1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/iterator.hpp"
  51 #include "memory/metaspaceShared.hpp"
  52 #include "memory/oopFactory.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "memory/universe.hpp"
  55 #include "oops/access.inline.hpp"
  56 #include "oops/instanceKlass.hpp"
  57 #include "oops/objArrayOop.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "oops/symbol.hpp"
  60 #include "oops/typeArrayOop.inline.hpp"
  61 #include "oops/verifyOopClosure.hpp"
  62 #include "prims/jvm_misc.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "prims/jvmtiThreadState.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/biasedLocking.hpp"
  68 #include "runtime/fieldDescriptor.inline.hpp"
  69 #include "runtime/flags/jvmFlagConstraintList.hpp"
  70 #include "runtime/flags/jvmFlagRangeList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/serviceThread.hpp"
  91 #include "runtime/sharedRuntime.hpp"
  92 #include "runtime/statSampler.hpp"
  93 #include "runtime/stubRoutines.hpp"
  94 #include "runtime/sweeper.hpp"
  95 #include "runtime/task.hpp"
  96 #include "runtime/thread.inline.hpp"
  97 #include "runtime/threadCritical.hpp"
  98 #include "runtime/threadSMR.inline.hpp"
  99 #include "runtime/threadStatisticalInfo.hpp"
 100 #include "runtime/timer.hpp"
 101 #include "runtime/timerTrace.hpp"
 102 #include "runtime/vframe.inline.hpp"
 103 #include "runtime/vframeArray.hpp"
 104 #include "runtime/vframe_hp.hpp"
 105 #include "runtime/vmThread.hpp"
 106 #include "runtime/vmOperations.hpp"
 107 #include "runtime/vm_version.hpp"
 108 #include "services/attachListener.hpp"
 109 #include "services/management.hpp"
 110 #include "services/memTracker.hpp"
 111 #include "services/threadService.hpp"
 112 #include "utilities/align.hpp"
 113 #include "utilities/copy.hpp"
 114 #include "utilities/defaultStream.hpp"
 115 #include "utilities/dtrace.hpp"
 116 #include "utilities/events.hpp"
 117 #include "utilities/macros.hpp"
 118 #include "utilities/preserveException.hpp"
 119 #include "utilities/singleWriterSynchronizer.hpp"
 120 #include "utilities/vmError.hpp"
 121 #if INCLUDE_JVMCI
 122 #include "jvmci/jvmci.hpp"
 123 #include "jvmci/jvmciEnv.hpp"
 124 #endif
 125 #ifdef COMPILER1
 126 #include "c1/c1_Compiler.hpp"
 127 #endif
 128 #ifdef COMPILER2
 129 #include "opto/c2compiler.hpp"
 130 #include "opto/idealGraphPrinter.hpp"
 131 #endif
 132 #if INCLUDE_RTM_OPT
 133 #include "runtime/rtmLocking.hpp"
 134 #endif
 135 #if INCLUDE_JFR
 136 #include "jfr/jfr.hpp"
 137 #endif
 138 
 139 // Initialization after module runtime initialization
 140 void universe_post_module_init();  // must happen after call_initPhase2
 141 
 142 #ifdef DTRACE_ENABLED
 143 
 144 // Only bother with this argument setup if dtrace is available
 145 
 146   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 147   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 150     {                                                                      \
 151       ResourceMark rm(this);                                               \
 152       int len = 0;                                                         \
 153       const char* name = (javathread)->get_thread_name();                  \
 154       len = strlen(name);                                                  \
 155       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 156         (char *) name, len,                                                \
 157         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 158         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 159         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 160     }
 161 
 162 #else //  ndef DTRACE_ENABLED
 163 
 164   #define DTRACE_THREAD_PROBE(probe, javathread)
 165 
 166 #endif // ndef DTRACE_ENABLED
 167 
 168 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 169 // Current thread is maintained as a thread-local variable
 170 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
 171 #endif
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const size_t alignment = markWord::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 181                                                          AllocFailStrategy::RETURN_NULL);
 182     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 183     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 184            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 185            "JavaThread alignment code overflowed allocated storage");
 186     if (aligned_addr != real_malloc_addr) {
 187       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                               p2i(real_malloc_addr),
 189                               p2i(aligned_addr));
 190     }
 191     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 192     return aligned_addr;
 193   } else {
 194     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 195                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 196   }
 197 }
 198 
 199 void Thread::operator delete(void* p) {
 200   if (UseBiasedLocking) {
 201     FreeHeap(((Thread*) p)->_real_malloc_address);
 202   } else {
 203     FreeHeap(p);
 204   }
 205 }
 206 
 207 void JavaThread::smr_delete() {
 208   if (_on_thread_list) {
 209     ThreadsSMRSupport::smr_delete(this);
 210   } else {
 211     delete this;
 212   }
 213 }
 214 
 215 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 216 // JavaThread
 217 
 218 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 219 
 220 Thread::Thread() {
 221 
 222   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 223 
 224   // stack and get_thread
 225   set_stack_base(NULL);
 226   set_stack_size(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, mtClass));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // Initial value of zero ==> never claimed.
 242   _threads_do_token = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   NOT_PRODUCT(_no_safepoint_count = 0;)
 254   NOT_PRODUCT(_skip_gcalot = false;)
 255   _jvmti_env_iteration_count = 0;
 256   set_allocated_bytes(0);
 257   _vm_operation_started_count = 0;
 258   _vm_operation_completed_count = 0;
 259   _current_pending_monitor = NULL;
 260   _current_pending_monitor_is_from_java = true;
 261   _current_waiting_monitor = NULL;
 262   _current_pending_raw_monitor = NULL;
 263   _num_nested_signal = 0;
 264   om_free_list = NULL;
 265   om_free_count = 0;
 266   om_free_provision = 32;
 267   om_in_use_list = NULL;
 268   om_in_use_count = 0;
 269 
 270 #ifdef ASSERT
 271   _visited_for_critical_count = false;
 272 #endif
 273 
 274   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 275                          Monitor::_safepoint_check_sometimes);
 276   _suspend_flags = 0;
 277 
 278   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 279   _hashStateX = os::random();
 280   _hashStateY = 842502087;
 281   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 282   _hashStateW = 273326509;
 283 
 284   _OnTrap   = 0;
 285   _Stalled  = 0;
 286   _TypeTag  = 0x2BAD;
 287 
 288   // Many of the following fields are effectively final - immutable
 289   // Note that nascent threads can't use the Native Monitor-Mutex
 290   // construct until the _MutexEvent is initialized ...
 291   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 292   // we might instead use a stack of ParkEvents that we could provision on-demand.
 293   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 294   // and ::Release()
 295   _ParkEvent   = ParkEvent::Allocate(this);
 296   _MuxEvent    = ParkEvent::Allocate(this);
 297 
 298 #ifdef CHECK_UNHANDLED_OOPS
 299   if (CheckUnhandledOops) {
 300     _unhandled_oops = new UnhandledOops(this);
 301   }
 302 #endif // CHECK_UNHANDLED_OOPS
 303 #ifdef ASSERT
 304   if (UseBiasedLocking) {
 305     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 306     assert(this == _real_malloc_address ||
 307            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 308            "bug in forced alignment of thread objects");
 309   }
 310 #endif // ASSERT
 311 
 312   // Notify the barrier set that a thread is being created. The initial
 313   // thread is created before the barrier set is available.  The call to
 314   // BarrierSet::on_thread_create() for this thread is therefore deferred
 315   // to BarrierSet::set_barrier_set().
 316   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 317   if (barrier_set != NULL) {
 318     barrier_set->on_thread_create(this);
 319   } else {
 320     // Only the main thread should be created before the barrier set
 321     // and that happens just before Thread::current is set. No other thread
 322     // can attach as the VM is not created yet, so they can't execute this code.
 323     // If the main thread creates other threads before the barrier set that is an error.
 324     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 325   }
 326 }
 327 
 328 void Thread::initialize_thread_current() {
 329 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 330   assert(_thr_current == NULL, "Thread::current already initialized");
 331   _thr_current = this;
 332 #endif
 333   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 334   ThreadLocalStorage::set_thread(this);
 335   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 336 }
 337 
 338 void Thread::clear_thread_current() {
 339   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 340 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 341   _thr_current = NULL;
 342 #endif
 343   ThreadLocalStorage::set_thread(NULL);
 344 }
 345 
 346 void Thread::record_stack_base_and_size() {
 347   // Note: at this point, Thread object is not yet initialized. Do not rely on
 348   // any members being initialized. Do not rely on Thread::current() being set.
 349   // If possible, refrain from doing anything which may crash or assert since
 350   // quite probably those crash dumps will be useless.
 351   set_stack_base(os::current_stack_base());
 352   set_stack_size(os::current_stack_size());
 353 
 354   // Set stack limits after thread is initialized.
 355   if (is_Java_thread()) {
 356     ((JavaThread*) this)->set_stack_overflow_limit();
 357     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 358   }
 359 }
 360 
 361 #if INCLUDE_NMT
 362 void Thread::register_thread_stack_with_NMT() {
 363   MemTracker::record_thread_stack(stack_end(), stack_size());
 364 }
 365 #endif // INCLUDE_NMT
 366 
 367 void Thread::call_run() {
 368   DEBUG_ONLY(_run_state = CALL_RUN;)
 369 
 370   // At this point, Thread object should be fully initialized and
 371   // Thread::current() should be set.
 372 
 373   assert(Thread::current_or_null() != NULL, "current thread is unset");
 374   assert(Thread::current_or_null() == this, "current thread is wrong");
 375 
 376   // Perform common initialization actions
 377 
 378   register_thread_stack_with_NMT();
 379 
 380   JFR_ONLY(Jfr::on_thread_start(this);)
 381 
 382   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 383     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 384     os::current_thread_id(), p2i(stack_end()),
 385     p2i(stack_base()), stack_size()/1024);
 386 
 387   // Perform <ChildClass> initialization actions
 388   DEBUG_ONLY(_run_state = PRE_RUN;)
 389   this->pre_run();
 390 
 391   // Invoke <ChildClass>::run()
 392   DEBUG_ONLY(_run_state = RUN;)
 393   this->run();
 394   // Returned from <ChildClass>::run(). Thread finished.
 395 
 396   // Perform common tear-down actions
 397 
 398   assert(Thread::current_or_null() != NULL, "current thread is unset");
 399   assert(Thread::current_or_null() == this, "current thread is wrong");
 400 
 401   // Perform <ChildClass> tear-down actions
 402   DEBUG_ONLY(_run_state = POST_RUN;)
 403   this->post_run();
 404 
 405   // Note: at this point the thread object may already have deleted itself,
 406   // so from here on do not dereference *this*. Not all thread types currently
 407   // delete themselves when they terminate. But no thread should ever be deleted
 408   // asynchronously with respect to its termination - that is what _run_state can
 409   // be used to check.
 410 
 411   assert(Thread::current_or_null() == NULL, "current thread still present");
 412 }
 413 
 414 Thread::~Thread() {
 415 
 416   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 417   // get started due to errors etc. Any active thread should at least reach post_run
 418   // before it is deleted (usually in post_run()).
 419   assert(_run_state == PRE_CALL_RUN ||
 420          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 421          "_run_state=%d", (int)_run_state);
 422 
 423   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 424   // set might not be available if we encountered errors during bootstrapping.
 425   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 426   if (barrier_set != NULL) {
 427     barrier_set->on_thread_destroy(this);
 428   }
 429 
 430   // stack_base can be NULL if the thread is never started or exited before
 431   // record_stack_base_and_size called. Although, we would like to ensure
 432   // that all started threads do call record_stack_base_and_size(), there is
 433   // not proper way to enforce that.
 434 #if INCLUDE_NMT
 435   if (_stack_base != NULL) {
 436     MemTracker::release_thread_stack(stack_end(), stack_size());
 437 #ifdef ASSERT
 438     set_stack_base(NULL);
 439 #endif
 440   }
 441 #endif // INCLUDE_NMT
 442 
 443   // deallocate data structures
 444   delete resource_area();
 445   // since the handle marks are using the handle area, we have to deallocated the root
 446   // handle mark before deallocating the thread's handle area,
 447   assert(last_handle_mark() != NULL, "check we have an element");
 448   delete last_handle_mark();
 449   assert(last_handle_mark() == NULL, "check we have reached the end");
 450 
 451   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 452   // We NULL out the fields for good hygiene.
 453   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 454   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 455 
 456   delete handle_area();
 457   delete metadata_handles();
 458 
 459   // SR_handler uses this as a termination indicator -
 460   // needs to happen before os::free_thread()
 461   delete _SR_lock;
 462   _SR_lock = NULL;
 463 
 464   // osthread() can be NULL, if creation of thread failed.
 465   if (osthread() != NULL) os::free_thread(osthread());
 466 
 467   // Clear Thread::current if thread is deleting itself and it has not
 468   // already been done. This must be done before the memory is deallocated.
 469   // Needed to ensure JNI correctly detects non-attached threads.
 470   if (this == Thread::current_or_null()) {
 471     Thread::clear_thread_current();
 472   }
 473 
 474   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 475 }
 476 
 477 #ifdef ASSERT
 478 // A JavaThread is considered "dangling" if it is not the current
 479 // thread, has been added the Threads list, the system is not at a
 480 // safepoint and the Thread is not "protected".
 481 //
 482 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 483   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 484          !((JavaThread *) thread)->on_thread_list() ||
 485          SafepointSynchronize::is_at_safepoint() ||
 486          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 487          "possibility of dangling Thread pointer");
 488 }
 489 #endif
 490 
 491 ThreadPriority Thread::get_priority(const Thread* const thread) {
 492   ThreadPriority priority;
 493   // Can return an error!
 494   (void)os::get_priority(thread, priority);
 495   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 496   return priority;
 497 }
 498 
 499 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 500   debug_only(check_for_dangling_thread_pointer(thread);)
 501   // Can return an error!
 502   (void)os::set_priority(thread, priority);
 503 }
 504 
 505 
 506 void Thread::start(Thread* thread) {
 507   // Start is different from resume in that its safety is guaranteed by context or
 508   // being called from a Java method synchronized on the Thread object.
 509   if (!DisableStartThread) {
 510     if (thread->is_Java_thread()) {
 511       // Initialize the thread state to RUNNABLE before starting this thread.
 512       // Can not set it after the thread started because we do not know the
 513       // exact thread state at that time. It could be in MONITOR_WAIT or
 514       // in SLEEPING or some other state.
 515       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 516                                           java_lang_Thread::RUNNABLE);
 517     }
 518     os::start_thread(thread);
 519   }
 520 }
 521 
 522 class InstallAsyncExceptionClosure : public HandshakeClosure {
 523   Handle _throwable; // The Throwable thrown at the target Thread
 524 public:
 525   InstallAsyncExceptionClosure(Handle throwable) : HandshakeClosure("InstallAsyncException"), _throwable(throwable) {}
 526 
 527   void do_thread(Thread* thr) {
 528     JavaThread* target = (JavaThread*)thr;
 529     // Note that this now allows multiple ThreadDeath exceptions to be
 530     // thrown at a thread.
 531     // The target thread has run and has not exited yet.
 532     target->send_thread_stop(_throwable());
 533   }
 534 };
 535 
 536 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 537   Handle throwable(Thread::current(), java_throwable);
 538   JavaThread* target = java_lang_Thread::thread(java_thread);
 539   InstallAsyncExceptionClosure vm_stop(throwable);
 540   Handshake::execute(&vm_stop, target);
 541 }
 542 
 543 
 544 // Check if an external suspend request has completed (or has been
 545 // cancelled). Returns true if the thread is externally suspended and
 546 // false otherwise.
 547 //
 548 // The bits parameter returns information about the code path through
 549 // the routine. Useful for debugging:
 550 //
 551 // set in is_ext_suspend_completed():
 552 // 0x00000001 - routine was entered
 553 // 0x00000010 - routine return false at end
 554 // 0x00000100 - thread exited (return false)
 555 // 0x00000200 - suspend request cancelled (return false)
 556 // 0x00000400 - thread suspended (return true)
 557 // 0x00001000 - thread is in a suspend equivalent state (return true)
 558 // 0x00002000 - thread is native and walkable (return true)
 559 // 0x00004000 - thread is native_trans and walkable (needed retry)
 560 //
 561 // set in wait_for_ext_suspend_completion():
 562 // 0x00010000 - routine was entered
 563 // 0x00020000 - suspend request cancelled before loop (return false)
 564 // 0x00040000 - thread suspended before loop (return true)
 565 // 0x00080000 - suspend request cancelled in loop (return false)
 566 // 0x00100000 - thread suspended in loop (return true)
 567 // 0x00200000 - suspend not completed during retry loop (return false)
 568 
 569 // Helper class for tracing suspend wait debug bits.
 570 //
 571 // 0x00000100 indicates that the target thread exited before it could
 572 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 573 // 0x00080000 each indicate a cancelled suspend request so they don't
 574 // count as wait failures either.
 575 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 576 
 577 class TraceSuspendDebugBits : public StackObj {
 578  private:
 579   JavaThread * jt;
 580   bool         is_wait;
 581   bool         called_by_wait;  // meaningful when !is_wait
 582   uint32_t *   bits;
 583 
 584  public:
 585   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 586                         uint32_t *_bits) {
 587     jt             = _jt;
 588     is_wait        = _is_wait;
 589     called_by_wait = _called_by_wait;
 590     bits           = _bits;
 591   }
 592 
 593   ~TraceSuspendDebugBits() {
 594     if (!is_wait) {
 595 #if 1
 596       // By default, don't trace bits for is_ext_suspend_completed() calls.
 597       // That trace is very chatty.
 598       return;
 599 #else
 600       if (!called_by_wait) {
 601         // If tracing for is_ext_suspend_completed() is enabled, then only
 602         // trace calls to it from wait_for_ext_suspend_completion()
 603         return;
 604       }
 605 #endif
 606     }
 607 
 608     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 609       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 610         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 611         ResourceMark rm;
 612 
 613         tty->print_cr(
 614                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 615                       jt->get_thread_name(), *bits);
 616 
 617         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 618       }
 619     }
 620   }
 621 };
 622 #undef DEBUG_FALSE_BITS
 623 
 624 
 625 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 626                                           uint32_t *bits) {
 627   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 628 
 629   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 630   bool do_trans_retry;           // flag to force the retry
 631 
 632   *bits |= 0x00000001;
 633 
 634   do {
 635     do_trans_retry = false;
 636 
 637     if (is_exiting()) {
 638       // Thread is in the process of exiting. This is always checked
 639       // first to reduce the risk of dereferencing a freed JavaThread.
 640       *bits |= 0x00000100;
 641       return false;
 642     }
 643 
 644     if (!is_external_suspend()) {
 645       // Suspend request is cancelled. This is always checked before
 646       // is_ext_suspended() to reduce the risk of a rogue resume
 647       // confusing the thread that made the suspend request.
 648       *bits |= 0x00000200;
 649       return false;
 650     }
 651 
 652     if (is_ext_suspended()) {
 653       // thread is suspended
 654       *bits |= 0x00000400;
 655       return true;
 656     }
 657 
 658     // Now that we no longer do hard suspends of threads running
 659     // native code, the target thread can be changing thread state
 660     // while we are in this routine:
 661     //
 662     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 663     //
 664     // We save a copy of the thread state as observed at this moment
 665     // and make our decision about suspend completeness based on the
 666     // copy. This closes the race where the thread state is seen as
 667     // _thread_in_native_trans in the if-thread_blocked check, but is
 668     // seen as _thread_blocked in if-thread_in_native_trans check.
 669     JavaThreadState save_state = thread_state();
 670 
 671     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 672       // If the thread's state is _thread_blocked and this blocking
 673       // condition is known to be equivalent to a suspend, then we can
 674       // consider the thread to be externally suspended. This means that
 675       // the code that sets _thread_blocked has been modified to do
 676       // self-suspension if the blocking condition releases. We also
 677       // used to check for CONDVAR_WAIT here, but that is now covered by
 678       // the _thread_blocked with self-suspension check.
 679       //
 680       // Return true since we wouldn't be here unless there was still an
 681       // external suspend request.
 682       *bits |= 0x00001000;
 683       return true;
 684     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 685       // Threads running native code will self-suspend on native==>VM/Java
 686       // transitions. If its stack is walkable (should always be the case
 687       // unless this function is called before the actual java_suspend()
 688       // call), then the wait is done.
 689       *bits |= 0x00002000;
 690       return true;
 691     } else if (!called_by_wait && !did_trans_retry &&
 692                save_state == _thread_in_native_trans &&
 693                frame_anchor()->walkable()) {
 694       // The thread is transitioning from thread_in_native to another
 695       // thread state. check_safepoint_and_suspend_for_native_trans()
 696       // will force the thread to self-suspend. If it hasn't gotten
 697       // there yet we may have caught the thread in-between the native
 698       // code check above and the self-suspend. Lucky us. If we were
 699       // called by wait_for_ext_suspend_completion(), then it
 700       // will be doing the retries so we don't have to.
 701       //
 702       // Since we use the saved thread state in the if-statement above,
 703       // there is a chance that the thread has already transitioned to
 704       // _thread_blocked by the time we get here. In that case, we will
 705       // make a single unnecessary pass through the logic below. This
 706       // doesn't hurt anything since we still do the trans retry.
 707 
 708       *bits |= 0x00004000;
 709 
 710       // Once the thread leaves thread_in_native_trans for another
 711       // thread state, we break out of this retry loop. We shouldn't
 712       // need this flag to prevent us from getting back here, but
 713       // sometimes paranoia is good.
 714       did_trans_retry = true;
 715 
 716       // We wait for the thread to transition to a more usable state.
 717       for (int i = 1; i <= SuspendRetryCount; i++) {
 718         // We used to do an "os::yield_all(i)" call here with the intention
 719         // that yielding would increase on each retry. However, the parameter
 720         // is ignored on Linux which means the yield didn't scale up. Waiting
 721         // on the SR_lock below provides a much more predictable scale up for
 722         // the delay. It also provides a simple/direct point to check for any
 723         // safepoint requests from the VMThread
 724 
 725         // temporarily drops SR_lock while doing wait with safepoint check
 726         // (if we're a JavaThread - the WatcherThread can also call this)
 727         // and increase delay with each retry
 728         if (Thread::current()->is_Java_thread()) {
 729           SR_lock()->wait(i * delay);
 730         } else {
 731           SR_lock()->wait_without_safepoint_check(i * delay);
 732         }
 733 
 734         // check the actual thread state instead of what we saved above
 735         if (thread_state() != _thread_in_native_trans) {
 736           // the thread has transitioned to another thread state so
 737           // try all the checks (except this one) one more time.
 738           do_trans_retry = true;
 739           break;
 740         }
 741       } // end retry loop
 742 
 743 
 744     }
 745   } while (do_trans_retry);
 746 
 747   *bits |= 0x00000010;
 748   return false;
 749 }
 750 
 751 // Wait for an external suspend request to complete (or be cancelled).
 752 // Returns true if the thread is externally suspended and false otherwise.
 753 //
 754 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 755                                                  uint32_t *bits) {
 756   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 757                              false /* !called_by_wait */, bits);
 758 
 759   // local flag copies to minimize SR_lock hold time
 760   bool is_suspended;
 761   bool pending;
 762   uint32_t reset_bits;
 763 
 764   // set a marker so is_ext_suspend_completed() knows we are the caller
 765   *bits |= 0x00010000;
 766 
 767   // We use reset_bits to reinitialize the bits value at the top of
 768   // each retry loop. This allows the caller to make use of any
 769   // unused bits for their own marking purposes.
 770   reset_bits = *bits;
 771 
 772   {
 773     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 774     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 775                                             delay, bits);
 776     pending = is_external_suspend();
 777   }
 778   // must release SR_lock to allow suspension to complete
 779 
 780   if (!pending) {
 781     // A cancelled suspend request is the only false return from
 782     // is_ext_suspend_completed() that keeps us from entering the
 783     // retry loop.
 784     *bits |= 0x00020000;
 785     return false;
 786   }
 787 
 788   if (is_suspended) {
 789     *bits |= 0x00040000;
 790     return true;
 791   }
 792 
 793   for (int i = 1; i <= retries; i++) {
 794     *bits = reset_bits;  // reinit to only track last retry
 795 
 796     // We used to do an "os::yield_all(i)" call here with the intention
 797     // that yielding would increase on each retry. However, the parameter
 798     // is ignored on Linux which means the yield didn't scale up. Waiting
 799     // on the SR_lock below provides a much more predictable scale up for
 800     // the delay. It also provides a simple/direct point to check for any
 801     // safepoint requests from the VMThread
 802 
 803     {
 804       Thread* t = Thread::current();
 805       MonitorLocker ml(SR_lock(),
 806                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 807       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 808       // can also call this)  and increase delay with each retry
 809       ml.wait(i * delay);
 810 
 811       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 812                                               delay, bits);
 813 
 814       // It is possible for the external suspend request to be cancelled
 815       // (by a resume) before the actual suspend operation is completed.
 816       // Refresh our local copy to see if we still need to wait.
 817       pending = is_external_suspend();
 818     }
 819 
 820     if (!pending) {
 821       // A cancelled suspend request is the only false return from
 822       // is_ext_suspend_completed() that keeps us from staying in the
 823       // retry loop.
 824       *bits |= 0x00080000;
 825       return false;
 826     }
 827 
 828     if (is_suspended) {
 829       *bits |= 0x00100000;
 830       return true;
 831     }
 832   } // end retry loop
 833 
 834   // thread did not suspend after all our retries
 835   *bits |= 0x00200000;
 836   return false;
 837 }
 838 
 839 // Called from API entry points which perform stack walking. If the
 840 // associated JavaThread is the current thread, then wait_for_suspend
 841 // is not used. Otherwise, it determines if we should wait for the
 842 // "other" thread to complete external suspension. (NOTE: in future
 843 // releases the suspension mechanism should be reimplemented so this
 844 // is not necessary.)
 845 //
 846 bool
 847 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 848   if (this != JavaThread::current()) {
 849     // "other" threads require special handling.
 850     if (wait_for_suspend) {
 851       // We are allowed to wait for the external suspend to complete
 852       // so give the other thread a chance to get suspended.
 853       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 854                                            SuspendRetryDelay, bits)) {
 855         // Didn't make it so let the caller know.
 856         return false;
 857       }
 858     }
 859     // We aren't allowed to wait for the external suspend to complete
 860     // so if the other thread isn't externally suspended we need to
 861     // let the caller know.
 862     else if (!is_ext_suspend_completed_with_lock(bits)) {
 863       return false;
 864     }
 865   }
 866 
 867   return true;
 868 }
 869 
 870 // GC Support
 871 bool Thread::claim_par_threads_do(uintx claim_token) {
 872   uintx token = _threads_do_token;
 873   if (token != claim_token) {
 874     uintx res = Atomic::cmpxchg(&_threads_do_token, token, claim_token);
 875     if (res == token) {
 876       return true;
 877     }
 878     guarantee(res == claim_token, "invariant");
 879   }
 880   return false;
 881 }
 882 
 883 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 884   if (active_handles() != NULL) {
 885     active_handles()->oops_do(f);
 886   }
 887   // Do oop for ThreadShadow
 888   f->do_oop((oop*)&_pending_exception);
 889   handle_area()->oops_do(f);
 890 
 891   // We scan thread local monitor lists here, and the remaining global
 892   // monitors in ObjectSynchronizer::oops_do().
 893   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 894 }
 895 
 896 void Thread::metadata_handles_do(void f(Metadata*)) {
 897   // Only walk the Handles in Thread.
 898   if (metadata_handles() != NULL) {
 899     for (int i = 0; i< metadata_handles()->length(); i++) {
 900       f(metadata_handles()->at(i));
 901     }
 902   }
 903 }
 904 
 905 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 906   // get_priority assumes osthread initialized
 907   if (osthread() != NULL) {
 908     int os_prio;
 909     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 910       st->print("os_prio=%d ", os_prio);
 911     }
 912 
 913     st->print("cpu=%.2fms ",
 914               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 915               );
 916     st->print("elapsed=%.2fs ",
 917               _statistical_info.getElapsedTime() / 1000.0
 918               );
 919     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 920       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 921       st->print("allocated=" SIZE_FORMAT "%s ",
 922                 byte_size_in_proper_unit(allocated_bytes),
 923                 proper_unit_for_byte_size(allocated_bytes)
 924                 );
 925       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 926     }
 927 
 928     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 929     osthread()->print_on(st);
 930   }
 931   ThreadsSMRSupport::print_info_on(this, st);
 932   st->print(" ");
 933   debug_only(if (WizardMode) print_owned_locks_on(st);)
 934 }
 935 
 936 void Thread::print() const { print_on(tty); }
 937 
 938 // Thread::print_on_error() is called by fatal error handler. Don't use
 939 // any lock or allocate memory.
 940 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 941   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 942 
 943   if (is_VM_thread())                 { st->print("VMThread"); }
 944   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 945   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 946   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 947   else                                { st->print("Thread"); }
 948 
 949   if (is_Named_thread()) {
 950     st->print(" \"%s\"", name());
 951   }
 952 
 953   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 954             p2i(stack_end()), p2i(stack_base()));
 955 
 956   if (osthread()) {
 957     st->print(" [id=%d]", osthread()->thread_id());
 958   }
 959 
 960   ThreadsSMRSupport::print_info_on(this, st);
 961 }
 962 
 963 void Thread::print_value_on(outputStream* st) const {
 964   if (is_Named_thread()) {
 965     st->print(" \"%s\" ", name());
 966   }
 967   st->print(INTPTR_FORMAT, p2i(this));   // print address
 968 }
 969 
 970 #ifdef ASSERT
 971 void Thread::print_owned_locks_on(outputStream* st) const {
 972   Mutex* cur = _owned_locks;
 973   if (cur == NULL) {
 974     st->print(" (no locks) ");
 975   } else {
 976     st->print_cr(" Locks owned:");
 977     while (cur) {
 978       cur->print_on(st);
 979       cur = cur->next();
 980     }
 981   }
 982 }
 983 
 984 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 985 void Thread::check_possible_safepoint() {
 986   if (!is_Java_thread()) return;
 987 
 988   if (_no_safepoint_count > 0) {
 989     print_owned_locks();
 990     fatal("Possible safepoint reached by thread that does not allow it");
 991   }
 992 #ifdef CHECK_UNHANDLED_OOPS
 993   // Clear unhandled oops in JavaThreads so we get a crash right away.
 994   clear_unhandled_oops();
 995 #endif // CHECK_UNHANDLED_OOPS
 996 }
 997 
 998 void Thread::check_for_valid_safepoint_state() {
 999   if (!is_Java_thread()) return;
1000 
1001   // Check NoSafepointVerifier, which is implied by locks taken that can be
1002   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
1003   // are held.
1004   check_possible_safepoint();
1005 
1006   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
1007     fatal("LEAF method calling lock?");
1008   }
1009 
1010   if (GCALotAtAllSafepoints) {
1011     // We could enter a safepoint here and thus have a gc
1012     InterfaceSupport::check_gc_alot();
1013   }
1014 }
1015 #endif // ASSERT
1016 
1017 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1018 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1019 // used for compilation in the future. If that change is made, the need for these methods
1020 // should be revisited, and they should be removed if possible.
1021 
1022 bool Thread::is_lock_owned(address adr) const {
1023   return is_in_full_stack(adr);
1024 }
1025 
1026 bool Thread::set_as_starting_thread() {
1027   assert(_starting_thread == NULL, "already initialized: "
1028          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1029   // NOTE: this must be called inside the main thread.
1030   DEBUG_ONLY(_starting_thread = this;)
1031   return os::create_main_thread((JavaThread*)this);
1032 }
1033 
1034 static void initialize_class(Symbol* class_name, TRAPS) {
1035   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1036   InstanceKlass::cast(klass)->initialize(CHECK);
1037 }
1038 
1039 
1040 // Creates the initial ThreadGroup
1041 static Handle create_initial_thread_group(TRAPS) {
1042   Handle system_instance = JavaCalls::construct_new_instance(
1043                             SystemDictionary::ThreadGroup_klass(),
1044                             vmSymbols::void_method_signature(),
1045                             CHECK_NH);
1046   Universe::set_system_thread_group(system_instance());
1047 
1048   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1049   Handle main_instance = JavaCalls::construct_new_instance(
1050                             SystemDictionary::ThreadGroup_klass(),
1051                             vmSymbols::threadgroup_string_void_signature(),
1052                             system_instance,
1053                             string,
1054                             CHECK_NH);
1055   return main_instance;
1056 }
1057 
1058 // Creates the initial Thread
1059 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1060                                  TRAPS) {
1061   InstanceKlass* ik = SystemDictionary::Thread_klass();
1062   assert(ik->is_initialized(), "must be");
1063   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1064 
1065   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1066   // constructor calls Thread.current(), which must be set here for the
1067   // initial thread.
1068   java_lang_Thread::set_thread(thread_oop(), thread);
1069   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1070   thread->set_threadObj(thread_oop());
1071 
1072   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1073 
1074   JavaValue result(T_VOID);
1075   JavaCalls::call_special(&result, thread_oop,
1076                           ik,
1077                           vmSymbols::object_initializer_name(),
1078                           vmSymbols::threadgroup_string_void_signature(),
1079                           thread_group,
1080                           string,
1081                           CHECK_NULL);
1082   return thread_oop();
1083 }
1084 
1085 char java_runtime_name[128] = "";
1086 char java_runtime_version[128] = "";
1087 char java_runtime_vendor_version[128] = "";
1088 char java_runtime_vendor_vm_bug_url[128] = "";
1089 
1090 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1091 static const char* get_java_runtime_name(TRAPS) {
1092   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1093                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1094   fieldDescriptor fd;
1095   bool found = k != NULL &&
1096                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1097                                                         vmSymbols::string_signature(), &fd);
1098   if (found) {
1099     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1100     if (name_oop == NULL) {
1101       return NULL;
1102     }
1103     const char* name = java_lang_String::as_utf8_string(name_oop,
1104                                                         java_runtime_name,
1105                                                         sizeof(java_runtime_name));
1106     return name;
1107   } else {
1108     return NULL;
1109   }
1110 }
1111 
1112 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1113 static const char* get_java_runtime_version(TRAPS) {
1114   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1115                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1116   fieldDescriptor fd;
1117   bool found = k != NULL &&
1118                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1119                                                         vmSymbols::string_signature(), &fd);
1120   if (found) {
1121     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1122     if (name_oop == NULL) {
1123       return NULL;
1124     }
1125     const char* name = java_lang_String::as_utf8_string(name_oop,
1126                                                         java_runtime_version,
1127                                                         sizeof(java_runtime_version));
1128     return name;
1129   } else {
1130     return NULL;
1131   }
1132 }
1133 
1134 // extract the JRE vendor version from java.lang.VersionProps.VENDOR_VERSION
1135 static const char* get_java_runtime_vendor_version(TRAPS) {
1136   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1137                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1138   fieldDescriptor fd;
1139   bool found = k != NULL &&
1140                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_version_name(),
1141                                                         vmSymbols::string_signature(), &fd);
1142   if (found) {
1143     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1144     if (name_oop == NULL) {
1145       return NULL;
1146     }
1147     const char* name = java_lang_String::as_utf8_string(name_oop,
1148                                                         java_runtime_vendor_version,
1149                                                         sizeof(java_runtime_vendor_version));
1150     return name;
1151   } else {
1152     return NULL;
1153   }
1154 }
1155 
1156 // extract the JRE vendor VM bug URL from java.lang.VersionProps.VENDOR_URL_VM_BUG
1157 static const char* get_java_runtime_vendor_vm_bug_url(TRAPS) {
1158   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1159                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1160   fieldDescriptor fd;
1161   bool found = k != NULL &&
1162                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_vm_bug_url_name(),
1163                                                         vmSymbols::string_signature(), &fd);
1164   if (found) {
1165     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1166     if (name_oop == NULL) {
1167       return NULL;
1168     }
1169     const char* name = java_lang_String::as_utf8_string(name_oop,
1170                                                         java_runtime_vendor_vm_bug_url,
1171                                                         sizeof(java_runtime_vendor_vm_bug_url));
1172     return name;
1173   } else {
1174     return NULL;
1175   }
1176 }
1177 
1178 // General purpose hook into Java code, run once when the VM is initialized.
1179 // The Java library method itself may be changed independently from the VM.
1180 static void call_postVMInitHook(TRAPS) {
1181   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1182   if (klass != NULL) {
1183     JavaValue result(T_VOID);
1184     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1185                            vmSymbols::void_method_signature(),
1186                            CHECK);
1187   }
1188 }
1189 
1190 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1191                                     bool daemon, TRAPS) {
1192   assert(thread_group.not_null(), "thread group should be specified");
1193   assert(threadObj() == NULL, "should only create Java thread object once");
1194 
1195   InstanceKlass* ik = SystemDictionary::Thread_klass();
1196   assert(ik->is_initialized(), "must be");
1197   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1198 
1199   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1200   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1201   // constructor calls Thread.current(), which must be set here.
1202   java_lang_Thread::set_thread(thread_oop(), this);
1203   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1204   set_threadObj(thread_oop());
1205 
1206   JavaValue result(T_VOID);
1207   if (thread_name != NULL) {
1208     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1209     // Thread gets assigned specified name and null target
1210     JavaCalls::call_special(&result,
1211                             thread_oop,
1212                             ik,
1213                             vmSymbols::object_initializer_name(),
1214                             vmSymbols::threadgroup_string_void_signature(),
1215                             thread_group,
1216                             name,
1217                             THREAD);
1218   } else {
1219     // Thread gets assigned name "Thread-nnn" and null target
1220     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1221     JavaCalls::call_special(&result,
1222                             thread_oop,
1223                             ik,
1224                             vmSymbols::object_initializer_name(),
1225                             vmSymbols::threadgroup_runnable_void_signature(),
1226                             thread_group,
1227                             Handle(),
1228                             THREAD);
1229   }
1230 
1231 
1232   if (daemon) {
1233     java_lang_Thread::set_daemon(thread_oop());
1234   }
1235 
1236   if (HAS_PENDING_EXCEPTION) {
1237     return;
1238   }
1239 
1240   Klass* group = SystemDictionary::ThreadGroup_klass();
1241   Handle threadObj(THREAD, this->threadObj());
1242 
1243   JavaCalls::call_special(&result,
1244                           thread_group,
1245                           group,
1246                           vmSymbols::add_method_name(),
1247                           vmSymbols::thread_void_signature(),
1248                           threadObj,          // Arg 1
1249                           THREAD);
1250 }
1251 
1252 // List of all NonJavaThreads and safe iteration over that list.
1253 
1254 class NonJavaThread::List {
1255 public:
1256   NonJavaThread* volatile _head;
1257   SingleWriterSynchronizer _protect;
1258 
1259   List() : _head(NULL), _protect() {}
1260 };
1261 
1262 NonJavaThread::List NonJavaThread::_the_list;
1263 
1264 NonJavaThread::Iterator::Iterator() :
1265   _protect_enter(_the_list._protect.enter()),
1266   _current(Atomic::load_acquire(&_the_list._head))
1267 {}
1268 
1269 NonJavaThread::Iterator::~Iterator() {
1270   _the_list._protect.exit(_protect_enter);
1271 }
1272 
1273 void NonJavaThread::Iterator::step() {
1274   assert(!end(), "precondition");
1275   _current = Atomic::load_acquire(&_current->_next);
1276 }
1277 
1278 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1279   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1280 }
1281 
1282 NonJavaThread::~NonJavaThread() { }
1283 
1284 void NonJavaThread::add_to_the_list() {
1285   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1286   // Initialize BarrierSet-related data before adding to list.
1287   BarrierSet::barrier_set()->on_thread_attach(this);
1288   Atomic::release_store(&_next, _the_list._head);
1289   Atomic::release_store(&_the_list._head, this);
1290 }
1291 
1292 void NonJavaThread::remove_from_the_list() {
1293   {
1294     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1295     // Cleanup BarrierSet-related data before removing from list.
1296     BarrierSet::barrier_set()->on_thread_detach(this);
1297     NonJavaThread* volatile* p = &_the_list._head;
1298     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1299       if (t == this) {
1300         *p = _next;
1301         break;
1302       }
1303     }
1304   }
1305   // Wait for any in-progress iterators.  Concurrent synchronize is not
1306   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1307   // from NJTList_lock in case an iteration attempts to lock it.
1308   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1309   _the_list._protect.synchronize();
1310   _next = NULL;                 // Safe to drop the link now.
1311 }
1312 
1313 void NonJavaThread::pre_run() {
1314   add_to_the_list();
1315 
1316   // This is slightly odd in that NamedThread is a subclass, but
1317   // in fact name() is defined in Thread
1318   assert(this->name() != NULL, "thread name was not set before it was started");
1319   this->set_native_thread_name(this->name());
1320 }
1321 
1322 void NonJavaThread::post_run() {
1323   JFR_ONLY(Jfr::on_thread_exit(this);)
1324   remove_from_the_list();
1325   // Ensure thread-local-storage is cleared before termination.
1326   Thread::clear_thread_current();
1327 }
1328 
1329 // NamedThread --  non-JavaThread subclasses with multiple
1330 // uniquely named instances should derive from this.
1331 NamedThread::NamedThread() :
1332   NonJavaThread(),
1333   _name(NULL),
1334   _processed_thread(NULL),
1335   _gc_id(GCId::undefined())
1336 {}
1337 
1338 NamedThread::~NamedThread() {
1339   FREE_C_HEAP_ARRAY(char, _name);
1340 }
1341 
1342 void NamedThread::set_name(const char* format, ...) {
1343   guarantee(_name == NULL, "Only get to set name once.");
1344   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1345   va_list ap;
1346   va_start(ap, format);
1347   jio_vsnprintf(_name, max_name_len, format, ap);
1348   va_end(ap);
1349 }
1350 
1351 void NamedThread::print_on(outputStream* st) const {
1352   st->print("\"%s\" ", name());
1353   Thread::print_on(st);
1354   st->cr();
1355 }
1356 
1357 
1358 // ======= WatcherThread ========
1359 
1360 // The watcher thread exists to simulate timer interrupts.  It should
1361 // be replaced by an abstraction over whatever native support for
1362 // timer interrupts exists on the platform.
1363 
1364 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1365 bool WatcherThread::_startable = false;
1366 volatile bool  WatcherThread::_should_terminate = false;
1367 
1368 WatcherThread::WatcherThread() : NonJavaThread() {
1369   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1370   if (os::create_thread(this, os::watcher_thread)) {
1371     _watcher_thread = this;
1372 
1373     // Set the watcher thread to the highest OS priority which should not be
1374     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1375     // is created. The only normal thread using this priority is the reference
1376     // handler thread, which runs for very short intervals only.
1377     // If the VMThread's priority is not lower than the WatcherThread profiling
1378     // will be inaccurate.
1379     os::set_priority(this, MaxPriority);
1380     if (!DisableStartThread) {
1381       os::start_thread(this);
1382     }
1383   }
1384 }
1385 
1386 int WatcherThread::sleep() const {
1387   // The WatcherThread does not participate in the safepoint protocol
1388   // for the PeriodicTask_lock because it is not a JavaThread.
1389   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1390 
1391   if (_should_terminate) {
1392     // check for termination before we do any housekeeping or wait
1393     return 0;  // we did not sleep.
1394   }
1395 
1396   // remaining will be zero if there are no tasks,
1397   // causing the WatcherThread to sleep until a task is
1398   // enrolled
1399   int remaining = PeriodicTask::time_to_wait();
1400   int time_slept = 0;
1401 
1402   // we expect this to timeout - we only ever get unparked when
1403   // we should terminate or when a new task has been enrolled
1404   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1405 
1406   jlong time_before_loop = os::javaTimeNanos();
1407 
1408   while (true) {
1409     bool timedout = ml.wait(remaining);
1410     jlong now = os::javaTimeNanos();
1411 
1412     if (remaining == 0) {
1413       // if we didn't have any tasks we could have waited for a long time
1414       // consider the time_slept zero and reset time_before_loop
1415       time_slept = 0;
1416       time_before_loop = now;
1417     } else {
1418       // need to recalculate since we might have new tasks in _tasks
1419       time_slept = (int) ((now - time_before_loop) / 1000000);
1420     }
1421 
1422     // Change to task list or spurious wakeup of some kind
1423     if (timedout || _should_terminate) {
1424       break;
1425     }
1426 
1427     remaining = PeriodicTask::time_to_wait();
1428     if (remaining == 0) {
1429       // Last task was just disenrolled so loop around and wait until
1430       // another task gets enrolled
1431       continue;
1432     }
1433 
1434     remaining -= time_slept;
1435     if (remaining <= 0) {
1436       break;
1437     }
1438   }
1439 
1440   return time_slept;
1441 }
1442 
1443 void WatcherThread::run() {
1444   assert(this == watcher_thread(), "just checking");
1445 
1446   this->set_active_handles(JNIHandleBlock::allocate_block());
1447   while (true) {
1448     assert(watcher_thread() == Thread::current(), "thread consistency check");
1449     assert(watcher_thread() == this, "thread consistency check");
1450 
1451     // Calculate how long it'll be until the next PeriodicTask work
1452     // should be done, and sleep that amount of time.
1453     int time_waited = sleep();
1454 
1455     if (VMError::is_error_reported()) {
1456       // A fatal error has happened, the error handler(VMError::report_and_die)
1457       // should abort JVM after creating an error log file. However in some
1458       // rare cases, the error handler itself might deadlock. Here periodically
1459       // check for error reporting timeouts, and if it happens, just proceed to
1460       // abort the VM.
1461 
1462       // This code is in WatcherThread because WatcherThread wakes up
1463       // periodically so the fatal error handler doesn't need to do anything;
1464       // also because the WatcherThread is less likely to crash than other
1465       // threads.
1466 
1467       for (;;) {
1468         // Note: we use naked sleep in this loop because we want to avoid using
1469         // any kind of VM infrastructure which may be broken at this point.
1470         if (VMError::check_timeout()) {
1471           // We hit error reporting timeout. Error reporting was interrupted and
1472           // will be wrapping things up now (closing files etc). Give it some more
1473           // time, then quit the VM.
1474           os::naked_short_sleep(200);
1475           // Print a message to stderr.
1476           fdStream err(defaultStream::output_fd());
1477           err.print_raw_cr("# [ timer expired, abort... ]");
1478           // skip atexit/vm_exit/vm_abort hooks
1479           os::die();
1480         }
1481 
1482         // Wait a second, then recheck for timeout.
1483         os::naked_short_sleep(999);
1484       }
1485     }
1486 
1487     if (_should_terminate) {
1488       // check for termination before posting the next tick
1489       break;
1490     }
1491 
1492     PeriodicTask::real_time_tick(time_waited);
1493   }
1494 
1495   // Signal that it is terminated
1496   {
1497     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1498     _watcher_thread = NULL;
1499     Terminator_lock->notify_all();
1500   }
1501 }
1502 
1503 void WatcherThread::start() {
1504   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1505 
1506   if (watcher_thread() == NULL && _startable) {
1507     _should_terminate = false;
1508     // Create the single instance of WatcherThread
1509     new WatcherThread();
1510   }
1511 }
1512 
1513 void WatcherThread::make_startable() {
1514   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1515   _startable = true;
1516 }
1517 
1518 void WatcherThread::stop() {
1519   {
1520     // Follow normal safepoint aware lock enter protocol since the
1521     // WatcherThread is stopped by another JavaThread.
1522     MutexLocker ml(PeriodicTask_lock);
1523     _should_terminate = true;
1524 
1525     WatcherThread* watcher = watcher_thread();
1526     if (watcher != NULL) {
1527       // unpark the WatcherThread so it can see that it should terminate
1528       watcher->unpark();
1529     }
1530   }
1531 
1532   MonitorLocker mu(Terminator_lock);
1533 
1534   while (watcher_thread() != NULL) {
1535     // This wait should make safepoint checks, wait without a timeout,
1536     // and wait as a suspend-equivalent condition.
1537     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1538   }
1539 }
1540 
1541 void WatcherThread::unpark() {
1542   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1543   PeriodicTask_lock->notify();
1544 }
1545 
1546 void WatcherThread::print_on(outputStream* st) const {
1547   st->print("\"%s\" ", name());
1548   Thread::print_on(st);
1549   st->cr();
1550 }
1551 
1552 // ======= JavaThread ========
1553 
1554 #if INCLUDE_JVMCI
1555 
1556 jlong* JavaThread::_jvmci_old_thread_counters;
1557 
1558 bool jvmci_counters_include(JavaThread* thread) {
1559   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1560 }
1561 
1562 void JavaThread::collect_counters(jlong* array, int length) {
1563   assert(length == JVMCICounterSize, "wrong value");
1564   for (int i = 0; i < length; i++) {
1565     array[i] = _jvmci_old_thread_counters[i];
1566   }
1567   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1568     if (jvmci_counters_include(tp)) {
1569       for (int i = 0; i < length; i++) {
1570         array[i] += tp->_jvmci_counters[i];
1571       }
1572     }
1573   }
1574 }
1575 
1576 // Attempt to enlarge the array for per thread counters.
1577 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1578   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1579   if (old_counters == NULL) {
1580     old_counters = new_counters;
1581     memset(old_counters, 0, sizeof(jlong) * new_size);
1582   } else {
1583     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1584       new_counters[i] = old_counters[i];
1585     }
1586     if (new_size > current_size) {
1587       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1588     }
1589     FREE_C_HEAP_ARRAY(jlong, old_counters);
1590   }
1591   return new_counters;
1592 }
1593 
1594 // Attempt to enlarge the array for per thread counters.
1595 void JavaThread::resize_counters(int current_size, int new_size) {
1596   _jvmci_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1597 }
1598 
1599 class VM_JVMCIResizeCounters : public VM_Operation {
1600  private:
1601   int _new_size;
1602 
1603  public:
1604   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size) { }
1605   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1606   bool allow_nested_vm_operations() const        { return true; }
1607   void doit() {
1608     // Resize the old thread counters array
1609     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1610     JavaThread::_jvmci_old_thread_counters = new_counters;
1611 
1612     // Now resize each threads array
1613     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1614       tp->resize_counters(JVMCICounterSize, _new_size);
1615     }
1616     JVMCICounterSize = _new_size;
1617   }
1618 };
1619 
1620 void JavaThread::resize_all_jvmci_counters(int new_size) {
1621   VM_JVMCIResizeCounters op(new_size);
1622   VMThread::execute(&op);
1623 }
1624 
1625 #endif // INCLUDE_JVMCI
1626 
1627 // A JavaThread is a normal Java thread
1628 
1629 void JavaThread::initialize() {
1630   // Initialize fields
1631 
1632   set_saved_exception_pc(NULL);
1633   set_threadObj(NULL);
1634   _anchor.clear();
1635   set_entry_point(NULL);
1636   set_jni_functions(jni_functions());
1637   set_callee_target(NULL);
1638   set_vm_result(NULL);
1639   set_vm_result_2(NULL);
1640   set_vframe_array_head(NULL);
1641   set_vframe_array_last(NULL);
1642   set_deferred_locals(NULL);
1643   set_deopt_mark(NULL);
1644   set_deopt_compiled_method(NULL);
1645   set_monitor_chunks(NULL);
1646   _on_thread_list = false;
1647   _thread_state = _thread_new;
1648   _terminated = _not_terminated;
1649   _array_for_gc = NULL;
1650   _suspend_equivalent = false;
1651   _in_deopt_handler = 0;
1652   _doing_unsafe_access = false;
1653   _stack_guard_state = stack_guard_unused;
1654 #if INCLUDE_JVMCI
1655   _pending_monitorenter = false;
1656   _pending_deoptimization = -1;
1657   _pending_failed_speculation = 0;
1658   _pending_transfer_to_interpreter = false;
1659   _in_retryable_allocation = false;
1660   _jvmci._alternate_call_target = NULL;
1661   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1662   _jvmci_counters = NULL;
1663   if (JVMCICounterSize > 0) {
1664     resize_counters(0, (int) JVMCICounterSize);
1665   }
1666 #endif // INCLUDE_JVMCI
1667   _reserved_stack_activation = NULL;  // stack base not known yet
1668   set_exception_oop(oop());
1669   _exception_pc  = 0;
1670   _exception_handler_pc = 0;
1671   _is_method_handle_return = 0;
1672   _jvmti_thread_state= NULL;
1673   _should_post_on_exceptions_flag = JNI_FALSE;
1674   _interp_only_mode    = 0;
1675   _special_runtime_exit_condition = _no_async_condition;
1676   _pending_async_exception = NULL;
1677   _thread_stat = NULL;
1678   _thread_stat = new ThreadStatistics();
1679   _jni_active_critical = 0;
1680   _pending_jni_exception_check_fn = NULL;
1681   _do_not_unlock_if_synchronized = false;
1682   _cached_monitor_info = NULL;
1683   _parker = Parker::Allocate(this);
1684   _SleepEvent = ParkEvent::Allocate(this);
1685   // Setup safepoint state info for this thread
1686   ThreadSafepointState::create(this);
1687   _handshake.set_handshakee(this);
1688 
1689   debug_only(_java_call_counter = 0);
1690 
1691   // JVMTI PopFrame support
1692   _popframe_condition = popframe_inactive;
1693   _popframe_preserved_args = NULL;
1694   _popframe_preserved_args_size = 0;
1695   _frames_to_pop_failed_realloc = 0;
1696 
1697   SafepointMechanism::initialize_header(this);
1698 
1699   _class_to_be_initialized = NULL;
1700 
1701   pd_initialize();
1702 }
1703 
1704 JavaThread::JavaThread(bool is_attaching_via_jni) :
1705                        Thread() {
1706   initialize();
1707   if (is_attaching_via_jni) {
1708     _jni_attach_state = _attaching_via_jni;
1709   } else {
1710     _jni_attach_state = _not_attaching_via_jni;
1711   }
1712   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1713 }
1714 
1715 
1716 // interrupt support
1717 
1718 void JavaThread::interrupt() {
1719   debug_only(check_for_dangling_thread_pointer(this);)
1720 
1721   // For Windows _interrupt_event
1722   osthread()->set_interrupted(true);
1723 
1724   // For Thread.sleep
1725   _SleepEvent->unpark();
1726 
1727   // For JSR166 LockSupport.park
1728   parker()->unpark();
1729 
1730   // For ObjectMonitor and JvmtiRawMonitor
1731   _ParkEvent->unpark();
1732 }
1733 
1734 
1735 bool JavaThread::is_interrupted(bool clear_interrupted) {
1736   debug_only(check_for_dangling_thread_pointer(this);)
1737 
1738   if (threadObj() == NULL) {
1739     // If there is no j.l.Thread then it is impossible to have
1740     // been interrupted. We can find NULL during VM initialization
1741     // or when a JNI thread is still in the process of attaching.
1742     // In such cases this must be the current thread.
1743     assert(this == Thread::current(), "invariant");
1744     return false;
1745   }
1746 
1747   bool interrupted = java_lang_Thread::interrupted(threadObj());
1748 
1749   // NOTE that since there is no "lock" around the interrupt and
1750   // is_interrupted operations, there is the possibility that the
1751   // interrupted flag will be "false" but that the
1752   // low-level events will be in the signaled state. This is
1753   // intentional. The effect of this is that Object.wait() and
1754   // LockSupport.park() will appear to have a spurious wakeup, which
1755   // is allowed and not harmful, and the possibility is so rare that
1756   // it is not worth the added complexity to add yet another lock.
1757   // For the sleep event an explicit reset is performed on entry
1758   // to JavaThread::sleep, so there is no early return. It has also been
1759   // recommended not to put the interrupted flag into the "event"
1760   // structure because it hides the issue.
1761   // Also, because there is no lock, we must only clear the interrupt
1762   // state if we are going to report that we were interrupted; otherwise
1763   // an interrupt that happens just after we read the field would be lost.
1764   if (interrupted && clear_interrupted) {
1765     assert(this == Thread::current(), "only the current thread can clear");
1766     java_lang_Thread::set_interrupted(threadObj(), false);
1767     osthread()->set_interrupted(false);
1768   }
1769 
1770   return interrupted;
1771 }
1772 
1773 bool JavaThread::reguard_stack(address cur_sp) {
1774   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1775       && _stack_guard_state != stack_guard_reserved_disabled) {
1776     return true; // Stack already guarded or guard pages not needed.
1777   }
1778 
1779   if (register_stack_overflow()) {
1780     // For those architectures which have separate register and
1781     // memory stacks, we must check the register stack to see if
1782     // it has overflowed.
1783     return false;
1784   }
1785 
1786   // Java code never executes within the yellow zone: the latter is only
1787   // there to provoke an exception during stack banging.  If java code
1788   // is executing there, either StackShadowPages should be larger, or
1789   // some exception code in c1, c2 or the interpreter isn't unwinding
1790   // when it should.
1791   guarantee(cur_sp > stack_reserved_zone_base(),
1792             "not enough space to reguard - increase StackShadowPages");
1793   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1794     enable_stack_yellow_reserved_zone();
1795     if (reserved_stack_activation() != stack_base()) {
1796       set_reserved_stack_activation(stack_base());
1797     }
1798   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1799     set_reserved_stack_activation(stack_base());
1800     enable_stack_reserved_zone();
1801   }
1802   return true;
1803 }
1804 
1805 bool JavaThread::reguard_stack(void) {
1806   return reguard_stack(os::current_stack_pointer());
1807 }
1808 
1809 void JavaThread::block_if_vm_exited() {
1810   if (_terminated == _vm_exited) {
1811     // _vm_exited is set at safepoint, and Threads_lock is never released
1812     // we will block here forever.
1813     // Here we can be doing a jump from a safe state to an unsafe state without
1814     // proper transition, but it happens after the final safepoint has begun.
1815     set_thread_state(_thread_in_vm);
1816     Threads_lock->lock();
1817     ShouldNotReachHere();
1818   }
1819 }
1820 
1821 
1822 // Remove this ifdef when C1 is ported to the compiler interface.
1823 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1824 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1825 
1826 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1827                        Thread() {
1828   initialize();
1829   _jni_attach_state = _not_attaching_via_jni;
1830   set_entry_point(entry_point);
1831   // Create the native thread itself.
1832   // %note runtime_23
1833   os::ThreadType thr_type = os::java_thread;
1834   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1835                                                      os::java_thread;
1836   os::create_thread(this, thr_type, stack_sz);
1837   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1838   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1839   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1840   // the exception consists of creating the exception object & initializing it, initialization
1841   // will leave the VM via a JavaCall and then all locks must be unlocked).
1842   //
1843   // The thread is still suspended when we reach here. Thread must be explicit started
1844   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1845   // by calling Threads:add. The reason why this is not done here, is because the thread
1846   // object must be fully initialized (take a look at JVM_Start)
1847 }
1848 
1849 JavaThread::~JavaThread() {
1850 
1851   // JSR166 -- return the parker to the free list
1852   Parker::Release(_parker);
1853   _parker = NULL;
1854 
1855   // Return the sleep event to the free list
1856   ParkEvent::Release(_SleepEvent);
1857   _SleepEvent = NULL;
1858 
1859   // Free any remaining  previous UnrollBlock
1860   vframeArray* old_array = vframe_array_last();
1861 
1862   if (old_array != NULL) {
1863     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1864     old_array->set_unroll_block(NULL);
1865     delete old_info;
1866     delete old_array;
1867   }
1868 
1869   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1870   if (deferred != NULL) {
1871     // This can only happen if thread is destroyed before deoptimization occurs.
1872     assert(deferred->length() != 0, "empty array!");
1873     do {
1874       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1875       deferred->remove_at(0);
1876       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1877       delete dlv;
1878     } while (deferred->length() != 0);
1879     delete deferred;
1880   }
1881 
1882   // All Java related clean up happens in exit
1883   ThreadSafepointState::destroy(this);
1884   if (_thread_stat != NULL) delete _thread_stat;
1885 
1886 #if INCLUDE_JVMCI
1887   if (JVMCICounterSize > 0) {
1888     if (jvmci_counters_include(this)) {
1889       for (int i = 0; i < JVMCICounterSize; i++) {
1890         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1891       }
1892     }
1893     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1894   }
1895 #endif // INCLUDE_JVMCI
1896 }
1897 
1898 
1899 // First JavaThread specific code executed by a new Java thread.
1900 void JavaThread::pre_run() {
1901   // empty - see comments in run()
1902 }
1903 
1904 // The main routine called by a new Java thread. This isn't overridden
1905 // by subclasses, instead different subclasses define a different "entry_point"
1906 // which defines the actual logic for that kind of thread.
1907 void JavaThread::run() {
1908   // initialize thread-local alloc buffer related fields
1909   this->initialize_tlab();
1910 
1911   // Used to test validity of stack trace backs.
1912   // This can't be moved into pre_run() else we invalidate
1913   // the requirement that thread_main_inner is lower on
1914   // the stack. Consequently all the initialization logic
1915   // stays here in run() rather than pre_run().
1916   this->record_base_of_stack_pointer();
1917 
1918   this->create_stack_guard_pages();
1919 
1920   this->cache_global_variables();
1921 
1922   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1923   // in the VM. Change thread state from _thread_new to _thread_in_vm
1924   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1925   // Before a thread is on the threads list it is always safe, so after leaving the
1926   // _thread_new we should emit a instruction barrier. The distance to modified code
1927   // from here is probably far enough, but this is consistent and safe.
1928   OrderAccess::cross_modify_fence();
1929 
1930   assert(JavaThread::current() == this, "sanity check");
1931   assert(!Thread::current()->owns_locks(), "sanity check");
1932 
1933   DTRACE_THREAD_PROBE(start, this);
1934 
1935   // This operation might block. We call that after all safepoint checks for a new thread has
1936   // been completed.
1937   this->set_active_handles(JNIHandleBlock::allocate_block());
1938 
1939   if (JvmtiExport::should_post_thread_life()) {
1940     JvmtiExport::post_thread_start(this);
1941 
1942   }
1943 
1944   // We call another function to do the rest so we are sure that the stack addresses used
1945   // from there will be lower than the stack base just computed.
1946   thread_main_inner();
1947 }
1948 
1949 void JavaThread::thread_main_inner() {
1950   assert(JavaThread::current() == this, "sanity check");
1951   assert(this->threadObj() != NULL, "just checking");
1952 
1953   // Execute thread entry point unless this thread has a pending exception
1954   // or has been stopped before starting.
1955   // Note: Due to JVM_StopThread we can have pending exceptions already!
1956   if (!this->has_pending_exception() &&
1957       !java_lang_Thread::is_stillborn(this->threadObj())) {
1958     {
1959       ResourceMark rm(this);
1960       this->set_native_thread_name(this->get_thread_name());
1961     }
1962     HandleMark hm(this);
1963     this->entry_point()(this, this);
1964   }
1965 
1966   DTRACE_THREAD_PROBE(stop, this);
1967 
1968   // Cleanup is handled in post_run()
1969 }
1970 
1971 // Shared teardown for all JavaThreads
1972 void JavaThread::post_run() {
1973   this->exit(false);
1974   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1975   // for any shared tear-down.
1976   this->smr_delete();
1977 }
1978 
1979 static void ensure_join(JavaThread* thread) {
1980   // We do not need to grab the Threads_lock, since we are operating on ourself.
1981   Handle threadObj(thread, thread->threadObj());
1982   assert(threadObj.not_null(), "java thread object must exist");
1983   ObjectLocker lock(threadObj, thread);
1984   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1985   thread->clear_pending_exception();
1986   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1987   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1988   // Clear the native thread instance - this makes isAlive return false and allows the join()
1989   // to complete once we've done the notify_all below
1990   java_lang_Thread::set_thread(threadObj(), NULL);
1991   lock.notify_all(thread);
1992   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1993   thread->clear_pending_exception();
1994 }
1995 
1996 static bool is_daemon(oop threadObj) {
1997   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1998 }
1999 
2000 // For any new cleanup additions, please check to see if they need to be applied to
2001 // cleanup_failed_attach_current_thread as well.
2002 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
2003   assert(this == JavaThread::current(), "thread consistency check");
2004 
2005   elapsedTimer _timer_exit_phase1;
2006   elapsedTimer _timer_exit_phase2;
2007   elapsedTimer _timer_exit_phase3;
2008   elapsedTimer _timer_exit_phase4;
2009 
2010   if (log_is_enabled(Debug, os, thread, timer)) {
2011     _timer_exit_phase1.start();
2012   }
2013 
2014   HandleMark hm(this);
2015   Handle uncaught_exception(this, this->pending_exception());
2016   this->clear_pending_exception();
2017   Handle threadObj(this, this->threadObj());
2018   assert(threadObj.not_null(), "Java thread object should be created");
2019 
2020   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
2021   {
2022     EXCEPTION_MARK;
2023 
2024     CLEAR_PENDING_EXCEPTION;
2025   }
2026   if (!destroy_vm) {
2027     if (uncaught_exception.not_null()) {
2028       EXCEPTION_MARK;
2029       // Call method Thread.dispatchUncaughtException().
2030       Klass* thread_klass = SystemDictionary::Thread_klass();
2031       JavaValue result(T_VOID);
2032       JavaCalls::call_virtual(&result,
2033                               threadObj, thread_klass,
2034                               vmSymbols::dispatchUncaughtException_name(),
2035                               vmSymbols::throwable_void_signature(),
2036                               uncaught_exception,
2037                               THREAD);
2038       if (HAS_PENDING_EXCEPTION) {
2039         ResourceMark rm(this);
2040         jio_fprintf(defaultStream::error_stream(),
2041                     "\nException: %s thrown from the UncaughtExceptionHandler"
2042                     " in thread \"%s\"\n",
2043                     pending_exception()->klass()->external_name(),
2044                     get_thread_name());
2045         CLEAR_PENDING_EXCEPTION;
2046       }
2047     }
2048 
2049     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2050     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2051     // is deprecated anyhow.
2052     if (!is_Compiler_thread()) {
2053       int count = 3;
2054       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2055         EXCEPTION_MARK;
2056         JavaValue result(T_VOID);
2057         Klass* thread_klass = SystemDictionary::Thread_klass();
2058         JavaCalls::call_virtual(&result,
2059                                 threadObj, thread_klass,
2060                                 vmSymbols::exit_method_name(),
2061                                 vmSymbols::void_method_signature(),
2062                                 THREAD);
2063         CLEAR_PENDING_EXCEPTION;
2064       }
2065     }
2066     // notify JVMTI
2067     if (JvmtiExport::should_post_thread_life()) {
2068       JvmtiExport::post_thread_end(this);
2069     }
2070 
2071     // We have notified the agents that we are exiting, before we go on,
2072     // we must check for a pending external suspend request and honor it
2073     // in order to not surprise the thread that made the suspend request.
2074     while (true) {
2075       {
2076         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2077         if (!is_external_suspend()) {
2078           set_terminated(_thread_exiting);
2079           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2080           break;
2081         }
2082         // Implied else:
2083         // Things get a little tricky here. We have a pending external
2084         // suspend request, but we are holding the SR_lock so we
2085         // can't just self-suspend. So we temporarily drop the lock
2086         // and then self-suspend.
2087       }
2088 
2089       ThreadBlockInVM tbivm(this);
2090       java_suspend_self();
2091 
2092       // We're done with this suspend request, but we have to loop around
2093       // and check again. Eventually we will get SR_lock without a pending
2094       // external suspend request and will be able to mark ourselves as
2095       // exiting.
2096     }
2097     // no more external suspends are allowed at this point
2098   } else {
2099     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2100     // before_exit() has already posted JVMTI THREAD_END events
2101   }
2102 
2103   if (log_is_enabled(Debug, os, thread, timer)) {
2104     _timer_exit_phase1.stop();
2105     _timer_exit_phase2.start();
2106   }
2107 
2108   // Capture daemon status before the thread is marked as terminated.
2109   bool daemon = is_daemon(threadObj());
2110 
2111   // Notify waiters on thread object. This has to be done after exit() is called
2112   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2113   // group should have the destroyed bit set before waiters are notified).
2114   ensure_join(this);
2115   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2116 
2117   if (log_is_enabled(Debug, os, thread, timer)) {
2118     _timer_exit_phase2.stop();
2119     _timer_exit_phase3.start();
2120   }
2121   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2122   // held by this thread must be released. The spec does not distinguish
2123   // between JNI-acquired and regular Java monitors. We can only see
2124   // regular Java monitors here if monitor enter-exit matching is broken.
2125   //
2126   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2127   // ObjectSynchronizer::release_monitors_owned_by_thread().
2128   if (exit_type == jni_detach) {
2129     // Sanity check even though JNI DetachCurrentThread() would have
2130     // returned JNI_ERR if there was a Java frame. JavaThread exit
2131     // should be done executing Java code by the time we get here.
2132     assert(!this->has_last_Java_frame(),
2133            "should not have a Java frame when detaching or exiting");
2134     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2135     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2136   }
2137 
2138   // These things needs to be done while we are still a Java Thread. Make sure that thread
2139   // is in a consistent state, in case GC happens
2140   JFR_ONLY(Jfr::on_thread_exit(this);)
2141 
2142   if (active_handles() != NULL) {
2143     JNIHandleBlock* block = active_handles();
2144     set_active_handles(NULL);
2145     JNIHandleBlock::release_block(block);
2146   }
2147 
2148   if (free_handle_block() != NULL) {
2149     JNIHandleBlock* block = free_handle_block();
2150     set_free_handle_block(NULL);
2151     JNIHandleBlock::release_block(block);
2152   }
2153 
2154   // These have to be removed while this is still a valid thread.
2155   remove_stack_guard_pages();
2156 
2157   if (UseTLAB) {
2158     tlab().retire();
2159   }
2160 
2161   if (JvmtiEnv::environments_might_exist()) {
2162     JvmtiExport::cleanup_thread(this);
2163   }
2164 
2165   // We need to cache the thread name for logging purposes below as once
2166   // we have called on_thread_detach this thread must not access any oops.
2167   char* thread_name = NULL;
2168   if (log_is_enabled(Debug, os, thread, timer)) {
2169     ResourceMark rm(this);
2170     thread_name = os::strdup(get_thread_name());
2171   }
2172 
2173   // We must flush any deferred card marks and other various GC barrier
2174   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2175   // before removing a thread from the list of active threads.
2176   BarrierSet::barrier_set()->on_thread_detach(this);
2177 
2178   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2179     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2180     os::current_thread_id());
2181 
2182   if (log_is_enabled(Debug, os, thread, timer)) {
2183     _timer_exit_phase3.stop();
2184     _timer_exit_phase4.start();
2185   }
2186   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2187   Threads::remove(this, daemon);
2188 
2189   if (log_is_enabled(Debug, os, thread, timer)) {
2190     _timer_exit_phase4.stop();
2191     log_debug(os, thread, timer)("name='%s'"
2192                                  ", exit-phase1=" JLONG_FORMAT
2193                                  ", exit-phase2=" JLONG_FORMAT
2194                                  ", exit-phase3=" JLONG_FORMAT
2195                                  ", exit-phase4=" JLONG_FORMAT,
2196                                  thread_name,
2197                                  _timer_exit_phase1.milliseconds(),
2198                                  _timer_exit_phase2.milliseconds(),
2199                                  _timer_exit_phase3.milliseconds(),
2200                                  _timer_exit_phase4.milliseconds());
2201     os::free(thread_name);
2202   }
2203 }
2204 
2205 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2206   if (active_handles() != NULL) {
2207     JNIHandleBlock* block = active_handles();
2208     set_active_handles(NULL);
2209     JNIHandleBlock::release_block(block);
2210   }
2211 
2212   if (free_handle_block() != NULL) {
2213     JNIHandleBlock* block = free_handle_block();
2214     set_free_handle_block(NULL);
2215     JNIHandleBlock::release_block(block);
2216   }
2217 
2218   // These have to be removed while this is still a valid thread.
2219   remove_stack_guard_pages();
2220 
2221   if (UseTLAB) {
2222     tlab().retire();
2223   }
2224 
2225   BarrierSet::barrier_set()->on_thread_detach(this);
2226 
2227   Threads::remove(this, is_daemon);
2228   this->smr_delete();
2229 }
2230 
2231 JavaThread* JavaThread::active() {
2232   Thread* thread = Thread::current();
2233   if (thread->is_Java_thread()) {
2234     return (JavaThread*) thread;
2235   } else {
2236     assert(thread->is_VM_thread(), "this must be a vm thread");
2237     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2238     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2239     assert(ret->is_Java_thread(), "must be a Java thread");
2240     return ret;
2241   }
2242 }
2243 
2244 bool JavaThread::is_lock_owned(address adr) const {
2245   if (Thread::is_lock_owned(adr)) return true;
2246 
2247   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2248     if (chunk->contains(adr)) return true;
2249   }
2250 
2251   return false;
2252 }
2253 
2254 oop JavaThread::exception_oop() const {
2255   return Atomic::load(&_exception_oop);
2256 }
2257 
2258 void JavaThread::set_exception_oop(oop o) {
2259   Atomic::store(&_exception_oop, o);
2260 }
2261 
2262 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2263   chunk->set_next(monitor_chunks());
2264   set_monitor_chunks(chunk);
2265 }
2266 
2267 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2268   guarantee(monitor_chunks() != NULL, "must be non empty");
2269   if (monitor_chunks() == chunk) {
2270     set_monitor_chunks(chunk->next());
2271   } else {
2272     MonitorChunk* prev = monitor_chunks();
2273     while (prev->next() != chunk) prev = prev->next();
2274     prev->set_next(chunk->next());
2275   }
2276 }
2277 
2278 // JVM support.
2279 
2280 // Note: this function shouldn't block if it's called in
2281 // _thread_in_native_trans state (such as from
2282 // check_special_condition_for_native_trans()).
2283 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2284 
2285   if (has_last_Java_frame() && has_async_condition()) {
2286     // If we are at a polling page safepoint (not a poll return)
2287     // then we must defer async exception because live registers
2288     // will be clobbered by the exception path. Poll return is
2289     // ok because the call we a returning from already collides
2290     // with exception handling registers and so there is no issue.
2291     // (The exception handling path kills call result registers but
2292     //  this is ok since the exception kills the result anyway).
2293 
2294     if (is_at_poll_safepoint()) {
2295       // if the code we are returning to has deoptimized we must defer
2296       // the exception otherwise live registers get clobbered on the
2297       // exception path before deoptimization is able to retrieve them.
2298       //
2299       RegisterMap map(this, false);
2300       frame caller_fr = last_frame().sender(&map);
2301       assert(caller_fr.is_compiled_frame(), "what?");
2302       if (caller_fr.is_deoptimized_frame()) {
2303         log_info(exceptions)("deferred async exception at compiled safepoint");
2304         return;
2305       }
2306     }
2307   }
2308 
2309   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2310   if (condition == _no_async_condition) {
2311     // Conditions have changed since has_special_runtime_exit_condition()
2312     // was called:
2313     // - if we were here only because of an external suspend request,
2314     //   then that was taken care of above (or cancelled) so we are done
2315     // - if we were here because of another async request, then it has
2316     //   been cleared between the has_special_runtime_exit_condition()
2317     //   and now so again we are done
2318     return;
2319   }
2320 
2321   // Check for pending async. exception
2322   if (_pending_async_exception != NULL) {
2323     // Only overwrite an already pending exception, if it is not a threadDeath.
2324     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2325 
2326       // We cannot call Exceptions::_throw(...) here because we cannot block
2327       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2328 
2329       LogTarget(Info, exceptions) lt;
2330       if (lt.is_enabled()) {
2331         ResourceMark rm;
2332         LogStream ls(lt);
2333         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2334           if (has_last_Java_frame()) {
2335             frame f = last_frame();
2336            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2337           }
2338         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2339       }
2340       _pending_async_exception = NULL;
2341       clear_has_async_exception();
2342     }
2343   }
2344 
2345   if (check_unsafe_error &&
2346       condition == _async_unsafe_access_error && !has_pending_exception()) {
2347     condition = _no_async_condition;  // done
2348     switch (thread_state()) {
2349     case _thread_in_vm: {
2350       JavaThread* THREAD = this;
2351       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2352     }
2353     case _thread_in_native: {
2354       ThreadInVMfromNative tiv(this);
2355       JavaThread* THREAD = this;
2356       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2357     }
2358     case _thread_in_Java: {
2359       ThreadInVMfromJava tiv(this);
2360       JavaThread* THREAD = this;
2361       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2362     }
2363     default:
2364       ShouldNotReachHere();
2365     }
2366   }
2367 
2368   assert(condition == _no_async_condition || has_pending_exception() ||
2369          (!check_unsafe_error && condition == _async_unsafe_access_error),
2370          "must have handled the async condition, if no exception");
2371 }
2372 
2373 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2374 
2375   // Check for pending external suspend.
2376   if (is_external_suspend_with_lock()) {
2377     frame_anchor()->make_walkable(this);
2378     java_suspend_self_with_safepoint_check();
2379   }
2380 
2381   // We might be here for reasons in addition to the self-suspend request
2382   // so check for other async requests.
2383   if (check_asyncs) {
2384     check_and_handle_async_exceptions();
2385   }
2386 
2387   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2388 }
2389 
2390 void JavaThread::send_thread_stop(oop java_throwable)  {
2391   ResourceMark rm;
2392   assert(Thread::current()->is_VM_thread() || Thread::current() == this, "should be in the vm thread");
2393 
2394   // Do not throw asynchronous exceptions against the compiler thread
2395   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2396   if (!can_call_java()) return;
2397 
2398   {
2399     // Actually throw the Throwable against the target Thread - however
2400     // only if there is no thread death exception installed already.
2401     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2402       // If the topmost frame is a runtime stub, then we are calling into
2403       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2404       // must deoptimize the caller before continuing, as the compiled  exception handler table
2405       // may not be valid
2406       if (has_last_Java_frame()) {
2407         frame f = last_frame();
2408         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2409           RegisterMap reg_map(this, false);
2410           frame compiled_frame = f.sender(&reg_map);
2411           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2412             Deoptimization::deoptimize(this, compiled_frame);
2413           }
2414         }
2415       }
2416 
2417       // Set async. pending exception in thread.
2418       set_pending_async_exception(java_throwable);
2419 
2420       if (log_is_enabled(Info, exceptions)) {
2421          ResourceMark rm;
2422         log_info(exceptions)("Pending Async. exception installed of type: %s",
2423                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2424       }
2425       // for AbortVMOnException flag
2426       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2427     }
2428   }
2429 
2430 
2431   // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
2432   java_lang_Thread::set_interrupted(threadObj(), true);
2433   this->interrupt();
2434 }
2435 
2436 // External suspension mechanism.
2437 //
2438 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2439 // to any VM_locks and it is at a transition
2440 // Self-suspension will happen on the transition out of the vm.
2441 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2442 //
2443 // Guarantees on return:
2444 //   + Target thread will not execute any new bytecode (that's why we need to
2445 //     force a safepoint)
2446 //   + Target thread will not enter any new monitors
2447 //
2448 void JavaThread::java_suspend() {
2449   ThreadsListHandle tlh;
2450   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2451     return;
2452   }
2453 
2454   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2455     if (!is_external_suspend()) {
2456       // a racing resume has cancelled us; bail out now
2457       return;
2458     }
2459 
2460     // suspend is done
2461     uint32_t debug_bits = 0;
2462     // Warning: is_ext_suspend_completed() may temporarily drop the
2463     // SR_lock to allow the thread to reach a stable thread state if
2464     // it is currently in a transient thread state.
2465     if (is_ext_suspend_completed(false /* !called_by_wait */,
2466                                  SuspendRetryDelay, &debug_bits)) {
2467       return;
2468     }
2469   }
2470 
2471   if (Thread::current() == this) {
2472     // Safely self-suspend.
2473     // If we don't do this explicitly it will implicitly happen
2474     // before we transition back to Java, and on some other thread-state
2475     // transition paths, but not as we exit a JVM TI SuspendThread call.
2476     // As SuspendThread(current) must not return (until resumed) we must
2477     // self-suspend here.
2478     ThreadBlockInVM tbivm(this);
2479     java_suspend_self();
2480   } else {
2481     VM_ThreadSuspend vm_suspend;
2482     VMThread::execute(&vm_suspend);
2483   }
2484 }
2485 
2486 // Part II of external suspension.
2487 // A JavaThread self suspends when it detects a pending external suspend
2488 // request. This is usually on transitions. It is also done in places
2489 // where continuing to the next transition would surprise the caller,
2490 // e.g., monitor entry.
2491 //
2492 // Returns the number of times that the thread self-suspended.
2493 //
2494 // Note: DO NOT call java_suspend_self() when you just want to block current
2495 //       thread. java_suspend_self() is the second stage of cooperative
2496 //       suspension for external suspend requests and should only be used
2497 //       to complete an external suspend request.
2498 //
2499 int JavaThread::java_suspend_self() {
2500   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2501   int ret = 0;
2502 
2503   // we are in the process of exiting so don't suspend
2504   if (is_exiting()) {
2505     clear_external_suspend();
2506     return ret;
2507   }
2508 
2509   assert(_anchor.walkable() ||
2510          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2511          "must have walkable stack");
2512 
2513   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2514 
2515   assert(!this->is_ext_suspended(),
2516          "a thread trying to self-suspend should not already be suspended");
2517 
2518   if (this->is_suspend_equivalent()) {
2519     // If we are self-suspending as a result of the lifting of a
2520     // suspend equivalent condition, then the suspend_equivalent
2521     // flag is not cleared until we set the ext_suspended flag so
2522     // that wait_for_ext_suspend_completion() returns consistent
2523     // results.
2524     this->clear_suspend_equivalent();
2525   }
2526 
2527   // A racing resume may have cancelled us before we grabbed SR_lock
2528   // above. Or another external suspend request could be waiting for us
2529   // by the time we return from SR_lock()->wait(). The thread
2530   // that requested the suspension may already be trying to walk our
2531   // stack and if we return now, we can change the stack out from under
2532   // it. This would be a "bad thing (TM)" and cause the stack walker
2533   // to crash. We stay self-suspended until there are no more pending
2534   // external suspend requests.
2535   while (is_external_suspend()) {
2536     ret++;
2537     this->set_ext_suspended();
2538 
2539     // _ext_suspended flag is cleared by java_resume()
2540     while (is_ext_suspended()) {
2541       ml.wait();
2542     }
2543   }
2544   return ret;
2545 }
2546 
2547 // Helper routine to set up the correct thread state before calling java_suspend_self.
2548 // This is called when regular thread-state transition helpers can't be used because
2549 // we can be in various states, in particular _thread_in_native_trans.
2550 // Because this thread is external suspended the safepoint code will count it as at
2551 // a safepoint, regardless of what its actual current thread-state is. But
2552 // is_ext_suspend_completed() may be waiting to see a thread transition from
2553 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2554 // to _thread_blocked. The problem with setting thread state directly is that a
2555 // safepoint could happen just after java_suspend_self() returns after being resumed,
2556 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2557 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2558 // However, not all initial-states are allowed when performing a safepoint check, as we
2559 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2560 // only _thread_in_native is possible when executing this code (based on our two callers).
2561 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2562 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2563 // and so we don't need the explicit safepoint check.
2564 
2565 void JavaThread::java_suspend_self_with_safepoint_check() {
2566   assert(this == Thread::current(), "invariant");
2567   JavaThreadState state = thread_state();
2568   set_thread_state(_thread_blocked);
2569   java_suspend_self();
2570   set_thread_state_fence(state);
2571   // Since we are not using a regular thread-state transition helper here,
2572   // we must manually emit the instruction barrier after leaving a safe state.
2573   OrderAccess::cross_modify_fence();
2574   if (state != _thread_in_native) {
2575     SafepointMechanism::block_if_requested(this);
2576   }
2577 }
2578 
2579 #ifdef ASSERT
2580 // Verify the JavaThread has not yet been published in the Threads::list, and
2581 // hence doesn't need protection from concurrent access at this stage.
2582 void JavaThread::verify_not_published() {
2583   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2584   // since an unpublished JavaThread doesn't participate in the
2585   // Thread-SMR protocol for keeping a ThreadsList alive.
2586   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2587 }
2588 #endif
2589 
2590 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2591 // progress or when _suspend_flags is non-zero.
2592 // Current thread needs to self-suspend if there is a suspend request and/or
2593 // block if a safepoint is in progress.
2594 // Async exception ISN'T checked.
2595 // Note only the ThreadInVMfromNative transition can call this function
2596 // directly and when thread state is _thread_in_native_trans
2597 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2598   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2599 
2600   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2601 
2602   if (thread->is_external_suspend()) {
2603     thread->java_suspend_self_with_safepoint_check();
2604   } else {
2605     SafepointMechanism::block_if_requested(thread);
2606   }
2607 
2608   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2609 }
2610 
2611 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2612 // progress or when _suspend_flags is non-zero.
2613 // Current thread needs to self-suspend if there is a suspend request and/or
2614 // block if a safepoint is in progress.
2615 // Also check for pending async exception (not including unsafe access error).
2616 // Note only the native==>VM/Java barriers can call this function and when
2617 // thread state is _thread_in_native_trans.
2618 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2619   check_safepoint_and_suspend_for_native_trans(thread);
2620 
2621   if (thread->has_async_exception()) {
2622     // We are in _thread_in_native_trans state, don't handle unsafe
2623     // access error since that may block.
2624     thread->check_and_handle_async_exceptions(false);
2625   }
2626 }
2627 
2628 // This is a variant of the normal
2629 // check_special_condition_for_native_trans with slightly different
2630 // semantics for use by critical native wrappers.  It does all the
2631 // normal checks but also performs the transition back into
2632 // thread_in_Java state.  This is required so that critical natives
2633 // can potentially block and perform a GC if they are the last thread
2634 // exiting the GCLocker.
2635 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2636   check_special_condition_for_native_trans(thread);
2637 
2638   // Finish the transition
2639   thread->set_thread_state(_thread_in_Java);
2640 
2641   if (thread->do_critical_native_unlock()) {
2642     ThreadInVMfromJavaNoAsyncException tiv(thread);
2643     GCLocker::unlock_critical(thread);
2644     thread->clear_critical_native_unlock();
2645   }
2646 }
2647 
2648 // We need to guarantee the Threads_lock here, since resumes are not
2649 // allowed during safepoint synchronization
2650 // Can only resume from an external suspension
2651 void JavaThread::java_resume() {
2652   assert_locked_or_safepoint(Threads_lock);
2653 
2654   // Sanity check: thread is gone, has started exiting or the thread
2655   // was not externally suspended.
2656   ThreadsListHandle tlh;
2657   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2658     return;
2659   }
2660 
2661   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2662 
2663   clear_external_suspend();
2664 
2665   if (is_ext_suspended()) {
2666     clear_ext_suspended();
2667     SR_lock()->notify_all();
2668   }
2669 }
2670 
2671 size_t JavaThread::_stack_red_zone_size = 0;
2672 size_t JavaThread::_stack_yellow_zone_size = 0;
2673 size_t JavaThread::_stack_reserved_zone_size = 0;
2674 size_t JavaThread::_stack_shadow_zone_size = 0;
2675 
2676 void JavaThread::create_stack_guard_pages() {
2677   if (!os::uses_stack_guard_pages() ||
2678       _stack_guard_state != stack_guard_unused ||
2679       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2680       log_info(os, thread)("Stack guard page creation for thread "
2681                            UINTX_FORMAT " disabled", os::current_thread_id());
2682     return;
2683   }
2684   address low_addr = stack_end();
2685   size_t len = stack_guard_zone_size();
2686 
2687   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2688   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2689 
2690   int must_commit = os::must_commit_stack_guard_pages();
2691   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2692 
2693   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2694     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2695     return;
2696   }
2697 
2698   if (os::guard_memory((char *) low_addr, len)) {
2699     _stack_guard_state = stack_guard_enabled;
2700   } else {
2701     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2702       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2703     if (os::uncommit_memory((char *) low_addr, len)) {
2704       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2705     }
2706     return;
2707   }
2708 
2709   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2710     PTR_FORMAT "-" PTR_FORMAT ".",
2711     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2712 }
2713 
2714 void JavaThread::remove_stack_guard_pages() {
2715   assert(Thread::current() == this, "from different thread");
2716   if (_stack_guard_state == stack_guard_unused) return;
2717   address low_addr = stack_end();
2718   size_t len = stack_guard_zone_size();
2719 
2720   if (os::must_commit_stack_guard_pages()) {
2721     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2722       _stack_guard_state = stack_guard_unused;
2723     } else {
2724       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2725         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2726       return;
2727     }
2728   } else {
2729     if (_stack_guard_state == stack_guard_unused) return;
2730     if (os::unguard_memory((char *) low_addr, len)) {
2731       _stack_guard_state = stack_guard_unused;
2732     } else {
2733       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2734         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2735       return;
2736     }
2737   }
2738 
2739   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2740     PTR_FORMAT "-" PTR_FORMAT ".",
2741     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2742 }
2743 
2744 void JavaThread::enable_stack_reserved_zone() {
2745   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2746 
2747   // The base notation is from the stack's point of view, growing downward.
2748   // We need to adjust it to work correctly with guard_memory()
2749   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2750 
2751   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2752   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2753 
2754   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2755     _stack_guard_state = stack_guard_enabled;
2756   } else {
2757     warning("Attempt to guard stack reserved zone failed.");
2758   }
2759   enable_register_stack_guard();
2760 }
2761 
2762 void JavaThread::disable_stack_reserved_zone() {
2763   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2764 
2765   // Simply return if called for a thread that does not use guard pages.
2766   if (_stack_guard_state != stack_guard_enabled) return;
2767 
2768   // The base notation is from the stack's point of view, growing downward.
2769   // We need to adjust it to work correctly with guard_memory()
2770   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2771 
2772   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2773     _stack_guard_state = stack_guard_reserved_disabled;
2774   } else {
2775     warning("Attempt to unguard stack reserved zone failed.");
2776   }
2777   disable_register_stack_guard();
2778 }
2779 
2780 void JavaThread::enable_stack_yellow_reserved_zone() {
2781   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2782   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2783 
2784   // The base notation is from the stacks point of view, growing downward.
2785   // We need to adjust it to work correctly with guard_memory()
2786   address base = stack_red_zone_base();
2787 
2788   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2789   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2790 
2791   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2792     _stack_guard_state = stack_guard_enabled;
2793   } else {
2794     warning("Attempt to guard stack yellow zone failed.");
2795   }
2796   enable_register_stack_guard();
2797 }
2798 
2799 void JavaThread::disable_stack_yellow_reserved_zone() {
2800   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2801   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2802 
2803   // Simply return if called for a thread that does not use guard pages.
2804   if (_stack_guard_state == stack_guard_unused) return;
2805 
2806   // The base notation is from the stacks point of view, growing downward.
2807   // We need to adjust it to work correctly with guard_memory()
2808   address base = stack_red_zone_base();
2809 
2810   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2811     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2812   } else {
2813     warning("Attempt to unguard stack yellow zone failed.");
2814   }
2815   disable_register_stack_guard();
2816 }
2817 
2818 void JavaThread::enable_stack_red_zone() {
2819   // The base notation is from the stacks point of view, growing downward.
2820   // We need to adjust it to work correctly with guard_memory()
2821   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2822   address base = stack_red_zone_base() - stack_red_zone_size();
2823 
2824   guarantee(base < stack_base(), "Error calculating stack red zone");
2825   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2826 
2827   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2828     warning("Attempt to guard stack red zone failed.");
2829   }
2830 }
2831 
2832 void JavaThread::disable_stack_red_zone() {
2833   // The base notation is from the stacks point of view, growing downward.
2834   // We need to adjust it to work correctly with guard_memory()
2835   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2836   address base = stack_red_zone_base() - stack_red_zone_size();
2837   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2838     warning("Attempt to unguard stack red zone failed.");
2839   }
2840 }
2841 
2842 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2843   // ignore is there is no stack
2844   if (!has_last_Java_frame()) return;
2845   // traverse the stack frames. Starts from top frame.
2846   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2847     frame* fr = fst.current();
2848     f(fr, fst.register_map());
2849   }
2850 }
2851 
2852 
2853 #ifndef PRODUCT
2854 // Deoptimization
2855 // Function for testing deoptimization
2856 void JavaThread::deoptimize() {
2857   StackFrameStream fst(this, false);
2858   bool deopt = false;           // Dump stack only if a deopt actually happens.
2859   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2860   // Iterate over all frames in the thread and deoptimize
2861   for (; !fst.is_done(); fst.next()) {
2862     if (fst.current()->can_be_deoptimized()) {
2863 
2864       if (only_at) {
2865         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2866         // consists of comma or carriage return separated numbers so
2867         // search for the current bci in that string.
2868         address pc = fst.current()->pc();
2869         nmethod* nm =  (nmethod*) fst.current()->cb();
2870         ScopeDesc* sd = nm->scope_desc_at(pc);
2871         char buffer[8];
2872         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2873         size_t len = strlen(buffer);
2874         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2875         while (found != NULL) {
2876           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2877               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2878             // Check that the bci found is bracketed by terminators.
2879             break;
2880           }
2881           found = strstr(found + 1, buffer);
2882         }
2883         if (!found) {
2884           continue;
2885         }
2886       }
2887 
2888       if (DebugDeoptimization && !deopt) {
2889         deopt = true; // One-time only print before deopt
2890         tty->print_cr("[BEFORE Deoptimization]");
2891         trace_frames();
2892         trace_stack();
2893       }
2894       Deoptimization::deoptimize(this, *fst.current());
2895     }
2896   }
2897 
2898   if (DebugDeoptimization && deopt) {
2899     tty->print_cr("[AFTER Deoptimization]");
2900     trace_frames();
2901   }
2902 }
2903 
2904 
2905 // Make zombies
2906 void JavaThread::make_zombies() {
2907   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2908     if (fst.current()->can_be_deoptimized()) {
2909       // it is a Java nmethod
2910       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2911       nm->make_not_entrant();
2912     }
2913   }
2914 }
2915 #endif // PRODUCT
2916 
2917 
2918 void JavaThread::deoptimize_marked_methods() {
2919   if (!has_last_Java_frame()) return;
2920   StackFrameStream fst(this, false);
2921   for (; !fst.is_done(); fst.next()) {
2922     if (fst.current()->should_be_deoptimized()) {
2923       Deoptimization::deoptimize(this, *fst.current());
2924     }
2925   }
2926 }
2927 
2928 // If the caller is a NamedThread, then remember, in the current scope,
2929 // the given JavaThread in its _processed_thread field.
2930 class RememberProcessedThread: public StackObj {
2931   NamedThread* _cur_thr;
2932  public:
2933   RememberProcessedThread(JavaThread* jthr) {
2934     Thread* thread = Thread::current();
2935     if (thread->is_Named_thread()) {
2936       _cur_thr = (NamedThread *)thread;
2937       _cur_thr->set_processed_thread(jthr);
2938     } else {
2939       _cur_thr = NULL;
2940     }
2941   }
2942 
2943   ~RememberProcessedThread() {
2944     if (_cur_thr) {
2945       _cur_thr->set_processed_thread(NULL);
2946     }
2947   }
2948 };
2949 
2950 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2951   // Verify that the deferred card marks have been flushed.
2952   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2953 
2954   // Traverse the GCHandles
2955   Thread::oops_do(f, cf);
2956 
2957   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2958          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2959 
2960   if (has_last_Java_frame()) {
2961     // Record JavaThread to GC thread
2962     RememberProcessedThread rpt(this);
2963 
2964     // traverse the registered growable array
2965     if (_array_for_gc != NULL) {
2966       for (int index = 0; index < _array_for_gc->length(); index++) {
2967         f->do_oop(_array_for_gc->adr_at(index));
2968       }
2969     }
2970 
2971     // Traverse the monitor chunks
2972     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2973       chunk->oops_do(f);
2974     }
2975 
2976     // Traverse the execution stack
2977     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2978       fst.current()->oops_do(f, cf, fst.register_map());
2979     }
2980   }
2981 
2982   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2983   // If we have deferred set_locals there might be oops waiting to be
2984   // written
2985   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2986   if (list != NULL) {
2987     for (int i = 0; i < list->length(); i++) {
2988       list->at(i)->oops_do(f);
2989     }
2990   }
2991 
2992   // Traverse instance variables at the end since the GC may be moving things
2993   // around using this function
2994   f->do_oop((oop*) &_threadObj);
2995   f->do_oop((oop*) &_vm_result);
2996   f->do_oop((oop*) &_exception_oop);
2997   f->do_oop((oop*) &_pending_async_exception);
2998 
2999   if (jvmti_thread_state() != NULL) {
3000     jvmti_thread_state()->oops_do(f, cf);
3001   }
3002 }
3003 
3004 #ifdef ASSERT
3005 void JavaThread::verify_states_for_handshake() {
3006   // This checks that the thread has a correct frame state during a handshake.
3007   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3008          (has_last_Java_frame() && java_call_counter() > 0),
3009          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3010          has_last_Java_frame(), java_call_counter());
3011 }
3012 #endif
3013 
3014 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
3015   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3016          (has_last_Java_frame() && java_call_counter() > 0),
3017          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3018          has_last_Java_frame(), java_call_counter());
3019 
3020   if (has_last_Java_frame()) {
3021     // Traverse the execution stack
3022     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3023       fst.current()->nmethods_do(cf);
3024     }
3025   }
3026 
3027   if (jvmti_thread_state() != NULL) {
3028     jvmti_thread_state()->nmethods_do(cf);
3029   }
3030 }
3031 
3032 void JavaThread::metadata_do(MetadataClosure* f) {
3033   if (has_last_Java_frame()) {
3034     // Traverse the execution stack to call f() on the methods in the stack
3035     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3036       fst.current()->metadata_do(f);
3037     }
3038   } else if (is_Compiler_thread()) {
3039     // need to walk ciMetadata in current compile tasks to keep alive.
3040     CompilerThread* ct = (CompilerThread*)this;
3041     if (ct->env() != NULL) {
3042       ct->env()->metadata_do(f);
3043     }
3044     CompileTask* task = ct->task();
3045     if (task != NULL) {
3046       task->metadata_do(f);
3047     }
3048   }
3049 }
3050 
3051 // Printing
3052 const char* _get_thread_state_name(JavaThreadState _thread_state) {
3053   switch (_thread_state) {
3054   case _thread_uninitialized:     return "_thread_uninitialized";
3055   case _thread_new:               return "_thread_new";
3056   case _thread_new_trans:         return "_thread_new_trans";
3057   case _thread_in_native:         return "_thread_in_native";
3058   case _thread_in_native_trans:   return "_thread_in_native_trans";
3059   case _thread_in_vm:             return "_thread_in_vm";
3060   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3061   case _thread_in_Java:           return "_thread_in_Java";
3062   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3063   case _thread_blocked:           return "_thread_blocked";
3064   case _thread_blocked_trans:     return "_thread_blocked_trans";
3065   default:                        return "unknown thread state";
3066   }
3067 }
3068 
3069 #ifndef PRODUCT
3070 void JavaThread::print_thread_state_on(outputStream *st) const {
3071   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3072 };
3073 #endif // PRODUCT
3074 
3075 // Called by Threads::print() for VM_PrintThreads operation
3076 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3077   st->print_raw("\"");
3078   st->print_raw(get_thread_name());
3079   st->print_raw("\" ");
3080   oop thread_oop = threadObj();
3081   if (thread_oop != NULL) {
3082     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3083     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3084     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3085   }
3086   Thread::print_on(st, print_extended_info);
3087   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3088   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3089   if (thread_oop != NULL) {
3090     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3091   }
3092 #ifndef PRODUCT
3093   _safepoint_state->print_on(st);
3094 #endif // PRODUCT
3095   if (is_Compiler_thread()) {
3096     CompileTask *task = ((CompilerThread*)this)->task();
3097     if (task != NULL) {
3098       st->print("   Compiling: ");
3099       task->print(st, NULL, true, false);
3100     } else {
3101       st->print("   No compile task");
3102     }
3103     st->cr();
3104   }
3105 }
3106 
3107 void JavaThread::print() const { print_on(tty); }
3108 
3109 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3110   st->print("%s", get_thread_name_string(buf, buflen));
3111 }
3112 
3113 // Called by fatal error handler. The difference between this and
3114 // JavaThread::print() is that we can't grab lock or allocate memory.
3115 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3116   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3117   oop thread_obj = threadObj();
3118   if (thread_obj != NULL) {
3119     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3120   }
3121   st->print(" [");
3122   st->print("%s", _get_thread_state_name(_thread_state));
3123   if (osthread()) {
3124     st->print(", id=%d", osthread()->thread_id());
3125   }
3126   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3127             p2i(stack_end()), p2i(stack_base()));
3128   st->print("]");
3129 
3130   ThreadsSMRSupport::print_info_on(this, st);
3131   return;
3132 }
3133 
3134 // Verification
3135 
3136 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3137 
3138 void JavaThread::verify() {
3139   // Verify oops in the thread.
3140   oops_do(&VerifyOopClosure::verify_oop, NULL);
3141 
3142   // Verify the stack frames.
3143   frames_do(frame_verify);
3144 }
3145 
3146 // CR 6300358 (sub-CR 2137150)
3147 // Most callers of this method assume that it can't return NULL but a
3148 // thread may not have a name whilst it is in the process of attaching to
3149 // the VM - see CR 6412693, and there are places where a JavaThread can be
3150 // seen prior to having it's threadObj set (eg JNI attaching threads and
3151 // if vm exit occurs during initialization). These cases can all be accounted
3152 // for such that this method never returns NULL.
3153 const char* JavaThread::get_thread_name() const {
3154 #ifdef ASSERT
3155   // early safepoints can hit while current thread does not yet have TLS
3156   if (!SafepointSynchronize::is_at_safepoint()) {
3157     Thread *cur = Thread::current();
3158     if (!(cur->is_Java_thread() && cur == this)) {
3159       // Current JavaThreads are allowed to get their own name without
3160       // the Threads_lock.
3161       assert_locked_or_safepoint_or_handshake(Threads_lock, this);
3162     }
3163   }
3164 #endif // ASSERT
3165   return get_thread_name_string();
3166 }
3167 
3168 // Returns a non-NULL representation of this thread's name, or a suitable
3169 // descriptive string if there is no set name
3170 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3171   const char* name_str;
3172   oop thread_obj = threadObj();
3173   if (thread_obj != NULL) {
3174     oop name = java_lang_Thread::name(thread_obj);
3175     if (name != NULL) {
3176       if (buf == NULL) {
3177         name_str = java_lang_String::as_utf8_string(name);
3178       } else {
3179         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3180       }
3181     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3182       name_str = "<no-name - thread is attaching>";
3183     } else {
3184       name_str = Thread::name();
3185     }
3186   } else {
3187     name_str = Thread::name();
3188   }
3189   assert(name_str != NULL, "unexpected NULL thread name");
3190   return name_str;
3191 }
3192 
3193 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3194 
3195   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3196   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3197   // Link Java Thread object <-> C++ Thread
3198 
3199   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3200   // and put it into a new Handle.  The Handle "thread_oop" can then
3201   // be used to pass the C++ thread object to other methods.
3202 
3203   // Set the Java level thread object (jthread) field of the
3204   // new thread (a JavaThread *) to C++ thread object using the
3205   // "thread_oop" handle.
3206 
3207   // Set the thread field (a JavaThread *) of the
3208   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3209 
3210   Handle thread_oop(Thread::current(),
3211                     JNIHandles::resolve_non_null(jni_thread));
3212   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3213          "must be initialized");
3214   set_threadObj(thread_oop());
3215   java_lang_Thread::set_thread(thread_oop(), this);
3216 
3217   if (prio == NoPriority) {
3218     prio = java_lang_Thread::priority(thread_oop());
3219     assert(prio != NoPriority, "A valid priority should be present");
3220   }
3221 
3222   // Push the Java priority down to the native thread; needs Threads_lock
3223   Thread::set_priority(this, prio);
3224 
3225   // Add the new thread to the Threads list and set it in motion.
3226   // We must have threads lock in order to call Threads::add.
3227   // It is crucial that we do not block before the thread is
3228   // added to the Threads list for if a GC happens, then the java_thread oop
3229   // will not be visited by GC.
3230   Threads::add(this);
3231 }
3232 
3233 oop JavaThread::current_park_blocker() {
3234   // Support for JSR-166 locks
3235   oop thread_oop = threadObj();
3236   if (thread_oop != NULL) {
3237     return java_lang_Thread::park_blocker(thread_oop);
3238   }
3239   return NULL;
3240 }
3241 
3242 
3243 void JavaThread::print_stack_on(outputStream* st) {
3244   if (!has_last_Java_frame()) return;
3245   ResourceMark rm;
3246   HandleMark   hm;
3247 
3248   RegisterMap reg_map(this);
3249   vframe* start_vf = last_java_vframe(&reg_map);
3250   int count = 0;
3251   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3252     if (f->is_java_frame()) {
3253       javaVFrame* jvf = javaVFrame::cast(f);
3254       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3255 
3256       // Print out lock information
3257       if (JavaMonitorsInStackTrace) {
3258         jvf->print_lock_info_on(st, count);
3259       }
3260     } else {
3261       // Ignore non-Java frames
3262     }
3263 
3264     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3265     count++;
3266     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3267   }
3268 }
3269 
3270 
3271 // JVMTI PopFrame support
3272 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3273   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3274   if (in_bytes(size_in_bytes) != 0) {
3275     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3276     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3277     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3278   }
3279 }
3280 
3281 void* JavaThread::popframe_preserved_args() {
3282   return _popframe_preserved_args;
3283 }
3284 
3285 ByteSize JavaThread::popframe_preserved_args_size() {
3286   return in_ByteSize(_popframe_preserved_args_size);
3287 }
3288 
3289 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3290   int sz = in_bytes(popframe_preserved_args_size());
3291   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3292   return in_WordSize(sz / wordSize);
3293 }
3294 
3295 void JavaThread::popframe_free_preserved_args() {
3296   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3297   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3298   _popframe_preserved_args = NULL;
3299   _popframe_preserved_args_size = 0;
3300 }
3301 
3302 #ifndef PRODUCT
3303 
3304 void JavaThread::trace_frames() {
3305   tty->print_cr("[Describe stack]");
3306   int frame_no = 1;
3307   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3308     tty->print("  %d. ", frame_no++);
3309     fst.current()->print_value_on(tty, this);
3310     tty->cr();
3311   }
3312 }
3313 
3314 class PrintAndVerifyOopClosure: public OopClosure {
3315  protected:
3316   template <class T> inline void do_oop_work(T* p) {
3317     oop obj = RawAccess<>::oop_load(p);
3318     if (obj == NULL) return;
3319     tty->print(INTPTR_FORMAT ": ", p2i(p));
3320     if (oopDesc::is_oop_or_null(obj)) {
3321       if (obj->is_objArray()) {
3322         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3323       } else {
3324         obj->print();
3325       }
3326     } else {
3327       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3328     }
3329     tty->cr();
3330   }
3331  public:
3332   virtual void do_oop(oop* p) { do_oop_work(p); }
3333   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3334 };
3335 
3336 #ifdef ASSERT
3337 // Print or validate the layout of stack frames
3338 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3339   ResourceMark rm;
3340   PRESERVE_EXCEPTION_MARK;
3341   FrameValues values;
3342   int frame_no = 0;
3343   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3344     fst.current()->describe(values, ++frame_no);
3345     if (depth == frame_no) break;
3346   }
3347   if (validate_only) {
3348     values.validate();
3349   } else {
3350     tty->print_cr("[Describe stack layout]");
3351     values.print(this);
3352   }
3353 }
3354 #endif
3355 
3356 void JavaThread::trace_stack_from(vframe* start_vf) {
3357   ResourceMark rm;
3358   int vframe_no = 1;
3359   for (vframe* f = start_vf; f; f = f->sender()) {
3360     if (f->is_java_frame()) {
3361       javaVFrame::cast(f)->print_activation(vframe_no++);
3362     } else {
3363       f->print();
3364     }
3365     if (vframe_no > StackPrintLimit) {
3366       tty->print_cr("...<more frames>...");
3367       return;
3368     }
3369   }
3370 }
3371 
3372 
3373 void JavaThread::trace_stack() {
3374   if (!has_last_Java_frame()) return;
3375   ResourceMark rm;
3376   HandleMark   hm;
3377   RegisterMap reg_map(this);
3378   trace_stack_from(last_java_vframe(&reg_map));
3379 }
3380 
3381 
3382 #endif // PRODUCT
3383 
3384 
3385 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3386   assert(reg_map != NULL, "a map must be given");
3387   frame f = last_frame();
3388   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3389     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3390   }
3391   return NULL;
3392 }
3393 
3394 
3395 Klass* JavaThread::security_get_caller_class(int depth) {
3396   vframeStream vfst(this);
3397   vfst.security_get_caller_frame(depth);
3398   if (!vfst.at_end()) {
3399     return vfst.method()->method_holder();
3400   }
3401   return NULL;
3402 }
3403 
3404 // java.lang.Thread.sleep support
3405 // Returns true if sleep time elapsed as expected, and false
3406 // if the thread was interrupted.
3407 bool JavaThread::sleep(jlong millis) {
3408   assert(this == Thread::current(),  "thread consistency check");
3409 
3410   ParkEvent * const slp = this->_SleepEvent;
3411   // Because there can be races with thread interruption sending an unpark()
3412   // to the event, we explicitly reset it here to avoid an immediate return.
3413   // The actual interrupt state will be checked before we park().
3414   slp->reset();
3415   // Thread interruption establishes a happens-before ordering in the
3416   // Java Memory Model, so we need to ensure we synchronize with the
3417   // interrupt state.
3418   OrderAccess::fence();
3419 
3420   jlong prevtime = os::javaTimeNanos();
3421 
3422   for (;;) {
3423     // interruption has precedence over timing out
3424     if (this->is_interrupted(true)) {
3425       return false;
3426     }
3427 
3428     if (millis <= 0) {
3429       return true;
3430     }
3431 
3432     {
3433       ThreadBlockInVM tbivm(this);
3434       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
3435 
3436       this->set_suspend_equivalent();
3437       // cleared by handle_special_suspend_equivalent_condition() or
3438       // java_suspend_self() via check_and_wait_while_suspended()
3439 
3440       slp->park(millis);
3441 
3442       // were we externally suspended while we were waiting?
3443       this->check_and_wait_while_suspended();
3444     }
3445 
3446     // Update elapsed time tracking
3447     jlong newtime = os::javaTimeNanos();
3448     if (newtime - prevtime < 0) {
3449       // time moving backwards, should only happen if no monotonic clock
3450       // not a guarantee() because JVM should not abort on kernel/glibc bugs
3451       assert(!os::supports_monotonic_clock(),
3452              "unexpected time moving backwards detected in JavaThread::sleep()");
3453     } else {
3454       millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3455     }
3456     prevtime = newtime;
3457   }
3458 }
3459 
3460 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3461   assert(thread->is_Compiler_thread(), "must be compiler thread");
3462   CompileBroker::compiler_thread_loop();
3463 }
3464 
3465 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3466   NMethodSweeper::sweeper_loop();
3467 }
3468 
3469 // Create a CompilerThread
3470 CompilerThread::CompilerThread(CompileQueue* queue,
3471                                CompilerCounters* counters)
3472                                : JavaThread(&compiler_thread_entry) {
3473   _env   = NULL;
3474   _log   = NULL;
3475   _task  = NULL;
3476   _queue = queue;
3477   _counters = counters;
3478   _buffer_blob = NULL;
3479   _compiler = NULL;
3480 
3481   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3482   resource_area()->bias_to(mtCompiler);
3483 
3484 #ifndef PRODUCT
3485   _ideal_graph_printer = NULL;
3486 #endif
3487 }
3488 
3489 CompilerThread::~CompilerThread() {
3490   // Delete objects which were allocated on heap.
3491   delete _counters;
3492 }
3493 
3494 bool CompilerThread::can_call_java() const {
3495   return _compiler != NULL && _compiler->is_jvmci();
3496 }
3497 
3498 // Create sweeper thread
3499 CodeCacheSweeperThread::CodeCacheSweeperThread()
3500 : JavaThread(&sweeper_thread_entry) {
3501   _scanned_compiled_method = NULL;
3502 }
3503 
3504 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3505   JavaThread::oops_do(f, cf);
3506   if (_scanned_compiled_method != NULL && cf != NULL) {
3507     // Safepoints can occur when the sweeper is scanning an nmethod so
3508     // process it here to make sure it isn't unloaded in the middle of
3509     // a scan.
3510     cf->do_code_blob(_scanned_compiled_method);
3511   }
3512 }
3513 
3514 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3515   JavaThread::nmethods_do(cf);
3516   if (_scanned_compiled_method != NULL && cf != NULL) {
3517     // Safepoints can occur when the sweeper is scanning an nmethod so
3518     // process it here to make sure it isn't unloaded in the middle of
3519     // a scan.
3520     cf->do_code_blob(_scanned_compiled_method);
3521   }
3522 }
3523 
3524 
3525 // ======= Threads ========
3526 
3527 // The Threads class links together all active threads, and provides
3528 // operations over all threads. It is protected by the Threads_lock,
3529 // which is also used in other global contexts like safepointing.
3530 // ThreadsListHandles are used to safely perform operations on one
3531 // or more threads without the risk of the thread exiting during the
3532 // operation.
3533 //
3534 // Note: The Threads_lock is currently more widely used than we
3535 // would like. We are actively migrating Threads_lock uses to other
3536 // mechanisms in order to reduce Threads_lock contention.
3537 
3538 int         Threads::_number_of_threads = 0;
3539 int         Threads::_number_of_non_daemon_threads = 0;
3540 int         Threads::_return_code = 0;
3541 uintx       Threads::_thread_claim_token = 1; // Never zero.
3542 size_t      JavaThread::_stack_size_at_create = 0;
3543 
3544 #ifdef ASSERT
3545 bool        Threads::_vm_complete = false;
3546 #endif
3547 
3548 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3549   Prefetch::read((void*)addr, prefetch_interval);
3550   return *addr;
3551 }
3552 
3553 // Possibly the ugliest for loop the world has seen. C++ does not allow
3554 // multiple types in the declaration section of the for loop. In this case
3555 // we are only dealing with pointers and hence can cast them. It looks ugly
3556 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3557 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3558     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3559              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3560              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3561              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3562              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3563          MACRO_current_p != MACRO_end;                                                                                    \
3564          MACRO_current_p++,                                                                                               \
3565              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3566 
3567 // All JavaThreads
3568 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3569 
3570 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3571 void Threads::non_java_threads_do(ThreadClosure* tc) {
3572   NoSafepointVerifier nsv;
3573   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3574     tc->do_thread(njti.current());
3575   }
3576 }
3577 
3578 // All JavaThreads
3579 void Threads::java_threads_do(ThreadClosure* tc) {
3580   assert_locked_or_safepoint(Threads_lock);
3581   // ALL_JAVA_THREADS iterates through all JavaThreads.
3582   ALL_JAVA_THREADS(p) {
3583     tc->do_thread(p);
3584   }
3585 }
3586 
3587 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3588   assert_locked_or_safepoint(Threads_lock);
3589   java_threads_do(tc);
3590   tc->do_thread(VMThread::vm_thread());
3591 }
3592 
3593 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3594 void Threads::threads_do(ThreadClosure* tc) {
3595   assert_locked_or_safepoint(Threads_lock);
3596   java_threads_do(tc);
3597   non_java_threads_do(tc);
3598 }
3599 
3600 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3601   uintx claim_token = Threads::thread_claim_token();
3602   ALL_JAVA_THREADS(p) {
3603     if (p->claim_threads_do(is_par, claim_token)) {
3604       tc->do_thread(p);
3605     }
3606   }
3607   VMThread* vmt = VMThread::vm_thread();
3608   if (vmt->claim_threads_do(is_par, claim_token)) {
3609     tc->do_thread(vmt);
3610   }
3611 }
3612 
3613 // The system initialization in the library has three phases.
3614 //
3615 // Phase 1: java.lang.System class initialization
3616 //     java.lang.System is a primordial class loaded and initialized
3617 //     by the VM early during startup.  java.lang.System.<clinit>
3618 //     only does registerNatives and keeps the rest of the class
3619 //     initialization work later until thread initialization completes.
3620 //
3621 //     System.initPhase1 initializes the system properties, the static
3622 //     fields in, out, and err. Set up java signal handlers, OS-specific
3623 //     system settings, and thread group of the main thread.
3624 static void call_initPhase1(TRAPS) {
3625   Klass* klass = SystemDictionary::System_klass();
3626   JavaValue result(T_VOID);
3627   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3628                                          vmSymbols::void_method_signature(), CHECK);
3629 }
3630 
3631 // Phase 2. Module system initialization
3632 //     This will initialize the module system.  Only java.base classes
3633 //     can be loaded until phase 2 completes.
3634 //
3635 //     Call System.initPhase2 after the compiler initialization and jsr292
3636 //     classes get initialized because module initialization runs a lot of java
3637 //     code, that for performance reasons, should be compiled.  Also, this will
3638 //     enable the startup code to use lambda and other language features in this
3639 //     phase and onward.
3640 //
3641 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3642 static void call_initPhase2(TRAPS) {
3643   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3644 
3645   Klass* klass = SystemDictionary::System_klass();
3646 
3647   JavaValue result(T_INT);
3648   JavaCallArguments args;
3649   args.push_int(DisplayVMOutputToStderr);
3650   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3651   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3652                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3653   if (result.get_jint() != JNI_OK) {
3654     vm_exit_during_initialization(); // no message or exception
3655   }
3656 
3657   universe_post_module_init();
3658 }
3659 
3660 // Phase 3. final setup - set security manager, system class loader and TCCL
3661 //
3662 //     This will instantiate and set the security manager, set the system class
3663 //     loader as well as the thread context class loader.  The security manager
3664 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3665 //     other modules or the application's classpath.
3666 static void call_initPhase3(TRAPS) {
3667   Klass* klass = SystemDictionary::System_klass();
3668   JavaValue result(T_VOID);
3669   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3670                                          vmSymbols::void_method_signature(), CHECK);
3671 }
3672 
3673 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3674   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3675 
3676   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3677     create_vm_init_libraries();
3678   }
3679 
3680   initialize_class(vmSymbols::java_lang_String(), CHECK);
3681 
3682   // Inject CompactStrings value after the static initializers for String ran.
3683   java_lang_String::set_compact_strings(CompactStrings);
3684 
3685   // Initialize java_lang.System (needed before creating the thread)
3686   initialize_class(vmSymbols::java_lang_System(), CHECK);
3687   // The VM creates & returns objects of this class. Make sure it's initialized.
3688   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3689   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3690   Handle thread_group = create_initial_thread_group(CHECK);
3691   Universe::set_main_thread_group(thread_group());
3692   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3693   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3694   main_thread->set_threadObj(thread_object);
3695 
3696   // Set thread status to running since main thread has
3697   // been started and running.
3698   java_lang_Thread::set_thread_status(thread_object,
3699                                       java_lang_Thread::RUNNABLE);
3700 
3701   // The VM creates objects of this class.
3702   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3703 
3704 #ifdef ASSERT
3705   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3706   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3707 #endif
3708 
3709   // initialize the hardware-specific constants needed by Unsafe
3710   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3711   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3712 
3713   // The VM preresolves methods to these classes. Make sure that they get initialized
3714   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3715   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3716 
3717   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3718   call_initPhase1(CHECK);
3719 
3720   // get the Java runtime name, version, and vendor info after java.lang.System is initialized
3721   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3722   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3723   JDK_Version::set_runtime_vendor_version(get_java_runtime_vendor_version(THREAD));
3724   JDK_Version::set_runtime_vendor_vm_bug_url(get_java_runtime_vendor_vm_bug_url(THREAD));
3725 
3726   // an instance of OutOfMemory exception has been allocated earlier
3727   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3728   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3729   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3730   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3731   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3732   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3733   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3734   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3735 
3736   // Eager box cache initialization only if AOT is on and any library is loaded.
3737   AOTLoader::initialize_box_caches(CHECK);
3738 }
3739 
3740 void Threads::initialize_jsr292_core_classes(TRAPS) {
3741   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3742 
3743   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3744   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3745   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3746   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3747 }
3748 
3749 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3750   extern void JDK_Version_init();
3751 
3752   // Preinitialize version info.
3753   VM_Version::early_initialize();
3754 
3755   // Check version
3756   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3757 
3758   // Initialize library-based TLS
3759   ThreadLocalStorage::init();
3760 
3761   // Initialize the output stream module
3762   ostream_init();
3763 
3764   // Process java launcher properties.
3765   Arguments::process_sun_java_launcher_properties(args);
3766 
3767   // Initialize the os module
3768   os::init();
3769 
3770   // Record VM creation timing statistics
3771   TraceVmCreationTime create_vm_timer;
3772   create_vm_timer.start();
3773 
3774   // Initialize system properties.
3775   Arguments::init_system_properties();
3776 
3777   // So that JDK version can be used as a discriminator when parsing arguments
3778   JDK_Version_init();
3779 
3780   // Update/Initialize System properties after JDK version number is known
3781   Arguments::init_version_specific_system_properties();
3782 
3783   // Make sure to initialize log configuration *before* parsing arguments
3784   LogConfiguration::initialize(create_vm_timer.begin_time());
3785 
3786   // Parse arguments
3787   // Note: this internally calls os::init_container_support()
3788   jint parse_result = Arguments::parse(args);
3789   if (parse_result != JNI_OK) return parse_result;
3790 
3791   os::init_before_ergo();
3792 
3793   jint ergo_result = Arguments::apply_ergo();
3794   if (ergo_result != JNI_OK) return ergo_result;
3795 
3796   // Final check of all ranges after ergonomics which may change values.
3797   if (!JVMFlagRangeList::check_ranges()) {
3798     return JNI_EINVAL;
3799   }
3800 
3801   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3802   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3803   if (!constraint_result) {
3804     return JNI_EINVAL;
3805   }
3806 
3807   if (PauseAtStartup) {
3808     os::pause();
3809   }
3810 
3811   HOTSPOT_VM_INIT_BEGIN();
3812 
3813   // Timing (must come after argument parsing)
3814   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3815 
3816   // Initialize the os module after parsing the args
3817   jint os_init_2_result = os::init_2();
3818   if (os_init_2_result != JNI_OK) return os_init_2_result;
3819 
3820 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3821   // Initialize assert poison page mechanism.
3822   if (ShowRegistersOnAssert) {
3823     initialize_assert_poison();
3824   }
3825 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3826 
3827   SafepointMechanism::initialize();
3828 
3829   jint adjust_after_os_result = Arguments::adjust_after_os();
3830   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3831 
3832   // Initialize output stream logging
3833   ostream_init_log();
3834 
3835   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3836   // Must be before create_vm_init_agents()
3837   if (Arguments::init_libraries_at_startup()) {
3838     convert_vm_init_libraries_to_agents();
3839   }
3840 
3841   // Launch -agentlib/-agentpath and converted -Xrun agents
3842   if (Arguments::init_agents_at_startup()) {
3843     create_vm_init_agents();
3844   }
3845 
3846   // Initialize Threads state
3847   _number_of_threads = 0;
3848   _number_of_non_daemon_threads = 0;
3849 
3850   // Initialize global data structures and create system classes in heap
3851   vm_init_globals();
3852 
3853 #if INCLUDE_JVMCI
3854   if (JVMCICounterSize > 0) {
3855     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3856     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3857   } else {
3858     JavaThread::_jvmci_old_thread_counters = NULL;
3859   }
3860 #endif // INCLUDE_JVMCI
3861 
3862   // Attach the main thread to this os thread
3863   JavaThread* main_thread = new JavaThread();
3864   main_thread->set_thread_state(_thread_in_vm);
3865   main_thread->initialize_thread_current();
3866   // must do this before set_active_handles
3867   main_thread->record_stack_base_and_size();
3868   main_thread->register_thread_stack_with_NMT();
3869   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3870 
3871   if (!main_thread->set_as_starting_thread()) {
3872     vm_shutdown_during_initialization(
3873                                       "Failed necessary internal allocation. Out of swap space");
3874     main_thread->smr_delete();
3875     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3876     return JNI_ENOMEM;
3877   }
3878 
3879   // Enable guard page *after* os::create_main_thread(), otherwise it would
3880   // crash Linux VM, see notes in os_linux.cpp.
3881   main_thread->create_stack_guard_pages();
3882 
3883   // Initialize Java-Level synchronization subsystem
3884   ObjectMonitor::Initialize();
3885 
3886   // Initialize global modules
3887   jint status = init_globals();
3888   if (status != JNI_OK) {
3889     main_thread->smr_delete();
3890     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3891     return status;
3892   }
3893 
3894   JFR_ONLY(Jfr::on_create_vm_1();)
3895 
3896   // Should be done after the heap is fully created
3897   main_thread->cache_global_variables();
3898 
3899   HandleMark hm;
3900 
3901   { MutexLocker mu(Threads_lock);
3902     Threads::add(main_thread);
3903   }
3904 
3905   // Any JVMTI raw monitors entered in onload will transition into
3906   // real raw monitor. VM is setup enough here for raw monitor enter.
3907   JvmtiExport::transition_pending_onload_raw_monitors();
3908 
3909   // Create the VMThread
3910   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3911 
3912     VMThread::create();
3913     Thread* vmthread = VMThread::vm_thread();
3914 
3915     if (!os::create_thread(vmthread, os::vm_thread)) {
3916       vm_exit_during_initialization("Cannot create VM thread. "
3917                                     "Out of system resources.");
3918     }
3919 
3920     // Wait for the VM thread to become ready, and VMThread::run to initialize
3921     // Monitors can have spurious returns, must always check another state flag
3922     {
3923       MonitorLocker ml(Notify_lock);
3924       os::start_thread(vmthread);
3925       while (vmthread->active_handles() == NULL) {
3926         ml.wait();
3927       }
3928     }
3929   }
3930 
3931   assert(Universe::is_fully_initialized(), "not initialized");
3932   if (VerifyDuringStartup) {
3933     // Make sure we're starting with a clean slate.
3934     VM_Verify verify_op;
3935     VMThread::execute(&verify_op);
3936   }
3937 
3938   // We need this to update the java.vm.info property in case any flags used
3939   // to initially define it have been changed. This is needed for both CDS and
3940   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3941   // is initially computed. See Abstract_VM_Version::vm_info_string().
3942   // This update must happen before we initialize the java classes, but
3943   // after any initialization logic that might modify the flags.
3944   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3945 
3946   Thread* THREAD = Thread::current();
3947 
3948   // Always call even when there are not JVMTI environments yet, since environments
3949   // may be attached late and JVMTI must track phases of VM execution
3950   JvmtiExport::enter_early_start_phase();
3951 
3952   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3953   JvmtiExport::post_early_vm_start();
3954 
3955   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3956 
3957   quicken_jni_functions();
3958 
3959   // No more stub generation allowed after that point.
3960   StubCodeDesc::freeze();
3961 
3962   // Set flag that basic initialization has completed. Used by exceptions and various
3963   // debug stuff, that does not work until all basic classes have been initialized.
3964   set_init_completed();
3965 
3966   LogConfiguration::post_initialize();
3967   Metaspace::post_initialize();
3968 
3969   HOTSPOT_VM_INIT_END();
3970 
3971   // record VM initialization completion time
3972 #if INCLUDE_MANAGEMENT
3973   Management::record_vm_init_completed();
3974 #endif // INCLUDE_MANAGEMENT
3975 
3976   // Signal Dispatcher needs to be started before VMInit event is posted
3977   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3978 
3979   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3980   if (!DisableAttachMechanism) {
3981     AttachListener::vm_start();
3982     if (StartAttachListener || AttachListener::init_at_startup()) {
3983       AttachListener::init();
3984     }
3985   }
3986 
3987   // Launch -Xrun agents
3988   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3989   // back-end can launch with -Xdebug -Xrunjdwp.
3990   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3991     create_vm_init_libraries();
3992   }
3993 
3994   if (CleanChunkPoolAsync) {
3995     Chunk::start_chunk_pool_cleaner_task();
3996   }
3997 
3998   // Start the service thread
3999   // The service thread enqueues JVMTI deferred events and does various hashtable
4000   // and other cleanups.  Needs to start before the compilers start posting events.
4001   ServiceThread::initialize();
4002 
4003   // initialize compiler(s)
4004 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
4005 #if INCLUDE_JVMCI
4006   bool force_JVMCI_intialization = false;
4007   if (EnableJVMCI) {
4008     // Initialize JVMCI eagerly when it is explicitly requested.
4009     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
4010     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
4011 
4012     if (!force_JVMCI_intialization) {
4013       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
4014       // compilations via JVMCI will not actually block until JVMCI is initialized.
4015       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
4016     }
4017   }
4018 #endif
4019   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
4020   // Postpone completion of compiler initialization to after JVMCI
4021   // is initialized to avoid timeouts of blocking compilations.
4022   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
4023     CompileBroker::compilation_init_phase2();
4024   }
4025 #endif
4026 
4027   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
4028   // It is done after compilers are initialized, because otherwise compilations of
4029   // signature polymorphic MH intrinsics can be missed
4030   // (see SystemDictionary::find_method_handle_intrinsic).
4031   initialize_jsr292_core_classes(CHECK_JNI_ERR);
4032 
4033   // This will initialize the module system.  Only java.base classes can be
4034   // loaded until phase 2 completes
4035   call_initPhase2(CHECK_JNI_ERR);
4036 
4037   JFR_ONLY(Jfr::on_create_vm_2();)
4038 
4039   // Always call even when there are not JVMTI environments yet, since environments
4040   // may be attached late and JVMTI must track phases of VM execution
4041   JvmtiExport::enter_start_phase();
4042 
4043   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4044   JvmtiExport::post_vm_start();
4045 
4046   // Final system initialization including security manager and system class loader
4047   call_initPhase3(CHECK_JNI_ERR);
4048 
4049   // cache the system and platform class loaders
4050   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
4051 
4052 #if INCLUDE_CDS
4053   // capture the module path info from the ModuleEntryTable
4054   ClassLoader::initialize_module_path(THREAD);
4055 #endif
4056 
4057 #if INCLUDE_JVMCI
4058   if (force_JVMCI_intialization) {
4059     JVMCI::initialize_compiler(CHECK_JNI_ERR);
4060     CompileBroker::compilation_init_phase2();
4061   }
4062 #endif
4063 
4064   // Always call even when there are not JVMTI environments yet, since environments
4065   // may be attached late and JVMTI must track phases of VM execution
4066   JvmtiExport::enter_live_phase();
4067 
4068   // Make perfmemory accessible
4069   PerfMemory::set_accessible(true);
4070 
4071   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4072   JvmtiExport::post_vm_initialized();
4073 
4074   JFR_ONLY(Jfr::on_create_vm_3();)
4075 
4076 #if INCLUDE_MANAGEMENT
4077   Management::initialize(THREAD);
4078 
4079   if (HAS_PENDING_EXCEPTION) {
4080     // management agent fails to start possibly due to
4081     // configuration problem and is responsible for printing
4082     // stack trace if appropriate. Simply exit VM.
4083     vm_exit(1);
4084   }
4085 #endif // INCLUDE_MANAGEMENT
4086 
4087   if (MemProfiling)                   MemProfiler::engage();
4088   StatSampler::engage();
4089   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4090 
4091   BiasedLocking::init();
4092 
4093 #if INCLUDE_RTM_OPT
4094   RTMLockingCounters::init();
4095 #endif
4096 
4097   call_postVMInitHook(THREAD);
4098   // The Java side of PostVMInitHook.run must deal with all
4099   // exceptions and provide means of diagnosis.
4100   if (HAS_PENDING_EXCEPTION) {
4101     CLEAR_PENDING_EXCEPTION;
4102   }
4103 
4104   {
4105     MutexLocker ml(PeriodicTask_lock);
4106     // Make sure the WatcherThread can be started by WatcherThread::start()
4107     // or by dynamic enrollment.
4108     WatcherThread::make_startable();
4109     // Start up the WatcherThread if there are any periodic tasks
4110     // NOTE:  All PeriodicTasks should be registered by now. If they
4111     //   aren't, late joiners might appear to start slowly (we might
4112     //   take a while to process their first tick).
4113     if (PeriodicTask::num_tasks() > 0) {
4114       WatcherThread::start();
4115     }
4116   }
4117 
4118   create_vm_timer.end();
4119 #ifdef ASSERT
4120   _vm_complete = true;
4121 #endif
4122 
4123   if (DumpSharedSpaces) {
4124     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4125     ShouldNotReachHere();
4126   }
4127 
4128   return JNI_OK;
4129 }
4130 
4131 // type for the Agent_OnLoad and JVM_OnLoad entry points
4132 extern "C" {
4133   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4134 }
4135 // Find a command line agent library and return its entry point for
4136 //         -agentlib:  -agentpath:   -Xrun
4137 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4138 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4139                                     const char *on_load_symbols[],
4140                                     size_t num_symbol_entries) {
4141   OnLoadEntry_t on_load_entry = NULL;
4142   void *library = NULL;
4143 
4144   if (!agent->valid()) {
4145     char buffer[JVM_MAXPATHLEN];
4146     char ebuf[1024] = "";
4147     const char *name = agent->name();
4148     const char *msg = "Could not find agent library ";
4149 
4150     // First check to see if agent is statically linked into executable
4151     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4152       library = agent->os_lib();
4153     } else if (agent->is_absolute_path()) {
4154       library = os::dll_load(name, ebuf, sizeof ebuf);
4155       if (library == NULL) {
4156         const char *sub_msg = " in absolute path, with error: ";
4157         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4158         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4159         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4160         // If we can't find the agent, exit.
4161         vm_exit_during_initialization(buf, NULL);
4162         FREE_C_HEAP_ARRAY(char, buf);
4163       }
4164     } else {
4165       // Try to load the agent from the standard dll directory
4166       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4167                              name)) {
4168         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4169       }
4170       if (library == NULL) { // Try the library path directory.
4171         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4172           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4173         }
4174         if (library == NULL) {
4175           const char *sub_msg = " on the library path, with error: ";
4176           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4177 
4178           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4179                        strlen(ebuf) + strlen(sub_msg2) + 1;
4180           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4181           if (!agent->is_instrument_lib()) {
4182             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4183           } else {
4184             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4185           }
4186           // If we can't find the agent, exit.
4187           vm_exit_during_initialization(buf, NULL);
4188           FREE_C_HEAP_ARRAY(char, buf);
4189         }
4190       }
4191     }
4192     agent->set_os_lib(library);
4193     agent->set_valid();
4194   }
4195 
4196   // Find the OnLoad function.
4197   on_load_entry =
4198     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4199                                                           false,
4200                                                           on_load_symbols,
4201                                                           num_symbol_entries));
4202   return on_load_entry;
4203 }
4204 
4205 // Find the JVM_OnLoad entry point
4206 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4207   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4208   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4209 }
4210 
4211 // Find the Agent_OnLoad entry point
4212 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4213   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4214   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4215 }
4216 
4217 // For backwards compatibility with -Xrun
4218 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4219 // treated like -agentpath:
4220 // Must be called before agent libraries are created
4221 void Threads::convert_vm_init_libraries_to_agents() {
4222   AgentLibrary* agent;
4223   AgentLibrary* next;
4224 
4225   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4226     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4227     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4228 
4229     // If there is an JVM_OnLoad function it will get called later,
4230     // otherwise see if there is an Agent_OnLoad
4231     if (on_load_entry == NULL) {
4232       on_load_entry = lookup_agent_on_load(agent);
4233       if (on_load_entry != NULL) {
4234         // switch it to the agent list -- so that Agent_OnLoad will be called,
4235         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4236         Arguments::convert_library_to_agent(agent);
4237       } else {
4238         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4239       }
4240     }
4241   }
4242 }
4243 
4244 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4245 // Invokes Agent_OnLoad
4246 // Called very early -- before JavaThreads exist
4247 void Threads::create_vm_init_agents() {
4248   extern struct JavaVM_ main_vm;
4249   AgentLibrary* agent;
4250 
4251   JvmtiExport::enter_onload_phase();
4252 
4253   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4254     // CDS dumping does not support native JVMTI agent.
4255     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4256     if (Arguments::is_dumping_archive()) {
4257       if(!agent->is_instrument_lib()) {
4258         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4259       } else if (!AllowArchivingWithJavaAgent) {
4260         vm_exit_during_cds_dumping(
4261           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4262       }
4263     }
4264 
4265     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4266 
4267     if (on_load_entry != NULL) {
4268       // Invoke the Agent_OnLoad function
4269       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4270       if (err != JNI_OK) {
4271         vm_exit_during_initialization("agent library failed to init", agent->name());
4272       }
4273     } else {
4274       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4275     }
4276   }
4277 
4278   JvmtiExport::enter_primordial_phase();
4279 }
4280 
4281 extern "C" {
4282   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4283 }
4284 
4285 void Threads::shutdown_vm_agents() {
4286   // Send any Agent_OnUnload notifications
4287   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4288   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4289   extern struct JavaVM_ main_vm;
4290   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4291 
4292     // Find the Agent_OnUnload function.
4293     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4294                                                    os::find_agent_function(agent,
4295                                                    false,
4296                                                    on_unload_symbols,
4297                                                    num_symbol_entries));
4298 
4299     // Invoke the Agent_OnUnload function
4300     if (unload_entry != NULL) {
4301       JavaThread* thread = JavaThread::current();
4302       ThreadToNativeFromVM ttn(thread);
4303       HandleMark hm(thread);
4304       (*unload_entry)(&main_vm);
4305     }
4306   }
4307 }
4308 
4309 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4310 // Invokes JVM_OnLoad
4311 void Threads::create_vm_init_libraries() {
4312   extern struct JavaVM_ main_vm;
4313   AgentLibrary* agent;
4314 
4315   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4316     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4317 
4318     if (on_load_entry != NULL) {
4319       // Invoke the JVM_OnLoad function
4320       JavaThread* thread = JavaThread::current();
4321       ThreadToNativeFromVM ttn(thread);
4322       HandleMark hm(thread);
4323       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4324       if (err != JNI_OK) {
4325         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4326       }
4327     } else {
4328       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4329     }
4330   }
4331 }
4332 
4333 
4334 // Last thread running calls java.lang.Shutdown.shutdown()
4335 void JavaThread::invoke_shutdown_hooks() {
4336   HandleMark hm(this);
4337 
4338   // Link all classes for dynamic CDS dumping before vm exit.
4339   // Same operation is being done in JVM_BeforeHalt for handling the
4340   // case where the application calls System.exit().
4341   if (DynamicDumpSharedSpaces) {
4342     MetaspaceShared::link_and_cleanup_shared_classes(this);
4343   }
4344 
4345   // We could get here with a pending exception, if so clear it now.
4346   if (this->has_pending_exception()) {
4347     this->clear_pending_exception();
4348   }
4349 
4350   EXCEPTION_MARK;
4351   Klass* shutdown_klass =
4352     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4353                                       THREAD);
4354   if (shutdown_klass != NULL) {
4355     // SystemDictionary::resolve_or_null will return null if there was
4356     // an exception.  If we cannot load the Shutdown class, just don't
4357     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4358     // won't be run.  Note that if a shutdown hook was registered,
4359     // the Shutdown class would have already been loaded
4360     // (Runtime.addShutdownHook will load it).
4361     JavaValue result(T_VOID);
4362     JavaCalls::call_static(&result,
4363                            shutdown_klass,
4364                            vmSymbols::shutdown_name(),
4365                            vmSymbols::void_method_signature(),
4366                            THREAD);
4367   }
4368   CLEAR_PENDING_EXCEPTION;
4369 }
4370 
4371 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4372 // the program falls off the end of main(). Another VM exit path is through
4373 // vm_exit() when the program calls System.exit() to return a value or when
4374 // there is a serious error in VM. The two shutdown paths are not exactly
4375 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4376 // and VM_Exit op at VM level.
4377 //
4378 // Shutdown sequence:
4379 //   + Shutdown native memory tracking if it is on
4380 //   + Wait until we are the last non-daemon thread to execute
4381 //     <-- every thing is still working at this moment -->
4382 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4383 //        shutdown hooks
4384 //   + Call before_exit(), prepare for VM exit
4385 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4386 //        currently the only user of this mechanism is File.deleteOnExit())
4387 //      > stop StatSampler, watcher thread,
4388 //        post thread end and vm death events to JVMTI,
4389 //        stop signal thread
4390 //   + Call JavaThread::exit(), it will:
4391 //      > release JNI handle blocks, remove stack guard pages
4392 //      > remove this thread from Threads list
4393 //     <-- no more Java code from this thread after this point -->
4394 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4395 //     the compiler threads at safepoint
4396 //     <-- do not use anything that could get blocked by Safepoint -->
4397 //   + Disable tracing at JNI/JVM barriers
4398 //   + Set _vm_exited flag for threads that are still running native code
4399 //   + Call exit_globals()
4400 //      > deletes tty
4401 //      > deletes PerfMemory resources
4402 //   + Delete this thread
4403 //   + Return to caller
4404 
4405 bool Threads::destroy_vm() {
4406   JavaThread* thread = JavaThread::current();
4407 
4408 #ifdef ASSERT
4409   _vm_complete = false;
4410 #endif
4411   // Wait until we are the last non-daemon thread to execute
4412   { MonitorLocker nu(Threads_lock);
4413     while (Threads::number_of_non_daemon_threads() > 1)
4414       // This wait should make safepoint checks, wait without a timeout,
4415       // and wait as a suspend-equivalent condition.
4416       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4417   }
4418 
4419   EventShutdown e;
4420   if (e.should_commit()) {
4421     e.set_reason("No remaining non-daemon Java threads");
4422     e.commit();
4423   }
4424 
4425   // Hang forever on exit if we are reporting an error.
4426   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4427     os::infinite_sleep();
4428   }
4429   os::wait_for_keypress_at_exit();
4430 
4431   // run Java level shutdown hooks
4432   thread->invoke_shutdown_hooks();
4433 
4434   before_exit(thread);
4435 
4436   thread->exit(true);
4437 
4438   // We are no longer on the main thread list but could still be in a
4439   // secondary list where another thread may try to interact with us.
4440   // So wait until all such interactions are complete before we bring
4441   // the VM to the termination safepoint. Normally this would be done
4442   // using thread->smr_delete() below where we delete the thread, but
4443   // we can't call that after the termination safepoint is active as
4444   // we will deadlock on the Threads_lock. Once all interactions are
4445   // complete it is safe to directly delete the thread at any time.
4446   ThreadsSMRSupport::wait_until_not_protected(thread);
4447 
4448   // Stop VM thread.
4449   {
4450     // 4945125 The vm thread comes to a safepoint during exit.
4451     // GC vm_operations can get caught at the safepoint, and the
4452     // heap is unparseable if they are caught. Grab the Heap_lock
4453     // to prevent this. The GC vm_operations will not be able to
4454     // queue until after the vm thread is dead. After this point,
4455     // we'll never emerge out of the safepoint before the VM exits.
4456 
4457     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4458 
4459     VMThread::wait_for_vm_thread_exit();
4460     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4461     VMThread::destroy();
4462   }
4463 
4464   // Now, all Java threads are gone except daemon threads. Daemon threads
4465   // running Java code or in VM are stopped by the Safepoint. However,
4466   // daemon threads executing native code are still running.  But they
4467   // will be stopped at native=>Java/VM barriers. Note that we can't
4468   // simply kill or suspend them, as it is inherently deadlock-prone.
4469 
4470   VM_Exit::set_vm_exited();
4471 
4472   // Clean up ideal graph printers after the VMThread has started
4473   // the final safepoint which will block all the Compiler threads.
4474   // Note that this Thread has already logically exited so the
4475   // clean_up() function's use of a JavaThreadIteratorWithHandle
4476   // would be a problem except set_vm_exited() has remembered the
4477   // shutdown thread which is granted a policy exception.
4478 #if defined(COMPILER2) && !defined(PRODUCT)
4479   IdealGraphPrinter::clean_up();
4480 #endif
4481 
4482   notify_vm_shutdown();
4483 
4484   // exit_globals() will delete tty
4485   exit_globals();
4486 
4487   // Deleting the shutdown thread here is safe. See comment on
4488   // wait_until_not_protected() above.
4489   delete thread;
4490 
4491 #if INCLUDE_JVMCI
4492   if (JVMCICounterSize > 0) {
4493     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4494   }
4495 #endif
4496 
4497   LogConfiguration::finalize();
4498 
4499   return true;
4500 }
4501 
4502 
4503 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4504   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4505   return is_supported_jni_version(version);
4506 }
4507 
4508 
4509 jboolean Threads::is_supported_jni_version(jint version) {
4510   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4511   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4512   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4513   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4514   if (version == JNI_VERSION_9) return JNI_TRUE;
4515   if (version == JNI_VERSION_10) return JNI_TRUE;
4516   return JNI_FALSE;
4517 }
4518 
4519 
4520 void Threads::add(JavaThread* p, bool force_daemon) {
4521   // The threads lock must be owned at this point
4522   assert(Threads_lock->owned_by_self(), "must have threads lock");
4523 
4524   BarrierSet::barrier_set()->on_thread_attach(p);
4525 
4526   // Once a JavaThread is added to the Threads list, smr_delete() has
4527   // to be used to delete it. Otherwise we can just delete it directly.
4528   p->set_on_thread_list();
4529 
4530   _number_of_threads++;
4531   oop threadObj = p->threadObj();
4532   bool daemon = true;
4533   // Bootstrapping problem: threadObj can be null for initial
4534   // JavaThread (or for threads attached via JNI)
4535   if ((!force_daemon) && !is_daemon((threadObj))) {
4536     _number_of_non_daemon_threads++;
4537     daemon = false;
4538   }
4539 
4540   ThreadService::add_thread(p, daemon);
4541 
4542   // Maintain fast thread list
4543   ThreadsSMRSupport::add_thread(p);
4544 
4545   // Possible GC point.
4546   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4547 }
4548 
4549 void Threads::remove(JavaThread* p, bool is_daemon) {
4550 
4551   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4552   ObjectSynchronizer::om_flush(p);
4553 
4554   // Extra scope needed for Thread_lock, so we can check
4555   // that we do not remove thread without safepoint code notice
4556   { MonitorLocker ml(Threads_lock);
4557 
4558     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4559 
4560     // Maintain fast thread list
4561     ThreadsSMRSupport::remove_thread(p);
4562 
4563     _number_of_threads--;
4564     if (!is_daemon) {
4565       _number_of_non_daemon_threads--;
4566 
4567       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4568       // on destroy_vm will wake up.
4569       if (number_of_non_daemon_threads() == 1) {
4570         ml.notify_all();
4571       }
4572     }
4573     ThreadService::remove_thread(p, is_daemon);
4574 
4575     // Make sure that safepoint code disregard this thread. This is needed since
4576     // the thread might mess around with locks after this point. This can cause it
4577     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4578     // of this thread since it is removed from the queue.
4579     p->set_terminated_value();
4580   } // unlock Threads_lock
4581 
4582   // Since Events::log uses a lock, we grab it outside the Threads_lock
4583   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4584 }
4585 
4586 // Operations on the Threads list for GC.  These are not explicitly locked,
4587 // but the garbage collector must provide a safe context for them to run.
4588 // In particular, these things should never be called when the Threads_lock
4589 // is held by some other thread. (Note: the Safepoint abstraction also
4590 // uses the Threads_lock to guarantee this property. It also makes sure that
4591 // all threads gets blocked when exiting or starting).
4592 
4593 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4594   ALL_JAVA_THREADS(p) {
4595     p->oops_do(f, cf);
4596   }
4597   VMThread::vm_thread()->oops_do(f, cf);
4598 }
4599 
4600 void Threads::change_thread_claim_token() {
4601   if (++_thread_claim_token == 0) {
4602     // On overflow of the token counter, there is a risk of future
4603     // collisions between a new global token value and a stale token
4604     // for a thread, because not all iterations visit all threads.
4605     // (Though it's pretty much a theoretical concern for non-trivial
4606     // token counter sizes.)  To deal with the possibility, reset all
4607     // the thread tokens to zero on global token overflow.
4608     struct ResetClaims : public ThreadClosure {
4609       virtual void do_thread(Thread* t) {
4610         t->claim_threads_do(false, 0);
4611       }
4612     } reset_claims;
4613     Threads::threads_do(&reset_claims);
4614     // On overflow, update the global token to non-zero, to
4615     // avoid the special "never claimed" initial thread value.
4616     _thread_claim_token = 1;
4617   }
4618 }
4619 
4620 #ifdef ASSERT
4621 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4622   const uintx token = t->threads_do_token();
4623   assert(token == expected,
4624          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4625          UINTX_FORMAT, kind, p2i(t), token, expected);
4626 }
4627 
4628 void Threads::assert_all_threads_claimed() {
4629   ALL_JAVA_THREADS(p) {
4630     assert_thread_claimed("Thread", p, _thread_claim_token);
4631   }
4632   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4633 }
4634 #endif // ASSERT
4635 
4636 class ParallelOopsDoThreadClosure : public ThreadClosure {
4637 private:
4638   OopClosure* _f;
4639   CodeBlobClosure* _cf;
4640 public:
4641   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4642   void do_thread(Thread* t) {
4643     t->oops_do(_f, _cf);
4644   }
4645 };
4646 
4647 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4648   ParallelOopsDoThreadClosure tc(f, cf);
4649   possibly_parallel_threads_do(is_par, &tc);
4650 }
4651 
4652 void Threads::nmethods_do(CodeBlobClosure* cf) {
4653   ALL_JAVA_THREADS(p) {
4654     // This is used by the code cache sweeper to mark nmethods that are active
4655     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4656     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4657     if(!p->is_Code_cache_sweeper_thread()) {
4658       p->nmethods_do(cf);
4659     }
4660   }
4661 }
4662 
4663 void Threads::metadata_do(MetadataClosure* f) {
4664   ALL_JAVA_THREADS(p) {
4665     p->metadata_do(f);
4666   }
4667 }
4668 
4669 class ThreadHandlesClosure : public ThreadClosure {
4670   void (*_f)(Metadata*);
4671  public:
4672   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4673   virtual void do_thread(Thread* thread) {
4674     thread->metadata_handles_do(_f);
4675   }
4676 };
4677 
4678 void Threads::metadata_handles_do(void f(Metadata*)) {
4679   // Only walk the Handles in Thread.
4680   ThreadHandlesClosure handles_closure(f);
4681   threads_do(&handles_closure);
4682 }
4683 
4684 // Get count Java threads that are waiting to enter the specified monitor.
4685 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4686                                                          int count,
4687                                                          address monitor) {
4688   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4689 
4690   int i = 0;
4691   DO_JAVA_THREADS(t_list, p) {
4692     if (!p->can_call_java()) continue;
4693 
4694     // The first stage of async deflation does not affect any field
4695     // used by this comparison so the ObjectMonitor* is usable here.
4696     address pending = (address)p->current_pending_monitor();
4697     if (pending == monitor) {             // found a match
4698       if (i < count) result->append(p);   // save the first count matches
4699       i++;
4700     }
4701   }
4702 
4703   return result;
4704 }
4705 
4706 
4707 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4708                                                       address owner) {
4709   // NULL owner means not locked so we can skip the search
4710   if (owner == NULL) return NULL;
4711 
4712   DO_JAVA_THREADS(t_list, p) {
4713     // first, see if owner is the address of a Java thread
4714     if (owner == (address)p) return p;
4715   }
4716 
4717   // Cannot assert on lack of success here since this function may be
4718   // used by code that is trying to report useful problem information
4719   // like deadlock detection.
4720   if (UseHeavyMonitors) return NULL;
4721 
4722   // If we didn't find a matching Java thread and we didn't force use of
4723   // heavyweight monitors, then the owner is the stack address of the
4724   // Lock Word in the owning Java thread's stack.
4725   //
4726   JavaThread* the_owner = NULL;
4727   DO_JAVA_THREADS(t_list, q) {
4728     if (q->is_lock_owned(owner)) {
4729       the_owner = q;
4730       break;
4731     }
4732   }
4733 
4734   // cannot assert on lack of success here; see above comment
4735   return the_owner;
4736 }
4737 
4738 class PrintOnClosure : public ThreadClosure {
4739 private:
4740   outputStream* _st;
4741 
4742 public:
4743   PrintOnClosure(outputStream* st) :
4744       _st(st) {}
4745 
4746   virtual void do_thread(Thread* thread) {
4747     if (thread != NULL) {
4748       thread->print_on(_st);
4749       _st->cr();
4750     }
4751   }
4752 };
4753 
4754 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4755 void Threads::print_on(outputStream* st, bool print_stacks,
4756                        bool internal_format, bool print_concurrent_locks,
4757                        bool print_extended_info) {
4758   char buf[32];
4759   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4760 
4761   st->print_cr("Full thread dump %s (%s %s):",
4762                VM_Version::vm_name(),
4763                VM_Version::vm_release(),
4764                VM_Version::vm_info_string());
4765   st->cr();
4766 
4767 #if INCLUDE_SERVICES
4768   // Dump concurrent locks
4769   ConcurrentLocksDump concurrent_locks;
4770   if (print_concurrent_locks) {
4771     concurrent_locks.dump_at_safepoint();
4772   }
4773 #endif // INCLUDE_SERVICES
4774 
4775   ThreadsSMRSupport::print_info_on(st);
4776   st->cr();
4777 
4778   ALL_JAVA_THREADS(p) {
4779     ResourceMark rm;
4780     p->print_on(st, print_extended_info);
4781     if (print_stacks) {
4782       if (internal_format) {
4783         p->trace_stack();
4784       } else {
4785         p->print_stack_on(st);
4786       }
4787     }
4788     st->cr();
4789 #if INCLUDE_SERVICES
4790     if (print_concurrent_locks) {
4791       concurrent_locks.print_locks_on(p, st);
4792     }
4793 #endif // INCLUDE_SERVICES
4794   }
4795 
4796   PrintOnClosure cl(st);
4797   cl.do_thread(VMThread::vm_thread());
4798   Universe::heap()->gc_threads_do(&cl);
4799   cl.do_thread(WatcherThread::watcher_thread());
4800 
4801   st->flush();
4802 }
4803 
4804 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4805                              int buflen, bool* found_current) {
4806   if (this_thread != NULL) {
4807     bool is_current = (current == this_thread);
4808     *found_current = *found_current || is_current;
4809     st->print("%s", is_current ? "=>" : "  ");
4810 
4811     st->print(PTR_FORMAT, p2i(this_thread));
4812     st->print(" ");
4813     this_thread->print_on_error(st, buf, buflen);
4814     st->cr();
4815   }
4816 }
4817 
4818 class PrintOnErrorClosure : public ThreadClosure {
4819   outputStream* _st;
4820   Thread* _current;
4821   char* _buf;
4822   int _buflen;
4823   bool* _found_current;
4824  public:
4825   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4826                       int buflen, bool* found_current) :
4827    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4828 
4829   virtual void do_thread(Thread* thread) {
4830     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4831   }
4832 };
4833 
4834 // Threads::print_on_error() is called by fatal error handler. It's possible
4835 // that VM is not at safepoint and/or current thread is inside signal handler.
4836 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4837 // memory (even in resource area), it might deadlock the error handler.
4838 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4839                              int buflen) {
4840   ThreadsSMRSupport::print_info_on(st);
4841   st->cr();
4842 
4843   bool found_current = false;
4844   st->print_cr("Java Threads: ( => current thread )");
4845   ALL_JAVA_THREADS(thread) {
4846     print_on_error(thread, st, current, buf, buflen, &found_current);
4847   }
4848   st->cr();
4849 
4850   st->print_cr("Other Threads:");
4851   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4852   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4853 
4854   if (Universe::heap() != NULL) {
4855     PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4856     Universe::heap()->gc_threads_do(&print_closure);
4857   }
4858 
4859   if (!found_current) {
4860     st->cr();
4861     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4862     current->print_on_error(st, buf, buflen);
4863     st->cr();
4864   }
4865   st->cr();
4866 
4867   st->print_cr("Threads with active compile tasks:");
4868   print_threads_compiling(st, buf, buflen);
4869 }
4870 
4871 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4872   ALL_JAVA_THREADS(thread) {
4873     if (thread->is_Compiler_thread()) {
4874       CompilerThread* ct = (CompilerThread*) thread;
4875 
4876       // Keep task in local variable for NULL check.
4877       // ct->_task might be set to NULL by concurring compiler thread
4878       // because it completed the compilation. The task is never freed,
4879       // though, just returned to a free list.
4880       CompileTask* task = ct->task();
4881       if (task != NULL) {
4882         thread->print_name_on_error(st, buf, buflen);
4883         st->print("  ");
4884         task->print(st, NULL, short_form, true);
4885       }
4886     }
4887   }
4888 }
4889 
4890 
4891 // Internal SpinLock and Mutex
4892 // Based on ParkEvent
4893 
4894 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4895 //
4896 // We employ SpinLocks _only for low-contention, fixed-length
4897 // short-duration critical sections where we're concerned
4898 // about native mutex_t or HotSpot Mutex:: latency.
4899 // The mux construct provides a spin-then-block mutual exclusion
4900 // mechanism.
4901 //
4902 // Testing has shown that contention on the ListLock guarding gFreeList
4903 // is common.  If we implement ListLock as a simple SpinLock it's common
4904 // for the JVM to devolve to yielding with little progress.  This is true
4905 // despite the fact that the critical sections protected by ListLock are
4906 // extremely short.
4907 //
4908 // TODO-FIXME: ListLock should be of type SpinLock.
4909 // We should make this a 1st-class type, integrated into the lock
4910 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4911 // should have sufficient padding to avoid false-sharing and excessive
4912 // cache-coherency traffic.
4913 
4914 
4915 typedef volatile int SpinLockT;
4916 
4917 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4918   if (Atomic::cmpxchg(adr, 0, 1) == 0) {
4919     return;   // normal fast-path return
4920   }
4921 
4922   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4923   int ctr = 0;
4924   int Yields = 0;
4925   for (;;) {
4926     while (*adr != 0) {
4927       ++ctr;
4928       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4929         if (Yields > 5) {
4930           os::naked_short_sleep(1);
4931         } else {
4932           os::naked_yield();
4933           ++Yields;
4934         }
4935       } else {
4936         SpinPause();
4937       }
4938     }
4939     if (Atomic::cmpxchg(adr, 0, 1) == 0) return;
4940   }
4941 }
4942 
4943 void Thread::SpinRelease(volatile int * adr) {
4944   assert(*adr != 0, "invariant");
4945   OrderAccess::fence();      // guarantee at least release consistency.
4946   // Roach-motel semantics.
4947   // It's safe if subsequent LDs and STs float "up" into the critical section,
4948   // but prior LDs and STs within the critical section can't be allowed
4949   // to reorder or float past the ST that releases the lock.
4950   // Loads and stores in the critical section - which appear in program
4951   // order before the store that releases the lock - must also appear
4952   // before the store that releases the lock in memory visibility order.
4953   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4954   // the ST of 0 into the lock-word which releases the lock, so fence
4955   // more than covers this on all platforms.
4956   *adr = 0;
4957 }
4958 
4959 // muxAcquire and muxRelease:
4960 //
4961 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4962 //    The LSB of the word is set IFF the lock is held.
4963 //    The remainder of the word points to the head of a singly-linked list
4964 //    of threads blocked on the lock.
4965 //
4966 // *  The current implementation of muxAcquire-muxRelease uses its own
4967 //    dedicated Thread._MuxEvent instance.  If we're interested in
4968 //    minimizing the peak number of extant ParkEvent instances then
4969 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4970 //    as certain invariants were satisfied.  Specifically, care would need
4971 //    to be taken with regards to consuming unpark() "permits".
4972 //    A safe rule of thumb is that a thread would never call muxAcquire()
4973 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4974 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4975 //    consume an unpark() permit intended for monitorenter, for instance.
4976 //    One way around this would be to widen the restricted-range semaphore
4977 //    implemented in park().  Another alternative would be to provide
4978 //    multiple instances of the PlatformEvent() for each thread.  One
4979 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4980 //
4981 // *  Usage:
4982 //    -- Only as leaf locks
4983 //    -- for short-term locking only as muxAcquire does not perform
4984 //       thread state transitions.
4985 //
4986 // Alternatives:
4987 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4988 //    but with parking or spin-then-park instead of pure spinning.
4989 // *  Use Taura-Oyama-Yonenzawa locks.
4990 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4991 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4992 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4993 //    acquiring threads use timers (ParkTimed) to detect and recover from
4994 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4995 //    boundaries by using placement-new.
4996 // *  Augment MCS with advisory back-link fields maintained with CAS().
4997 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4998 //    The validity of the backlinks must be ratified before we trust the value.
4999 //    If the backlinks are invalid the exiting thread must back-track through the
5000 //    the forward links, which are always trustworthy.
5001 // *  Add a successor indication.  The LockWord is currently encoded as
5002 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
5003 //    to provide the usual futile-wakeup optimization.
5004 //    See RTStt for details.
5005 //
5006 
5007 
5008 const intptr_t LOCKBIT = 1;
5009 
5010 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
5011   intptr_t w = Atomic::cmpxchg(Lock, (intptr_t)0, LOCKBIT);
5012   if (w == 0) return;
5013   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5014     return;
5015   }
5016 
5017   ParkEvent * const Self = Thread::current()->_MuxEvent;
5018   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
5019   for (;;) {
5020     int its = (os::is_MP() ? 100 : 0) + 1;
5021 
5022     // Optional spin phase: spin-then-park strategy
5023     while (--its >= 0) {
5024       w = *Lock;
5025       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5026         return;
5027       }
5028     }
5029 
5030     Self->reset();
5031     Self->OnList = intptr_t(Lock);
5032     // The following fence() isn't _strictly necessary as the subsequent
5033     // CAS() both serializes execution and ratifies the fetched *Lock value.
5034     OrderAccess::fence();
5035     for (;;) {
5036       w = *Lock;
5037       if ((w & LOCKBIT) == 0) {
5038         if (Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5039           Self->OnList = 0;   // hygiene - allows stronger asserts
5040           return;
5041         }
5042         continue;      // Interference -- *Lock changed -- Just retry
5043       }
5044       assert(w & LOCKBIT, "invariant");
5045       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5046       if (Atomic::cmpxchg(Lock, w, intptr_t(Self)|LOCKBIT) == w) break;
5047     }
5048 
5049     while (Self->OnList != 0) {
5050       Self->park();
5051     }
5052   }
5053 }
5054 
5055 // Release() must extract a successor from the list and then wake that thread.
5056 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5057 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5058 // Release() would :
5059 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5060 // (B) Extract a successor from the private list "in-hand"
5061 // (C) attempt to CAS() the residual back into *Lock over null.
5062 //     If there were any newly arrived threads and the CAS() would fail.
5063 //     In that case Release() would detach the RATs, re-merge the list in-hand
5064 //     with the RATs and repeat as needed.  Alternately, Release() might
5065 //     detach and extract a successor, but then pass the residual list to the wakee.
5066 //     The wakee would be responsible for reattaching and remerging before it
5067 //     competed for the lock.
5068 //
5069 // Both "pop" and DMR are immune from ABA corruption -- there can be
5070 // multiple concurrent pushers, but only one popper or detacher.
5071 // This implementation pops from the head of the list.  This is unfair,
5072 // but tends to provide excellent throughput as hot threads remain hot.
5073 // (We wake recently run threads first).
5074 //
5075 // All paths through muxRelease() will execute a CAS.
5076 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5077 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5078 // executed within the critical section are complete and globally visible before the
5079 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5080 void Thread::muxRelease(volatile intptr_t * Lock)  {
5081   for (;;) {
5082     const intptr_t w = Atomic::cmpxchg(Lock, LOCKBIT, (intptr_t)0);
5083     assert(w & LOCKBIT, "invariant");
5084     if (w == LOCKBIT) return;
5085     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5086     assert(List != NULL, "invariant");
5087     assert(List->OnList == intptr_t(Lock), "invariant");
5088     ParkEvent * const nxt = List->ListNext;
5089     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5090 
5091     // The following CAS() releases the lock and pops the head element.
5092     // The CAS() also ratifies the previously fetched lock-word value.
5093     if (Atomic::cmpxchg(Lock, w, intptr_t(nxt)) != w) {
5094       continue;
5095     }
5096     List->OnList = 0;
5097     OrderAccess::fence();
5098     List->unpark();
5099     return;
5100   }
5101 }
5102 
5103 
5104 void Threads::verify() {
5105   ALL_JAVA_THREADS(p) {
5106     p->verify();
5107   }
5108   VMThread* thread = VMThread::vm_thread();
5109   if (thread != NULL) thread->verify();
5110 }