1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/rootnode.hpp"
  42 #include "utilities/macros.hpp"
  43 
  44 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  45   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  46   _in_worklist(C->comp_arena()),
  47   _next_pidx(0),
  48   _collecting(true),
  49   _verify(false),
  50   _compile(C),
  51   _igvn(igvn),
  52   _node_map(C->comp_arena()) {
  53   // Add unknown java object.
  54   add_java_object(C->top(), PointsToNode::GlobalEscape);
  55   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  56   // Add ConP(#NULL) and ConN(#NULL) nodes.
  57   Node* oop_null = igvn->zerocon(T_OBJECT);
  58   assert(oop_null->_idx < nodes_size(), "should be created already");
  59   add_java_object(oop_null, PointsToNode::NoEscape);
  60   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  61   if (UseCompressedOops) {
  62     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  63     assert(noop_null->_idx < nodes_size(), "should be created already");
  64     map_ideal_node(noop_null, null_obj);
  65   }
  66   _pcmp_neq = NULL; // Should be initialized
  67   _pcmp_eq  = NULL;
  68 }
  69 
  70 bool ConnectionGraph::has_candidates(Compile *C) {
  71   // EA brings benefits only when the code has allocations and/or locks which
  72   // are represented by ideal Macro nodes.
  73   int cnt = C->macro_count();
  74   for (int i = 0; i < cnt; i++) {
  75     Node *n = C->macro_node(i);
  76     if (n->is_Allocate())
  77       return true;
  78     if (n->is_Lock()) {
  79       Node* obj = n->as_Lock()->obj_node()->uncast();
  80       if (!(obj->is_Parm() || obj->is_Con()))
  81         return true;
  82     }
  83     if (n->is_CallStaticJava() &&
  84         n->as_CallStaticJava()->is_boxing_method()) {
  85       return true;
  86     }
  87   }
  88   return false;
  89 }
  90 
  91 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  92   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  93   ResourceMark rm;
  94 
  95   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  96   // to create space for them in ConnectionGraph::_nodes[].
  97   Node* oop_null = igvn->zerocon(T_OBJECT);
  98   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  99   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
 100   // Perform escape analysis
 101   if (congraph->compute_escape()) {
 102     // There are non escaping objects.
 103     C->set_congraph(congraph);
 104   }
 105   // Cleanup.
 106   if (oop_null->outcnt() == 0)
 107     igvn->hash_delete(oop_null);
 108   if (noop_null->outcnt() == 0)
 109     igvn->hash_delete(noop_null);
 110 }
 111 
 112 bool ConnectionGraph::compute_escape() {
 113   Compile* C = _compile;
 114   PhaseGVN* igvn = _igvn;
 115 
 116   // Worklists used by EA.
 117   Unique_Node_List delayed_worklist;
 118   GrowableArray<Node*> alloc_worklist;
 119   GrowableArray<Node*> ptr_cmp_worklist;
 120   GrowableArray<Node*> storestore_worklist;
 121   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 122   GrowableArray<PointsToNode*>   ptnodes_worklist;
 123   GrowableArray<JavaObjectNode*> java_objects_worklist;
 124   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 125   GrowableArray<FieldNode*>      oop_fields_worklist;
 126   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 127 
 128   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 129 
 130   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 131   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 132   // Initialize worklist
 133   if (C->root() != NULL) {
 134     ideal_nodes.push(C->root());
 135   }
 136   // Processed ideal nodes are unique on ideal_nodes list
 137   // but several ideal nodes are mapped to the phantom_obj.
 138   // To avoid duplicated entries on the following worklists
 139   // add the phantom_obj only once to them.
 140   ptnodes_worklist.append(phantom_obj);
 141   java_objects_worklist.append(phantom_obj);
 142   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 143     Node* n = ideal_nodes.at(next);
 144     // Create PointsTo nodes and add them to Connection Graph. Called
 145     // only once per ideal node since ideal_nodes is Unique_Node list.
 146     add_node_to_connection_graph(n, &delayed_worklist);
 147     PointsToNode* ptn = ptnode_adr(n->_idx);
 148     if (ptn != NULL && ptn != phantom_obj) {
 149       ptnodes_worklist.append(ptn);
 150       if (ptn->is_JavaObject()) {
 151         java_objects_worklist.append(ptn->as_JavaObject());
 152         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 153             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 154           // Only allocations and java static calls results are interesting.
 155           non_escaped_worklist.append(ptn->as_JavaObject());
 156         }
 157       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 158         oop_fields_worklist.append(ptn->as_Field());
 159       }
 160     }
 161     if (n->is_MergeMem()) {
 162       // Collect all MergeMem nodes to add memory slices for
 163       // scalar replaceable objects in split_unique_types().
 164       _mergemem_worklist.append(n->as_MergeMem());
 165     } else if (OptimizePtrCompare && n->is_Cmp() &&
 166                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 167       // Collect compare pointers nodes.
 168       ptr_cmp_worklist.append(n);
 169     } else if (n->is_MemBarStoreStore()) {
 170       // Collect all MemBarStoreStore nodes so that depending on the
 171       // escape status of the associated Allocate node some of them
 172       // may be eliminated.
 173       storestore_worklist.append(n);
 174     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 175                (n->req() > MemBarNode::Precedent)) {
 176       record_for_optimizer(n);
 177 #ifdef ASSERT
 178     } else if (n->is_AddP()) {
 179       // Collect address nodes for graph verification.
 180       addp_worklist.append(n);
 181 #endif
 182     } else if (n->is_ArrayCopy()) {
 183       // Keep a list of ArrayCopy nodes so if one of its input is non
 184       // escaping, we can record a unique type
 185       arraycopy_worklist.append(n->as_ArrayCopy());
 186     }
 187     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 188       Node* m = n->fast_out(i);   // Get user
 189       ideal_nodes.push(m);
 190     }
 191   }
 192   if (non_escaped_worklist.length() == 0) {
 193     _collecting = false;
 194     return false; // Nothing to do.
 195   }
 196   // Add final simple edges to graph.
 197   while(delayed_worklist.size() > 0) {
 198     Node* n = delayed_worklist.pop();
 199     add_final_edges(n);
 200   }
 201   int ptnodes_length = ptnodes_worklist.length();
 202 
 203 #ifdef ASSERT
 204   if (VerifyConnectionGraph) {
 205     // Verify that no new simple edges could be created and all
 206     // local vars has edges.
 207     _verify = true;
 208     for (int next = 0; next < ptnodes_length; ++next) {
 209       PointsToNode* ptn = ptnodes_worklist.at(next);
 210       add_final_edges(ptn->ideal_node());
 211       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 212         ptn->dump();
 213         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 214       }
 215     }
 216     _verify = false;
 217   }
 218 #endif
 219   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 220   // processing, calls to CI to resolve symbols (types, fields, methods)
 221   // referenced in bytecode. During symbol resolution VM may throw
 222   // an exception which CI cleans and converts to compilation failure.
 223   if (C->failing())  return false;
 224 
 225   // 2. Finish Graph construction by propagating references to all
 226   //    java objects through graph.
 227   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 228                                  java_objects_worklist, oop_fields_worklist)) {
 229     // All objects escaped or hit time or iterations limits.
 230     _collecting = false;
 231     return false;
 232   }
 233 
 234   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 235   //    scalar replaceable allocations on alloc_worklist for processing
 236   //    in split_unique_types().
 237   int non_escaped_length = non_escaped_worklist.length();
 238   for (int next = 0; next < non_escaped_length; next++) {
 239     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 240     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 241     Node* n = ptn->ideal_node();
 242     if (n->is_Allocate()) {
 243       n->as_Allocate()->_is_non_escaping = noescape;
 244     }
 245     if (n->is_CallStaticJava()) {
 246       n->as_CallStaticJava()->_is_non_escaping = noescape;
 247     }
 248     if (noescape && ptn->scalar_replaceable()) {
 249       adjust_scalar_replaceable_state(ptn);
 250       if (ptn->scalar_replaceable()) {
 251         alloc_worklist.append(ptn->ideal_node());
 252       }
 253     }
 254   }
 255 
 256 #ifdef ASSERT
 257   if (VerifyConnectionGraph) {
 258     // Verify that graph is complete - no new edges could be added or needed.
 259     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 260                             java_objects_worklist, addp_worklist);
 261   }
 262   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 263   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 264          null_obj->edge_count() == 0 &&
 265          !null_obj->arraycopy_src() &&
 266          !null_obj->arraycopy_dst(), "sanity");
 267 #endif
 268 
 269   _collecting = false;
 270 
 271   } // TracePhase t3("connectionGraph")
 272 
 273   // 4. Optimize ideal graph based on EA information.
 274   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 275   if (has_non_escaping_obj) {
 276     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 277   }
 278 
 279 #ifndef PRODUCT
 280   if (PrintEscapeAnalysis) {
 281     dump(ptnodes_worklist); // Dump ConnectionGraph
 282   }
 283 #endif
 284 
 285   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 286 #ifdef ASSERT
 287   if (VerifyConnectionGraph) {
 288     int alloc_length = alloc_worklist.length();
 289     for (int next = 0; next < alloc_length; ++next) {
 290       Node* n = alloc_worklist.at(next);
 291       PointsToNode* ptn = ptnode_adr(n->_idx);
 292       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 293     }
 294   }
 295 #endif
 296 
 297   // 5. Separate memory graph for scalar replaceable allcations.
 298   if (has_scalar_replaceable_candidates &&
 299       C->AliasLevel() >= 3 && EliminateAllocations) {
 300     // Now use the escape information to create unique types for
 301     // scalar replaceable objects.
 302     split_unique_types(alloc_worklist, arraycopy_worklist);
 303     if (C->failing())  return false;
 304     C->print_method(PHASE_AFTER_EA, 2);
 305 
 306 #ifdef ASSERT
 307   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 308     tty->print("=== No allocations eliminated for ");
 309     C->method()->print_short_name();
 310     if(!EliminateAllocations) {
 311       tty->print(" since EliminateAllocations is off ===");
 312     } else if(!has_scalar_replaceable_candidates) {
 313       tty->print(" since there are no scalar replaceable candidates ===");
 314     } else if(C->AliasLevel() < 3) {
 315       tty->print(" since AliasLevel < 3 ===");
 316     }
 317     tty->cr();
 318 #endif
 319   }
 320   return has_non_escaping_obj;
 321 }
 322 
 323 // Utility function for nodes that load an object
 324 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 325   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 326   // ThreadLocal has RawPtr type.
 327   const Type* t = _igvn->type(n);
 328   if (t->make_ptr() != NULL) {
 329     Node* adr = n->in(MemNode::Address);
 330 #ifdef ASSERT
 331     if (!adr->is_AddP()) {
 332       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 333     } else {
 334       assert((ptnode_adr(adr->_idx) == NULL ||
 335               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 336     }
 337 #endif
 338     add_local_var_and_edge(n, PointsToNode::NoEscape,
 339                            adr, delayed_worklist);
 340   }
 341 }
 342 
 343 // Populate Connection Graph with PointsTo nodes and create simple
 344 // connection graph edges.
 345 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 346   assert(!_verify, "this method should not be called for verification");
 347   PhaseGVN* igvn = _igvn;
 348   uint n_idx = n->_idx;
 349   PointsToNode* n_ptn = ptnode_adr(n_idx);
 350   if (n_ptn != NULL)
 351     return; // No need to redefine PointsTo node during first iteration.
 352 
 353   int opcode = n->Opcode();
 354   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode);
 355   if (gc_handled) {
 356     return; // Ignore node if already handled by GC.
 357   }
 358 
 359   if (n->is_Call()) {
 360     // Arguments to allocation and locking don't escape.
 361     if (n->is_AbstractLock()) {
 362       // Put Lock and Unlock nodes on IGVN worklist to process them during
 363       // first IGVN optimization when escape information is still available.
 364       record_for_optimizer(n);
 365     } else if (n->is_Allocate()) {
 366       add_call_node(n->as_Call());
 367       record_for_optimizer(n);
 368     } else {
 369       if (n->is_CallStaticJava()) {
 370         const char* name = n->as_CallStaticJava()->_name;
 371         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 372           return; // Skip uncommon traps
 373       }
 374       // Don't mark as processed since call's arguments have to be processed.
 375       delayed_worklist->push(n);
 376       // Check if a call returns an object.
 377       if ((n->as_Call()->returns_pointer() &&
 378            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) ||
 379           (n->is_CallStaticJava() &&
 380            n->as_CallStaticJava()->is_boxing_method())) {
 381         add_call_node(n->as_Call());
 382       }
 383     }
 384     return;
 385   }
 386   // Put this check here to process call arguments since some call nodes
 387   // point to phantom_obj.
 388   if (n_ptn == phantom_obj || n_ptn == null_obj)
 389     return; // Skip predefined nodes.
 390 
 391   switch (opcode) {
 392     case Op_AddP: {
 393       Node* base = get_addp_base(n);
 394       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 395       // Field nodes are created for all field types. They are used in
 396       // adjust_scalar_replaceable_state() and split_unique_types().
 397       // Note, non-oop fields will have only base edges in Connection
 398       // Graph because such fields are not used for oop loads and stores.
 399       int offset = address_offset(n, igvn);
 400       add_field(n, PointsToNode::NoEscape, offset);
 401       if (ptn_base == NULL) {
 402         delayed_worklist->push(n); // Process it later.
 403       } else {
 404         n_ptn = ptnode_adr(n_idx);
 405         add_base(n_ptn->as_Field(), ptn_base);
 406       }
 407       break;
 408     }
 409     case Op_CastX2P: {
 410       map_ideal_node(n, phantom_obj);
 411       break;
 412     }
 413     case Op_CastPP:
 414     case Op_CheckCastPP:
 415     case Op_EncodeP:
 416     case Op_DecodeN:
 417     case Op_EncodePKlass:
 418     case Op_DecodeNKlass: {
 419       add_local_var_and_edge(n, PointsToNode::NoEscape,
 420                              n->in(1), delayed_worklist);
 421       break;
 422     }
 423     case Op_CMoveP: {
 424       add_local_var(n, PointsToNode::NoEscape);
 425       // Do not add edges during first iteration because some could be
 426       // not defined yet.
 427       delayed_worklist->push(n);
 428       break;
 429     }
 430     case Op_ConP:
 431     case Op_ConN:
 432     case Op_ConNKlass: {
 433       // assume all oop constants globally escape except for null
 434       PointsToNode::EscapeState es;
 435       const Type* t = igvn->type(n);
 436       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 437         es = PointsToNode::NoEscape;
 438       } else {
 439         es = PointsToNode::GlobalEscape;
 440       }
 441       add_java_object(n, es);
 442       break;
 443     }
 444     case Op_CreateEx: {
 445       // assume that all exception objects globally escape
 446       map_ideal_node(n, phantom_obj);
 447       break;
 448     }
 449     case Op_LoadKlass:
 450     case Op_LoadNKlass: {
 451       // Unknown class is loaded
 452       map_ideal_node(n, phantom_obj);
 453       break;
 454     }
 455     case Op_LoadP:
 456     case Op_LoadN:
 457     case Op_LoadPLocked: {
 458       add_objload_to_connection_graph(n, delayed_worklist);
 459       break;
 460     }
 461     case Op_Parm: {
 462       map_ideal_node(n, phantom_obj);
 463       break;
 464     }
 465     case Op_PartialSubtypeCheck: {
 466       // Produces Null or notNull and is used in only in CmpP so
 467       // phantom_obj could be used.
 468       map_ideal_node(n, phantom_obj); // Result is unknown
 469       break;
 470     }
 471     case Op_Phi: {
 472       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 473       // ThreadLocal has RawPtr type.
 474       const Type* t = n->as_Phi()->type();
 475       if (t->make_ptr() != NULL) {
 476         add_local_var(n, PointsToNode::NoEscape);
 477         // Do not add edges during first iteration because some could be
 478         // not defined yet.
 479         delayed_worklist->push(n);
 480       }
 481       break;
 482     }
 483     case Op_Proj: {
 484       // we are only interested in the oop result projection from a call
 485       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 486           n->in(0)->as_Call()->returns_pointer()) {
 487         add_local_var_and_edge(n, PointsToNode::NoEscape,
 488                                n->in(0), delayed_worklist);
 489       }
 490       break;
 491     }
 492     case Op_Rethrow: // Exception object escapes
 493     case Op_Return: {
 494       if (n->req() > TypeFunc::Parms &&
 495           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 496         // Treat Return value as LocalVar with GlobalEscape escape state.
 497         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 498                                n->in(TypeFunc::Parms), delayed_worklist);
 499       }
 500       break;
 501     }
 502     case Op_CompareAndExchangeP:
 503     case Op_CompareAndExchangeN:
 504     case Op_GetAndSetP:
 505     case Op_GetAndSetN: {
 506       add_objload_to_connection_graph(n, delayed_worklist);
 507       // fallthrough
 508     }
 509     case Op_StoreP:
 510     case Op_StoreN:
 511     case Op_StoreNKlass:
 512     case Op_StorePConditional:
 513     case Op_WeakCompareAndSwapP:
 514     case Op_WeakCompareAndSwapN:
 515     case Op_CompareAndSwapP:
 516     case Op_CompareAndSwapN: {
 517       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
 518       break;
 519     }
 520     case Op_AryEq:
 521     case Op_HasNegatives:
 522     case Op_StrComp:
 523     case Op_StrEquals:
 524     case Op_StrIndexOf:
 525     case Op_StrIndexOfChar:
 526     case Op_StrInflatedCopy:
 527     case Op_StrCompressedCopy:
 528     case Op_EncodeISOArray: {
 529       add_local_var(n, PointsToNode::ArgEscape);
 530       delayed_worklist->push(n); // Process it later.
 531       break;
 532     }
 533     case Op_ThreadLocal: {
 534       add_java_object(n, PointsToNode::ArgEscape);
 535       break;
 536     }
 537     default:
 538       ; // Do nothing for nodes not related to EA.
 539   }
 540   return;
 541 }
 542 
 543 #ifdef ASSERT
 544 #define ELSE_FAIL(name)                               \
 545       /* Should not be called for not pointer type. */  \
 546       n->dump(1);                                       \
 547       assert(false, name);                              \
 548       break;
 549 #else
 550 #define ELSE_FAIL(name) \
 551       break;
 552 #endif
 553 
 554 // Add final simple edges to graph.
 555 void ConnectionGraph::add_final_edges(Node *n) {
 556   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 557 #ifdef ASSERT
 558   if (_verify && n_ptn->is_JavaObject())
 559     return; // This method does not change graph for JavaObject.
 560 #endif
 561 
 562   if (n->is_Call()) {
 563     process_call_arguments(n->as_Call());
 564     return;
 565   }
 566   assert(n->is_Store() || n->is_LoadStore() ||
 567          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 568          "node should be registered already");
 569   int opcode = n->Opcode();
 570   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
 571   if (gc_handled) {
 572     return; // Ignore node if already handled by GC.
 573   }
 574   switch (opcode) {
 575     case Op_AddP: {
 576       Node* base = get_addp_base(n);
 577       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 578       assert(ptn_base != NULL, "field's base should be registered");
 579       add_base(n_ptn->as_Field(), ptn_base);
 580       break;
 581     }
 582     case Op_CastPP:
 583     case Op_CheckCastPP:
 584     case Op_EncodeP:
 585     case Op_DecodeN:
 586     case Op_EncodePKlass:
 587     case Op_DecodeNKlass: {
 588       add_local_var_and_edge(n, PointsToNode::NoEscape,
 589                              n->in(1), NULL);
 590       break;
 591     }
 592     case Op_CMoveP: {
 593       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 594         Node* in = n->in(i);
 595         if (in == NULL)
 596           continue;  // ignore NULL
 597         Node* uncast_in = in->uncast();
 598         if (uncast_in->is_top() || uncast_in == n)
 599           continue;  // ignore top or inputs which go back this node
 600         PointsToNode* ptn = ptnode_adr(in->_idx);
 601         assert(ptn != NULL, "node should be registered");
 602         add_edge(n_ptn, ptn);
 603       }
 604       break;
 605     }
 606     case Op_LoadP:
 607     case Op_LoadN:
 608     case Op_LoadPLocked: {
 609       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 610       // ThreadLocal has RawPtr type.
 611       const Type* t = _igvn->type(n);
 612       if (t->make_ptr() != NULL) {
 613         Node* adr = n->in(MemNode::Address);
 614         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 615         break;
 616       }
 617       ELSE_FAIL("Op_LoadP");
 618     }
 619     case Op_Phi: {
 620       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 621       // ThreadLocal has RawPtr type.
 622       const Type* t = n->as_Phi()->type();
 623       if (t->make_ptr() != NULL) {
 624         for (uint i = 1; i < n->req(); i++) {
 625           Node* in = n->in(i);
 626           if (in == NULL)
 627             continue;  // ignore NULL
 628           Node* uncast_in = in->uncast();
 629           if (uncast_in->is_top() || uncast_in == n)
 630             continue;  // ignore top or inputs which go back this node
 631           PointsToNode* ptn = ptnode_adr(in->_idx);
 632           assert(ptn != NULL, "node should be registered");
 633           add_edge(n_ptn, ptn);
 634         }
 635         break;
 636       }
 637       ELSE_FAIL("Op_Phi");
 638     }
 639     case Op_Proj: {
 640       // we are only interested in the oop result projection from a call
 641       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 642           n->in(0)->as_Call()->returns_pointer()) {
 643         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 644         break;
 645       }
 646       ELSE_FAIL("Op_Proj");
 647     }
 648     case Op_Rethrow: // Exception object escapes
 649     case Op_Return: {
 650       if (n->req() > TypeFunc::Parms &&
 651           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 652         // Treat Return value as LocalVar with GlobalEscape escape state.
 653         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 654                                n->in(TypeFunc::Parms), NULL);
 655         break;
 656       }
 657       ELSE_FAIL("Op_Return");
 658     }
 659     case Op_StoreP:
 660     case Op_StoreN:
 661     case Op_StoreNKlass:
 662     case Op_StorePConditional:
 663     case Op_CompareAndExchangeP:
 664     case Op_CompareAndExchangeN:
 665     case Op_CompareAndSwapP:
 666     case Op_CompareAndSwapN:
 667     case Op_WeakCompareAndSwapP:
 668     case Op_WeakCompareAndSwapN:
 669     case Op_GetAndSetP:
 670     case Op_GetAndSetN: {
 671       if (add_final_edges_unsafe_access(n, opcode)) {
 672         break;
 673       }
 674       ELSE_FAIL("Op_StoreP");
 675     }
 676     case Op_AryEq:
 677     case Op_HasNegatives:
 678     case Op_StrComp:
 679     case Op_StrEquals:
 680     case Op_StrIndexOf:
 681     case Op_StrIndexOfChar:
 682     case Op_StrInflatedCopy:
 683     case Op_StrCompressedCopy:
 684     case Op_EncodeISOArray: {
 685       // char[]/byte[] arrays passed to string intrinsic do not escape but
 686       // they are not scalar replaceable. Adjust escape state for them.
 687       // Start from in(2) edge since in(1) is memory edge.
 688       for (uint i = 2; i < n->req(); i++) {
 689         Node* adr = n->in(i);
 690         const Type* at = _igvn->type(adr);
 691         if (!adr->is_top() && at->isa_ptr()) {
 692           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 693                  at->isa_ptr() != NULL, "expecting a pointer");
 694           if (adr->is_AddP()) {
 695             adr = get_addp_base(adr);
 696           }
 697           PointsToNode* ptn = ptnode_adr(adr->_idx);
 698           assert(ptn != NULL, "node should be registered");
 699           add_edge(n_ptn, ptn);
 700         }
 701       }
 702       break;
 703     }
 704     default: {
 705       // This method should be called only for EA specific nodes which may
 706       // miss some edges when they were created.
 707 #ifdef ASSERT
 708       n->dump(1);
 709 #endif
 710       guarantee(false, "unknown node");
 711     }
 712   }
 713   return;
 714 }
 715 
 716 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
 717   Node* adr = n->in(MemNode::Address);
 718   const Type* adr_type = _igvn->type(adr);
 719   adr_type = adr_type->make_ptr();
 720   if (adr_type == NULL) {
 721     return; // skip dead nodes
 722   }
 723   if (adr_type->isa_oopptr()
 724       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 725           && adr_type == TypeRawPtr::NOTNULL
 726           && adr->in(AddPNode::Address)->is_Proj()
 727           && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 728     delayed_worklist->push(n); // Process it later.
 729 #ifdef ASSERT
 730     assert (adr->is_AddP(), "expecting an AddP");
 731     if (adr_type == TypeRawPtr::NOTNULL) {
 732       // Verify a raw address for a store captured by Initialize node.
 733       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 734       assert(offs != Type::OffsetBot, "offset must be a constant");
 735     }
 736 #endif
 737   } else {
 738     // Ignore copy the displaced header to the BoxNode (OSR compilation).
 739     if (adr->is_BoxLock()) {
 740       return;
 741     }
 742     // Stored value escapes in unsafe access.
 743     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 744       delayed_worklist->push(n); // Process unsafe access later.
 745       return;
 746     }
 747 #ifdef ASSERT
 748     n->dump(1);
 749     assert(false, "not unsafe");
 750 #endif
 751   }
 752 }
 753 
 754 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
 755   Node* adr = n->in(MemNode::Address);
 756   const Type *adr_type = _igvn->type(adr);
 757   adr_type = adr_type->make_ptr();
 758 #ifdef ASSERT
 759   if (adr_type == NULL) {
 760     n->dump(1);
 761     assert(adr_type != NULL, "dead node should not be on list");
 762     return true;
 763   }
 764 #endif
 765 
 766   if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 767       opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 768     add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 769   }
 770 
 771   if (adr_type->isa_oopptr()
 772       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 773            && adr_type == TypeRawPtr::NOTNULL
 774            && adr->in(AddPNode::Address)->is_Proj()
 775            && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 776     // Point Address to Value
 777     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 778     assert(adr_ptn != NULL &&
 779            adr_ptn->as_Field()->is_oop(), "node should be registered");
 780     Node* val = n->in(MemNode::ValueIn);
 781     PointsToNode* ptn = ptnode_adr(val->_idx);
 782     assert(ptn != NULL, "node should be registered");
 783     add_edge(adr_ptn, ptn);
 784     return true;
 785   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 786     // Stored value escapes in unsafe access.
 787     Node* val = n->in(MemNode::ValueIn);
 788     PointsToNode* ptn = ptnode_adr(val->_idx);
 789     assert(ptn != NULL, "node should be registered");
 790     set_escape_state(ptn, PointsToNode::GlobalEscape);
 791     // Add edge to object for unsafe access with offset.
 792     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 793     assert(adr_ptn != NULL, "node should be registered");
 794     if (adr_ptn->is_Field()) {
 795       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 796       add_edge(adr_ptn, ptn);
 797     }
 798     return true;
 799   }
 800   return false;
 801 }
 802 
 803 void ConnectionGraph::add_call_node(CallNode* call) {
 804   assert(call->returns_pointer(), "only for call which returns pointer");
 805   uint call_idx = call->_idx;
 806   if (call->is_Allocate()) {
 807     Node* k = call->in(AllocateNode::KlassNode);
 808     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 809     assert(kt != NULL, "TypeKlassPtr  required.");
 810     ciKlass* cik = kt->klass();
 811     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 812     bool scalar_replaceable = true;
 813     if (call->is_AllocateArray()) {
 814       if (!cik->is_array_klass()) { // StressReflectiveCode
 815         es = PointsToNode::GlobalEscape;
 816       } else {
 817         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 818         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 819           // Not scalar replaceable if the length is not constant or too big.
 820           scalar_replaceable = false;
 821         }
 822       }
 823     } else {  // Allocate instance
 824       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 825           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 826          !cik->is_instance_klass() || // StressReflectiveCode
 827          !cik->as_instance_klass()->can_be_instantiated() ||
 828           cik->as_instance_klass()->has_finalizer()) {
 829         es = PointsToNode::GlobalEscape;
 830       }
 831     }
 832     add_java_object(call, es);
 833     PointsToNode* ptn = ptnode_adr(call_idx);
 834     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 835       ptn->set_scalar_replaceable(false);
 836     }
 837   } else if (call->is_CallStaticJava()) {
 838     // Call nodes could be different types:
 839     //
 840     // 1. CallDynamicJavaNode (what happened during call is unknown):
 841     //
 842     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 843     //
 844     //    - all oop arguments are escaping globally;
 845     //
 846     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 847     //
 848     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 849     //
 850     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 851     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 852     //      during call is returned;
 853     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 854     //      which are returned and does not escape during call;
 855     //
 856     //    - oop arguments escaping status is defined by bytecode analysis;
 857     //
 858     // For a static call, we know exactly what method is being called.
 859     // Use bytecode estimator to record whether the call's return value escapes.
 860     ciMethod* meth = call->as_CallJava()->method();
 861     if (meth == NULL) {
 862       const char* name = call->as_CallStaticJava()->_name;
 863       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 864       // Returns a newly allocated unescaped object.
 865       add_java_object(call, PointsToNode::NoEscape);
 866       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 867     } else if (meth->is_boxing_method()) {
 868       // Returns boxing object
 869       PointsToNode::EscapeState es;
 870       vmIntrinsics::ID intr = meth->intrinsic_id();
 871       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 872         // It does not escape if object is always allocated.
 873         es = PointsToNode::NoEscape;
 874       } else {
 875         // It escapes globally if object could be loaded from cache.
 876         es = PointsToNode::GlobalEscape;
 877       }
 878       add_java_object(call, es);
 879     } else {
 880       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 881       call_analyzer->copy_dependencies(_compile->dependencies());
 882       if (call_analyzer->is_return_allocated()) {
 883         // Returns a newly allocated unescaped object, simply
 884         // update dependency information.
 885         // Mark it as NoEscape so that objects referenced by
 886         // it's fields will be marked as NoEscape at least.
 887         add_java_object(call, PointsToNode::NoEscape);
 888         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 889       } else {
 890         // Determine whether any arguments are returned.
 891         const TypeTuple* d = call->tf()->domain();
 892         bool ret_arg = false;
 893         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 894           if (d->field_at(i)->isa_ptr() != NULL &&
 895               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 896             ret_arg = true;
 897             break;
 898           }
 899         }
 900         if (ret_arg) {
 901           add_local_var(call, PointsToNode::ArgEscape);
 902         } else {
 903           // Returns unknown object.
 904           map_ideal_node(call, phantom_obj);
 905         }
 906       }
 907     }
 908   } else {
 909     // An other type of call, assume the worst case:
 910     // returned value is unknown and globally escapes.
 911     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 912     map_ideal_node(call, phantom_obj);
 913   }
 914 }
 915 
 916 void ConnectionGraph::process_call_arguments(CallNode *call) {
 917     bool is_arraycopy = false;
 918     switch (call->Opcode()) {
 919 #ifdef ASSERT
 920     case Op_Allocate:
 921     case Op_AllocateArray:
 922     case Op_Lock:
 923     case Op_Unlock:
 924       assert(false, "should be done already");
 925       break;
 926 #endif
 927     case Op_ArrayCopy:
 928     case Op_CallLeafNoFP:
 929       // Most array copies are ArrayCopy nodes at this point but there
 930       // are still a few direct calls to the copy subroutines (See
 931       // PhaseStringOpts::copy_string())
 932       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 933         call->as_CallLeaf()->is_call_to_arraycopystub();
 934       // fall through
 935     case Op_CallLeaf: {
 936       // Stub calls, objects do not escape but they are not scale replaceable.
 937       // Adjust escape state for outgoing arguments.
 938       const TypeTuple * d = call->tf()->domain();
 939       bool src_has_oops = false;
 940       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 941         const Type* at = d->field_at(i);
 942         Node *arg = call->in(i);
 943         if (arg == NULL) {
 944           continue;
 945         }
 946         const Type *aat = _igvn->type(arg);
 947         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 948           continue;
 949         if (arg->is_AddP()) {
 950           //
 951           // The inline_native_clone() case when the arraycopy stub is called
 952           // after the allocation before Initialize and CheckCastPP nodes.
 953           // Or normal arraycopy for object arrays case.
 954           //
 955           // Set AddP's base (Allocate) as not scalar replaceable since
 956           // pointer to the base (with offset) is passed as argument.
 957           //
 958           arg = get_addp_base(arg);
 959         }
 960         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 961         assert(arg_ptn != NULL, "should be registered");
 962         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 963         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 964           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 965                  aat->isa_ptr() != NULL, "expecting an Ptr");
 966           bool arg_has_oops = aat->isa_oopptr() &&
 967                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 968                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 969           if (i == TypeFunc::Parms) {
 970             src_has_oops = arg_has_oops;
 971           }
 972           //
 973           // src or dst could be j.l.Object when other is basic type array:
 974           //
 975           //   arraycopy(char[],0,Object*,0,size);
 976           //   arraycopy(Object*,0,char[],0,size);
 977           //
 978           // Don't add edges in such cases.
 979           //
 980           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 981                                        arg_has_oops && (i > TypeFunc::Parms);
 982 #ifdef ASSERT
 983           if (!(is_arraycopy ||
 984                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
 985                 (call->as_CallLeaf()->_name != NULL &&
 986                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 987                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
 988                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
 989                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 990                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 991                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 992                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 993                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 ||
 994                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 ||
 995                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
 996                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 997                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
 998                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 999                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
1000                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
1001                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
1002                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1003                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1004                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1005                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1006                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1007                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1008                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1009                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
1010                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
1011                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
1012                  ))) {
1013             call->dump();
1014             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1015           }
1016 #endif
1017           // Always process arraycopy's destination object since
1018           // we need to add all possible edges to references in
1019           // source object.
1020           if (arg_esc >= PointsToNode::ArgEscape &&
1021               !arg_is_arraycopy_dest) {
1022             continue;
1023           }
1024           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1025           if (call->is_ArrayCopy()) {
1026             ArrayCopyNode* ac = call->as_ArrayCopy();
1027             if (ac->is_clonebasic() ||
1028                 ac->is_arraycopy_validated() ||
1029                 ac->is_copyof_validated() ||
1030                 ac->is_copyofrange_validated()) {
1031               es = PointsToNode::NoEscape;
1032             }
1033           }
1034           set_escape_state(arg_ptn, es);
1035           if (arg_is_arraycopy_dest) {
1036             Node* src = call->in(TypeFunc::Parms);
1037             if (src->is_AddP()) {
1038               src = get_addp_base(src);
1039             }
1040             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1041             assert(src_ptn != NULL, "should be registered");
1042             if (arg_ptn != src_ptn) {
1043               // Special arraycopy edge:
1044               // A destination object's field can't have the source object
1045               // as base since objects escape states are not related.
1046               // Only escape state of destination object's fields affects
1047               // escape state of fields in source object.
1048               add_arraycopy(call, es, src_ptn, arg_ptn);
1049             }
1050           }
1051         }
1052       }
1053       break;
1054     }
1055     case Op_CallStaticJava: {
1056       // For a static call, we know exactly what method is being called.
1057       // Use bytecode estimator to record the call's escape affects
1058 #ifdef ASSERT
1059       const char* name = call->as_CallStaticJava()->_name;
1060       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1061 #endif
1062       ciMethod* meth = call->as_CallJava()->method();
1063       if ((meth != NULL) && meth->is_boxing_method()) {
1064         break; // Boxing methods do not modify any oops.
1065       }
1066       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1067       // fall-through if not a Java method or no analyzer information
1068       if (call_analyzer != NULL) {
1069         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1070         const TypeTuple* d = call->tf()->domain();
1071         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1072           const Type* at = d->field_at(i);
1073           int k = i - TypeFunc::Parms;
1074           Node* arg = call->in(i);
1075           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1076           if (at->isa_ptr() != NULL &&
1077               call_analyzer->is_arg_returned(k)) {
1078             // The call returns arguments.
1079             if (call_ptn != NULL) { // Is call's result used?
1080               assert(call_ptn->is_LocalVar(), "node should be registered");
1081               assert(arg_ptn != NULL, "node should be registered");
1082               add_edge(call_ptn, arg_ptn);
1083             }
1084           }
1085           if (at->isa_oopptr() != NULL &&
1086               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1087             if (!call_analyzer->is_arg_stack(k)) {
1088               // The argument global escapes
1089               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1090             } else {
1091               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1092               if (!call_analyzer->is_arg_local(k)) {
1093                 // The argument itself doesn't escape, but any fields might
1094                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1095               }
1096             }
1097           }
1098         }
1099         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1100           // The call returns arguments.
1101           assert(call_ptn->edge_count() > 0, "sanity");
1102           if (!call_analyzer->is_return_local()) {
1103             // Returns also unknown object.
1104             add_edge(call_ptn, phantom_obj);
1105           }
1106         }
1107         break;
1108       }
1109     }
1110     default: {
1111       // Fall-through here if not a Java method or no analyzer information
1112       // or some other type of call, assume the worst case: all arguments
1113       // globally escape.
1114       const TypeTuple* d = call->tf()->domain();
1115       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1116         const Type* at = d->field_at(i);
1117         if (at->isa_oopptr() != NULL) {
1118           Node* arg = call->in(i);
1119           if (arg->is_AddP()) {
1120             arg = get_addp_base(arg);
1121           }
1122           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1123           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1124         }
1125       }
1126     }
1127   }
1128 }
1129 
1130 
1131 // Finish Graph construction.
1132 bool ConnectionGraph::complete_connection_graph(
1133                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1134                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1135                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1136                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1137   // Normally only 1-3 passes needed to build Connection Graph depending
1138   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1139   // Set limit to 20 to catch situation when something did go wrong and
1140   // bailout Escape Analysis.
1141   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1142 #define CG_BUILD_ITER_LIMIT 20
1143 
1144   // Propagate GlobalEscape and ArgEscape escape states and check that
1145   // we still have non-escaping objects. The method pushs on _worklist
1146   // Field nodes which reference phantom_object.
1147   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1148     return false; // Nothing to do.
1149   }
1150   // Now propagate references to all JavaObject nodes.
1151   int java_objects_length = java_objects_worklist.length();
1152   elapsedTimer time;
1153   bool timeout = false;
1154   int new_edges = 1;
1155   int iterations = 0;
1156   do {
1157     while ((new_edges > 0) &&
1158            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1159       double start_time = time.seconds();
1160       time.start();
1161       new_edges = 0;
1162       // Propagate references to phantom_object for nodes pushed on _worklist
1163       // by find_non_escaped_objects() and find_field_value().
1164       new_edges += add_java_object_edges(phantom_obj, false);
1165       for (int next = 0; next < java_objects_length; ++next) {
1166         JavaObjectNode* ptn = java_objects_worklist.at(next);
1167         new_edges += add_java_object_edges(ptn, true);
1168 
1169 #define SAMPLE_SIZE 4
1170         if ((next % SAMPLE_SIZE) == 0) {
1171           // Each 4 iterations calculate how much time it will take
1172           // to complete graph construction.
1173           time.stop();
1174           // Poll for requests from shutdown mechanism to quiesce compiler
1175           // because Connection graph construction may take long time.
1176           CompileBroker::maybe_block();
1177           double stop_time = time.seconds();
1178           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1179           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1180           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1181             timeout = true;
1182             break; // Timeout
1183           }
1184           start_time = stop_time;
1185           time.start();
1186         }
1187 #undef SAMPLE_SIZE
1188 
1189       }
1190       if (timeout) break;
1191       if (new_edges > 0) {
1192         // Update escape states on each iteration if graph was updated.
1193         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1194           return false; // Nothing to do.
1195         }
1196       }
1197       time.stop();
1198       if (time.seconds() >= EscapeAnalysisTimeout) {
1199         timeout = true;
1200         break;
1201       }
1202     }
1203     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1204       time.start();
1205       // Find fields which have unknown value.
1206       int fields_length = oop_fields_worklist.length();
1207       for (int next = 0; next < fields_length; next++) {
1208         FieldNode* field = oop_fields_worklist.at(next);
1209         if (field->edge_count() == 0) {
1210           new_edges += find_field_value(field);
1211           // This code may added new edges to phantom_object.
1212           // Need an other cycle to propagate references to phantom_object.
1213         }
1214       }
1215       time.stop();
1216       if (time.seconds() >= EscapeAnalysisTimeout) {
1217         timeout = true;
1218         break;
1219       }
1220     } else {
1221       new_edges = 0; // Bailout
1222     }
1223   } while (new_edges > 0);
1224 
1225   // Bailout if passed limits.
1226   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1227     Compile* C = _compile;
1228     if (C->log() != NULL) {
1229       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1230       C->log()->text("%s", timeout ? "time" : "iterations");
1231       C->log()->end_elem(" limit'");
1232     }
1233     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1234            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1235     // Possible infinite build_connection_graph loop,
1236     // bailout (no changes to ideal graph were made).
1237     return false;
1238   }
1239 #ifdef ASSERT
1240   if (Verbose && PrintEscapeAnalysis) {
1241     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1242                   iterations, nodes_size(), ptnodes_worklist.length());
1243   }
1244 #endif
1245 
1246 #undef CG_BUILD_ITER_LIMIT
1247 
1248   // Find fields initialized by NULL for non-escaping Allocations.
1249   int non_escaped_length = non_escaped_worklist.length();
1250   for (int next = 0; next < non_escaped_length; next++) {
1251     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1252     PointsToNode::EscapeState es = ptn->escape_state();
1253     assert(es <= PointsToNode::ArgEscape, "sanity");
1254     if (es == PointsToNode::NoEscape) {
1255       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1256         // Adding references to NULL object does not change escape states
1257         // since it does not escape. Also no fields are added to NULL object.
1258         add_java_object_edges(null_obj, false);
1259       }
1260     }
1261     Node* n = ptn->ideal_node();
1262     if (n->is_Allocate()) {
1263       // The object allocated by this Allocate node will never be
1264       // seen by an other thread. Mark it so that when it is
1265       // expanded no MemBarStoreStore is added.
1266       InitializeNode* ini = n->as_Allocate()->initialization();
1267       if (ini != NULL)
1268         ini->set_does_not_escape();
1269     }
1270   }
1271   return true; // Finished graph construction.
1272 }
1273 
1274 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1275 // and check that we still have non-escaping java objects.
1276 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1277                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1278   GrowableArray<PointsToNode*> escape_worklist;
1279   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1280   int ptnodes_length = ptnodes_worklist.length();
1281   for (int next = 0; next < ptnodes_length; ++next) {
1282     PointsToNode* ptn = ptnodes_worklist.at(next);
1283     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1284         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1285       escape_worklist.push(ptn);
1286     }
1287   }
1288   // Set escape states to referenced nodes (edges list).
1289   while (escape_worklist.length() > 0) {
1290     PointsToNode* ptn = escape_worklist.pop();
1291     PointsToNode::EscapeState es  = ptn->escape_state();
1292     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1293     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1294         es >= PointsToNode::ArgEscape) {
1295       // GlobalEscape or ArgEscape state of field means it has unknown value.
1296       if (add_edge(ptn, phantom_obj)) {
1297         // New edge was added
1298         add_field_uses_to_worklist(ptn->as_Field());
1299       }
1300     }
1301     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1302       PointsToNode* e = i.get();
1303       if (e->is_Arraycopy()) {
1304         assert(ptn->arraycopy_dst(), "sanity");
1305         // Propagate only fields escape state through arraycopy edge.
1306         if (e->fields_escape_state() < field_es) {
1307           set_fields_escape_state(e, field_es);
1308           escape_worklist.push(e);
1309         }
1310       } else if (es >= field_es) {
1311         // fields_escape_state is also set to 'es' if it is less than 'es'.
1312         if (e->escape_state() < es) {
1313           set_escape_state(e, es);
1314           escape_worklist.push(e);
1315         }
1316       } else {
1317         // Propagate field escape state.
1318         bool es_changed = false;
1319         if (e->fields_escape_state() < field_es) {
1320           set_fields_escape_state(e, field_es);
1321           es_changed = true;
1322         }
1323         if ((e->escape_state() < field_es) &&
1324             e->is_Field() && ptn->is_JavaObject() &&
1325             e->as_Field()->is_oop()) {
1326           // Change escape state of referenced fields.
1327           set_escape_state(e, field_es);
1328           es_changed = true;
1329         } else if (e->escape_state() < es) {
1330           set_escape_state(e, es);
1331           es_changed = true;
1332         }
1333         if (es_changed) {
1334           escape_worklist.push(e);
1335         }
1336       }
1337     }
1338   }
1339   // Remove escaped objects from non_escaped list.
1340   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1341     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1342     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1343       non_escaped_worklist.delete_at(next);
1344     }
1345     if (ptn->escape_state() == PointsToNode::NoEscape) {
1346       // Find fields in non-escaped allocations which have unknown value.
1347       find_init_values(ptn, phantom_obj, NULL);
1348     }
1349   }
1350   return (non_escaped_worklist.length() > 0);
1351 }
1352 
1353 // Add all references to JavaObject node by walking over all uses.
1354 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1355   int new_edges = 0;
1356   if (populate_worklist) {
1357     // Populate _worklist by uses of jobj's uses.
1358     for (UseIterator i(jobj); i.has_next(); i.next()) {
1359       PointsToNode* use = i.get();
1360       if (use->is_Arraycopy())
1361         continue;
1362       add_uses_to_worklist(use);
1363       if (use->is_Field() && use->as_Field()->is_oop()) {
1364         // Put on worklist all field's uses (loads) and
1365         // related field nodes (same base and offset).
1366         add_field_uses_to_worklist(use->as_Field());
1367       }
1368     }
1369   }
1370   for (int l = 0; l < _worklist.length(); l++) {
1371     PointsToNode* use = _worklist.at(l);
1372     if (PointsToNode::is_base_use(use)) {
1373       // Add reference from jobj to field and from field to jobj (field's base).
1374       use = PointsToNode::get_use_node(use)->as_Field();
1375       if (add_base(use->as_Field(), jobj)) {
1376         new_edges++;
1377       }
1378       continue;
1379     }
1380     assert(!use->is_JavaObject(), "sanity");
1381     if (use->is_Arraycopy()) {
1382       if (jobj == null_obj) // NULL object does not have field edges
1383         continue;
1384       // Added edge from Arraycopy node to arraycopy's source java object
1385       if (add_edge(use, jobj)) {
1386         jobj->set_arraycopy_src();
1387         new_edges++;
1388       }
1389       // and stop here.
1390       continue;
1391     }
1392     if (!add_edge(use, jobj))
1393       continue; // No new edge added, there was such edge already.
1394     new_edges++;
1395     if (use->is_LocalVar()) {
1396       add_uses_to_worklist(use);
1397       if (use->arraycopy_dst()) {
1398         for (EdgeIterator i(use); i.has_next(); i.next()) {
1399           PointsToNode* e = i.get();
1400           if (e->is_Arraycopy()) {
1401             if (jobj == null_obj) // NULL object does not have field edges
1402               continue;
1403             // Add edge from arraycopy's destination java object to Arraycopy node.
1404             if (add_edge(jobj, e)) {
1405               new_edges++;
1406               jobj->set_arraycopy_dst();
1407             }
1408           }
1409         }
1410       }
1411     } else {
1412       // Added new edge to stored in field values.
1413       // Put on worklist all field's uses (loads) and
1414       // related field nodes (same base and offset).
1415       add_field_uses_to_worklist(use->as_Field());
1416     }
1417   }
1418   _worklist.clear();
1419   _in_worklist.reset();
1420   return new_edges;
1421 }
1422 
1423 // Put on worklist all related field nodes.
1424 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1425   assert(field->is_oop(), "sanity");
1426   int offset = field->offset();
1427   add_uses_to_worklist(field);
1428   // Loop over all bases of this field and push on worklist Field nodes
1429   // with the same offset and base (since they may reference the same field).
1430   for (BaseIterator i(field); i.has_next(); i.next()) {
1431     PointsToNode* base = i.get();
1432     add_fields_to_worklist(field, base);
1433     // Check if the base was source object of arraycopy and go over arraycopy's
1434     // destination objects since values stored to a field of source object are
1435     // accessable by uses (loads) of fields of destination objects.
1436     if (base->arraycopy_src()) {
1437       for (UseIterator j(base); j.has_next(); j.next()) {
1438         PointsToNode* arycp = j.get();
1439         if (arycp->is_Arraycopy()) {
1440           for (UseIterator k(arycp); k.has_next(); k.next()) {
1441             PointsToNode* abase = k.get();
1442             if (abase->arraycopy_dst() && abase != base) {
1443               // Look for the same arraycopy reference.
1444               add_fields_to_worklist(field, abase);
1445             }
1446           }
1447         }
1448       }
1449     }
1450   }
1451 }
1452 
1453 // Put on worklist all related field nodes.
1454 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1455   int offset = field->offset();
1456   if (base->is_LocalVar()) {
1457     for (UseIterator j(base); j.has_next(); j.next()) {
1458       PointsToNode* f = j.get();
1459       if (PointsToNode::is_base_use(f)) { // Field
1460         f = PointsToNode::get_use_node(f);
1461         if (f == field || !f->as_Field()->is_oop())
1462           continue;
1463         int offs = f->as_Field()->offset();
1464         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1465           add_to_worklist(f);
1466         }
1467       }
1468     }
1469   } else {
1470     assert(base->is_JavaObject(), "sanity");
1471     if (// Skip phantom_object since it is only used to indicate that
1472         // this field's content globally escapes.
1473         (base != phantom_obj) &&
1474         // NULL object node does not have fields.
1475         (base != null_obj)) {
1476       for (EdgeIterator i(base); i.has_next(); i.next()) {
1477         PointsToNode* f = i.get();
1478         // Skip arraycopy edge since store to destination object field
1479         // does not update value in source object field.
1480         if (f->is_Arraycopy()) {
1481           assert(base->arraycopy_dst(), "sanity");
1482           continue;
1483         }
1484         if (f == field || !f->as_Field()->is_oop())
1485           continue;
1486         int offs = f->as_Field()->offset();
1487         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1488           add_to_worklist(f);
1489         }
1490       }
1491     }
1492   }
1493 }
1494 
1495 // Find fields which have unknown value.
1496 int ConnectionGraph::find_field_value(FieldNode* field) {
1497   // Escaped fields should have init value already.
1498   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1499   int new_edges = 0;
1500   for (BaseIterator i(field); i.has_next(); i.next()) {
1501     PointsToNode* base = i.get();
1502     if (base->is_JavaObject()) {
1503       // Skip Allocate's fields which will be processed later.
1504       if (base->ideal_node()->is_Allocate())
1505         return 0;
1506       assert(base == null_obj, "only NULL ptr base expected here");
1507     }
1508   }
1509   if (add_edge(field, phantom_obj)) {
1510     // New edge was added
1511     new_edges++;
1512     add_field_uses_to_worklist(field);
1513   }
1514   return new_edges;
1515 }
1516 
1517 // Find fields initializing values for allocations.
1518 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1519   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1520   int new_edges = 0;
1521   Node* alloc = pta->ideal_node();
1522   if (init_val == phantom_obj) {
1523     // Do nothing for Allocate nodes since its fields values are
1524     // "known" unless they are initialized by arraycopy/clone.
1525     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1526       return 0;
1527     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1528 #ifdef ASSERT
1529     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1530       const char* name = alloc->as_CallStaticJava()->_name;
1531       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1532     }
1533 #endif
1534     // Non-escaped allocation returned from Java or runtime call have
1535     // unknown values in fields.
1536     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1537       PointsToNode* field = i.get();
1538       if (field->is_Field() && field->as_Field()->is_oop()) {
1539         if (add_edge(field, phantom_obj)) {
1540           // New edge was added
1541           new_edges++;
1542           add_field_uses_to_worklist(field->as_Field());
1543         }
1544       }
1545     }
1546     return new_edges;
1547   }
1548   assert(init_val == null_obj, "sanity");
1549   // Do nothing for Call nodes since its fields values are unknown.
1550   if (!alloc->is_Allocate())
1551     return 0;
1552 
1553   InitializeNode* ini = alloc->as_Allocate()->initialization();
1554   bool visited_bottom_offset = false;
1555   GrowableArray<int> offsets_worklist;
1556 
1557   // Check if an oop field's initializing value is recorded and add
1558   // a corresponding NULL if field's value if it is not recorded.
1559   // Connection Graph does not record a default initialization by NULL
1560   // captured by Initialize node.
1561   //
1562   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1563     PointsToNode* field = i.get(); // Field (AddP)
1564     if (!field->is_Field() || !field->as_Field()->is_oop())
1565       continue; // Not oop field
1566     int offset = field->as_Field()->offset();
1567     if (offset == Type::OffsetBot) {
1568       if (!visited_bottom_offset) {
1569         // OffsetBot is used to reference array's element,
1570         // always add reference to NULL to all Field nodes since we don't
1571         // known which element is referenced.
1572         if (add_edge(field, null_obj)) {
1573           // New edge was added
1574           new_edges++;
1575           add_field_uses_to_worklist(field->as_Field());
1576           visited_bottom_offset = true;
1577         }
1578       }
1579     } else {
1580       // Check only oop fields.
1581       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1582       if (adr_type->isa_rawptr()) {
1583 #ifdef ASSERT
1584         // Raw pointers are used for initializing stores so skip it
1585         // since it should be recorded already
1586         Node* base = get_addp_base(field->ideal_node());
1587         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1588                (base->in(0) == alloc),"unexpected pointer type");
1589 #endif
1590         continue;
1591       }
1592       if (!offsets_worklist.contains(offset)) {
1593         offsets_worklist.append(offset);
1594         Node* value = NULL;
1595         if (ini != NULL) {
1596           // StoreP::memory_type() == T_ADDRESS
1597           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1598           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1599           // Make sure initializing store has the same type as this AddP.
1600           // This AddP may reference non existing field because it is on a
1601           // dead branch of bimorphic call which is not eliminated yet.
1602           if (store != NULL && store->is_Store() &&
1603               store->as_Store()->memory_type() == ft) {
1604             value = store->in(MemNode::ValueIn);
1605 #ifdef ASSERT
1606             if (VerifyConnectionGraph) {
1607               // Verify that AddP already points to all objects the value points to.
1608               PointsToNode* val = ptnode_adr(value->_idx);
1609               assert((val != NULL), "should be processed already");
1610               PointsToNode* missed_obj = NULL;
1611               if (val->is_JavaObject()) {
1612                 if (!field->points_to(val->as_JavaObject())) {
1613                   missed_obj = val;
1614                 }
1615               } else {
1616                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1617                   tty->print_cr("----------init store has invalid value -----");
1618                   store->dump();
1619                   val->dump();
1620                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1621                 }
1622                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1623                   PointsToNode* obj = j.get();
1624                   if (obj->is_JavaObject()) {
1625                     if (!field->points_to(obj->as_JavaObject())) {
1626                       missed_obj = obj;
1627                       break;
1628                     }
1629                   }
1630                 }
1631               }
1632               if (missed_obj != NULL) {
1633                 tty->print_cr("----------field---------------------------------");
1634                 field->dump();
1635                 tty->print_cr("----------missed referernce to object-----------");
1636                 missed_obj->dump();
1637                 tty->print_cr("----------object referernced by init store -----");
1638                 store->dump();
1639                 val->dump();
1640                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1641               }
1642             }
1643 #endif
1644           } else {
1645             // There could be initializing stores which follow allocation.
1646             // For example, a volatile field store is not collected
1647             // by Initialize node.
1648             //
1649             // Need to check for dependent loads to separate such stores from
1650             // stores which follow loads. For now, add initial value NULL so
1651             // that compare pointers optimization works correctly.
1652           }
1653         }
1654         if (value == NULL) {
1655           // A field's initializing value was not recorded. Add NULL.
1656           if (add_edge(field, null_obj)) {
1657             // New edge was added
1658             new_edges++;
1659             add_field_uses_to_worklist(field->as_Field());
1660           }
1661         }
1662       }
1663     }
1664   }
1665   return new_edges;
1666 }
1667 
1668 // Adjust scalar_replaceable state after Connection Graph is built.
1669 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1670   // Search for non-escaping objects which are not scalar replaceable
1671   // and mark them to propagate the state to referenced objects.
1672 
1673   // 1. An object is not scalar replaceable if the field into which it is
1674   // stored has unknown offset (stored into unknown element of an array).
1675   //
1676   for (UseIterator i(jobj); i.has_next(); i.next()) {
1677     PointsToNode* use = i.get();
1678     if (use->is_Arraycopy()) {
1679       continue;
1680     }
1681     if (use->is_Field()) {
1682       FieldNode* field = use->as_Field();
1683       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1684       if (field->offset() == Type::OffsetBot) {
1685         jobj->set_scalar_replaceable(false);
1686         return;
1687       }
1688       // 2. An object is not scalar replaceable if the field into which it is
1689       // stored has multiple bases one of which is null.
1690       if (field->base_count() > 1) {
1691         for (BaseIterator i(field); i.has_next(); i.next()) {
1692           PointsToNode* base = i.get();
1693           if (base == null_obj) {
1694             jobj->set_scalar_replaceable(false);
1695             return;
1696           }
1697         }
1698       }
1699     }
1700     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1701     // 3. An object is not scalar replaceable if it is merged with other objects.
1702     for (EdgeIterator j(use); j.has_next(); j.next()) {
1703       PointsToNode* ptn = j.get();
1704       if (ptn->is_JavaObject() && ptn != jobj) {
1705         // Mark all objects.
1706         jobj->set_scalar_replaceable(false);
1707          ptn->set_scalar_replaceable(false);
1708       }
1709     }
1710     if (!jobj->scalar_replaceable()) {
1711       return;
1712     }
1713   }
1714 
1715   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1716     if (j.get()->is_Arraycopy()) {
1717       continue;
1718     }
1719 
1720     // Non-escaping object node should point only to field nodes.
1721     FieldNode* field = j.get()->as_Field();
1722     int offset = field->as_Field()->offset();
1723 
1724     // 4. An object is not scalar replaceable if it has a field with unknown
1725     // offset (array's element is accessed in loop).
1726     if (offset == Type::OffsetBot) {
1727       jobj->set_scalar_replaceable(false);
1728       return;
1729     }
1730     // 5. Currently an object is not scalar replaceable if a LoadStore node
1731     // access its field since the field value is unknown after it.
1732     //
1733     Node* n = field->ideal_node();
1734 
1735     // Test for an unsafe access that was parsed as maybe off heap
1736     // (with a CheckCastPP to raw memory).
1737     assert(n->is_AddP(), "expect an address computation");
1738     if (n->in(AddPNode::Base)->is_top() &&
1739         n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) {
1740       assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected");
1741       assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected");
1742       jobj->set_scalar_replaceable(false);
1743       return;
1744     }
1745 
1746     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1747       Node* u = n->fast_out(i);
1748       if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) {
1749         jobj->set_scalar_replaceable(false);
1750         return;
1751       }
1752     }
1753 
1754     // 6. Or the address may point to more then one object. This may produce
1755     // the false positive result (set not scalar replaceable)
1756     // since the flow-insensitive escape analysis can't separate
1757     // the case when stores overwrite the field's value from the case
1758     // when stores happened on different control branches.
1759     //
1760     // Note: it will disable scalar replacement in some cases:
1761     //
1762     //    Point p[] = new Point[1];
1763     //    p[0] = new Point(); // Will be not scalar replaced
1764     //
1765     // but it will save us from incorrect optimizations in next cases:
1766     //
1767     //    Point p[] = new Point[1];
1768     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1769     //
1770     if (field->base_count() > 1) {
1771       for (BaseIterator i(field); i.has_next(); i.next()) {
1772         PointsToNode* base = i.get();
1773         // Don't take into account LocalVar nodes which
1774         // may point to only one object which should be also
1775         // this field's base by now.
1776         if (base->is_JavaObject() && base != jobj) {
1777           // Mark all bases.
1778           jobj->set_scalar_replaceable(false);
1779           base->set_scalar_replaceable(false);
1780         }
1781       }
1782     }
1783   }
1784 }
1785 
1786 #ifdef ASSERT
1787 void ConnectionGraph::verify_connection_graph(
1788                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1789                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1790                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1791                          GrowableArray<Node*>& addp_worklist) {
1792   // Verify that graph is complete - no new edges could be added.
1793   int java_objects_length = java_objects_worklist.length();
1794   int non_escaped_length  = non_escaped_worklist.length();
1795   int new_edges = 0;
1796   for (int next = 0; next < java_objects_length; ++next) {
1797     JavaObjectNode* ptn = java_objects_worklist.at(next);
1798     new_edges += add_java_object_edges(ptn, true);
1799   }
1800   assert(new_edges == 0, "graph was not complete");
1801   // Verify that escape state is final.
1802   int length = non_escaped_worklist.length();
1803   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1804   assert((non_escaped_length == non_escaped_worklist.length()) &&
1805          (non_escaped_length == length) &&
1806          (_worklist.length() == 0), "escape state was not final");
1807 
1808   // Verify fields information.
1809   int addp_length = addp_worklist.length();
1810   for (int next = 0; next < addp_length; ++next ) {
1811     Node* n = addp_worklist.at(next);
1812     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1813     if (field->is_oop()) {
1814       // Verify that field has all bases
1815       Node* base = get_addp_base(n);
1816       PointsToNode* ptn = ptnode_adr(base->_idx);
1817       if (ptn->is_JavaObject()) {
1818         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1819       } else {
1820         assert(ptn->is_LocalVar(), "sanity");
1821         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1822           PointsToNode* e = i.get();
1823           if (e->is_JavaObject()) {
1824             assert(field->has_base(e->as_JavaObject()), "sanity");
1825           }
1826         }
1827       }
1828       // Verify that all fields have initializing values.
1829       if (field->edge_count() == 0) {
1830         tty->print_cr("----------field does not have references----------");
1831         field->dump();
1832         for (BaseIterator i(field); i.has_next(); i.next()) {
1833           PointsToNode* base = i.get();
1834           tty->print_cr("----------field has next base---------------------");
1835           base->dump();
1836           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1837             tty->print_cr("----------base has fields-------------------------");
1838             for (EdgeIterator j(base); j.has_next(); j.next()) {
1839               j.get()->dump();
1840             }
1841             tty->print_cr("----------base has references---------------------");
1842             for (UseIterator j(base); j.has_next(); j.next()) {
1843               j.get()->dump();
1844             }
1845           }
1846         }
1847         for (UseIterator i(field); i.has_next(); i.next()) {
1848           i.get()->dump();
1849         }
1850         assert(field->edge_count() > 0, "sanity");
1851       }
1852     }
1853   }
1854 }
1855 #endif
1856 
1857 // Optimize ideal graph.
1858 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1859                                            GrowableArray<Node*>& storestore_worklist) {
1860   Compile* C = _compile;
1861   PhaseIterGVN* igvn = _igvn;
1862   if (EliminateLocks) {
1863     // Mark locks before changing ideal graph.
1864     int cnt = C->macro_count();
1865     for( int i=0; i < cnt; i++ ) {
1866       Node *n = C->macro_node(i);
1867       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1868         AbstractLockNode* alock = n->as_AbstractLock();
1869         if (!alock->is_non_esc_obj()) {
1870           if (not_global_escape(alock->obj_node())) {
1871             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1872             // The lock could be marked eliminated by lock coarsening
1873             // code during first IGVN before EA. Replace coarsened flag
1874             // to eliminate all associated locks/unlocks.
1875 #ifdef ASSERT
1876             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1877 #endif
1878             alock->set_non_esc_obj();
1879           }
1880         }
1881       }
1882     }
1883   }
1884 
1885   if (OptimizePtrCompare) {
1886     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1887     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1888     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1889     // Optimize objects compare.
1890     while (ptr_cmp_worklist.length() != 0) {
1891       Node *n = ptr_cmp_worklist.pop();
1892       Node *res = optimize_ptr_compare(n);
1893       if (res != NULL) {
1894 #ifndef PRODUCT
1895         if (PrintOptimizePtrCompare) {
1896           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1897           if (Verbose) {
1898             n->dump(1);
1899           }
1900         }
1901 #endif
1902         igvn->replace_node(n, res);
1903       }
1904     }
1905     // cleanup
1906     if (_pcmp_neq->outcnt() == 0)
1907       igvn->hash_delete(_pcmp_neq);
1908     if (_pcmp_eq->outcnt()  == 0)
1909       igvn->hash_delete(_pcmp_eq);
1910   }
1911 
1912   // For MemBarStoreStore nodes added in library_call.cpp, check
1913   // escape status of associated AllocateNode and optimize out
1914   // MemBarStoreStore node if the allocated object never escapes.
1915   while (storestore_worklist.length() != 0) {
1916     Node *n = storestore_worklist.pop();
1917     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1918     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1919     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1920     if (not_global_escape(alloc)) {
1921       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1922       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1923       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1924       igvn->register_new_node_with_optimizer(mb);
1925       igvn->replace_node(storestore, mb);
1926     }
1927   }
1928 }
1929 
1930 // Optimize objects compare.
1931 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1932   assert(OptimizePtrCompare, "sanity");
1933   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1934   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1935   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1936   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1937   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1938   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1939 
1940   // Check simple cases first.
1941   if (jobj1 != NULL) {
1942     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1943       if (jobj1 == jobj2) {
1944         // Comparing the same not escaping object.
1945         return _pcmp_eq;
1946       }
1947       Node* obj = jobj1->ideal_node();
1948       // Comparing not escaping allocation.
1949       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1950           !ptn2->points_to(jobj1)) {
1951         return _pcmp_neq; // This includes nullness check.
1952       }
1953     }
1954   }
1955   if (jobj2 != NULL) {
1956     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1957       Node* obj = jobj2->ideal_node();
1958       // Comparing not escaping allocation.
1959       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1960           !ptn1->points_to(jobj2)) {
1961         return _pcmp_neq; // This includes nullness check.
1962       }
1963     }
1964   }
1965   if (jobj1 != NULL && jobj1 != phantom_obj &&
1966       jobj2 != NULL && jobj2 != phantom_obj &&
1967       jobj1->ideal_node()->is_Con() &&
1968       jobj2->ideal_node()->is_Con()) {
1969     // Klass or String constants compare. Need to be careful with
1970     // compressed pointers - compare types of ConN and ConP instead of nodes.
1971     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1972     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1973     if (t1->make_ptr() == t2->make_ptr()) {
1974       return _pcmp_eq;
1975     } else {
1976       return _pcmp_neq;
1977     }
1978   }
1979   if (ptn1->meet(ptn2)) {
1980     return NULL; // Sets are not disjoint
1981   }
1982 
1983   // Sets are disjoint.
1984   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1985   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1986   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1987   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1988   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
1989       (set2_has_unknown_ptr && set1_has_null_ptr)) {
1990     // Check nullness of unknown object.
1991     return NULL;
1992   }
1993 
1994   // Disjointness by itself is not sufficient since
1995   // alias analysis is not complete for escaped objects.
1996   // Disjoint sets are definitely unrelated only when
1997   // at least one set has only not escaping allocations.
1998   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1999     if (ptn1->non_escaping_allocation()) {
2000       return _pcmp_neq;
2001     }
2002   }
2003   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
2004     if (ptn2->non_escaping_allocation()) {
2005       return _pcmp_neq;
2006     }
2007   }
2008   return NULL;
2009 }
2010 
2011 // Connection Graph constuction functions.
2012 
2013 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
2014   PointsToNode* ptadr = _nodes.at(n->_idx);
2015   if (ptadr != NULL) {
2016     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
2017     return;
2018   }
2019   Compile* C = _compile;
2020   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2021   _nodes.at_put(n->_idx, ptadr);
2022 }
2023 
2024 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2025   PointsToNode* ptadr = _nodes.at(n->_idx);
2026   if (ptadr != NULL) {
2027     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2028     return;
2029   }
2030   Compile* C = _compile;
2031   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2032   _nodes.at_put(n->_idx, ptadr);
2033 }
2034 
2035 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2036   PointsToNode* ptadr = _nodes.at(n->_idx);
2037   if (ptadr != NULL) {
2038     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2039     return;
2040   }
2041   bool unsafe = false;
2042   bool is_oop = is_oop_field(n, offset, &unsafe);
2043   if (unsafe) {
2044     es = PointsToNode::GlobalEscape;
2045   }
2046   Compile* C = _compile;
2047   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2048   _nodes.at_put(n->_idx, field);
2049 }
2050 
2051 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2052                                     PointsToNode* src, PointsToNode* dst) {
2053   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2054   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2055   PointsToNode* ptadr = _nodes.at(n->_idx);
2056   if (ptadr != NULL) {
2057     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2058     return;
2059   }
2060   Compile* C = _compile;
2061   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2062   _nodes.at_put(n->_idx, ptadr);
2063   // Add edge from arraycopy node to source object.
2064   (void)add_edge(ptadr, src);
2065   src->set_arraycopy_src();
2066   // Add edge from destination object to arraycopy node.
2067   (void)add_edge(dst, ptadr);
2068   dst->set_arraycopy_dst();
2069 }
2070 
2071 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2072   const Type* adr_type = n->as_AddP()->bottom_type();
2073   BasicType bt = T_INT;
2074   if (offset == Type::OffsetBot) {
2075     // Check only oop fields.
2076     if (!adr_type->isa_aryptr() ||
2077         (adr_type->isa_aryptr()->klass() == NULL) ||
2078          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2079       // OffsetBot is used to reference array's element. Ignore first AddP.
2080       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2081         bt = T_OBJECT;
2082       }
2083     }
2084   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2085     if (adr_type->isa_instptr()) {
2086       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2087       if (field != NULL) {
2088         bt = field->layout_type();
2089       } else {
2090         // Check for unsafe oop field access
2091         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2092             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2093             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2094             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2095           bt = T_OBJECT;
2096           (*unsafe) = true;
2097         }
2098       }
2099     } else if (adr_type->isa_aryptr()) {
2100       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2101         // Ignore array length load.
2102       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2103         // Ignore first AddP.
2104       } else {
2105         const Type* elemtype = adr_type->isa_aryptr()->elem();
2106         bt = elemtype->array_element_basic_type();
2107       }
2108     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2109       // Allocation initialization, ThreadLocal field access, unsafe access
2110       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2111           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2112           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2113           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2114         bt = T_OBJECT;
2115       }
2116     }
2117   }
2118   // Note: T_NARROWOOP is not classed as a real reference type
2119   return (is_reference_type(bt) || bt == T_NARROWOOP);
2120 }
2121 
2122 // Returns unique pointed java object or NULL.
2123 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2124   assert(!_collecting, "should not call when contructed graph");
2125   // If the node was created after the escape computation we can't answer.
2126   uint idx = n->_idx;
2127   if (idx >= nodes_size()) {
2128     return NULL;
2129   }
2130   PointsToNode* ptn = ptnode_adr(idx);
2131   if (ptn == NULL) {
2132     return NULL;
2133   }
2134   if (ptn->is_JavaObject()) {
2135     return ptn->as_JavaObject();
2136   }
2137   assert(ptn->is_LocalVar(), "sanity");
2138   // Check all java objects it points to.
2139   JavaObjectNode* jobj = NULL;
2140   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2141     PointsToNode* e = i.get();
2142     if (e->is_JavaObject()) {
2143       if (jobj == NULL) {
2144         jobj = e->as_JavaObject();
2145       } else if (jobj != e) {
2146         return NULL;
2147       }
2148     }
2149   }
2150   return jobj;
2151 }
2152 
2153 // Return true if this node points only to non-escaping allocations.
2154 bool PointsToNode::non_escaping_allocation() {
2155   if (is_JavaObject()) {
2156     Node* n = ideal_node();
2157     if (n->is_Allocate() || n->is_CallStaticJava()) {
2158       return (escape_state() == PointsToNode::NoEscape);
2159     } else {
2160       return false;
2161     }
2162   }
2163   assert(is_LocalVar(), "sanity");
2164   // Check all java objects it points to.
2165   for (EdgeIterator i(this); i.has_next(); i.next()) {
2166     PointsToNode* e = i.get();
2167     if (e->is_JavaObject()) {
2168       Node* n = e->ideal_node();
2169       if ((e->escape_state() != PointsToNode::NoEscape) ||
2170           !(n->is_Allocate() || n->is_CallStaticJava())) {
2171         return false;
2172       }
2173     }
2174   }
2175   return true;
2176 }
2177 
2178 // Return true if we know the node does not escape globally.
2179 bool ConnectionGraph::not_global_escape(Node *n) {
2180   assert(!_collecting, "should not call during graph construction");
2181   // If the node was created after the escape computation we can't answer.
2182   uint idx = n->_idx;
2183   if (idx >= nodes_size()) {
2184     return false;
2185   }
2186   PointsToNode* ptn = ptnode_adr(idx);
2187   if (ptn == NULL) {
2188     return false; // not in congraph (e.g. ConI)
2189   }
2190   PointsToNode::EscapeState es = ptn->escape_state();
2191   // If we have already computed a value, return it.
2192   if (es >= PointsToNode::GlobalEscape)
2193     return false;
2194   if (ptn->is_JavaObject()) {
2195     return true; // (es < PointsToNode::GlobalEscape);
2196   }
2197   assert(ptn->is_LocalVar(), "sanity");
2198   // Check all java objects it points to.
2199   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2200     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2201       return false;
2202   }
2203   return true;
2204 }
2205 
2206 
2207 // Helper functions
2208 
2209 // Return true if this node points to specified node or nodes it points to.
2210 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2211   if (is_JavaObject()) {
2212     return (this == ptn);
2213   }
2214   assert(is_LocalVar() || is_Field(), "sanity");
2215   for (EdgeIterator i(this); i.has_next(); i.next()) {
2216     if (i.get() == ptn)
2217       return true;
2218   }
2219   return false;
2220 }
2221 
2222 // Return true if one node points to an other.
2223 bool PointsToNode::meet(PointsToNode* ptn) {
2224   if (this == ptn) {
2225     return true;
2226   } else if (ptn->is_JavaObject()) {
2227     return this->points_to(ptn->as_JavaObject());
2228   } else if (this->is_JavaObject()) {
2229     return ptn->points_to(this->as_JavaObject());
2230   }
2231   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2232   int ptn_count =  ptn->edge_count();
2233   for (EdgeIterator i(this); i.has_next(); i.next()) {
2234     PointsToNode* this_e = i.get();
2235     for (int j = 0; j < ptn_count; j++) {
2236       if (this_e == ptn->edge(j))
2237         return true;
2238     }
2239   }
2240   return false;
2241 }
2242 
2243 #ifdef ASSERT
2244 // Return true if bases point to this java object.
2245 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2246   for (BaseIterator i(this); i.has_next(); i.next()) {
2247     if (i.get() == jobj)
2248       return true;
2249   }
2250   return false;
2251 }
2252 #endif
2253 
2254 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2255   const Type *adr_type = phase->type(adr);
2256   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2257       adr->in(AddPNode::Address)->is_Proj() &&
2258       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2259     // We are computing a raw address for a store captured by an Initialize
2260     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2261     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2262     assert(offs != Type::OffsetBot ||
2263            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2264            "offset must be a constant or it is initialization of array");
2265     return offs;
2266   }
2267   const TypePtr *t_ptr = adr_type->isa_ptr();
2268   assert(t_ptr != NULL, "must be a pointer type");
2269   return t_ptr->offset();
2270 }
2271 
2272 Node* ConnectionGraph::get_addp_base(Node *addp) {
2273   assert(addp->is_AddP(), "must be AddP");
2274   //
2275   // AddP cases for Base and Address inputs:
2276   // case #1. Direct object's field reference:
2277   //     Allocate
2278   //       |
2279   //     Proj #5 ( oop result )
2280   //       |
2281   //     CheckCastPP (cast to instance type)
2282   //      | |
2283   //     AddP  ( base == address )
2284   //
2285   // case #2. Indirect object's field reference:
2286   //      Phi
2287   //       |
2288   //     CastPP (cast to instance type)
2289   //      | |
2290   //     AddP  ( base == address )
2291   //
2292   // case #3. Raw object's field reference for Initialize node:
2293   //      Allocate
2294   //        |
2295   //      Proj #5 ( oop result )
2296   //  top   |
2297   //     \  |
2298   //     AddP  ( base == top )
2299   //
2300   // case #4. Array's element reference:
2301   //   {CheckCastPP | CastPP}
2302   //     |  | |
2303   //     |  AddP ( array's element offset )
2304   //     |  |
2305   //     AddP ( array's offset )
2306   //
2307   // case #5. Raw object's field reference for arraycopy stub call:
2308   //          The inline_native_clone() case when the arraycopy stub is called
2309   //          after the allocation before Initialize and CheckCastPP nodes.
2310   //      Allocate
2311   //        |
2312   //      Proj #5 ( oop result )
2313   //       | |
2314   //       AddP  ( base == address )
2315   //
2316   // case #6. Constant Pool, ThreadLocal, CastX2P or
2317   //          Raw object's field reference:
2318   //      {ConP, ThreadLocal, CastX2P, raw Load}
2319   //  top   |
2320   //     \  |
2321   //     AddP  ( base == top )
2322   //
2323   // case #7. Klass's field reference.
2324   //      LoadKlass
2325   //       | |
2326   //       AddP  ( base == address )
2327   //
2328   // case #8. narrow Klass's field reference.
2329   //      LoadNKlass
2330   //       |
2331   //      DecodeN
2332   //       | |
2333   //       AddP  ( base == address )
2334   //
2335   // case #9. Mixed unsafe access
2336   //    {instance}
2337   //        |
2338   //      CheckCastPP (raw)
2339   //  top   |
2340   //     \  |
2341   //     AddP  ( base == top )
2342   //
2343   Node *base = addp->in(AddPNode::Base);
2344   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
2345     base = addp->in(AddPNode::Address);
2346     while (base->is_AddP()) {
2347       // Case #6 (unsafe access) may have several chained AddP nodes.
2348       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2349       base = base->in(AddPNode::Address);
2350     }
2351     if (base->Opcode() == Op_CheckCastPP &&
2352         base->bottom_type()->isa_rawptr() &&
2353         _igvn->type(base->in(1))->isa_oopptr()) {
2354       base = base->in(1); // Case #9
2355     } else {
2356       Node* uncast_base = base->uncast();
2357       int opcode = uncast_base->Opcode();
2358       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2359              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2360              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2361              (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2362     }
2363   }
2364   return base;
2365 }
2366 
2367 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2368   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2369   Node* addp2 = addp->raw_out(0);
2370   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2371       addp2->in(AddPNode::Base) == n &&
2372       addp2->in(AddPNode::Address) == addp) {
2373     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2374     //
2375     // Find array's offset to push it on worklist first and
2376     // as result process an array's element offset first (pushed second)
2377     // to avoid CastPP for the array's offset.
2378     // Otherwise the inserted CastPP (LocalVar) will point to what
2379     // the AddP (Field) points to. Which would be wrong since
2380     // the algorithm expects the CastPP has the same point as
2381     // as AddP's base CheckCastPP (LocalVar).
2382     //
2383     //    ArrayAllocation
2384     //     |
2385     //    CheckCastPP
2386     //     |
2387     //    memProj (from ArrayAllocation CheckCastPP)
2388     //     |  ||
2389     //     |  ||   Int (element index)
2390     //     |  ||    |   ConI (log(element size))
2391     //     |  ||    |   /
2392     //     |  ||   LShift
2393     //     |  ||  /
2394     //     |  AddP (array's element offset)
2395     //     |  |
2396     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2397     //     | / /
2398     //     AddP (array's offset)
2399     //      |
2400     //     Load/Store (memory operation on array's element)
2401     //
2402     return addp2;
2403   }
2404   return NULL;
2405 }
2406 
2407 //
2408 // Adjust the type and inputs of an AddP which computes the
2409 // address of a field of an instance
2410 //
2411 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2412   PhaseGVN* igvn = _igvn;
2413   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2414   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2415   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2416   if (t == NULL) {
2417     // We are computing a raw address for a store captured by an Initialize
2418     // compute an appropriate address type (cases #3 and #5).
2419     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2420     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2421     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2422     assert(offs != Type::OffsetBot, "offset must be a constant");
2423     t = base_t->add_offset(offs)->is_oopptr();
2424   }
2425   int inst_id =  base_t->instance_id();
2426   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2427                              "old type must be non-instance or match new type");
2428 
2429   // The type 't' could be subclass of 'base_t'.
2430   // As result t->offset() could be large then base_t's size and it will
2431   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2432   // constructor verifies correctness of the offset.
2433   //
2434   // It could happened on subclass's branch (from the type profiling
2435   // inlining) which was not eliminated during parsing since the exactness
2436   // of the allocation type was not propagated to the subclass type check.
2437   //
2438   // Or the type 't' could be not related to 'base_t' at all.
2439   // It could happened when CHA type is different from MDO type on a dead path
2440   // (for example, from instanceof check) which is not collapsed during parsing.
2441   //
2442   // Do nothing for such AddP node and don't process its users since
2443   // this code branch will go away.
2444   //
2445   if (!t->is_known_instance() &&
2446       !base_t->klass()->is_subtype_of(t->klass())) {
2447      return false; // bail out
2448   }
2449   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2450   // Do NOT remove the next line: ensure a new alias index is allocated
2451   // for the instance type. Note: C++ will not remove it since the call
2452   // has side effect.
2453   int alias_idx = _compile->get_alias_index(tinst);
2454   igvn->set_type(addp, tinst);
2455   // record the allocation in the node map
2456   set_map(addp, get_map(base->_idx));
2457   // Set addp's Base and Address to 'base'.
2458   Node *abase = addp->in(AddPNode::Base);
2459   Node *adr   = addp->in(AddPNode::Address);
2460   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2461       adr->in(0)->_idx == (uint)inst_id) {
2462     // Skip AddP cases #3 and #5.
2463   } else {
2464     assert(!abase->is_top(), "sanity"); // AddP case #3
2465     if (abase != base) {
2466       igvn->hash_delete(addp);
2467       addp->set_req(AddPNode::Base, base);
2468       if (abase == adr) {
2469         addp->set_req(AddPNode::Address, base);
2470       } else {
2471         // AddP case #4 (adr is array's element offset AddP node)
2472 #ifdef ASSERT
2473         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2474         assert(adr->is_AddP() && atype != NULL &&
2475                atype->instance_id() == inst_id, "array's element offset should be processed first");
2476 #endif
2477       }
2478       igvn->hash_insert(addp);
2479     }
2480   }
2481   // Put on IGVN worklist since at least addp's type was changed above.
2482   record_for_optimizer(addp);
2483   return true;
2484 }
2485 
2486 //
2487 // Create a new version of orig_phi if necessary. Returns either the newly
2488 // created phi or an existing phi.  Sets create_new to indicate whether a new
2489 // phi was created.  Cache the last newly created phi in the node map.
2490 //
2491 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2492   Compile *C = _compile;
2493   PhaseGVN* igvn = _igvn;
2494   new_created = false;
2495   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2496   // nothing to do if orig_phi is bottom memory or matches alias_idx
2497   if (phi_alias_idx == alias_idx) {
2498     return orig_phi;
2499   }
2500   // Have we recently created a Phi for this alias index?
2501   PhiNode *result = get_map_phi(orig_phi->_idx);
2502   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2503     return result;
2504   }
2505   // Previous check may fail when the same wide memory Phi was split into Phis
2506   // for different memory slices. Search all Phis for this region.
2507   if (result != NULL) {
2508     Node* region = orig_phi->in(0);
2509     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2510       Node* phi = region->fast_out(i);
2511       if (phi->is_Phi() &&
2512           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2513         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2514         return phi->as_Phi();
2515       }
2516     }
2517   }
2518   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2519     if (C->do_escape_analysis() == true && !C->failing()) {
2520       // Retry compilation without escape analysis.
2521       // If this is the first failure, the sentinel string will "stick"
2522       // to the Compile object, and the C2Compiler will see it and retry.
2523       C->record_failure(C2Compiler::retry_no_escape_analysis());
2524     }
2525     return NULL;
2526   }
2527   orig_phi_worklist.append_if_missing(orig_phi);
2528   const TypePtr *atype = C->get_adr_type(alias_idx);
2529   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2530   C->copy_node_notes_to(result, orig_phi);
2531   igvn->set_type(result, result->bottom_type());
2532   record_for_optimizer(result);
2533   set_map(orig_phi, result);
2534   new_created = true;
2535   return result;
2536 }
2537 
2538 //
2539 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2540 // specified alias index.
2541 //
2542 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2543   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2544   Compile *C = _compile;
2545   PhaseGVN* igvn = _igvn;
2546   bool new_phi_created;
2547   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2548   if (!new_phi_created) {
2549     return result;
2550   }
2551   GrowableArray<PhiNode *>  phi_list;
2552   GrowableArray<uint>  cur_input;
2553   PhiNode *phi = orig_phi;
2554   uint idx = 1;
2555   bool finished = false;
2556   while(!finished) {
2557     while (idx < phi->req()) {
2558       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2559       if (mem != NULL && mem->is_Phi()) {
2560         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2561         if (new_phi_created) {
2562           // found an phi for which we created a new split, push current one on worklist and begin
2563           // processing new one
2564           phi_list.push(phi);
2565           cur_input.push(idx);
2566           phi = mem->as_Phi();
2567           result = newphi;
2568           idx = 1;
2569           continue;
2570         } else {
2571           mem = newphi;
2572         }
2573       }
2574       if (C->failing()) {
2575         return NULL;
2576       }
2577       result->set_req(idx++, mem);
2578     }
2579 #ifdef ASSERT
2580     // verify that the new Phi has an input for each input of the original
2581     assert( phi->req() == result->req(), "must have same number of inputs.");
2582     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2583 #endif
2584     // Check if all new phi's inputs have specified alias index.
2585     // Otherwise use old phi.
2586     for (uint i = 1; i < phi->req(); i++) {
2587       Node* in = result->in(i);
2588       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2589     }
2590     // we have finished processing a Phi, see if there are any more to do
2591     finished = (phi_list.length() == 0 );
2592     if (!finished) {
2593       phi = phi_list.pop();
2594       idx = cur_input.pop();
2595       PhiNode *prev_result = get_map_phi(phi->_idx);
2596       prev_result->set_req(idx++, result);
2597       result = prev_result;
2598     }
2599   }
2600   return result;
2601 }
2602 
2603 //
2604 // The next methods are derived from methods in MemNode.
2605 //
2606 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2607   Node *mem = mmem;
2608   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2609   // means an array I have not precisely typed yet.  Do not do any
2610   // alias stuff with it any time soon.
2611   if (toop->base() != Type::AnyPtr &&
2612       !(toop->klass() != NULL &&
2613         toop->klass()->is_java_lang_Object() &&
2614         toop->offset() == Type::OffsetBot)) {
2615     mem = mmem->memory_at(alias_idx);
2616     // Update input if it is progress over what we have now
2617   }
2618   return mem;
2619 }
2620 
2621 //
2622 // Move memory users to their memory slices.
2623 //
2624 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2625   Compile* C = _compile;
2626   PhaseGVN* igvn = _igvn;
2627   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2628   assert(tp != NULL, "ptr type");
2629   int alias_idx = C->get_alias_index(tp);
2630   int general_idx = C->get_general_index(alias_idx);
2631 
2632   // Move users first
2633   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2634     Node* use = n->fast_out(i);
2635     if (use->is_MergeMem()) {
2636       MergeMemNode* mmem = use->as_MergeMem();
2637       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2638       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2639         continue; // Nothing to do
2640       }
2641       // Replace previous general reference to mem node.
2642       uint orig_uniq = C->unique();
2643       Node* m = find_inst_mem(n, general_idx, orig_phis);
2644       assert(orig_uniq == C->unique(), "no new nodes");
2645       mmem->set_memory_at(general_idx, m);
2646       --imax;
2647       --i;
2648     } else if (use->is_MemBar()) {
2649       assert(!use->is_Initialize(), "initializing stores should not be moved");
2650       if (use->req() > MemBarNode::Precedent &&
2651           use->in(MemBarNode::Precedent) == n) {
2652         // Don't move related membars.
2653         record_for_optimizer(use);
2654         continue;
2655       }
2656       tp = use->as_MemBar()->adr_type()->isa_ptr();
2657       if ((tp != NULL && C->get_alias_index(tp) == alias_idx) ||
2658           alias_idx == general_idx) {
2659         continue; // Nothing to do
2660       }
2661       // Move to general memory slice.
2662       uint orig_uniq = C->unique();
2663       Node* m = find_inst_mem(n, general_idx, orig_phis);
2664       assert(orig_uniq == C->unique(), "no new nodes");
2665       igvn->hash_delete(use);
2666       imax -= use->replace_edge(n, m);
2667       igvn->hash_insert(use);
2668       record_for_optimizer(use);
2669       --i;
2670 #ifdef ASSERT
2671     } else if (use->is_Mem()) {
2672       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2673         // Don't move related cardmark.
2674         continue;
2675       }
2676       // Memory nodes should have new memory input.
2677       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2678       assert(tp != NULL, "ptr type");
2679       int idx = C->get_alias_index(tp);
2680       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2681              "Following memory nodes should have new memory input or be on the same memory slice");
2682     } else if (use->is_Phi()) {
2683       // Phi nodes should be split and moved already.
2684       tp = use->as_Phi()->adr_type()->isa_ptr();
2685       assert(tp != NULL, "ptr type");
2686       int idx = C->get_alias_index(tp);
2687       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2688     } else {
2689       use->dump();
2690       assert(false, "should not be here");
2691 #endif
2692     }
2693   }
2694 }
2695 
2696 //
2697 // Search memory chain of "mem" to find a MemNode whose address
2698 // is the specified alias index.
2699 //
2700 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2701   if (orig_mem == NULL)
2702     return orig_mem;
2703   Compile* C = _compile;
2704   PhaseGVN* igvn = _igvn;
2705   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2706   bool is_instance = (toop != NULL) && toop->is_known_instance();
2707   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
2708   Node *prev = NULL;
2709   Node *result = orig_mem;
2710   while (prev != result) {
2711     prev = result;
2712     if (result == start_mem)
2713       break;  // hit one of our sentinels
2714     if (result->is_Mem()) {
2715       const Type *at = igvn->type(result->in(MemNode::Address));
2716       if (at == Type::TOP)
2717         break; // Dead
2718       assert (at->isa_ptr() != NULL, "pointer type required.");
2719       int idx = C->get_alias_index(at->is_ptr());
2720       if (idx == alias_idx)
2721         break; // Found
2722       if (!is_instance && (at->isa_oopptr() == NULL ||
2723                            !at->is_oopptr()->is_known_instance())) {
2724         break; // Do not skip store to general memory slice.
2725       }
2726       result = result->in(MemNode::Memory);
2727     }
2728     if (!is_instance)
2729       continue;  // don't search further for non-instance types
2730     // skip over a call which does not affect this memory slice
2731     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2732       Node *proj_in = result->in(0);
2733       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2734         break;  // hit one of our sentinels
2735       } else if (proj_in->is_Call()) {
2736         // ArrayCopy node processed here as well
2737         CallNode *call = proj_in->as_Call();
2738         if (!call->may_modify(toop, igvn)) {
2739           result = call->in(TypeFunc::Memory);
2740         }
2741       } else if (proj_in->is_Initialize()) {
2742         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2743         // Stop if this is the initialization for the object instance which
2744         // which contains this memory slice, otherwise skip over it.
2745         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2746           result = proj_in->in(TypeFunc::Memory);
2747         }
2748       } else if (proj_in->is_MemBar()) {
2749         // Check if there is an array copy for a clone
2750         // Step over GC barrier when ReduceInitialCardMarks is disabled
2751         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2752         Node* control_proj_ac = bs->step_over_gc_barrier(proj_in->in(0));
2753 
2754         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
2755           // Stop if it is a clone
2756           ArrayCopyNode* ac = control_proj_ac->in(0)->as_ArrayCopy();
2757           if (ac->may_modify(toop, igvn)) {
2758             break;
2759           }
2760         }
2761         result = proj_in->in(TypeFunc::Memory);
2762       }
2763     } else if (result->is_MergeMem()) {
2764       MergeMemNode *mmem = result->as_MergeMem();
2765       result = step_through_mergemem(mmem, alias_idx, toop);
2766       if (result == mmem->base_memory()) {
2767         // Didn't find instance memory, search through general slice recursively.
2768         result = mmem->memory_at(C->get_general_index(alias_idx));
2769         result = find_inst_mem(result, alias_idx, orig_phis);
2770         if (C->failing()) {
2771           return NULL;
2772         }
2773         mmem->set_memory_at(alias_idx, result);
2774       }
2775     } else if (result->is_Phi() &&
2776                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2777       Node *un = result->as_Phi()->unique_input(igvn);
2778       if (un != NULL) {
2779         orig_phis.append_if_missing(result->as_Phi());
2780         result = un;
2781       } else {
2782         break;
2783       }
2784     } else if (result->is_ClearArray()) {
2785       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2786         // Can not bypass initialization of the instance
2787         // we are looking for.
2788         break;
2789       }
2790       // Otherwise skip it (the call updated 'result' value).
2791     } else if (result->Opcode() == Op_SCMemProj) {
2792       Node* mem = result->in(0);
2793       Node* adr = NULL;
2794       if (mem->is_LoadStore()) {
2795         adr = mem->in(MemNode::Address);
2796       } else {
2797         assert(mem->Opcode() == Op_EncodeISOArray ||
2798                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2799         adr = mem->in(3); // Memory edge corresponds to destination array
2800       }
2801       const Type *at = igvn->type(adr);
2802       if (at != Type::TOP) {
2803         assert(at->isa_ptr() != NULL, "pointer type required.");
2804         int idx = C->get_alias_index(at->is_ptr());
2805         if (idx == alias_idx) {
2806           // Assert in debug mode
2807           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2808           break; // In product mode return SCMemProj node
2809         }
2810       }
2811       result = mem->in(MemNode::Memory);
2812     } else if (result->Opcode() == Op_StrInflatedCopy) {
2813       Node* adr = result->in(3); // Memory edge corresponds to destination array
2814       const Type *at = igvn->type(adr);
2815       if (at != Type::TOP) {
2816         assert(at->isa_ptr() != NULL, "pointer type required.");
2817         int idx = C->get_alias_index(at->is_ptr());
2818         if (idx == alias_idx) {
2819           // Assert in debug mode
2820           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2821           break; // In product mode return SCMemProj node
2822         }
2823       }
2824       result = result->in(MemNode::Memory);
2825     }
2826   }
2827   if (result->is_Phi()) {
2828     PhiNode *mphi = result->as_Phi();
2829     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2830     const TypePtr *t = mphi->adr_type();
2831     if (!is_instance) {
2832       // Push all non-instance Phis on the orig_phis worklist to update inputs
2833       // during Phase 4 if needed.
2834       orig_phis.append_if_missing(mphi);
2835     } else if (C->get_alias_index(t) != alias_idx) {
2836       // Create a new Phi with the specified alias index type.
2837       result = split_memory_phi(mphi, alias_idx, orig_phis);
2838     }
2839   }
2840   // the result is either MemNode, PhiNode, InitializeNode.
2841   return result;
2842 }
2843 
2844 //
2845 //  Convert the types of unescaped object to instance types where possible,
2846 //  propagate the new type information through the graph, and update memory
2847 //  edges and MergeMem inputs to reflect the new type.
2848 //
2849 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2850 //  The processing is done in 4 phases:
2851 //
2852 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2853 //            types for the CheckCastPP for allocations where possible.
2854 //            Propagate the new types through users as follows:
2855 //               casts and Phi:  push users on alloc_worklist
2856 //               AddP:  cast Base and Address inputs to the instance type
2857 //                      push any AddP users on alloc_worklist and push any memnode
2858 //                      users onto memnode_worklist.
2859 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2860 //            search the Memory chain for a store with the appropriate type
2861 //            address type.  If a Phi is found, create a new version with
2862 //            the appropriate memory slices from each of the Phi inputs.
2863 //            For stores, process the users as follows:
2864 //               MemNode:  push on memnode_worklist
2865 //               MergeMem: push on mergemem_worklist
2866 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2867 //            moving the first node encountered of each  instance type to the
2868 //            the input corresponding to its alias index.
2869 //            appropriate memory slice.
2870 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2871 //
2872 // In the following example, the CheckCastPP nodes are the cast of allocation
2873 // results and the allocation of node 29 is unescaped and eligible to be an
2874 // instance type.
2875 //
2876 // We start with:
2877 //
2878 //     7 Parm #memory
2879 //    10  ConI  "12"
2880 //    19  CheckCastPP   "Foo"
2881 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2882 //    29  CheckCastPP   "Foo"
2883 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2884 //
2885 //    40  StoreP  25   7  20   ... alias_index=4
2886 //    50  StoreP  35  40  30   ... alias_index=4
2887 //    60  StoreP  45  50  20   ... alias_index=4
2888 //    70  LoadP    _  60  30   ... alias_index=4
2889 //    80  Phi     75  50  60   Memory alias_index=4
2890 //    90  LoadP    _  80  30   ... alias_index=4
2891 //   100  LoadP    _  80  20   ... alias_index=4
2892 //
2893 //
2894 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2895 // and creating a new alias index for node 30.  This gives:
2896 //
2897 //     7 Parm #memory
2898 //    10  ConI  "12"
2899 //    19  CheckCastPP   "Foo"
2900 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2901 //    29  CheckCastPP   "Foo"  iid=24
2902 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2903 //
2904 //    40  StoreP  25   7  20   ... alias_index=4
2905 //    50  StoreP  35  40  30   ... alias_index=6
2906 //    60  StoreP  45  50  20   ... alias_index=4
2907 //    70  LoadP    _  60  30   ... alias_index=6
2908 //    80  Phi     75  50  60   Memory alias_index=4
2909 //    90  LoadP    _  80  30   ... alias_index=6
2910 //   100  LoadP    _  80  20   ... alias_index=4
2911 //
2912 // In phase 2, new memory inputs are computed for the loads and stores,
2913 // And a new version of the phi is created.  In phase 4, the inputs to
2914 // node 80 are updated and then the memory nodes are updated with the
2915 // values computed in phase 2.  This results in:
2916 //
2917 //     7 Parm #memory
2918 //    10  ConI  "12"
2919 //    19  CheckCastPP   "Foo"
2920 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2921 //    29  CheckCastPP   "Foo"  iid=24
2922 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2923 //
2924 //    40  StoreP  25  7   20   ... alias_index=4
2925 //    50  StoreP  35  7   30   ... alias_index=6
2926 //    60  StoreP  45  40  20   ... alias_index=4
2927 //    70  LoadP    _  50  30   ... alias_index=6
2928 //    80  Phi     75  40  60   Memory alias_index=4
2929 //   120  Phi     75  50  50   Memory alias_index=6
2930 //    90  LoadP    _ 120  30   ... alias_index=6
2931 //   100  LoadP    _  80  20   ... alias_index=4
2932 //
2933 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2934   GrowableArray<Node *>  memnode_worklist;
2935   GrowableArray<PhiNode *>  orig_phis;
2936   PhaseIterGVN  *igvn = _igvn;
2937   uint new_index_start = (uint) _compile->num_alias_types();
2938   VectorSet visited;
2939   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2940   uint unique_old = _compile->unique();
2941 
2942   //  Phase 1:  Process possible allocations from alloc_worklist.
2943   //  Create instance types for the CheckCastPP for allocations where possible.
2944   //
2945   // (Note: don't forget to change the order of the second AddP node on
2946   //  the alloc_worklist if the order of the worklist processing is changed,
2947   //  see the comment in find_second_addp().)
2948   //
2949   while (alloc_worklist.length() != 0) {
2950     Node *n = alloc_worklist.pop();
2951     uint ni = n->_idx;
2952     if (n->is_Call()) {
2953       CallNode *alloc = n->as_Call();
2954       // copy escape information to call node
2955       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2956       PointsToNode::EscapeState es = ptn->escape_state();
2957       // We have an allocation or call which returns a Java object,
2958       // see if it is unescaped.
2959       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2960         continue;
2961       // Find CheckCastPP for the allocate or for the return value of a call
2962       n = alloc->result_cast();
2963       if (n == NULL) {            // No uses except Initialize node
2964         if (alloc->is_Allocate()) {
2965           // Set the scalar_replaceable flag for allocation
2966           // so it could be eliminated if it has no uses.
2967           alloc->as_Allocate()->_is_scalar_replaceable = true;
2968         }
2969         if (alloc->is_CallStaticJava()) {
2970           // Set the scalar_replaceable flag for boxing method
2971           // so it could be eliminated if it has no uses.
2972           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2973         }
2974         continue;
2975       }
2976       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2977         assert(!alloc->is_Allocate(), "allocation should have unique type");
2978         continue;
2979       }
2980 
2981       // The inline code for Object.clone() casts the allocation result to
2982       // java.lang.Object and then to the actual type of the allocated
2983       // object. Detect this case and use the second cast.
2984       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2985       // the allocation result is cast to java.lang.Object and then
2986       // to the actual Array type.
2987       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2988           && (alloc->is_AllocateArray() ||
2989               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2990         Node *cast2 = NULL;
2991         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2992           Node *use = n->fast_out(i);
2993           if (use->is_CheckCastPP()) {
2994             cast2 = use;
2995             break;
2996           }
2997         }
2998         if (cast2 != NULL) {
2999           n = cast2;
3000         } else {
3001           // Non-scalar replaceable if the allocation type is unknown statically
3002           // (reflection allocation), the object can't be restored during
3003           // deoptimization without precise type.
3004           continue;
3005         }
3006       }
3007 
3008       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
3009       if (t == NULL)
3010         continue;  // not a TypeOopPtr
3011       if (!t->klass_is_exact())
3012         continue; // not an unique type
3013 
3014       if (alloc->is_Allocate()) {
3015         // Set the scalar_replaceable flag for allocation
3016         // so it could be eliminated.
3017         alloc->as_Allocate()->_is_scalar_replaceable = true;
3018       }
3019       if (alloc->is_CallStaticJava()) {
3020         // Set the scalar_replaceable flag for boxing method
3021         // so it could be eliminated.
3022         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
3023       }
3024       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
3025       // in order for an object to be scalar-replaceable, it must be:
3026       //   - a direct allocation (not a call returning an object)
3027       //   - non-escaping
3028       //   - eligible to be a unique type
3029       //   - not determined to be ineligible by escape analysis
3030       set_map(alloc, n);
3031       set_map(n, alloc);
3032       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
3033       igvn->hash_delete(n);
3034       igvn->set_type(n,  tinst);
3035       n->raise_bottom_type(tinst);
3036       igvn->hash_insert(n);
3037       record_for_optimizer(n);
3038       // Allocate an alias index for the header fields. Accesses to
3039       // the header emitted during macro expansion wouldn't have
3040       // correct memory state otherwise.
3041       _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes()));
3042       _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes()));
3043       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
3044 
3045         // First, put on the worklist all Field edges from Connection Graph
3046         // which is more accurate than putting immediate users from Ideal Graph.
3047         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
3048           PointsToNode* tgt = e.get();
3049           if (tgt->is_Arraycopy()) {
3050             continue;
3051           }
3052           Node* use = tgt->ideal_node();
3053           assert(tgt->is_Field() && use->is_AddP(),
3054                  "only AddP nodes are Field edges in CG");
3055           if (use->outcnt() > 0) { // Don't process dead nodes
3056             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3057             if (addp2 != NULL) {
3058               assert(alloc->is_AllocateArray(),"array allocation was expected");
3059               alloc_worklist.append_if_missing(addp2);
3060             }
3061             alloc_worklist.append_if_missing(use);
3062           }
3063         }
3064 
3065         // An allocation may have an Initialize which has raw stores. Scan
3066         // the users of the raw allocation result and push AddP users
3067         // on alloc_worklist.
3068         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
3069         assert (raw_result != NULL, "must have an allocation result");
3070         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3071           Node *use = raw_result->fast_out(i);
3072           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3073             Node* addp2 = find_second_addp(use, raw_result);
3074             if (addp2 != NULL) {
3075               assert(alloc->is_AllocateArray(),"array allocation was expected");
3076               alloc_worklist.append_if_missing(addp2);
3077             }
3078             alloc_worklist.append_if_missing(use);
3079           } else if (use->is_MemBar()) {
3080             memnode_worklist.append_if_missing(use);
3081           }
3082         }
3083       }
3084     } else if (n->is_AddP()) {
3085       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3086       if (jobj == NULL || jobj == phantom_obj) {
3087 #ifdef ASSERT
3088         ptnode_adr(get_addp_base(n)->_idx)->dump();
3089         ptnode_adr(n->_idx)->dump();
3090         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3091 #endif
3092         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3093         return;
3094       }
3095       Node *base = get_map(jobj->idx());  // CheckCastPP node
3096       if (!split_AddP(n, base)) continue; // wrong type from dead path
3097     } else if (n->is_Phi() ||
3098                n->is_CheckCastPP() ||
3099                n->is_EncodeP() ||
3100                n->is_DecodeN() ||
3101                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3102       if (visited.test_set(n->_idx)) {
3103         assert(n->is_Phi(), "loops only through Phi's");
3104         continue;  // already processed
3105       }
3106       JavaObjectNode* jobj = unique_java_object(n);
3107       if (jobj == NULL || jobj == phantom_obj) {
3108 #ifdef ASSERT
3109         ptnode_adr(n->_idx)->dump();
3110         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3111 #endif
3112         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3113         return;
3114       } else {
3115         Node *val = get_map(jobj->idx());   // CheckCastPP node
3116         TypeNode *tn = n->as_Type();
3117         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3118         assert(tinst != NULL && tinst->is_known_instance() &&
3119                tinst->instance_id() == jobj->idx() , "instance type expected.");
3120 
3121         const Type *tn_type = igvn->type(tn);
3122         const TypeOopPtr *tn_t;
3123         if (tn_type->isa_narrowoop()) {
3124           tn_t = tn_type->make_ptr()->isa_oopptr();
3125         } else {
3126           tn_t = tn_type->isa_oopptr();
3127         }
3128         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3129           if (tn_type->isa_narrowoop()) {
3130             tn_type = tinst->make_narrowoop();
3131           } else {
3132             tn_type = tinst;
3133           }
3134           igvn->hash_delete(tn);
3135           igvn->set_type(tn, tn_type);
3136           tn->set_type(tn_type);
3137           igvn->hash_insert(tn);
3138           record_for_optimizer(n);
3139         } else {
3140           assert(tn_type == TypePtr::NULL_PTR ||
3141                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3142                  "unexpected type");
3143           continue; // Skip dead path with different type
3144         }
3145       }
3146     } else {
3147       debug_only(n->dump();)
3148       assert(false, "EA: unexpected node");
3149       continue;
3150     }
3151     // push allocation's users on appropriate worklist
3152     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3153       Node *use = n->fast_out(i);
3154       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3155         // Load/store to instance's field
3156         memnode_worklist.append_if_missing(use);
3157       } else if (use->is_MemBar()) {
3158         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3159           memnode_worklist.append_if_missing(use);
3160         }
3161       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3162         Node* addp2 = find_second_addp(use, n);
3163         if (addp2 != NULL) {
3164           alloc_worklist.append_if_missing(addp2);
3165         }
3166         alloc_worklist.append_if_missing(use);
3167       } else if (use->is_Phi() ||
3168                  use->is_CheckCastPP() ||
3169                  use->is_EncodeNarrowPtr() ||
3170                  use->is_DecodeNarrowPtr() ||
3171                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3172         alloc_worklist.append_if_missing(use);
3173 #ifdef ASSERT
3174       } else if (use->is_Mem()) {
3175         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3176       } else if (use->is_MergeMem()) {
3177         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3178       } else if (use->is_SafePoint()) {
3179         // Look for MergeMem nodes for calls which reference unique allocation
3180         // (through CheckCastPP nodes) even for debug info.
3181         Node* m = use->in(TypeFunc::Memory);
3182         if (m->is_MergeMem()) {
3183           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3184         }
3185       } else if (use->Opcode() == Op_EncodeISOArray) {
3186         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3187           // EncodeISOArray overwrites destination array
3188           memnode_worklist.append_if_missing(use);
3189         }
3190       } else {
3191         uint op = use->Opcode();
3192         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3193             (use->in(MemNode::Memory) == n)) {
3194           // They overwrite memory edge corresponding to destination array,
3195           memnode_worklist.append_if_missing(use);
3196         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3197               op == Op_CastP2X || op == Op_StoreCM ||
3198               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3199               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3200               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
3201               op == Op_SubTypeCheck ||
3202               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
3203           n->dump();
3204           use->dump();
3205           assert(false, "EA: missing allocation reference path");
3206         }
3207 #endif
3208       }
3209     }
3210 
3211   }
3212 
3213   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3214   // type, record it in the ArrayCopy node so we know what memory this
3215   // node uses/modified.
3216   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3217     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3218     Node* dest = ac->in(ArrayCopyNode::Dest);
3219     if (dest->is_AddP()) {
3220       dest = get_addp_base(dest);
3221     }
3222     JavaObjectNode* jobj = unique_java_object(dest);
3223     if (jobj != NULL) {
3224       Node *base = get_map(jobj->idx());
3225       if (base != NULL) {
3226         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3227         ac->_dest_type = base_t;
3228       }
3229     }
3230     Node* src = ac->in(ArrayCopyNode::Src);
3231     if (src->is_AddP()) {
3232       src = get_addp_base(src);
3233     }
3234     jobj = unique_java_object(src);
3235     if (jobj != NULL) {
3236       Node* base = get_map(jobj->idx());
3237       if (base != NULL) {
3238         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3239         ac->_src_type = base_t;
3240       }
3241     }
3242   }
3243 
3244   // New alias types were created in split_AddP().
3245   uint new_index_end = (uint) _compile->num_alias_types();
3246   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3247 
3248   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3249   //            compute new values for Memory inputs  (the Memory inputs are not
3250   //            actually updated until phase 4.)
3251   if (memnode_worklist.length() == 0)
3252     return;  // nothing to do
3253   while (memnode_worklist.length() != 0) {
3254     Node *n = memnode_worklist.pop();
3255     if (visited.test_set(n->_idx))
3256       continue;
3257     if (n->is_Phi() || n->is_ClearArray()) {
3258       // we don't need to do anything, but the users must be pushed
3259     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3260       // we don't need to do anything, but the users must be pushed
3261       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
3262       if (n == NULL)
3263         continue;
3264     } else if (n->Opcode() == Op_StrCompressedCopy ||
3265                n->Opcode() == Op_EncodeISOArray) {
3266       // get the memory projection
3267       n = n->find_out_with(Op_SCMemProj);
3268       assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3269     } else {
3270       assert(n->is_Mem(), "memory node required.");
3271       Node *addr = n->in(MemNode::Address);
3272       const Type *addr_t = igvn->type(addr);
3273       if (addr_t == Type::TOP)
3274         continue;
3275       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3276       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3277       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3278       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3279       if (_compile->failing()) {
3280         return;
3281       }
3282       if (mem != n->in(MemNode::Memory)) {
3283         // We delay the memory edge update since we need old one in
3284         // MergeMem code below when instances memory slices are separated.
3285         set_map(n, mem);
3286       }
3287       if (n->is_Load()) {
3288         continue;  // don't push users
3289       } else if (n->is_LoadStore()) {
3290         // get the memory projection
3291         n = n->find_out_with(Op_SCMemProj);
3292         assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3293       }
3294     }
3295     // push user on appropriate worklist
3296     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3297       Node *use = n->fast_out(i);
3298       if (use->is_Phi() || use->is_ClearArray()) {
3299         memnode_worklist.append_if_missing(use);
3300       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3301         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3302           continue;
3303         memnode_worklist.append_if_missing(use);
3304       } else if (use->is_MemBar()) {
3305         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3306           memnode_worklist.append_if_missing(use);
3307         }
3308 #ifdef ASSERT
3309       } else if(use->is_Mem()) {
3310         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3311       } else if (use->is_MergeMem()) {
3312         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3313       } else if (use->Opcode() == Op_EncodeISOArray) {
3314         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3315           // EncodeISOArray overwrites destination array
3316           memnode_worklist.append_if_missing(use);
3317         }
3318       } else {
3319         uint op = use->Opcode();
3320         if ((use->in(MemNode::Memory) == n) &&
3321             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3322           // They overwrite memory edge corresponding to destination array,
3323           memnode_worklist.append_if_missing(use);
3324         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
3325               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3326               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3327               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3328           n->dump();
3329           use->dump();
3330           assert(false, "EA: missing memory path");
3331         }
3332 #endif
3333       }
3334     }
3335   }
3336 
3337   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3338   //            Walk each memory slice moving the first node encountered of each
3339   //            instance type to the the input corresponding to its alias index.
3340   uint length = _mergemem_worklist.length();
3341   for( uint next = 0; next < length; ++next ) {
3342     MergeMemNode* nmm = _mergemem_worklist.at(next);
3343     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3344     // Note: we don't want to use MergeMemStream here because we only want to
3345     // scan inputs which exist at the start, not ones we add during processing.
3346     // Note 2: MergeMem may already contains instance memory slices added
3347     // during find_inst_mem() call when memory nodes were processed above.
3348     igvn->hash_delete(nmm);
3349     uint nslices = MIN2(nmm->req(), new_index_start);
3350     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3351       Node* mem = nmm->in(i);
3352       Node* cur = NULL;
3353       if (mem == NULL || mem->is_top())
3354         continue;
3355       // First, update mergemem by moving memory nodes to corresponding slices
3356       // if their type became more precise since this mergemem was created.
3357       while (mem->is_Mem()) {
3358         const Type *at = igvn->type(mem->in(MemNode::Address));
3359         if (at != Type::TOP) {
3360           assert (at->isa_ptr() != NULL, "pointer type required.");
3361           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3362           if (idx == i) {
3363             if (cur == NULL)
3364               cur = mem;
3365           } else {
3366             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3367               nmm->set_memory_at(idx, mem);
3368             }
3369           }
3370         }
3371         mem = mem->in(MemNode::Memory);
3372       }
3373       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3374       // Find any instance of the current type if we haven't encountered
3375       // already a memory slice of the instance along the memory chain.
3376       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3377         if((uint)_compile->get_general_index(ni) == i) {
3378           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3379           if (nmm->is_empty_memory(m)) {
3380             Node* result = find_inst_mem(mem, ni, orig_phis);
3381             if (_compile->failing()) {
3382               return;
3383             }
3384             nmm->set_memory_at(ni, result);
3385           }
3386         }
3387       }
3388     }
3389     // Find the rest of instances values
3390     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3391       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3392       Node* result = step_through_mergemem(nmm, ni, tinst);
3393       if (result == nmm->base_memory()) {
3394         // Didn't find instance memory, search through general slice recursively.
3395         result = nmm->memory_at(_compile->get_general_index(ni));
3396         result = find_inst_mem(result, ni, orig_phis);
3397         if (_compile->failing()) {
3398           return;
3399         }
3400         nmm->set_memory_at(ni, result);
3401       }
3402     }
3403     igvn->hash_insert(nmm);
3404     record_for_optimizer(nmm);
3405   }
3406 
3407   //  Phase 4:  Update the inputs of non-instance memory Phis and
3408   //            the Memory input of memnodes
3409   // First update the inputs of any non-instance Phi's from
3410   // which we split out an instance Phi.  Note we don't have
3411   // to recursively process Phi's encounted on the input memory
3412   // chains as is done in split_memory_phi() since they  will
3413   // also be processed here.
3414   for (int j = 0; j < orig_phis.length(); j++) {
3415     PhiNode *phi = orig_phis.at(j);
3416     int alias_idx = _compile->get_alias_index(phi->adr_type());
3417     igvn->hash_delete(phi);
3418     for (uint i = 1; i < phi->req(); i++) {
3419       Node *mem = phi->in(i);
3420       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3421       if (_compile->failing()) {
3422         return;
3423       }
3424       if (mem != new_mem) {
3425         phi->set_req(i, new_mem);
3426       }
3427     }
3428     igvn->hash_insert(phi);
3429     record_for_optimizer(phi);
3430   }
3431 
3432   // Update the memory inputs of MemNodes with the value we computed
3433   // in Phase 2 and move stores memory users to corresponding memory slices.
3434   // Disable memory split verification code until the fix for 6984348.
3435   // Currently it produces false negative results since it does not cover all cases.
3436 #if 0 // ifdef ASSERT
3437   visited.Reset();
3438   Node_Stack old_mems(arena, _compile->unique() >> 2);
3439 #endif
3440   for (uint i = 0; i < ideal_nodes.size(); i++) {
3441     Node*    n = ideal_nodes.at(i);
3442     Node* nmem = get_map(n->_idx);
3443     assert(nmem != NULL, "sanity");
3444     if (n->is_Mem()) {
3445 #if 0 // ifdef ASSERT
3446       Node* old_mem = n->in(MemNode::Memory);
3447       if (!visited.test_set(old_mem->_idx)) {
3448         old_mems.push(old_mem, old_mem->outcnt());
3449       }
3450 #endif
3451       assert(n->in(MemNode::Memory) != nmem, "sanity");
3452       if (!n->is_Load()) {
3453         // Move memory users of a store first.
3454         move_inst_mem(n, orig_phis);
3455       }
3456       // Now update memory input
3457       igvn->hash_delete(n);
3458       n->set_req(MemNode::Memory, nmem);
3459       igvn->hash_insert(n);
3460       record_for_optimizer(n);
3461     } else {
3462       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3463              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3464     }
3465   }
3466 #if 0 // ifdef ASSERT
3467   // Verify that memory was split correctly
3468   while (old_mems.is_nonempty()) {
3469     Node* old_mem = old_mems.node();
3470     uint  old_cnt = old_mems.index();
3471     old_mems.pop();
3472     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3473   }
3474 #endif
3475 }
3476 
3477 #ifndef PRODUCT
3478 static const char *node_type_names[] = {
3479   "UnknownType",
3480   "JavaObject",
3481   "LocalVar",
3482   "Field",
3483   "Arraycopy"
3484 };
3485 
3486 static const char *esc_names[] = {
3487   "UnknownEscape",
3488   "NoEscape",
3489   "ArgEscape",
3490   "GlobalEscape"
3491 };
3492 
3493 void PointsToNode::dump(bool print_state) const {
3494   NodeType nt = node_type();
3495   tty->print("%s ", node_type_names[(int) nt]);
3496   if (print_state) {
3497     EscapeState es = escape_state();
3498     EscapeState fields_es = fields_escape_state();
3499     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3500     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3501       tty->print("NSR ");
3502   }
3503   if (is_Field()) {
3504     FieldNode* f = (FieldNode*)this;
3505     if (f->is_oop())
3506       tty->print("oop ");
3507     if (f->offset() > 0)
3508       tty->print("+%d ", f->offset());
3509     tty->print("(");
3510     for (BaseIterator i(f); i.has_next(); i.next()) {
3511       PointsToNode* b = i.get();
3512       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3513     }
3514     tty->print(" )");
3515   }
3516   tty->print("[");
3517   for (EdgeIterator i(this); i.has_next(); i.next()) {
3518     PointsToNode* e = i.get();
3519     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3520   }
3521   tty->print(" [");
3522   for (UseIterator i(this); i.has_next(); i.next()) {
3523     PointsToNode* u = i.get();
3524     bool is_base = false;
3525     if (PointsToNode::is_base_use(u)) {
3526       is_base = true;
3527       u = PointsToNode::get_use_node(u)->as_Field();
3528     }
3529     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3530   }
3531   tty->print(" ]]  ");
3532   if (_node == NULL)
3533     tty->print_cr("<null>");
3534   else
3535     _node->dump();
3536 }
3537 
3538 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3539   bool first = true;
3540   int ptnodes_length = ptnodes_worklist.length();
3541   for (int i = 0; i < ptnodes_length; i++) {
3542     PointsToNode *ptn = ptnodes_worklist.at(i);
3543     if (ptn == NULL || !ptn->is_JavaObject())
3544       continue;
3545     PointsToNode::EscapeState es = ptn->escape_state();
3546     if ((es != PointsToNode::NoEscape) && !Verbose) {
3547       continue;
3548     }
3549     Node* n = ptn->ideal_node();
3550     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3551                              n->as_CallStaticJava()->is_boxing_method())) {
3552       if (first) {
3553         tty->cr();
3554         tty->print("======== Connection graph for ");
3555         _compile->method()->print_short_name();
3556         tty->cr();
3557         first = false;
3558       }
3559       ptn->dump();
3560       // Print all locals and fields which reference this allocation
3561       for (UseIterator j(ptn); j.has_next(); j.next()) {
3562         PointsToNode* use = j.get();
3563         if (use->is_LocalVar()) {
3564           use->dump(Verbose);
3565         } else if (Verbose) {
3566           use->dump();
3567         }
3568       }
3569       tty->cr();
3570     }
3571   }
3572 }
3573 #endif
3574 
3575 void ConnectionGraph::record_for_optimizer(Node *n) {
3576   _igvn->_worklist.push(n);
3577   _igvn->add_users_to_worklist(n);
3578 }