1 /*
   2  * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "jvmtifiles/jvmtiEnv.hpp"
  32 #include "logging/log.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/access.inline.hpp"
  37 #include "oops/arrayOop.inline.hpp"
  38 #include "oops/constantPool.inline.hpp"
  39 #include "oops/instanceMirrorKlass.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "oops/objArrayOop.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/typeArrayOop.inline.hpp"
  44 #include "prims/jvmtiEventController.hpp"
  45 #include "prims/jvmtiEventController.inline.hpp"
  46 #include "prims/jvmtiExport.hpp"
  47 #include "prims/jvmtiImpl.hpp"
  48 #include "prims/jvmtiTagMap.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/frame.inline.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/jniHandles.inline.hpp"
  55 #include "runtime/mutex.hpp"
  56 #include "runtime/mutexLocker.hpp"
  57 #include "runtime/reflectionUtils.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadSMR.hpp"
  60 #include "runtime/vframe.hpp"
  61 #include "runtime/vmThread.hpp"
  62 #include "runtime/vmOperations.hpp"
  63 #include "utilities/macros.hpp"
  64 #if INCLUDE_ZGC
  65 #include "gc/z/zGlobals.hpp"
  66 #endif
  67 
  68 // JvmtiTagHashmapEntry
  69 //
  70 // Each entry encapsulates a reference to the tagged object
  71 // and the tag value. In addition an entry includes a next pointer which
  72 // is used to chain entries together.
  73 
  74 class JvmtiTagHashmapEntry : public CHeapObj<mtInternal> {
  75  private:
  76   friend class JvmtiTagMap;
  77 
  78   oop _object;                          // tagged object
  79   jlong _tag;                           // the tag
  80   JvmtiTagHashmapEntry* _next;          // next on the list
  81 
  82   inline void init(oop object, jlong tag) {
  83     _object = object;
  84     _tag = tag;
  85     _next = NULL;
  86   }
  87 
  88   // constructor
  89   JvmtiTagHashmapEntry(oop object, jlong tag) { init(object, tag); }
  90 
  91  public:
  92 
  93   // accessor methods
  94   inline oop* object_addr() { return &_object; }
  95   inline oop object()       { return NativeAccess<ON_PHANTOM_OOP_REF>::oop_load(object_addr()); }
  96   // Peek at the object without keeping it alive. The returned object must be
  97   // kept alive using a normal access if it leaks out of a thread transition from VM.
  98   inline oop object_peek()  {
  99     return NativeAccess<ON_PHANTOM_OOP_REF | AS_NO_KEEPALIVE>::oop_load(object_addr());
 100   }
 101 
 102   inline oop object_raw() {
 103     return RawAccess<>::oop_load(object_addr());
 104   }
 105 
 106   inline jlong tag() const  { return _tag; }
 107 
 108   inline void set_tag(jlong tag) {
 109     assert(tag != 0, "can't be zero");
 110     _tag = tag;
 111   }
 112 
 113   inline bool equals(oop object) {
 114     return object == object_peek();
 115   }
 116 
 117   inline JvmtiTagHashmapEntry* next() const        { return _next; }
 118   inline void set_next(JvmtiTagHashmapEntry* next) { _next = next; }
 119 };
 120 
 121 
 122 // JvmtiTagHashmap
 123 //
 124 // A hashmap is essentially a table of pointers to entries. Entries
 125 // are hashed to a location, or position in the table, and then
 126 // chained from that location. The "key" for hashing is address of
 127 // the object, or oop. The "value" is the tag value.
 128 //
 129 // A hashmap maintains a count of the number entries in the hashmap
 130 // and resizes if the number of entries exceeds a given threshold.
 131 // The threshold is specified as a percentage of the size - for
 132 // example a threshold of 0.75 will trigger the hashmap to resize
 133 // if the number of entries is >75% of table size.
 134 //
 135 // A hashmap provides functions for adding, removing, and finding
 136 // entries. It also provides a function to iterate over all entries
 137 // in the hashmap.
 138 
 139 class JvmtiTagHashmap : public CHeapObj<mtInternal> {
 140  private:
 141   friend class JvmtiTagMap;
 142 
 143   enum {
 144     small_trace_threshold  = 10000,                  // threshold for tracing
 145     medium_trace_threshold = 100000,
 146     large_trace_threshold  = 1000000,
 147     initial_trace_threshold = small_trace_threshold
 148   };
 149 
 150   static int _sizes[];                  // array of possible hashmap sizes
 151   int _size;                            // actual size of the table
 152   int _size_index;                      // index into size table
 153 
 154   int _entry_count;                     // number of entries in the hashmap
 155 
 156   float _load_factor;                   // load factor as a % of the size
 157   int _resize_threshold;                // computed threshold to trigger resizing.
 158   bool _resizing_enabled;               // indicates if hashmap can resize
 159 
 160   int _trace_threshold;                 // threshold for trace messages
 161 
 162   JvmtiTagHashmapEntry** _table;        // the table of entries.
 163 
 164   // private accessors
 165   int resize_threshold() const                  { return _resize_threshold; }
 166   int trace_threshold() const                   { return _trace_threshold; }
 167 
 168   // initialize the hashmap
 169   void init(int size_index=0, float load_factor=4.0f) {
 170     int initial_size =  _sizes[size_index];
 171     _size_index = size_index;
 172     _size = initial_size;
 173     _entry_count = 0;
 174     _trace_threshold = initial_trace_threshold;
 175     _load_factor = load_factor;
 176     _resize_threshold = (int)(_load_factor * _size);
 177     _resizing_enabled = true;
 178     size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
 179     _table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
 180     if (_table == NULL) {
 181       vm_exit_out_of_memory(s, OOM_MALLOC_ERROR,
 182         "unable to allocate initial hashtable for jvmti object tags");
 183     }
 184     for (int i=0; i<initial_size; i++) {
 185       _table[i] = NULL;
 186     }
 187   }
 188 
 189   // hash a given key (oop) with the specified size
 190   static unsigned int hash(oop key, int size) {
 191     const oop obj = Access<>::resolve(key);
 192     const unsigned int hash = Universe::heap()->hash_oop(obj);
 193     return hash % size;
 194   }
 195 
 196   // hash a given key (oop)
 197   unsigned int hash(oop key) {
 198     return hash(key, _size);
 199   }
 200 
 201   // resize the hashmap - allocates a large table and re-hashes
 202   // all entries into the new table.
 203   void resize() {
 204     int new_size_index = _size_index+1;
 205     int new_size = _sizes[new_size_index];
 206     if (new_size < 0) {
 207       // hashmap already at maximum capacity
 208       return;
 209     }
 210 
 211     // allocate new table
 212     size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
 213     JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
 214     if (new_table == NULL) {
 215       warning("unable to allocate larger hashtable for jvmti object tags");
 216       set_resizing_enabled(false);
 217       return;
 218     }
 219 
 220     // initialize new table
 221     int i;
 222     for (i=0; i<new_size; i++) {
 223       new_table[i] = NULL;
 224     }
 225 
 226     // rehash all entries into the new table
 227     for (i=0; i<_size; i++) {
 228       JvmtiTagHashmapEntry* entry = _table[i];
 229       while (entry != NULL) {
 230         JvmtiTagHashmapEntry* next = entry->next();
 231         oop key = entry->object_peek();
 232         assert(key != NULL, "jni weak reference cleared!!");
 233         unsigned int h = hash(key, new_size);
 234         JvmtiTagHashmapEntry* anchor = new_table[h];
 235         if (anchor == NULL) {
 236           new_table[h] = entry;
 237           entry->set_next(NULL);
 238         } else {
 239           entry->set_next(anchor);
 240           new_table[h] = entry;
 241         }
 242         entry = next;
 243       }
 244     }
 245 
 246     // free old table and update settings.
 247     os::free((void*)_table);
 248     _table = new_table;
 249     _size_index = new_size_index;
 250     _size = new_size;
 251 
 252     // compute new resize threshold
 253     _resize_threshold = (int)(_load_factor * _size);
 254   }
 255 
 256 
 257   // internal remove function - remove an entry at a given position in the
 258   // table.
 259   inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
 260     assert(pos >= 0 && pos < _size, "out of range");
 261     if (prev == NULL) {
 262       _table[pos] = entry->next();
 263     } else {
 264       prev->set_next(entry->next());
 265     }
 266     assert(_entry_count > 0, "checking");
 267     _entry_count--;
 268   }
 269 
 270   // resizing switch
 271   bool is_resizing_enabled() const          { return _resizing_enabled; }
 272   void set_resizing_enabled(bool enable)    { _resizing_enabled = enable; }
 273 
 274   // debugging
 275   void print_memory_usage();
 276   void compute_next_trace_threshold();
 277 
 278  public:
 279 
 280   // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
 281   // The preferred size is rounded down to an actual size.
 282   JvmtiTagHashmap(int size, float load_factor=0.0f) {
 283     int i=0;
 284     while (_sizes[i] < size) {
 285       if (_sizes[i] < 0) {
 286         assert(i > 0, "sanity check");
 287         i--;
 288         break;
 289       }
 290       i++;
 291     }
 292 
 293     // if a load factor is specified then use it, otherwise use default
 294     if (load_factor > 0.01f) {
 295       init(i, load_factor);
 296     } else {
 297       init(i);
 298     }
 299   }
 300 
 301   // create a JvmtiTagHashmap with default settings
 302   JvmtiTagHashmap() {
 303     init();
 304   }
 305 
 306   // release table when JvmtiTagHashmap destroyed
 307   ~JvmtiTagHashmap() {
 308     if (_table != NULL) {
 309       os::free((void*)_table);
 310       _table = NULL;
 311     }
 312   }
 313 
 314   // accessors
 315   int size() const                              { return _size; }
 316   JvmtiTagHashmapEntry** table() const          { return _table; }
 317   int entry_count() const                       { return _entry_count; }
 318 
 319   // find an entry in the hashmap, returns NULL if not found.
 320   inline JvmtiTagHashmapEntry* find(oop key) {
 321     unsigned int h = hash(key);
 322     JvmtiTagHashmapEntry* entry = _table[h];
 323     while (entry != NULL) {
 324       if (entry->equals(key)) {
 325          return entry;
 326       }
 327       entry = entry->next();
 328     }
 329     return NULL;
 330   }
 331 
 332 
 333   // add a new entry to hashmap
 334   inline void add(oop key, JvmtiTagHashmapEntry* entry) {
 335     assert(key != NULL, "checking");
 336     assert(find(key) == NULL, "duplicate detected");
 337     unsigned int h = hash(key);
 338     JvmtiTagHashmapEntry* anchor = _table[h];
 339     if (anchor == NULL) {
 340       _table[h] = entry;
 341       entry->set_next(NULL);
 342     } else {
 343       entry->set_next(anchor);
 344       _table[h] = entry;
 345     }
 346 
 347     _entry_count++;
 348     if (log_is_enabled(Debug, jvmti, objecttagging) && entry_count() >= trace_threshold()) {
 349       print_memory_usage();
 350       compute_next_trace_threshold();
 351     }
 352 
 353     // if the number of entries exceed the threshold then resize
 354     if (entry_count() > resize_threshold() && is_resizing_enabled()) {
 355       resize();
 356     }
 357   }
 358 
 359   // remove an entry with the given key.
 360   inline JvmtiTagHashmapEntry* remove(oop key) {
 361     unsigned int h = hash(key);
 362     JvmtiTagHashmapEntry* entry = _table[h];
 363     JvmtiTagHashmapEntry* prev = NULL;
 364     while (entry != NULL) {
 365       if (entry->equals(key)) {
 366         break;
 367       }
 368       prev = entry;
 369       entry = entry->next();
 370     }
 371     if (entry != NULL) {
 372       remove(prev, h, entry);
 373     }
 374     return entry;
 375   }
 376 
 377   // iterate over all entries in the hashmap
 378   void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
 379 };
 380 
 381 // possible hashmap sizes - odd primes that roughly double in size.
 382 // To avoid excessive resizing the odd primes from 4801-76831 and
 383 // 76831-307261 have been removed. The list must be terminated by -1.
 384 int JvmtiTagHashmap::_sizes[] =  { 4801, 76831, 307261, 614563, 1228891,
 385     2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
 386 
 387 
 388 // A supporting class for iterating over all entries in Hashmap
 389 class JvmtiTagHashmapEntryClosure {
 390  public:
 391   virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
 392 };
 393 
 394 
 395 // iterate over all entries in the hashmap
 396 void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
 397   for (int i=0; i<_size; i++) {
 398     JvmtiTagHashmapEntry* entry = _table[i];
 399     JvmtiTagHashmapEntry* prev = NULL;
 400     while (entry != NULL) {
 401       // obtain the next entry before invoking do_entry - this is
 402       // necessary because do_entry may remove the entry from the
 403       // hashmap.
 404       JvmtiTagHashmapEntry* next = entry->next();
 405       closure->do_entry(entry);
 406       entry = next;
 407      }
 408   }
 409 }
 410 
 411 // debugging
 412 void JvmtiTagHashmap::print_memory_usage() {
 413   intptr_t p = (intptr_t)this;
 414   tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
 415 
 416   // table + entries in KB
 417   int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
 418     entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
 419 
 420   int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
 421   tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
 422     entry_count(), hashmap_usage, weak_globals_usage);
 423 }
 424 
 425 // compute threshold for the next trace message
 426 void JvmtiTagHashmap::compute_next_trace_threshold() {
 427   _trace_threshold = entry_count();
 428   if (trace_threshold() < medium_trace_threshold) {
 429     _trace_threshold += small_trace_threshold;
 430   } else {
 431     if (trace_threshold() < large_trace_threshold) {
 432       _trace_threshold += medium_trace_threshold;
 433     } else {
 434       _trace_threshold += large_trace_threshold;
 435     }
 436   }
 437 }
 438 
 439 // create a JvmtiTagMap
 440 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
 441   _env(env),
 442   _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
 443   _free_entries(NULL),
 444   _free_entries_count(0)
 445 {
 446   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
 447   assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
 448 
 449   _hashmap = new JvmtiTagHashmap();
 450 
 451   // finally add us to the environment
 452   ((JvmtiEnvBase *)env)->release_set_tag_map(this);
 453 }
 454 
 455 
 456 // destroy a JvmtiTagMap
 457 JvmtiTagMap::~JvmtiTagMap() {
 458 
 459   // no lock acquired as we assume the enclosing environment is
 460   // also being destroryed.
 461   ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
 462 
 463   JvmtiTagHashmapEntry** table = _hashmap->table();
 464   for (int j = 0; j < _hashmap->size(); j++) {
 465     JvmtiTagHashmapEntry* entry = table[j];
 466     while (entry != NULL) {
 467       JvmtiTagHashmapEntry* next = entry->next();
 468       delete entry;
 469       entry = next;
 470     }
 471   }
 472 
 473   // finally destroy the hashmap
 474   delete _hashmap;
 475   _hashmap = NULL;
 476 
 477   // remove any entries on the free list
 478   JvmtiTagHashmapEntry* entry = _free_entries;
 479   while (entry != NULL) {
 480     JvmtiTagHashmapEntry* next = entry->next();
 481     delete entry;
 482     entry = next;
 483   }
 484   _free_entries = NULL;
 485 }
 486 
 487 // create a hashmap entry
 488 // - if there's an entry on the (per-environment) free list then this
 489 // is returned. Otherwise an new entry is allocated.
 490 JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(oop ref, jlong tag) {
 491   assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
 492 
 493   // ref was read with AS_NO_KEEPALIVE, or equivalent.
 494   // The object needs to be kept alive when it is published.
 495   Universe::heap()->keep_alive(ref);
 496 
 497   JvmtiTagHashmapEntry* entry;
 498   if (_free_entries == NULL) {
 499     entry = new JvmtiTagHashmapEntry(ref, tag);
 500   } else {
 501     assert(_free_entries_count > 0, "mismatched _free_entries_count");
 502     _free_entries_count--;
 503     entry = _free_entries;
 504     _free_entries = entry->next();
 505     entry->init(ref, tag);
 506   }
 507   return entry;
 508 }
 509 
 510 // destroy an entry by returning it to the free list
 511 void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
 512   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
 513   // limit the size of the free list
 514   if (_free_entries_count >= max_free_entries) {
 515     delete entry;
 516   } else {
 517     entry->set_next(_free_entries);
 518     _free_entries = entry;
 519     _free_entries_count++;
 520   }
 521 }
 522 
 523 // returns the tag map for the given environments. If the tag map
 524 // doesn't exist then it is created.
 525 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
 526   JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map_acquire();
 527   if (tag_map == NULL) {
 528     MutexLocker mu(JvmtiThreadState_lock);
 529     tag_map = ((JvmtiEnvBase*)env)->tag_map();
 530     if (tag_map == NULL) {
 531       tag_map = new JvmtiTagMap(env);
 532     }
 533   } else {
 534     DEBUG_ONLY(Thread::current()->check_possible_safepoint());
 535   }
 536   return tag_map;
 537 }
 538 
 539 // iterate over all entries in the tag map.
 540 void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
 541   hashmap()->entry_iterate(closure);
 542 }
 543 
 544 // returns true if the hashmaps are empty
 545 bool JvmtiTagMap::is_empty() {
 546   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
 547   return hashmap()->entry_count() == 0;
 548 }
 549 
 550 
 551 // Return the tag value for an object, or 0 if the object is
 552 // not tagged
 553 //
 554 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
 555   JvmtiTagHashmapEntry* entry = tag_map->hashmap()->find(o);
 556   if (entry == NULL) {
 557     return 0;
 558   } else {
 559     return entry->tag();
 560   }
 561 }
 562 
 563 
 564 // A CallbackWrapper is a support class for querying and tagging an object
 565 // around a callback to a profiler. The constructor does pre-callback
 566 // work to get the tag value, klass tag value, ... and the destructor
 567 // does the post-callback work of tagging or untagging the object.
 568 //
 569 // {
 570 //   CallbackWrapper wrapper(tag_map, o);
 571 //
 572 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
 573 //
 574 // } // wrapper goes out of scope here which results in the destructor
 575 //      checking to see if the object has been tagged, untagged, or the
 576 //      tag value has changed.
 577 //
 578 class CallbackWrapper : public StackObj {
 579  private:
 580   JvmtiTagMap* _tag_map;
 581   JvmtiTagHashmap* _hashmap;
 582   JvmtiTagHashmapEntry* _entry;
 583   oop _o;
 584   jlong _obj_size;
 585   jlong _obj_tag;
 586   jlong _klass_tag;
 587 
 588  protected:
 589   JvmtiTagMap* tag_map() const      { return _tag_map; }
 590 
 591   // invoked post-callback to tag, untag, or update the tag of an object
 592   void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
 593                                        JvmtiTagHashmapEntry* entry, jlong obj_tag);
 594  public:
 595   CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
 596     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
 597            "MT unsafe or must be VM thread");
 598 
 599     // object to tag
 600     _o = o;
 601 
 602     // object size
 603     _obj_size = (jlong)_o->size() * wordSize;
 604 
 605     // record the context
 606     _tag_map = tag_map;
 607     _hashmap = tag_map->hashmap();
 608     _entry = _hashmap->find(_o);
 609 
 610     // get object tag
 611     _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
 612 
 613     // get the class and the class's tag value
 614     assert(SystemDictionary::Class_klass()->is_mirror_instance_klass(), "Is not?");
 615 
 616     _klass_tag = tag_for(tag_map, _o->klass()->java_mirror());
 617   }
 618 
 619   ~CallbackWrapper() {
 620     post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
 621   }
 622 
 623   inline jlong* obj_tag_p()                     { return &_obj_tag; }
 624   inline jlong obj_size() const                 { return _obj_size; }
 625   inline jlong obj_tag() const                  { return _obj_tag; }
 626   inline jlong klass_tag() const                { return _klass_tag; }
 627 };
 628 
 629 
 630 
 631 // callback post-callback to tag, untag, or update the tag of an object
 632 void inline CallbackWrapper::post_callback_tag_update(oop o,
 633                                                       JvmtiTagHashmap* hashmap,
 634                                                       JvmtiTagHashmapEntry* entry,
 635                                                       jlong obj_tag) {
 636   if (entry == NULL) {
 637     if (obj_tag != 0) {
 638       // callback has tagged the object
 639       assert(Thread::current()->is_VM_thread(), "must be VMThread");
 640       entry = tag_map()->create_entry(o, obj_tag);
 641       hashmap->add(o, entry);
 642     }
 643   } else {
 644     // object was previously tagged - the callback may have untagged
 645     // the object or changed the tag value
 646     if (obj_tag == 0) {
 647 
 648       JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
 649       assert(entry_removed == entry, "checking");
 650       tag_map()->destroy_entry(entry);
 651 
 652     } else {
 653       if (obj_tag != entry->tag()) {
 654          entry->set_tag(obj_tag);
 655       }
 656     }
 657   }
 658 }
 659 
 660 // An extended CallbackWrapper used when reporting an object reference
 661 // to the agent.
 662 //
 663 // {
 664 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
 665 //
 666 //   (*callback)(wrapper.klass_tag(),
 667 //               wrapper.obj_size(),
 668 //               wrapper.obj_tag_p()
 669 //               wrapper.referrer_tag_p(), ...)
 670 //
 671 // } // wrapper goes out of scope here which results in the destructor
 672 //      checking to see if the referrer object has been tagged, untagged,
 673 //      or the tag value has changed.
 674 //
 675 class TwoOopCallbackWrapper : public CallbackWrapper {
 676  private:
 677   bool _is_reference_to_self;
 678   JvmtiTagHashmap* _referrer_hashmap;
 679   JvmtiTagHashmapEntry* _referrer_entry;
 680   oop _referrer;
 681   jlong _referrer_obj_tag;
 682   jlong _referrer_klass_tag;
 683   jlong* _referrer_tag_p;
 684 
 685   bool is_reference_to_self() const             { return _is_reference_to_self; }
 686 
 687  public:
 688   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
 689     CallbackWrapper(tag_map, o)
 690   {
 691     // self reference needs to be handled in a special way
 692     _is_reference_to_self = (referrer == o);
 693 
 694     if (_is_reference_to_self) {
 695       _referrer_klass_tag = klass_tag();
 696       _referrer_tag_p = obj_tag_p();
 697     } else {
 698       _referrer = referrer;
 699       // record the context
 700       _referrer_hashmap = tag_map->hashmap();
 701       _referrer_entry = _referrer_hashmap->find(_referrer);
 702 
 703       // get object tag
 704       _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
 705       _referrer_tag_p = &_referrer_obj_tag;
 706 
 707       // get referrer class tag.
 708       _referrer_klass_tag = tag_for(tag_map, _referrer->klass()->java_mirror());
 709     }
 710   }
 711 
 712   ~TwoOopCallbackWrapper() {
 713     if (!is_reference_to_self()){
 714       post_callback_tag_update(_referrer,
 715                                _referrer_hashmap,
 716                                _referrer_entry,
 717                                _referrer_obj_tag);
 718     }
 719   }
 720 
 721   // address of referrer tag
 722   // (for a self reference this will return the same thing as obj_tag_p())
 723   inline jlong* referrer_tag_p()        { return _referrer_tag_p; }
 724 
 725   // referrer's class tag
 726   inline jlong referrer_klass_tag()     { return _referrer_klass_tag; }
 727 };
 728 
 729 // tag an object
 730 //
 731 // This function is performance critical. If many threads attempt to tag objects
 732 // around the same time then it's possible that the Mutex associated with the
 733 // tag map will be a hot lock.
 734 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
 735   MutexLocker ml(lock());
 736 
 737   // resolve the object
 738   oop o = JNIHandles::resolve_non_null(object);
 739 
 740   // see if the object is already tagged
 741   JvmtiTagHashmap* hashmap = _hashmap;
 742   JvmtiTagHashmapEntry* entry = hashmap->find(o);
 743 
 744   // if the object is not already tagged then we tag it
 745   if (entry == NULL) {
 746     if (tag != 0) {
 747       entry = create_entry(o, tag);
 748       hashmap->add(o, entry);
 749     } else {
 750       // no-op
 751     }
 752   } else {
 753     // if the object is already tagged then we either update
 754     // the tag (if a new tag value has been provided)
 755     // or remove the object if the new tag value is 0.
 756     if (tag == 0) {
 757       hashmap->remove(o);
 758       destroy_entry(entry);
 759     } else {
 760       entry->set_tag(tag);
 761     }
 762   }
 763 }
 764 
 765 // get the tag for an object
 766 jlong JvmtiTagMap::get_tag(jobject object) {
 767   MutexLocker ml(lock());
 768 
 769   // resolve the object
 770   oop o = JNIHandles::resolve_non_null(object);
 771 
 772   return tag_for(this, o);
 773 }
 774 
 775 
 776 // Helper class used to describe the static or instance fields of a class.
 777 // For each field it holds the field index (as defined by the JVMTI specification),
 778 // the field type, and the offset.
 779 
 780 class ClassFieldDescriptor: public CHeapObj<mtInternal> {
 781  private:
 782   int _field_index;
 783   int _field_offset;
 784   char _field_type;
 785  public:
 786   ClassFieldDescriptor(int index, char type, int offset) :
 787     _field_index(index), _field_offset(offset), _field_type(type) {
 788   }
 789   int field_index()  const  { return _field_index; }
 790   char field_type()  const  { return _field_type; }
 791   int field_offset() const  { return _field_offset; }
 792 };
 793 
 794 class ClassFieldMap: public CHeapObj<mtInternal> {
 795  private:
 796   enum {
 797     initial_field_count = 5
 798   };
 799 
 800   // list of field descriptors
 801   GrowableArray<ClassFieldDescriptor*>* _fields;
 802 
 803   // constructor
 804   ClassFieldMap();
 805 
 806   // add a field
 807   void add(int index, char type, int offset);
 808 
 809   // returns the field count for the given class
 810   static int compute_field_count(InstanceKlass* ik);
 811 
 812  public:
 813   ~ClassFieldMap();
 814 
 815   // access
 816   int field_count()                     { return _fields->length(); }
 817   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
 818 
 819   // functions to create maps of static or instance fields
 820   static ClassFieldMap* create_map_of_static_fields(Klass* k);
 821   static ClassFieldMap* create_map_of_instance_fields(oop obj);
 822 };
 823 
 824 ClassFieldMap::ClassFieldMap() {
 825   _fields = new (ResourceObj::C_HEAP, mtServiceability)
 826     GrowableArray<ClassFieldDescriptor*>(initial_field_count, mtServiceability);
 827 }
 828 
 829 ClassFieldMap::~ClassFieldMap() {
 830   for (int i=0; i<_fields->length(); i++) {
 831     delete _fields->at(i);
 832   }
 833   delete _fields;
 834 }
 835 
 836 void ClassFieldMap::add(int index, char type, int offset) {
 837   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
 838   _fields->append(field);
 839 }
 840 
 841 // Returns a heap allocated ClassFieldMap to describe the static fields
 842 // of the given class.
 843 //
 844 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(Klass* k) {
 845   HandleMark hm;
 846   InstanceKlass* ik = InstanceKlass::cast(k);
 847 
 848   // create the field map
 849   ClassFieldMap* field_map = new ClassFieldMap();
 850 
 851   FilteredFieldStream f(ik, false, false);
 852   int max_field_index = f.field_count()-1;
 853 
 854   int index = 0;
 855   for (FilteredFieldStream fld(ik, true, true); !fld.eos(); fld.next(), index++) {
 856     // ignore instance fields
 857     if (!fld.access_flags().is_static()) {
 858       continue;
 859     }
 860     field_map->add(max_field_index - index, fld.signature()->char_at(0), fld.offset());
 861   }
 862   return field_map;
 863 }
 864 
 865 // Returns a heap allocated ClassFieldMap to describe the instance fields
 866 // of the given class. All instance fields are included (this means public
 867 // and private fields declared in superclasses and superinterfaces too).
 868 //
 869 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
 870   HandleMark hm;
 871   InstanceKlass* ik = InstanceKlass::cast(obj->klass());
 872 
 873   // create the field map
 874   ClassFieldMap* field_map = new ClassFieldMap();
 875 
 876   FilteredFieldStream f(ik, false, false);
 877 
 878   int max_field_index = f.field_count()-1;
 879 
 880   int index = 0;
 881   for (FilteredFieldStream fld(ik, false, false); !fld.eos(); fld.next(), index++) {
 882     // ignore static fields
 883     if (fld.access_flags().is_static()) {
 884       continue;
 885     }
 886     field_map->add(max_field_index - index, fld.signature()->char_at(0), fld.offset());
 887   }
 888 
 889   return field_map;
 890 }
 891 
 892 // Helper class used to cache a ClassFileMap for the instance fields of
 893 // a cache. A JvmtiCachedClassFieldMap can be cached by an InstanceKlass during
 894 // heap iteration and avoid creating a field map for each object in the heap
 895 // (only need to create the map when the first instance of a class is encountered).
 896 //
 897 class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> {
 898  private:
 899    enum {
 900      initial_class_count = 200
 901    };
 902   ClassFieldMap* _field_map;
 903 
 904   ClassFieldMap* field_map() const          { return _field_map; }
 905 
 906   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
 907   ~JvmtiCachedClassFieldMap();
 908 
 909   static GrowableArray<InstanceKlass*>* _class_list;
 910   static void add_to_class_list(InstanceKlass* ik);
 911 
 912  public:
 913   // returns the field map for a given object (returning map cached
 914   // by InstanceKlass if possible
 915   static ClassFieldMap* get_map_of_instance_fields(oop obj);
 916 
 917   // removes the field map from all instanceKlasses - should be
 918   // called before VM operation completes
 919   static void clear_cache();
 920 
 921   // returns the number of ClassFieldMap cached by instanceKlasses
 922   static int cached_field_map_count();
 923 };
 924 
 925 GrowableArray<InstanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
 926 
 927 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
 928   _field_map = field_map;
 929 }
 930 
 931 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
 932   if (_field_map != NULL) {
 933     delete _field_map;
 934   }
 935 }
 936 
 937 // Marker class to ensure that the class file map cache is only used in a defined
 938 // scope.
 939 class ClassFieldMapCacheMark : public StackObj {
 940  private:
 941    static bool _is_active;
 942  public:
 943    ClassFieldMapCacheMark() {
 944      assert(Thread::current()->is_VM_thread(), "must be VMThread");
 945      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
 946      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
 947      _is_active = true;
 948    }
 949    ~ClassFieldMapCacheMark() {
 950      JvmtiCachedClassFieldMap::clear_cache();
 951      _is_active = false;
 952    }
 953    static bool is_active() { return _is_active; }
 954 };
 955 
 956 bool ClassFieldMapCacheMark::_is_active;
 957 
 958 
 959 // record that the given InstanceKlass is caching a field map
 960 void JvmtiCachedClassFieldMap::add_to_class_list(InstanceKlass* ik) {
 961   if (_class_list == NULL) {
 962     _class_list = new (ResourceObj::C_HEAP, mtServiceability)
 963       GrowableArray<InstanceKlass*>(initial_class_count, mtServiceability);
 964   }
 965   _class_list->push(ik);
 966 }
 967 
 968 // returns the instance field map for the given object
 969 // (returns field map cached by the InstanceKlass if possible)
 970 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
 971   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 972   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
 973 
 974   Klass* k = obj->klass();
 975   InstanceKlass* ik = InstanceKlass::cast(k);
 976 
 977   // return cached map if possible
 978   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 979   if (cached_map != NULL) {
 980     assert(cached_map->field_map() != NULL, "missing field list");
 981     return cached_map->field_map();
 982   } else {
 983     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
 984     cached_map = new JvmtiCachedClassFieldMap(field_map);
 985     ik->set_jvmti_cached_class_field_map(cached_map);
 986     add_to_class_list(ik);
 987     return field_map;
 988   }
 989 }
 990 
 991 // remove the fields maps cached from all instanceKlasses
 992 void JvmtiCachedClassFieldMap::clear_cache() {
 993   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 994   if (_class_list != NULL) {
 995     for (int i = 0; i < _class_list->length(); i++) {
 996       InstanceKlass* ik = _class_list->at(i);
 997       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 998       assert(cached_map != NULL, "should not be NULL");
 999       ik->set_jvmti_cached_class_field_map(NULL);
1000       delete cached_map;  // deletes the encapsulated field map
1001     }
1002     delete _class_list;
1003     _class_list = NULL;
1004   }
1005 }
1006 
1007 // returns the number of ClassFieldMap cached by instanceKlasses
1008 int JvmtiCachedClassFieldMap::cached_field_map_count() {
1009   return (_class_list == NULL) ? 0 : _class_list->length();
1010 }
1011 
1012 // helper function to indicate if an object is filtered by its tag or class tag
1013 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
1014                                               jlong klass_tag,
1015                                               int heap_filter) {
1016   // apply the heap filter
1017   if (obj_tag != 0) {
1018     // filter out tagged objects
1019     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
1020   } else {
1021     // filter out untagged objects
1022     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
1023   }
1024   if (klass_tag != 0) {
1025     // filter out objects with tagged classes
1026     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
1027   } else {
1028     // filter out objects with untagged classes.
1029     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
1030   }
1031   return false;
1032 }
1033 
1034 // helper function to indicate if an object is filtered by a klass filter
1035 static inline bool is_filtered_by_klass_filter(oop obj, Klass* klass_filter) {
1036   if (klass_filter != NULL) {
1037     if (obj->klass() != klass_filter) {
1038       return true;
1039     }
1040   }
1041   return false;
1042 }
1043 
1044 // helper function to tell if a field is a primitive field or not
1045 static inline bool is_primitive_field_type(char type) {
1046   return (type != JVM_SIGNATURE_CLASS && type != JVM_SIGNATURE_ARRAY);
1047 }
1048 
1049 // helper function to copy the value from location addr to jvalue.
1050 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
1051   switch (value_type) {
1052     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
1053     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
1054     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
1055     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
1056     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
1057     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
1058     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
1059     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
1060     default: ShouldNotReachHere();
1061   }
1062 }
1063 
1064 // helper function to invoke string primitive value callback
1065 // returns visit control flags
1066 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
1067                                          CallbackWrapper* wrapper,
1068                                          oop str,
1069                                          void* user_data)
1070 {
1071   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
1072 
1073   typeArrayOop s_value = java_lang_String::value(str);
1074 
1075   // JDK-6584008: the value field may be null if a String instance is
1076   // partially constructed.
1077   if (s_value == NULL) {
1078     return 0;
1079   }
1080   // get the string value and length
1081   // (string value may be offset from the base)
1082   int s_len = java_lang_String::length(str);
1083   bool is_latin1 = java_lang_String::is_latin1(str);
1084   jchar* value;
1085   if (s_len > 0) {
1086     if (!is_latin1) {
1087       value = s_value->char_at_addr(0);
1088     } else {
1089       // Inflate latin1 encoded string to UTF16
1090       jchar* buf = NEW_C_HEAP_ARRAY(jchar, s_len, mtInternal);
1091       for (int i = 0; i < s_len; i++) {
1092         buf[i] = ((jchar) s_value->byte_at(i)) & 0xff;
1093       }
1094       value = &buf[0];
1095     }
1096   } else {
1097     // Don't use char_at_addr(0) if length is 0
1098     value = (jchar*) s_value->base(T_CHAR);
1099   }
1100 
1101   // invoke the callback
1102   jint res = (*cb)(wrapper->klass_tag(),
1103                    wrapper->obj_size(),
1104                    wrapper->obj_tag_p(),
1105                    value,
1106                    (jint)s_len,
1107                    user_data);
1108 
1109   if (is_latin1 && s_len > 0) {
1110     FREE_C_HEAP_ARRAY(jchar, value);
1111   }
1112   return res;
1113 }
1114 
1115 // helper function to invoke string primitive value callback
1116 // returns visit control flags
1117 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
1118                                                   CallbackWrapper* wrapper,
1119                                                   oop obj,
1120                                                   void* user_data)
1121 {
1122   assert(obj->is_typeArray(), "not a primitive array");
1123 
1124   // get base address of first element
1125   typeArrayOop array = typeArrayOop(obj);
1126   BasicType type = TypeArrayKlass::cast(array->klass())->element_type();
1127   void* elements = array->base(type);
1128 
1129   // jvmtiPrimitiveType is defined so this mapping is always correct
1130   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
1131 
1132   return (*cb)(wrapper->klass_tag(),
1133                wrapper->obj_size(),
1134                wrapper->obj_tag_p(),
1135                (jint)array->length(),
1136                elem_type,
1137                elements,
1138                user_data);
1139 }
1140 
1141 // helper function to invoke the primitive field callback for all static fields
1142 // of a given class
1143 static jint invoke_primitive_field_callback_for_static_fields
1144   (CallbackWrapper* wrapper,
1145    oop obj,
1146    jvmtiPrimitiveFieldCallback cb,
1147    void* user_data)
1148 {
1149   // for static fields only the index will be set
1150   static jvmtiHeapReferenceInfo reference_info = { 0 };
1151 
1152   assert(obj->klass() == SystemDictionary::Class_klass(), "not a class");
1153   if (java_lang_Class::is_primitive(obj)) {
1154     return 0;
1155   }
1156   Klass* klass = java_lang_Class::as_Klass(obj);
1157 
1158   // ignore classes for object and type arrays
1159   if (!klass->is_instance_klass()) {
1160     return 0;
1161   }
1162 
1163   // ignore classes which aren't linked yet
1164   InstanceKlass* ik = InstanceKlass::cast(klass);
1165   if (!ik->is_linked()) {
1166     return 0;
1167   }
1168 
1169   // get the field map
1170   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
1171 
1172   // invoke the callback for each static primitive field
1173   for (int i=0; i<field_map->field_count(); i++) {
1174     ClassFieldDescriptor* field = field_map->field_at(i);
1175 
1176     // ignore non-primitive fields
1177     char type = field->field_type();
1178     if (!is_primitive_field_type(type)) {
1179       continue;
1180     }
1181     // one-to-one mapping
1182     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1183 
1184     // get offset and field value
1185     int offset = field->field_offset();
1186     address addr = cast_from_oop<address>(klass->java_mirror()) + offset;
1187     jvalue value;
1188     copy_to_jvalue(&value, addr, value_type);
1189 
1190     // field index
1191     reference_info.field.index = field->field_index();
1192 
1193     // invoke the callback
1194     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
1195                      &reference_info,
1196                      wrapper->klass_tag(),
1197                      wrapper->obj_tag_p(),
1198                      value,
1199                      value_type,
1200                      user_data);
1201     if (res & JVMTI_VISIT_ABORT) {
1202       delete field_map;
1203       return res;
1204     }
1205   }
1206 
1207   delete field_map;
1208   return 0;
1209 }
1210 
1211 // helper function to invoke the primitive field callback for all instance fields
1212 // of a given object
1213 static jint invoke_primitive_field_callback_for_instance_fields(
1214   CallbackWrapper* wrapper,
1215   oop obj,
1216   jvmtiPrimitiveFieldCallback cb,
1217   void* user_data)
1218 {
1219   // for instance fields only the index will be set
1220   static jvmtiHeapReferenceInfo reference_info = { 0 };
1221 
1222   // get the map of the instance fields
1223   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
1224 
1225   // invoke the callback for each instance primitive field
1226   for (int i=0; i<fields->field_count(); i++) {
1227     ClassFieldDescriptor* field = fields->field_at(i);
1228 
1229     // ignore non-primitive fields
1230     char type = field->field_type();
1231     if (!is_primitive_field_type(type)) {
1232       continue;
1233     }
1234     // one-to-one mapping
1235     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1236 
1237     // get offset and field value
1238     int offset = field->field_offset();
1239     address addr = cast_from_oop<address>(obj) + offset;
1240     jvalue value;
1241     copy_to_jvalue(&value, addr, value_type);
1242 
1243     // field index
1244     reference_info.field.index = field->field_index();
1245 
1246     // invoke the callback
1247     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
1248                      &reference_info,
1249                      wrapper->klass_tag(),
1250                      wrapper->obj_tag_p(),
1251                      value,
1252                      value_type,
1253                      user_data);
1254     if (res & JVMTI_VISIT_ABORT) {
1255       return res;
1256     }
1257   }
1258   return 0;
1259 }
1260 
1261 
1262 // VM operation to iterate over all objects in the heap (both reachable
1263 // and unreachable)
1264 class VM_HeapIterateOperation: public VM_Operation {
1265  private:
1266   ObjectClosure* _blk;
1267  public:
1268   VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
1269 
1270   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
1271   void doit() {
1272     // allows class files maps to be cached during iteration
1273     ClassFieldMapCacheMark cm;
1274 
1275     // make sure that heap is parsable (fills TLABs with filler objects)
1276     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1277 
1278     // Verify heap before iteration - if the heap gets corrupted then
1279     // JVMTI's IterateOverHeap will crash.
1280     if (VerifyBeforeIteration) {
1281       Universe::verify();
1282     }
1283 
1284     // do the iteration
1285     Universe::heap()->object_iterate(_blk);
1286   }
1287 
1288 };
1289 
1290 
1291 // An ObjectClosure used to support the deprecated IterateOverHeap and
1292 // IterateOverInstancesOfClass functions
1293 class IterateOverHeapObjectClosure: public ObjectClosure {
1294  private:
1295   JvmtiTagMap* _tag_map;
1296   Klass* _klass;
1297   jvmtiHeapObjectFilter _object_filter;
1298   jvmtiHeapObjectCallback _heap_object_callback;
1299   const void* _user_data;
1300 
1301   // accessors
1302   JvmtiTagMap* tag_map() const                    { return _tag_map; }
1303   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
1304   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
1305   Klass* klass() const                            { return _klass; }
1306   const void* user_data() const                   { return _user_data; }
1307 
1308   // indicates if iteration has been aborted
1309   bool _iteration_aborted;
1310   bool is_iteration_aborted() const               { return _iteration_aborted; }
1311   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
1312 
1313  public:
1314   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
1315                                Klass* klass,
1316                                jvmtiHeapObjectFilter object_filter,
1317                                jvmtiHeapObjectCallback heap_object_callback,
1318                                const void* user_data) :
1319     _tag_map(tag_map),
1320     _klass(klass),
1321     _object_filter(object_filter),
1322     _heap_object_callback(heap_object_callback),
1323     _user_data(user_data),
1324     _iteration_aborted(false)
1325   {
1326   }
1327 
1328   void do_object(oop o);
1329 };
1330 
1331 // invoked for each object in the heap
1332 void IterateOverHeapObjectClosure::do_object(oop o) {
1333   // check if iteration has been halted
1334   if (is_iteration_aborted()) return;
1335 
1336   // instanceof check when filtering by klass
1337   if (klass() != NULL && !o->is_a(klass())) {
1338     return;
1339   }
1340   // prepare for the calllback
1341   CallbackWrapper wrapper(tag_map(), o);
1342 
1343   // if the object is tagged and we're only interested in untagged objects
1344   // then don't invoke the callback. Similiarly, if the object is untagged
1345   // and we're only interested in tagged objects we skip the callback.
1346   if (wrapper.obj_tag() != 0) {
1347     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
1348   } else {
1349     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
1350   }
1351 
1352   // invoke the agent's callback
1353   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
1354                                                        wrapper.obj_size(),
1355                                                        wrapper.obj_tag_p(),
1356                                                        (void*)user_data());
1357   if (control == JVMTI_ITERATION_ABORT) {
1358     set_iteration_aborted(true);
1359   }
1360 }
1361 
1362 // An ObjectClosure used to support the IterateThroughHeap function
1363 class IterateThroughHeapObjectClosure: public ObjectClosure {
1364  private:
1365   JvmtiTagMap* _tag_map;
1366   Klass* _klass;
1367   int _heap_filter;
1368   const jvmtiHeapCallbacks* _callbacks;
1369   const void* _user_data;
1370 
1371   // accessor functions
1372   JvmtiTagMap* tag_map() const                     { return _tag_map; }
1373   int heap_filter() const                          { return _heap_filter; }
1374   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
1375   Klass* klass() const                             { return _klass; }
1376   const void* user_data() const                    { return _user_data; }
1377 
1378   // indicates if the iteration has been aborted
1379   bool _iteration_aborted;
1380   bool is_iteration_aborted() const                { return _iteration_aborted; }
1381 
1382   // used to check the visit control flags. If the abort flag is set
1383   // then we set the iteration aborted flag so that the iteration completes
1384   // without processing any further objects
1385   bool check_flags_for_abort(jint flags) {
1386     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
1387     if (is_abort) {
1388       _iteration_aborted = true;
1389     }
1390     return is_abort;
1391   }
1392 
1393  public:
1394   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
1395                                   Klass* klass,
1396                                   int heap_filter,
1397                                   const jvmtiHeapCallbacks* heap_callbacks,
1398                                   const void* user_data) :
1399     _tag_map(tag_map),
1400     _klass(klass),
1401     _heap_filter(heap_filter),
1402     _callbacks(heap_callbacks),
1403     _user_data(user_data),
1404     _iteration_aborted(false)
1405   {
1406   }
1407 
1408   void do_object(oop o);
1409 };
1410 
1411 // invoked for each object in the heap
1412 void IterateThroughHeapObjectClosure::do_object(oop obj) {
1413   // check if iteration has been halted
1414   if (is_iteration_aborted()) return;
1415 
1416   // apply class filter
1417   if (is_filtered_by_klass_filter(obj, klass())) return;
1418 
1419   // prepare for callback
1420   CallbackWrapper wrapper(tag_map(), obj);
1421 
1422   // check if filtered by the heap filter
1423   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
1424     return;
1425   }
1426 
1427   // for arrays we need the length, otherwise -1
1428   bool is_array = obj->is_array();
1429   int len = is_array ? arrayOop(obj)->length() : -1;
1430 
1431   // invoke the object callback (if callback is provided)
1432   if (callbacks()->heap_iteration_callback != NULL) {
1433     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
1434     jint res = (*cb)(wrapper.klass_tag(),
1435                      wrapper.obj_size(),
1436                      wrapper.obj_tag_p(),
1437                      (jint)len,
1438                      (void*)user_data());
1439     if (check_flags_for_abort(res)) return;
1440   }
1441 
1442   // for objects and classes we report primitive fields if callback provided
1443   if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
1444     jint res;
1445     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
1446     if (obj->klass() == SystemDictionary::Class_klass()) {
1447       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
1448                                                                     obj,
1449                                                                     cb,
1450                                                                     (void*)user_data());
1451     } else {
1452       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
1453                                                                       obj,
1454                                                                       cb,
1455                                                                       (void*)user_data());
1456     }
1457     if (check_flags_for_abort(res)) return;
1458   }
1459 
1460   // string callback
1461   if (!is_array &&
1462       callbacks()->string_primitive_value_callback != NULL &&
1463       obj->klass() == SystemDictionary::String_klass()) {
1464     jint res = invoke_string_value_callback(
1465                 callbacks()->string_primitive_value_callback,
1466                 &wrapper,
1467                 obj,
1468                 (void*)user_data() );
1469     if (check_flags_for_abort(res)) return;
1470   }
1471 
1472   // array callback
1473   if (is_array &&
1474       callbacks()->array_primitive_value_callback != NULL &&
1475       obj->is_typeArray()) {
1476     jint res = invoke_array_primitive_value_callback(
1477                callbacks()->array_primitive_value_callback,
1478                &wrapper,
1479                obj,
1480                (void*)user_data() );
1481     if (check_flags_for_abort(res)) return;
1482   }
1483 };
1484 
1485 
1486 // Deprecated function to iterate over all objects in the heap
1487 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
1488                                     Klass* klass,
1489                                     jvmtiHeapObjectCallback heap_object_callback,
1490                                     const void* user_data)
1491 {
1492   // EA based optimizations on tagged objects are already reverted.
1493   EscapeBarrier eb(JavaThread::current(),
1494       object_filter == JVMTI_HEAP_OBJECT_UNTAGGED || object_filter == JVMTI_HEAP_OBJECT_EITHER);
1495   eb.deoptimize_objects_all_threads();
1496   MutexLocker ml(Heap_lock);
1497   IterateOverHeapObjectClosure blk(this,
1498                                    klass,
1499                                    object_filter,
1500                                    heap_object_callback,
1501                                    user_data);
1502   VM_HeapIterateOperation op(&blk);
1503   VMThread::execute(&op);
1504 }
1505 
1506 
1507 // Iterates over all objects in the heap
1508 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
1509                                        Klass* klass,
1510                                        const jvmtiHeapCallbacks* callbacks,
1511                                        const void* user_data)
1512 {
1513   // EA based optimizations on tagged objects are already reverted.
1514   EscapeBarrier eb(JavaThread::current(), !(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED));
1515   eb.deoptimize_objects_all_threads();
1516   MutexLocker ml(Heap_lock);
1517   IterateThroughHeapObjectClosure blk(this,
1518                                       klass,
1519                                       heap_filter,
1520                                       callbacks,
1521                                       user_data);
1522   VM_HeapIterateOperation op(&blk);
1523   VMThread::execute(&op);
1524 }
1525 
1526 // support class for get_objects_with_tags
1527 
1528 class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
1529  private:
1530   JvmtiEnv* _env;
1531   jlong* _tags;
1532   jint _tag_count;
1533 
1534   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
1535   GrowableArray<uint64_t>* _tag_results;    // collected tags
1536 
1537  public:
1538   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
1539     _env = env;
1540     _tags = (jlong*)tags;
1541     _tag_count = tag_count;
1542     _object_results = new (ResourceObj::C_HEAP, mtServiceability) GrowableArray<jobject>(1, mtServiceability);
1543     _tag_results = new (ResourceObj::C_HEAP, mtServiceability) GrowableArray<uint64_t>(1, mtServiceability);
1544   }
1545 
1546   ~TagObjectCollector() {
1547     delete _object_results;
1548     delete _tag_results;
1549   }
1550 
1551   // for each tagged object check if the tag value matches
1552   // - if it matches then we create a JNI local reference to the object
1553   // and record the reference and tag value.
1554   //
1555   void do_entry(JvmtiTagHashmapEntry* entry) {
1556     for (int i=0; i<_tag_count; i++) {
1557       if (_tags[i] == entry->tag()) {
1558         // The reference in this tag map could be the only (implicitly weak)
1559         // reference to that object. If we hand it out, we need to keep it live wrt
1560         // SATB marking similar to other j.l.ref.Reference referents. This is
1561         // achieved by using a phantom load in the object() accessor.
1562         oop o = entry->object();
1563         assert(o != NULL && Universe::heap()->is_in(o), "sanity check");
1564         jobject ref = JNIHandles::make_local(JavaThread::current(), o);
1565         _object_results->append(ref);
1566         _tag_results->append((uint64_t)entry->tag());
1567       }
1568     }
1569   }
1570 
1571   // return the results from the collection
1572   //
1573   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1574     jvmtiError error;
1575     int count = _object_results->length();
1576     assert(count >= 0, "sanity check");
1577 
1578     // if object_result_ptr is not NULL then allocate the result and copy
1579     // in the object references.
1580     if (object_result_ptr != NULL) {
1581       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
1582       if (error != JVMTI_ERROR_NONE) {
1583         return error;
1584       }
1585       for (int i=0; i<count; i++) {
1586         (*object_result_ptr)[i] = _object_results->at(i);
1587       }
1588     }
1589 
1590     // if tag_result_ptr is not NULL then allocate the result and copy
1591     // in the tag values.
1592     if (tag_result_ptr != NULL) {
1593       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
1594       if (error != JVMTI_ERROR_NONE) {
1595         if (object_result_ptr != NULL) {
1596           _env->Deallocate((unsigned char*)object_result_ptr);
1597         }
1598         return error;
1599       }
1600       for (int i=0; i<count; i++) {
1601         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
1602       }
1603     }
1604 
1605     *count_ptr = count;
1606     return JVMTI_ERROR_NONE;
1607   }
1608 };
1609 
1610 // return the list of objects with the specified tags
1611 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
1612   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1613 
1614   TagObjectCollector collector(env(), tags, count);
1615   {
1616     // iterate over all tagged objects
1617     MutexLocker ml(lock());
1618     entry_iterate(&collector);
1619   }
1620   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
1621 }
1622 
1623 
1624 // ObjectMarker is used to support the marking objects when walking the
1625 // heap.
1626 //
1627 // This implementation uses the existing mark bits in an object for
1628 // marking. Objects that are marked must later have their headers restored.
1629 // As most objects are unlocked and don't have their identity hash computed
1630 // we don't have to save their headers. Instead we save the headers that
1631 // are "interesting". Later when the headers are restored this implementation
1632 // restores all headers to their initial value and then restores the few
1633 // objects that had interesting headers.
1634 //
1635 // Future work: This implementation currently uses growable arrays to save
1636 // the oop and header of interesting objects. As an optimization we could
1637 // use the same technique as the GC and make use of the unused area
1638 // between top() and end().
1639 //
1640 
1641 // An ObjectClosure used to restore the mark bits of an object
1642 class RestoreMarksClosure : public ObjectClosure {
1643  public:
1644   void do_object(oop o) {
1645     if (o != NULL) {
1646       markWord mark = o->mark();
1647       if (mark.is_marked()) {
1648         o->init_mark();
1649       }
1650     }
1651   }
1652 };
1653 
1654 // ObjectMarker provides the mark and visited functions
1655 class ObjectMarker : AllStatic {
1656  private:
1657   // saved headers
1658   static GrowableArray<oop>* _saved_oop_stack;
1659   static GrowableArray<markWord>* _saved_mark_stack;
1660   static bool _needs_reset;                  // do we need to reset mark bits?
1661 
1662  public:
1663   static void init();                       // initialize
1664   static void done();                       // clean-up
1665 
1666   static inline void mark(oop o);           // mark an object
1667   static inline bool visited(oop o);        // check if object has been visited
1668 
1669   static inline bool needs_reset()            { return _needs_reset; }
1670   static inline void set_needs_reset(bool v)  { _needs_reset = v; }
1671 };
1672 
1673 GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
1674 GrowableArray<markWord>* ObjectMarker::_saved_mark_stack = NULL;
1675 bool ObjectMarker::_needs_reset = true;  // need to reset mark bits by default
1676 
1677 // initialize ObjectMarker - prepares for object marking
1678 void ObjectMarker::init() {
1679   assert(Thread::current()->is_VM_thread(), "must be VMThread");
1680 
1681   // prepare heap for iteration
1682   Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1683 
1684   // create stacks for interesting headers
1685   _saved_mark_stack = new (ResourceObj::C_HEAP, mtServiceability) GrowableArray<markWord>(4000, mtServiceability);
1686   _saved_oop_stack = new (ResourceObj::C_HEAP, mtServiceability) GrowableArray<oop>(4000, mtServiceability);
1687 
1688   if (UseBiasedLocking) {
1689     BiasedLocking::preserve_marks();
1690   }
1691 }
1692 
1693 // Object marking is done so restore object headers
1694 void ObjectMarker::done() {
1695   // iterate over all objects and restore the mark bits to
1696   // their initial value
1697   RestoreMarksClosure blk;
1698   if (needs_reset()) {
1699     Universe::heap()->object_iterate(&blk);
1700   } else {
1701     // We don't need to reset mark bits on this call, but reset the
1702     // flag to the default for the next call.
1703     set_needs_reset(true);
1704   }
1705 
1706   // now restore the interesting headers
1707   for (int i = 0; i < _saved_oop_stack->length(); i++) {
1708     oop o = _saved_oop_stack->at(i);
1709     markWord mark = _saved_mark_stack->at(i);
1710     o->set_mark(mark);
1711   }
1712 
1713   if (UseBiasedLocking) {
1714     BiasedLocking::restore_marks();
1715   }
1716 
1717   // free the stacks
1718   delete _saved_oop_stack;
1719   delete _saved_mark_stack;
1720 }
1721 
1722 // mark an object
1723 inline void ObjectMarker::mark(oop o) {
1724   assert(Universe::heap()->is_in(o), "sanity check");
1725   assert(!o->mark().is_marked(), "should only mark an object once");
1726 
1727   // object's mark word
1728   markWord mark = o->mark();
1729 
1730   if (o->mark_must_be_preserved(mark)) {
1731     _saved_mark_stack->push(mark);
1732     _saved_oop_stack->push(o);
1733   }
1734 
1735   // mark the object
1736   o->set_mark(markWord::prototype().set_marked());
1737 }
1738 
1739 // return true if object is marked
1740 inline bool ObjectMarker::visited(oop o) {
1741   return o->mark().is_marked();
1742 }
1743 
1744 // Stack allocated class to help ensure that ObjectMarker is used
1745 // correctly. Constructor initializes ObjectMarker, destructor calls
1746 // ObjectMarker's done() function to restore object headers.
1747 class ObjectMarkerController : public StackObj {
1748  public:
1749   ObjectMarkerController() {
1750     ObjectMarker::init();
1751   }
1752   ~ObjectMarkerController() {
1753     ObjectMarker::done();
1754   }
1755 };
1756 
1757 
1758 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
1759 // (not performance critical as only used for roots)
1760 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
1761   switch (kind) {
1762     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
1763     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
1764     case JVMTI_HEAP_REFERENCE_MONITOR:      return JVMTI_HEAP_ROOT_MONITOR;
1765     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
1766     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
1767     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
1768     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
1769     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
1770   }
1771 }
1772 
1773 // Base class for all heap walk contexts. The base class maintains a flag
1774 // to indicate if the context is valid or not.
1775 class HeapWalkContext {
1776  private:
1777   bool _valid;
1778  public:
1779   HeapWalkContext(bool valid)                   { _valid = valid; }
1780   void invalidate()                             { _valid = false; }
1781   bool is_valid() const                         { return _valid; }
1782 };
1783 
1784 // A basic heap walk context for the deprecated heap walking functions.
1785 // The context for a basic heap walk are the callbacks and fields used by
1786 // the referrer caching scheme.
1787 class BasicHeapWalkContext: public HeapWalkContext {
1788  private:
1789   jvmtiHeapRootCallback _heap_root_callback;
1790   jvmtiStackReferenceCallback _stack_ref_callback;
1791   jvmtiObjectReferenceCallback _object_ref_callback;
1792 
1793   // used for caching
1794   oop _last_referrer;
1795   jlong _last_referrer_tag;
1796 
1797  public:
1798   BasicHeapWalkContext() : HeapWalkContext(false) { }
1799 
1800   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
1801                        jvmtiStackReferenceCallback stack_ref_callback,
1802                        jvmtiObjectReferenceCallback object_ref_callback) :
1803     HeapWalkContext(true),
1804     _heap_root_callback(heap_root_callback),
1805     _stack_ref_callback(stack_ref_callback),
1806     _object_ref_callback(object_ref_callback),
1807     _last_referrer(NULL),
1808     _last_referrer_tag(0) {
1809   }
1810 
1811   // accessors
1812   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
1813   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
1814   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
1815 
1816   oop last_referrer() const               { return _last_referrer; }
1817   void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
1818   jlong last_referrer_tag() const         { return _last_referrer_tag; }
1819   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
1820 };
1821 
1822 // The advanced heap walk context for the FollowReferences functions.
1823 // The context is the callbacks, and the fields used for filtering.
1824 class AdvancedHeapWalkContext: public HeapWalkContext {
1825  private:
1826   jint _heap_filter;
1827   Klass* _klass_filter;
1828   const jvmtiHeapCallbacks* _heap_callbacks;
1829 
1830  public:
1831   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
1832 
1833   AdvancedHeapWalkContext(jint heap_filter,
1834                            Klass* klass_filter,
1835                            const jvmtiHeapCallbacks* heap_callbacks) :
1836     HeapWalkContext(true),
1837     _heap_filter(heap_filter),
1838     _klass_filter(klass_filter),
1839     _heap_callbacks(heap_callbacks) {
1840   }
1841 
1842   // accessors
1843   jint heap_filter() const         { return _heap_filter; }
1844   Klass* klass_filter() const      { return _klass_filter; }
1845 
1846   const jvmtiHeapReferenceCallback heap_reference_callback() const {
1847     return _heap_callbacks->heap_reference_callback;
1848   };
1849   const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
1850     return _heap_callbacks->primitive_field_callback;
1851   }
1852   const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
1853     return _heap_callbacks->array_primitive_value_callback;
1854   }
1855   const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
1856     return _heap_callbacks->string_primitive_value_callback;
1857   }
1858 };
1859 
1860 // The CallbackInvoker is a class with static functions that the heap walk can call
1861 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
1862 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
1863 // mode is for the newer FollowReferences function which supports a lot of
1864 // additional callbacks.
1865 class CallbackInvoker : AllStatic {
1866  private:
1867   // heap walk styles
1868   enum { basic, advanced };
1869   static int _heap_walk_type;
1870   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
1871   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
1872 
1873   // context for basic style heap walk
1874   static BasicHeapWalkContext _basic_context;
1875   static BasicHeapWalkContext* basic_context() {
1876     assert(_basic_context.is_valid(), "invalid");
1877     return &_basic_context;
1878   }
1879 
1880   // context for advanced style heap walk
1881   static AdvancedHeapWalkContext _advanced_context;
1882   static AdvancedHeapWalkContext* advanced_context() {
1883     assert(_advanced_context.is_valid(), "invalid");
1884     return &_advanced_context;
1885   }
1886 
1887   // context needed for all heap walks
1888   static JvmtiTagMap* _tag_map;
1889   static const void* _user_data;
1890   static GrowableArray<oop>* _visit_stack;
1891 
1892   // accessors
1893   static JvmtiTagMap* tag_map()                        { return _tag_map; }
1894   static const void* user_data()                       { return _user_data; }
1895   static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
1896 
1897   // if the object hasn't been visited then push it onto the visit stack
1898   // so that it will be visited later
1899   static inline bool check_for_visit(oop obj) {
1900     if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
1901     return true;
1902   }
1903 
1904   // invoke basic style callbacks
1905   static inline bool invoke_basic_heap_root_callback
1906     (jvmtiHeapRootKind root_kind, oop obj);
1907   static inline bool invoke_basic_stack_ref_callback
1908     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
1909      int slot, oop obj);
1910   static inline bool invoke_basic_object_reference_callback
1911     (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
1912 
1913   // invoke advanced style callbacks
1914   static inline bool invoke_advanced_heap_root_callback
1915     (jvmtiHeapReferenceKind ref_kind, oop obj);
1916   static inline bool invoke_advanced_stack_ref_callback
1917     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
1918      jmethodID method, jlocation bci, jint slot, oop obj);
1919   static inline bool invoke_advanced_object_reference_callback
1920     (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
1921 
1922   // used to report the value of primitive fields
1923   static inline bool report_primitive_field
1924     (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
1925 
1926  public:
1927   // initialize for basic mode
1928   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1929                                              GrowableArray<oop>* visit_stack,
1930                                              const void* user_data,
1931                                              BasicHeapWalkContext context);
1932 
1933   // initialize for advanced mode
1934   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1935                                                 GrowableArray<oop>* visit_stack,
1936                                                 const void* user_data,
1937                                                 AdvancedHeapWalkContext context);
1938 
1939    // functions to report roots
1940   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
1941   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
1942     jmethodID m, oop o);
1943   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
1944     jmethodID method, jlocation bci, jint slot, oop o);
1945 
1946   // functions to report references
1947   static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
1948   static inline bool report_class_reference(oop referrer, oop referree);
1949   static inline bool report_class_loader_reference(oop referrer, oop referree);
1950   static inline bool report_signers_reference(oop referrer, oop referree);
1951   static inline bool report_protection_domain_reference(oop referrer, oop referree);
1952   static inline bool report_superclass_reference(oop referrer, oop referree);
1953   static inline bool report_interface_reference(oop referrer, oop referree);
1954   static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
1955   static inline bool report_field_reference(oop referrer, oop referree, jint slot);
1956   static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
1957   static inline bool report_primitive_array_values(oop array);
1958   static inline bool report_string_value(oop str);
1959   static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
1960   static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
1961 };
1962 
1963 // statics
1964 int CallbackInvoker::_heap_walk_type;
1965 BasicHeapWalkContext CallbackInvoker::_basic_context;
1966 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
1967 JvmtiTagMap* CallbackInvoker::_tag_map;
1968 const void* CallbackInvoker::_user_data;
1969 GrowableArray<oop>* CallbackInvoker::_visit_stack;
1970 
1971 // initialize for basic heap walk (IterateOverReachableObjects et al)
1972 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1973                                                      GrowableArray<oop>* visit_stack,
1974                                                      const void* user_data,
1975                                                      BasicHeapWalkContext context) {
1976   _tag_map = tag_map;
1977   _visit_stack = visit_stack;
1978   _user_data = user_data;
1979   _basic_context = context;
1980   _advanced_context.invalidate();       // will trigger assertion if used
1981   _heap_walk_type = basic;
1982 }
1983 
1984 // initialize for advanced heap walk (FollowReferences)
1985 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1986                                                         GrowableArray<oop>* visit_stack,
1987                                                         const void* user_data,
1988                                                         AdvancedHeapWalkContext context) {
1989   _tag_map = tag_map;
1990   _visit_stack = visit_stack;
1991   _user_data = user_data;
1992   _advanced_context = context;
1993   _basic_context.invalidate();      // will trigger assertion if used
1994   _heap_walk_type = advanced;
1995 }
1996 
1997 
1998 // invoke basic style heap root callback
1999 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
2000   // if we heap roots should be reported
2001   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
2002   if (cb == NULL) {
2003     return check_for_visit(obj);
2004   }
2005 
2006   CallbackWrapper wrapper(tag_map(), obj);
2007   jvmtiIterationControl control = (*cb)(root_kind,
2008                                         wrapper.klass_tag(),
2009                                         wrapper.obj_size(),
2010                                         wrapper.obj_tag_p(),
2011                                         (void*)user_data());
2012   // push root to visit stack when following references
2013   if (control == JVMTI_ITERATION_CONTINUE &&
2014       basic_context()->object_ref_callback() != NULL) {
2015     visit_stack()->push(obj);
2016   }
2017   return control != JVMTI_ITERATION_ABORT;
2018 }
2019 
2020 // invoke basic style stack ref callback
2021 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
2022                                                              jlong thread_tag,
2023                                                              jint depth,
2024                                                              jmethodID method,
2025                                                              int slot,
2026                                                              oop obj) {
2027   // if we stack refs should be reported
2028   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
2029   if (cb == NULL) {
2030     return check_for_visit(obj);
2031   }
2032 
2033   CallbackWrapper wrapper(tag_map(), obj);
2034   jvmtiIterationControl control = (*cb)(root_kind,
2035                                         wrapper.klass_tag(),
2036                                         wrapper.obj_size(),
2037                                         wrapper.obj_tag_p(),
2038                                         thread_tag,
2039                                         depth,
2040                                         method,
2041                                         slot,
2042                                         (void*)user_data());
2043   // push root to visit stack when following references
2044   if (control == JVMTI_ITERATION_CONTINUE &&
2045       basic_context()->object_ref_callback() != NULL) {
2046     visit_stack()->push(obj);
2047   }
2048   return control != JVMTI_ITERATION_ABORT;
2049 }
2050 
2051 // invoke basic style object reference callback
2052 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
2053                                                                     oop referrer,
2054                                                                     oop referree,
2055                                                                     jint index) {
2056 
2057   BasicHeapWalkContext* context = basic_context();
2058 
2059   // callback requires the referrer's tag. If it's the same referrer
2060   // as the last call then we use the cached value.
2061   jlong referrer_tag;
2062   if (referrer == context->last_referrer()) {
2063     referrer_tag = context->last_referrer_tag();
2064   } else {
2065     referrer_tag = tag_for(tag_map(), referrer);
2066   }
2067 
2068   // do the callback
2069   CallbackWrapper wrapper(tag_map(), referree);
2070   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
2071   jvmtiIterationControl control = (*cb)(ref_kind,
2072                                         wrapper.klass_tag(),
2073                                         wrapper.obj_size(),
2074                                         wrapper.obj_tag_p(),
2075                                         referrer_tag,
2076                                         index,
2077                                         (void*)user_data());
2078 
2079   // record referrer and referrer tag. For self-references record the
2080   // tag value from the callback as this might differ from referrer_tag.
2081   context->set_last_referrer(referrer);
2082   if (referrer == referree) {
2083     context->set_last_referrer_tag(*wrapper.obj_tag_p());
2084   } else {
2085     context->set_last_referrer_tag(referrer_tag);
2086   }
2087 
2088   if (control == JVMTI_ITERATION_CONTINUE) {
2089     return check_for_visit(referree);
2090   } else {
2091     return control != JVMTI_ITERATION_ABORT;
2092   }
2093 }
2094 
2095 // invoke advanced style heap root callback
2096 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
2097                                                                 oop obj) {
2098   AdvancedHeapWalkContext* context = advanced_context();
2099 
2100   // check that callback is provided
2101   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2102   if (cb == NULL) {
2103     return check_for_visit(obj);
2104   }
2105 
2106   // apply class filter
2107   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2108     return check_for_visit(obj);
2109   }
2110 
2111   // setup the callback wrapper
2112   CallbackWrapper wrapper(tag_map(), obj);
2113 
2114   // apply tag filter
2115   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2116                                  wrapper.klass_tag(),
2117                                  context->heap_filter())) {
2118     return check_for_visit(obj);
2119   }
2120 
2121   // for arrays we need the length, otherwise -1
2122   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2123 
2124   // invoke the callback
2125   jint res  = (*cb)(ref_kind,
2126                     NULL, // referrer info
2127                     wrapper.klass_tag(),
2128                     0,    // referrer_class_tag is 0 for heap root
2129                     wrapper.obj_size(),
2130                     wrapper.obj_tag_p(),
2131                     NULL, // referrer_tag_p
2132                     len,
2133                     (void*)user_data());
2134   if (res & JVMTI_VISIT_ABORT) {
2135     return false;// referrer class tag
2136   }
2137   if (res & JVMTI_VISIT_OBJECTS) {
2138     check_for_visit(obj);
2139   }
2140   return true;
2141 }
2142 
2143 // report a reference from a thread stack to an object
2144 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
2145                                                                 jlong thread_tag,
2146                                                                 jlong tid,
2147                                                                 int depth,
2148                                                                 jmethodID method,
2149                                                                 jlocation bci,
2150                                                                 jint slot,
2151                                                                 oop obj) {
2152   AdvancedHeapWalkContext* context = advanced_context();
2153 
2154   // check that callback is provider
2155   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2156   if (cb == NULL) {
2157     return check_for_visit(obj);
2158   }
2159 
2160   // apply class filter
2161   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2162     return check_for_visit(obj);
2163   }
2164 
2165   // setup the callback wrapper
2166   CallbackWrapper wrapper(tag_map(), obj);
2167 
2168   // apply tag filter
2169   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2170                                  wrapper.klass_tag(),
2171                                  context->heap_filter())) {
2172     return check_for_visit(obj);
2173   }
2174 
2175   // setup the referrer info
2176   jvmtiHeapReferenceInfo reference_info;
2177   reference_info.stack_local.thread_tag = thread_tag;
2178   reference_info.stack_local.thread_id = tid;
2179   reference_info.stack_local.depth = depth;
2180   reference_info.stack_local.method = method;
2181   reference_info.stack_local.location = bci;
2182   reference_info.stack_local.slot = slot;
2183 
2184   // for arrays we need the length, otherwise -1
2185   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2186 
2187   // call into the agent
2188   int res = (*cb)(ref_kind,
2189                   &reference_info,
2190                   wrapper.klass_tag(),
2191                   0,    // referrer_class_tag is 0 for heap root (stack)
2192                   wrapper.obj_size(),
2193                   wrapper.obj_tag_p(),
2194                   NULL, // referrer_tag is 0 for root
2195                   len,
2196                   (void*)user_data());
2197 
2198   if (res & JVMTI_VISIT_ABORT) {
2199     return false;
2200   }
2201   if (res & JVMTI_VISIT_OBJECTS) {
2202     check_for_visit(obj);
2203   }
2204   return true;
2205 }
2206 
2207 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
2208 // only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
2209 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
2210                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
2211                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
2212                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
2213                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
2214                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
2215 
2216 // invoke the object reference callback to report a reference
2217 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
2218                                                                        oop referrer,
2219                                                                        oop obj,
2220                                                                        jint index)
2221 {
2222   // field index is only valid field in reference_info
2223   static jvmtiHeapReferenceInfo reference_info = { 0 };
2224 
2225   AdvancedHeapWalkContext* context = advanced_context();
2226 
2227   // check that callback is provider
2228   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2229   if (cb == NULL) {
2230     return check_for_visit(obj);
2231   }
2232 
2233   // apply class filter
2234   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2235     return check_for_visit(obj);
2236   }
2237 
2238   // setup the callback wrapper
2239   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
2240 
2241   // apply tag filter
2242   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2243                                  wrapper.klass_tag(),
2244                                  context->heap_filter())) {
2245     return check_for_visit(obj);
2246   }
2247 
2248   // field index is only valid field in reference_info
2249   reference_info.field.index = index;
2250 
2251   // for arrays we need the length, otherwise -1
2252   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2253 
2254   // invoke the callback
2255   int res = (*cb)(ref_kind,
2256                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
2257                   wrapper.klass_tag(),
2258                   wrapper.referrer_klass_tag(),
2259                   wrapper.obj_size(),
2260                   wrapper.obj_tag_p(),
2261                   wrapper.referrer_tag_p(),
2262                   len,
2263                   (void*)user_data());
2264 
2265   if (res & JVMTI_VISIT_ABORT) {
2266     return false;
2267   }
2268   if (res & JVMTI_VISIT_OBJECTS) {
2269     check_for_visit(obj);
2270   }
2271   return true;
2272 }
2273 
2274 // report a "simple root"
2275 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
2276   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
2277          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
2278 
2279   if (is_basic_heap_walk()) {
2280     // map to old style root kind
2281     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
2282     return invoke_basic_heap_root_callback(root_kind, obj);
2283   } else {
2284     assert(is_advanced_heap_walk(), "wrong heap walk type");
2285     return invoke_advanced_heap_root_callback(kind, obj);
2286   }
2287 }
2288 
2289 
2290 // invoke the primitive array values
2291 inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
2292   assert(obj->is_typeArray(), "not a primitive array");
2293 
2294   AdvancedHeapWalkContext* context = advanced_context();
2295   assert(context->array_primitive_value_callback() != NULL, "no callback");
2296 
2297   // apply class filter
2298   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2299     return true;
2300   }
2301 
2302   CallbackWrapper wrapper(tag_map(), obj);
2303 
2304   // apply tag filter
2305   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2306                                  wrapper.klass_tag(),
2307                                  context->heap_filter())) {
2308     return true;
2309   }
2310 
2311   // invoke the callback
2312   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
2313                                                   &wrapper,
2314                                                   obj,
2315                                                   (void*)user_data());
2316   return (!(res & JVMTI_VISIT_ABORT));
2317 }
2318 
2319 // invoke the string value callback
2320 inline bool CallbackInvoker::report_string_value(oop str) {
2321   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
2322 
2323   AdvancedHeapWalkContext* context = advanced_context();
2324   assert(context->string_primitive_value_callback() != NULL, "no callback");
2325 
2326   // apply class filter
2327   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
2328     return true;
2329   }
2330 
2331   CallbackWrapper wrapper(tag_map(), str);
2332 
2333   // apply tag filter
2334   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2335                                  wrapper.klass_tag(),
2336                                  context->heap_filter())) {
2337     return true;
2338   }
2339 
2340   // invoke the callback
2341   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
2342                                          &wrapper,
2343                                          str,
2344                                          (void*)user_data());
2345   return (!(res & JVMTI_VISIT_ABORT));
2346 }
2347 
2348 // invoke the primitive field callback
2349 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
2350                                                     oop obj,
2351                                                     jint index,
2352                                                     address addr,
2353                                                     char type)
2354 {
2355   // for primitive fields only the index will be set
2356   static jvmtiHeapReferenceInfo reference_info = { 0 };
2357 
2358   AdvancedHeapWalkContext* context = advanced_context();
2359   assert(context->primitive_field_callback() != NULL, "no callback");
2360 
2361   // apply class filter
2362   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2363     return true;
2364   }
2365 
2366   CallbackWrapper wrapper(tag_map(), obj);
2367 
2368   // apply tag filter
2369   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2370                                  wrapper.klass_tag(),
2371                                  context->heap_filter())) {
2372     return true;
2373   }
2374 
2375   // the field index in the referrer
2376   reference_info.field.index = index;
2377 
2378   // map the type
2379   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
2380 
2381   // setup the jvalue
2382   jvalue value;
2383   copy_to_jvalue(&value, addr, value_type);
2384 
2385   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
2386   int res = (*cb)(ref_kind,
2387                   &reference_info,
2388                   wrapper.klass_tag(),
2389                   wrapper.obj_tag_p(),
2390                   value,
2391                   value_type,
2392                   (void*)user_data());
2393   return (!(res & JVMTI_VISIT_ABORT));
2394 }
2395 
2396 
2397 // instance field
2398 inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
2399                                                              jint index,
2400                                                              address value,
2401                                                              char type) {
2402   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
2403                                 obj,
2404                                 index,
2405                                 value,
2406                                 type);
2407 }
2408 
2409 // static field
2410 inline bool CallbackInvoker::report_primitive_static_field(oop obj,
2411                                                            jint index,
2412                                                            address value,
2413                                                            char type) {
2414   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
2415                                 obj,
2416                                 index,
2417                                 value,
2418                                 type);
2419 }
2420 
2421 // report a JNI local (root object) to the profiler
2422 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
2423   if (is_basic_heap_walk()) {
2424     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
2425                                            thread_tag,
2426                                            depth,
2427                                            m,
2428                                            -1,
2429                                            obj);
2430   } else {
2431     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
2432                                               thread_tag, tid,
2433                                               depth,
2434                                               m,
2435                                               (jlocation)-1,
2436                                               -1,
2437                                               obj);
2438   }
2439 }
2440 
2441 
2442 // report a local (stack reference, root object)
2443 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
2444                                                    jlong tid,
2445                                                    jint depth,
2446                                                    jmethodID method,
2447                                                    jlocation bci,
2448                                                    jint slot,
2449                                                    oop obj) {
2450   if (is_basic_heap_walk()) {
2451     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
2452                                            thread_tag,
2453                                            depth,
2454                                            method,
2455                                            slot,
2456                                            obj);
2457   } else {
2458     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
2459                                               thread_tag,
2460                                               tid,
2461                                               depth,
2462                                               method,
2463                                               bci,
2464                                               slot,
2465                                               obj);
2466   }
2467 }
2468 
2469 // report an object referencing a class.
2470 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
2471   if (is_basic_heap_walk()) {
2472     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2473   } else {
2474     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
2475   }
2476 }
2477 
2478 // report a class referencing its class loader.
2479 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
2480   if (is_basic_heap_walk()) {
2481     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2482   } else {
2483     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2484   }
2485 }
2486 
2487 // report a class referencing its signers.
2488 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
2489   if (is_basic_heap_walk()) {
2490     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
2491   } else {
2492     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
2493   }
2494 }
2495 
2496 // report a class referencing its protection domain..
2497 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
2498   if (is_basic_heap_walk()) {
2499     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2500   } else {
2501     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2502   }
2503 }
2504 
2505 // report a class referencing its superclass.
2506 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
2507   if (is_basic_heap_walk()) {
2508     // Send this to be consistent with past implementation
2509     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2510   } else {
2511     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
2512   }
2513 }
2514 
2515 // report a class referencing one of its interfaces.
2516 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
2517   if (is_basic_heap_walk()) {
2518     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
2519   } else {
2520     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
2521   }
2522 }
2523 
2524 // report a class referencing one of its static fields.
2525 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
2526   if (is_basic_heap_walk()) {
2527     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2528   } else {
2529     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2530   }
2531 }
2532 
2533 // report an array referencing an element object
2534 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
2535   if (is_basic_heap_walk()) {
2536     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2537   } else {
2538     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2539   }
2540 }
2541 
2542 // report an object referencing an instance field object
2543 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
2544   if (is_basic_heap_walk()) {
2545     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
2546   } else {
2547     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
2548   }
2549 }
2550 
2551 // report an array referencing an element object
2552 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
2553   if (is_basic_heap_walk()) {
2554     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2555   } else {
2556     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2557   }
2558 }
2559 
2560 // A supporting closure used to process simple roots
2561 class SimpleRootsClosure : public OopClosure {
2562  private:
2563   jvmtiHeapReferenceKind _kind;
2564   bool _continue;
2565 
2566   jvmtiHeapReferenceKind root_kind()    { return _kind; }
2567 
2568  public:
2569   void set_kind(jvmtiHeapReferenceKind kind) {
2570     _kind = kind;
2571     _continue = true;
2572   }
2573 
2574   inline bool stopped() {
2575     return !_continue;
2576   }
2577 
2578   void do_oop(oop* obj_p) {
2579     // iteration has terminated
2580     if (stopped()) {
2581       return;
2582     }
2583 
2584     oop o = NativeAccess<AS_NO_KEEPALIVE>::oop_load(obj_p);
2585     // ignore null
2586     if (o == NULL) {
2587       return;
2588     }
2589 
2590     assert(Universe::heap()->is_in(o), "should be impossible");
2591 
2592     jvmtiHeapReferenceKind kind = root_kind();
2593 
2594     // invoke the callback
2595     _continue = CallbackInvoker::report_simple_root(kind, o);
2596 
2597   }
2598   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2599 };
2600 
2601 // A supporting closure used to process JNI locals
2602 class JNILocalRootsClosure : public OopClosure {
2603  private:
2604   jlong _thread_tag;
2605   jlong _tid;
2606   jint _depth;
2607   jmethodID _method;
2608   bool _continue;
2609  public:
2610   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
2611     _thread_tag = thread_tag;
2612     _tid = tid;
2613     _depth = depth;
2614     _method = method;
2615     _continue = true;
2616   }
2617 
2618   inline bool stopped() {
2619     return !_continue;
2620   }
2621 
2622   void do_oop(oop* obj_p) {
2623     // iteration has terminated
2624     if (stopped()) {
2625       return;
2626     }
2627 
2628     oop o = *obj_p;
2629     // ignore null
2630     if (o == NULL) {
2631       return;
2632     }
2633 
2634     // invoke the callback
2635     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
2636   }
2637   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2638 };
2639 
2640 
2641 // A VM operation to iterate over objects that are reachable from
2642 // a set of roots or an initial object.
2643 //
2644 // For VM_HeapWalkOperation the set of roots used is :-
2645 //
2646 // - All JNI global references
2647 // - All inflated monitors
2648 // - All classes loaded by the boot class loader (or all classes
2649 //     in the event that class unloading is disabled)
2650 // - All java threads
2651 // - For each java thread then all locals and JNI local references
2652 //      on the thread's execution stack
2653 // - All visible/explainable objects from Universes::oops_do
2654 //
2655 class VM_HeapWalkOperation: public VM_Operation {
2656  private:
2657   enum {
2658     initial_visit_stack_size = 4000
2659   };
2660 
2661   bool _is_advanced_heap_walk;                      // indicates FollowReferences
2662   JvmtiTagMap* _tag_map;
2663   Handle _initial_object;
2664   GrowableArray<oop>* _visit_stack;                 // the visit stack
2665 
2666   bool _collecting_heap_roots;                      // are we collecting roots
2667   bool _following_object_refs;                      // are we following object references
2668 
2669   bool _reporting_primitive_fields;                 // optional reporting
2670   bool _reporting_primitive_array_values;
2671   bool _reporting_string_values;
2672 
2673   GrowableArray<oop>* create_visit_stack() {
2674     return new (ResourceObj::C_HEAP, mtServiceability) GrowableArray<oop>(initial_visit_stack_size, mtServiceability);
2675   }
2676 
2677   // accessors
2678   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
2679   JvmtiTagMap* tag_map() const                     { return _tag_map; }
2680   Handle initial_object() const                    { return _initial_object; }
2681 
2682   bool is_following_references() const             { return _following_object_refs; }
2683 
2684   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
2685   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
2686   bool is_reporting_string_values() const          { return _reporting_string_values; }
2687 
2688   GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
2689 
2690   // iterate over the various object types
2691   inline bool iterate_over_array(oop o);
2692   inline bool iterate_over_type_array(oop o);
2693   inline bool iterate_over_class(oop o);
2694   inline bool iterate_over_object(oop o);
2695 
2696   // root collection
2697   inline bool collect_simple_roots();
2698   inline bool collect_stack_roots();
2699   inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
2700 
2701   // visit an object
2702   inline bool visit(oop o);
2703 
2704  public:
2705   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2706                        Handle initial_object,
2707                        BasicHeapWalkContext callbacks,
2708                        const void* user_data);
2709 
2710   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2711                        Handle initial_object,
2712                        AdvancedHeapWalkContext callbacks,
2713                        const void* user_data);
2714 
2715   ~VM_HeapWalkOperation();
2716 
2717   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
2718   void doit();
2719 };
2720 
2721 
2722 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2723                                            Handle initial_object,
2724                                            BasicHeapWalkContext callbacks,
2725                                            const void* user_data) {
2726   _is_advanced_heap_walk = false;
2727   _tag_map = tag_map;
2728   _initial_object = initial_object;
2729   _following_object_refs = (callbacks.object_ref_callback() != NULL);
2730   _reporting_primitive_fields = false;
2731   _reporting_primitive_array_values = false;
2732   _reporting_string_values = false;
2733   _visit_stack = create_visit_stack();
2734 
2735 
2736   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2737 }
2738 
2739 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2740                                            Handle initial_object,
2741                                            AdvancedHeapWalkContext callbacks,
2742                                            const void* user_data) {
2743   _is_advanced_heap_walk = true;
2744   _tag_map = tag_map;
2745   _initial_object = initial_object;
2746   _following_object_refs = true;
2747   _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
2748   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
2749   _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
2750   _visit_stack = create_visit_stack();
2751 
2752   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2753 }
2754 
2755 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
2756   if (_following_object_refs) {
2757     assert(_visit_stack != NULL, "checking");
2758     delete _visit_stack;
2759     _visit_stack = NULL;
2760   }
2761 }
2762 
2763 // an array references its class and has a reference to
2764 // each element in the array
2765 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
2766   objArrayOop array = objArrayOop(o);
2767 
2768   // array reference to its class
2769   oop mirror = ObjArrayKlass::cast(array->klass())->java_mirror();
2770   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2771     return false;
2772   }
2773 
2774   // iterate over the array and report each reference to a
2775   // non-null element
2776   for (int index=0; index<array->length(); index++) {
2777     oop elem = array->obj_at(index);
2778     if (elem == NULL) {
2779       continue;
2780     }
2781 
2782     // report the array reference o[index] = elem
2783     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
2784       return false;
2785     }
2786   }
2787   return true;
2788 }
2789 
2790 // a type array references its class
2791 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
2792   Klass* k = o->klass();
2793   oop mirror = k->java_mirror();
2794   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2795     return false;
2796   }
2797 
2798   // report the array contents if required
2799   if (is_reporting_primitive_array_values()) {
2800     if (!CallbackInvoker::report_primitive_array_values(o)) {
2801       return false;
2802     }
2803   }
2804   return true;
2805 }
2806 
2807 #ifdef ASSERT
2808 // verify that a static oop field is in range
2809 static inline bool verify_static_oop(InstanceKlass* ik,
2810                                      oop mirror, int offset) {
2811   address obj_p = cast_from_oop<address>(mirror) + offset;
2812   address start = (address)InstanceMirrorKlass::start_of_static_fields(mirror);
2813   address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize);
2814   assert(end >= start, "sanity check");
2815 
2816   if (obj_p >= start && obj_p < end) {
2817     return true;
2818   } else {
2819     return false;
2820   }
2821 }
2822 #endif // #ifdef ASSERT
2823 
2824 // a class references its super class, interfaces, class loader, ...
2825 // and finally its static fields
2826 inline bool VM_HeapWalkOperation::iterate_over_class(oop java_class) {
2827   int i;
2828   Klass* klass = java_lang_Class::as_Klass(java_class);
2829 
2830   if (klass->is_instance_klass()) {
2831     InstanceKlass* ik = InstanceKlass::cast(klass);
2832 
2833     // Ignore the class if it hasn't been initialized yet
2834     if (!ik->is_linked()) {
2835       return true;
2836     }
2837 
2838     // get the java mirror
2839     oop mirror = klass->java_mirror();
2840 
2841     // super (only if something more interesting than java.lang.Object)
2842     InstanceKlass* java_super = ik->java_super();
2843     if (java_super != NULL && java_super != SystemDictionary::Object_klass()) {
2844       oop super = java_super->java_mirror();
2845       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
2846         return false;
2847       }
2848     }
2849 
2850     // class loader
2851     oop cl = ik->class_loader();
2852     if (cl != NULL) {
2853       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
2854         return false;
2855       }
2856     }
2857 
2858     // protection domain
2859     oop pd = ik->protection_domain();
2860     if (pd != NULL) {
2861       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
2862         return false;
2863       }
2864     }
2865 
2866     // signers
2867     oop signers = ik->signers();
2868     if (signers != NULL) {
2869       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
2870         return false;
2871       }
2872     }
2873 
2874     // references from the constant pool
2875     {
2876       ConstantPool* pool = ik->constants();
2877       for (int i = 1; i < pool->length(); i++) {
2878         constantTag tag = pool->tag_at(i).value();
2879         if (tag.is_string() || tag.is_klass() || tag.is_unresolved_klass()) {
2880           oop entry;
2881           if (tag.is_string()) {
2882             entry = pool->resolved_string_at(i);
2883             // If the entry is non-null it is resolved.
2884             if (entry == NULL) {
2885               continue;
2886             }
2887           } else if (tag.is_klass()) {
2888             entry = pool->resolved_klass_at(i)->java_mirror();
2889           } else {
2890             // Code generated by JIT and AOT compilers might not resolve constant
2891             // pool entries.  Treat them as resolved if they are loaded.
2892             assert(tag.is_unresolved_klass(), "must be");
2893             constantPoolHandle cp(Thread::current(), pool);
2894             Klass* klass = ConstantPool::klass_at_if_loaded(cp, i);
2895             if (klass == NULL) {
2896               continue;
2897             }
2898             entry = klass->java_mirror();
2899           }
2900           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
2901             return false;
2902           }
2903         }
2904       }
2905     }
2906 
2907     // interfaces
2908     // (These will already have been reported as references from the constant pool
2909     //  but are specified by IterateOverReachableObjects and must be reported).
2910     Array<InstanceKlass*>* interfaces = ik->local_interfaces();
2911     for (i = 0; i < interfaces->length(); i++) {
2912       oop interf = interfaces->at(i)->java_mirror();
2913       if (interf == NULL) {
2914         continue;
2915       }
2916       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
2917         return false;
2918       }
2919     }
2920 
2921     // iterate over the static fields
2922 
2923     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(klass);
2924     for (i=0; i<field_map->field_count(); i++) {
2925       ClassFieldDescriptor* field = field_map->field_at(i);
2926       char type = field->field_type();
2927       if (!is_primitive_field_type(type)) {
2928         oop fld_o = mirror->obj_field(field->field_offset());
2929         assert(verify_static_oop(ik, mirror, field->field_offset()), "sanity check");
2930         if (fld_o != NULL) {
2931           int slot = field->field_index();
2932           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
2933             delete field_map;
2934             return false;
2935           }
2936         }
2937       } else {
2938          if (is_reporting_primitive_fields()) {
2939            address addr = cast_from_oop<address>(mirror) + field->field_offset();
2940            int slot = field->field_index();
2941            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
2942              delete field_map;
2943              return false;
2944           }
2945         }
2946       }
2947     }
2948     delete field_map;
2949 
2950     return true;
2951   }
2952 
2953   return true;
2954 }
2955 
2956 // an object references a class and its instance fields
2957 // (static fields are ignored here as we report these as
2958 // references from the class).
2959 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
2960   // reference to the class
2961   if (!CallbackInvoker::report_class_reference(o, o->klass()->java_mirror())) {
2962     return false;
2963   }
2964 
2965   // iterate over instance fields
2966   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
2967   for (int i=0; i<field_map->field_count(); i++) {
2968     ClassFieldDescriptor* field = field_map->field_at(i);
2969     char type = field->field_type();
2970     if (!is_primitive_field_type(type)) {
2971       oop fld_o = o->obj_field_access<AS_NO_KEEPALIVE | ON_UNKNOWN_OOP_REF>(field->field_offset());
2972       // ignore any objects that aren't visible to profiler
2973       if (fld_o != NULL) {
2974         assert(Universe::heap()->is_in(fld_o), "unsafe code should not "
2975                "have references to Klass* anymore");
2976         int slot = field->field_index();
2977         if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
2978           return false;
2979         }
2980       }
2981     } else {
2982       if (is_reporting_primitive_fields()) {
2983         // primitive instance field
2984         address addr = cast_from_oop<address>(o) + field->field_offset();
2985         int slot = field->field_index();
2986         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
2987           return false;
2988         }
2989       }
2990     }
2991   }
2992 
2993   // if the object is a java.lang.String
2994   if (is_reporting_string_values() &&
2995       o->klass() == SystemDictionary::String_klass()) {
2996     if (!CallbackInvoker::report_string_value(o)) {
2997       return false;
2998     }
2999   }
3000   return true;
3001 }
3002 
3003 
3004 // Collects all simple (non-stack) roots except for threads;
3005 // threads are handled in collect_stack_roots() as an optimization.
3006 // if there's a heap root callback provided then the callback is
3007 // invoked for each simple root.
3008 // if an object reference callback is provided then all simple
3009 // roots are pushed onto the marking stack so that they can be
3010 // processed later
3011 //
3012 inline bool VM_HeapWalkOperation::collect_simple_roots() {
3013   SimpleRootsClosure blk;
3014 
3015   // JNI globals
3016   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
3017   JNIHandles::oops_do(&blk);
3018   if (blk.stopped()) {
3019     return false;
3020   }
3021 
3022   // Preloaded classes and loader from the system dictionary
3023   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
3024   CLDToOopClosure cld_closure(&blk, false);
3025   ClassLoaderDataGraph::always_strong_cld_do(&cld_closure);
3026   if (blk.stopped()) {
3027     return false;
3028   }
3029 
3030   // Inflated monitors
3031   blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
3032   ObjectSynchronizer::oops_do(&blk);
3033   if (blk.stopped()) {
3034     return false;
3035   }
3036 
3037   // threads are now handled in collect_stack_roots()
3038 
3039   // Other kinds of roots maintained by HotSpot
3040   // Many of these won't be visible but others (such as instances of important
3041   // exceptions) will be visible.
3042   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3043   Universe::oops_do(&blk);
3044   if (blk.stopped()) {
3045     return false;
3046   }
3047 
3048   return true;
3049 }
3050 
3051 // Walk the stack of a given thread and find all references (locals
3052 // and JNI calls) and report these as stack references
3053 inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
3054                                                       JNILocalRootsClosure* blk)
3055 {
3056   oop threadObj = java_thread->threadObj();
3057   assert(threadObj != NULL, "sanity check");
3058 
3059   // only need to get the thread's tag once per thread
3060   jlong thread_tag = tag_for(_tag_map, threadObj);
3061 
3062   // also need the thread id
3063   jlong tid = java_lang_Thread::thread_id(threadObj);
3064 
3065 
3066   if (java_thread->has_last_Java_frame()) {
3067 
3068     // vframes are resource allocated
3069     Thread* current_thread = Thread::current();
3070     ResourceMark rm(current_thread);
3071     HandleMark hm(current_thread);
3072 
3073     RegisterMap reg_map(java_thread);
3074     frame f = java_thread->last_frame();
3075     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
3076 
3077     bool is_top_frame = true;
3078     int depth = 0;
3079     frame* last_entry_frame = NULL;
3080 
3081     while (vf != NULL) {
3082       if (vf->is_java_frame()) {
3083 
3084         // java frame (interpreted, compiled, ...)
3085         javaVFrame *jvf = javaVFrame::cast(vf);
3086 
3087         // the jmethodID
3088         jmethodID method = jvf->method()->jmethod_id();
3089 
3090         if (!(jvf->method()->is_native())) {
3091           jlocation bci = (jlocation)jvf->bci();
3092           StackValueCollection* locals = jvf->locals();
3093           for (int slot=0; slot<locals->size(); slot++) {
3094             if (locals->at(slot)->type() == T_OBJECT) {
3095               oop o = locals->obj_at(slot)();
3096               if (o == NULL) {
3097                 continue;
3098               }
3099 
3100               // stack reference
3101               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
3102                                                    bci, slot, o)) {
3103                 return false;
3104               }
3105             }
3106           }
3107 
3108           StackValueCollection* exprs = jvf->expressions();
3109           for (int index=0; index < exprs->size(); index++) {
3110             if (exprs->at(index)->type() == T_OBJECT) {
3111               oop o = exprs->obj_at(index)();
3112               if (o == NULL) {
3113                 continue;
3114               }
3115 
3116               // stack reference
3117               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
3118                                                    bci, locals->size() + index, o)) {
3119                 return false;
3120               }
3121             }
3122           }
3123 
3124           // Follow oops from compiled nmethod
3125           if (jvf->cb() != NULL && jvf->cb()->is_nmethod()) {
3126             blk->set_context(thread_tag, tid, depth, method);
3127             jvf->cb()->as_nmethod()->oops_do(blk);
3128           }
3129         } else {
3130           blk->set_context(thread_tag, tid, depth, method);
3131           if (is_top_frame) {
3132             // JNI locals for the top frame.
3133             java_thread->active_handles()->oops_do(blk);
3134           } else {
3135             if (last_entry_frame != NULL) {
3136               // JNI locals for the entry frame
3137               assert(last_entry_frame->is_entry_frame(), "checking");
3138               last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
3139             }
3140           }
3141         }
3142         last_entry_frame = NULL;
3143         depth++;
3144       } else {
3145         // externalVFrame - for an entry frame then we report the JNI locals
3146         // when we find the corresponding javaVFrame
3147         frame* fr = vf->frame_pointer();
3148         assert(fr != NULL, "sanity check");
3149         if (fr->is_entry_frame()) {
3150           last_entry_frame = fr;
3151         }
3152       }
3153 
3154       vf = vf->sender();
3155       is_top_frame = false;
3156     }
3157   } else {
3158     // no last java frame but there may be JNI locals
3159     blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
3160     java_thread->active_handles()->oops_do(blk);
3161   }
3162   return true;
3163 }
3164 
3165 
3166 // Collects the simple roots for all threads and collects all
3167 // stack roots - for each thread it walks the execution
3168 // stack to find all references and local JNI refs.
3169 inline bool VM_HeapWalkOperation::collect_stack_roots() {
3170   JNILocalRootsClosure blk;
3171   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
3172     oop threadObj = thread->threadObj();
3173     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
3174       // Collect the simple root for this thread before we
3175       // collect its stack roots
3176       if (!CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD,
3177                                                threadObj)) {
3178         return false;
3179       }
3180       if (!collect_stack_roots(thread, &blk)) {
3181         return false;
3182       }
3183     }
3184   }
3185   return true;
3186 }
3187 
3188 // visit an object
3189 // first mark the object as visited
3190 // second get all the outbound references from this object (in other words, all
3191 // the objects referenced by this object).
3192 //
3193 bool VM_HeapWalkOperation::visit(oop o) {
3194   // mark object as visited
3195   assert(!ObjectMarker::visited(o), "can't visit same object more than once");
3196   ObjectMarker::mark(o);
3197 
3198   // instance
3199   if (o->is_instance()) {
3200     if (o->klass() == SystemDictionary::Class_klass()) {
3201       if (!java_lang_Class::is_primitive(o)) {
3202         // a java.lang.Class
3203         return iterate_over_class(o);
3204       }
3205     } else {
3206       return iterate_over_object(o);
3207     }
3208   }
3209 
3210   // object array
3211   if (o->is_objArray()) {
3212     return iterate_over_array(o);
3213   }
3214 
3215   // type array
3216   if (o->is_typeArray()) {
3217     return iterate_over_type_array(o);
3218   }
3219 
3220   return true;
3221 }
3222 
3223 void VM_HeapWalkOperation::doit() {
3224   ResourceMark rm;
3225   ObjectMarkerController marker;
3226   ClassFieldMapCacheMark cm;
3227 
3228   assert(visit_stack()->is_empty(), "visit stack must be empty");
3229 
3230   // the heap walk starts with an initial object or the heap roots
3231   if (initial_object().is_null()) {
3232     // If either collect_stack_roots() or collect_simple_roots()
3233     // returns false at this point, then there are no mark bits
3234     // to reset.
3235     ObjectMarker::set_needs_reset(false);
3236 
3237     // Calling collect_stack_roots() before collect_simple_roots()
3238     // can result in a big performance boost for an agent that is
3239     // focused on analyzing references in the thread stacks.
3240     if (!collect_stack_roots()) return;
3241 
3242     if (!collect_simple_roots()) return;
3243 
3244     // no early return so enable heap traversal to reset the mark bits
3245     ObjectMarker::set_needs_reset(true);
3246   } else {
3247     visit_stack()->push(initial_object()());
3248   }
3249 
3250   // object references required
3251   if (is_following_references()) {
3252 
3253     // visit each object until all reachable objects have been
3254     // visited or the callback asked to terminate the iteration.
3255     while (!visit_stack()->is_empty()) {
3256       oop o = visit_stack()->pop();
3257       if (!ObjectMarker::visited(o)) {
3258         if (!visit(o)) {
3259           break;
3260         }
3261       }
3262     }
3263   }
3264 }
3265 
3266 // iterate over all objects that are reachable from a set of roots
3267 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
3268                                                  jvmtiStackReferenceCallback stack_ref_callback,
3269                                                  jvmtiObjectReferenceCallback object_ref_callback,
3270                                                  const void* user_data) {
3271   JavaThread* jt = JavaThread::current();
3272   EscapeBarrier eb(jt, true);
3273   eb.deoptimize_objects_all_threads();
3274   MutexLocker ml(Heap_lock);
3275   BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
3276   VM_HeapWalkOperation op(this, Handle(), context, user_data);
3277   VMThread::execute(&op);
3278 }
3279 
3280 // iterate over all objects that are reachable from a given object
3281 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
3282                                                              jvmtiObjectReferenceCallback object_ref_callback,
3283                                                              const void* user_data) {
3284   oop obj = JNIHandles::resolve(object);
3285   Handle initial_object(Thread::current(), obj);
3286 
3287   MutexLocker ml(Heap_lock);
3288   BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
3289   VM_HeapWalkOperation op(this, initial_object, context, user_data);
3290   VMThread::execute(&op);
3291 }
3292 
3293 // follow references from an initial object or the GC roots
3294 void JvmtiTagMap::follow_references(jint heap_filter,
3295                                     Klass* klass,
3296                                     jobject object,
3297                                     const jvmtiHeapCallbacks* callbacks,
3298                                     const void* user_data)
3299 {
3300   oop obj = JNIHandles::resolve(object);
3301   JavaThread* jt = JavaThread::current();
3302   Handle initial_object(jt, obj);
3303   // EA based optimizations that are tagged or reachable from initial_object are already reverted.
3304   EscapeBarrier eb(jt,
3305       initial_object.is_null() && !(heap_filter & JVMTI_HEAP_FILTER_UNTAGGED));
3306   eb.deoptimize_objects_all_threads();
3307   MutexLocker ml(Heap_lock);
3308   AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
3309   VM_HeapWalkOperation op(this, initial_object, context, user_data);
3310   VMThread::execute(&op);
3311 }
3312 
3313 
3314 void JvmtiTagMap::weak_oops_do(BoolObjectClosure* is_alive, OopClosure* f) {
3315   // No locks during VM bring-up (0 threads) and no safepoints after main
3316   // thread creation and before VMThread creation (1 thread); initial GC
3317   // verification can happen in that window which gets to here.
3318   assert(Threads::number_of_threads() <= 1 ||
3319          SafepointSynchronize::is_at_safepoint(),
3320          "must be executed at a safepoint");
3321   if (JvmtiEnv::environments_might_exist()) {
3322     JvmtiEnvIterator it;
3323     for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
3324       JvmtiTagMap* tag_map = env->tag_map_acquire();
3325       if (tag_map != NULL && !tag_map->is_empty()) {
3326         tag_map->do_weak_oops(is_alive, f);
3327       }
3328     }
3329   }
3330 }
3331 
3332 void JvmtiTagMap::do_weak_oops(BoolObjectClosure* is_alive, OopClosure* f) {
3333 
3334   // does this environment have the OBJECT_FREE event enabled
3335   bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
3336 
3337   // counters used for trace message
3338   int freed = 0;
3339   int moved = 0;
3340 
3341   JvmtiTagHashmap* hashmap = this->hashmap();
3342 
3343   // reenable sizing (if disabled)
3344   hashmap->set_resizing_enabled(true);
3345 
3346   // if the hashmap is empty then we can skip it
3347   if (hashmap->_entry_count == 0) {
3348     return;
3349   }
3350 
3351   // now iterate through each entry in the table
3352 
3353   JvmtiTagHashmapEntry** table = hashmap->table();
3354   int size = hashmap->size();
3355 
3356   JvmtiTagHashmapEntry* delayed_add = NULL;
3357 
3358   for (int pos = 0; pos < size; ++pos) {
3359     JvmtiTagHashmapEntry* entry = table[pos];
3360     JvmtiTagHashmapEntry* prev = NULL;
3361 
3362     while (entry != NULL) {
3363       JvmtiTagHashmapEntry* next = entry->next();
3364 
3365       // has object been GC'ed
3366       if (!is_alive->do_object_b(entry->object_raw())) {
3367         // grab the tag
3368         jlong tag = entry->tag();
3369         guarantee(tag != 0, "checking");
3370 
3371         // remove GC'ed entry from hashmap and return the
3372         // entry to the free list
3373         hashmap->remove(prev, pos, entry);
3374         destroy_entry(entry);
3375 
3376         // post the event to the profiler
3377         if (post_object_free) {
3378           JvmtiExport::post_object_free(env(), tag);
3379         }
3380 
3381         ++freed;
3382       } else {
3383         f->do_oop(entry->object_addr());
3384         oop new_oop = entry->object_raw();
3385 
3386         // if the object has moved then re-hash it and move its
3387         // entry to its new location.
3388         unsigned int new_pos = JvmtiTagHashmap::hash(new_oop, size);
3389         if (new_pos != (unsigned int)pos) {
3390           if (prev == NULL) {
3391             table[pos] = next;
3392           } else {
3393             prev->set_next(next);
3394           }
3395           if (new_pos < (unsigned int)pos) {
3396             entry->set_next(table[new_pos]);
3397             table[new_pos] = entry;
3398           } else {
3399             // Delay adding this entry to it's new position as we'd end up
3400             // hitting it again during this iteration.
3401             entry->set_next(delayed_add);
3402             delayed_add = entry;
3403           }
3404           moved++;
3405         } else {
3406           // object didn't move
3407           prev = entry;
3408         }
3409       }
3410 
3411       entry = next;
3412     }
3413   }
3414 
3415   // Re-add all the entries which were kept aside
3416   while (delayed_add != NULL) {
3417     JvmtiTagHashmapEntry* next = delayed_add->next();
3418     unsigned int pos = JvmtiTagHashmap::hash(delayed_add->object_raw(), size);
3419     delayed_add->set_next(table[pos]);
3420     table[pos] = delayed_add;
3421     delayed_add = next;
3422   }
3423 
3424   log_debug(jvmti, objecttagging)("(%d->%d, %d freed, %d total moves)",
3425                                   hashmap->_entry_count + freed, hashmap->_entry_count, freed, moved);
3426 }