is cancelled. This is always checked before
 646       // is_ext_suspended() to reduce the risk of a rogue resume
 647       // confusing the thread that made the suspend request.
 648       *bits |= 0x00000200;
 649       return false;
 650     }
 651 
 652     if (is_ext_suspended()) {
 653       // thread is suspended
 654       *bits |= 0x00000400;
 655       return true;
 656     }
 657 
 658     // Now that we no longer do hard suspends of threads running
 659     // native code, the target thread can be changing thread state
 660     // while we are in this routine:
 661     //
 662     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 663     //
 664     // We save a copy of the thread state as observed at this moment
 665     // and make our decision about suspend completeness based on the
 666     // copy. This closes the race where the thread state is seen as
 667     // _thread_in_native_trans in the if-thread_blocked check, but is
 668     // seen as _thread_blocked in if-thread_in_native_trans check.
 669     JavaThreadState save_state = thread_state();
 670 
 671     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 672       // If the thread's state is _thread_blocked and this blocking
 673       // condition is known to be equivalent to a suspend, then we can
 674       // consider the thread to be externally suspended. This means that
 675       // the code that sets _thread_blocked has been modified to do
 676       // self-suspension if the blocking condition releases. We also
 677       // used to check for CONDVAR_WAIT here, but that is now covered by
 678       // the _thread_blocked with self-suspension check.
 679       //
 680       // Return true since we wouldn't be here unless there was still an
 681       // external suspend request.
 682       *bits |= 0x00001000;
 683       return true;
 684     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 685       // Threads running native code will self-suspend on native==>VM/Java
 686       // transitions. If its stack is walkable (should always be the case
 687       // unless this function is called before the actual java_suspend()
 688       // call), then the wait is done.
 689       *bits |= 0x00002000;
 690       return true;
 691     } else if (!called_by_wait && !did_trans_retry &&
 692                save_state == _thread_in_native_trans &&
 693                frame_anchor()->walkable()) {
 694       // The thread is transitioning from thread_in_native to another
 695       // thread state. check_safepoint_and_suspend_for_native_trans()
 696       // will force the thread to self-suspend. If it hasn't gotten
 697       // there yet we may have caught the thread in-between the native
 698       // code check above and the self-suspend. Lucky us. If we were
 699       // called by wait_for_ext_suspend_completion(), then it
 700       // will be doing the retries so we don't have to.
 701       //
 702       // Since we use the saved thread state in the if-statement above,
 703       // there is a chance that the thread has already transitioned to
 704       // _thread_blocked by the time we get here. In that case, we will
 705       // make a single unnecessary pass through the logic below. This
 706       // doesn't hurt anything since we still do the trans retry.
 707 
 708       *bits |= 0x00004000;
 709 
 710       // Once the thread leaves thread_in_native_trans for another
 711       // thread state, we break out of this retry loop. We shouldn't
 712       // need this flag to prevent us from getting back here, but
 713       // sometimes paranoia is good.
 714       did_trans_retry = true;
 715 
 716       // We wait for the thread to transition to a more usable state.
 717       for (int i = 1; i <= SuspendRetryCount; i++) {
 718         // We used to do an "os::yield_all(i)" call here with the intention
 719         // that yielding would increase on each retry. However, the parameter
 720         // is ignored on Linux which means the yield didn't scale up. Waiting
 721         // on the SR_lock below provides a much more predictable scale up for
 722         // the delay. It also provides a simple/direct point to check for any
 723         // safepoint requests from the VMThread
 724 
 725         // temporarily drops SR_lock while doing wait with safepoint check
 726         // (if we're a JavaThread - the WatcherThread can also call this)
 727         // and increase delay with each retry
 728         if (Thread::current()->is_Java_thread()) {
 729           SR_lock()->wait(i * delay);
 730         } else {
 731           SR_lock()->wait_without_safepoint_check(i * delay);
 732         }
 733 
 734         // check the actual thread state instead of what we saved above
 735         if (thread_state() != _thread_in_native_trans) {
 736           // the thread has transitioned to another thread state so
 737           // try all the checks (except this one) one more time.
 738           do_trans_retry = true;
 739           break;
 740         }
 741       } // end retry loop
 742 
 743 
 744     }
 745   } while (do_trans_retry);
 746 
 747   *bits |= 0x00000010;
 748   return false;
 749 }
 750 
 751 // Wait for an external suspend request to complete (or be cancelled).
 752 // Returns true if the thread is externally suspended and false otherwise.
 753 //
 754 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 755                                                  uint32_t *bits) {
 756   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 757                              false /* !called_by_wait */, bits);
 758 
 759   // local flag copies to minimize SR_lock hold time
 760   bool is_suspended;
 761   bool pending;
 762   uint32_t reset_bits;
 763 
 764   // set a marker so is_ext_suspend_completed() knows we are the caller
 765   *bits |= 0x00010000;
 766 
 767   // We use reset_bits to reinitialize the bits value at the top of
 768   // each retry loop. This allows the caller to make use of any
 769   // unused bits for their own marking purposes.
 770   reset_bits = *bits;
 771 
 772   {
 773     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 774     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 775                                             delay, bits);
 776     pending = is_external_suspend();
 777   }
 778   // must release SR_lock to allow suspension to complete
 779 
 780   if (!pending) {
 781     // A cancelled suspend request is the only false return from
 782     // is_ext_suspend_completed() that keeps us from entering the
 783     // retry loop.
 784     *bits |= 0x00020000;
 785     return false;
 786   }
 787 
 788   if (is_suspended) {
 789     *bits |= 0x00040000;
 790     return true;
 791   }
 792 
 793   for (int i = 1; i <= retries; i++) {
 794     *bits = reset_bits;  // reinit to only track last retry
 795 
 796     // We used to do an "os::yield_all(i)" call here with the intention
 797     // that yielding would increase on each retry. However, the parameter
 798     // is ignored on Linux which means the yield didn't scale up. Waiting
 799     // on the SR_lock below provides a much more predictable scale up for
 800     // the delay. It also provides a simple/direct point to check for any
 801     // safepoint requests from the VMThread
 802 
 803     {
 804       Thread* t = Thread::current();
 805       MonitorLocker ml(SR_lock(),
 806                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 807       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 808       // can also call this)  and increase delay with each retry
 809       ml.wait(i * delay);
 810 
 811       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 812                                               delay, bits);
 813 
 814       // It is possible for the external suspend request to be cancelled
 815       // (by a resume) before the actual suspend operation is completed.
 816       // Refresh our local copy to see if we still need to wait.
 817       pending = is_external_suspend();
 818     }
 819 
 820     if (!pending) {
 821       // A cancelled suspend request is the only false return from
 822       // is_ext_suspend_completed() that keeps us from staying in the
 823       // retry loop.
 824       *bits |= 0x00080000;
 825       return false;
 826     }
 827 
 828     if (is_suspended) {
 829       *bits |= 0x00100000;
 830       return true;
 831     }
 832   } // end retry loop
 833 
 834   // thread did not suspend after all our retries
 835   *bits |= 0x00200000;
 836   return false;
 837 }
 838 
 839 // Called from API entry points which perform stack walking. If the
 840 // associated JavaThread is the current thread, then wait_for_suspend
 841 // is not used. Otherwise, it determines if we should wait for the
 842 // "other" thread to complete external suspension. (NOTE: in future
 843 // releases the suspension mechanism should be reimplemented so this
 844 // is not necessary.)
 845 //
 846 bool
 847 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 848   if (this != JavaThread::current()) {
 849     // "other" threads require special handling.
 850     if (wait_for_suspend) {
 851       // We are allowed to wait for the external suspend to complete
 852       // so give the other thread a chance to get suspended.
 853       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 854                                            SuspendRetryDelay, bits)) {
 855         // Didn't make it so let the caller know.
 856         return false;
 857       }
 858     }
 859     // We aren't allowed to wait for the external suspend to complete
 860     // so if the other thread isn't externally suspended we need to
 861     // let the caller know.
 862     else if (!is_ext_suspend_completed_with_lock(bits)) {
 863       return false;
 864     }
 865   }
 866 
 867   return true;
 868 }
 869 
 870 // GC Support
 871 bool Thread::claim_par_threads_do(uintx claim_token) {
 872   uintx token = _threads_do_token;
 873   if (token != claim_token) {
 874     uintx res = Atomic::cmpxchg(&_threads_do_token, token, claim_token);
 875     if (res == token) {
 876       return true;
 877     }
 878     guarantee(res == claim_token, "invariant");
 879   }
 880   return false;
 881 }
 882 
 883 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 884   if (active_handles() != NULL) {
 885     active_handles()->oops_do(f);
 886   }
 887   // Do oop for ThreadShadow
 888   f->do_oop((oop*)&_pending_exception);
 889   handle_area()->oops_do(f);
 890 
 891   // We scan thread local monitor lists here, and the remaining global
 892   // monitors in ObjectSynchronizer::oops_do().
 893   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 894 }
 895 
 896 void Thread::metadata_handles_do(void f(Metadata*)) {
 897   // Only walk the Handles in Thread.
 898   if (metadata_handles() != NULL) {
 899     for (int i = 0; i< metadata_handles()->length(); i++) {
 900       f(metadata_handles()->at(i));
 901     }
 902   }
 903 }
 904 
 905 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 906   // get_priority assumes osthread initialized
 907   if (osthread() != NULL) {
 908     int os_prio;
 909     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 910       st->print("os_prio=%d ", os_prio);
 911     }
 912 
 913     st->print("cpu=%.2fms ",
 914               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 915               );
 916     st->print("elapsed=%.2fs ",
 917               _statistical_info.getElapsedTime() / 1000.0
 918               );
 919     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 920       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 921       st->print("allocated=" SIZE_FORMAT "%s ",
 922                 byte_size_in_proper_unit(allocated_bytes),
 923                 proper_unit_for_byte_size(allocated_bytes)
 924                 );
 925       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 926     }
 927 
 928     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 929     osthread()->print_on(st);
 930   }
 931   ThreadsSMRSupport::print_info_on(this, st);
 932   st->print(" ");
 933   debug_only(if (WizardMode) print_owned_locks_on(st);)
 934 }
 935 
 936 void Thread::print() const { print_on(tty); }
 937 
 938 // Thread::print_on_error() is called by fatal error handler. Don't use
 939 // any lock or allocate memory.
 940 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 941   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 942 
 943   if (is_VM_thread())                 { st->print("VMThread"); }
 944   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 945   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 946   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 947   else                                { st->print("Thread"); }
 948 
 949   if (is_Named_thread()) {
 950     st->print(" \"%s\"", name());
 951   }
 952 
 953   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 954             p2i(stack_end()), p2i(stack_base()));
 955 
 956   if (osthread()) {
 957     st->print(" [id=%d]", osthread()->thread_id());
 958   }
 959 
 960   ThreadsSMRSupport::print_info_on(this, st);
 961 }
 962 
 963 void Thread::print_value_on(outputStream* st) const {
 964   if (is_Named_thread()) {
 965     st->print(" \"%s\" ", name());
 966   }
 967   st->print(INTPTR_FORMAT, p2i(this));   // print address
 968 }
 969 
 970 #ifdef ASSERT
 971 void Thread::print_owned_locks_on(outputStream* st) const {
 972   Mutex* cur = _owned_locks;
 973   if (cur == NULL) {
 974     st->print(" (no locks) ");
 975   } else {
 976     st->print_cr(" Locks owned:");
 977     while (cur) {
 978       cur->print_on(st);
 979       cur = cur->next();
 980     }
 981   }
 982 }
 983 
 984 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 985 void Thread::check_possible_safepoint() {
 986   if (!is_Java_thread()) return;
 987 
 988   if (_no_safepoint_count > 0) {
 989     print_owned_locks();
 990     fatal("Possible safepoint reached by thread that does not allow it");
 991   }
 992 #ifdef CHECK_UNHANDLED_OOPS
 993   // Clear unhandled oops in JavaThreads so we get a crash right away.
 994   clear_unhandled_oops();
 995 #endif // CHECK_UNHANDLED_OOPS
 996 }
 997 
 998 void Thread::check_for_valid_safepoint_state() {
 999   if (!is_Java_thread()) return;
1000 
1001   // Check NoSafepointVerifier, which is implied by locks taken that can be
1002   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
1003   // are held.
1004   check_possible_safepoint();
1005 
1006   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
1007     fatal("LEAF method calling lock?");
1008   }
1009 
1010   if (GCALotAtAllSafepoints) {
1011     // We could enter a safepoint here and thus have a gc
1012     InterfaceSupport::check_gc_alot();
1013   }
1014 }
1015 #endif // ASSERT
1016 
1017 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1018 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1019 // used for compilation in the future. If that change is made, the need for these methods
1020 // should be revisited, and they should be removed if possible.
1021 
1022 bool Thread::is_lock_owned(address adr) const {
1023   return is_in_full_stack(adr);
1024 }
1025 
1026 bool Thread::set_as_starting_thread() {
1027   assert(_starting_thread == NULL, "already initialized: "
1028          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1029   // NOTE: this must be called inside the main thread.
1030   DEBUG_ONLY(_starting_thread = this;)
1031   return os::create_main_thread((JavaThread*)this);
1032 }
1033 
1034 static void initialize_class(Symbol* class_name, TRAPS) {
1035   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1036   InstanceKlass::cast(klass)->initialize(CHECK);
1037 }
1038 
1039 
1040 // Creates the initial ThreadGroup
1041 static Handle create_initial_thread_group(TRAPS) {
1042   Handle system_instance = JavaCalls::construct_new_instance(
1043                             SystemDictionary::ThreadGroup_klass(),
1044                             vmSymbols::void_method_signature(),
1045                             CHECK_NH);
1046   Universe::set_system_thread_group(system_instance());
1047 
1048   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1049   Handle main_instance = JavaCalls::construct_new_instance(
1050                             SystemDictionary::ThreadGroup_klass(),
1051                             vmSymbols::threadgroup_string_void_signature(),
1052                             system_instance,
1053                             string,
1054                             CHECK_NH);
1055   return main_instance;
1056 }
1057 
1058 // Creates the initial Thread
1059 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1060                                  TRAPS) {
1061   InstanceKlass* ik = SystemDictionary::Thread_klass();
1062   assert(ik->is_initialized(), "must be");
1063   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1064 
1065   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1066   // constructor calls Thread.current(), which must be set here for the
1067   // initial thread.
1068   java_lang_Thread::set_thread(thread_oop(), thread);
1069   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1070   thread->set_threadObj(thread_oop());
1071 
1072   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1073 
1074   JavaValue result(T_VOID);
1075   JavaCalls::call_special(&result, thread_oop,
1076                           ik,
1077                           vmSymbols::object_initializer_name(),
1078                           vmSymbols::threadgroup_string_void_signature(),
1079                           thread_group,
1080                           string,
1081                           CHECK_NULL);
1082   return thread_oop();
1083 }
1084 
1085 char java_runtime_name[128] = "";
1086 char java_runtime_version[128] = "";
1087 char java_runtime_vendor_version[128] = "";
1088 char java_runtime_vendor_vm_bug_url[128] = "";
1089 
1090 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1091 static const char* get_java_runtime_name(TRAPS) {
1092   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1093                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1094   fieldDescriptor fd;
1095   bool found = k != NULL &&
1096                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1097                                                         vmSymbols::string_signature(), &fd);
1098   if (found) {
1099     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1100     if (name_oop == NULL) {
1101       return NULL;
1102     }
1103     const char* name = java_lang_String::as_utf8_string(name_oop,
1104                                                         java_runtime_name,
1105                                                         sizeof(java_runtime_name));
1106     return name;
1107   } else {
1108     return NULL;
1109   }
1110 }
1111 
1112 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1113 static const char* get_java_runtime_version(TRAPS) {
1114   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1115                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1116   fieldDescriptor fd;
1117   bool found = k != NULL &&
1118                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1119                                                         vmSymbols::string_signature(), &fd);
1120   if (found) {
1121     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1122     if (name_oop == NULL) {
1123       return NULL;
1124     }
1125     const char* name = java_lang_String::as_utf8_string(name_oop,
1126                                                         java_runtime_version,
1127                                                         sizeof(java_runtime_version));
1128     return name;
1129   } else {
1130     return NULL;
1131   }
1132 }
1133 
1134 // extract the JRE vendor version from java.lang.VersionProps.VENDOR_VERSION
1135 static const char* get_java_runtime_vendor_version(TRAPS) {
1136   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1137                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1138   fieldDescriptor fd;
1139   bool found = k != NULL &&
1140                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_version_name(),
1141                                                         vmSymbols::string_signature(), &fd);
1142   if (found) {
1143     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1144     if (name_oop == NULL) {
1145       return NULL;
1146     }
1147     const char* name = java_lang_String::as_utf8_string(name_oop,
1148                                                         java_runtime_vendor_version,
1149                                                         sizeof(java_runtime_vendor_version));
1150     return name;
1151   } else {
1152     return NULL;
1153   }
1154 }
1155 
1156 // extract the JRE vendor VM bug URL from java.lang.VersionProps.VENDOR_URL_VM_BUG
1157 static const char* get_java_runtime_vendor_vm_bug_url(TRAPS) {
1158   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1159                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1160   fieldDescriptor fd;
1161   bool found = k != NULL &&
1162                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_vm_bug_url_name(),
1163                                                         vmSymbols::string_signature(), &fd);
1164   if (found) {
1165     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1166     if (name_oop == NULL) {
1167       return NULL;
1168     }
1169     const char* name = java_lang_String::as_utf8_string(name_oop,
1170                                                         java_runtime_vendor_vm_bug_url,
1171                                                         sizeof(java_runtime_vendor_vm_bug_url));
1172     return name;
1173   } else {
1174     return NULL;
1175   }
1176 }
1177 
1178 // General purpose hook into Java code, run once when the VM is initialized.
1179 // The Java library method itself may be changed independently from the VM.
1180 static void call_postVMInitHook(TRAPS) {
1181   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1182   if (klass != NULL) {
1183     JavaValue result(T_VOID);
1184     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1185                            vmSymbols::void_method_signature(),
1186                            CHECK);
1187   }
1188 }
1189 
1190 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1191                                     bool daemon, TRAPS) {
1192   assert(thread_group.not_null(), "thread group should be specified");
1193   assert(threadObj() == NULL, "should only create Java thread object once");
1194 
1195   InstanceKlass* ik = SystemDictionary::Thread_klass();
1196   assert(ik->is_initialized(), "must be");
1197   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1198 
1199   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1200   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1201   // constructor calls Thread.current(), which must be set here.
1202   java_lang_Thread::set_thread(thread_oop(), this);
1203   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1204   set_threadObj(thread_oop());
1205 
1206   JavaValue result(T_VOID);
1207   if (thread_name != NULL) {
1208     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1209     // Thread gets assigned specified name and null target
1210     JavaCalls::call_special(&result,
1211                             thread_oop,
1212                             ik,
1213                             vmSymbols::object_initializer_name(),
1214                             vmSymbols::threadgroup_string_void_signature(),
1215                             thread_group,
1216                             name,
1217                             THREAD);
1218   } else {
1219     // Thread gets assigned name "Thread-nnn" and null target
1220     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1221     JavaCalls::call_special(&result,
1222                             thread_oop,
1223                             ik,
1224                             vmSymbols::object_initializer_name(),
1225                             vmSymbols::threadgroup_runnable_void_signature(),
1226                             thread_group,
1227                             Handle(),
1228                             THREAD);
1229   }
1230 
1231 
1232   if (daemon) {
1233     java_lang_Thread::set_daemon(thread_oop());
1234   }
1235 
1236   if (HAS_PENDING_EXCEPTION) {
1237     return;
1238   }
1239 
1240   Klass* group = SystemDictionary::ThreadGroup_klass();
1241   Handle threadObj(THREAD, this->threadObj());
1242 
1243   JavaCalls::call_special(&result,
1244                           thread_group,
1245                           group,
1246                           vmSymbols::add_method_name(),
1247                           vmSymbols::thread_void_signature(),
1248                           threadObj,          // Arg 1
1249                           THREAD);
1250 }
1251 
1252 // List of all NonJavaThreads and safe iteration over that list.
1253 
1254 class NonJavaThread::List {
1255 public:
1256   NonJavaThread* volatile _head;
1257   SingleWriterSynchronizer _protect;
1258 
1259   List() : _head(NULL), _protect() {}
1260 };
1261 
1262 NonJavaThread::List NonJavaThread::_the_list;
1263 
1264 NonJavaThread::Iterator::Iterator() :
1265   _protect_enter(_the_list._protect.enter()),
1266   _current(Atomic::load_acquire(&_the_list._head))
1267 {}
1268 
1269 NonJavaThread::Iterator::~Iterator() {
1270   _the_list._protect.exit(_protect_enter);
1271 }
1272 
1273 void NonJavaThread::Iterator::step() {
1274   assert(!end(), "precondition");
1275   _current = Atomic::load_acquire(&_current->_next);
1276 }
1277 
1278 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1279   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1280 }
1281 
1282 NonJavaThread::~NonJavaThread() { }
1283 
1284 void NonJavaThread::add_to_the_list() {
1285   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1286   // Initialize BarrierSet-related data before adding to list.
1287   BarrierSet::barrier_set()->on_thread_attach(this);
1288   Atomic::release_store(&_next, _the_list._head);
1289   Atomic::release_store(&_the_list._head, this);
1290 }
1291 
1292 void NonJavaThread::remove_from_the_list() {
1293   {
1294     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1295     // Cleanup BarrierSet-related data before removing from list.
1296     BarrierSet::barrier_set()->on_thread_detach(this);
1297     NonJavaThread* volatile* p = &_the_list._head;
1298     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1299       if (t == this) {
1300         *p = _next;
1301         break;
1302       }
1303     }
1304   }
1305   // Wait for any in-progress iterators.  Concurrent synchronize is not
1306   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1307   // from NJTList_lock in case an iteration attempts to lock it.
1308   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1309   _the_list._protect.synchronize();
1310   _next = NULL;                 // Safe to drop the link now.
1311 }
1312 
1313 void NonJavaThread::pre_run() {
1314   add_to_the_list();
1315 
1316   // This is slightly odd in that NamedThread is a subclass, but
1317   // in fact name() is defined in Thread
1318   assert(this->name() != NULL, "thread name was not set before it was started");
1319   this->set_native_thread_name(this->name());
1320 }
1321 
1322 void NonJavaThread::post_run() {
1323   JFR_ONLY(Jfr::on_thread_exit(this);)
1324   remove_from_the_list();
1325   // Ensure thread-local-storage is cleared before termination.
1326   Thread::clear_thread_current();
1327 }
1328 
1329 // NamedThread --  non-JavaThread subclasses with multiple
1330 // uniquely named instances should derive from this.
1331 NamedThread::NamedThread() :
1332   NonJavaThread(),
1333   _name(NULL),
1334   _processed_thread(NULL),
1335   _gc_id(GCId::undefined())
1336 {}
1337 
1338 NamedThread::~NamedThread() {
1339   FREE_C_HEAP_ARRAY(char, _name);
1340 }
1341 
1342 void NamedThread::set_name(const char* format, ...) {
1343   guarantee(_name == NULL, "Only get to set name once.");
1344   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1345   va_list ap;
1346   va_start(ap, format);
1347   jio_vsnprintf(_name, max_name_len, format, ap);
1348   va_end(ap);
1349 }
1350 
1351 void NamedThread::print_on(outputStream* st) const {
1352   st->print("\"%s\" ", name());
1353   Thread::print_on(st);
1354   st->cr();
1355 }
1356 
1357 
1358 // ======= WatcherThread ========
1359 
1360 // The watcher thread exists to simulate timer interrupts.  It should
1361 // be replaced by an abstraction over whatever native support for
1362 // timer interrupts exists on the platform.
1363 
1364 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1365 bool WatcherThread::_startable = false;
1366 volatile bool  WatcherThread::_should_terminate = false;
1367 
1368 WatcherThread::WatcherThread() : NonJavaThread() {
1369   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1370   if (os::create_thread(this, os::watcher_thread)) {
1371     _watcher_thread = this;
1372 
1373     // Set the watcher thread to the highest OS priority which should not be
1374     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1375     // is created. The only normal thread using this priority is the reference
1376     // handler thread, which runs for very short intervals only.
1377     // If the VMThread's priority is not lower than the WatcherThread profiling
1378     // will be inaccurate.
1379     os::set_priority(this, MaxPriority);
1380     if (!DisableStartThread) {
1381       os::start_thread(this);
1382     }
1383   }
1384 }
1385 
1386 int WatcherThread::sleep() const {
1387   // The WatcherThread does not participate in the safepoint protocol
1388   // for the PeriodicTask_lock because it is not a JavaThread.
1389   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1390 
1391   if (_should_terminate) {
1392     // check for termination before we do any housekeeping or wait
1393     return 0;  // we did not sleep.
1394   }
1395 
1396   // remaining will be zero if there are no tasks,
1397   // causing the WatcherThread to sleep until a task is
1398   // enrolled
1399   int remaining = PeriodicTask::time_to_wait();
1400   int time_slept = 0;
1401 
1402   // we expect this to timeout - we only ever get unparked when
1403   // we should terminate or when a new task has been enrolled
1404   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1405 
1406   jlong time_before_loop = os::javaTimeNanos();
1407 
1408   while (true) {
1409     bool timedout = ml.wait(remaining);
1410     jlong now = os::javaTimeNanos();
1411 
1412     if (remaining == 0) {
1413       // if we didn't have any tasks we could have waited for a long time
1414       // consider the time_slept zero and reset time_before_loop
1415       time_slept = 0;
1416       time_before_loop = now;
1417     } else {
1418       // need to recalculate since we might have new tasks in _tasks
1419       time_slept = (int) ((now - time_before_loop) / 1000000);
1420     }
1421 
1422     // Change to task list or spurious wakeup of some kind
1423     if (timedout || _should_terminate) {
1424       break;
1425     }
1426 
1427     remaining = PeriodicTask::time_to_wait();
1428     if (remaining == 0) {
1429       // Last task was just disenrolled so loop around and wait until
1430       // another task gets enrolled
1431       continue;
1432     }
1433 
1434     remaining -= time_slept;
1435     if (remaining <= 0) {
1436       break;
1437     }
1438   }
1439 
1440   return time_slept;
1441 }
1442 
1443 void WatcherThread::run() {
1444   assert(this == watcher_thread(), "just checking");
1445 
1446   this->set_active_handles(JNIHandleBlock::allocate_block());
1447   while (true) {
1448     assert(watcher_thread() == Thread::current(), "thread consistency check");
1449     assert(watcher_thread() == this, "thread consistency check");
1450 
1451     // Calculate how long it'll be until the next PeriodicTask work
1452     // should be done, and sleep that amount of time.
1453     int time_waited = sleep();
1454 
1455     if (VMError::is_error_reported()) {
1456       // A fatal error has happened, the error handler(VMError::report_and_die)
1457       // should abort JVM after creating an error log file. However in some
1458       // rare cases, the error handler itself might deadlock. Here periodically
1459       // check for error reporting timeouts, and if it happens, just proceed to
1460       // abort the VM.
1461 
1462       // This code is in WatcherThread because WatcherThread wakes up
1463       // periodically so the fatal error handler doesn't need to do anything;
1464       // also because the WatcherThread is less likely to crash than other
1465       // threads.
1466 
1467       for (;;) {
1468         // Note: we use naked sleep in this loop because we want to avoid using
1469         // any kind of VM infrastructure which may be broken at this point.
1470         if (VMError::check_timeout()) {
1471           // We hit error reporting timeout. Error reporting was interrupted and
1472           // will be wrapping things up now (closing files etc). Give it some more
1473           // time, then quit the VM.
1474           os::naked_short_sleep(200);
1475           // Print a message to stderr.
1476           fdStream err(defaultStream::output_fd());
1477           err.print_raw_cr("# [ timer expired, abort... ]");
1478           // skip atexit/vm_exit/vm_abort hooks
1479           os::die();
1480         }
1481 
1482         // Wait a second, then recheck for timeout.
1483         os::naked_short_sleep(999);
1484       }
1485     }
1486 
1487     if (_should_terminate) {
1488       // check for termination before posting the next tick
1489       break;
1490     }
1491 
1492     PeriodicTask::real_time_tick(time_waited);
1493   }
1494 
1495   // Signal that it is terminated
1496   {
1497     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1498     _watcher_thread = NULL;
1499     Terminator_lock->notify_all();
1500   }
1501 }
1502 
1503 void WatcherThread::start() {
1504   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1505 
1506   if (watcher_thread() == NULL && _startable) {
1507     _should_terminate = false;
1508     // Create the single instance of WatcherThread
1509     new WatcherThread();
1510   }
1511 }
1512 
1513 void WatcherThread::make_startable() {
1514   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1515   _startable = true;
1516 }
1517 
1518 void WatcherThread::stop() {
1519   {
1520     // Follow normal safepoint aware lock enter protocol since the
1521     // WatcherThread is stopped by another JavaThread.
1522     MutexLocker ml(PeriodicTask_lock);
1523     _should_terminate = true;
1524 
1525     WatcherThread* watcher = watcher_thread();
1526     if (watcher != NULL) {
1527       // unpark the WatcherThread so it can see that it should terminate
1528       watcher->unpark();
1529     }
1530   }
1531 
1532   MonitorLocker mu(Terminator_lock);
1533 
1534   while (watcher_thread() != NULL) {
1535     // This wait should make safepoint checks, wait without a timeout,
1536     // and wait as a suspend-equivalent condition.
1537     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1538   }
1539 }
1540 
1541 void WatcherThread::unpark() {
1542   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1543   PeriodicTask_lock->notify();
1544 }
1545 
1546 void WatcherThread::print_on(outputStream* st) const {
1547   st->print("\"%s\" ", name());
1548   Thread::print_on(st);
1549   st->cr();
1550 }
1551 
1552 // ======= JavaThread ========
1553 
1554 #if INCLUDE_JVMCI
1555 
1556 jlong* JavaThread::_jvmci_old_thread_counters;
1557 
1558 bool jvmci_counters_include(JavaThread* thread) {
1559   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1560 }
1561 
1562 void JavaThread::collect_counters(jlong* array, int length) {
1563   assert(length == JVMCICounterSize, "wrong value");
1564   for (int i = 0; i < length; i++) {
1565     array[i] = _jvmci_old_thread_counters[i];
1566   }
1567   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1568     if (jvmci_counters_include(tp)) {
1569       for (int i = 0; i < length; i++) {
1570         array[i] += tp->_jvmci_counters[i];
1571       }
1572     }
1573   }
1574 }
1575 
1576 // Attempt to enlarge the array for per thread counters.
1577 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1578   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1579   if (old_counters == NULL) {
1580     old_counters = new_counters;
1581     memset(old_counters, 0, sizeof(jlong) * new_size);
1582   } else {
1583     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1584       new_counters[i] = old_counters[i];
1585     }
1586     if (new_size > current_size) {
1587       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1588     }
1589     FREE_C_HEAP_ARRAY(jlong, old_counters);
1590   }
1591   return new_counters;
1592 }
1593 
1594 // Attempt to enlarge the array for per thread counters.
1595 void JavaThread::resize_counters(int current_size, int new_size) {
1596   _jvmci_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1597 }
1598 
1599 class VM_JVMCIResizeCounters : public VM_Operation {
1600  private:
1601   int _new_size;
1602 
1603  public:
1604   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size) { }
1605   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1606   bool allow_nested_vm_operations() const        { return true; }
1607   void doit() {
1608     // Resize the old thread counters array
1609     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1610     JavaThread::_jvmci_old_thread_counters = new_counters;
1611 
1612     // Now resize each threads array
1613     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1614       tp->resize_counters(JVMCICounterSize, _new_size);
1615     }
1616     JVMCICounterSize = _new_size;
1617   }
1618 };
1619 
1620 void JavaThread::resize_all_jvmci_counters(int new_size) {
1621   VM_JVMCIResizeCounters op(new_size);
1622   VMThread::execute(&op);
1623 }
1624 
1625 #endif // INCLUDE_JVMCI
1626 
1627 // A JavaThread is a normal Java thread
1628 
1629 void JavaThread::initialize() {
1630   // Initialize fields
1631 
1632   set_saved_exception_pc(NULL);
1633   set_threadObj(NULL);
1634   _anchor.clear();
1635   set_entry_point(NULL);
1636   set_jni_functions(jni_functions());
1637   set_callee_target(NULL);
1638   set_vm_result(NULL);
1639   set_vm_result_2(NULL);
1640   set_vframe_array_head(NULL);
1641   set_vframe_array_last(NULL);
1642   set_deferred_updates(NULL);
1643   set_deopt_mark(NULL);
1644   set_deopt_compiled_method(NULL);
1645   set_monitor_chunks(NULL);
1646   _on_thread_list = false;
1647   _thread_state = _thread_new;
1648   _terminated = _not_terminated;
1649   _array_for_gc = NULL;
1650   _suspend_equivalent = false;
1651   _in_deopt_handler = 0;
1652   _doing_unsafe_access = false;
1653   _stack_guard_state = stack_guard_unused;
1654 #if INCLUDE_JVMCI
1655   _pending_monitorenter = false;
1656   _pending_deoptimization = -1;
1657   _pending_failed_speculation = 0;
1658   _pending_transfer_to_interpreter = false;
1659   _in_retryable_allocation = false;
1660   _jvmci._alternate_call_target = NULL;
1661   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1662   _jvmci_counters = NULL;
1663   if (JVMCICounterSize > 0) {
1664     resize_counters(0, (int) JVMCICounterSize);
1665   }
1666 #endif // INCLUDE_JVMCI
1667   _reserved_stack_activation = NULL;  // stack base not known yet
1668   set_exception_oop(oop());
1669   _exception_pc  = 0;
1670   _exception_handler_pc = 0;
1671   _is_method_handle_return = 0;
1672   _jvmti_thread_state= NULL;
1673   _should_post_on_exceptions_flag = JNI_FALSE;
1674   _interp_only_mode    = 0;
1675   _special_runtime_exit_condition = _no_async_condition;
1676   _pending_async_exception = NULL;
1677   _thread_stat = NULL;
1678   _thread_stat = new ThreadStatistics();
1679   _jni_active_critical = 0;
1680   _pending_jni_exception_check_fn = NULL;
1681   _do_not_unlock_if_synchronized = false;
1682   _cached_monitor_info = NULL;
1683   _parker = Parker::Allocate(this);
1684   _SleepEvent = ParkEvent::Allocate(this);
1685   // Setup safepoint state info for this thread
1686   ThreadSafepointState::create(this);
1687   _handshake.set_handshakee(this);
1688 
1689   debug_only(_java_call_counter = 0);
1690 
1691   // JVMTI PopFrame support
1692   _popframe_condition = popframe_inactive;
1693   _popframe_preserved_args = NULL;
1694   _popframe_preserved_args_size = 0;
1695   _frames_to_pop_failed_realloc = 0;
1696 
1697   SafepointMechanism::initialize_header(this);
1698 
1699   _class_to_be_initialized = NULL;
1700 
1701   pd_initialize();
1702 }
1703 
1704 JavaThread::JavaThread(bool is_attaching_via_jni) :
1705                        Thread() {
1706   initialize();
1707   if (is_attaching_via_jni) {
1708     _jni_attach_state = _attaching_via_jni;
1709   } else {
1710     _jni_attach_state = _not_attaching_via_jni;
1711   }
1712   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1713 }
1714 
1715 
1716 // interrupt support
1717 
1718 void JavaThread::interrupt() {
1719   debug_only(check_for_dangling_thread_pointer(this);)
1720 
1721   // For Windows _interrupt_event
1722   osthread()->set_interrupted(true);
1723 
1724   // For Thread.sleep
1725   _SleepEvent->unpark();
1726 
1727   // For JSR166 LockSupport.park
1728   parker()->unpark();
1729 
1730   // For ObjectMonitor and JvmtiRawMonitor
1731   _ParkEvent->unpark();
1732 }
1733 
1734 
1735 bool JavaThread::is_interrupted(bool clear_interrupted) {
1736   debug_only(check_for_dangling_thread_pointer(this);)
1737 
1738   if (threadObj() == NULL) {
1739     // If there is no j.l.Thread then it is impossible to have
1740     // been interrupted. We can find NULL during VM initialization
1741     // or when a JNI thread is still in the process of attaching.
1742     // In such cases this must be the current thread.
1743     assert(this == Thread::current(), "invariant");
1744     return false;
1745   }
1746 
1747   bool interrupted = java_lang_Thread::interrupted(threadObj());
1748 
1749   // NOTE that since there is no "lock" around the interrupt and
1750   // is_interrupted operations, there is the possibility that the
1751   // interrupted flag will be "false" but that the
1752   // low-level events will be in the signaled state. This is
1753   // intentional. The effect of this is that Object.wait() and
1754   // LockSupport.park() will appear to have a spurious wakeup, which
1755   // is allowed and not harmful, and the possibility is so rare that
1756   // it is not worth the added complexity to add yet another lock.
1757   // For the sleep event an explicit reset is performed on entry
1758   // to JavaThread::sleep, so there is no early return. It has also been
1759   // recommended not to put the interrupted flag into the "event"
1760   // structure because it hides the issue.
1761   // Also, because there is no lock, we must only clear the interrupt
1762   // state if we are going to report that we were interrupted; otherwise
1763   // an interrupt that happens just after we read the field would be lost.
1764   if (interrupted && clear_interrupted) {
1765     assert(this == Thread::current(), "only the current thread can clear");
1766     java_lang_Thread::set_interrupted(threadObj(), false);
1767     osthread()->set_interrupted(false);
1768   }
1769 
1770   return interrupted;
1771 }
1772 
1773 bool JavaThread::reguard_stack(address cur_sp) {
1774   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1775       && _stack_guard_state != stack_guard_reserved_disabled) {
1776     return true; // Stack already guarded or guard pages not needed.
1777   }
1778 
1779   if (register_stack_overflow()) {
1780     // For those architectures which have separate register and
1781     // memory stacks, we must check the register stack to see if
1782     // it has overflowed.
1783     return false;
1784   }
1785 
1786   // Java code never executes within the yellow zone: the latter is only
1787   // there to provoke an exception during stack banging.  If java code
1788   // is executing there, either StackShadowPages should be larger, or
1789   // some exception code in c1, c2 or the interpreter isn't unwinding
1790   // when it should.
1791   guarantee(cur_sp > stack_reserved_zone_base(),
1792             "not enough space to reguard - increase StackShadowPages");
1793   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1794     enable_stack_yellow_reserved_zone();
1795     if (reserved_stack_activation() != stack_base()) {
1796       set_reserved_stack_activation(stack_base());
1797     }
1798   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1799     set_reserved_stack_activation(stack_base());
1800     enable_stack_reserved_zone();
1801   }
1802   return true;
1803 }
1804 
1805 bool JavaThread::reguard_stack(void) {
1806   return reguard_stack(os::current_stack_pointer());
1807 }
1808 
1809 void JavaThread::block_if_vm_exited() {
1810   if (_terminated == _vm_exited) {
1811     // _vm_exited is set at safepoint, and Threads_lock is never released
1812     // we will block here forever.
1813     // Here we can be doing a jump from a safe state to an unsafe state without
1814     // proper transition, but it happens after the final safepoint has begun.
1815     set_thread_state(_thread_in_vm);
1816     Threads_lock->lock();
1817     ShouldNotReachHere();
1818   }
1819 }
1820 
1821 
1822 // Remove this ifdef when C1 is ported to the compiler interface.
1823 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1824 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1825 
1826 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1827                        Thread() {
1828   initialize();
1829   _jni_attach_state = _not_attaching_via_jni;
1830   set_entry_point(entry_point);
1831   // Create the native thread itself.
1832   // %note runtime_23
1833   os::ThreadType thr_type = os::java_thread;
1834   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1835                                                      os::java_thread;
1836   os::create_thread(this, thr_type, stack_sz);
1837   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1838   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1839   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1840   // the exception consists of creating the exception object & initializing it, initialization
1841   // will leave the VM via a JavaCall and then all locks must be unlocked).
1842   //
1843   // The thread is still suspended when we reach here. Thread must be explicit started
1844   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1845   // by calling Threads:add. The reason why this is not done here, is because the thread
1846   // object must be fully initialized (take a look at JVM_Start)
1847 }
1848 
1849 JavaThread::~JavaThread() {
1850 
1851   // JSR166 -- return the parker to the free list
1852   Parker::Release(_parker);
1853   _parker = NULL;
1854 
1855   // Return the sleep event to the free list
1856   ParkEvent::Release(_SleepEvent);
1857   _SleepEvent = NULL;
1858 
1859   // Free any remaining  previous UnrollBlock
1860   vframeArray* old_array = vframe_array_last();
1861 
1862   if (old_array != NULL) {
1863     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1864     old_array->set_unroll_block(NULL);
1865     delete old_info;
1866     delete old_array;
1867   }
1868 
1869   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = JvmtiDeferredUpdates::deferred_locals(this);
1870   if (deferred != NULL) {
1871     // This can only happen if thread is destroyed before deoptimization occurs.
1872     assert(deferred->length() != 0, "empty array!");
1873     do {
1874       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1875       deferred->remove_at(0);
1876       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1877       delete dlv;
1878     } while (deferred->length() != 0);
1879     delete deferred_updates();
1880   }
1881 
1882   // All Java related clean up happens in exit
1883   ThreadSafepointState::destroy(this);
1884   if (_thread_stat != NULL) delete _thread_stat;
1885 
1886 #if INCLUDE_JVMCI
1887   if (JVMCICounterSize > 0) {
1888     if (jvmci_counters_include(this)) {
1889       for (int i = 0; i < JVMCICounterSize; i++) {
1890         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1891       }
1892     }
1893     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1894   }
1895 #endif // INCLUDE_JVMCI
1896 }
1897 
1898 
1899 // First JavaThread specific code executed by a new Java thread.
1900 void JavaThread::pre_run() {
1901   // empty - see comments in run()
1902 }
1903 
1904 // The main routine called by a new Java thread. This isn't overridden
1905 // by subclasses, instead different subclasses define a different "entry_point"
1906 // which defines the actual logic for that kind of thread.
1907 void JavaThread::run() {
1908   // initialize thread-local alloc buffer related fields
1909   this->initialize_tlab();
1910 
1911   // Used to test validity of stack trace backs.
1912   // This can't be moved into pre_run() else we invalidate
1913   // the requirement that thread_main_inner is lower on
1914   // the stack. Consequently all the initialization logic
1915   // stays here in run() rather than pre_run().
1916   this->record_base_of_stack_pointer();
1917 
1918   this->create_stack_guard_pages();
1919 
1920   this->cache_global_variables();
1921 
1922   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1923   // in the VM. Change thread state from _thread_new to _thread_in_vm
1924   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1925   // Before a thread is on the threads list it is always safe, so after leaving the
1926   // _thread_new we should emit a instruction barrier. The distance to modified code
1927   // from here is probably far enough, but this is consistent and safe.
1928   OrderAccess::cross_modify_fence();
1929 
1930   assert(JavaThread::current() == this, "sanity check");
1931   assert(!Thread::current()->owns_locks(), "sanity check");
1932 
1933   DTRACE_THREAD_PROBE(start, this);
1934 
1935   // This operation might block. We call that after all safepoint checks for a new thread has
1936   // been completed.
1937   this->set_active_handles(JNIHandleBlock::allocate_block());
1938 
1939   if (JvmtiExport::should_post_thread_life()) {
1940     JvmtiExport::post_thread_start(this);
1941 
1942   }
1943 
1944   // We call another function to do the rest so we are sure that the stack addresses used
1945   // from there will be lower than the stack base just computed.
1946   thread_main_inner();
1947 }
1948 
1949 void JavaThread::thread_main_inner() {
1950   assert(JavaThread::current() == this, "sanity check");
1951   assert(this->threadObj() != NULL, "just checking");
1952 
1953   // Execute thread entry point unless this thread has a pending exception
1954   // or has been stopped before starting.
1955   // Note: Due to JVM_StopThread we can have pending exceptions already!
1956   if (!this->has_pending_exception() &&
1957       !java_lang_Thread::is_stillborn(this->threadObj())) {
1958     {
1959       ResourceMark rm(this);
1960       this->set_native_thread_name(this->get_thread_name());
1961     }
1962     HandleMark hm(this);
1963     this->entry_point()(this, this);
1964   }
1965 
1966   DTRACE_THREAD_PROBE(stop, this);
1967 
1968   // Cleanup is handled in post_run()
1969 }
1970 
1971 // Shared teardown for all JavaThreads
1972 void JavaThread::post_run() {
1973   this->exit(false);
1974   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1975   // for any shared tear-down.
1976   this->smr_delete();
1977 }
1978 
1979 static void ensure_join(JavaThread* thread) {
1980   // We do not need to grab the Threads_lock, since we are operating on ourself.
1981   Handle threadObj(thread, thread->threadObj());
1982   assert(threadObj.not_null(), "java thread object must exist");
1983   ObjectLocker lock(threadObj, thread);
1984   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1985   thread->clear_pending_exception();
1986   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1987   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1988   // Clear the native thread instance - this makes isAlive return false and allows the join()
1989   // to complete once we've done the notify_all below
1990   java_lang_Thread::set_thread(threadObj(), NULL);
1991   lock.notify_all(thread);
1992   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1993   thread->clear_pending_exception();
1994 }
1995 
1996 static bool is_daemon(oop threadObj) {
1997   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1998 }
1999 
2000 // For any new cleanup additions, please check to see if they need to be applied to
2001 // cleanup_failed_attach_current_thread as well.
2002 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
2003   assert(this == JavaThread::current(), "thread consistency check");
2004 
2005   elapsedTimer _timer_exit_phase1;
2006   elapsedTimer _timer_exit_phase2;
2007   elapsedTimer _timer_exit_phase3;
2008   elapsedTimer _timer_exit_phase4;
2009 
2010   if (log_is_enabled(Debug, os, thread, timer)) {
2011     _timer_exit_phase1.start();
2012   }
2013 
2014   HandleMark hm(this);
2015   Handle uncaught_exception(this, this->pending_exception());
2016   this->clear_pending_exception();
2017   Handle threadObj(this, this->threadObj());
2018   assert(threadObj.not_null(), "Java thread object should be created");
2019 
2020   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
2021   {
2022     EXCEPTION_MARK;
2023 
2024     CLEAR_PENDING_EXCEPTION;
2025   }
2026   if (!destroy_vm) {
2027     if (uncaught_exception.not_null()) {
2028       EXCEPTION_MARK;
2029       // Call method Thread.dispatchUncaughtException().
2030       Klass* thread_klass = SystemDictionary::Thread_klass();
2031       JavaValue result(T_VOID);
2032       JavaCalls::call_virtual(&result,
2033                               threadObj, thread_klass,
2034                               vmSymbols::dispatchUncaughtException_name(),
2035                               vmSymbols::throwable_void_signature(),
2036                               uncaught_exception,
2037                               THREAD);
2038       if (HAS_PENDING_EXCEPTION) {
2039         ResourceMark rm(this);
2040         jio_fprintf(defaultStream::error_stream(),
2041                     "\nException: %s thrown from the UncaughtExceptionHandler"
2042                     " in thread \"%s\"\n",
2043                     pending_exception()->klass()->external_name(),
2044                     get_thread_name());
2045         CLEAR_PENDING_EXCEPTION;
2046       }
2047     }
2048 
2049     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2050     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2051     // is deprecated anyhow.
2052     if (!is_Compiler_thread()) {
2053       int count = 3;
2054       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2055         EXCEPTION_MARK;
2056         JavaValue result(T_VOID);
2057         Klass* thread_klass = SystemDictionary::Thread_klass();
2058         JavaCalls::call_virtual(&result,
2059                                 threadObj, thread_klass,
2060                                 vmSymbols::exit_method_name(),
2061                                 vmSymbols::void_method_signature(),
2062                                 THREAD);
2063         CLEAR_PENDING_EXCEPTION;
2064       }
2065     }
2066     // notify JVMTI
2067     if (JvmtiExport::should_post_thread_life()) {
2068       JvmtiExport::post_thread_end(this);
2069     }
2070 
2071     // We have notified the agents that we are exiting, before we go on,
2072     // we must check for a pending external suspend request and honor it
2073     // in order to not surprise the thread that made the suspend request.
2074     while (true) {
2075       {
2076         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2077         if (!is_external_suspend()) {
2078           set_terminated(_thread_exiting);
2079           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2080           break;
2081         }
2082         // Implied else:
2083         // Things get a little tricky here. We have a pending external
2084         // suspend request, but we are holding the SR_lock so we
2085         // can't just self-suspend. So we temporarily drop the lock
2086         // and then self-suspend.
2087       }
2088 
2089       ThreadBlockInVM tbivm(this);
2090       java_suspend_self();
2091 
2092       // We're done with this suspend request, but we have to loop around
2093       // and check again. Eventually we will get SR_lock without a pending
2094       // external suspend request and will be able to mark ourselves as
2095       // exiting.
2096     }
2097     // no more external suspends are allowed at this point
2098   } else {
2099     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2100     // before_exit() has already posted JVMTI THREAD_END events
2101   }
2102 
2103   if (log_is_enabled(Debug, os, thread, timer)) {
2104     _timer_exit_phase1.stop();
2105     _timer_exit_phase2.start();
2106   }
2107 
2108   // Capture daemon status before the thread is marked as terminated.
2109   bool daemon = is_daemon(threadObj());
2110 
2111   // Notify waiters on thread object. This has to be done after exit() is called
2112   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2113   // group should have the destroyed bit set before waiters are notified).
2114   ensure_join(this);
2115   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2116 
2117   if (log_is_enabled(Debug, os, thread, timer)) {
2118     _timer_exit_phase2.stop();
2119     _timer_exit_phase3.start();
2120   }
2121   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2122   // held by this thread must be released. The spec does not distinguish
2123   // between JNI-acquired and regular Java monitors. We can only see
2124   // regular Java monitors here if monitor enter-exit matching is broken.
2125   //
2126   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2127   // ObjectSynchronizer::release_monitors_owned_by_thread().
2128   if (exit_type == jni_detach) {
2129     // Sanity check even though JNI DetachCurrentThread() would have
2130     // returned JNI_ERR if there was a Java frame. JavaThread exit
2131     // should be done executing Java code by the time we get here.
2132     assert(!this->has_last_Java_frame(),
2133            "should not have a Java frame when detaching or exiting");
2134     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2135     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2136   }
2137 
2138   // These things needs to be done while we are still a Java Thread. Make sure that thread
2139   // is in a consistent state, in case GC happens
2140   JFR_ONLY(Jfr::on_thread_exit(this);)
2141 
2142   if (active_handles() != NULL) {
2143     JNIHandleBlock* block = active_handles();
2144     set_active_handles(NULL);
2145     JNIHandleBlock::release_block(block);
2146   }
2147 
2148   if (free_handle_block() != NULL) {
2149     JNIHandleBlock* block = free_handle_block();
2150     set_free_handle_block(NULL);
2151     JNIHandleBlock::release_block(block);
2152   }
2153 
2154   // These have to be removed while this is still a valid thread.
2155   remove_stack_guard_pages();
2156 
2157   if (UseTLAB) {
2158     tlab().retire();
2159   }
2160 
2161   if (JvmtiEnv::environments_might_exist()) {
2162     JvmtiExport::cleanup_thread(this);
2163   }
2164 
2165   // We need to cache the thread name for logging purposes below as once
2166   // we have called on_thread_detach this thread must not access any oops.
2167   char* thread_name = NULL;
2168   if (log_is_enabled(Debug, os, thread, timer)) {
2169     ResourceMark rm(this);
2170     thread_name = os::strdup(get_thread_name());
2171   }
2172 
2173   // We must flush any deferred card marks and other various GC barrier
2174   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2175   // before removing a thread from the list of active threads.
2176   BarrierSet::barrier_set()->on_thread_detach(this);
2177 
2178   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2179     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2180     os::current_thread_id());
2181 
2182   if (log_is_enabled(Debug, os, thread, timer)) {
2183     _timer_exit_phase3.stop();
2184     _timer_exit_phase4.start();
2185   }
2186   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2187   Threads::remove(this, daemon);
2188 
2189   if (log_is_enabled(Debug, os, thread, timer)) {
2190     _timer_exit_phase4.stop();
2191     log_debug(os, thread, timer)("name='%s'"
2192                                  ", exit-phase1=" JLONG_FORMAT
2193                                  ", exit-phase2=" JLONG_FORMAT
2194                                  ", exit-phase3=" JLONG_FORMAT
2195                                  ", exit-phase4=" JLONG_FORMAT,
2196                                  thread_name,
2197                                  _timer_exit_phase1.milliseconds(),
2198                                  _timer_exit_phase2.milliseconds(),
2199                                  _timer_exit_phase3.milliseconds(),
2200                                  _timer_exit_phase4.milliseconds());
2201     os::free(thread_name);
2202   }
2203 }
2204 
2205 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2206   if (active_handles() != NULL) {
2207     JNIHandleBlock* block = active_handles();
2208     set_active_handles(NULL);
2209     JNIHandleBlock::release_block(block);
2210   }
2211 
2212   if (free_handle_block() != NULL) {
2213     JNIHandleBlock* block = free_handle_block();
2214     set_free_handle_block(NULL);
2215     JNIHandleBlock::release_block(block);
2216   }
2217 
2218   // These have to be removed while this is still a valid thread.
2219   remove_stack_guard_pages();
2220 
2221   if (UseTLAB) {
2222     tlab().retire();
2223   }
2224 
2225   BarrierSet::barrier_set()->on_thread_detach(this);
2226 
2227   Threads::remove(this, is_daemon);
2228   this->smr_delete();
2229 }
2230 
2231 JavaThread* JavaThread::active() {
2232   Thread* thread = Thread::current();
2233   if (thread->is_Java_thread()) {
2234     return (JavaThread*) thread;
2235   } else {
2236     assert(thread->is_VM_thread(), "this must be a vm thread");
2237     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2238     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2239     assert(ret->is_Java_thread(), "must be a Java thread");
2240     return ret;
2241   }
2242 }
2243 
2244 bool JavaThread::is_lock_owned(address adr) const {
2245   if (Thread::is_lock_owned(adr)) return true;
2246 
2247   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2248     if (chunk->contains(adr)) return true;
2249   }
2250 
2251   return false;
2252 }
2253 
2254 oop JavaThread::exception_oop() const {
2255   return Atomic::load(&_exception_oop);
2256 }
2257 
2258 void JavaThread::set_exception_oop(oop o) {
2259   Atomic::store(&_exception_oop, o);
2260 }
2261 
2262 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2263   chunk->set_next(monitor_chunks());
2264   set_monitor_chunks(chunk);
2265 }
2266 
2267 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2268   guarantee(monitor_chunks() != NULL, "must be non empty");
2269   if (monitor_chunks() == chunk) {
2270     set_monitor_chunks(chunk->next());
2271   } else {
2272     MonitorChunk* prev = monitor_chunks();
2273     while (prev->next() != chunk) prev = prev->next();
2274     prev->set_next(chunk->next());
2275   }
2276 }
2277 
2278 // JVM support.
2279 
2280 // Note: this function shouldn't block if it's called in
2281 // _thread_in_native_trans state (such as from
2282 // check_special_condition_for_native_trans()).
2283 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2284 
2285   if (has_last_Java_frame() && has_async_condition()) {
2286     // If we are at a polling page safepoint (not a poll return)
2287     // then we must defer async exception because live registers
2288     // will be clobbered by the exception path. Poll return is
2289     // ok because the call we a returning from already collides
2290     // with exception handling registers and so there is no issue.
2291     // (The exception handling path kills call result registers but
2292     //  this is ok since the exception kills the result anyway).
2293 
2294     if (is_at_poll_safepoint()) {
2295       // if the code we are returning to has deoptimized we must defer
2296       // the exception otherwise live registers get clobbered on the
2297       // exception path before deoptimization is able to retrieve them.
2298       //
2299       RegisterMap map(this, false);
2300       frame caller_fr = last_frame().sender(&map);
2301       assert(caller_fr.is_compiled_frame(), "what?");
2302       if (caller_fr.is_deoptimized_frame()) {
2303         log_info(exceptions)("deferred async exception at compiled safepoint");
2304         return;
2305       }
2306     }
2307   }
2308 
2309   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2310   if (condition == _no_async_condition) {
2311     // Conditions have changed since has_special_runtime_exit_condition()
2312     // was called:
2313     // - if we were here only because of an external suspend request,
2314     //   then that was taken care of above (or cancelled) so we are done
2315     // - if we were here because of another async request, then it has
2316     //   been cleared between the has_special_runtime_exit_condition()
2317     //   and now so again we are done
2318     return;
2319   }
2320 
2321   // Check for pending async. exception
2322   if (_pending_async_exception != NULL) {
2323     // Only overwrite an already pending exception, if it is not a threadDeath.
2324     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2325 
2326       // We cannot call Exceptions::_throw(...) here because we cannot block
2327       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2328 
2329       LogTarget(Info, exceptions) lt;
2330       if (lt.is_enabled()) {
2331         ResourceMark rm;
2332         LogStream ls(lt);
2333         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2334           if (has_last_Java_frame()) {
2335             frame f = last_frame();
2336            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2337           }
2338         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2339       }
2340       _pending_async_exception = NULL;
2341       clear_has_async_exception();
2342     }
2343   }
2344 
2345   if (check_unsafe_error &&
2346       condition == _async_unsafe_access_error && !has_pending_exception()) {
2347     condition = _no_async_condition;  // done
2348     switch (thread_state()) {
2349     case _thread_in_vm: {
2350       JavaThread* THREAD = this;
2351       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2352     }
2353     case _thread_in_native: {
2354       ThreadInVMfromNative tiv(this);
2355       JavaThread* THREAD = this;
2356       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2357     }
2358     case _thread_in_Java: {
2359       ThreadInVMfromJava tiv(this);
2360       JavaThread* THREAD = this;
2361       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2362     }
2363     default:
2364       ShouldNotReachHere();
2365     }
2366   }
2367 
2368   assert(condition == _no_async_condition || has_pending_exception() ||
2369          (!check_unsafe_error && condition == _async_unsafe_access_error),
2370          "must have handled the async condition, if no exception");
2371 }
2372 
2373 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2374 
2375   // Check for pending external suspend.
2376   if (is_external_suspend_with_lock()) {
2377     frame_anchor()->make_walkable(this);
2378     java_suspend_self_with_safepoint_check();
2379   }
2380 
2381   // We might be here for reasons in addition to the self-suspend request
2382   // so check for other async requests.
2383   if (check_asyncs) {
2384     check_and_handle_async_exceptions();
2385   }
2386 
2387   if (is_obj_deopt_suspend()) {
2388     frame_anchor()->make_walkable(this);
2389     wait_for_object_deoptimization();
2390   }
2391 
2392   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2393 }
2394 
2395 void JavaThread::send_thread_stop(oop java_throwable)  {
2396   ResourceMark rm;
2397   assert(Thread::current()->is_VM_thread() || Thread::current() == this, "should be in the vm thread");
2398 
2399   // Do not throw asynchronous exceptions against the compiler thread
2400   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2401   if (!can_call_java()) return;
2402 
2403   {
2404     // Actually throw the Throwable against the target Thread - however
2405     // only if there is no thread death exception installed already.
2406     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2407       // If the topmost frame is a runtime stub, then we are calling into
2408       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2409       // must deoptimize the caller before continuing, as the compiled  exception handler table
2410       // may not be valid
2411       if (has_last_Java_frame()) {
2412         frame f = last_frame();
2413         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2414           RegisterMap reg_map(this, false);
2415           frame compiled_frame = f.sender(&reg_map);
2416           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2417             Deoptimization::deoptimize(this, compiled_frame);
2418           }
2419         }
2420       }
2421 
2422       // Set async. pending exception in thread.
2423       set_pending_async_exception(java_throwable);
2424 
2425       if (log_is_enabled(Info, exceptions)) {
2426          ResourceMark rm;
2427         log_info(exceptions)("Pending Async. exception installed of type: %s",
2428                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2429       }
2430       // for AbortVMOnException flag
2431       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2432     }
2433   }
2434 
2435 
2436   // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
2437   java_lang_Thread::set_interrupted(threadObj(), true);
2438   this->interrupt();
2439 }
2440 
2441 // External suspension mechanism.
2442 //
2443 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2444 // to any VM_locks and it is at a transition
2445 // Self-suspension will happen on the transition out of the vm.
2446 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2447 //
2448 // Guarantees on return:
2449 //   + Target thread will not execute any new bytecode (that's why we need to
2450 //     force a safepoint)
2451 //   + Target thread will not enter any new monitors
2452 //
2453 void JavaThread::java_suspend() {
2454   ThreadsListHandle tlh;
2455   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2456     return;
2457   }
2458 
2459   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2460     if (!is_external_suspend()) {
2461       // a racing resume has cancelled us; bail out now
2462       return;
2463     }
2464 
2465     // suspend is done
2466     uint32_t debug_bits = 0;
2467     // Warning: is_ext_suspend_completed() may temporarily drop the
2468     // SR_lock to allow the thread to reach a stable thread state if
2469     // it is currently in a transient thread state.
2470     if (is_ext_suspend_completed(false /* !called_by_wait */,
2471                                  SuspendRetryDelay, &debug_bits)) {
2472       return;
2473     }
2474   }
2475 
2476   if (Thread::current() == this) {
2477     // Safely self-suspend.
2478     // If we don't do this explicitly it will implicitly happen
2479     // before we transition back to Java, and on some other thread-state
2480     // transition paths, but not as we exit a JVM TI SuspendThread call.
2481     // As SuspendThread(current) must not return (until resumed) we must
2482     // self-suspend here.
2483     ThreadBlockInVM tbivm(this);
2484     java_suspend_self();
2485   } else {
2486     VM_ThreadSuspend vm_suspend;
2487     VMThread::execute(&vm_suspend);
2488   }
2489 }
2490 
2491 // Part II of external suspension.
2492 // A JavaThread self suspends when it detects a pending external suspend
2493 // request. This is usually on transitions. It is also done in places
2494 // where continuing to the next transition would surprise the caller,
2495 // e.g., monitor entry.
2496 //
2497 // Returns the number of times that the thread self-suspended.
2498 //
2499 // Note: DO NOT call java_suspend_self() when you just want to block current
2500 //       thread. java_suspend_self() is the second stage of cooperative
2501 //       suspension for external suspend requests and should only be used
2502 //       to complete an external suspend request.
2503 //
2504 int JavaThread::java_suspend_self() {
2505   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2506   int ret = 0;
2507 
2508   // we are in the process of exiting so don't suspend
2509   if (is_exiting()) {
2510     clear_external_suspend();
2511     return ret;
2512   }
2513 
2514   assert(_anchor.walkable() ||
2515          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2516          "must have walkable stack");
2517 
2518   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2519 
2520   assert(!this->is_ext_suspended(),
2521          "a thread trying to self-suspend should not already be suspended");
2522 
2523   if (this->is_suspend_equivalent()) {
2524     // If we are self-suspending as a result of the lifting of a
2525     // suspend equivalent condition, then the suspend_equivalent
2526     // flag is not cleared until we set the ext_suspended flag so
2527     // that wait_for_ext_suspend_completion() returns consistent
2528     // results.
2529     this->clear_suspend_equivalent();
2530   }
2531 
2532   // A racing resume may have cancelled us before we grabbed SR_lock
2533   // above. Or another external suspend request could be waiting for us
2534   // by the time we return from SR_lock()->wait(). The thread
2535   // that requested the suspension may already be trying to walk our
2536   // stack and if we return now, we can change the stack out from under
2537   // it. This would be a "bad thing (TM)" and cause the stack walker
2538   // to crash. We stay self-suspended until there are no more pending
2539   // external suspend requests.
2540   while (is_external_suspend()) {
2541     ret++;
2542     this->set_ext_suspended();
2543 
2544     // _ext_suspended flag is cleared by java_resume()
2545     while (is_ext_suspended()) {
2546       ml.wait();
2547     }
2548   }
2549   return ret;
2550 }
2551 
2552 // Helper routine to set up the correct thread state before calling java_suspend_self.
2553 // This is called when regular thread-state transition helpers can't be used because
2554 // we can be in various states, in particular _thread_in_native_trans.
2555 // Because this thread is external suspended the safepoint code will count it as at
2556 // a safepoint, regardless of what its actual current thread-state is. But
2557 // is_ext_suspend_completed() may be waiting to see a thread transition from
2558 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2559 // to _thread_blocked. The problem with setting thread state directly is that a
2560 // safepoint could happen just after java_suspend_self() returns after being resumed,
2561 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2562 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2563 // However, not all initial-states are allowed when performing a safepoint check, as we
2564 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2565 // only _thread_in_native is possible when executing this code (based on our two callers).
2566 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2567 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2568 // and so we don't need the explicit safepoint check.
2569 
2570 void JavaThread::java_suspend_self_with_safepoint_check() {
2571   assert(this == Thread::current(), "invariant");
2572   JavaThreadState state = thread_state();
2573   set_thread_state(_thread_blocked);
2574   java_suspend_self();
2575   set_thread_state_fence(state);
2576   // Since we are not using a regular thread-state transition helper here,
2577   // we must manually emit the instruction barrier after leaving a safe state.
2578   OrderAccess::cross_modify_fence();
2579   if (state != _thread_in_native) {
2580     SafepointMechanism::block_if_requested(this);
2581   }
2582 }
2583 
2584 void JavaThread::wait_for_object_deoptimization() {
2585   assert(!has_last_Java_frame() || frame_anchor()->walkable(), "should have walkable stack");
2586   assert(this == Thread::current(), "invariant");
2587   JavaThreadState state = thread_state();
2588 
2589   bool should_spin_wait = true;
2590   do {
2591     set_thread_state(_thread_blocked);
2592     set_suspend_equivalent();
2593     {
2594       MonitorLocker ml(this, EscapeBarrier_lock, Monitor::_no_safepoint_check_flag);
2595       if (EscapeBarrier::deoptimizing_objects_for_all_threads() ||
2596           (is_obj_deopt_suspend() && !should_spin_wait)) {
2597         ml.wait();
2598       }
2599       should_spin_wait = should_spin_wait && is_obj_deopt_suspend();
2600     }
2601     // Single deoptimization is typically very short. Microbenchmarks
2602     // showed 5% better performance when spinning
2603     if (should_spin_wait) {
2604       // Inspired by HandshakeSpinYield
2605       const jlong max_spin_time_ns = 100 /* us */ * (NANOUNITS / MICROUNITS);
2606       const int free_cpus = os::active_processor_count() - 1;
2607       jlong spin_time_ns = (5 /* us */ * (NANOUNITS / MICROUNITS)) * free_cpus; // zero on UP
2608       spin_time_ns = spin_time_ns > max_spin_time_ns ? max_spin_time_ns : spin_time_ns;
2609       jlong spin_start = os::javaTimeNanos();
2610       while (is_obj_deopt_suspend()) {
2611         os::naked_yield();
2612         if ((os::javaTimeNanos() - spin_start) > spin_time_ns) {
2613           should_spin_wait = false;
2614           break;
2615         }
2616       }
2617     }
2618     set_thread_state_fence(state);
2619 
2620     if (handle_special_suspend_equivalent_condition()) {
2621       java_suspend_self_with_safepoint_check();
2622     }
2623 
2624     // Since we are not using a regular thread-state transition helper here,
2625     // we must manually emit the instruction barrier after leaving a safe state.
2626     OrderAccess::cross_modify_fence();
2627     if (state != _thread_in_native) {
2628       SafepointMechanism::block_if_requested(this);
2629     }
2630 
2631     // Check for another deopt suspend _after_ checking for safepont/handshake,
2632     // or otherwise a stale value can be seen if the flag was changed with a
2633     // handshake while the current thread was _thread_blocked above.
2634   } while (is_obj_deopt_suspend());
2635 }
2636 
2637 #ifdef ASSERT
2638 // Verify the JavaThread has not yet been published in the Threads::list, and
2639 // hence doesn't need protection from concurrent access at this stage.
2640 void JavaThread::verify_not_published() {
2641   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2642   // since an unpublished JavaThread doesn't participate in the
2643   // Thread-SMR protocol for keeping a ThreadsList alive.
2644   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2645 }
2646 #endif
2647 
2648 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2649 // progress or when _suspend_flags is non-zero.
2650 // Current thread needs to self-suspend if there is a suspend request and/or
2651 // block if a safepoint is in progress.
2652 // Async exception ISN'T checked.
2653 // Note only the ThreadInVMfromNative transition can call this function
2654 // directly and when thread state is _thread_in_native_trans
2655 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2656   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2657 
2658   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2659 
2660   if (thread->is_external_suspend()) {
2661     thread->java_suspend_self_with_safepoint_check();
2662   } else {
2663     SafepointMechanism::block_if_requested(thread);
2664   }
2665 
2666   if (thread->is_obj_deopt_suspend()) {
2667     thread->wait_for_object_deoptimization();
2668   }
2669 
2670   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2671 }
2672 
2673 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2674 // progress or when _suspend_flags is non-zero.
2675 // Current thread needs to self-suspend if there is a suspend request and/or
2676 // block if a safepoint is in progress.
2677 // Also check for pending async exception (not including unsafe access error).
2678 // Note only the native==>VM/Java barriers can call this function and when
2679 // thread state is _thread_in_native_trans.
2680 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2681   check_safepoint_and_suspend_for_native_trans(thread);
2682 
2683   if (thread->has_async_exception()) {
2684     // We are in _thread_in_native_trans state, don't handle unsafe
2685     // access error since that may block.
2686     thread->check_and_handle_async_exceptions(false);
2687   }
2688 }
2689 
2690 // This is a variant of the normal
2691 // check_special_condition_for_native_trans with slightly different
2692 // semantics for use by critical native wrappers.  It does all the
2693 // normal checks but also performs the transition back into
2694 // thread_in_Java state.  This is required so that critical natives
2695 // can potentially block and perform a GC if they are the last thread
2696 // exiting the GCLocker.
2697 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2698   check_special_condition_for_native_trans(thread);
2699 
2700   // Finish the transition
2701   thread->set_thread_state(_thread_in_Java);
2702 
2703   if (thread->do_critical_native_unlock()) {
2704     ThreadInVMfromJavaNoAsyncException tiv(thread);
2705     GCLocker::unlock_critical(thread);
2706     thread->clear_critical_native_unlock();
2707   }
2708 }
2709 
2710 // We need to guarantee the Threads_lock here, since resumes are not
2711 // allowed during safepoint synchronization
2712 // Can only resume from an external suspension
2713 void JavaThread::java_resume() {
2714   assert_locked_or_safepoint(Threads_lock);
2715 
2716   // Sanity check: thread is gone, has started exiting or the thread
2717   // was not externally suspended.
2718   ThreadsListHandle tlh;
2719   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2720     return;
2721   }
2722 
2723   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2724 
2725   clear_external_suspend();
2726 
2727   if (is_ext_suspended()) {
2728     clear_ext_suspended();
2729     SR_lock()->notify_all();
2730   }
2731 }
2732 
2733 size_t JavaThread::_stack_red_zone_size = 0;
2734 size_t JavaThread::_stack_yellow_zone_size = 0;
2735 size_t JavaThread::_stack_reserved_zone_size = 0;
2736 size_t JavaThread::_stack_shadow_zone_size = 0;
2737 
2738 void JavaThread::create_stack_guard_pages() {
2739   if (!os::uses_stack_guard_pages() ||
2740       _stack_guard_state != stack_guard_unused ||
2741       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2742       log_info(os, thread)("Stack guard page creation for thread "
2743                            UINTX_FORMAT " disabled", os::current_thread_id());
2744     return;
2745   }
2746   address low_addr = stack_end();
2747   size_t len = stack_guard_zone_size();
2748 
2749   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2750   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2751 
2752   int must_commit = os::must_commit_stack_guard_pages();
2753   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2754 
2755   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2756     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2757     return;
2758   }
2759 
2760   if (os::guard_memory((char *) low_addr, len)) {
2761     _stack_guard_state = stack_guard_enabled;
2762   } else {
2763     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2764       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2765     if (os::uncommit_memory((char *) low_addr, len)) {
2766       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2767     }
2768     return;
2769   }
2770 
2771   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2772     PTR_FORMAT "-" PTR_FORMAT ".",
2773     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2774 }
2775 
2776 void JavaThread::remove_stack_guard_pages() {
2777   assert(Thread::current() == this, "from different thread");
2778   if (_stack_guard_state == stack_guard_unused) return;
2779   address low_addr = stack_end();
2780   size_t len = stack_guard_zone_size();
2781 
2782   if (os::must_commit_stack_guard_pages()) {
2783     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2784       _stack_guard_state = stack_guard_unused;
2785     } else {
2786       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2787         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2788       return;
2789     }
2790   } else {
2791     if (_stack_guard_state == stack_guard_unused) return;
2792     if (os::unguard_memory((char *) low_addr, len)) {
2793       _stack_guard_state = stack_guard_unused;
2794     } else {
2795       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2796         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2797       return;
2798     }
2799   }
2800 
2801   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2802     PTR_FORMAT "-" PTR_FORMAT ".",
2803     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2804 }
2805 
2806 void JavaThread::enable_stack_reserved_zone() {
2807   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2808 
2809   // The base notation is from the stack's point of view, growing downward.
2810   // We need to adjust it to work correctly with guard_memory()
2811   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2812 
2813   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2814   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2815 
2816   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2817     _stack_guard_state = stack_guard_enabled;
2818   } else {
2819     warning("Attempt to guard stack reserved zone failed.");
2820   }
2821   enable_register_stack_guard();
2822 }
2823 
2824 void JavaThread::disable_stack_reserved_zone() {
2825   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2826 
2827   // Simply return if called for a thread that does not use guard pages.
2828   if (_stack_guard_state != stack_guard_enabled) return;
2829 
2830   // The base notation is from the stack's point of view, growing downward.
2831   // We need to adjust it to work correctly with guard_memory()
2832   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2833 
2834   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2835     _stack_guard_state = stack_guard_reserved_disabled;
2836   } else {
2837     warning("Attempt to unguard stack reserved zone failed.");
2838   }
2839   disable_register_stack_guard();
2840 }
2841 
2842 void JavaThread::enable_stack_yellow_reserved_zone() {
2843   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2844   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2845 
2846   // The base notation is from the stacks point of view, growing downward.
2847   // We need to adjust it to work correctly with guard_memory()
2848   address base = stack_red_zone_base();
2849 
2850   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2851   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2852 
2853   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2854     _stack_guard_state = stack_guard_enabled;
2855   } else {
2856     warning("Attempt to guard stack yellow zone failed.");
2857   }
2858   enable_register_stack_guard();
2859 }
2860 
2861 void JavaThread::disable_stack_yellow_reserved_zone() {
2862   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2863   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2864 
2865   // Simply return if called for a thread that does not use guard pages.
2866   if (_stack_guard_state == stack_guard_unused) return;
2867 
2868   // The base notation is from the stacks point of view, growing downward.
2869   // We need to adjust it to work correctly with guard_memory()
2870   address base = stack_red_zone_base();
2871 
2872   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2873     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2874   } else {
2875     warning("Attempt to unguard stack yellow zone failed.");
2876   }
2877   disable_register_stack_guard();
2878 }
2879 
2880 void JavaThread::enable_stack_red_zone() {
2881   // The base notation is from the stacks point of view, growing downward.
2882   // We need to adjust it to work correctly with guard_memory()
2883   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2884   address base = stack_red_zone_base() - stack_red_zone_size();
2885 
2886   guarantee(base < stack_base(), "Error calculating stack red zone");
2887   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2888 
2889   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2890     warning("Attempt to guard stack red zone failed.");
2891   }
2892 }
2893 
2894 void JavaThread::disable_stack_red_zone() {
2895   // The base notation is from the stacks point of view, growing downward.
2896   // We need to adjust it to work correctly with guard_memory()
2897   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2898   address base = stack_red_zone_base() - stack_red_zone_size();
2899   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2900     warning("Attempt to unguard stack red zone failed.");
2901   }
2902 }
2903 
2904 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2905   // ignore is there is no stack
2906   if (!has_last_Java_frame()) return;
2907   // traverse the stack frames. Starts from top frame.
2908   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2909     frame* fr = fst.current();
2910     f(fr, fst.register_map());
2911   }
2912 }
2913 
2914 
2915 #ifndef PRODUCT
2916 // Deoptimization
2917 // Function for testing deoptimization
2918 void JavaThread::deoptimize() {
2919   StackFrameStream fst(this, false);
2920   bool deopt = false;           // Dump stack only if a deopt actually happens.
2921   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2922   // Iterate over all frames in the thread and deoptimize
2923   for (; !fst.is_done(); fst.next()) {
2924     if (fst.current()->can_be_deoptimized()) {
2925 
2926       if (only_at) {
2927         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2928         // consists of comma or carriage return separated numbers so
2929         // search for the current bci in that string.
2930         address pc = fst.current()->pc();
2931         nmethod* nm =  (nmethod*) fst.current()->cb();
2932         ScopeDesc* sd = nm->scope_desc_at(pc);
2933         char buffer[8];
2934         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2935         size_t len = strlen(buffer);
2936         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2937         while (found != NULL) {
2938           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2939               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2940             // Check that the bci found is bracketed by terminators.
2941             break;
2942           }
2943           found = strstr(found + 1, buffer);
2944         }
2945         if (!found) {
2946           continue;
2947         }
2948       }
2949 
2950       if (DebugDeoptimization && !deopt) {
2951         deopt = true; // One-time only print before deopt
2952         tty->print_cr("[BEFORE Deoptimization]");
2953         trace_frames();
2954         trace_stack();
2955       }
2956       Deoptimization::deoptimize(this, *fst.current());
2957     }
2958   }
2959 
2960   if (DebugDeoptimization && deopt) {
2961     tty->print_cr("[AFTER Deoptimization]");
2962     trace_frames();
2963   }
2964 }
2965 
2966 
2967 // Make zombies
2968 void JavaThread::make_zombies() {
2969   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2970     if (fst.current()->can_be_deoptimized()) {
2971       // it is a Java nmethod
2972       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2973       nm->make_not_entrant();
2974     }
2975   }
2976 }
2977 #endif // PRODUCT
2978 
2979 
2980 void JavaThread::deoptimize_marked_methods() {
2981   if (!has_last_Java_frame()) return;
2982   StackFrameStream fst(this, false);
2983   for (; !fst.is_done(); fst.next()) {
2984     if (fst.current()->should_be_deoptimized()) {
2985       Deoptimization::deoptimize(this, *fst.current());
2986     }
2987   }
2988 }
2989 
2990 // If the caller is a NamedThread, then remember, in the current scope,
2991 // the given JavaThread in its _processed_thread field.
2992 class RememberProcessedThread: public StackObj {
2993   NamedThread* _cur_thr;
2994  public:
2995   RememberProcessedThread(JavaThread* jthr) {
2996     Thread* thread = Thread::current();
2997     if (thread->is_Named_thread()) {
2998       _cur_thr = (NamedThread *)thread;
2999       _cur_thr->set_processed_thread(jthr);
3000     } else {
3001       _cur_thr = NULL;
3002     }
3003   }
3004 
3005   ~RememberProcessedThread() {
3006     if (_cur_thr) {
3007       _cur_thr->set_processed_thread(NULL);
3008     }
3009   }
3010 };
3011 
3012 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3013   // Verify that the deferred card marks have been flushed.
3014   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
3015 
3016   // Traverse the GCHandles
3017   Thread::oops_do(f, cf);
3018 
3019   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3020          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
3021 
3022   if (has_last_Java_frame()) {
3023     // Record JavaThread to GC thread
3024     RememberProcessedThread rpt(this);
3025 
3026     // traverse the registered growable array
3027     if (_array_for_gc != NULL) {
3028       for (int index = 0; index < _array_for_gc->length(); index++) {
3029         f->do_oop(_array_for_gc->adr_at(index));
3030       }
3031     }
3032 
3033     // Traverse the monitor chunks
3034     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
3035       chunk->oops_do(f);
3036     }
3037 
3038     // Traverse the execution stack
3039     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3040       fst.current()->oops_do(f, cf, fst.register_map());
3041     }
3042   }
3043 
3044   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
3045   // If we have deferred set_locals there might be oops waiting to be
3046   // written
3047   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = JvmtiDeferredUpdates::deferred_locals(this);
3048   if (list != NULL) {
3049     for (int i = 0; i < list->length(); i++) {
3050       list->at(i)->oops_do(f);
3051     }
3052   }
3053 
3054   // Traverse instance variables at the end since the GC may be moving things
3055   // around using this function
3056   f->do_oop((oop*) &_threadObj);
3057   f->do_oop((oop*) &_vm_result);
3058   f->do_oop((oop*) &_exception_oop);
3059   f->do_oop((oop*) &_pending_async_exception);
3060 
3061   if (jvmti_thread_state() != NULL) {
3062     jvmti_thread_state()->oops_do(f, cf);
3063   }
3064 }
3065 
3066 #ifdef ASSERT
3067 void JavaThread::verify_states_for_handshake() {
3068   // This checks that the thread has a correct frame state during a handshake.
3069   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3070          (has_last_Java_frame() && java_call_counter() > 0),
3071          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3072          has_last_Java_frame(), java_call_counter());
3073 }
3074 #endif
3075 
3076 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
3077   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3078          (has_last_Java_frame() && java_call_counter() > 0),
3079          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3080          has_last_Java_frame(), java_call_counter());
3081 
3082   if (has_last_Java_frame()) {
3083     // Traverse the execution stack
3084     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3085       fst.current()->nmethods_do(cf);
3086     }
3087   }
3088 
3089   if (jvmti_thread_state() != NULL) {
3090     jvmti_thread_state()->nmethods_do(cf);
3091   }
3092 }
3093 
3094 void JavaThread::metadata_do(MetadataClosure* f) {
3095   if (has_last_Java_frame()) {
3096     // Traverse the execution stack to call f() on the methods in the stack
3097     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3098       fst.current()->metadata_do(f);
3099     }
3100   } else if (is_Compiler_thread()) {
3101     // need to walk ciMetadata in current compile tasks to keep alive.
3102     CompilerThread* ct = (CompilerThread*)this;
3103     if (ct->env() != NULL) {
3104       ct->env()->metadata_do(f);
3105     }
3106     CompileTask* task = ct->task();
3107     if (task != NULL) {
3108       task->metadata_do(f);
3109     }
3110   }
3111 }
3112 
3113 // Printing
3114 const char* _get_thread_state_name(JavaThreadState _thread_state) {
3115   switch (_thread_state) {
3116   case _thread_uninitialized:     return "_thread_uninitialized";
3117   case _thread_new:               return "_thread_new";
3118   case _thread_new_trans:         return "_thread_new_trans";
3119   case _thread_in_native:         return "_thread_in_native";
3120   case _thread_in_native_trans:   return "_thread_in_native_trans";
3121   case _thread_in_vm:             return "_thread_in_vm";
3122   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3123   case _thread_in_Java:           return "_thread_in_Java";
3124   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3125   case _thread_blocked:           return "_thread_blocked";
3126   case _thread_blocked_trans:     return "_thread_blocked_trans";
3127   default:                        return "unknown thread state";
3128   }
3129 }
3130 
3131 #ifndef PRODUCT
3132 void JavaThread::print_thread_state_on(outputStream *st) const {
3133   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3134 };
3135 #endif // PRODUCT
3136 
3137 // Called by Threads::print() for VM_PrintThreads operation
3138 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3139   st->print_raw("\"");
3140   st->print_raw(get_thread_name());
3141   st->print_raw("\" ");
3142   oop thread_oop = threadObj();
3143   if (thread_oop != NULL) {
3144     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3145     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3146     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3147   }
3148   Thread::print_on(st, print_extended_info);
3149   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3150   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3151   if (thread_oop != NULL) {
3152     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3153   }
3154 #ifndef PRODUCT
3155   _safepoint_state->print_on(st);
3156 #endif // PRODUCT
3157   if (is_Compiler_thread()) {
3158     CompileTask *task = ((CompilerThread*)this)->task();
3159     if (task != NULL) {
3160       st->print("   Compiling: ");
3161       task->print(st, NULL, true, false);
3162     } else {
3163       st->print("   No compile task");
3164     }
3165     st->cr();
3166   }
3167 }
3168 
3169 void JavaThread::print() const { print_on(tty); }
3170 
3171 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3172   st->print("%s", get_thread_name_string(buf, buflen));
3173 }
3174 
3175 // Called by fatal error handler. The difference between this and
3176 // JavaThread::print() is that we can't grab lock or allocate memory.
3177 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3178   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3179   oop thread_obj = threadObj();
3180   if (thread_obj != NULL) {
3181     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3182   }
3183   st->print(" [");
3184   st->print("%s", _get_thread_state_name(_thread_state));
3185   if (osthread()) {
3186     st->print(", id=%d", osthread()->thread_id());
3187   }
3188   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3189             p2i(stack_end()), p2i(stack_base()));
3190   st->print("]");
3191 
3192   ThreadsSMRSupport::print_info_on(this, st);
3193   return;
3194 }
3195 
3196 // Verification
3197 
3198 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3199 
3200 void JavaThread::verify() {
3201   // Verify oops in the thread.
3202   oops_do(&VerifyOopClosure::verify_oop, NULL);
3203 
3204   // Verify the stack frames.
3205   frames_do(frame_verify);
3206 }
3207 
3208 // CR 6300358 (sub-CR 2137150)
3209 // Most callers of this method assume that it can't return NULL but a
3210 // thread may not have a name whilst it is in the process of attaching to
3211 // the VM - see CR 6412693, and there are places where a JavaThread can be
3212 // seen prior to having it's threadObj set (eg JNI attaching threads and
3213 // if vm exit occurs during initialization). These cases can all be accounted
3214 // for such that this method never returns NULL.
3215 const char* JavaThread::get_thread_name() const {
3216 #ifdef ASSERT
3217   // early safepoints can hit while current thread does not yet have TLS
3218   if (!SafepointSynchronize::is_at_safepoint()) {
3219     Thread *cur = Thread::current();
3220     if (!(cur->is_Java_thread() && cur == this)) {
3221       // Current JavaThreads are allowed to get their own name without
3222       // the Threads_lock.
3223       assert_locked_or_safepoint_or_handshake(Threads_lock, this);
3224     }
3225   }
3226 #endif // ASSERT
3227   return get_thread_name_string();
3228 }
3229 
3230 // Returns a non-NULL representation of this thread's name, or a suitable
3231 // descriptive string if there is no set name
3232 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3233   const char* name_str;
3234   oop thread_obj = threadObj();
3235   if (thread_obj != NULL) {
3236     oop name = java_lang_Thread::name(thread_obj);
3237     if (name != NULL) {
3238       if (buf == NULL) {
3239         name_str = java_lang_String::as_utf8_string(name);
3240       } else {
3241         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3242       }
3243     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3244       name_str = "<no-name - thread is attaching>";
3245     } else {
3246       name_str = Thread::name();
3247     }
3248   } else {
3249     name_str = Thread::name();
3250   }
3251   assert(name_str != NULL, "unexpected NULL thread name");
3252   return name_str;
3253 }
3254 
3255 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3256 
3257   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3258   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3259   // Link Java Thread object <-> C++ Thread
3260 
3261   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3262   // and put it into a new Handle.  The Handle "thread_oop" can then
3263   // be used to pass the C++ thread object to other methods.
3264 
3265   // Set the Java level thread object (jthread) field of the
3266   // new thread (a JavaThread *) to C++ thread object using the
3267   // "thread_oop" handle.
3268 
3269   // Set the thread field (a JavaThread *) of the
3270   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3271 
3272   Handle thread_oop(Thread::current(),
3273                     JNIHandles::resolve_non_null(jni_thread));
3274   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3275          "must be initialized");
3276   set_threadObj(thread_oop());
3277   java_lang_Thread::set_thread(thread_oop(), this);
3278 
3279   if (prio == NoPriority) {
3280     prio = java_lang_Thread::priority(thread_oop());
3281     assert(prio != NoPriority, "A valid priority should be present");
3282   }
3283 
3284   // Push the Java priority down to the native thread; needs Threads_lock
3285   Thread::set_priority(this, prio);
3286 
3287   // Add the new thread to the Threads list and set it in motion.
3288   // We must have threads lock in order to call Threads::add.
3289   // It is crucial that we do not block before the thread is
3290   // added to the Threads list for if a GC happens, then the java_thread oop
3291   // will not be visited by GC.
3292   Threads::add(this);
3293 }
3294 
3295 oop JavaThread::current_park_blocker() {
3296   // Support for JSR-166 locks
3297   oop thread_oop = threadObj();
3298   if (thread_oop != NULL) {
3299     return java_lang_Thread::park_blocker(thread_oop);
3300   }
3301   return NULL;
3302 }
3303 
3304 
3305 void JavaThread::print_stack_on(outputStream* st) {
3306   if (!has_last_Java_frame()) return;
3307   ResourceMark rm;
3308   HandleMark   hm;
3309 
3310   RegisterMap reg_map(this);
3311   vframe* start_vf = last_java_vframe(&reg_map);
3312   int count = 0;
3313   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3314     if (f->is_java_frame()) {
3315       javaVFrame* jvf = javaVFrame::cast(f);
3316       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3317 
3318       // Print out lock information
3319       if (JavaMonitorsInStackTrace) {
3320         jvf->print_lock_info_on(st, count);
3321       }
3322     } else {
3323       // Ignore non-Java frames
3324     }
3325 
3326     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3327     count++;
3328     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3329   }
3330 }
3331 
3332 
3333 // JVMTI PopFrame support
3334 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3335   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3336   if (in_bytes(size_in_bytes) != 0) {
3337     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3338     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3339     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3340   }
3341 }
3342 
3343 void* JavaThread::popframe_preserved_args() {
3344   return _popframe_preserved_args;
3345 }
3346 
3347 ByteSize JavaThread::popframe_preserved_args_size() {
3348   return in_ByteSize(_popframe_preserved_args_size);
3349 }
3350 
3351 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3352   int sz = in_bytes(popframe_preserved_args_size());
3353   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3354   return in_WordSize(sz / wordSize);
3355 }
3356 
3357 void JavaThread::popframe_free_preserved_args() {
3358   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3359   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3360   _popframe_preserved_args = NULL;
3361   _popframe_preserved_args_size = 0;
3362 }
3363 
3364 #ifndef PRODUCT
3365 
3366 void JavaThread::trace_frames() {
3367   tty->print_cr("[Describe stack]");
3368   int frame_no = 1;
3369   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3370     tty->print("  %d. ", frame_no++);
3371     fst.current()->print_value_on(tty, this);
3372     tty->cr();
3373   }
3374 }
3375 
3376 class PrintAndVerifyOopClosure: public OopClosure {
3377  protected:
3378   template <class T> inline void do_oop_work(T* p) {
3379     oop obj = RawAccess<>::oop_load(p);
3380     if (obj == NULL) return;
3381     tty->print(INTPTR_FORMAT ": ", p2i(p));
3382     if (oopDesc::is_oop_or_null(obj)) {
3383       if (obj->is_objArray()) {
3384         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3385       } else {
3386         obj->print();
3387       }
3388     } else {
3389       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3390     }
3391     tty->cr();
3392   }
3393  public:
3394   virtual void do_oop(oop* p) { do_oop_work(p); }
3395   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3396 };
3397 
3398 #ifdef ASSERT
3399 // Print or validate the layout of stack frames
3400 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3401   ResourceMark rm;
3402   PRESERVE_EXCEPTION_MARK;
3403   FrameValues values;
3404   int frame_no = 0;
3405   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3406     fst.current()->describe(values, ++frame_no);
3407     if (depth == frame_no) break;
3408   }
3409   if (validate_only) {
3410     values.validate();
3411   } else {
3412     tty->print_cr("[Describe stack layout]");
3413     values.print(this);
3414   }
3415 }
3416 #endif
3417 
3418 void JavaThread::trace_stack_from(vframe* start_vf) {
3419   ResourceMark rm;
3420   int vframe_no = 1;
3421   for (vframe* f = start_vf; f; f = f->sender()) {
3422     if (f->is_java_frame()) {
3423       javaVFrame::cast(f)->print_activation(vframe_no++);
3424     } else {
3425       f->print();
3426     }
3427     if (vframe_no > StackPrintLimit) {
3428       tty->print_cr("...<more frames>...");
3429       return;
3430     }
3431   }
3432 }
3433 
3434 
3435 void JavaThread::trace_stack() {
3436   if (!has_last_Java_frame()) return;
3437   ResourceMark rm;
3438   HandleMark   hm;
3439   RegisterMap reg_map(this);
3440   trace_stack_from(last_java_vframe(&reg_map));
3441 }
3442 
3443 
3444 #endif // PRODUCT
3445 
3446 
3447 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3448   assert(reg_map != NULL, "a map must be given");
3449   frame f = last_frame();
3450   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3451     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3452   }
3453   return NULL;
3454 }
3455 
3456 
3457 Klass* JavaThread::security_get_caller_class(int depth) {
3458   vframeStream vfst(this);
3459   vfst.security_get_caller_frame(depth);
3460   if (!vfst.at_end()) {
3461     return vfst.method()->method_holder();
3462   }
3463   return NULL;
3464 }
3465 
3466 // java.lang.Thread.sleep support
3467 // Returns true if sleep time elapsed as expected, and false
3468 // if the thread was interrupted.
3469 bool JavaThread::sleep(jlong millis) {
3470   assert(this == Thread::current(),  "thread consistency check");
3471 
3472   ParkEvent * const slp = this->_SleepEvent;
3473   // Because there can be races with thread interruption sending an unpark()
3474   // to the event, we explicitly reset it here to avoid an immediate return.
3475   // The actual interrupt state will be checked before we park().
3476   slp->reset();
3477   // Thread interruption establishes a happens-before ordering in the
3478   // Java Memory Model, so we need to ensure we synchronize with the
3479   // interrupt state.
3480   OrderAccess::fence();
3481 
3482   jlong prevtime = os::javaTimeNanos();
3483 
3484   for (;;) {
3485     // interruption has precedence over timing out
3486     if (this->is_interrupted(true)) {
3487       return false;
3488     }
3489 
3490     if (millis <= 0) {
3491       return true;
3492     }
3493 
3494     {
3495       ThreadBlockInVM tbivm(this);
3496       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
3497 
3498       this->set_suspend_equivalent();
3499       // cleared by handle_special_suspend_equivalent_condition() or
3500       // java_suspend_self() via check_and_wait_while_suspended()
3501 
3502       slp->park(millis);
3503 
3504       // were we externally suspended while we were waiting?
3505       this->check_and_wait_while_suspended();
3506     }
3507 
3508     // Update elapsed time tracking
3509     jlong newtime = os::javaTimeNanos();
3510     if (newtime - prevtime < 0) {
3511       // time moving backwards, should only happen if no monotonic clock
3512       // not a guarantee() because JVM should not abort on kernel/glibc bugs
3513       assert(!os::supports_monotonic_clock(),
3514              "unexpected time moving backwards detected in JavaThread::sleep()");
3515     } else {
3516       millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3517     }
3518     prevtime = newtime;
3519   }
3520 }
3521 
3522 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3523   assert(thread->is_Compiler_thread(), "must be compiler thread");
3524   CompileBroker::compiler_thread_loop();
3525 }
3526 
3527 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3528   NMethodSweeper::sweeper_loop();
3529 }
3530 
3531 // Create a CompilerThread
3532 CompilerThread::CompilerThread(CompileQueue* queue,
3533                                CompilerCounters* counters)
3534                                : JavaThread(&compiler_thread_entry) {
3535   _env   = NULL;
3536   _log   = NULL;
3537   _task  = NULL;
3538   _queue = queue;
3539   _counters = counters;
3540   _buffer_blob = NULL;
3541   _compiler = NULL;
3542 
3543   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3544   resource_area()->bias_to(mtCompiler);
3545 
3546 #ifndef PRODUCT
3547   _ideal_graph_printer = NULL;
3548 #endif
3549 }
3550 
3551 CompilerThread::~CompilerThread() {
3552   // Delete objects which were allocated on heap.
3553   delete _counters;
3554 }
3555 
3556 bool CompilerThread::can_call_java() const {
3557   return _compiler != NULL && _compiler->is_jvmci();
3558 }
3559 
3560 // Create sweeper thread
3561 CodeCacheSweeperThread::CodeCacheSweeperThread()
3562 : JavaThread(&sweeper_thread_entry) {
3563   _scanned_compiled_method = NULL;
3564 }
3565 
3566 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3567   JavaThread::oops_do(f, cf);
3568   if (_scanned_compiled_method != NULL && cf != NULL) {
3569     // Safepoints can occur when the sweeper is scanning an nmethod so
3570     // process it here to make sure it isn't unloaded in the middle of
3571     // a scan.
3572     cf->do_code_blob(_scanned_compiled_method);
3573   }
3574 }
3575 
3576 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3577   JavaThread::nmethods_do(cf);
3578   if (_scanned_compiled_method != NULL && cf != NULL) {
3579     // Safepoints can occur when the sweeper is scanning an nmethod so
3580     // process it here to make sure it isn't unloaded in the middle of
3581     // a scan.
3582     cf->do_code_blob(_scanned_compiled_method);
3583   }
3584 }
3585 
3586 
3587 // ======= Threads ========
3588 
3589 // The Threads class links together all active threads, and provides
3590 // operations over all threads. It is protected by the Threads_lock,
3591 // which is also used in other global contexts like safepointing.
3592 // ThreadsListHandles are used to safely perform operations on one
3593 // or more threads without the risk of the thread exiting during the
3594 // operation.
3595 //
3596 // Note: The Threads_lock is currently more widely used than we
3597 // would like. We are actively migrating Threads_lock uses to other
3598 // mechanisms in order to reduce Threads_lock contention.
3599 
3600 int         Threads::_number_of_threads = 0;
3601 int         Threads::_number_of_non_daemon_threads = 0;
3602 int         Threads::_return_code = 0;
3603 uintx       Threads::_thread_claim_token = 1; // Never zero.
3604 size_t      JavaThread::_stack_size_at_create = 0;
3605 
3606 #ifdef ASSERT
3607 bool        Threads::_vm_complete = false;
3608 #endif
3609 
3610 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3611   Prefetch::read((void*)addr, prefetch_interval);
3612   return *addr;
3613 }
3614 
3615 // Possibly the ugliest for loop the world has seen. C++ does not allow
3616 // multiple types in the declaration section of the for loop. In this case
3617 // we are only dealing with pointers and hence can cast them. It looks ugly
3618 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3619 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3620     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3621              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3622              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3623              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3624              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3625          MACRO_current_p != MACRO_end;                                                                                    \
3626          MACRO_current_p++,                                                                                               \
3627              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3628 
3629 // All JavaThreads
3630 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3631 
3632 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3633 void Threads::non_java_threads_do(ThreadClosure* tc) {
3634   NoSafepointVerifier nsv;
3635   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3636     tc->do_thread(njti.current());
3637   }
3638 }
3639 
3640 // All JavaThreads
3641 void Threads::java_threads_do(ThreadClosure* tc) {
3642   assert_locked_or_safepoint(Threads_lock);
3643   // ALL_JAVA_THREADS iterates through all JavaThreads.
3644   ALL_JAVA_THREADS(p) {
3645     tc->do_thread(p);
3646   }
3647 }
3648 
3649 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3650   assert_locked_or_safepoint(Threads_lock);
3651   java_threads_do(tc);
3652   tc->do_thread(VMThread::vm_thread());
3653 }
3654 
3655 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3656 void Threads::threads_do(ThreadClosure* tc) {
3657   assert_locked_or_safepoint(Threads_lock);
3658   java_threads_do(tc);
3659   non_java_threads_do(tc);
3660 }
3661 
3662 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3663   uintx claim_token = Threads::thread_claim_token();
3664   ALL_JAVA_THREADS(p) {
3665     if (p->claim_threads_do(is_par, claim_token)) {
3666       tc->do_thread(p);
3667     }
3668   }
3669   VMThread* vmt = VMThread::vm_thread();
3670   if (vmt->claim_threads_do(is_par, claim_token)) {
3671     tc->do_thread(vmt);
3672   }
3673 }
3674 
3675 // The system initialization in the library has three phases.
3676 //
3677 // Phase 1: java.lang.System class initialization
3678 //     java.lang.System is a primordial class loaded and initialized
3679 //     by the VM early during startup.  java.lang.System.<clinit>
3680 //     only does registerNatives and keeps the rest of the class
3681 //     initialization work later until thread initialization completes.
3682 //
3683 //     System.initPhase1 initializes the system properties, the static
3684 //     fields in, out, and err. Set up java signal handlers, OS-specific
3685 //     system settings, and thread group of the main thread.
3686 static void call_initPhase1(TRAPS) {
3687   Klass* klass = SystemDictionary::System_klass();
3688   JavaValue result(T_VOID);
3689   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3690                                          vmSymbols::void_method_signature(), CHECK);
3691 }
3692 
3693 // Phase 2. Module system initialization
3694 //     This will initialize the module system.  Only java.base classes
3695 //     can be loaded until phase 2 completes.
3696 //
3697 //     Call System.initPhase2 after the compiler initialization and jsr292
3698 //     classes get initialized because module initialization runs a lot of java
3699 //     code, that for performance reasons, should be compiled.  Also, this will
3700 //     enable the startup code to use lambda and other language features in this
3701 //     phase and onward.
3702 //
3703 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3704 static void call_initPhase2(TRAPS) {
3705   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3706 
3707   Klass* klass = SystemDictionary::System_klass();
3708 
3709   JavaValue result(T_INT);
3710   JavaCallArguments args;
3711   args.push_int(DisplayVMOutputToStderr);
3712   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3713   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3714                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3715   if (result.get_jint() != JNI_OK) {
3716     vm_exit_during_initialization(); // no message or exception
3717   }
3718 
3719   universe_post_module_init();
3720 }
3721 
3722 // Phase 3. final setup - set security manager, system class loader and TCCL
3723 //
3724 //     This will instantiate and set the security manager, set the system class
3725 //     loader as well as the thread context class loader.  The security manager
3726 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3727 //     other modules or the application's classpath.
3728 static void call_initPhase3(TRAPS) {
3729   Klass* klass = SystemDictionary::System_klass();
3730   JavaValue result(T_VOID);
3731   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3732                                          vmSymbols::void_method_signature(), CHECK);
3733 }
3734 
3735 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3736   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3737 
3738   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3739     create_vm_init_libraries();
3740   }
3741 
3742   initialize_class(vmSymbols::java_lang_String(), CHECK);
3743 
3744   // Inject CompactStrings value after the static initializers for String ran.
3745   java_lang_String::set_compact_strings(CompactStrings);
3746 
3747   // Initialize java_lang.System (needed before creating the thread)
3748   initialize_class(vmSymbols::java_lang_System(), CHECK);
3749   // The VM creates & returns objects of this class. Make sure it's initialized.
3750   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3751   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3752   Handle thread_group = create_initial_thread_group(CHECK);
3753   Universe::set_main_thread_group(thread_group());
3754   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3755   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3756   main_thread->set_threadObj(thread_object);
3757 
3758   // Set thread status to running since main thread has
3759   // been started and running.
3760   java_lang_Thread::set_thread_status(thread_object,
3761                                       java_lang_Thread::RUNNABLE);
3762 
3763   // The VM creates objects of this class.
3764   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3765 
3766 #ifdef ASSERT
3767   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3768   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3769 #endif
3770 
3771   // initialize the hardware-specific constants needed by Unsafe
3772   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3773   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3774 
3775   // The VM preresolves methods to these classes. Make sure that they get initialized
3776   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3777   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3778 
3779   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3780   call_initPhase1(CHECK);
3781 
3782   // get the Java runtime name, version, and vendor info after java.lang.System is initialized
3783   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3784   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3785   JDK_Version::set_runtime_vendor_version(get_java_runtime_vendor_version(THREAD));
3786   JDK_Version::set_runtime_vendor_vm_bug_url(get_java_runtime_vendor_vm_bug_url(THREAD));
3787 
3788   // an instance of OutOfMemory exception has been allocated earlier
3789   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3790   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3791   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3792   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3793   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3794   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3795   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3796   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3797 
3798   // Eager box cache initialization only if AOT is on and any library is loaded.
3799   AOTLoader::initialize_box_caches(CHECK);
3800 }
3801 
3802 void Threads::initialize_jsr292_core_classes(TRAPS) {
3803   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3804 
3805   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3806   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3807   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3808   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3809 }
3810 
3811 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3812   extern void JDK_Version_init();
3813 
3814   // Preinitialize version info.
3815   VM_Version::early_initialize();
3816 
3817   // Check version
3818   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3819 
3820   // Initialize library-based TLS
3821   ThreadLocalStorage::init();
3822 
3823   // Initialize the output stream module
3824   ostream_init();
3825 
3826   // Process java launcher properties.
3827   Arguments::process_sun_java_launcher_properties(args);
3828 
3829   // Initialize the os module
3830   os::init();
3831 
3832   // Record VM creation timing statistics
3833   TraceVmCreationTime create_vm_timer;
3834   create_vm_timer.start();
3835 
3836   // Initialize system properties.
3837   Arguments::init_system_properties();
3838 
3839   // So that JDK version can be used as a discriminator when parsing arguments
3840   JDK_Version_init();
3841 
3842   // Update/Initialize System properties after JDK version number is known
3843   Arguments::init_version_specific_system_properties();
3844 
3845   // Make sure to initialize log configuration *before* parsing arguments
3846   LogConfiguration::initialize(create_vm_timer.begin_time());
3847 
3848   // Parse arguments
3849   // Note: this internally calls os::init_container_support()
3850   jint parse_result = Arguments::parse(args);
3851   if (parse_result != JNI_OK) return parse_result;
3852 
3853   os::init_before_ergo();
3854 
3855   jint ergo_result = Arguments::apply_ergo();
3856   if (ergo_result != JNI_OK) return ergo_result;
3857 
3858   // Final check of all ranges after ergonomics which may change values.
3859   if (!JVMFlagRangeList::check_ranges()) {
3860     return JNI_EINVAL;
3861   }
3862 
3863   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3864   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3865   if (!constraint_result) {
3866     return JNI_EINVAL;
3867   }
3868 
3869   if (PauseAtStartup) {
3870     os::pause();
3871   }
3872 
3873   HOTSPOT_VM_INIT_BEGIN();
3874 
3875   // Timing (must come after argument parsing)
3876   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3877 
3878   // Initialize the os module after parsing the args
3879   jint os_init_2_result = os::init_2();
3880   if (os_init_2_result != JNI_OK) return os_init_2_result;
3881 
3882 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3883   // Initialize assert poison page mechanism.
3884   if (ShowRegistersOnAssert) {
3885     initialize_assert_poison();
3886   }
3887 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3888 
3889   SafepointMechanism::initialize();
3890 
3891   jint adjust_after_os_result = Arguments::adjust_after_os();
3892   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3893 
3894   // Initialize output stream logging
3895   ostream_init_log();
3896 
3897   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3898   // Must be before create_vm_init_agents()
3899   if (Arguments::init_libraries_at_startup()) {
3900     convert_vm_init_libraries_to_agents();
3901   }
3902 
3903   // Launch -agentlib/-agentpath and converted -Xrun agents
3904   if (Arguments::init_agents_at_startup()) {
3905     create_vm_init_agents();
3906   }
3907 
3908   // Initialize Threads state
3909   _number_of_threads = 0;
3910   _number_of_non_daemon_threads = 0;
3911 
3912   // Initialize global data structures and create system classes in heap
3913   vm_init_globals();
3914 
3915 #if INCLUDE_JVMCI
3916   if (JVMCICounterSize > 0) {
3917     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3918     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3919   } else {
3920     JavaThread::_jvmci_old_thread_counters = NULL;
3921   }
3922 #endif // INCLUDE_JVMCI
3923 
3924   // Attach the main thread to this os thread
3925   JavaThread* main_thread = new JavaThread();
3926   main_thread->set_thread_state(_thread_in_vm);
3927   main_thread->initialize_thread_current();
3928   // must do this before set_active_handles
3929   main_thread->record_stack_base_and_size();
3930   main_thread->register_thread_stack_with_NMT();
3931   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3932 
3933   if (!main_thread->set_as_starting_thread()) {
3934     vm_shutdown_during_initialization(
3935                                       "Failed necessary internal allocation. Out of swap space");
3936     main_thread->smr_delete();
3937     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3938     return JNI_ENOMEM;
3939   }
3940 
3941   // Enable guard page *after* os::create_main_thread(), otherwise it would
3942   // crash Linux VM, see notes in os_linux.cpp.
3943   main_thread->create_stack_guard_pages();
3944 
3945   // Initialize Java-Level synchronization subsystem
3946   ObjectMonitor::Initialize();
3947 
3948   // Initialize global modules
3949   jint status = init_globals();
3950   if (status != JNI_OK) {
3951     main_thread->smr_delete();
3952     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3953     return status;
3954   }
3955 
3956   JFR_ONLY(Jfr::on_create_vm_1();)
3957 
3958   // Should be done after the heap is fully created
3959   main_thread->cache_global_variables();
3960 
3961   HandleMark hm;
3962 
3963   { MutexLocker mu(Threads_lock);
3964     Threads::add(main_thread);
3965   }
3966 
3967   // Any JVMTI raw monitors entered in onload will transition into
3968   // real raw monitor. VM is setup enough here for raw monitor enter.
3969   JvmtiExport::transition_pending_onload_raw_monitors();
3970 
3971   // Create the VMThread
3972   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3973 
3974     VMThread::create();
3975     Thread* vmthread = VMThread::vm_thread();
3976 
3977     if (!os::create_thread(vmthread, os::vm_thread)) {
3978       vm_exit_during_initialization("Cannot create VM thread. "
3979                                     "Out of system resources.");
3980     }
3981 
3982     // Wait for the VM thread to become ready, and VMThread::run to initialize
3983     // Monitors can have spurious returns, must always check another state flag
3984     {
3985       MonitorLocker ml(Notify_lock);
3986       os::start_thread(vmthread);
3987       while (vmthread->active_handles() == NULL) {
3988         ml.wait();
3989       }
3990     }
3991   }
3992 
3993   assert(Universe::is_fully_initialized(), "not initialized");
3994   if (VerifyDuringStartup) {
3995     // Make sure we're starting with a clean slate.
3996     VM_Verify verify_op;
3997     VMThread::execute(&verify_op);
3998   }
3999 
4000   // We need this to update the java.vm.info property in case any flags used
4001   // to initially define it have been changed. This is needed for both CDS and
4002   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
4003   // is initially computed. See Abstract_VM_Version::vm_info_string().
4004   // This update must happen before we initialize the java classes, but
4005   // after any initialization logic that might modify the flags.
4006   Arguments::update_vm_info_property(VM_Version::vm_info_string());
4007 
4008   Thread* THREAD = Thread::current();
4009 
4010   // Always call even when there are not JVMTI environments yet, since environments
4011   // may be attached late and JVMTI must track phases of VM execution
4012   JvmtiExport::enter_early_start_phase();
4013 
4014   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4015   JvmtiExport::post_early_vm_start();
4016 
4017   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
4018 
4019   quicken_jni_functions();
4020 
4021   // No more stub generation allowed after that point.
4022   StubCodeDesc::freeze();
4023 
4024   // Set flag that basic initialization has completed. Used by exceptions and various
4025   // debug stuff, that does not work until all basic classes have been initialized.
4026   set_init_completed();
4027 
4028   LogConfiguration::post_initialize();
4029   Metaspace::post_initialize();
4030 
4031   HOTSPOT_VM_INIT_END();
4032 
4033   // record VM initialization completion time
4034 #if INCLUDE_MANAGEMENT
4035   Management::record_vm_init_completed();
4036 #endif // INCLUDE_MANAGEMENT
4037 
4038   // Signal Dispatcher needs to be started before VMInit event is posted
4039   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
4040 
4041   // Start Attach Listener if +StartAttachListener or it can't be started lazily
4042   if (!DisableAttachMechanism) {
4043     AttachListener::vm_start();
4044     if (StartAttachListener || AttachListener::init_at_startup()) {
4045       AttachListener::init();
4046     }
4047   }
4048 
4049   // Launch -Xrun agents
4050   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
4051   // back-end can launch with -Xdebug -Xrunjdwp.
4052   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
4053     create_vm_init_libraries();
4054   }
4055 
4056   if (CleanChunkPoolAsync) {
4057     Chunk::start_chunk_pool_cleaner_task();
4058   }
4059 
4060   // Start the service thread
4061   // The service thread enqueues JVMTI deferred events and does various hashtable
4062   // and other cleanups.  Needs to start before the compilers start posting events.
4063   ServiceThread::initialize();
4064 
4065   // initialize compiler(s)
4066 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
4067 #if INCLUDE_JVMCI
4068   bool force_JVMCI_intialization = false;
4069   if (EnableJVMCI) {
4070     // Initialize JVMCI eagerly when it is explicitly requested.
4071     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
4072     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
4073 
4074     if (!force_JVMCI_intialization) {
4075       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
4076       // compilations via JVMCI will not actually block until JVMCI is initialized.
4077       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
4078     }
4079   }
4080 #endif
4081   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
4082   // Postpone completion of compiler initialization to after JVMCI
4083   // is initialized to avoid timeouts of blocking compilations.
4084   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
4085     CompileBroker::compilation_init_phase2();
4086   }
4087 #endif
4088 
4089   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
4090   // It is done after compilers are initialized, because otherwise compilations of
4091   // signature polymorphic MH intrinsics can be missed
4092   // (see SystemDictionary::find_method_handle_intrinsic).
4093   initialize_jsr292_core_classes(CHECK_JNI_ERR);
4094 
4095   // This will initialize the module system.  Only java.base classes can be
4096   // loaded until phase 2 completes
4097   call_initPhase2(CHECK_JNI_ERR);
4098 
4099   JFR_ONLY(Jfr::on_create_vm_2();)
4100 
4101   // Always call even when there are not JVMTI environments yet, since environments
4102   // may be attached late and JVMTI must track phases of VM execution
4103   JvmtiExport::enter_start_phase();
4104 
4105   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4106   JvmtiExport::post_vm_start();
4107 
4108   // Final system initialization including security manager and system class loader
4109   call_initPhase3(CHECK_JNI_ERR);
4110 
4111   // cache the system and platform class loaders
4112   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
4113 
4114 #if INCLUDE_CDS
4115   // capture the module path info from the ModuleEntryTable
4116   ClassLoader::initialize_module_path(THREAD);
4117 #endif
4118 
4119 #if INCLUDE_JVMCI
4120   if (force_JVMCI_intialization) {
4121     JVMCI::initialize_compiler(CHECK_JNI_ERR);
4122     CompileBroker::compilation_init_phase2();
4123   }
4124 #endif
4125 
4126   // Always call even when there are not JVMTI environments yet, since environments
4127   // may be attached late and JVMTI must track phases of VM execution
4128   JvmtiExport::enter_live_phase();
4129 
4130   // Make perfmemory accessible
4131   PerfMemory::set_accessible(true);
4132 
4133   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4134   JvmtiExport::post_vm_initialized();
4135 
4136   JFR_ONLY(Jfr::on_create_vm_3();)
4137 
4138 #if INCLUDE_MANAGEMENT
4139   Management::initialize(THREAD);
4140 
4141   if (HAS_PENDING_EXCEPTION) {
4142     // management agent fails to start possibly due to
4143     // configuration problem and is responsible for printing
4144     // stack trace if appropriate. Simply exit VM.
4145     vm_exit(1);
4146   }
4147 #endif // INCLUDE_MANAGEMENT
4148 
4149   if (MemProfiling)                   MemProfiler::engage();
4150   StatSampler::engage();
4151   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4152 
4153   BiasedLocking::init();
4154 
4155 #if INCLUDE_RTM_OPT
4156   RTMLockingCounters::init();
4157 #endif
4158 
4159   call_postVMInitHook(THREAD);
4160   // The Java side of PostVMInitHook.run must deal with all
4161   // exceptions and provide means of diagnosis.
4162   if (HAS_PENDING_EXCEPTION) {
4163     CLEAR_PENDING_EXCEPTION;
4164   }
4165 
4166   {
4167     MutexLocker ml(PeriodicTask_lock);
4168     // Make sure the WatcherThread can be started by WatcherThread::start()
4169     // or by dynamic enrollment.
4170     WatcherThread::make_startable();
4171     // Start up the WatcherThread if there are any periodic tasks
4172     // NOTE:  All PeriodicTasks should be registered by now. If they
4173     //   aren't, late joiners might appear to start slowly (we might
4174     //   take a while to process their first tick).
4175     if (PeriodicTask::num_tasks() > 0) {
4176       WatcherThread::start();
4177     }
4178   }
4179 
4180   create_vm_timer.end();
4181 #ifdef ASSERT
4182   _vm_complete = true;
4183 #endif
4184 
4185   if (DumpSharedSpaces) {
4186     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4187     ShouldNotReachHere();
4188   }
4189 
4190   return JNI_OK;
4191 }
4192 
4193 // type for the Agent_OnLoad and JVM_OnLoad entry points
4194 extern "C" {
4195   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4196 }
4197 // Find a command line agent library and return its entry point for
4198 //         -agentlib:  -agentpath:   -Xrun
4199 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4200 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4201                                     const char *on_load_symbols[],
4202                                     size_t num_symbol_entries) {
4203   OnLoadEntry_t on_load_entry = NULL;
4204   void *library = NULL;
4205 
4206   if (!agent->valid()) {
4207     char buffer[JVM_MAXPATHLEN];
4208     char ebuf[1024] = "";
4209     const char *name = agent->name();
4210     const char *msg = "Could not find agent library ";
4211 
4212     // First check to see if agent is statically linked into executable
4213     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4214       library = agent->os_lib();
4215     } else if (agent->is_absolute_path()) {
4216       library = os::dll_load(name, ebuf, sizeof ebuf);
4217       if (library == NULL) {
4218         const char *sub_msg = " in absolute path, with error: ";
4219         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4220         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4221         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4222         // If we can't find the agent, exit.
4223         vm_exit_during_initialization(buf, NULL);
4224         FREE_C_HEAP_ARRAY(char, buf);
4225       }
4226     } else {
4227       // Try to load the agent from the standard dll directory
4228       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4229                              name)) {
4230         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4231       }
4232       if (library == NULL) { // Try the library path directory.
4233         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4234           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4235         }
4236         if (library == NULL) {
4237           const char *sub_msg = " on the library path, with error: ";
4238           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4239 
4240           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4241                        strlen(ebuf) + strlen(sub_msg2) + 1;
4242           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4243           if (!agent->is_instrument_lib()) {
4244             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4245           } else {
4246             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4247           }
4248           // If we can't find the agent, exit.
4249           vm_exit_during_initialization(buf, NULL);
4250           FREE_C_HEAP_ARRAY(char, buf);
4251         }
4252       }
4253     }
4254     agent->set_os_lib(library);
4255     agent->set_valid();
4256   }
4257 
4258   // Find the OnLoad function.
4259   on_load_entry =
4260     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4261                                                           false,
4262                                                           on_load_symbols,
4263                                                           num_symbol_entries));
4264   return on_load_entry;
4265 }
4266 
4267 // Find the JVM_OnLoad entry point
4268 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4269   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4270   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4271 }
4272 
4273 // Find the Agent_OnLoad entry point
4274 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4275   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4276   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4277 }
4278 
4279 // For backwards compatibility with -Xrun
4280 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4281 // treated like -agentpath:
4282 // Must be called before agent libraries are created
4283 void Threads::convert_vm_init_libraries_to_agents() {
4284   AgentLibrary* agent;
4285   AgentLibrary* next;
4286 
4287   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4288     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4289     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4290 
4291     // If there is an JVM_OnLoad function it will get called later,
4292     // otherwise see if there is an Agent_OnLoad
4293     if (on_load_entry == NULL) {
4294       on_load_entry = lookup_agent_on_load(agent);
4295       if (on_load_entry != NULL) {
4296         // switch it to the agent list -- so that Agent_OnLoad will be called,
4297         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4298         Arguments::convert_library_to_agent(agent);
4299       } else {
4300         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4301       }
4302     }
4303   }
4304 }
4305 
4306 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4307 // Invokes Agent_OnLoad
4308 // Called very early -- before JavaThreads exist
4309 void Threads::create_vm_init_agents() {
4310   extern struct JavaVM_ main_vm;
4311   AgentLibrary* agent;
4312 
4313   JvmtiExport::enter_onload_phase();
4314 
4315   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4316     // CDS dumping does not support native JVMTI agent.
4317     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4318     if (Arguments::is_dumping_archive()) {
4319       if(!agent->is_instrument_lib()) {
4320         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4321       } else if (!AllowArchivingWithJavaAgent) {
4322         vm_exit_during_cds_dumping(
4323           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4324       }
4325     }
4326 
4327     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4328 
4329     if (on_load_entry != NULL) {
4330       // Invoke the Agent_OnLoad function
4331       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4332       if (err != JNI_OK) {
4333         vm_exit_during_initialization("agent library failed to init", agent->name());
4334       }
4335     } else {
4336       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4337     }
4338   }
4339 
4340   JvmtiExport::enter_primordial_phase();
4341 }
4342 
4343 extern "C" {
4344   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4345 }
4346 
4347 void Threads::shutdown_vm_agents() {
4348   // Send any Agent_OnUnload notifications
4349   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4350   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4351   extern struct JavaVM_ main_vm;
4352   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4353 
4354     // Find the Agent_OnUnload function.
4355     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4356                                                    os::find_agent_function(agent,
4357                                                    false,
4358                                                    on_unload_symbols,
4359                                                    num_symbol_entries));
4360 
4361     // Invoke the Agent_OnUnload function
4362     if (unload_entry != NULL) {
4363       JavaThread* thread = JavaThread::current();
4364       ThreadToNativeFromVM ttn(thread);
4365       HandleMark hm(thread);
4366       (*unload_entry)(&main_vm);
4367     }
4368   }
4369 }
4370 
4371 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4372 // Invokes JVM_OnLoad
4373 void Threads::create_vm_init_libraries() {
4374   extern struct JavaVM_ main_vm;
4375   AgentLibrary* agent;
4376 
4377   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4378     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4379 
4380     if (on_load_entry != NULL) {
4381       // Invoke the JVM_OnLoad function
4382       JavaThread* thread = JavaThread::current();
4383       ThreadToNativeFromVM ttn(thread);
4384       HandleMark hm(thread);
4385       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4386       if (err != JNI_OK) {
4387         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4388       }
4389     } else {
4390       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4391     }
4392   }
4393 }
4394 
4395 
4396 // Last thread running calls java.lang.Shutdown.shutdown()
4397 void JavaThread::invoke_shutdown_hooks() {
4398   HandleMark hm(this);
4399 
4400   // Link all classes for dynamic CDS dumping before vm exit.
4401   // Same operation is being done in JVM_BeforeHalt for handling the
4402   // case where the application calls System.exit().
4403   if (DynamicDumpSharedSpaces) {
4404     MetaspaceShared::link_and_cleanup_shared_classes(this);
4405   }
4406 
4407   // We could get here with a pending exception, if so clear it now.
4408   if (this->has_pending_exception()) {
4409     this->clear_pending_exception();
4410   }
4411 
4412   EXCEPTION_MARK;
4413   Klass* shutdown_klass =
4414     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4415                                       THREAD);
4416   if (shutdown_klass != NULL) {
4417     // SystemDictionary::resolve_or_null will return null if there was
4418     // an exception.  If we cannot load the Shutdown class, just don't
4419     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4420     // won't be run.  Note that if a shutdown hook was registered,
4421     // the Shutdown class would have already been loaded
4422     // (Runtime.addShutdownHook will load it).
4423     JavaValue result(T_VOID);
4424     JavaCalls::call_static(&result,
4425                            shutdown_klass,
4426                            vmSymbols::shutdown_name(),
4427                            vmSymbols::void_method_signature(),
4428                            THREAD);
4429   }
4430   CLEAR_PENDING_EXCEPTION;
4431 }
4432 
4433 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4434 // the program falls off the end of main(). Another VM exit path is through
4435 // vm_exit() when the program calls System.exit() to return a value or when
4436 // there is a serious error in VM. The two shutdown paths are not exactly
4437 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4438 // and VM_Exit op at VM level.
4439 //
4440 // Shutdown sequence:
4441 //   + Shutdown native memory tracking if it is on
4442 //   + Wait until we are the last non-daemon thread to execute
4443 //     <-- every thing is still working at this moment -->
4444 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4445 //        shutdown hooks
4446 //   + Call before_exit(), prepare for VM exit
4447 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4448 //        currently the only user of this mechanism is File.deleteOnExit())
4449 //      > stop StatSampler, watcher thread,
4450 //        post thread end and vm death events to JVMTI,
4451 //        stop signal thread
4452 //   + Call JavaThread::exit(), it will:
4453 //      > release JNI handle blocks, remove stack guard pages
4454 //      > remove this thread from Threads list
4455 //     <-- no more Java code from this thread after this point -->
4456 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4457 //     the compiler threads at safepoint
4458 //     <-- do not use anything that could get blocked by Safepoint -->
4459 //   + Disable tracing at JNI/JVM barriers
4460 //   + Set _vm_exited flag for threads that are still running native code
4461 //   + Call exit_globals()
4462 //      > deletes tty
4463 //      > deletes PerfMemory resources
4464 //   + Delete this thread
4465 //   + Return to caller
4466 
4467 bool Threads::destroy_vm() {
4468   JavaThread* thread = JavaThread::current();
4469 
4470 #ifdef ASSERT
4471   _vm_complete = false;
4472 #endif
4473   // Wait until we are the last non-daemon thread to execute
4474   { MonitorLocker nu(Threads_lock);
4475     while (Threads::number_of_non_daemon_threads() > 1)
4476       // This wait should make safepoint checks, wait without a timeout,
4477       // and wait as a suspend-equivalent condition.
4478       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4479   }
4480 
4481   EventShutdown e;
4482   if (e.should_commit()) {
4483     e.set_reason("No remaining non-daemon Java threads");
4484     e.commit();
4485   }
4486 
4487   // Hang forever on exit if we are reporting an error.
4488   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4489     os::infinite_sleep();
4490   }
4491   os::wait_for_keypress_at_exit();
4492 
4493   // run Java level shutdown hooks
4494   thread->invoke_shutdown_hooks();
4495 
4496   before_exit(thread);
4497 
4498   thread->exit(true);
4499 
4500   // We are no longer on the main thread list but could still be in a
4501   // secondary list where another thread may try to interact with us.
4502   // So wait until all such interactions are complete before we bring
4503   // the VM to the termination safepoint. Normally this would be done
4504   // using thread->smr_delete() below where we delete the thread, but
4505   // we can't call that after the termination safepoint is active as
4506   // we will deadlock on the Threads_lock. Once all interactions are
4507   // complete it is safe to directly delete the thread at any time.
4508   ThreadsSMRSupport::wait_until_not_protected(thread);
4509 
4510   // Stop VM thread.
4511   {
4512     // 4945125 The vm thread comes to a safepoint during exit.
4513     // GC vm_operations can get caught at the safepoint, and the
4514     // heap is unparseable if they are caught. Grab the Heap_lock
4515     // to prevent this. The GC vm_operations will not be able to
4516     // queue until after the vm thread is dead. After this point,
4517     // we'll never emerge out of the safepoint before the VM exits.
4518 
4519     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4520 
4521     VMThread::wait_for_vm_thread_exit();
4522     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4523     VMThread::destroy();
4524   }
4525 
4526   // Now, all Java threads are gone except daemon threads. Daemon threads
4527   // running Java code or in VM are stopped by the Safepoint. However,
4528   // daemon threads executing native code are still running.  But they
4529   // will be stopped at native=>Java/VM barriers. Note that we can't
4530   // simply kill or suspend them, as it is inherently deadlock-prone.
4531 
4532   VM_Exit::set_vm_exited();
4533 
4534   // Clean up ideal graph printers after the VMThread has started
4535   // the final safepoint which will block all the Compiler threads.
4536   // Note that this Thread has already logically exited so the
4537   // clean_up() function's use of a JavaThreadIteratorWithHandle
4538   // would be a problem except set_vm_exited() has remembered the
4539   // shutdown thread which is granted a policy exception.
4540 #if defined(COMPILER2) && !defined(PRODUCT)
4541   IdealGraphPrinter::clean_up();
4542 #endif
4543 
4544   notify_vm_shutdown();
4545 
4546   // exit_globals() will delete tty
4547   exit_globals();
4548 
4549   // Deleting the shutdown thread here is safe. See comment on
4550   // wait_until_not_protected() above.
4551   delete thread;
4552 
4553 #if INCLUDE_JVMCI
4554   if (JVMCICounterSize > 0) {
4555     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4556   }
4557 #endif
4558 
4559   LogConfiguration::finalize();
4560 
4561   return true;
4562 }
4563 
4564 
4565 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4566   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4567   return is_supported_jni_version(version);
4568 }
4569 
4570 
4571 jboolean Threads::is_supported_jni_version(jint version) {
4572   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4573   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4574   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4575   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4576   if (version == JNI_VERSION_9) return JNI_TRUE;
4577   if (version == JNI_VERSION_10) return JNI_TRUE;
4578   return JNI_FALSE;
4579 }
4580 
4581 
4582 void Threads::add(JavaThread* p, bool force_daemon) {
4583   // The threads lock must be owned at this point
4584   assert(Threads_lock->owned_by_self(), "must have threads lock");
4585 
4586   BarrierSet::barrier_set()->on_thread_attach(p);
4587 
4588   // Once a JavaThread is added to the Threads list, smr_delete() has
4589   // to be used to delete it. Otherwise we can just delete it directly.
4590   p->set_on_thread_list();
4591 
4592   _number_of_threads++;
4593   oop threadObj = p->threadObj();
4594   bool daemon = true;
4595   // Bootstrapping problem: threadObj can be null for initial
4596   // JavaThread (or for threads attached via JNI)
4597   if ((!force_daemon) && !is_daemon((threadObj))) {
4598     _number_of_non_daemon_threads++;
4599     daemon = false;
4600   }
4601 
4602   ThreadService::add_thread(p, daemon);
4603 
4604   // Maintain fast thread list
4605   ThreadsSMRSupport::add_thread(p);
4606 
4607   // Possible GC point.
4608   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4609 
4610   // Make new thread known to active EscapeBarrier
4611   EscapeBarrier::thread_added(p);
4612 }
4613 
4614 void Threads::remove(JavaThread* p, bool is_daemon) {
4615 
4616   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4617   ObjectSynchronizer::om_flush(p);
4618 
4619   // Extra scope needed for Thread_lock, so we can check
4620   // that we do not remove thread without safepoint code notice
4621   { MonitorLocker ml(Threads_lock);
4622 
4623     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4624 
4625     // Maintain fast thread list
4626     ThreadsSMRSupport::remove_thread(p);
4627 
4628     _number_of_threads--;
4629     if (!is_daemon) {
4630       _number_of_non_daemon_threads--;
4631 
4632       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4633       // on destroy_vm will wake up.
4634       if (number_of_non_daemon_threads() == 1) {
4635         ml.notify_all();
4636       }
4637     }
4638     ThreadService::remove_thread(p, is_daemon);
4639 
4640     // Make sure that safepoint code disregard this thread. This is needed since
4641     // the thread might mess around with locks after this point. This can cause it
4642     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4643     // of this thread since it is removed from the queue.
4644     p->set_terminated_value();
4645 
4646     // Notify threads waiting in EscapeBarriers
4647     EscapeBarrier::thread_removed(p);
4648   } // unlock Threads_lock
4649 
4650   // Since Events::log uses a lock, we grab it outside the Threads_lock
4651   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4652 }
4653 
4654 // Operations on the Threads list for GC.  These are not explicitly locked,
4655 // but the garbage collector must provide a safe context for them to run.
4656 // In particular, these things should never be called when the Threads_lock
4657 // is held by some other thread. (Note: the Safepoint abstraction also
4658 // uses the Threads_lock to guarantee this property. It also makes sure that
4659 // all threads gets blocked when exiting or starting).
4660 
4661 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4662   ALL_JAVA_THREADS(p) {
4663     p->oops_do(f, cf);
4664   }
4665   VMThread::vm_thread()->oops_do(f, cf);
4666 }
4667 
4668 void Threads::change_thread_claim_token() {
4669   if (++_thread_claim_token == 0) {
4670     // On overflow of the token counter, there is a risk of future
4671     // collisions between a new global token value and a stale token
4672     // for a thread, because not all iterations visit all threads.
4673     // (Though it's pretty much a theoretical concern for non-trivial
4674     // token counter sizes.)  To deal with the possibility, reset all
4675     // the thread tokens to zero on global token overflow.
4676     struct ResetClaims : public ThreadClosure {
4677       virtual void do_thread(Thread* t) {
4678         t->claim_threads_do(false, 0);
4679       }
4680     } reset_claims;
4681     Threads::threads_do(&reset_claims);
4682     // On overflow, update the global token to non-zero, to
4683     // avoid the special "never claimed" initial thread value.
4684     _thread_claim_token = 1;
4685   }
4686 }
4687 
4688 #ifdef ASSERT
4689 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4690   const uintx token = t->threads_do_token();
4691   assert(token == expected,
4692          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4693          UINTX_FORMAT, kind, p2i(t), token, expected);
4694 }
4695 
4696 void Threads::assert_all_threads_claimed() {
4697   ALL_JAVA_THREADS(p) {
4698     assert_thread_claimed("Thread", p, _thread_claim_token);
4699   }
4700   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4701 }
4702 #endif // ASSERT
4703 
4704 class ParallelOopsDoThreadClosure : public ThreadClosure {
4705 private:
4706   OopClosure* _f;
4707   CodeBlobClosure* _cf;
4708 public:
4709   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4710   void do_thread(Thread* t) {
4711     t->oops_do(_f, _cf);
4712   }
4713 };
4714 
4715 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4716   ParallelOopsDoThreadClosure tc(f, cf);
4717   possibly_parallel_threads_do(is_par, &tc);
4718 }
4719 
4720 void Threads::nmethods_do(CodeBlobClosure* cf) {
4721   ALL_JAVA_THREADS(p) {
4722     // This is used by the code cache sweeper to mark nmethods that are active
4723     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4724     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4725     if(!p->is_Code_cache_sweeper_thread()) {
4726       p->nmethods_do(cf);
4727     }
4728   }
4729 }
4730 
4731 void Threads::metadata_do(MetadataClosure* f) {
4732   ALL_JAVA_THREADS(p) {
4733     p->metadata_do(f);
4734   }
4735 }
4736 
4737 class ThreadHandlesClosure : public ThreadClosure {
4738   void (*_f)(Metadata*);
4739  public:
4740   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4741   virtual void do_thread(Thread* thread) {
4742     thread->metadata_handles_do(_f);
4743   }
4744 };
4745 
4746 void Threads::metadata_handles_do(void f(Metadata*)) {
4747   // Only walk the Handles in Thread.
4748   ThreadHandlesClosure handles_closure(f);
4749   threads_do(&handles_closure);
4750 }
4751 
4752 // Get count Java threads that are waiting to enter the specified monitor.
4753 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4754                                                          int count,
4755                                                          address monitor) {
4756   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4757 
4758   int i = 0;
4759   DO_JAVA_THREADS(t_list, p) {
4760     if (!p->can_call_java()) continue;
4761 
4762     // The first stage of async deflation does not affect any field
4763     // used by this comparison so the ObjectMonitor* is usable here.
4764     address pending = (address)p->current_pending_monitor();
4765     if (pending == monitor) {             // found a match
4766       if (i < count) result->append(p);   // save the first count matches
4767       i++;
4768     }
4769   }
4770 
4771   return result;
4772 }
4773 
4774 
4775 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4776                                                       address owner) {
4777   // NULL owner means not locked so we can skip the search
4778   if (owner == NULL) return NULL;
4779 
4780   DO_JAVA_THREADS(t_list, p) {
4781     // first, see if owner is the address of a Java thread
4782     if (owner == (address)p) return p;
4783   }
4784 
4785   // Cannot assert on lack of success here since this function may be
4786   // used by code that is trying to report useful problem information
4787   // like deadlock detection.
4788   if (UseHeavyMonitors) return NULL;
4789 
4790   // If we didn't find a matching Java thread and we didn't force use of
4791   // heavyweight monitors, then the owner is the stack address of the
4792   // Lock Word in the owning Java thread's stack.
4793   //
4794   JavaThread* the_owner = NULL;
4795   DO_JAVA_THREADS(t_list, q) {
4796     if (q->is_lock_owned(owner)) {
4797       the_owner = q;
4798       break;
4799     }
4800   }
4801 
4802   // cannot assert on lack of success here; see above comment
4803   return the_owner;
4804 }
4805 
4806 class PrintOnClosure : public ThreadClosure {
4807 private:
4808   outputStream* _st;
4809 
4810 public:
4811   PrintOnClosure(outputStream* st) :
4812       _st(st) {}
4813 
4814   virtual void do_thread(Thread* thread) {
4815     if (thread != NULL) {
4816       thread->print_on(_st);
4817       _st->cr();
4818     }
4819   }
4820 };
4821 
4822 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4823 void Threads::print_on(outputStream* st, bool print_stacks,
4824                        bool internal_format, bool print_concurrent_locks,
4825                        bool print_extended_info) {
4826   char buf[32];
4827   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4828 
4829   st->print_cr("Full thread dump %s (%s %s):",
4830                VM_Version::vm_name(),
4831                VM_Version::vm_release(),
4832                VM_Version::vm_info_string());
4833   st->cr();
4834 
4835 #if INCLUDE_SERVICES
4836   // Dump concurrent locks
4837   ConcurrentLocksDump concurrent_locks;
4838   if (print_concurrent_locks) {
4839     concurrent_locks.dump_at_safepoint();
4840   }
4841 #endif // INCLUDE_SERVICES
4842 
4843   ThreadsSMRSupport::print_info_on(st);
4844   st->cr();
4845 
4846   ALL_JAVA_THREADS(p) {
4847     ResourceMark rm;
4848     p->print_on(st, print_extended_info);
4849     if (print_stacks) {
4850       if (internal_format) {
4851         p->trace_stack();
4852       } else {
4853         p->print_stack_on(st);
4854       }
4855     }
4856     st->cr();
4857 #if INCLUDE_SERVICES
4858     if (print_concurrent_locks) {
4859       concurrent_locks.print_locks_on(p, st);
4860     }
4861 #endif // INCLUDE_SERVICES
4862   }
4863 
4864   PrintOnClosure cl(st);
4865   cl.do_thread(VMThread::vm_thread());
4866   Universe::heap()->gc_threads_do(&cl);
4867   cl.do_thread(WatcherThread::watcher_thread());
4868 
4869   st->flush();
4870 }
4871 
4872 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4873                              int buflen, bool* found_current) {
4874   if (this_thread != NULL) {
4875     bool is_current = (current == this_thread);
4876     *found_current = *found_current || is_current;
4877     st->print("%s", is_current ? "=>" : "  ");
4878 
4879     st->print(PTR_FORMAT, p2i(this_thread));
4880     st->print(" ");
4881     this_thread->print_on_error(st, buf, buflen);
4882     st->cr();
4883   }
4884 }
4885 
4886 class PrintOnErrorClosure : public ThreadClosure {
4887   outputStream* _st;
4888   Thread* _current;
4889   char* _buf;
4890   int _buflen;
4891   bool* _found_current;
4892  public:
4893   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4894                       int buflen, bool* found_current) :
4895    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4896 
4897   virtual void do_thread(Thread* thread) {
4898     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4899   }
4900 };
4901 
4902 // Threads::print_on_error() is called by fatal error handler. It's possible
4903 // that VM is not at safepoint and/or current thread is inside signal handler.
4904 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4905 // memory (even in resource area), it might deadlock the error handler.
4906 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4907                              int buflen) {
4908   ThreadsSMRSupport::print_info_on(st);
4909   st->cr();
4910 
4911   bool found_current = false;
4912   st->print_cr("Java Threads: ( => current thread )");
4913   ALL_JAVA_THREADS(thread) {
4914     print_on_error(thread, st, current, buf, buflen, &found_current);
4915   }
4916   st->cr();
4917 
4918   st->print_cr("Other Threads:");
4919   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4920   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4921 
4922   if (Universe::heap() != NULL) {
4923     PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4924     Universe::heap()->gc_threads_do(&print_closure);
4925   }
4926 
4927   if (!found_current) {
4928     st->cr();
4929     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4930     current->print_on_error(st, buf, buflen);
4931     st->cr();
4932   }
4933   st->cr();
4934 
4935   st->print_cr("Threads with active compile tasks:");
4936   print_threads_compiling(st, buf, buflen);
4937 }
4938 
4939 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4940   ALL_JAVA_THREADS(thread) {
4941     if (thread->is_Compiler_thread()) {
4942       CompilerThread* ct = (CompilerThread*) thread;
4943 
4944       // Keep task in local variable for NULL check.
4945       // ct->_task might be set to NULL by concurring compiler thread
4946       // because it completed the compilation. The task is never freed,
4947       // though, just returned to a free list.
4948       CompileTask* task = ct->task();
4949       if (task != NULL) {
4950         thread->print_name_on_error(st, buf, buflen);
4951         st->print("  ");
4952         task->print(st, NULL, short_form, true);
4953       }
4954     }
4955   }
4956 }
4957 
4958 
4959 // Internal SpinLock and Mutex
4960 // Based on ParkEvent
4961 
4962 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4963 //
4964 // We employ SpinLocks _only for low-contention, fixed-length
4965 // short-duration critical sections where we're concerned
4966 // about native mutex_t or HotSpot Mutex:: latency.
4967 // The mux construct provides a spin-then-block mutual exclusion
4968 // mechanism.
4969 //
4970 // Testing has shown that contention on the ListLock guarding gFreeList
4971 // is common.  If we implement ListLock as a simple SpinLock it's common
4972 // for the JVM to devolve to yielding with little progress.  This is true
4973 // despite the fact that the critical sections protected by ListLock are
4974 // extremely short.
4975 //
4976 // TODO-FIXME: ListLock should be of type SpinLock.
4977 // We should make this a 1st-class type, integrated into the lock
4978 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4979 // should have sufficient padding to avoid false-sharing and excessive
4980 // cache-coherency traffic.
4981 
4982 
4983 typedef volatile int SpinLockT;
4984 
4985 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4986   if (Atomic::cmpxchg(adr, 0, 1) == 0) {
4987     return;   // normal fast-path return
4988   }
4989 
4990   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4991   int ctr = 0;
4992   int Yields = 0;
4993   for (;;) {
4994     while (*adr != 0) {
4995       ++ctr;
4996       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4997         if (Yields > 5) {
4998           os::naked_short_sleep(1);
4999         } else {
5000           os::naked_yield();
5001           ++Yields;
5002         }
5003       } else {
5004         SpinPause();
5005       }
5006     }
5007     if (Atomic::cmpxchg(adr, 0, 1) == 0) return;
5008   }
5009 }
5010 
5011 void Thread::SpinRelease(volatile int * adr) {
5012   assert(*adr != 0, "invariant");
5013   OrderAccess::fence();      // guarantee at least release consistency.
5014   // Roach-motel semantics.
5015   // It's safe if subsequent LDs and STs float "up" into the critical section,
5016   // but prior LDs and STs within the critical section can't be allowed
5017   // to reorder or float past the ST that releases the lock.
5018   // Loads and stores in the critical section - which appear in program
5019   // order before the store that releases the lock - must also appear
5020   // before the store that releases the lock in memory visibility order.
5021   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
5022   // the ST of 0 into the lock-word which releases the lock, so fence
5023   // more than covers this on all platforms.
5024   *adr = 0;
5025 }
5026 
5027 // muxAcquire and muxRelease:
5028 //
5029 // *  muxAcquire and muxRelease support a single-word lock-word construct.
5030 //    The LSB of the word is set IFF the lock is held.
5031 //    The remainder of the word points to the head of a singly-linked list
5032 //    of threads blocked on the lock.
5033 //
5034 // *  The current implementation of muxAcquire-muxRelease uses its own
5035 //    dedicated Thread._MuxEvent instance.  If we're interested in
5036 //    minimizing the peak number of extant ParkEvent instances then
5037 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
5038 //    as certain invariants were satisfied.  Specifically, care would need
5039 //    to be taken with regards to consuming unpark() "permits".
5040 //    A safe rule of thumb is that a thread would never call muxAcquire()
5041 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
5042 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
5043 //    consume an unpark() permit intended for monitorenter, for instance.
5044 //    One way around this would be to widen the restricted-range semaphore
5045 //    implemented in park().  Another alternative would be to provide
5046 //    multiple instances of the PlatformEvent() for each thread.  One
5047 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
5048 //
5049 // *  Usage:
5050 //    -- Only as leaf locks
5051 //    -- for short-term locking only as muxAcquire does not perform
5052 //       thread state transitions.
5053 //
5054 // Alternatives:
5055 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
5056 //    but with parking or spin-then-park instead of pure spinning.
5057 // *  Use Taura-Oyama-Yonenzawa locks.
5058 // *  It's possible to construct a 1-0 lock if we encode the lockword as
5059 //    (List,LockByte).  Acquire will CAS the full lockword while Release
5060 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
5061 //    acquiring threads use timers (ParkTimed) to detect and recover from
5062 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
5063 //    boundaries by using placement-new.
5064 // *  Augment MCS with advisory back-link fields maintained with CAS().
5065 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
5066 //    The validity of the backlinks must be ratified before we trust the value.
5067 //    If the backlinks are invalid the exiting thread must back-track through the
5068 //    the forward links, which are always trustworthy.
5069 // *  Add a successor indication.  The LockWord is currently encoded as
5070 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
5071 //    to provide the usual futile-wakeup optimization.
5072 //    See RTStt for details.
5073 //
5074 
5075 
5076 const intptr_t LOCKBIT = 1;
5077 
5078 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
5079   intptr_t w = Atomic::cmpxchg(Lock, (intptr_t)0, LOCKBIT);
5080   if (w == 0) return;
5081   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5082     return;
5083   }
5084 
5085   ParkEvent * const Self = Thread::current()->_MuxEvent;
5086   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
5087   for (;;) {
5088     int its = (os::is_MP() ? 100 : 0) + 1;
5089 
5090     // Optional spin phase: spin-then-park strategy
5091     while (--its >= 0) {
5092       w = *Lock;
5093       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5094         return;
5095       }
5096     }
5097 
5098     Self->reset();
5099     Self->OnList = intptr_t(Lock);
5100     // The following fence() isn't _strictly necessary as the subsequent
5101     // CAS() both serializes execution and ratifies the fetched *Lock value.
5102     OrderAccess::fence();
5103     for (;;) {
5104       w = *Lock;
5105       if ((w & LOCKBIT) == 0) {
5106         if (Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5107           Self->OnList = 0;   // hygiene - allows stronger asserts
5108           return;
5109         }
5110         continue;      // Interference -- *Lock changed -- Just retry
5111       }
5112       assert(w & LOCKBIT, "invariant");
5113       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5114       if (Atomic::cmpxchg(Lock, w, intptr_t(Self)|LOCKBIT) == w) break;
5115     }
5116 
5117     while (Self->OnList != 0) {
5118       Self->park();
5119     }
5120   }
5121 }
5122 
5123 // Release() must extract a successor from the list and then wake that thread.
5124 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5125 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5126 // Release() would :
5127 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5128 // (B) Extract a successor from the private list "in-hand"
5129 // (C) attempt to CAS() the residual back into *Lock over null.
5130 //     If there were any newly arrived threads and the CAS() would fail.
5131 //     In that case Release() would detach the RATs, re-merge the list in-hand
5132 //     with the RATs and repeat as needed.  Alternately, Release() might
5133 //     detach and extract a successor, but then pass the residual list to the wakee.
5134 //     The wakee would be responsible for reattaching and remerging before it
5135 //     competed for the lock.
5136 //
5137 // Both "pop" and DMR are immune from ABA corruption -- there can be
5138 // multiple concurrent pushers, but only one popper or detacher.
5139 // This implementation pops from the head of the list.  This is unfair,
5140 // but tends to provide excellent throughput as hot threads remain hot.
5141 // (We wake recently run threads first).
5142 //
5143 // All paths through muxRelease() will execute a CAS.
5144 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5145 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5146 // executed within the critical section are complete and globally visible before the
5147 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5148 void Thread::muxRelease(volatile intptr_t * Lock)  {
5149   for (;;) {
5150     const intptr_t w = Atomic::cmpxchg(Lock, LOCKBIT, (intptr_t)0);
5151     assert(w & LOCKBIT, "invariant");
5152     if (w == LOCKBIT) return;
5153     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5154     assert(List != NULL, "invariant");
5155     assert(List->OnList == intptr_t(Lock), "invariant");
5156     ParkEvent * const nxt = List->ListNext;
5157     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5158 
5159     // The following CAS() releases the lock and pops the head element.
5160     // The CAS() also ratifies the previously fetched lock-word value.
5161     if (Atomic::cmpxchg(Lock, w, intptr_t(nxt)) != w) {
5162       continue;
5163     }
5164     List->OnList = 0;
5165     OrderAccess::fence();
5166     List->unpark();
5167     return;
5168   }
5169 }
5170 
5171 
5172 void Threads::verify() {
5173   ALL_JAVA_THREADS(p) {
5174     p->verify();
5175   }
5176   VMThread* thread = VMThread::vm_thread();
5177   if (thread != NULL) thread->verify();
5178 }