1 /*
   2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/debugInfo.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/compilerDirectives.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/c2/barrierSetC2.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "opto/ad.hpp"
  39 #include "opto/block.hpp"
  40 #include "opto/c2compiler.hpp"
  41 #include "opto/callnode.hpp"
  42 #include "opto/cfgnode.hpp"
  43 #include "opto/locknode.hpp"
  44 #include "opto/machnode.hpp"
  45 #include "opto/node.hpp"
  46 #include "opto/optoreg.hpp"
  47 #include "opto/output.hpp"
  48 #include "opto/regalloc.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/subnode.hpp"
  51 #include "opto/type.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/macros.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/xmlstream.hpp"
  57 
  58 #ifndef PRODUCT
  59 #define DEBUG_ARG(x) , x
  60 #else
  61 #define DEBUG_ARG(x)
  62 #endif
  63 
  64 //------------------------------Scheduling----------------------------------
  65 // This class contains all the information necessary to implement instruction
  66 // scheduling and bundling.
  67 class Scheduling {
  68 
  69 private:
  70   // Arena to use
  71   Arena *_arena;
  72 
  73   // Control-Flow Graph info
  74   PhaseCFG *_cfg;
  75 
  76   // Register Allocation info
  77   PhaseRegAlloc *_regalloc;
  78 
  79   // Number of nodes in the method
  80   uint _node_bundling_limit;
  81 
  82   // List of scheduled nodes. Generated in reverse order
  83   Node_List _scheduled;
  84 
  85   // List of nodes currently available for choosing for scheduling
  86   Node_List _available;
  87 
  88   // For each instruction beginning a bundle, the number of following
  89   // nodes to be bundled with it.
  90   Bundle *_node_bundling_base;
  91 
  92   // Mapping from register to Node
  93   Node_List _reg_node;
  94 
  95   // Free list for pinch nodes.
  96   Node_List _pinch_free_list;
  97 
  98   // Latency from the beginning of the containing basic block (base 1)
  99   // for each node.
 100   unsigned short *_node_latency;
 101 
 102   // Number of uses of this node within the containing basic block.
 103   short *_uses;
 104 
 105   // Schedulable portion of current block.  Skips Region/Phi/CreateEx up
 106   // front, branch+proj at end.  Also skips Catch/CProj (same as
 107   // branch-at-end), plus just-prior exception-throwing call.
 108   uint _bb_start, _bb_end;
 109 
 110   // Latency from the end of the basic block as scheduled
 111   unsigned short *_current_latency;
 112 
 113   // Remember the next node
 114   Node *_next_node;
 115 
 116   // Use this for an unconditional branch delay slot
 117   Node *_unconditional_delay_slot;
 118 
 119   // Pointer to a Nop
 120   MachNopNode *_nop;
 121 
 122   // Length of the current bundle, in instructions
 123   uint _bundle_instr_count;
 124 
 125   // Current Cycle number, for computing latencies and bundling
 126   uint _bundle_cycle_number;
 127 
 128   // Bundle information
 129   Pipeline_Use_Element _bundle_use_elements[resource_count];
 130   Pipeline_Use         _bundle_use;
 131 
 132   // Dump the available list
 133   void dump_available() const;
 134 
 135 public:
 136   Scheduling(Arena *arena, Compile &compile);
 137 
 138   // Destructor
 139   NOT_PRODUCT( ~Scheduling(); )
 140 
 141   // Step ahead "i" cycles
 142   void step(uint i);
 143 
 144   // Step ahead 1 cycle, and clear the bundle state (for example,
 145   // at a branch target)
 146   void step_and_clear();
 147 
 148   Bundle* node_bundling(const Node *n) {
 149     assert(valid_bundle_info(n), "oob");
 150     return (&_node_bundling_base[n->_idx]);
 151   }
 152 
 153   bool valid_bundle_info(const Node *n) const {
 154     return (_node_bundling_limit > n->_idx);
 155   }
 156 
 157   bool starts_bundle(const Node *n) const {
 158     return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle());
 159   }
 160 
 161   // Do the scheduling
 162   void DoScheduling();
 163 
 164   // Compute the local latencies walking forward over the list of
 165   // nodes for a basic block
 166   void ComputeLocalLatenciesForward(const Block *bb);
 167 
 168   // Compute the register antidependencies within a basic block
 169   void ComputeRegisterAntidependencies(Block *bb);
 170   void verify_do_def( Node *n, OptoReg::Name def, const char *msg );
 171   void verify_good_schedule( Block *b, const char *msg );
 172   void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def );
 173   void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg );
 174 
 175   // Add a node to the current bundle
 176   void AddNodeToBundle(Node *n, const Block *bb);
 177 
 178   // Add a node to the list of available nodes
 179   void AddNodeToAvailableList(Node *n);
 180 
 181   // Compute the local use count for the nodes in a block, and compute
 182   // the list of instructions with no uses in the block as available
 183   void ComputeUseCount(const Block *bb);
 184 
 185   // Choose an instruction from the available list to add to the bundle
 186   Node * ChooseNodeToBundle();
 187 
 188   // See if this Node fits into the currently accumulating bundle
 189   bool NodeFitsInBundle(Node *n);
 190 
 191   // Decrement the use count for a node
 192  void DecrementUseCounts(Node *n, const Block *bb);
 193 
 194   // Garbage collect pinch nodes for reuse by other blocks.
 195   void garbage_collect_pinch_nodes();
 196   // Clean up a pinch node for reuse (helper for above).
 197   void cleanup_pinch( Node *pinch );
 198 
 199   // Information for statistics gathering
 200 #ifndef PRODUCT
 201 private:
 202   // Gather information on size of nops relative to total
 203   uint _branches, _unconditional_delays;
 204 
 205   static uint _total_nop_size, _total_method_size;
 206   static uint _total_branches, _total_unconditional_delays;
 207   static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
 208 
 209 public:
 210   static void print_statistics();
 211 
 212   static void increment_instructions_per_bundle(uint i) {
 213     _total_instructions_per_bundle[i]++;
 214   }
 215 
 216   static void increment_nop_size(uint s) {
 217     _total_nop_size += s;
 218   }
 219 
 220   static void increment_method_size(uint s) {
 221     _total_method_size += s;
 222   }
 223 #endif
 224 
 225 };
 226 
 227 
 228 PhaseOutput::PhaseOutput()
 229   : Phase(Phase::Output),
 230     _code_buffer("Compile::Fill_buffer"),
 231     _first_block_size(0),
 232     _handler_table(),
 233     _inc_table(),
 234     _oop_map_set(NULL),
 235     _scratch_buffer_blob(NULL),
 236     _scratch_locs_memory(NULL),
 237     _scratch_const_size(-1),
 238     _in_scratch_emit_size(false),
 239     _frame_slots(0),
 240     _code_offsets(),
 241     _node_bundling_limit(0),
 242     _node_bundling_base(NULL),
 243     _orig_pc_slot(0),
 244     _orig_pc_slot_offset_in_bytes(0),
 245     _buf_sizes(),
 246     _block(NULL),
 247     _index(0) {
 248   C->set_output(this);
 249   if (C->stub_name() == NULL) {
 250     _orig_pc_slot = C->fixed_slots() - (sizeof(address) / VMRegImpl::stack_slot_size);
 251   }
 252 }
 253 
 254 PhaseOutput::~PhaseOutput() {
 255   C->set_output(NULL);
 256   if (_scratch_buffer_blob != NULL) {
 257     BufferBlob::free(_scratch_buffer_blob);
 258   }
 259 }
 260 
 261 void PhaseOutput::perform_mach_node_analysis() {
 262   // Late barrier analysis must be done after schedule and bundle
 263   // Otherwise liveness based spilling will fail
 264   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 265   bs->late_barrier_analysis();
 266 
 267   pd_perform_mach_node_analysis();
 268 }
 269 
 270 // Convert Nodes to instruction bits and pass off to the VM
 271 void PhaseOutput::Output() {
 272   // RootNode goes
 273   assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" );
 274 
 275   // The number of new nodes (mostly MachNop) is proportional to
 276   // the number of java calls and inner loops which are aligned.
 277   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
 278                             C->inner_loops()*(OptoLoopAlignment-1)),
 279                            "out of nodes before code generation" ) ) {
 280     return;
 281   }
 282   // Make sure I can find the Start Node
 283   Block *entry = C->cfg()->get_block(1);
 284   Block *broot = C->cfg()->get_root_block();
 285 
 286   const StartNode *start = entry->head()->as_Start();
 287 
 288   // Replace StartNode with prolog
 289   MachPrologNode *prolog = new MachPrologNode();
 290   entry->map_node(prolog, 0);
 291   C->cfg()->map_node_to_block(prolog, entry);
 292   C->cfg()->unmap_node_from_block(start); // start is no longer in any block
 293 
 294   // Virtual methods need an unverified entry point
 295 
 296   if( C->is_osr_compilation() ) {
 297     if( PoisonOSREntry ) {
 298       // TODO: Should use a ShouldNotReachHereNode...
 299       C->cfg()->insert( broot, 0, new MachBreakpointNode() );
 300     }
 301   } else {
 302     if( C->method() && !C->method()->flags().is_static() ) {
 303       // Insert unvalidated entry point
 304       C->cfg()->insert( broot, 0, new MachUEPNode() );
 305     }
 306 
 307   }
 308 
 309   // Break before main entry point
 310   if ((C->method() && C->directive()->BreakAtExecuteOption) ||
 311       (OptoBreakpoint && C->is_method_compilation())       ||
 312       (OptoBreakpointOSR && C->is_osr_compilation())       ||
 313       (OptoBreakpointC2R && !C->method())                   ) {
 314     // checking for C->method() means that OptoBreakpoint does not apply to
 315     // runtime stubs or frame converters
 316     C->cfg()->insert( entry, 1, new MachBreakpointNode() );
 317   }
 318 
 319   // Insert epilogs before every return
 320   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
 321     Block* block = C->cfg()->get_block(i);
 322     if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point?
 323       Node* m = block->end();
 324       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
 325         MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 326         block->add_inst(epilog);
 327         C->cfg()->map_node_to_block(epilog, block);
 328       }
 329     }
 330   }
 331 
 332   // Keeper of sizing aspects
 333   _buf_sizes = BufferSizingData();
 334 
 335   // Initialize code buffer
 336   estimate_buffer_size(_buf_sizes._const);
 337   if (C->failing()) return;
 338 
 339   // Pre-compute the length of blocks and replace
 340   // long branches with short if machine supports it.
 341   // Must be done before ScheduleAndBundle due to SPARC delay slots
 342   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1);
 343   blk_starts[0] = 0;
 344   shorten_branches(blk_starts);
 345 
 346   ScheduleAndBundle();
 347   if (C->failing()) {
 348     return;
 349   }
 350 
 351   perform_mach_node_analysis();
 352 
 353   // Complete sizing of codebuffer
 354   CodeBuffer* cb = init_buffer();
 355   if (cb == NULL || C->failing()) {
 356     return;
 357   }
 358 
 359   BuildOopMaps();
 360 
 361   if (C->failing())  {
 362     return;
 363   }
 364 
 365   fill_buffer(cb, blk_starts);
 366 }
 367 
 368 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const {
 369   // Determine if we need to generate a stack overflow check.
 370   // Do it if the method is not a stub function and
 371   // has java calls or has frame size > vm_page_size/8.
 372   // The debug VM checks that deoptimization doesn't trigger an
 373   // unexpected stack overflow (compiled method stack banging should
 374   // guarantee it doesn't happen) so we always need the stack bang in
 375   // a debug VM.
 376   return (UseStackBanging && C->stub_function() == NULL &&
 377           (C->has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
 378            DEBUG_ONLY(|| true)));
 379 }
 380 
 381 bool PhaseOutput::need_register_stack_bang() const {
 382   // Determine if we need to generate a register stack overflow check.
 383   // This is only used on architectures which have split register
 384   // and memory stacks (ie. IA64).
 385   // Bang if the method is not a stub function and has java calls
 386   return (C->stub_function() == NULL && C->has_java_calls());
 387 }
 388 
 389 
 390 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 391 // of a loop. When aligning a loop we need to provide enough instructions
 392 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 393 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 394 // By default, the size is set to 999999 by Block's constructor so that
 395 // a loop will be aligned if the size is not reset here.
 396 //
 397 // Note: Mach instructions could contain several HW instructions
 398 // so the size is estimated only.
 399 //
 400 void PhaseOutput::compute_loop_first_inst_sizes() {
 401   // The next condition is used to gate the loop alignment optimization.
 402   // Don't aligned a loop if there are enough instructions at the head of a loop
 403   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 404   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 405   // equal to 11 bytes which is the largest address NOP instruction.
 406   if (MaxLoopPad < OptoLoopAlignment - 1) {
 407     uint last_block = C->cfg()->number_of_blocks() - 1;
 408     for (uint i = 1; i <= last_block; i++) {
 409       Block* block = C->cfg()->get_block(i);
 410       // Check the first loop's block which requires an alignment.
 411       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
 412         uint sum_size = 0;
 413         uint inst_cnt = NumberOfLoopInstrToAlign;
 414         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 415 
 416         // Check subsequent fallthrough blocks if the loop's first
 417         // block(s) does not have enough instructions.
 418         Block *nb = block;
 419         while(inst_cnt > 0 &&
 420               i < last_block &&
 421               !C->cfg()->get_block(i + 1)->has_loop_alignment() &&
 422               !nb->has_successor(block)) {
 423           i++;
 424           nb = C->cfg()->get_block(i);
 425           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 426         } // while( inst_cnt > 0 && i < last_block  )
 427 
 428         block->set_first_inst_size(sum_size);
 429       } // f( b->head()->is_Loop() )
 430     } // for( i <= last_block )
 431   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 432 }
 433 
 434 // The architecture description provides short branch variants for some long
 435 // branch instructions. Replace eligible long branches with short branches.
 436 void PhaseOutput::shorten_branches(uint* blk_starts) {
 437   // Compute size of each block, method size, and relocation information size
 438   uint nblocks  = C->cfg()->number_of_blocks();
 439 
 440   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 441   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 442   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 443 
 444   // Collect worst case block paddings
 445   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
 446   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
 447 
 448   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 449   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 450 
 451   bool has_short_branch_candidate = false;
 452 
 453   // Initialize the sizes to 0
 454   int code_size  = 0;          // Size in bytes of generated code
 455   int stub_size  = 0;          // Size in bytes of all stub entries
 456   // Size in bytes of all relocation entries, including those in local stubs.
 457   // Start with 2-bytes of reloc info for the unvalidated entry point
 458   int reloc_size = 1;          // Number of relocation entries
 459 
 460   // Make three passes.  The first computes pessimistic blk_starts,
 461   // relative jmp_offset and reloc_size information.  The second performs
 462   // short branch substitution using the pessimistic sizing.  The
 463   // third inserts nops where needed.
 464 
 465   // Step one, perform a pessimistic sizing pass.
 466   uint last_call_adr = max_juint;
 467   uint last_avoid_back_to_back_adr = max_juint;
 468   uint nop_size = (new MachNopNode())->size(C->regalloc());
 469   for (uint i = 0; i < nblocks; i++) { // For all blocks
 470     Block* block = C->cfg()->get_block(i);
 471     _block = block;
 472 
 473     // During short branch replacement, we store the relative (to blk_starts)
 474     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 475     // This is so that we do not need to recompute sizes of all nodes when
 476     // we compute correct blk_starts in our next sizing pass.
 477     jmp_offset[i] = 0;
 478     jmp_size[i]   = 0;
 479     jmp_nidx[i]   = -1;
 480     DEBUG_ONLY( jmp_target[i] = 0; )
 481     DEBUG_ONLY( jmp_rule[i]   = 0; )
 482 
 483     // Sum all instruction sizes to compute block size
 484     uint last_inst = block->number_of_nodes();
 485     uint blk_size = 0;
 486     for (uint j = 0; j < last_inst; j++) {
 487       _index = j;
 488       Node* nj = block->get_node(_index);
 489       // Handle machine instruction nodes
 490       if (nj->is_Mach()) {
 491         MachNode* mach = nj->as_Mach();
 492         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 493         reloc_size += mach->reloc();
 494         if (mach->is_MachCall()) {
 495           // add size information for trampoline stub
 496           // class CallStubImpl is platform-specific and defined in the *.ad files.
 497           stub_size  += CallStubImpl::size_call_trampoline();
 498           reloc_size += CallStubImpl::reloc_call_trampoline();
 499 
 500           MachCallNode *mcall = mach->as_MachCall();
 501           // This destination address is NOT PC-relative
 502 
 503           mcall->method_set((intptr_t)mcall->entry_point());
 504 
 505           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 506             stub_size  += CompiledStaticCall::to_interp_stub_size();
 507             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 508 #if INCLUDE_AOT
 509             stub_size  += CompiledStaticCall::to_aot_stub_size();
 510             reloc_size += CompiledStaticCall::reloc_to_aot_stub();
 511 #endif
 512           }
 513         } else if (mach->is_MachSafePoint()) {
 514           // If call/safepoint are adjacent, account for possible
 515           // nop to disambiguate the two safepoints.
 516           // ScheduleAndBundle() can rearrange nodes in a block,
 517           // check for all offsets inside this block.
 518           if (last_call_adr >= blk_starts[i]) {
 519             blk_size += nop_size;
 520           }
 521         }
 522         if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 523           // Nop is inserted between "avoid back to back" instructions.
 524           // ScheduleAndBundle() can rearrange nodes in a block,
 525           // check for all offsets inside this block.
 526           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 527             blk_size += nop_size;
 528           }
 529         }
 530         if (mach->may_be_short_branch()) {
 531           if (!nj->is_MachBranch()) {
 532 #ifndef PRODUCT
 533             nj->dump(3);
 534 #endif
 535             Unimplemented();
 536           }
 537           assert(jmp_nidx[i] == -1, "block should have only one branch");
 538           jmp_offset[i] = blk_size;
 539           jmp_size[i]   = nj->size(C->regalloc());
 540           jmp_nidx[i]   = j;
 541           has_short_branch_candidate = true;
 542         }
 543       }
 544       blk_size += nj->size(C->regalloc());
 545       // Remember end of call offset
 546       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 547         last_call_adr = blk_starts[i]+blk_size;
 548       }
 549       // Remember end of avoid_back_to_back offset
 550       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
 551         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 552       }
 553     }
 554 
 555     // When the next block starts a loop, we may insert pad NOP
 556     // instructions.  Since we cannot know our future alignment,
 557     // assume the worst.
 558     if (i < nblocks - 1) {
 559       Block* nb = C->cfg()->get_block(i + 1);
 560       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 561       if (max_loop_pad > 0) {
 562         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 563         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 564         // If either is the last instruction in this block, bump by
 565         // max_loop_pad in lock-step with blk_size, so sizing
 566         // calculations in subsequent blocks still can conservatively
 567         // detect that it may the last instruction in this block.
 568         if (last_call_adr == blk_starts[i]+blk_size) {
 569           last_call_adr += max_loop_pad;
 570         }
 571         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 572           last_avoid_back_to_back_adr += max_loop_pad;
 573         }
 574         blk_size += max_loop_pad;
 575         block_worst_case_pad[i + 1] = max_loop_pad;
 576       }
 577     }
 578 
 579     // Save block size; update total method size
 580     blk_starts[i+1] = blk_starts[i]+blk_size;
 581   }
 582 
 583   // Step two, replace eligible long jumps.
 584   bool progress = true;
 585   uint last_may_be_short_branch_adr = max_juint;
 586   while (has_short_branch_candidate && progress) {
 587     progress = false;
 588     has_short_branch_candidate = false;
 589     int adjust_block_start = 0;
 590     for (uint i = 0; i < nblocks; i++) {
 591       Block* block = C->cfg()->get_block(i);
 592       int idx = jmp_nidx[i];
 593       MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
 594       if (mach != NULL && mach->may_be_short_branch()) {
 595 #ifdef ASSERT
 596         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 597         int j;
 598         // Find the branch; ignore trailing NOPs.
 599         for (j = block->number_of_nodes()-1; j>=0; j--) {
 600           Node* n = block->get_node(j);
 601           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 602             break;
 603         }
 604         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
 605 #endif
 606         int br_size = jmp_size[i];
 607         int br_offs = blk_starts[i] + jmp_offset[i];
 608 
 609         // This requires the TRUE branch target be in succs[0]
 610         uint bnum = block->non_connector_successor(0)->_pre_order;
 611         int offset = blk_starts[bnum] - br_offs;
 612         if (bnum > i) { // adjust following block's offset
 613           offset -= adjust_block_start;
 614         }
 615 
 616         // This block can be a loop header, account for the padding
 617         // in the previous block.
 618         int block_padding = block_worst_case_pad[i];
 619         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
 620         // In the following code a nop could be inserted before
 621         // the branch which will increase the backward distance.
 622         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
 623         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
 624 
 625         if (needs_padding && offset <= 0)
 626           offset -= nop_size;
 627 
 628         if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
 629           // We've got a winner.  Replace this branch.
 630           MachNode* replacement = mach->as_MachBranch()->short_branch_version();
 631 
 632           // Update the jmp_size.
 633           int new_size = replacement->size(C->regalloc());
 634           int diff     = br_size - new_size;
 635           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 636           // Conservatively take into account padding between
 637           // avoid_back_to_back branches. Previous branch could be
 638           // converted into avoid_back_to_back branch during next
 639           // rounds.
 640           if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 641             jmp_offset[i] += nop_size;
 642             diff -= nop_size;
 643           }
 644           adjust_block_start += diff;
 645           block->map_node(replacement, idx);
 646           mach->subsume_by(replacement, C);
 647           mach = replacement;
 648           progress = true;
 649 
 650           jmp_size[i] = new_size;
 651           DEBUG_ONLY( jmp_target[i] = bnum; );
 652           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 653         } else {
 654           // The jump distance is not short, try again during next iteration.
 655           has_short_branch_candidate = true;
 656         }
 657       } // (mach->may_be_short_branch())
 658       if (mach != NULL && (mach->may_be_short_branch() ||
 659                            mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
 660         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 661       }
 662       blk_starts[i+1] -= adjust_block_start;
 663     }
 664   }
 665 
 666 #ifdef ASSERT
 667   for (uint i = 0; i < nblocks; i++) { // For all blocks
 668     if (jmp_target[i] != 0) {
 669       int br_size = jmp_size[i];
 670       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 671       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 672         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 673       }
 674       assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 675     }
 676   }
 677 #endif
 678 
 679   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 680   // after ScheduleAndBundle().
 681 
 682   // ------------------
 683   // Compute size for code buffer
 684   code_size = blk_starts[nblocks];
 685 
 686   // Relocation records
 687   reloc_size += 1;              // Relo entry for exception handler
 688 
 689   // Adjust reloc_size to number of record of relocation info
 690   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 691   // a relocation index.
 692   // The CodeBuffer will expand the locs array if this estimate is too low.
 693   reloc_size *= 10 / sizeof(relocInfo);
 694 
 695   _buf_sizes._reloc = reloc_size;
 696   _buf_sizes._code  = code_size;
 697   _buf_sizes._stub  = stub_size;
 698 }
 699 
 700 //------------------------------FillLocArray-----------------------------------
 701 // Create a bit of debug info and append it to the array.  The mapping is from
 702 // Java local or expression stack to constant, register or stack-slot.  For
 703 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 704 // entry has been taken care of and caller should skip it).
 705 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 706   // This should never have accepted Bad before
 707   assert(OptoReg::is_valid(regnum), "location must be valid");
 708   return (OptoReg::is_reg(regnum))
 709          ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 710          : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 711 }
 712 
 713 
 714 ObjectValue*
 715 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 716   for (int i = 0; i < objs->length(); i++) {
 717     assert(objs->at(i)->is_object(), "corrupt object cache");
 718     ObjectValue* sv = (ObjectValue*) objs->at(i);
 719     if (sv->id() == id) {
 720       return sv;
 721     }
 722   }
 723   // Otherwise..
 724   return NULL;
 725 }
 726 
 727 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 728                                      ObjectValue* sv ) {
 729   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 730   objs->append(sv);
 731 }
 732 
 733 
 734 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 735                             GrowableArray<ScopeValue*> *array,
 736                             GrowableArray<ScopeValue*> *objs ) {
 737   assert( local, "use _top instead of null" );
 738   if (array->length() != idx) {
 739     assert(array->length() == idx + 1, "Unexpected array count");
 740     // Old functionality:
 741     //   return
 742     // New functionality:
 743     //   Assert if the local is not top. In product mode let the new node
 744     //   override the old entry.
 745     assert(local == C->top(), "LocArray collision");
 746     if (local == C->top()) {
 747       return;
 748     }
 749     array->pop();
 750   }
 751   const Type *t = local->bottom_type();
 752 
 753   // Is it a safepoint scalar object node?
 754   if (local->is_SafePointScalarObject()) {
 755     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 756 
 757     ObjectValue* sv = sv_for_node_id(objs, spobj->_idx);
 758     if (sv == NULL) {
 759       ciKlass* cik = t->is_oopptr()->klass();
 760       assert(cik->is_instance_klass() ||
 761              cik->is_array_klass(), "Not supported allocation.");
 762       sv = new ObjectValue(spobj->_idx,
 763                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 764       set_sv_for_object_node(objs, sv);
 765 
 766       uint first_ind = spobj->first_index(sfpt->jvms());
 767       for (uint i = 0; i < spobj->n_fields(); i++) {
 768         Node* fld_node = sfpt->in(first_ind+i);
 769         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 770       }
 771     }
 772     array->append(sv);
 773     return;
 774   }
 775 
 776   // Grab the register number for the local
 777   OptoReg::Name regnum = C->regalloc()->get_reg_first(local);
 778   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 779     // Record the double as two float registers.
 780     // The register mask for such a value always specifies two adjacent
 781     // float registers, with the lower register number even.
 782     // Normally, the allocation of high and low words to these registers
 783     // is irrelevant, because nearly all operations on register pairs
 784     // (e.g., StoreD) treat them as a single unit.
 785     // Here, we assume in addition that the words in these two registers
 786     // stored "naturally" (by operations like StoreD and double stores
 787     // within the interpreter) such that the lower-numbered register
 788     // is written to the lower memory address.  This may seem like
 789     // a machine dependency, but it is not--it is a requirement on
 790     // the author of the <arch>.ad file to ensure that, for every
 791     // even/odd double-register pair to which a double may be allocated,
 792     // the word in the even single-register is stored to the first
 793     // memory word.  (Note that register numbers are completely
 794     // arbitrary, and are not tied to any machine-level encodings.)
 795 #ifdef _LP64
 796     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 797       array->append(new ConstantIntValue((jint)0));
 798       array->append(new_loc_value( C->regalloc(), regnum, Location::dbl ));
 799     } else if ( t->base() == Type::Long ) {
 800       array->append(new ConstantIntValue((jint)0));
 801       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 802     } else if ( t->base() == Type::RawPtr ) {
 803       // jsr/ret return address which must be restored into a the full
 804       // width 64-bit stack slot.
 805       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 806     }
 807 #else //_LP64
 808     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 809       // Repack the double/long as two jints.
 810       // The convention the interpreter uses is that the second local
 811       // holds the first raw word of the native double representation.
 812       // This is actually reasonable, since locals and stack arrays
 813       // grow downwards in all implementations.
 814       // (If, on some machine, the interpreter's Java locals or stack
 815       // were to grow upwards, the embedded doubles would be word-swapped.)
 816       array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal ));
 817       array->append(new_loc_value( C->regalloc(),              regnum   , Location::normal ));
 818     }
 819 #endif //_LP64
 820     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 821              OptoReg::is_reg(regnum) ) {
 822       array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double()
 823                                                       ? Location::float_in_dbl : Location::normal ));
 824     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 825       array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long
 826                                                       ? Location::int_in_long : Location::normal ));
 827     } else if( t->base() == Type::NarrowOop ) {
 828       array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop ));
 829     } else {
 830       array->append(new_loc_value( C->regalloc(), regnum, C->regalloc()->is_oop(local) ? Location::oop : Location::normal ));
 831     }
 832     return;
 833   }
 834 
 835   // No register.  It must be constant data.
 836   switch (t->base()) {
 837     case Type::Half:              // Second half of a double
 838       ShouldNotReachHere();       // Caller should skip 2nd halves
 839       break;
 840     case Type::AnyPtr:
 841       array->append(new ConstantOopWriteValue(NULL));
 842       break;
 843     case Type::AryPtr:
 844     case Type::InstPtr:          // fall through
 845       array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 846       break;
 847     case Type::NarrowOop:
 848       if (t == TypeNarrowOop::NULL_PTR) {
 849         array->append(new ConstantOopWriteValue(NULL));
 850       } else {
 851         array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 852       }
 853       break;
 854     case Type::Int:
 855       array->append(new ConstantIntValue(t->is_int()->get_con()));
 856       break;
 857     case Type::RawPtr:
 858       // A return address (T_ADDRESS).
 859       assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 860 #ifdef _LP64
 861       // Must be restored to the full-width 64-bit stack slot.
 862       array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 863 #else
 864       array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 865 #endif
 866       break;
 867     case Type::FloatCon: {
 868       float f = t->is_float_constant()->getf();
 869       array->append(new ConstantIntValue(jint_cast(f)));
 870       break;
 871     }
 872     case Type::DoubleCon: {
 873       jdouble d = t->is_double_constant()->getd();
 874 #ifdef _LP64
 875       array->append(new ConstantIntValue((jint)0));
 876       array->append(new ConstantDoubleValue(d));
 877 #else
 878       // Repack the double as two jints.
 879     // The convention the interpreter uses is that the second local
 880     // holds the first raw word of the native double representation.
 881     // This is actually reasonable, since locals and stack arrays
 882     // grow downwards in all implementations.
 883     // (If, on some machine, the interpreter's Java locals or stack
 884     // were to grow upwards, the embedded doubles would be word-swapped.)
 885     jlong_accessor acc;
 886     acc.long_value = jlong_cast(d);
 887     array->append(new ConstantIntValue(acc.words[1]));
 888     array->append(new ConstantIntValue(acc.words[0]));
 889 #endif
 890       break;
 891     }
 892     case Type::Long: {
 893       jlong d = t->is_long()->get_con();
 894 #ifdef _LP64
 895       array->append(new ConstantIntValue((jint)0));
 896       array->append(new ConstantLongValue(d));
 897 #else
 898       // Repack the long as two jints.
 899     // The convention the interpreter uses is that the second local
 900     // holds the first raw word of the native double representation.
 901     // This is actually reasonable, since locals and stack arrays
 902     // grow downwards in all implementations.
 903     // (If, on some machine, the interpreter's Java locals or stack
 904     // were to grow upwards, the embedded doubles would be word-swapped.)
 905     jlong_accessor acc;
 906     acc.long_value = d;
 907     array->append(new ConstantIntValue(acc.words[1]));
 908     array->append(new ConstantIntValue(acc.words[0]));
 909 #endif
 910       break;
 911     }
 912     case Type::Top:               // Add an illegal value here
 913       array->append(new LocationValue(Location()));
 914       break;
 915     default:
 916       ShouldNotReachHere();
 917       break;
 918   }
 919 }
 920 
 921 // Determine if this node starts a bundle
 922 bool PhaseOutput::starts_bundle(const Node *n) const {
 923   return (_node_bundling_limit > n->_idx &&
 924           _node_bundling_base[n->_idx].starts_bundle());
 925 }
 926 
 927 //--------------------------Process_OopMap_Node--------------------------------
 928 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) {
 929   // Handle special safepoint nodes for synchronization
 930   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 931   MachCallNode      *mcall;
 932 
 933   int safepoint_pc_offset = current_offset;
 934   bool is_method_handle_invoke = false;
 935   bool return_oop = false;
 936   bool not_global_escape_in_scope = sfn->_not_global_escape_in_scope;
 937   bool arg_escape = false;
 938 
 939   // Add the safepoint in the DebugInfoRecorder
 940   if( !mach->is_MachCall() ) {
 941     mcall = NULL;
 942     C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 943   } else {
 944     mcall = mach->as_MachCall();
 945 
 946     // Is the call a MethodHandle call?
 947     if (mcall->is_MachCallJava()) {
 948       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 949         assert(C->has_method_handle_invokes(), "must have been set during call generation");
 950         is_method_handle_invoke = true;
 951       }
 952       arg_escape = mcall->as_MachCallJava()->_arg_escape;
 953     }
 954 
 955     // Check if a call returns an object.
 956     if (mcall->returns_pointer()) {
 957       return_oop = true;
 958     }
 959     safepoint_pc_offset += mcall->ret_addr_offset();
 960     C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 961   }
 962 
 963   // Loop over the JVMState list to add scope information
 964   // Do not skip safepoints with a NULL method, they need monitor info
 965   JVMState* youngest_jvms = sfn->jvms();
 966   int max_depth = youngest_jvms->depth();
 967 
 968   // Allocate the object pool for scalar-replaced objects -- the map from
 969   // small-integer keys (which can be recorded in the local and ostack
 970   // arrays) to descriptions of the object state.
 971   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 972 
 973   // Visit scopes from oldest to youngest.
 974   for (int depth = 1; depth <= max_depth; depth++) {
 975     JVMState* jvms = youngest_jvms->of_depth(depth);
 976     int idx;
 977     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 978     // Safepoints that do not have method() set only provide oop-map and monitor info
 979     // to support GC; these do not support deoptimization.
 980     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 981     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 982     int num_mon  = jvms->nof_monitors();
 983     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 984            "JVMS local count must match that of the method");
 985 
 986     // Add Local and Expression Stack Information
 987 
 988     // Insert locals into the locarray
 989     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 990     for( idx = 0; idx < num_locs; idx++ ) {
 991       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 992     }
 993 
 994     // Insert expression stack entries into the exparray
 995     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 996     for( idx = 0; idx < num_exps; idx++ ) {
 997       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 998     }
 999 
1000     // Add in mappings of the monitors
1001     assert( !method ||
1002             !method->is_synchronized() ||
1003             method->is_native() ||
1004             num_mon > 0 ||
1005             !GenerateSynchronizationCode,
1006             "monitors must always exist for synchronized methods");
1007 
1008     // Build the growable array of ScopeValues for exp stack
1009     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
1010 
1011     // Loop over monitors and insert into array
1012     for (idx = 0; idx < num_mon; idx++) {
1013       // Grab the node that defines this monitor
1014       Node* box_node = sfn->monitor_box(jvms, idx);
1015       Node* obj_node = sfn->monitor_obj(jvms, idx);
1016 
1017       // Create ScopeValue for object
1018       ScopeValue *scval = NULL;
1019 
1020       if (obj_node->is_SafePointScalarObject()) {
1021         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
1022         scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx);
1023         if (scval == NULL) {
1024           const Type *t = spobj->bottom_type();
1025           ciKlass* cik = t->is_oopptr()->klass();
1026           assert(cik->is_instance_klass() ||
1027                  cik->is_array_klass(), "Not supported allocation.");
1028           ObjectValue* sv = new ObjectValue(spobj->_idx,
1029                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
1030           PhaseOutput::set_sv_for_object_node(objs, sv);
1031 
1032           uint first_ind = spobj->first_index(youngest_jvms);
1033           for (uint i = 0; i < spobj->n_fields(); i++) {
1034             Node* fld_node = sfn->in(first_ind+i);
1035             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
1036           }
1037           scval = sv;
1038         }
1039       } else if (!obj_node->is_Con()) {
1040         OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node);
1041         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
1042           scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop );
1043         } else {
1044           scval = new_loc_value( C->regalloc(), obj_reg, Location::oop );
1045         }
1046       } else {
1047         const TypePtr *tp = obj_node->get_ptr_type();
1048         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
1049       }
1050 
1051       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
1052       Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg));
1053       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
1054       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
1055     }
1056 
1057     // We dump the object pool first, since deoptimization reads it in first.
1058     C->debug_info()->dump_object_pool(objs);
1059 
1060     // Build first class objects to pass to scope
1061     DebugToken *locvals = C->debug_info()->create_scope_values(locarray);
1062     DebugToken *expvals = C->debug_info()->create_scope_values(exparray);
1063     DebugToken *monvals = C->debug_info()->create_monitor_values(monarray);
1064 
1065     // Make method available for all Safepoints
1066     ciMethod* scope_method = method ? method : C->method();
1067     // Describe the scope here
1068     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
1069     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
1070     // Now we can describe the scope.
1071     methodHandle null_mh;
1072     bool rethrow_exception = false;
1073     C->debug_info()->describe_scope(safepoint_pc_offset, null_mh, scope_method, jvms->bci(), jvms->should_reexecute(), rethrow_exception, is_method_handle_invoke, return_oop,
1074                                     not_global_escape_in_scope, arg_escape,
1075                                     locvals, expvals, monvals);
1076   } // End jvms loop
1077 
1078   // Mark the end of the scope set.
1079   C->debug_info()->end_safepoint(safepoint_pc_offset);
1080 }
1081 
1082 
1083 
1084 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
1085 class NonSafepointEmitter {
1086     Compile*  C;
1087     JVMState* _pending_jvms;
1088     int       _pending_offset;
1089 
1090     void emit_non_safepoint();
1091 
1092  public:
1093     NonSafepointEmitter(Compile* compile) {
1094       this->C = compile;
1095       _pending_jvms = NULL;
1096       _pending_offset = 0;
1097     }
1098 
1099     void observe_instruction(Node* n, int pc_offset) {
1100       if (!C->debug_info()->recording_non_safepoints())  return;
1101 
1102       Node_Notes* nn = C->node_notes_at(n->_idx);
1103       if (nn == NULL || nn->jvms() == NULL)  return;
1104       if (_pending_jvms != NULL &&
1105           _pending_jvms->same_calls_as(nn->jvms())) {
1106         // Repeated JVMS?  Stretch it up here.
1107         _pending_offset = pc_offset;
1108       } else {
1109         if (_pending_jvms != NULL &&
1110             _pending_offset < pc_offset) {
1111           emit_non_safepoint();
1112         }
1113         _pending_jvms = NULL;
1114         if (pc_offset > C->debug_info()->last_pc_offset()) {
1115           // This is the only way _pending_jvms can become non-NULL:
1116           _pending_jvms = nn->jvms();
1117           _pending_offset = pc_offset;
1118         }
1119       }
1120     }
1121 
1122     // Stay out of the way of real safepoints:
1123     void observe_safepoint(JVMState* jvms, int pc_offset) {
1124       if (_pending_jvms != NULL &&
1125           !_pending_jvms->same_calls_as(jvms) &&
1126           _pending_offset < pc_offset) {
1127         emit_non_safepoint();
1128       }
1129       _pending_jvms = NULL;
1130     }
1131 
1132     void flush_at_end() {
1133       if (_pending_jvms != NULL) {
1134         emit_non_safepoint();
1135       }
1136       _pending_jvms = NULL;
1137     }
1138 };
1139 
1140 void NonSafepointEmitter::emit_non_safepoint() {
1141   JVMState* youngest_jvms = _pending_jvms;
1142   int       pc_offset     = _pending_offset;
1143 
1144   // Clear it now:
1145   _pending_jvms = NULL;
1146 
1147   DebugInformationRecorder* debug_info = C->debug_info();
1148   assert(debug_info->recording_non_safepoints(), "sanity");
1149 
1150   debug_info->add_non_safepoint(pc_offset);
1151   int max_depth = youngest_jvms->depth();
1152 
1153   // Visit scopes from oldest to youngest.
1154   for (int depth = 1; depth <= max_depth; depth++) {
1155     JVMState* jvms = youngest_jvms->of_depth(depth);
1156     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1157     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1158     methodHandle null_mh;
1159     debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute());
1160   }
1161 
1162   // Mark the end of the scope set.
1163   debug_info->end_non_safepoint(pc_offset);
1164 }
1165 
1166 //------------------------------init_buffer------------------------------------
1167 void PhaseOutput::estimate_buffer_size(int& const_req) {
1168 
1169   // Set the initially allocated size
1170   const_req = initial_const_capacity;
1171 
1172   // The extra spacing after the code is necessary on some platforms.
1173   // Sometimes we need to patch in a jump after the last instruction,
1174   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1175 
1176   // Compute the byte offset where we can store the deopt pc.
1177   if (C->fixed_slots() != 0) {
1178     _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1179   }
1180 
1181   // Compute prolog code size
1182   _method_size = 0;
1183   _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize;
1184 #if defined(IA64) && !defined(AIX)
1185   if (save_argument_registers()) {
1186     // 4815101: this is a stub with implicit and unknown precision fp args.
1187     // The usual spill mechanism can only generate stfd's in this case, which
1188     // doesn't work if the fp reg to spill contains a single-precision denorm.
1189     // Instead, we hack around the normal spill mechanism using stfspill's and
1190     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1191     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1192     //
1193     // If we ever implement 16-byte 'registers' == stack slots, we can
1194     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1195     // instead of stfd/stfs/ldfd/ldfs.
1196     _frame_slots += 8*(16/BytesPerInt);
1197   }
1198 #endif
1199   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1200 
1201   if (C->has_mach_constant_base_node()) {
1202     uint add_size = 0;
1203     // Fill the constant table.
1204     // Note:  This must happen before shorten_branches.
1205     for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1206       Block* b = C->cfg()->get_block(i);
1207 
1208       for (uint j = 0; j < b->number_of_nodes(); j++) {
1209         Node* n = b->get_node(j);
1210 
1211         // If the node is a MachConstantNode evaluate the constant
1212         // value section.
1213         if (n->is_MachConstant()) {
1214           MachConstantNode* machcon = n->as_MachConstant();
1215           machcon->eval_constant(C);
1216         } else if (n->is_Mach()) {
1217           // On Power there are more nodes that issue constants.
1218           add_size += (n->as_Mach()->ins_num_consts() * 8);
1219         }
1220       }
1221     }
1222 
1223     // Calculate the offsets of the constants and the size of the
1224     // constant table (including the padding to the next section).
1225     constant_table().calculate_offsets_and_size();
1226     const_req = constant_table().size() + add_size;
1227   }
1228 
1229   // Initialize the space for the BufferBlob used to find and verify
1230   // instruction size in MachNode::emit_size()
1231   init_scratch_buffer_blob(const_req);
1232 }
1233 
1234 CodeBuffer* PhaseOutput::init_buffer() {
1235   int stub_req  = _buf_sizes._stub;
1236   int code_req  = _buf_sizes._code;
1237   int const_req = _buf_sizes._const;
1238 
1239   int pad_req   = NativeCall::instruction_size;
1240 
1241   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1242   stub_req += bs->estimate_stub_size();
1243 
1244   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1245   // class HandlerImpl is platform-specific and defined in the *.ad files.
1246   int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1247   int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
1248   stub_req += MAX_stubs_size;   // ensure per-stub margin
1249   code_req += MAX_inst_size;    // ensure per-instruction margin
1250 
1251   if (StressCodeBuffers)
1252     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1253 
1254   int total_req =
1255           const_req +
1256           code_req +
1257           pad_req +
1258           stub_req +
1259           exception_handler_req +
1260           deopt_handler_req;               // deopt handler
1261 
1262   if (C->has_method_handle_invokes())
1263     total_req += deopt_handler_req;  // deopt MH handler
1264 
1265   CodeBuffer* cb = code_buffer();
1266   cb->initialize(total_req, _buf_sizes._reloc);
1267 
1268   // Have we run out of code space?
1269   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1270     C->record_failure("CodeCache is full");
1271     return NULL;
1272   }
1273   // Configure the code buffer.
1274   cb->initialize_consts_size(const_req);
1275   cb->initialize_stubs_size(stub_req);
1276   cb->initialize_oop_recorder(C->env()->oop_recorder());
1277 
1278   // fill in the nop array for bundling computations
1279   MachNode *_nop_list[Bundle::_nop_count];
1280   Bundle::initialize_nops(_nop_list);
1281 
1282   return cb;
1283 }
1284 
1285 //------------------------------fill_buffer------------------------------------
1286 void PhaseOutput::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1287   // blk_starts[] contains offsets calculated during short branches processing,
1288   // offsets should not be increased during following steps.
1289 
1290   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1291   // of a loop. It is used to determine the padding for loop alignment.
1292   compute_loop_first_inst_sizes();
1293 
1294   // Create oopmap set.
1295   _oop_map_set = new OopMapSet();
1296 
1297   // !!!!! This preserves old handling of oopmaps for now
1298   C->debug_info()->set_oopmaps(_oop_map_set);
1299 
1300   uint nblocks  = C->cfg()->number_of_blocks();
1301   // Count and start of implicit null check instructions
1302   uint inct_cnt = 0;
1303   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1304 
1305   // Count and start of calls
1306   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1307 
1308   uint  return_offset = 0;
1309   int nop_size = (new MachNopNode())->size(C->regalloc());
1310 
1311   int previous_offset = 0;
1312   int current_offset  = 0;
1313   int last_call_offset = -1;
1314   int last_avoid_back_to_back_offset = -1;
1315 #ifdef ASSERT
1316   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1317   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1318   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1319   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1320 #endif
1321 
1322   // Create an array of unused labels, one for each basic block, if printing is enabled
1323 #if defined(SUPPORT_OPTO_ASSEMBLY)
1324   int *node_offsets      = NULL;
1325   uint node_offset_limit = C->unique();
1326 
1327   if (C->print_assembly()) {
1328     node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1329   }
1330   if (node_offsets != NULL) {
1331     // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly.
1332     memset(node_offsets, 0, node_offset_limit*sizeof(int));
1333   }
1334 #endif
1335 
1336   NonSafepointEmitter non_safepoints(C);  // emit non-safepoints lazily
1337 
1338   // Emit the constant table.
1339   if (C->has_mach_constant_base_node()) {
1340     constant_table().emit(*cb);
1341   }
1342 
1343   // Create an array of labels, one for each basic block
1344   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1345   for (uint i=0; i <= nblocks; i++) {
1346     blk_labels[i].init();
1347   }
1348 
1349   // ------------------
1350   // Now fill in the code buffer
1351   Node *delay_slot = NULL;
1352 
1353   for (uint i = 0; i < nblocks; i++) {
1354     Block* block = C->cfg()->get_block(i);
1355     _block = block;
1356     Node* head = block->head();
1357 
1358     // If this block needs to start aligned (i.e, can be reached other
1359     // than by falling-thru from the previous block), then force the
1360     // start of a new bundle.
1361     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1362       cb->flush_bundle(true);
1363     }
1364 
1365 #ifdef ASSERT
1366     if (!block->is_connector()) {
1367       stringStream st;
1368       block->dump_head(C->cfg(), &st);
1369       MacroAssembler(cb).block_comment(st.as_string());
1370     }
1371     jmp_target[i] = 0;
1372     jmp_offset[i] = 0;
1373     jmp_size[i]   = 0;
1374     jmp_rule[i]   = 0;
1375 #endif
1376     int blk_offset = current_offset;
1377 
1378     // Define the label at the beginning of the basic block
1379     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1380 
1381     uint last_inst = block->number_of_nodes();
1382 
1383     // Emit block normally, except for last instruction.
1384     // Emit means "dump code bits into code buffer".
1385     for (uint j = 0; j<last_inst; j++) {
1386       _index = j;
1387 
1388       // Get the node
1389       Node* n = block->get_node(j);
1390 
1391       // See if delay slots are supported
1392       if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) {
1393         assert(delay_slot == NULL, "no use of delay slot node");
1394         assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1395 
1396         delay_slot = n;
1397         continue;
1398       }
1399 
1400       // If this starts a new instruction group, then flush the current one
1401       // (but allow split bundles)
1402       if (Pipeline::requires_bundling() && starts_bundle(n))
1403         cb->flush_bundle(false);
1404 
1405       // Special handling for SafePoint/Call Nodes
1406       bool is_mcall = false;
1407       if (n->is_Mach()) {
1408         MachNode *mach = n->as_Mach();
1409         is_mcall = n->is_MachCall();
1410         bool is_sfn = n->is_MachSafePoint();
1411 
1412         // If this requires all previous instructions be flushed, then do so
1413         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1414           cb->flush_bundle(true);
1415           current_offset = cb->insts_size();
1416         }
1417 
1418         // A padding may be needed again since a previous instruction
1419         // could be moved to delay slot.
1420 
1421         // align the instruction if necessary
1422         int padding = mach->compute_padding(current_offset);
1423         // Make sure safepoint node for polling is distinct from a call's
1424         // return by adding a nop if needed.
1425         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1426           padding = nop_size;
1427         }
1428         if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1429             current_offset == last_avoid_back_to_back_offset) {
1430           // Avoid back to back some instructions.
1431           padding = nop_size;
1432         }
1433 
1434         if (padding > 0) {
1435           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1436           int nops_cnt = padding / nop_size;
1437           MachNode *nop = new MachNopNode(nops_cnt);
1438           block->insert_node(nop, j++);
1439           last_inst++;
1440           C->cfg()->map_node_to_block(nop, block);
1441           // Ensure enough space.
1442           cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1443           if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1444             C->record_failure("CodeCache is full");
1445             return;
1446           }
1447           nop->emit(*cb, C->regalloc());
1448           cb->flush_bundle(true);
1449           current_offset = cb->insts_size();
1450         }
1451 
1452         // Remember the start of the last call in a basic block
1453         if (is_mcall) {
1454           MachCallNode *mcall = mach->as_MachCall();
1455 
1456           // This destination address is NOT PC-relative
1457           mcall->method_set((intptr_t)mcall->entry_point());
1458 
1459           // Save the return address
1460           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1461 
1462           if (mcall->is_MachCallLeaf()) {
1463             is_mcall = false;
1464             is_sfn = false;
1465           }
1466         }
1467 
1468         // sfn will be valid whenever mcall is valid now because of inheritance
1469         if (is_sfn || is_mcall) {
1470 
1471           // Handle special safepoint nodes for synchronization
1472           if (!is_mcall) {
1473             MachSafePointNode *sfn = mach->as_MachSafePoint();
1474             // !!!!! Stubs only need an oopmap right now, so bail out
1475             if (sfn->jvms()->method() == NULL) {
1476               // Write the oopmap directly to the code blob??!!
1477               continue;
1478             }
1479           } // End synchronization
1480 
1481           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1482                                            current_offset);
1483           Process_OopMap_Node(mach, current_offset);
1484         } // End if safepoint
1485 
1486           // If this is a null check, then add the start of the previous instruction to the list
1487         else if( mach->is_MachNullCheck() ) {
1488           inct_starts[inct_cnt++] = previous_offset;
1489         }
1490 
1491           // If this is a branch, then fill in the label with the target BB's label
1492         else if (mach->is_MachBranch()) {
1493           // This requires the TRUE branch target be in succs[0]
1494           uint block_num = block->non_connector_successor(0)->_pre_order;
1495 
1496           // Try to replace long branch if delay slot is not used,
1497           // it is mostly for back branches since forward branch's
1498           // distance is not updated yet.
1499           bool delay_slot_is_used = valid_bundle_info(n) &&
1500                                     C->output()->node_bundling(n)->use_unconditional_delay();
1501           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1502             assert(delay_slot == NULL, "not expecting delay slot node");
1503             int br_size = n->size(C->regalloc());
1504             int offset = blk_starts[block_num] - current_offset;
1505             if (block_num >= i) {
1506               // Current and following block's offset are not
1507               // finalized yet, adjust distance by the difference
1508               // between calculated and final offsets of current block.
1509               offset -= (blk_starts[i] - blk_offset);
1510             }
1511             // In the following code a nop could be inserted before
1512             // the branch which will increase the backward distance.
1513             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1514             if (needs_padding && offset <= 0)
1515               offset -= nop_size;
1516 
1517             if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
1518               // We've got a winner.  Replace this branch.
1519               MachNode* replacement = mach->as_MachBranch()->short_branch_version();
1520 
1521               // Update the jmp_size.
1522               int new_size = replacement->size(C->regalloc());
1523               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1524               // Insert padding between avoid_back_to_back branches.
1525               if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1526                 MachNode *nop = new MachNopNode();
1527                 block->insert_node(nop, j++);
1528                 C->cfg()->map_node_to_block(nop, block);
1529                 last_inst++;
1530                 nop->emit(*cb, C->regalloc());
1531                 cb->flush_bundle(true);
1532                 current_offset = cb->insts_size();
1533               }
1534 #ifdef ASSERT
1535               jmp_target[i] = block_num;
1536               jmp_offset[i] = current_offset - blk_offset;
1537               jmp_size[i]   = new_size;
1538               jmp_rule[i]   = mach->rule();
1539 #endif
1540               block->map_node(replacement, j);
1541               mach->subsume_by(replacement, C);
1542               n    = replacement;
1543               mach = replacement;
1544             }
1545           }
1546           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1547         } else if (mach->ideal_Opcode() == Op_Jump) {
1548           for (uint h = 0; h < block->_num_succs; h++) {
1549             Block* succs_block = block->_succs[h];
1550             for (uint j = 1; j < succs_block->num_preds(); j++) {
1551               Node* jpn = succs_block->pred(j);
1552               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1553                 uint block_num = succs_block->non_connector()->_pre_order;
1554                 Label *blkLabel = &blk_labels[block_num];
1555                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1556               }
1557             }
1558           }
1559         }
1560 #ifdef ASSERT
1561           // Check that oop-store precedes the card-mark
1562         else if (mach->ideal_Opcode() == Op_StoreCM) {
1563           uint storeCM_idx = j;
1564           int count = 0;
1565           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1566             Node *oop_store = mach->in(prec);  // Precedence edge
1567             if (oop_store == NULL) continue;
1568             count++;
1569             uint i4;
1570             for (i4 = 0; i4 < last_inst; ++i4) {
1571               if (block->get_node(i4) == oop_store) {
1572                 break;
1573               }
1574             }
1575             // Note: This test can provide a false failure if other precedence
1576             // edges have been added to the storeCMNode.
1577             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1578           }
1579           assert(count > 0, "storeCM expects at least one precedence edge");
1580         }
1581 #endif
1582         else if (!n->is_Proj()) {
1583           // Remember the beginning of the previous instruction, in case
1584           // it's followed by a flag-kill and a null-check.  Happens on
1585           // Intel all the time, with add-to-memory kind of opcodes.
1586           previous_offset = current_offset;
1587         }
1588 
1589         // Not an else-if!
1590         // If this is a trap based cmp then add its offset to the list.
1591         if (mach->is_TrapBasedCheckNode()) {
1592           inct_starts[inct_cnt++] = current_offset;
1593         }
1594       }
1595 
1596       // Verify that there is sufficient space remaining
1597       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1598       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1599         C->record_failure("CodeCache is full");
1600         return;
1601       }
1602 
1603       // Save the offset for the listing
1604 #if defined(SUPPORT_OPTO_ASSEMBLY)
1605       if ((node_offsets != NULL) && (n->_idx < node_offset_limit)) {
1606         node_offsets[n->_idx] = cb->insts_size();
1607       }
1608 #endif
1609 
1610       // "Normal" instruction case
1611       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1612       n->emit(*cb, C->regalloc());
1613       current_offset  = cb->insts_size();
1614 
1615       // Above we only verified that there is enough space in the instruction section.
1616       // However, the instruction may emit stubs that cause code buffer expansion.
1617       // Bail out here if expansion failed due to a lack of code cache space.
1618       if (C->failing()) {
1619         return;
1620       }
1621 
1622 #ifdef ASSERT
1623       uint n_size = n->size(C->regalloc());
1624       if (n_size < (current_offset-instr_offset)) {
1625         MachNode* mach = n->as_Mach();
1626         n->dump();
1627         mach->dump_format(C->regalloc(), tty);
1628         tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset);
1629         Disassembler::decode(cb->insts_begin() + instr_offset, cb->insts_begin() + current_offset + 1, tty);
1630         tty->print_cr(" ------------------- ");
1631         BufferBlob* blob = this->scratch_buffer_blob();
1632         address blob_begin = blob->content_begin();
1633         Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty);
1634         assert(false, "wrong size of mach node");
1635       }
1636 #endif
1637       non_safepoints.observe_instruction(n, current_offset);
1638 
1639       // mcall is last "call" that can be a safepoint
1640       // record it so we can see if a poll will directly follow it
1641       // in which case we'll need a pad to make the PcDesc sites unique
1642       // see  5010568. This can be slightly inaccurate but conservative
1643       // in the case that return address is not actually at current_offset.
1644       // This is a small price to pay.
1645 
1646       if (is_mcall) {
1647         last_call_offset = current_offset;
1648       }
1649 
1650       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1651         // Avoid back to back some instructions.
1652         last_avoid_back_to_back_offset = current_offset;
1653       }
1654 
1655       // See if this instruction has a delay slot
1656       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1657         guarantee(delay_slot != NULL, "expecting delay slot node");
1658 
1659         // Back up 1 instruction
1660         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1661 
1662         // Save the offset for the listing
1663 #if defined(SUPPORT_OPTO_ASSEMBLY)
1664         if ((node_offsets != NULL) && (delay_slot->_idx < node_offset_limit)) {
1665           node_offsets[delay_slot->_idx] = cb->insts_size();
1666         }
1667 #endif
1668 
1669         // Support a SafePoint in the delay slot
1670         if (delay_slot->is_MachSafePoint()) {
1671           MachNode *mach = delay_slot->as_Mach();
1672           // !!!!! Stubs only need an oopmap right now, so bail out
1673           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1674             // Write the oopmap directly to the code blob??!!
1675             delay_slot = NULL;
1676             continue;
1677           }
1678 
1679           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1680           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1681                                            adjusted_offset);
1682           // Generate an OopMap entry
1683           Process_OopMap_Node(mach, adjusted_offset);
1684         }
1685 
1686         // Insert the delay slot instruction
1687         delay_slot->emit(*cb, C->regalloc());
1688 
1689         // Don't reuse it
1690         delay_slot = NULL;
1691       }
1692 
1693     } // End for all instructions in block
1694 
1695     // If the next block is the top of a loop, pad this block out to align
1696     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1697     if (i < nblocks-1) {
1698       Block *nb = C->cfg()->get_block(i + 1);
1699       int padding = nb->alignment_padding(current_offset);
1700       if( padding > 0 ) {
1701         MachNode *nop = new MachNopNode(padding / nop_size);
1702         block->insert_node(nop, block->number_of_nodes());
1703         C->cfg()->map_node_to_block(nop, block);
1704         nop->emit(*cb, C->regalloc());
1705         current_offset = cb->insts_size();
1706       }
1707     }
1708     // Verify that the distance for generated before forward
1709     // short branches is still valid.
1710     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1711 
1712     // Save new block start offset
1713     blk_starts[i] = blk_offset;
1714   } // End of for all blocks
1715   blk_starts[nblocks] = current_offset;
1716 
1717   non_safepoints.flush_at_end();
1718 
1719   // Offset too large?
1720   if (C->failing())  return;
1721 
1722   // Define a pseudo-label at the end of the code
1723   MacroAssembler(cb).bind( blk_labels[nblocks] );
1724 
1725   // Compute the size of the first block
1726   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1727 
1728 #ifdef ASSERT
1729   for (uint i = 0; i < nblocks; i++) { // For all blocks
1730     if (jmp_target[i] != 0) {
1731       int br_size = jmp_size[i];
1732       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1733       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1734         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1735         assert(false, "Displacement too large for short jmp");
1736       }
1737     }
1738   }
1739 #endif
1740 
1741   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1742   bs->emit_stubs(*cb);
1743   if (C->failing())  return;
1744 
1745 #ifndef PRODUCT
1746   // Information on the size of the method, without the extraneous code
1747   Scheduling::increment_method_size(cb->insts_size());
1748 #endif
1749 
1750   // ------------------
1751   // Fill in exception table entries.
1752   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1753 
1754   // Only java methods have exception handlers and deopt handlers
1755   // class HandlerImpl is platform-specific and defined in the *.ad files.
1756   if (C->method()) {
1757     // Emit the exception handler code.
1758     _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
1759     if (C->failing()) {
1760       return; // CodeBuffer::expand failed
1761     }
1762     // Emit the deopt handler code.
1763     _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
1764 
1765     // Emit the MethodHandle deopt handler code (if required).
1766     if (C->has_method_handle_invokes() && !C->failing()) {
1767       // We can use the same code as for the normal deopt handler, we
1768       // just need a different entry point address.
1769       _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
1770     }
1771   }
1772 
1773   // One last check for failed CodeBuffer::expand:
1774   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1775     C->record_failure("CodeCache is full");
1776     return;
1777   }
1778 
1779 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY)
1780   if (C->print_assembly()) {
1781     tty->cr();
1782     tty->print_cr("============================= C2-compiled nmethod ==============================");
1783   }
1784 #endif
1785 
1786 #if defined(SUPPORT_OPTO_ASSEMBLY)
1787   // Dump the assembly code, including basic-block numbers
1788   if (C->print_assembly()) {
1789     ttyLocker ttyl;  // keep the following output all in one block
1790     if (!VMThread::should_terminate()) {  // test this under the tty lock
1791       // This output goes directly to the tty, not the compiler log.
1792       // To enable tools to match it up with the compilation activity,
1793       // be sure to tag this tty output with the compile ID.
1794       if (xtty != NULL) {
1795         xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(),
1796                    C->is_osr_compilation()    ? " compile_kind='osr'" :
1797                    "");
1798       }
1799       if (C->method() != NULL) {
1800         tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id());
1801         C->method()->print_metadata();
1802       } else if (C->stub_name() != NULL) {
1803         tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name());
1804       }
1805       tty->cr();
1806       tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id());
1807       dump_asm(node_offsets, node_offset_limit);
1808       tty->print_cr("--------------------------------------------------------------------------------");
1809       if (xtty != NULL) {
1810         // print_metadata and dump_asm above may safepoint which makes us loose the ttylock.
1811         // Retake lock too make sure the end tag is coherent, and that xmlStream->pop_tag is done
1812         // thread safe
1813         ttyLocker ttyl2;
1814         xtty->tail("opto_assembly");
1815       }
1816     }
1817   }
1818 #endif
1819 }
1820 
1821 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1822   _inc_table.set_size(cnt);
1823 
1824   uint inct_cnt = 0;
1825   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1826     Block* block = C->cfg()->get_block(i);
1827     Node *n = NULL;
1828     int j;
1829 
1830     // Find the branch; ignore trailing NOPs.
1831     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1832       n = block->get_node(j);
1833       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1834         break;
1835       }
1836     }
1837 
1838     // If we didn't find anything, continue
1839     if (j < 0) {
1840       continue;
1841     }
1842 
1843     // Compute ExceptionHandlerTable subtable entry and add it
1844     // (skip empty blocks)
1845     if (n->is_Catch()) {
1846 
1847       // Get the offset of the return from the call
1848       uint call_return = call_returns[block->_pre_order];
1849 #ifdef ASSERT
1850       assert( call_return > 0, "no call seen for this basic block" );
1851       while (block->get_node(--j)->is_MachProj()) ;
1852       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1853 #endif
1854       // last instruction is a CatchNode, find it's CatchProjNodes
1855       int nof_succs = block->_num_succs;
1856       // allocate space
1857       GrowableArray<intptr_t> handler_bcis(nof_succs);
1858       GrowableArray<intptr_t> handler_pcos(nof_succs);
1859       // iterate through all successors
1860       for (int j = 0; j < nof_succs; j++) {
1861         Block* s = block->_succs[j];
1862         bool found_p = false;
1863         for (uint k = 1; k < s->num_preds(); k++) {
1864           Node* pk = s->pred(k);
1865           if (pk->is_CatchProj() && pk->in(0) == n) {
1866             const CatchProjNode* p = pk->as_CatchProj();
1867             found_p = true;
1868             // add the corresponding handler bci & pco information
1869             if (p->_con != CatchProjNode::fall_through_index) {
1870               // p leads to an exception handler (and is not fall through)
1871               assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering");
1872               // no duplicates, please
1873               if (!handler_bcis.contains(p->handler_bci())) {
1874                 uint block_num = s->non_connector()->_pre_order;
1875                 handler_bcis.append(p->handler_bci());
1876                 handler_pcos.append(blk_labels[block_num].loc_pos());
1877               }
1878             }
1879           }
1880         }
1881         assert(found_p, "no matching predecessor found");
1882         // Note:  Due to empty block removal, one block may have
1883         // several CatchProj inputs, from the same Catch.
1884       }
1885 
1886       // Set the offset of the return from the call
1887       assert(handler_bcis.find(-1) != -1, "must have default handler");
1888       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1889       continue;
1890     }
1891 
1892     // Handle implicit null exception table updates
1893     if (n->is_MachNullCheck()) {
1894       uint block_num = block->non_connector_successor(0)->_pre_order;
1895       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1896       continue;
1897     }
1898     // Handle implicit exception table updates: trap instructions.
1899     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1900       uint block_num = block->non_connector_successor(0)->_pre_order;
1901       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1902       continue;
1903     }
1904   } // End of for all blocks fill in exception table entries
1905 }
1906 
1907 // Static Variables
1908 #ifndef PRODUCT
1909 uint Scheduling::_total_nop_size = 0;
1910 uint Scheduling::_total_method_size = 0;
1911 uint Scheduling::_total_branches = 0;
1912 uint Scheduling::_total_unconditional_delays = 0;
1913 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1914 #endif
1915 
1916 // Initializer for class Scheduling
1917 
1918 Scheduling::Scheduling(Arena *arena, Compile &compile)
1919         : _arena(arena),
1920           _cfg(compile.cfg()),
1921           _regalloc(compile.regalloc()),
1922           _scheduled(arena),
1923           _available(arena),
1924           _reg_node(arena),
1925           _pinch_free_list(arena),
1926           _next_node(NULL),
1927           _bundle_instr_count(0),
1928           _bundle_cycle_number(0),
1929           _bundle_use(0, 0, resource_count, &_bundle_use_elements[0])
1930 #ifndef PRODUCT
1931         , _branches(0)
1932         , _unconditional_delays(0)
1933 #endif
1934 {
1935   // Create a MachNopNode
1936   _nop = new MachNopNode();
1937 
1938   // Now that the nops are in the array, save the count
1939   // (but allow entries for the nops)
1940   _node_bundling_limit = compile.unique();
1941   uint node_max = _regalloc->node_regs_max_index();
1942 
1943   compile.output()->set_node_bundling_limit(_node_bundling_limit);
1944 
1945   // This one is persistent within the Compile class
1946   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1947 
1948   // Allocate space for fixed-size arrays
1949   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1950   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1951   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1952 
1953   // Clear the arrays
1954   for (uint i = 0; i < node_max; i++) {
1955     ::new (&_node_bundling_base[i]) Bundle();
1956   }
1957   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1958   memset(_uses,               0, node_max * sizeof(short));
1959   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1960 
1961   // Clear the bundling information
1962   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1963 
1964   // Get the last node
1965   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1966 
1967   _next_node = block->get_node(block->number_of_nodes() - 1);
1968 }
1969 
1970 #ifndef PRODUCT
1971 // Scheduling destructor
1972 Scheduling::~Scheduling() {
1973   _total_branches             += _branches;
1974   _total_unconditional_delays += _unconditional_delays;
1975 }
1976 #endif
1977 
1978 // Step ahead "i" cycles
1979 void Scheduling::step(uint i) {
1980 
1981   Bundle *bundle = node_bundling(_next_node);
1982   bundle->set_starts_bundle();
1983 
1984   // Update the bundle record, but leave the flags information alone
1985   if (_bundle_instr_count > 0) {
1986     bundle->set_instr_count(_bundle_instr_count);
1987     bundle->set_resources_used(_bundle_use.resourcesUsed());
1988   }
1989 
1990   // Update the state information
1991   _bundle_instr_count = 0;
1992   _bundle_cycle_number += i;
1993   _bundle_use.step(i);
1994 }
1995 
1996 void Scheduling::step_and_clear() {
1997   Bundle *bundle = node_bundling(_next_node);
1998   bundle->set_starts_bundle();
1999 
2000   // Update the bundle record
2001   if (_bundle_instr_count > 0) {
2002     bundle->set_instr_count(_bundle_instr_count);
2003     bundle->set_resources_used(_bundle_use.resourcesUsed());
2004 
2005     _bundle_cycle_number += 1;
2006   }
2007 
2008   // Clear the bundling information
2009   _bundle_instr_count = 0;
2010   _bundle_use.reset();
2011 
2012   memcpy(_bundle_use_elements,
2013          Pipeline_Use::elaborated_elements,
2014          sizeof(Pipeline_Use::elaborated_elements));
2015 }
2016 
2017 // Perform instruction scheduling and bundling over the sequence of
2018 // instructions in backwards order.
2019 void PhaseOutput::ScheduleAndBundle() {
2020 
2021   // Don't optimize this if it isn't a method
2022   if (!C->method())
2023     return;
2024 
2025   // Don't optimize this if scheduling is disabled
2026   if (!C->do_scheduling())
2027     return;
2028 
2029   // Scheduling code works only with pairs (8 bytes) maximum.
2030   if (C->max_vector_size() > 8)
2031     return;
2032 
2033   Compile::TracePhase tp("isched", &timers[_t_instrSched]);
2034 
2035   // Create a data structure for all the scheduling information
2036   Scheduling scheduling(Thread::current()->resource_area(), *C);
2037 
2038   // Walk backwards over each basic block, computing the needed alignment
2039   // Walk over all the basic blocks
2040   scheduling.DoScheduling();
2041 
2042 #ifndef PRODUCT
2043   if (C->trace_opto_output()) {
2044     tty->print("\n---- After ScheduleAndBundle ----\n");
2045     for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
2046       tty->print("\nBB#%03d:\n", i);
2047       Block* block = C->cfg()->get_block(i);
2048       for (uint j = 0; j < block->number_of_nodes(); j++) {
2049         Node* n = block->get_node(j);
2050         OptoReg::Name reg = C->regalloc()->get_reg_first(n);
2051         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
2052         n->dump();
2053       }
2054     }
2055   }
2056 #endif
2057 }
2058 
2059 // Compute the latency of all the instructions.  This is fairly simple,
2060 // because we already have a legal ordering.  Walk over the instructions
2061 // from first to last, and compute the latency of the instruction based
2062 // on the latency of the preceding instruction(s).
2063 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
2064 #ifndef PRODUCT
2065   if (_cfg->C->trace_opto_output())
2066     tty->print("# -> ComputeLocalLatenciesForward\n");
2067 #endif
2068 
2069   // Walk over all the schedulable instructions
2070   for( uint j=_bb_start; j < _bb_end; j++ ) {
2071 
2072     // This is a kludge, forcing all latency calculations to start at 1.
2073     // Used to allow latency 0 to force an instruction to the beginning
2074     // of the bb
2075     uint latency = 1;
2076     Node *use = bb->get_node(j);
2077     uint nlen = use->len();
2078 
2079     // Walk over all the inputs
2080     for ( uint k=0; k < nlen; k++ ) {
2081       Node *def = use->in(k);
2082       if (!def)
2083         continue;
2084 
2085       uint l = _node_latency[def->_idx] + use->latency(k);
2086       if (latency < l)
2087         latency = l;
2088     }
2089 
2090     _node_latency[use->_idx] = latency;
2091 
2092 #ifndef PRODUCT
2093     if (_cfg->C->trace_opto_output()) {
2094       tty->print("# latency %4d: ", latency);
2095       use->dump();
2096     }
2097 #endif
2098   }
2099 
2100 #ifndef PRODUCT
2101   if (_cfg->C->trace_opto_output())
2102     tty->print("# <- ComputeLocalLatenciesForward\n");
2103 #endif
2104 
2105 } // end ComputeLocalLatenciesForward
2106 
2107 // See if this node fits into the present instruction bundle
2108 bool Scheduling::NodeFitsInBundle(Node *n) {
2109   uint n_idx = n->_idx;
2110 
2111   // If this is the unconditional delay instruction, then it fits
2112   if (n == _unconditional_delay_slot) {
2113 #ifndef PRODUCT
2114     if (_cfg->C->trace_opto_output())
2115       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
2116 #endif
2117     return (true);
2118   }
2119 
2120   // If the node cannot be scheduled this cycle, skip it
2121   if (_current_latency[n_idx] > _bundle_cycle_number) {
2122 #ifndef PRODUCT
2123     if (_cfg->C->trace_opto_output())
2124       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
2125                  n->_idx, _current_latency[n_idx], _bundle_cycle_number);
2126 #endif
2127     return (false);
2128   }
2129 
2130   const Pipeline *node_pipeline = n->pipeline();
2131 
2132   uint instruction_count = node_pipeline->instructionCount();
2133   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2134     instruction_count = 0;
2135   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2136     instruction_count++;
2137 
2138   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
2139 #ifndef PRODUCT
2140     if (_cfg->C->trace_opto_output())
2141       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
2142                  n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
2143 #endif
2144     return (false);
2145   }
2146 
2147   // Don't allow non-machine nodes to be handled this way
2148   if (!n->is_Mach() && instruction_count == 0)
2149     return (false);
2150 
2151   // See if there is any overlap
2152   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
2153 
2154   if (delay > 0) {
2155 #ifndef PRODUCT
2156     if (_cfg->C->trace_opto_output())
2157       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
2158 #endif
2159     return false;
2160   }
2161 
2162 #ifndef PRODUCT
2163   if (_cfg->C->trace_opto_output())
2164     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2165 #endif
2166 
2167   return true;
2168 }
2169 
2170 Node * Scheduling::ChooseNodeToBundle() {
2171   uint siz = _available.size();
2172 
2173   if (siz == 0) {
2174 
2175 #ifndef PRODUCT
2176     if (_cfg->C->trace_opto_output())
2177       tty->print("#   ChooseNodeToBundle: NULL\n");
2178 #endif
2179     return (NULL);
2180   }
2181 
2182   // Fast path, if only 1 instruction in the bundle
2183   if (siz == 1) {
2184 #ifndef PRODUCT
2185     if (_cfg->C->trace_opto_output()) {
2186       tty->print("#   ChooseNodeToBundle (only 1): ");
2187       _available[0]->dump();
2188     }
2189 #endif
2190     return (_available[0]);
2191   }
2192 
2193   // Don't bother, if the bundle is already full
2194   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2195     for ( uint i = 0; i < siz; i++ ) {
2196       Node *n = _available[i];
2197 
2198       // Skip projections, we'll handle them another way
2199       if (n->is_Proj())
2200         continue;
2201 
2202       // This presupposed that instructions are inserted into the
2203       // available list in a legality order; i.e. instructions that
2204       // must be inserted first are at the head of the list
2205       if (NodeFitsInBundle(n)) {
2206 #ifndef PRODUCT
2207         if (_cfg->C->trace_opto_output()) {
2208           tty->print("#   ChooseNodeToBundle: ");
2209           n->dump();
2210         }
2211 #endif
2212         return (n);
2213       }
2214     }
2215   }
2216 
2217   // Nothing fits in this bundle, choose the highest priority
2218 #ifndef PRODUCT
2219   if (_cfg->C->trace_opto_output()) {
2220     tty->print("#   ChooseNodeToBundle: ");
2221     _available[0]->dump();
2222   }
2223 #endif
2224 
2225   return _available[0];
2226 }
2227 
2228 void Scheduling::AddNodeToAvailableList(Node *n) {
2229   assert( !n->is_Proj(), "projections never directly made available" );
2230 #ifndef PRODUCT
2231   if (_cfg->C->trace_opto_output()) {
2232     tty->print("#   AddNodeToAvailableList: ");
2233     n->dump();
2234   }
2235 #endif
2236 
2237   int latency = _current_latency[n->_idx];
2238 
2239   // Insert in latency order (insertion sort)
2240   uint i;
2241   for ( i=0; i < _available.size(); i++ )
2242     if (_current_latency[_available[i]->_idx] > latency)
2243       break;
2244 
2245   // Special Check for compares following branches
2246   if( n->is_Mach() && _scheduled.size() > 0 ) {
2247     int op = n->as_Mach()->ideal_Opcode();
2248     Node *last = _scheduled[0];
2249     if( last->is_MachIf() && last->in(1) == n &&
2250         ( op == Op_CmpI ||
2251           op == Op_CmpU ||
2252           op == Op_CmpUL ||
2253           op == Op_CmpP ||
2254           op == Op_CmpF ||
2255           op == Op_CmpD ||
2256           op == Op_CmpL ) ) {
2257 
2258       // Recalculate position, moving to front of same latency
2259       for ( i=0 ; i < _available.size(); i++ )
2260         if (_current_latency[_available[i]->_idx] >= latency)
2261           break;
2262     }
2263   }
2264 
2265   // Insert the node in the available list
2266   _available.insert(i, n);
2267 
2268 #ifndef PRODUCT
2269   if (_cfg->C->trace_opto_output())
2270     dump_available();
2271 #endif
2272 }
2273 
2274 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2275   for ( uint i=0; i < n->len(); i++ ) {
2276     Node *def = n->in(i);
2277     if (!def) continue;
2278     if( def->is_Proj() )        // If this is a machine projection, then
2279       def = def->in(0);         // propagate usage thru to the base instruction
2280 
2281     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2282       continue;
2283     }
2284 
2285     // Compute the latency
2286     uint l = _bundle_cycle_number + n->latency(i);
2287     if (_current_latency[def->_idx] < l)
2288       _current_latency[def->_idx] = l;
2289 
2290     // If this does not have uses then schedule it
2291     if ((--_uses[def->_idx]) == 0)
2292       AddNodeToAvailableList(def);
2293   }
2294 }
2295 
2296 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2297 #ifndef PRODUCT
2298   if (_cfg->C->trace_opto_output()) {
2299     tty->print("#   AddNodeToBundle: ");
2300     n->dump();
2301   }
2302 #endif
2303 
2304   // Remove this from the available list
2305   uint i;
2306   for (i = 0; i < _available.size(); i++)
2307     if (_available[i] == n)
2308       break;
2309   assert(i < _available.size(), "entry in _available list not found");
2310   _available.remove(i);
2311 
2312   // See if this fits in the current bundle
2313   const Pipeline *node_pipeline = n->pipeline();
2314   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2315 
2316   // Check for instructions to be placed in the delay slot. We
2317   // do this before we actually schedule the current instruction,
2318   // because the delay slot follows the current instruction.
2319   if (Pipeline::_branch_has_delay_slot &&
2320       node_pipeline->hasBranchDelay() &&
2321       !_unconditional_delay_slot) {
2322 
2323     uint siz = _available.size();
2324 
2325     // Conditional branches can support an instruction that
2326     // is unconditionally executed and not dependent by the
2327     // branch, OR a conditionally executed instruction if
2328     // the branch is taken.  In practice, this means that
2329     // the first instruction at the branch target is
2330     // copied to the delay slot, and the branch goes to
2331     // the instruction after that at the branch target
2332     if ( n->is_MachBranch() ) {
2333 
2334       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2335       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2336 
2337 #ifndef PRODUCT
2338       _branches++;
2339 #endif
2340 
2341       // At least 1 instruction is on the available list
2342       // that is not dependent on the branch
2343       for (uint i = 0; i < siz; i++) {
2344         Node *d = _available[i];
2345         const Pipeline *avail_pipeline = d->pipeline();
2346 
2347         // Don't allow safepoints in the branch shadow, that will
2348         // cause a number of difficulties
2349         if ( avail_pipeline->instructionCount() == 1 &&
2350              !avail_pipeline->hasMultipleBundles() &&
2351              !avail_pipeline->hasBranchDelay() &&
2352              Pipeline::instr_has_unit_size() &&
2353              d->size(_regalloc) == Pipeline::instr_unit_size() &&
2354              NodeFitsInBundle(d) &&
2355              !node_bundling(d)->used_in_delay()) {
2356 
2357           if (d->is_Mach() && !d->is_MachSafePoint()) {
2358             // A node that fits in the delay slot was found, so we need to
2359             // set the appropriate bits in the bundle pipeline information so
2360             // that it correctly indicates resource usage.  Later, when we
2361             // attempt to add this instruction to the bundle, we will skip
2362             // setting the resource usage.
2363             _unconditional_delay_slot = d;
2364             node_bundling(n)->set_use_unconditional_delay();
2365             node_bundling(d)->set_used_in_unconditional_delay();
2366             _bundle_use.add_usage(avail_pipeline->resourceUse());
2367             _current_latency[d->_idx] = _bundle_cycle_number;
2368             _next_node = d;
2369             ++_bundle_instr_count;
2370 #ifndef PRODUCT
2371             _unconditional_delays++;
2372 #endif
2373             break;
2374           }
2375         }
2376       }
2377     }
2378 
2379     // No delay slot, add a nop to the usage
2380     if (!_unconditional_delay_slot) {
2381       // See if adding an instruction in the delay slot will overflow
2382       // the bundle.
2383       if (!NodeFitsInBundle(_nop)) {
2384 #ifndef PRODUCT
2385         if (_cfg->C->trace_opto_output())
2386           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2387 #endif
2388         step(1);
2389       }
2390 
2391       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2392       _next_node = _nop;
2393       ++_bundle_instr_count;
2394     }
2395 
2396     // See if the instruction in the delay slot requires a
2397     // step of the bundles
2398     if (!NodeFitsInBundle(n)) {
2399 #ifndef PRODUCT
2400       if (_cfg->C->trace_opto_output())
2401         tty->print("#  *** STEP(branch won't fit) ***\n");
2402 #endif
2403       // Update the state information
2404       _bundle_instr_count = 0;
2405       _bundle_cycle_number += 1;
2406       _bundle_use.step(1);
2407     }
2408   }
2409 
2410   // Get the number of instructions
2411   uint instruction_count = node_pipeline->instructionCount();
2412   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2413     instruction_count = 0;
2414 
2415   // Compute the latency information
2416   uint delay = 0;
2417 
2418   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2419     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2420     if (relative_latency < 0)
2421       relative_latency = 0;
2422 
2423     delay = _bundle_use.full_latency(relative_latency, node_usage);
2424 
2425     // Does not fit in this bundle, start a new one
2426     if (delay > 0) {
2427       step(delay);
2428 
2429 #ifndef PRODUCT
2430       if (_cfg->C->trace_opto_output())
2431         tty->print("#  *** STEP(%d) ***\n", delay);
2432 #endif
2433     }
2434   }
2435 
2436   // If this was placed in the delay slot, ignore it
2437   if (n != _unconditional_delay_slot) {
2438 
2439     if (delay == 0) {
2440       if (node_pipeline->hasMultipleBundles()) {
2441 #ifndef PRODUCT
2442         if (_cfg->C->trace_opto_output())
2443           tty->print("#  *** STEP(multiple instructions) ***\n");
2444 #endif
2445         step(1);
2446       }
2447 
2448       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2449 #ifndef PRODUCT
2450         if (_cfg->C->trace_opto_output())
2451           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2452                      instruction_count + _bundle_instr_count,
2453                      Pipeline::_max_instrs_per_cycle);
2454 #endif
2455         step(1);
2456       }
2457     }
2458 
2459     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2460       _bundle_instr_count++;
2461 
2462     // Set the node's latency
2463     _current_latency[n->_idx] = _bundle_cycle_number;
2464 
2465     // Now merge the functional unit information
2466     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2467       _bundle_use.add_usage(node_usage);
2468 
2469     // Increment the number of instructions in this bundle
2470     _bundle_instr_count += instruction_count;
2471 
2472     // Remember this node for later
2473     if (n->is_Mach())
2474       _next_node = n;
2475   }
2476 
2477   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2478   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2479   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2480   // into the block.  All other scheduled nodes get put in the schedule here.
2481   int op = n->Opcode();
2482   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2483       (op != Op_Node &&         // Not an unused antidepedence node and
2484        // not an unallocated boxlock
2485        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2486 
2487     // Push any trailing projections
2488     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2489       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2490         Node *foi = n->fast_out(i);
2491         if( foi->is_Proj() )
2492           _scheduled.push(foi);
2493       }
2494     }
2495 
2496     // Put the instruction in the schedule list
2497     _scheduled.push(n);
2498   }
2499 
2500 #ifndef PRODUCT
2501   if (_cfg->C->trace_opto_output())
2502     dump_available();
2503 #endif
2504 
2505   // Walk all the definitions, decrementing use counts, and
2506   // if a definition has a 0 use count, place it in the available list.
2507   DecrementUseCounts(n,bb);
2508 }
2509 
2510 // This method sets the use count within a basic block.  We will ignore all
2511 // uses outside the current basic block.  As we are doing a backwards walk,
2512 // any node we reach that has a use count of 0 may be scheduled.  This also
2513 // avoids the problem of cyclic references from phi nodes, as long as phi
2514 // nodes are at the front of the basic block.  This method also initializes
2515 // the available list to the set of instructions that have no uses within this
2516 // basic block.
2517 void Scheduling::ComputeUseCount(const Block *bb) {
2518 #ifndef PRODUCT
2519   if (_cfg->C->trace_opto_output())
2520     tty->print("# -> ComputeUseCount\n");
2521 #endif
2522 
2523   // Clear the list of available and scheduled instructions, just in case
2524   _available.clear();
2525   _scheduled.clear();
2526 
2527   // No delay slot specified
2528   _unconditional_delay_slot = NULL;
2529 
2530 #ifdef ASSERT
2531   for( uint i=0; i < bb->number_of_nodes(); i++ )
2532     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2533 #endif
2534 
2535   // Force the _uses count to never go to zero for unscheduable pieces
2536   // of the block
2537   for( uint k = 0; k < _bb_start; k++ )
2538     _uses[bb->get_node(k)->_idx] = 1;
2539   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2540     _uses[bb->get_node(l)->_idx] = 1;
2541 
2542   // Iterate backwards over the instructions in the block.  Don't count the
2543   // branch projections at end or the block header instructions.
2544   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2545     Node *n = bb->get_node(j);
2546     if( n->is_Proj() ) continue; // Projections handled another way
2547 
2548     // Account for all uses
2549     for ( uint k = 0; k < n->len(); k++ ) {
2550       Node *inp = n->in(k);
2551       if (!inp) continue;
2552       assert(inp != n, "no cycles allowed" );
2553       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2554         if (inp->is_Proj()) { // Skip through Proj's
2555           inp = inp->in(0);
2556         }
2557         ++_uses[inp->_idx];     // Count 1 block-local use
2558       }
2559     }
2560 
2561     // If this instruction has a 0 use count, then it is available
2562     if (!_uses[n->_idx]) {
2563       _current_latency[n->_idx] = _bundle_cycle_number;
2564       AddNodeToAvailableList(n);
2565     }
2566 
2567 #ifndef PRODUCT
2568     if (_cfg->C->trace_opto_output()) {
2569       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2570       n->dump();
2571     }
2572 #endif
2573   }
2574 
2575 #ifndef PRODUCT
2576   if (_cfg->C->trace_opto_output())
2577     tty->print("# <- ComputeUseCount\n");
2578 #endif
2579 }
2580 
2581 // This routine performs scheduling on each basic block in reverse order,
2582 // using instruction latencies and taking into account function unit
2583 // availability.
2584 void Scheduling::DoScheduling() {
2585 #ifndef PRODUCT
2586   if (_cfg->C->trace_opto_output())
2587     tty->print("# -> DoScheduling\n");
2588 #endif
2589 
2590   Block *succ_bb = NULL;
2591   Block *bb;
2592   Compile* C = Compile::current();
2593 
2594   // Walk over all the basic blocks in reverse order
2595   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2596     bb = _cfg->get_block(i);
2597 
2598 #ifndef PRODUCT
2599     if (_cfg->C->trace_opto_output()) {
2600       tty->print("#  Schedule BB#%03d (initial)\n", i);
2601       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2602         bb->get_node(j)->dump();
2603       }
2604     }
2605 #endif
2606 
2607     // On the head node, skip processing
2608     if (bb == _cfg->get_root_block()) {
2609       continue;
2610     }
2611 
2612     // Skip empty, connector blocks
2613     if (bb->is_connector())
2614       continue;
2615 
2616     // If the following block is not the sole successor of
2617     // this one, then reset the pipeline information
2618     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2619 #ifndef PRODUCT
2620       if (_cfg->C->trace_opto_output()) {
2621         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2622                    _next_node->_idx, _bundle_instr_count);
2623       }
2624 #endif
2625       step_and_clear();
2626     }
2627 
2628     // Leave untouched the starting instruction, any Phis, a CreateEx node
2629     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2630     _bb_end = bb->number_of_nodes()-1;
2631     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2632       Node *n = bb->get_node(_bb_start);
2633       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2634       // Also, MachIdealNodes do not get scheduled
2635       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2636       MachNode *mach = n->as_Mach();
2637       int iop = mach->ideal_Opcode();
2638       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2639       if( iop == Op_Con ) continue;      // Do not schedule Top
2640       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2641           mach->pipeline() == MachNode::pipeline_class() &&
2642           !n->is_SpillCopy() && !n->is_MachMerge() )  // Breakpoints, Prolog, etc
2643         continue;
2644       break;                    // Funny loop structure to be sure...
2645     }
2646     // Compute last "interesting" instruction in block - last instruction we
2647     // might schedule.  _bb_end points just after last schedulable inst.  We
2648     // normally schedule conditional branches (despite them being forced last
2649     // in the block), because they have delay slots we can fill.  Calls all
2650     // have their delay slots filled in the template expansions, so we don't
2651     // bother scheduling them.
2652     Node *last = bb->get_node(_bb_end);
2653     // Ignore trailing NOPs.
2654     while (_bb_end > 0 && last->is_Mach() &&
2655            last->as_Mach()->ideal_Opcode() == Op_Con) {
2656       last = bb->get_node(--_bb_end);
2657     }
2658     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2659     if( last->is_Catch() ||
2660         (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2661       // There might be a prior call.  Skip it.
2662       while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj());
2663     } else if( last->is_MachNullCheck() ) {
2664       // Backup so the last null-checked memory instruction is
2665       // outside the schedulable range. Skip over the nullcheck,
2666       // projection, and the memory nodes.
2667       Node *mem = last->in(1);
2668       do {
2669         _bb_end--;
2670       } while (mem != bb->get_node(_bb_end));
2671     } else {
2672       // Set _bb_end to point after last schedulable inst.
2673       _bb_end++;
2674     }
2675 
2676     assert( _bb_start <= _bb_end, "inverted block ends" );
2677 
2678     // Compute the register antidependencies for the basic block
2679     ComputeRegisterAntidependencies(bb);
2680     if (C->failing())  return;  // too many D-U pinch points
2681 
2682     // Compute intra-bb latencies for the nodes
2683     ComputeLocalLatenciesForward(bb);
2684 
2685     // Compute the usage within the block, and set the list of all nodes
2686     // in the block that have no uses within the block.
2687     ComputeUseCount(bb);
2688 
2689     // Schedule the remaining instructions in the block
2690     while ( _available.size() > 0 ) {
2691       Node *n = ChooseNodeToBundle();
2692       guarantee(n != NULL, "no nodes available");
2693       AddNodeToBundle(n,bb);
2694     }
2695 
2696     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2697 #ifdef ASSERT
2698     for( uint l = _bb_start; l < _bb_end; l++ ) {
2699       Node *n = bb->get_node(l);
2700       uint m;
2701       for( m = 0; m < _bb_end-_bb_start; m++ )
2702         if( _scheduled[m] == n )
2703           break;
2704       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2705     }
2706 #endif
2707 
2708     // Now copy the instructions (in reverse order) back to the block
2709     for ( uint k = _bb_start; k < _bb_end; k++ )
2710       bb->map_node(_scheduled[_bb_end-k-1], k);
2711 
2712 #ifndef PRODUCT
2713     if (_cfg->C->trace_opto_output()) {
2714       tty->print("#  Schedule BB#%03d (final)\n", i);
2715       uint current = 0;
2716       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2717         Node *n = bb->get_node(j);
2718         if( valid_bundle_info(n) ) {
2719           Bundle *bundle = node_bundling(n);
2720           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2721             tty->print("*** Bundle: ");
2722             bundle->dump();
2723           }
2724           n->dump();
2725         }
2726       }
2727     }
2728 #endif
2729 #ifdef ASSERT
2730     verify_good_schedule(bb,"after block local scheduling");
2731 #endif
2732   }
2733 
2734 #ifndef PRODUCT
2735   if (_cfg->C->trace_opto_output())
2736     tty->print("# <- DoScheduling\n");
2737 #endif
2738 
2739   // Record final node-bundling array location
2740   _regalloc->C->output()->set_node_bundling_base(_node_bundling_base);
2741 
2742 } // end DoScheduling
2743 
2744 // Verify that no live-range used in the block is killed in the block by a
2745 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2746 
2747 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2748 static bool edge_from_to( Node *from, Node *to ) {
2749   for( uint i=0; i<from->len(); i++ )
2750     if( from->in(i) == to )
2751       return true;
2752   return false;
2753 }
2754 
2755 #ifdef ASSERT
2756 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2757   // Check for bad kills
2758   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2759     Node *prior_use = _reg_node[def];
2760     if( prior_use && !edge_from_to(prior_use,n) ) {
2761       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2762       n->dump();
2763       tty->print_cr("...");
2764       prior_use->dump();
2765       assert(edge_from_to(prior_use,n), "%s", msg);
2766     }
2767     _reg_node.map(def,NULL); // Kill live USEs
2768   }
2769 }
2770 
2771 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2772 
2773   // Zap to something reasonable for the verify code
2774   _reg_node.clear();
2775 
2776   // Walk over the block backwards.  Check to make sure each DEF doesn't
2777   // kill a live value (other than the one it's supposed to).  Add each
2778   // USE to the live set.
2779   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2780     Node *n = b->get_node(i);
2781     int n_op = n->Opcode();
2782     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2783       // Fat-proj kills a slew of registers
2784       RegMask rm = n->out_RegMask();// Make local copy
2785       while( rm.is_NotEmpty() ) {
2786         OptoReg::Name kill = rm.find_first_elem();
2787         rm.Remove(kill);
2788         verify_do_def( n, kill, msg );
2789       }
2790     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2791       // Get DEF'd registers the normal way
2792       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2793       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2794     }
2795 
2796     // Now make all USEs live
2797     for( uint i=1; i<n->req(); i++ ) {
2798       Node *def = n->in(i);
2799       assert(def != 0, "input edge required");
2800       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2801       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2802       if( OptoReg::is_valid(reg_lo) ) {
2803         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg);
2804         _reg_node.map(reg_lo,n);
2805       }
2806       if( OptoReg::is_valid(reg_hi) ) {
2807         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg);
2808         _reg_node.map(reg_hi,n);
2809       }
2810     }
2811 
2812   }
2813 
2814   // Zap to something reasonable for the Antidependence code
2815   _reg_node.clear();
2816 }
2817 #endif
2818 
2819 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2820 static void add_prec_edge_from_to( Node *from, Node *to ) {
2821   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2822     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2823     from = from->in(0);
2824   }
2825   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2826       !edge_from_to( from, to ) ) // Avoid duplicate edge
2827     from->add_prec(to);
2828 }
2829 
2830 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2831   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2832     return;
2833 
2834   Node *pinch = _reg_node[def_reg]; // Get pinch point
2835   if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2836       is_def ) {    // Check for a true def (not a kill)
2837     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2838     return;
2839   }
2840 
2841   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2842   debug_only( def = (Node*)((intptr_t)0xdeadbeef); )
2843 
2844   // After some number of kills there _may_ be a later def
2845   Node *later_def = NULL;
2846 
2847   Compile* C = Compile::current();
2848 
2849   // Finding a kill requires a real pinch-point.
2850   // Check for not already having a pinch-point.
2851   // Pinch points are Op_Node's.
2852   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2853     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2854     if ( _pinch_free_list.size() > 0) {
2855       pinch = _pinch_free_list.pop();
2856     } else {
2857       pinch = new Node(1); // Pinch point to-be
2858     }
2859     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2860       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2861       return;
2862     }
2863     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
2864     _reg_node.map(def_reg,pinch); // Record pinch-point
2865     //regalloc()->set_bad(pinch->_idx); // Already initialized this way.
2866     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2867       pinch->init_req(0, C->top());     // set not NULL for the next call
2868       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2869       later_def = NULL;           // and no later def
2870     }
2871     pinch->set_req(0,later_def);  // Hook later def so we can find it
2872   } else {                        // Else have valid pinch point
2873     if( pinch->in(0) )            // If there is a later-def
2874       later_def = pinch->in(0);   // Get it
2875   }
2876 
2877   // Add output-dependence edge from later def to kill
2878   if( later_def )               // If there is some original def
2879     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2880 
2881   // See if current kill is also a use, and so is forced to be the pinch-point.
2882   if( pinch->Opcode() == Op_Node ) {
2883     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2884     for( uint i=1; i<uses->req(); i++ ) {
2885       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2886           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2887         // Yes, found a use/kill pinch-point
2888         pinch->set_req(0,NULL);  //
2889         pinch->replace_by(kill); // Move anti-dep edges up
2890         pinch = kill;
2891         _reg_node.map(def_reg,pinch);
2892         return;
2893       }
2894     }
2895   }
2896 
2897   // Add edge from kill to pinch-point
2898   add_prec_edge_from_to(kill,pinch);
2899 }
2900 
2901 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2902   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2903     return;
2904   Node *pinch = _reg_node[use_reg]; // Get pinch point
2905   // Check for no later def_reg/kill in block
2906   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2907       // Use has to be block-local as well
2908       _cfg->get_block_for_node(use) == b) {
2909     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2910         pinch->req() == 1 ) {   // pinch not yet in block?
2911       pinch->del_req(0);        // yank pointer to later-def, also set flag
2912       // Insert the pinch-point in the block just after the last use
2913       b->insert_node(pinch, b->find_node(use) + 1);
2914       _bb_end++;                // Increase size scheduled region in block
2915     }
2916 
2917     add_prec_edge_from_to(pinch,use);
2918   }
2919 }
2920 
2921 // We insert antidependences between the reads and following write of
2922 // allocated registers to prevent illegal code motion. Hopefully, the
2923 // number of added references should be fairly small, especially as we
2924 // are only adding references within the current basic block.
2925 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2926 
2927 #ifdef ASSERT
2928   verify_good_schedule(b,"before block local scheduling");
2929 #endif
2930 
2931   // A valid schedule, for each register independently, is an endless cycle
2932   // of: a def, then some uses (connected to the def by true dependencies),
2933   // then some kills (defs with no uses), finally the cycle repeats with a new
2934   // def.  The uses are allowed to float relative to each other, as are the
2935   // kills.  No use is allowed to slide past a kill (or def).  This requires
2936   // antidependencies between all uses of a single def and all kills that
2937   // follow, up to the next def.  More edges are redundant, because later defs
2938   // & kills are already serialized with true or antidependencies.  To keep
2939   // the edge count down, we add a 'pinch point' node if there's more than
2940   // one use or more than one kill/def.
2941 
2942   // We add dependencies in one bottom-up pass.
2943 
2944   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2945 
2946   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2947   // register.  If not, we record the DEF/KILL in _reg_node, the
2948   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2949   // "pinch point", a new Node that's in the graph but not in the block.
2950   // We put edges from the prior and current DEF/KILLs to the pinch point.
2951   // We put the pinch point in _reg_node.  If there's already a pinch point
2952   // we merely add an edge from the current DEF/KILL to the pinch point.
2953 
2954   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2955   // put an edge from the pinch point to the USE.
2956 
2957   // To be expedient, the _reg_node array is pre-allocated for the whole
2958   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2959   // or a valid def/kill/pinch-point, or a leftover node from some prior
2960   // block.  Leftover node from some prior block is treated like a NULL (no
2961   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2962   // it being in the current block.
2963   bool fat_proj_seen = false;
2964   uint last_safept = _bb_end-1;
2965   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2966   Node* last_safept_node = end_node;
2967   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2968     Node *n = b->get_node(i);
2969     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2970     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2971       // Fat-proj kills a slew of registers
2972       // This can add edges to 'n' and obscure whether or not it was a def,
2973       // hence the is_def flag.
2974       fat_proj_seen = true;
2975       RegMask rm = n->out_RegMask();// Make local copy
2976       while( rm.is_NotEmpty() ) {
2977         OptoReg::Name kill = rm.find_first_elem();
2978         rm.Remove(kill);
2979         anti_do_def( b, n, kill, is_def );
2980       }
2981     } else {
2982       // Get DEF'd registers the normal way
2983       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2984       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2985     }
2986 
2987     // Kill projections on a branch should appear to occur on the
2988     // branch, not afterwards, so grab the masks from the projections
2989     // and process them.
2990     if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) {
2991       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2992         Node* use = n->fast_out(i);
2993         if (use->is_Proj()) {
2994           RegMask rm = use->out_RegMask();// Make local copy
2995           while( rm.is_NotEmpty() ) {
2996             OptoReg::Name kill = rm.find_first_elem();
2997             rm.Remove(kill);
2998             anti_do_def( b, n, kill, false );
2999           }
3000         }
3001       }
3002     }
3003 
3004     // Check each register used by this instruction for a following DEF/KILL
3005     // that must occur afterward and requires an anti-dependence edge.
3006     for( uint j=0; j<n->req(); j++ ) {
3007       Node *def = n->in(j);
3008       if( def ) {
3009         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
3010         anti_do_use( b, n, _regalloc->get_reg_first(def) );
3011         anti_do_use( b, n, _regalloc->get_reg_second(def) );
3012       }
3013     }
3014     // Do not allow defs of new derived values to float above GC
3015     // points unless the base is definitely available at the GC point.
3016 
3017     Node *m = b->get_node(i);
3018 
3019     // Add precedence edge from following safepoint to use of derived pointer
3020     if( last_safept_node != end_node &&
3021         m != last_safept_node) {
3022       for (uint k = 1; k < m->req(); k++) {
3023         const Type *t = m->in(k)->bottom_type();
3024         if( t->isa_oop_ptr() &&
3025             t->is_ptr()->offset() != 0 ) {
3026           last_safept_node->add_prec( m );
3027           break;
3028         }
3029       }
3030     }
3031 
3032     if( n->jvms() ) {           // Precedence edge from derived to safept
3033       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
3034       if( b->get_node(last_safept) != last_safept_node ) {
3035         last_safept = b->find_node(last_safept_node);
3036       }
3037       for( uint j=last_safept; j > i; j-- ) {
3038         Node *mach = b->get_node(j);
3039         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
3040           mach->add_prec( n );
3041       }
3042       last_safept = i;
3043       last_safept_node = m;
3044     }
3045   }
3046 
3047   if (fat_proj_seen) {
3048     // Garbage collect pinch nodes that were not consumed.
3049     // They are usually created by a fat kill MachProj for a call.
3050     garbage_collect_pinch_nodes();
3051   }
3052 }
3053 
3054 // Garbage collect pinch nodes for reuse by other blocks.
3055 //
3056 // The block scheduler's insertion of anti-dependence
3057 // edges creates many pinch nodes when the block contains
3058 // 2 or more Calls.  A pinch node is used to prevent a
3059 // combinatorial explosion of edges.  If a set of kills for a
3060 // register is anti-dependent on a set of uses (or defs), rather
3061 // than adding an edge in the graph between each pair of kill
3062 // and use (or def), a pinch is inserted between them:
3063 //
3064 //            use1   use2  use3
3065 //                \   |   /
3066 //                 \  |  /
3067 //                  pinch
3068 //                 /  |  \
3069 //                /   |   \
3070 //            kill1 kill2 kill3
3071 //
3072 // One pinch node is created per register killed when
3073 // the second call is encountered during a backwards pass
3074 // over the block.  Most of these pinch nodes are never
3075 // wired into the graph because the register is never
3076 // used or def'ed in the block.
3077 //
3078 void Scheduling::garbage_collect_pinch_nodes() {
3079 #ifndef PRODUCT
3080   if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
3081 #endif
3082   int trace_cnt = 0;
3083   for (uint k = 0; k < _reg_node.Size(); k++) {
3084     Node* pinch = _reg_node[k];
3085     if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
3086         // no predecence input edges
3087         (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
3088       cleanup_pinch(pinch);
3089       _pinch_free_list.push(pinch);
3090       _reg_node.map(k, NULL);
3091 #ifndef PRODUCT
3092       if (_cfg->C->trace_opto_output()) {
3093         trace_cnt++;
3094         if (trace_cnt > 40) {
3095           tty->print("\n");
3096           trace_cnt = 0;
3097         }
3098         tty->print(" %d", pinch->_idx);
3099       }
3100 #endif
3101     }
3102   }
3103 #ifndef PRODUCT
3104   if (_cfg->C->trace_opto_output()) tty->print("\n");
3105 #endif
3106 }
3107 
3108 // Clean up a pinch node for reuse.
3109 void Scheduling::cleanup_pinch( Node *pinch ) {
3110   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
3111 
3112   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
3113     Node* use = pinch->last_out(i);
3114     uint uses_found = 0;
3115     for (uint j = use->req(); j < use->len(); j++) {
3116       if (use->in(j) == pinch) {
3117         use->rm_prec(j);
3118         uses_found++;
3119       }
3120     }
3121     assert(uses_found > 0, "must be a precedence edge");
3122     i -= uses_found;    // we deleted 1 or more copies of this edge
3123   }
3124   // May have a later_def entry
3125   pinch->set_req(0, NULL);
3126 }
3127 
3128 #ifndef PRODUCT
3129 
3130 void Scheduling::dump_available() const {
3131   tty->print("#Availist  ");
3132   for (uint i = 0; i < _available.size(); i++)
3133     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
3134   tty->cr();
3135 }
3136 
3137 // Print Scheduling Statistics
3138 void Scheduling::print_statistics() {
3139   // Print the size added by nops for bundling
3140   tty->print("Nops added %d bytes to total of %d bytes",
3141              _total_nop_size, _total_method_size);
3142   if (_total_method_size > 0)
3143     tty->print(", for %.2f%%",
3144                ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
3145   tty->print("\n");
3146 
3147   // Print the number of branch shadows filled
3148   if (Pipeline::_branch_has_delay_slot) {
3149     tty->print("Of %d branches, %d had unconditional delay slots filled",
3150                _total_branches, _total_unconditional_delays);
3151     if (_total_branches > 0)
3152       tty->print(", for %.2f%%",
3153                  ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
3154     tty->print("\n");
3155   }
3156 
3157   uint total_instructions = 0, total_bundles = 0;
3158 
3159   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
3160     uint bundle_count   = _total_instructions_per_bundle[i];
3161     total_instructions += bundle_count * i;
3162     total_bundles      += bundle_count;
3163   }
3164 
3165   if (total_bundles > 0)
3166     tty->print("Average ILP (excluding nops) is %.2f\n",
3167                ((double)total_instructions) / ((double)total_bundles));
3168 }
3169 #endif
3170 
3171 //-----------------------init_scratch_buffer_blob------------------------------
3172 // Construct a temporary BufferBlob and cache it for this compile.
3173 void PhaseOutput::init_scratch_buffer_blob(int const_size) {
3174   // If there is already a scratch buffer blob allocated and the
3175   // constant section is big enough, use it.  Otherwise free the
3176   // current and allocate a new one.
3177   BufferBlob* blob = scratch_buffer_blob();
3178   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
3179     // Use the current blob.
3180   } else {
3181     if (blob != NULL) {
3182       BufferBlob::free(blob);
3183     }
3184 
3185     ResourceMark rm;
3186     _scratch_const_size = const_size;
3187     int size = C2Compiler::initial_code_buffer_size(const_size);
3188     blob = BufferBlob::create("Compile::scratch_buffer", size);
3189     // Record the buffer blob for next time.
3190     set_scratch_buffer_blob(blob);
3191     // Have we run out of code space?
3192     if (scratch_buffer_blob() == NULL) {
3193       // Let CompilerBroker disable further compilations.
3194       C->record_failure("Not enough space for scratch buffer in CodeCache");
3195       return;
3196     }
3197   }
3198 
3199   // Initialize the relocation buffers
3200   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
3201   set_scratch_locs_memory(locs_buf);
3202 }
3203 
3204 
3205 //-----------------------scratch_emit_size-------------------------------------
3206 // Helper function that computes size by emitting code
3207 uint PhaseOutput::scratch_emit_size(const Node* n) {
3208   // Start scratch_emit_size section.
3209   set_in_scratch_emit_size(true);
3210 
3211   // Emit into a trash buffer and count bytes emitted.
3212   // This is a pretty expensive way to compute a size,
3213   // but it works well enough if seldom used.
3214   // All common fixed-size instructions are given a size
3215   // method by the AD file.
3216   // Note that the scratch buffer blob and locs memory are
3217   // allocated at the beginning of the compile task, and
3218   // may be shared by several calls to scratch_emit_size.
3219   // The allocation of the scratch buffer blob is particularly
3220   // expensive, since it has to grab the code cache lock.
3221   BufferBlob* blob = this->scratch_buffer_blob();
3222   assert(blob != NULL, "Initialize BufferBlob at start");
3223   assert(blob->size() > MAX_inst_size, "sanity");
3224   relocInfo* locs_buf = scratch_locs_memory();
3225   address blob_begin = blob->content_begin();
3226   address blob_end   = (address)locs_buf;
3227   assert(blob->contains(blob_end), "sanity");
3228   CodeBuffer buf(blob_begin, blob_end - blob_begin);
3229   buf.initialize_consts_size(_scratch_const_size);
3230   buf.initialize_stubs_size(MAX_stubs_size);
3231   assert(locs_buf != NULL, "sanity");
3232   int lsize = MAX_locs_size / 3;
3233   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
3234   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
3235   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
3236   // Mark as scratch buffer.
3237   buf.consts()->set_scratch_emit();
3238   buf.insts()->set_scratch_emit();
3239   buf.stubs()->set_scratch_emit();
3240 
3241   // Do the emission.
3242 
3243   Label fakeL; // Fake label for branch instructions.
3244   Label*   saveL = NULL;
3245   uint save_bnum = 0;
3246   bool is_branch = n->is_MachBranch();
3247   if (is_branch) {
3248     MacroAssembler masm(&buf);
3249     masm.bind(fakeL);
3250     n->as_MachBranch()->save_label(&saveL, &save_bnum);
3251     n->as_MachBranch()->label_set(&fakeL, 0);
3252   }
3253   n->emit(buf, C->regalloc());
3254 
3255   // Emitting into the scratch buffer should not fail
3256   assert (!C->failing(), "Must not have pending failure. Reason is: %s", C->failure_reason());
3257 
3258   if (is_branch) // Restore label.
3259     n->as_MachBranch()->label_set(saveL, save_bnum);
3260 
3261   // End scratch_emit_size section.
3262   set_in_scratch_emit_size(false);
3263 
3264   return buf.insts_size();
3265 }
3266 
3267 void PhaseOutput::install() {
3268   if (!C->should_install_code()) {
3269     return;
3270   } else if (C->stub_function() != NULL) {
3271     install_stub(C->stub_name(),
3272                  C->save_argument_registers());
3273   } else {
3274     install_code(C->method(),
3275                  C->entry_bci(),
3276                  CompileBroker::compiler2(),
3277                  C->has_unsafe_access(),
3278                  SharedRuntime::is_wide_vector(C->max_vector_size()),
3279                  C->rtm_state());
3280   }
3281 }
3282 
3283 void PhaseOutput::install_code(ciMethod*         target,
3284                                int               entry_bci,
3285                                AbstractCompiler* compiler,
3286                                bool              has_unsafe_access,
3287                                bool              has_wide_vectors,
3288                                RTMState          rtm_state) {
3289   // Check if we want to skip execution of all compiled code.
3290   {
3291 #ifndef PRODUCT
3292     if (OptoNoExecute) {
3293       C->record_method_not_compilable("+OptoNoExecute");  // Flag as failed
3294       return;
3295     }
3296 #endif
3297     Compile::TracePhase tp("install_code", &timers[_t_registerMethod]);
3298 
3299     if (C->is_osr_compilation()) {
3300       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
3301       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
3302     } else {
3303       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
3304       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
3305     }
3306 
3307     C->env()->register_method(target,
3308                                      entry_bci,
3309                                      &_code_offsets,
3310                                      _orig_pc_slot_offset_in_bytes,
3311                                      code_buffer(),
3312                                      frame_size_in_words(),
3313                                      oop_map_set(),
3314                                      &_handler_table,
3315                                      inc_table(),
3316                                      compiler,
3317                                      has_unsafe_access,
3318                                      SharedRuntime::is_wide_vector(C->max_vector_size()),
3319                                      C->rtm_state());
3320 
3321     if (C->log() != NULL) { // Print code cache state into compiler log
3322       C->log()->code_cache_state();
3323     }
3324   }
3325 }
3326 void PhaseOutput::install_stub(const char* stub_name,
3327                                bool        caller_must_gc_arguments) {
3328   // Entry point will be accessed using stub_entry_point();
3329   if (code_buffer() == NULL) {
3330     Matcher::soft_match_failure();
3331   } else {
3332     if (PrintAssembly && (WizardMode || Verbose))
3333       tty->print_cr("### Stub::%s", stub_name);
3334 
3335     if (!C->failing()) {
3336       assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs");
3337 
3338       // Make the NMethod
3339       // For now we mark the frame as never safe for profile stackwalking
3340       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
3341                                                       code_buffer(),
3342                                                       CodeOffsets::frame_never_safe,
3343                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
3344                                                       frame_size_in_words(),
3345                                                       oop_map_set(),
3346                                                       caller_must_gc_arguments);
3347       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
3348 
3349       C->set_stub_entry_point(rs->entry_point());
3350     }
3351   }
3352 }
3353 
3354 // Support for bundling info
3355 Bundle* PhaseOutput::node_bundling(const Node *n) {
3356   assert(valid_bundle_info(n), "oob");
3357   return &_node_bundling_base[n->_idx];
3358 }
3359 
3360 bool PhaseOutput::valid_bundle_info(const Node *n) {
3361   return (_node_bundling_limit > n->_idx);
3362 }
3363 
3364 //------------------------------frame_size_in_words-----------------------------
3365 // frame_slots in units of words
3366 int PhaseOutput::frame_size_in_words() const {
3367   // shift is 0 in LP32 and 1 in LP64
3368   const int shift = (LogBytesPerWord - LogBytesPerInt);
3369   int words = _frame_slots >> shift;
3370   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
3371   return words;
3372 }
3373 
3374 // To bang the stack of this compiled method we use the stack size
3375 // that the interpreter would need in case of a deoptimization. This
3376 // removes the need to bang the stack in the deoptimization blob which
3377 // in turn simplifies stack overflow handling.
3378 int PhaseOutput::bang_size_in_bytes() const {
3379   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size());
3380 }
3381 
3382 //------------------------------dump_asm---------------------------------------
3383 // Dump formatted assembly
3384 #if defined(SUPPORT_OPTO_ASSEMBLY)
3385 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
3386 
3387   int pc_digits = 3; // #chars required for pc
3388   int sb_chars  = 3; // #chars for "start bundle" indicator
3389   int tab_size  = 8;
3390   if (pcs != NULL) {
3391     int max_pc = 0;
3392     for (uint i = 0; i < pc_limit; i++) {
3393       max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
3394     }
3395     pc_digits  = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
3396   }
3397   int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
3398 
3399   bool cut_short = false;
3400   st->print_cr("#");
3401   st->print("#  ");  C->tf()->dump_on(st);  st->cr();
3402   st->print_cr("#");
3403 
3404   // For all blocks
3405   int pc = 0x0;                 // Program counter
3406   char starts_bundle = ' ';
3407   C->regalloc()->dump_frame();
3408 
3409   Node *n = NULL;
3410   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
3411     if (VMThread::should_terminate()) {
3412       cut_short = true;
3413       break;
3414     }
3415     Block* block = C->cfg()->get_block(i);
3416     if (block->is_connector() && !Verbose) {
3417       continue;
3418     }
3419     n = block->head();
3420     if ((pcs != NULL) && (n->_idx < pc_limit)) {
3421       pc = pcs[n->_idx];
3422       st->print("%*.*x", pc_digits, pc_digits, pc);
3423     }
3424     st->fill_to(prefix_len);
3425     block->dump_head(C->cfg(), st);
3426     if (block->is_connector()) {
3427       st->fill_to(prefix_len);
3428       st->print_cr("# Empty connector block");
3429     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
3430       st->fill_to(prefix_len);
3431       st->print_cr("# Block is sole successor of call");
3432     }
3433 
3434     // For all instructions
3435     Node *delay = NULL;
3436     for (uint j = 0; j < block->number_of_nodes(); j++) {
3437       if (VMThread::should_terminate()) {
3438         cut_short = true;
3439         break;
3440       }
3441       n = block->get_node(j);
3442       if (valid_bundle_info(n)) {
3443         Bundle* bundle = node_bundling(n);
3444         if (bundle->used_in_unconditional_delay()) {
3445           delay = n;
3446           continue;
3447         }
3448         if (bundle->starts_bundle()) {
3449           starts_bundle = '+';
3450         }
3451       }
3452 
3453       if (WizardMode) {
3454         n->dump();
3455       }
3456 
3457       if( !n->is_Region() &&    // Dont print in the Assembly
3458           !n->is_Phi() &&       // a few noisely useless nodes
3459           !n->is_Proj() &&
3460           !n->is_MachTemp() &&
3461           !n->is_SafePointScalarObject() &&
3462           !n->is_Catch() &&     // Would be nice to print exception table targets
3463           !n->is_MergeMem() &&  // Not very interesting
3464           !n->is_top() &&       // Debug info table constants
3465           !(n->is_Con() && !n->is_Mach())// Debug info table constants
3466           ) {
3467         if ((pcs != NULL) && (n->_idx < pc_limit)) {
3468           pc = pcs[n->_idx];
3469           st->print("%*.*x", pc_digits, pc_digits, pc);
3470         } else {
3471           st->fill_to(pc_digits);
3472         }
3473         st->print(" %c ", starts_bundle);
3474         starts_bundle = ' ';
3475         st->fill_to(prefix_len);
3476         n->format(C->regalloc(), st);
3477         st->cr();
3478       }
3479 
3480       // If we have an instruction with a delay slot, and have seen a delay,
3481       // then back up and print it
3482       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
3483         // Coverity finding - Explicit null dereferenced.
3484         guarantee(delay != NULL, "no unconditional delay instruction");
3485         if (WizardMode) delay->dump();
3486 
3487         if (node_bundling(delay)->starts_bundle())
3488           starts_bundle = '+';
3489         if ((pcs != NULL) && (n->_idx < pc_limit)) {
3490           pc = pcs[n->_idx];
3491           st->print("%*.*x", pc_digits, pc_digits, pc);
3492         } else {
3493           st->fill_to(pc_digits);
3494         }
3495         st->print(" %c ", starts_bundle);
3496         starts_bundle = ' ';
3497         st->fill_to(prefix_len);
3498         delay->format(C->regalloc(), st);
3499         st->cr();
3500         delay = NULL;
3501       }
3502 
3503       // Dump the exception table as well
3504       if( n->is_Catch() && (Verbose || WizardMode) ) {
3505         // Print the exception table for this offset
3506         _handler_table.print_subtable_for(pc);
3507       }
3508       st->bol(); // Make sure we start on a new line
3509     }
3510     st->cr(); // one empty line between blocks
3511     assert(cut_short || delay == NULL, "no unconditional delay branch");
3512   } // End of per-block dump
3513 
3514   if (cut_short)  st->print_cr("*** disassembly is cut short ***");
3515 }
3516 #endif
3517 
3518 #ifndef PRODUCT
3519 void PhaseOutput::print_statistics() {
3520   Scheduling::print_statistics();
3521 }
3522 #endif