1 /*
   2  * Copyright (c) 1994, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.io.ObjectStreamField;
  29 import java.io.UnsupportedEncodingException;
  30 import java.nio.charset.Charset;
  31 import java.nio.ByteBuffer;
  32 import java.util.ArrayList;
  33 import java.util.Arrays;
  34 import java.util.Comparator;
  35 import java.util.Formatter;
  36 import java.util.Locale;
  37 import java.util.Objects;
  38 import java.util.StringJoiner;
  39 import java.util.regex.Matcher;
  40 import java.util.regex.Pattern;
  41 import java.util.regex.PatternSyntaxException;
  42 
  43 /**
  44  * The {@code String} class represents character strings. All
  45  * string literals in Java programs, such as {@code "abc"}, are
  46  * implemented as instances of this class.
  47  * <p>
  48  * Strings are constant; their values cannot be changed after they
  49  * are created. String buffers support mutable strings.
  50  * Because String objects are immutable they can be shared. For example:
  51  * <blockquote><pre>
  52  *     String str = "abc";
  53  * </pre></blockquote><p>
  54  * is equivalent to:
  55  * <blockquote><pre>
  56  *     char data[] = {'a', 'b', 'c'};
  57  *     String str = new String(data);
  58  * </pre></blockquote><p>
  59  * Here are some more examples of how strings can be used:
  60  * <blockquote><pre>
  61  *     System.out.println("abc");
  62  *     String cde = "cde";
  63  *     System.out.println("abc" + cde);
  64  *     String c = "abc".substring(2,3);
  65  *     String d = cde.substring(1, 2);
  66  * </pre></blockquote>
  67  * <p>
  68  * The class {@code String} includes methods for examining
  69  * individual characters of the sequence, for comparing strings, for
  70  * searching strings, for extracting substrings, and for creating a
  71  * copy of a string with all characters translated to uppercase or to
  72  * lowercase. Case mapping is based on the Unicode Standard version
  73  * specified by the {@link java.lang.Character Character} class.
  74  * <p>
  75  * The Java language provides special support for the string
  76  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
  77  * other objects to strings. String concatenation is implemented
  78  * through the {@code StringBuilder}(or {@code StringBuffer})
  79  * class and its {@code append} method.
  80  * String conversions are implemented through the method
  81  * {@code toString}, defined by {@code Object} and
  82  * inherited by all classes in Java. For additional information on
  83  * string concatenation and conversion, see Gosling, Joy, and Steele,
  84  * <i>The Java Language Specification</i>.
  85  *
  86  * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
  87  * or method in this class will cause a {@link NullPointerException} to be
  88  * thrown.
  89  *
  90  * <p>A {@code String} represents a string in the UTF-16 format
  91  * in which <em>supplementary characters</em> are represented by <em>surrogate
  92  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
  93  * Character Representations</a> in the {@code Character} class for
  94  * more information).
  95  * Index values refer to {@code char} code units, so a supplementary
  96  * character uses two positions in a {@code String}.
  97  * <p>The {@code String} class provides methods for dealing with
  98  * Unicode code points (i.e., characters), in addition to those for
  99  * dealing with Unicode code units (i.e., {@code char} values).
 100  *
 101  * @author  Lee Boynton
 102  * @author  Arthur van Hoff
 103  * @author  Martin Buchholz
 104  * @author  Ulf Zibis
 105  * @see     java.lang.Object#toString()
 106  * @see     java.lang.StringBuffer
 107  * @see     java.lang.StringBuilder
 108  * @see     java.nio.charset.Charset
 109  * @since   1.0
 110  */
 111 
 112 public final class String
 113     implements java.io.Serializable, Comparable<String>, CharSequence {
 114     /** The value is used for character storage. */
 115     private final char value[];
 116 
 117     /** Cache the hash code for the string */
 118     private int hash; // Default to 0
 119 
 120     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 121     private static final long serialVersionUID = -6849794470754667710L;
 122 
 123     /**
 124      * Class String is special cased within the Serialization Stream Protocol.
 125      *
 126      * A String instance is written into an ObjectOutputStream according to
 127      * <a href="{@docRoot}/../platform/serialization/spec/output.html">
 128      * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
 129      */
 130     private static final ObjectStreamField[] serialPersistentFields =
 131         new ObjectStreamField[0];
 132 
 133     /**
 134      * Initializes a newly created {@code String} object so that it represents
 135      * an empty character sequence.  Note that use of this constructor is
 136      * unnecessary since Strings are immutable.
 137      */
 138     public String() {
 139         this.value = new char[0];
 140     }
 141 
 142     /**
 143      * Initializes a newly created {@code String} object so that it represents
 144      * the same sequence of characters as the argument; in other words, the
 145      * newly created string is a copy of the argument string. Unless an
 146      * explicit copy of {@code original} is needed, use of this constructor is
 147      * unnecessary since Strings are immutable.
 148      *
 149      * @param  original
 150      *         A {@code String}
 151      */
 152     public String(String original) {
 153         this.value = original.value;
 154         this.hash = original.hash;
 155     }
 156 
 157     /**
 158      * Allocates a new {@code String} so that it represents the sequence of
 159      * characters currently contained in the character array argument. The
 160      * contents of the character array are copied; subsequent modification of
 161      * the character array does not affect the newly created string.
 162      *
 163      * @param  value
 164      *         The initial value of the string
 165      */
 166     public String(char value[]) {
 167         this.value = Arrays.copyOf(value, value.length);
 168     }
 169 
 170     /**
 171      * Allocates a new {@code String} that contains characters from a subarray
 172      * of the character array argument. The {@code offset} argument is the
 173      * index of the first character of the subarray and the {@code count}
 174      * argument specifies the length of the subarray. The contents of the
 175      * subarray are copied; subsequent modification of the character array does
 176      * not affect the newly created string.
 177      *
 178      * @param  value
 179      *         Array that is the source of characters
 180      *
 181      * @param  offset
 182      *         The initial offset
 183      *
 184      * @param  count
 185      *         The length
 186      *
 187      * @throws  IndexOutOfBoundsException
 188      *          If the {@code offset} and {@code count} arguments index
 189      *          characters outside the bounds of the {@code value} array
 190      */
 191     public String(char value[], int offset, int count) {
 192         if (offset < 0) {
 193             throw new StringIndexOutOfBoundsException(offset);
 194         }
 195         if (count < 0) {
 196             throw new StringIndexOutOfBoundsException(count);
 197         }
 198         // Note: offset or count might be near -1>>>1.
 199         if (offset > value.length - count) {
 200             throw new StringIndexOutOfBoundsException(offset + count);
 201         }
 202         this.value = Arrays.copyOfRange(value, offset, offset+count);
 203     }
 204 
 205     /**
 206      * Allocates a new {@code String} that contains characters from a subarray
 207      * of the <a href="Character.html#unicode">Unicode code point</a> array
 208      * argument.  The {@code offset} argument is the index of the first code
 209      * point of the subarray and the {@code count} argument specifies the
 210      * length of the subarray.  The contents of the subarray are converted to
 211      * {@code char}s; subsequent modification of the {@code int} array does not
 212      * affect the newly created string.
 213      *
 214      * @param  codePoints
 215      *         Array that is the source of Unicode code points
 216      *
 217      * @param  offset
 218      *         The initial offset
 219      *
 220      * @param  count
 221      *         The length
 222      *
 223      * @throws  IllegalArgumentException
 224      *          If any invalid Unicode code point is found in {@code
 225      *          codePoints}
 226      *
 227      * @throws  IndexOutOfBoundsException
 228      *          If the {@code offset} and {@code count} arguments index
 229      *          characters outside the bounds of the {@code codePoints} array
 230      *
 231      * @since  1.5
 232      */
 233     public String(int[] codePoints, int offset, int count) {
 234         if (offset < 0) {
 235             throw new StringIndexOutOfBoundsException(offset);
 236         }
 237         if (count < 0) {
 238             throw new StringIndexOutOfBoundsException(count);
 239         }
 240         // Note: offset or count might be near -1>>>1.
 241         if (offset > codePoints.length - count) {
 242             throw new StringIndexOutOfBoundsException(offset + count);
 243         }
 244 
 245         final int end = offset + count;
 246 
 247         // Pass 1: Compute precise size of char[]
 248         int n = count;
 249         for (int i = offset; i < end; i++) {
 250             int c = codePoints[i];
 251             if (Character.isBmpCodePoint(c))
 252                 continue;
 253             else if (Character.isValidCodePoint(c))
 254                 n++;
 255             else throw new IllegalArgumentException(Integer.toString(c));
 256         }
 257 
 258         // Pass 2: Allocate and fill in char[]
 259         final char[] v = new char[n];
 260 
 261         for (int i = offset, j = 0; i < end; i++, j++) {
 262             int c = codePoints[i];
 263             if (Character.isBmpCodePoint(c))
 264                 v[j] = (char)c;
 265             else
 266                 Character.toSurrogates(c, v, j++);
 267         }
 268 
 269         this.value = v;
 270     }
 271 
 272     /**
 273      * Allocates a new {@code String} constructed from a subarray of an array
 274      * of 8-bit integer values.
 275      *
 276      * <p> The {@code offset} argument is the index of the first byte of the
 277      * subarray, and the {@code count} argument specifies the length of the
 278      * subarray.
 279      *
 280      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
 281      * specified in the method above.
 282      *
 283      * @deprecated This method does not properly convert bytes into characters.
 284      * As of JDK&nbsp;1.1, the preferred way to do this is via the
 285      * {@code String} constructors that take a {@link
 286      * java.nio.charset.Charset}, charset name, or that use the platform's
 287      * default charset.
 288      *
 289      * @param  ascii
 290      *         The bytes to be converted to characters
 291      *
 292      * @param  hibyte
 293      *         The top 8 bits of each 16-bit Unicode code unit
 294      *
 295      * @param  offset
 296      *         The initial offset
 297      * @param  count
 298      *         The length
 299      *
 300      * @throws  IndexOutOfBoundsException
 301      *          If the {@code offset} or {@code count} argument is invalid
 302      *
 303      * @see  #String(byte[], int)
 304      * @see  #String(byte[], int, int, java.lang.String)
 305      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 306      * @see  #String(byte[], int, int)
 307      * @see  #String(byte[], java.lang.String)
 308      * @see  #String(byte[], java.nio.charset.Charset)
 309      * @see  #String(byte[])
 310      */
 311     @Deprecated
 312     public String(byte ascii[], int hibyte, int offset, int count) {
 313         checkBounds(ascii, offset, count);
 314         char value[] = new char[count];
 315 
 316         if (hibyte == 0) {
 317             for (int i = count; i-- > 0;) {
 318                 value[i] = (char)(ascii[i + offset] & 0xff);
 319             }
 320         } else {
 321             hibyte <<= 8;
 322             for (int i = count; i-- > 0;) {
 323                 value[i] = (char)(hibyte | (ascii[i + offset] & 0xff));
 324             }
 325         }
 326         this.value = value;
 327     }
 328 
 329     /**
 330      * Allocates a new {@code String} containing characters constructed from
 331      * an array of 8-bit integer values. Each character <i>c</i>in the
 332      * resulting string is constructed from the corresponding component
 333      * <i>b</i> in the byte array such that:
 334      *
 335      * <blockquote><pre>
 336      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
 337      *                         | (<b><i>b</i></b> &amp; 0xff))
 338      * </pre></blockquote>
 339      *
 340      * @deprecated  This method does not properly convert bytes into
 341      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 342      * {@code String} constructors that take a {@link
 343      * java.nio.charset.Charset}, charset name, or that use the platform's
 344      * default charset.
 345      *
 346      * @param  ascii
 347      *         The bytes to be converted to characters
 348      *
 349      * @param  hibyte
 350      *         The top 8 bits of each 16-bit Unicode code unit
 351      *
 352      * @see  #String(byte[], int, int, java.lang.String)
 353      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 354      * @see  #String(byte[], int, int)
 355      * @see  #String(byte[], java.lang.String)
 356      * @see  #String(byte[], java.nio.charset.Charset)
 357      * @see  #String(byte[])
 358      */
 359     @Deprecated
 360     public String(byte ascii[], int hibyte) {
 361         this(ascii, hibyte, 0, ascii.length);
 362     }
 363 
 364     /* Common private utility method used to bounds check the byte array
 365      * and requested offset & length values used by the String(byte[],..)
 366      * constructors.
 367      */
 368     private static void checkBounds(byte[] bytes, int offset, int length) {
 369         if (length < 0)
 370             throw new StringIndexOutOfBoundsException(length);
 371         if (offset < 0)
 372             throw new StringIndexOutOfBoundsException(offset);
 373         if (offset > bytes.length - length)
 374             throw new StringIndexOutOfBoundsException(offset + length);
 375     }
 376 
 377     /**
 378      * Constructs a new {@code String} by decoding the specified subarray of
 379      * bytes using the specified charset.  The length of the new {@code String}
 380      * is a function of the charset, and hence may not be equal to the length
 381      * of the subarray.
 382      *
 383      * <p> The behavior of this constructor when the given bytes are not valid
 384      * in the given charset is unspecified.  The {@link
 385      * java.nio.charset.CharsetDecoder} class should be used when more control
 386      * over the decoding process is required.
 387      *
 388      * @param  bytes
 389      *         The bytes to be decoded into characters
 390      *
 391      * @param  offset
 392      *         The index of the first byte to decode
 393      *
 394      * @param  length
 395      *         The number of bytes to decode
 396 
 397      * @param  charsetName
 398      *         The name of a supported {@linkplain java.nio.charset.Charset
 399      *         charset}
 400      *
 401      * @throws  UnsupportedEncodingException
 402      *          If the named charset is not supported
 403      *
 404      * @throws  IndexOutOfBoundsException
 405      *          If the {@code offset} and {@code length} arguments index
 406      *          characters outside the bounds of the {@code bytes} array
 407      *
 408      * @since  1.1
 409      */
 410     public String(byte bytes[], int offset, int length, String charsetName)
 411             throws UnsupportedEncodingException {
 412         if (charsetName == null)
 413             throw new NullPointerException("charsetName");
 414         checkBounds(bytes, offset, length);
 415         this.value = StringCoding.decode(charsetName, bytes, offset, length);
 416     }
 417 
 418     /**
 419      * Constructs a new {@code String} by decoding the specified subarray of
 420      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 421      * The length of the new {@code String} is a function of the charset, and
 422      * hence may not be equal to the length of the subarray.
 423      *
 424      * <p> This method always replaces malformed-input and unmappable-character
 425      * sequences with this charset's default replacement string.  The {@link
 426      * java.nio.charset.CharsetDecoder} class should be used when more control
 427      * over the decoding process is required.
 428      *
 429      * @param  bytes
 430      *         The bytes to be decoded into characters
 431      *
 432      * @param  offset
 433      *         The index of the first byte to decode
 434      *
 435      * @param  length
 436      *         The number of bytes to decode
 437      *
 438      * @param  charset
 439      *        The {@linkplain java.nio.charset.Charset charset} to be used to
 440      *         decode the {@code bytes}
 441      *
 442      * @throws  IndexOutOfBoundsException
 443      *          If the {@code offset} and {@code length} arguments index
 444      *          characters outside the bounds of the {@code bytes} array
 445      *
 446      * @since  1.6
 447      */
 448     public String(byte bytes[], int offset, int length, Charset charset) {
 449         if (charset == null)
 450             throw new NullPointerException("charset");
 451         checkBounds(bytes, offset, length);
 452         this.value = StringCoding.decode(charset, bytes, offset, length);
 453     }
 454     
 455     /**
 456      * Constructs a new {@code String} by decoding the remaining bytes in the specified 
 457      * {@linkplain java.nio.ByteBuffer byte buffer} using the specified 
 458      * {@linkplain java.nio.charset.Charset charset}.
 459      * The length of the new {@code String} is a function of the charset, and
 460      * hence may not be equal to the remaining number of bytes in the 
 461      * {@linkplain java.nio.ByteBuffer byte buffer}.
 462      *
 463      * <p> This method always replaces malformed-input and unmappable-character
 464      * sequences with this charset's default replacement string.  The {@link
 465      * java.nio.charset.CharsetDecoder} class should be used when more control
 466      * over the decoding process is required.
 467      * 
 468      * <p>
 469      * Bytes are read between <code>position()</code> and <code>limit()</code>
 470      * of the {@link java.nio.ByteBuffer}.
 471      * After the bytes have been read the <code>position()</code> will be
 472      * advanced to its <code>limit()</code>.
 473      *
 474      * @param  bytes
 475      *         The bytes to be decoded into characters
 476      *
 477      * @param  charset
 478      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 479      *         decode the {@code bytes}
 480      *
 481      * @since  1.9
 482      */
 483     public String(ByteBuffer bytes, Charset charset) {
 484         Objects.requireNonNull(bytes);
 485         Objects.requireNonNull(charset);
 486         this.value = StringCoding.decode(charset, bytes);
 487     }
 488 
 489     /**
 490      * Constructs a new {@code String} by decoding the remaining bytes in the specified 
 491      * {@linkplain java.nio.ByteBuffer byte buffer} using the specified 
 492      * charset.
 493      * The length of the new {@code String} is a function of the charset, and
 494      * hence may not be equal to the remaining number of bytes in the 
 495      * {@linkplain java.nio.ByteBuffer byte buffer}.
 496      *
 497      * <p> This method always replaces malformed-input and unmappable-character
 498      * sequences with this charset's default replacement string.  The {@link
 499      * java.nio.charset.CharsetDecoder} class should be used when more control
 500      * over the decoding process is required.
 501      * 
 502      * <p>
 503      * Bytes are read between <code>position()</code> and <code>limit()</code>
 504      * of the {@link java.nio.ByteBuffer}.
 505      * After the bytes have been read the <code>position()</code> will be
 506      * advanced to its <code>limit()</code>.
 507      *
 508      * @param  bytes
 509      *         The bytes to be decoded into characters
 510      *
 511      * @param  charsetName
 512      *         The name of a supported {@linkplain java.nio.charset.Charset
 513      *         charset}
 514      *
 515      * @throws  UnsupportedEncodingException
 516      *          If the named charset is not supported
 517      *
 518      *
 519      * @since  1.9
 520      */
 521     public String(ByteBuffer bytes, String charsetName)
 522             throws UnsupportedEncodingException {
 523         Objects.requireNonNull(bytes);
 524         Objects.requireNonNull(charsetName);
 525         this.value = StringCoding.decode(charsetName, bytes);
 526     }
 527 
 528     /**
 529      * Constructs a new {@code String} by decoding the specified array of bytes
 530      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
 531      * length of the new {@code String} is a function of the charset, and hence
 532      * may not be equal to the length of the byte array.
 533      *
 534      * <p> The behavior of this constructor when the given bytes are not valid
 535      * in the given charset is unspecified.  The {@link
 536      * java.nio.charset.CharsetDecoder} class should be used when more control
 537      * over the decoding process is required.
 538      *
 539      * @param  bytes
 540      *         The bytes to be decoded into characters
 541      *
 542      * @param  charsetName
 543      *         The name of a supported {@linkplain java.nio.charset.Charset
 544      *         charset}
 545      *
 546      * @throws  UnsupportedEncodingException
 547      *          If the named charset is not supported
 548      *
 549      * @since  1.1
 550      */
 551     public String(byte bytes[], String charsetName)
 552             throws UnsupportedEncodingException {
 553         this(bytes, 0, bytes.length, charsetName);
 554     }
 555 
 556     /**
 557      * Constructs a new {@code String} by decoding the specified array of
 558      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 559      * The length of the new {@code String} is a function of the charset, and
 560      * hence may not be equal to the length of the byte array.
 561      *
 562      * <p> This method always replaces malformed-input and unmappable-character
 563      * sequences with this charset's default replacement string.  The {@link
 564      * java.nio.charset.CharsetDecoder} class should be used when more control
 565      * over the decoding process is required.
 566      *
 567      * @param  bytes
 568      *         The bytes to be decoded into characters
 569      *
 570      * @param  charset
 571      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 572      *         decode the {@code bytes}
 573      *
 574      * @since  1.6
 575      */
 576     public String(byte bytes[], Charset charset) {
 577         this(bytes, 0, bytes.length, charset);
 578     }
 579 
 580     /**
 581      * Constructs a new {@code String} by decoding the specified subarray of
 582      * bytes using the platform's default charset.  The length of the new
 583      * {@code String} is a function of the charset, and hence may not be equal
 584      * to the length of the subarray.
 585      *
 586      * <p> The behavior of this constructor when the given bytes are not valid
 587      * in the default charset is unspecified.  The {@link
 588      * java.nio.charset.CharsetDecoder} class should be used when more control
 589      * over the decoding process is required.
 590      *
 591      * @param  bytes
 592      *         The bytes to be decoded into characters
 593      *
 594      * @param  offset
 595      *         The index of the first byte to decode
 596      *
 597      * @param  length
 598      *         The number of bytes to decode
 599      *
 600      * @throws  IndexOutOfBoundsException
 601      *          If the {@code offset} and the {@code length} arguments index
 602      *          characters outside the bounds of the {@code bytes} array
 603      *
 604      * @since  1.1
 605      */
 606     public String(byte bytes[], int offset, int length) {
 607         checkBounds(bytes, offset, length);
 608         this.value = StringCoding.decode(bytes, offset, length);
 609     }
 610 
 611     /**
 612      * Constructs a new {@code String} by decoding the specified array of bytes
 613      * using the platform's default charset.  The length of the new {@code
 614      * String} is a function of the charset, and hence may not be equal to the
 615      * length of the byte array.
 616      *
 617      * <p> The behavior of this constructor when the given bytes are not valid
 618      * in the default charset is unspecified.  The {@link
 619      * java.nio.charset.CharsetDecoder} class should be used when more control
 620      * over the decoding process is required.
 621      *
 622      * @param  bytes
 623      *         The bytes to be decoded into characters
 624      *
 625      * @since  1.1
 626      */
 627     public String(byte bytes[]) {
 628         this(bytes, 0, bytes.length);
 629     }
 630 
 631     /**
 632      * Allocates a new string that contains the sequence of characters
 633      * currently contained in the string buffer argument. The contents of the
 634      * string buffer are copied; subsequent modification of the string buffer
 635      * does not affect the newly created string.
 636      *
 637      * @param  buffer
 638      *         A {@code StringBuffer}
 639      */
 640     public String(StringBuffer buffer) {
 641         synchronized(buffer) {
 642             this.value = Arrays.copyOf(buffer.getValue(), buffer.length());
 643         }
 644     }
 645 
 646     /**
 647      * Allocates a new string that contains the sequence of characters
 648      * currently contained in the string builder argument. The contents of the
 649      * string builder are copied; subsequent modification of the string builder
 650      * does not affect the newly created string.
 651      *
 652      * <p> This constructor is provided to ease migration to {@code
 653      * StringBuilder}. Obtaining a string from a string builder via the {@code
 654      * toString} method is likely to run faster and is generally preferred.
 655      *
 656      * @param   builder
 657      *          A {@code StringBuilder}
 658      *
 659      * @since  1.5
 660      */
 661     public String(StringBuilder builder) {
 662         this.value = Arrays.copyOf(builder.getValue(), builder.length());
 663     }
 664 
 665     /*
 666     * Package private constructor which shares value array for speed.
 667     * this constructor is always expected to be called with share==true.
 668     * a separate constructor is needed because we already have a public
 669     * String(char[]) constructor that makes a copy of the given char[].
 670     */
 671     String(char[] value, boolean share) {
 672         // assert share : "unshared not supported";
 673         this.value = value;
 674     }
 675 
 676     /**
 677      * Returns the length of this string.
 678      * The length is equal to the number of <a href="Character.html#unicode">Unicode
 679      * code units</a> in the string.
 680      *
 681      * @return  the length of the sequence of characters represented by this
 682      *          object.
 683      */
 684     public int length() {
 685         return value.length;
 686     }
 687 
 688     /**
 689      * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
 690      *
 691      * @return {@code true} if {@link #length()} is {@code 0}, otherwise
 692      * {@code false}
 693      *
 694      * @since 1.6
 695      */
 696     public boolean isEmpty() {
 697         return value.length == 0;
 698     }
 699 
 700     /**
 701      * Returns the {@code char} value at the
 702      * specified index. An index ranges from {@code 0} to
 703      * {@code length() - 1}. The first {@code char} value of the sequence
 704      * is at index {@code 0}, the next at index {@code 1},
 705      * and so on, as for array indexing.
 706      *
 707      * <p>If the {@code char} value specified by the index is a
 708      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 709      * value is returned.
 710      *
 711      * @param      index   the index of the {@code char} value.
 712      * @return     the {@code char} value at the specified index of this string.
 713      *             The first {@code char} value is at index {@code 0}.
 714      * @exception  IndexOutOfBoundsException  if the {@code index}
 715      *             argument is negative or not less than the length of this
 716      *             string.
 717      */
 718     public char charAt(int index) {
 719         if ((index < 0) || (index >= value.length)) {
 720             throw new StringIndexOutOfBoundsException(index);
 721         }
 722         return value[index];
 723     }
 724 
 725     /**
 726      * Returns the character (Unicode code point) at the specified
 727      * index. The index refers to {@code char} values
 728      * (Unicode code units) and ranges from {@code 0} to
 729      * {@link #length()}{@code  - 1}.
 730      *
 731      * <p> If the {@code char} value specified at the given index
 732      * is in the high-surrogate range, the following index is less
 733      * than the length of this {@code String}, and the
 734      * {@code char} value at the following index is in the
 735      * low-surrogate range, then the supplementary code point
 736      * corresponding to this surrogate pair is returned. Otherwise,
 737      * the {@code char} value at the given index is returned.
 738      *
 739      * @param      index the index to the {@code char} values
 740      * @return     the code point value of the character at the
 741      *             {@code index}
 742      * @exception  IndexOutOfBoundsException  if the {@code index}
 743      *             argument is negative or not less than the length of this
 744      *             string.
 745      * @since      1.5
 746      */
 747     public int codePointAt(int index) {
 748         if ((index < 0) || (index >= value.length)) {
 749             throw new StringIndexOutOfBoundsException(index);
 750         }
 751         return Character.codePointAtImpl(value, index, value.length);
 752     }
 753 
 754     /**
 755      * Returns the character (Unicode code point) before the specified
 756      * index. The index refers to {@code char} values
 757      * (Unicode code units) and ranges from {@code 1} to {@link
 758      * CharSequence#length() length}.
 759      *
 760      * <p> If the {@code char} value at {@code (index - 1)}
 761      * is in the low-surrogate range, {@code (index - 2)} is not
 762      * negative, and the {@code char} value at {@code (index -
 763      * 2)} is in the high-surrogate range, then the
 764      * supplementary code point value of the surrogate pair is
 765      * returned. If the {@code char} value at {@code index -
 766      * 1} is an unpaired low-surrogate or a high-surrogate, the
 767      * surrogate value is returned.
 768      *
 769      * @param     index the index following the code point that should be returned
 770      * @return    the Unicode code point value before the given index.
 771      * @exception IndexOutOfBoundsException if the {@code index}
 772      *            argument is less than 1 or greater than the length
 773      *            of this string.
 774      * @since     1.5
 775      */
 776     public int codePointBefore(int index) {
 777         int i = index - 1;
 778         if ((i < 0) || (i >= value.length)) {
 779             throw new StringIndexOutOfBoundsException(index);
 780         }
 781         return Character.codePointBeforeImpl(value, index, 0);
 782     }
 783 
 784     /**
 785      * Returns the number of Unicode code points in the specified text
 786      * range of this {@code String}. The text range begins at the
 787      * specified {@code beginIndex} and extends to the
 788      * {@code char} at index {@code endIndex - 1}. Thus the
 789      * length (in {@code char}s) of the text range is
 790      * {@code endIndex-beginIndex}. Unpaired surrogates within
 791      * the text range count as one code point each.
 792      *
 793      * @param beginIndex the index to the first {@code char} of
 794      * the text range.
 795      * @param endIndex the index after the last {@code char} of
 796      * the text range.
 797      * @return the number of Unicode code points in the specified text
 798      * range
 799      * @exception IndexOutOfBoundsException if the
 800      * {@code beginIndex} is negative, or {@code endIndex}
 801      * is larger than the length of this {@code String}, or
 802      * {@code beginIndex} is larger than {@code endIndex}.
 803      * @since  1.5
 804      */
 805     public int codePointCount(int beginIndex, int endIndex) {
 806         if (beginIndex < 0 || endIndex > value.length || beginIndex > endIndex) {
 807             throw new IndexOutOfBoundsException();
 808         }
 809         return Character.codePointCountImpl(value, beginIndex, endIndex - beginIndex);
 810     }
 811 
 812     /**
 813      * Returns the index within this {@code String} that is
 814      * offset from the given {@code index} by
 815      * {@code codePointOffset} code points. Unpaired surrogates
 816      * within the text range given by {@code index} and
 817      * {@code codePointOffset} count as one code point each.
 818      *
 819      * @param index the index to be offset
 820      * @param codePointOffset the offset in code points
 821      * @return the index within this {@code String}
 822      * @exception IndexOutOfBoundsException if {@code index}
 823      *   is negative or larger then the length of this
 824      *   {@code String}, or if {@code codePointOffset} is positive
 825      *   and the substring starting with {@code index} has fewer
 826      *   than {@code codePointOffset} code points,
 827      *   or if {@code codePointOffset} is negative and the substring
 828      *   before {@code index} has fewer than the absolute value
 829      *   of {@code codePointOffset} code points.
 830      * @since 1.5
 831      */
 832     public int offsetByCodePoints(int index, int codePointOffset) {
 833         if (index < 0 || index > value.length) {
 834             throw new IndexOutOfBoundsException();
 835         }
 836         return Character.offsetByCodePointsImpl(value, 0, value.length,
 837                 index, codePointOffset);
 838     }
 839 
 840     /**
 841      * Copy characters from this string into dst starting at dstBegin.
 842      * This method doesn't perform any range checking.
 843      */
 844     void getChars(char dst[], int dstBegin) {
 845         System.arraycopy(value, 0, dst, dstBegin, value.length);
 846     }
 847 
 848     /**
 849      * Copies characters from this string into the destination character
 850      * array.
 851      * <p>
 852      * The first character to be copied is at index {@code srcBegin};
 853      * the last character to be copied is at index {@code srcEnd-1}
 854      * (thus the total number of characters to be copied is
 855      * {@code srcEnd-srcBegin}). The characters are copied into the
 856      * subarray of {@code dst} starting at index {@code dstBegin}
 857      * and ending at index:
 858      * <blockquote><pre>
 859      *     dstbegin + (srcEnd-srcBegin) - 1
 860      * </pre></blockquote>
 861      *
 862      * @param      srcBegin   index of the first character in the string
 863      *                        to copy.
 864      * @param      srcEnd     index after the last character in the string
 865      *                        to copy.
 866      * @param      dst        the destination array.
 867      * @param      dstBegin   the start offset in the destination array.
 868      * @exception IndexOutOfBoundsException If any of the following
 869      *            is true:
 870      *            <ul><li>{@code srcBegin} is negative.
 871      *            <li>{@code srcBegin} is greater than {@code srcEnd}
 872      *            <li>{@code srcEnd} is greater than the length of this
 873      *                string
 874      *            <li>{@code dstBegin} is negative
 875      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
 876      *                {@code dst.length}</ul>
 877      */
 878     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
 879         if (srcBegin < 0) {
 880             throw new StringIndexOutOfBoundsException(srcBegin);
 881         }
 882         if (srcEnd > value.length) {
 883             throw new StringIndexOutOfBoundsException(srcEnd);
 884         }
 885         if (srcBegin > srcEnd) {
 886             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 887         }
 888         System.arraycopy(value, srcBegin, dst, dstBegin, srcEnd - srcBegin);
 889     }
 890 
 891     /**
 892      * Copies characters from this string into the destination byte array. Each
 893      * byte receives the 8 low-order bits of the corresponding character. The
 894      * eight high-order bits of each character are not copied and do not
 895      * participate in the transfer in any way.
 896      *
 897      * <p> The first character to be copied is at index {@code srcBegin}; the
 898      * last character to be copied is at index {@code srcEnd-1}.  The total
 899      * number of characters to be copied is {@code srcEnd-srcBegin}. The
 900      * characters, converted to bytes, are copied into the subarray of {@code
 901      * dst} starting at index {@code dstBegin} and ending at index:
 902      *
 903      * <blockquote><pre>
 904      *     dstbegin + (srcEnd-srcBegin) - 1
 905      * </pre></blockquote>
 906      *
 907      * @deprecated  This method does not properly convert characters into
 908      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 909      * {@link #getBytes()} method, which uses the platform's default charset.
 910      *
 911      * @param  srcBegin
 912      *         Index of the first character in the string to copy
 913      *
 914      * @param  srcEnd
 915      *         Index after the last character in the string to copy
 916      *
 917      * @param  dst
 918      *         The destination array
 919      *
 920      * @param  dstBegin
 921      *         The start offset in the destination array
 922      *
 923      * @throws  IndexOutOfBoundsException
 924      *          If any of the following is true:
 925      *          <ul>
 926      *            <li> {@code srcBegin} is negative
 927      *            <li> {@code srcBegin} is greater than {@code srcEnd}
 928      *            <li> {@code srcEnd} is greater than the length of this String
 929      *            <li> {@code dstBegin} is negative
 930      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
 931      *                 dst.length}
 932      *          </ul>
 933      */
 934     @Deprecated
 935     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
 936         if (srcBegin < 0) {
 937             throw new StringIndexOutOfBoundsException(srcBegin);
 938         }
 939         if (srcEnd > value.length) {
 940             throw new StringIndexOutOfBoundsException(srcEnd);
 941         }
 942         if (srcBegin > srcEnd) {
 943             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 944         }
 945         Objects.requireNonNull(dst);
 946 
 947         int j = dstBegin;
 948         int n = srcEnd;
 949         int i = srcBegin;
 950         char[] val = value;   /* avoid getfield opcode */
 951 
 952         while (i < n) {
 953             dst[j++] = (byte)val[i++];
 954         }
 955     }
 956 
 957     /**
 958      * Encodes this {@code String} into a sequence of bytes using the named
 959      * charset, storing the result into a new byte array.
 960      *
 961      * <p> The behavior of this method when this string cannot be encoded in
 962      * the given charset is unspecified.  The {@link
 963      * java.nio.charset.CharsetEncoder} class should be used when more control
 964      * over the encoding process is required.
 965      *
 966      * @param  charsetName
 967      *         The name of a supported {@linkplain java.nio.charset.Charset
 968      *         charset}
 969      *
 970      * @return  The resultant byte array
 971      *
 972      * @throws  UnsupportedEncodingException
 973      *          If the named charset is not supported
 974      *
 975      * @since  1.1
 976      */
 977     public byte[] getBytes(String charsetName)
 978             throws UnsupportedEncodingException {
 979         if (charsetName == null) throw new NullPointerException();
 980         return StringCoding.encode(charsetName, value, 0, value.length);
 981     }
 982 
 983     /**
 984      * Encodes this {@code String} into a sequence of bytes using the given
 985      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
 986      * new byte array.
 987      *
 988      * <p> This method always replaces malformed-input and unmappable-character
 989      * sequences with this charset's default replacement byte array.  The
 990      * {@link java.nio.charset.CharsetEncoder} class should be used when more
 991      * control over the encoding process is required.
 992      *
 993      * @param  charset
 994      *         The {@linkplain java.nio.charset.Charset} to be used to encode
 995      *         the {@code String}
 996      *
 997      * @return  The resultant byte array
 998      *
 999      * @since  1.6
1000      */
1001     public byte[] getBytes(Charset charset) {
1002         Objects.requireNonNull(charset);
1003         return StringCoding.encode(charset, value, 0, value.length);
1004     }
1005     
1006     /**
1007      * Encodes this {@code String} into a sequence of bytes using the given
1008      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
1009      * byte array that has been passed as an argument.
1010      *
1011      * <p> This method always replaces malformed-input and unmappable-character
1012      * sequences with this charset's default replacement byte array.  The {@link
1013      * java.nio.charset.CharsetDecoder} class should be used when more control
1014      * over the decoding process is required.
1015      * 
1016      * <p> The number of bytes written during encoding is a function of the charset
1017      * used to perform the encoding and is returned from this method. It may not
1018      * be equal to the length of this
1019      * String. At most <code>destBuffer.length - destOffset</code> bytes will be written.
1020      *
1021      * @param  destBuffer
1022      *         The destination array
1023      *
1024      * @param  destOffset
1025      *         The start offset in the destination array
1026      *
1027      * @param  charset
1028      *         The {@linkplain java.nio.charset.Charset} to be used to encode
1029      *         the {@code String}
1030      *
1031      * @return the number of bytes written
1032      *
1033      * @since  1.9
1034      */
1035     public int getBytes(byte[] destBuffer, int destOffset, Charset charset) {
1036         Objects.requireNonNull(destBuffer);
1037         Objects.requireNonNull(charset);
1038         return StringCoding.encode(charset, value, 0, value.length, destBuffer, destOffset);
1039     }
1040 
1041     /**
1042      * Encodes as many characters as possible from this {@code String} into a 
1043      * sequence of bytes using the given
1044      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
1045      * {@linkplain java.nio.ByteBuffer byte buffer} that has been passed as an argument.
1046      *
1047      * <p> The number of bytes written during encoding is a function of the charset
1048      * used to perform the encoding and is returned from this method. It may not
1049      * be equal to the length of this
1050      * String. At most <code>destBuffer.remaining()</code> bytes will be written.
1051      *
1052      * <p> This method always replaces malformed-input and unmappable-character
1053      * sequences with this charset's default replacement byte array.  The {@link
1054      * java.nio.charset.CharsetDecoder} class should be used when more control
1055      * over the decoding process is required.
1056      * 
1057      * <p> The buffer's position will be advanced to reflect the number of
1058      * the bytes written, but its mark and limit will not be modified.
1059      *
1060      * @param  destBuffer
1061      *         The destination {@linkplain java.nio.ByteBuffer} 
1062      *
1063      * @param  charset
1064      *         The {@linkplain java.nio.charset.Charset} to be used to encode
1065      *         the {@code String}
1066      *
1067      * @return the number of bytes written
1068      *
1069      * @since  1.9
1070      */
1071     public int getBytes(ByteBuffer destBuffer, Charset charset) {
1072         Objects.requireNonNull(destBuffer);
1073         Objects.requireNonNull(charset);
1074         return StringCoding.encode(charset, value, 0, value.length, destBuffer);
1075     }
1076 
1077     /**
1078      * Encodes as many characters as possible from this {@code String} into a
1079      * sequence of bytes using the specified charset, storing the result into a
1080      * {@linkplain java.nio.ByteBuffer byte buffer} that has been passed as an argument.
1081      *
1082      * <p> The number of bytes written during encoding is a function of the charset
1083      * used to perform the encoding and is returned from this method. It may not
1084      * be equal to the length of this
1085      * String. At most <code>destBuffer.remaining()</code> bytes will be written.
1086      *
1087      * <p> This method always replaces malformed-input and unmappable-character
1088      * sequences with this charset's default replacement byte array.  The {@link
1089      * java.nio.charset.CharsetDecoder} class should be used when more control
1090      * over the decoding process is required.
1091      *
1092      * <p> The buffer's position will be advanced to reflect the number of
1093      * the bytes written, but its mark and limit will not be modified.
1094      *
1095      * @param  destBuffer
1096      *         The destination {@linkplain java.nio.ByteBuffer}
1097      *
1098      * @param  charsetName
1099      *         The name of a supported {@linkplain java.nio.charset.Charset
1100      *         charset}
1101      *
1102      * @return the number of bytes written
1103      *
1104      * @throws  UnsupportedEncodingException
1105      *          If the named charset is not supported
1106      *
1107      * @since  1.9
1108      */
1109     public int getBytes(ByteBuffer destBuffer, String charsetName) throws UnsupportedEncodingException {
1110         Objects.requireNonNull(destBuffer);
1111         Objects.requireNonNull(charsetName);
1112         return StringCoding.encode(charsetName, value, 0, value.length, destBuffer);
1113     }
1114 
1115     /**
1116      * Encodes as many characters as possible from this {@code String} into a
1117      * sequence of bytes using the specified charset, storing the result into a
1118      * byte array that has been passed as an argument.
1119      *
1120      * <p> The number of bytes written during encoding is a function of the charset
1121      * used to perform the encoding and is returned from this method. It may not
1122      * be equal to the length of this
1123      * String. At most <code>destBuffer.length - destOffset</code> bytes will be written.
1124      *
1125      * <p> This method always replaces malformed-input and unmappable-character
1126      * sequences with this charset's default replacement byte array.  The {@link
1127      * java.nio.charset.CharsetDecoder} class should be used when more control
1128      * over the decoding process is required.
1129      *
1130      * @param  destBuffer
1131      *         The destination array
1132      *
1133      * @param  destOffset
1134      *         The start offset in the destination array
1135      *
1136      * @param  charsetName
1137      *         The name of a supported {@linkplain java.nio.charset.Charset
1138      *         charset}
1139      *
1140      * @return the number of bytes written
1141      *
1142      * @throws  UnsupportedEncodingException
1143      *          If the named charset is not supported
1144      *
1145      * @since  1.9
1146      */
1147     public int getBytes(byte[] destBuffer, int destOffset, String charsetName) throws UnsupportedEncodingException {
1148         Objects.requireNonNull(destBuffer);
1149         Objects.requireNonNull(charsetName);
1150         return StringCoding.encode(charsetName, value, 0, value.length, destBuffer, destOffset);
1151     }
1152 
1153     /**
1154      * Encodes this {@code String} into a sequence of bytes using the
1155      * platform's default charset, storing the result into a new byte array.
1156      *
1157      * <p> The behavior of this method when this string cannot be encoded in
1158      * the default charset is unspecified.  The {@link
1159      * java.nio.charset.CharsetEncoder} class should be used when more control
1160      * over the encoding process is required.
1161      *
1162      * @return  The resultant byte array
1163      *
1164      * @since      1.1
1165      */
1166     public byte[] getBytes() {
1167         return StringCoding.encode(value, 0, value.length);
1168     }
1169 
1170     /**
1171      * Compares this string to the specified object.  The result is {@code
1172      * true} if and only if the argument is not {@code null} and is a {@code
1173      * String} object that represents the same sequence of characters as this
1174      * object.
1175      *
1176      * @param  anObject
1177      *         The object to compare this {@code String} against
1178      *
1179      * @return  {@code true} if the given object represents a {@code String}
1180      *          equivalent to this string, {@code false} otherwise
1181      *
1182      * @see  #compareTo(String)
1183      * @see  #equalsIgnoreCase(String)
1184      */
1185     public boolean equals(Object anObject) {
1186         if (this == anObject) {
1187             return true;
1188         }
1189         if (anObject instanceof String) {
1190             String anotherString = (String)anObject;
1191             int n = value.length;
1192             if (n == anotherString.value.length) {
1193                 char v1[] = value;
1194                 char v2[] = anotherString.value;
1195                 int i = 0;
1196                 while (n-- != 0) {
1197                     if (v1[i] != v2[i])
1198                         return false;
1199                     i++;
1200                 }
1201                 return true;
1202             }
1203         }
1204         return false;
1205     }
1206 
1207     /**
1208      * Compares this string to the specified {@code StringBuffer}.  The result
1209      * is {@code true} if and only if this {@code String} represents the same
1210      * sequence of characters as the specified {@code StringBuffer}. This method
1211      * synchronizes on the {@code StringBuffer}.
1212      *
1213      * @param  sb
1214      *         The {@code StringBuffer} to compare this {@code String} against
1215      *
1216      * @return  {@code true} if this {@code String} represents the same
1217      *          sequence of characters as the specified {@code StringBuffer},
1218      *          {@code false} otherwise
1219      *
1220      * @since  1.4
1221      */
1222     public boolean contentEquals(StringBuffer sb) {
1223         return contentEquals((CharSequence)sb);
1224     }
1225 
1226     private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1227         char v1[] = value;
1228         char v2[] = sb.getValue();
1229         int n = v1.length;
1230         if (n != sb.length()) {
1231             return false;
1232         }
1233         for (int i = 0; i < n; i++) {
1234             if (v1[i] != v2[i]) {
1235                 return false;
1236             }
1237         }
1238         return true;
1239     }
1240 
1241     /**
1242      * Compares this string to the specified {@code CharSequence}.  The
1243      * result is {@code true} if and only if this {@code String} represents the
1244      * same sequence of char values as the specified sequence. Note that if the
1245      * {@code CharSequence} is a {@code StringBuffer} then the method
1246      * synchronizes on it.
1247      *
1248      * @param  cs
1249      *         The sequence to compare this {@code String} against
1250      *
1251      * @return  {@code true} if this {@code String} represents the same
1252      *          sequence of char values as the specified sequence, {@code
1253      *          false} otherwise
1254      *
1255      * @since  1.5
1256      */
1257     public boolean contentEquals(CharSequence cs) {
1258         // Argument is a StringBuffer, StringBuilder
1259         if (cs instanceof AbstractStringBuilder) {
1260             if (cs instanceof StringBuffer) {
1261                 synchronized(cs) {
1262                    return nonSyncContentEquals((AbstractStringBuilder)cs);
1263                 }
1264             } else {
1265                 return nonSyncContentEquals((AbstractStringBuilder)cs);
1266             }
1267         }
1268         // Argument is a String
1269         if (cs instanceof String) {
1270             return equals(cs);
1271         }
1272         // Argument is a generic CharSequence
1273         char v1[] = value;
1274         int n = v1.length;
1275         if (n != cs.length()) {
1276             return false;
1277         }
1278         for (int i = 0; i < n; i++) {
1279             if (v1[i] != cs.charAt(i)) {
1280                 return false;
1281             }
1282         }
1283         return true;
1284     }
1285 
1286     /**
1287      * Compares this {@code String} to another {@code String}, ignoring case
1288      * considerations.  Two strings are considered equal ignoring case if they
1289      * are of the same length and corresponding characters in the two strings
1290      * are equal ignoring case.
1291      *
1292      * <p> Two characters {@code c1} and {@code c2} are considered the same
1293      * ignoring case if at least one of the following is true:
1294      * <ul>
1295      *   <li> The two characters are the same (as compared by the
1296      *        {@code ==} operator)
1297      *   <li> Applying the method {@link
1298      *        java.lang.Character#toUpperCase(char)} to each character
1299      *        produces the same result
1300      *   <li> Applying the method {@link
1301      *        java.lang.Character#toLowerCase(char)} to each character
1302      *        produces the same result
1303      * </ul>
1304      *
1305      * @param  anotherString
1306      *         The {@code String} to compare this {@code String} against
1307      *
1308      * @return  {@code true} if the argument is not {@code null} and it
1309      *          represents an equivalent {@code String} ignoring case; {@code
1310      *          false} otherwise
1311      *
1312      * @see  #equals(Object)
1313      */
1314     public boolean equalsIgnoreCase(String anotherString) {
1315         return (this == anotherString) ? true
1316                 : (anotherString != null)
1317                 && (anotherString.value.length == value.length)
1318                 && regionMatches(true, 0, anotherString, 0, value.length);
1319     }
1320 
1321     /**
1322      * Compares two strings lexicographically.
1323      * The comparison is based on the Unicode value of each character in
1324      * the strings. The character sequence represented by this
1325      * {@code String} object is compared lexicographically to the
1326      * character sequence represented by the argument string. The result is
1327      * a negative integer if this {@code String} object
1328      * lexicographically precedes the argument string. The result is a
1329      * positive integer if this {@code String} object lexicographically
1330      * follows the argument string. The result is zero if the strings
1331      * are equal; {@code compareTo} returns {@code 0} exactly when
1332      * the {@link #equals(Object)} method would return {@code true}.
1333      * <p>
1334      * This is the definition of lexicographic ordering. If two strings are
1335      * different, then either they have different characters at some index
1336      * that is a valid index for both strings, or their lengths are different,
1337      * or both. If they have different characters at one or more index
1338      * positions, let <i>k</i> be the smallest such index; then the string
1339      * whose character at position <i>k</i> has the smaller value, as
1340      * determined by using the &lt; operator, lexicographically precedes the
1341      * other string. In this case, {@code compareTo} returns the
1342      * difference of the two character values at position {@code k} in
1343      * the two string -- that is, the value:
1344      * <blockquote><pre>
1345      * this.charAt(k)-anotherString.charAt(k)
1346      * </pre></blockquote>
1347      * If there is no index position at which they differ, then the shorter
1348      * string lexicographically precedes the longer string. In this case,
1349      * {@code compareTo} returns the difference of the lengths of the
1350      * strings -- that is, the value:
1351      * <blockquote><pre>
1352      * this.length()-anotherString.length()
1353      * </pre></blockquote>
1354      *
1355      * @param   anotherString   the {@code String} to be compared.
1356      * @return  the value {@code 0} if the argument string is equal to
1357      *          this string; a value less than {@code 0} if this string
1358      *          is lexicographically less than the string argument; and a
1359      *          value greater than {@code 0} if this string is
1360      *          lexicographically greater than the string argument.
1361      */
1362     public int compareTo(String anotherString) {
1363         int len1 = value.length;
1364         int len2 = anotherString.value.length;
1365         int lim = Math.min(len1, len2);
1366         char v1[] = value;
1367         char v2[] = anotherString.value;
1368 
1369         int k = 0;
1370         while (k < lim) {
1371             char c1 = v1[k];
1372             char c2 = v2[k];
1373             if (c1 != c2) {
1374                 return c1 - c2;
1375             }
1376             k++;
1377         }
1378         return len1 - len2;
1379     }
1380 
1381     /**
1382      * A Comparator that orders {@code String} objects as by
1383      * {@code compareToIgnoreCase}. This comparator is serializable.
1384      * <p>
1385      * Note that this Comparator does <em>not</em> take locale into account,
1386      * and will result in an unsatisfactory ordering for certain locales.
1387      * The java.text package provides <em>Collators</em> to allow
1388      * locale-sensitive ordering.
1389      *
1390      * @see     java.text.Collator#compare(String, String)
1391      * @since   1.2
1392      */
1393     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1394                                          = new CaseInsensitiveComparator();
1395     private static class CaseInsensitiveComparator
1396             implements Comparator<String>, java.io.Serializable {
1397         // use serialVersionUID from JDK 1.2.2 for interoperability
1398         private static final long serialVersionUID = 8575799808933029326L;
1399 
1400         public int compare(String s1, String s2) {
1401             int n1 = s1.length();
1402             int n2 = s2.length();
1403             int min = Math.min(n1, n2);
1404             for (int i = 0; i < min; i++) {
1405                 char c1 = s1.charAt(i);
1406                 char c2 = s2.charAt(i);
1407                 if (c1 != c2) {
1408                     c1 = Character.toUpperCase(c1);
1409                     c2 = Character.toUpperCase(c2);
1410                     if (c1 != c2) {
1411                         c1 = Character.toLowerCase(c1);
1412                         c2 = Character.toLowerCase(c2);
1413                         if (c1 != c2) {
1414                             // No overflow because of numeric promotion
1415                             return c1 - c2;
1416                         }
1417                     }
1418                 }
1419             }
1420             return n1 - n2;
1421         }
1422 
1423         /** Replaces the de-serialized object. */
1424         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1425     }
1426 
1427     /**
1428      * Compares two strings lexicographically, ignoring case
1429      * differences. This method returns an integer whose sign is that of
1430      * calling {@code compareTo} with normalized versions of the strings
1431      * where case differences have been eliminated by calling
1432      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1433      * each character.
1434      * <p>
1435      * Note that this method does <em>not</em> take locale into account,
1436      * and will result in an unsatisfactory ordering for certain locales.
1437      * The java.text package provides <em>collators</em> to allow
1438      * locale-sensitive ordering.
1439      *
1440      * @param   str   the {@code String} to be compared.
1441      * @return  a negative integer, zero, or a positive integer as the
1442      *          specified String is greater than, equal to, or less
1443      *          than this String, ignoring case considerations.
1444      * @see     java.text.Collator#compare(String, String)
1445      * @since   1.2
1446      */
1447     public int compareToIgnoreCase(String str) {
1448         return CASE_INSENSITIVE_ORDER.compare(this, str);
1449     }
1450 
1451     /**
1452      * Tests if two string regions are equal.
1453      * <p>
1454      * A substring of this {@code String} object is compared to a substring
1455      * of the argument other. The result is true if these substrings
1456      * represent identical character sequences. The substring of this
1457      * {@code String} object to be compared begins at index {@code toffset}
1458      * and has length {@code len}. The substring of other to be compared
1459      * begins at index {@code ooffset} and has length {@code len}. The
1460      * result is {@code false} if and only if at least one of the following
1461      * is true:
1462      * <ul><li>{@code toffset} is negative.
1463      * <li>{@code ooffset} is negative.
1464      * <li>{@code toffset+len} is greater than the length of this
1465      * {@code String} object.
1466      * <li>{@code ooffset+len} is greater than the length of the other
1467      * argument.
1468      * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1469      * such that:
1470      * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + }
1471      * <i>k</i>{@code )}
1472      * </ul>
1473      *
1474      * @param   toffset   the starting offset of the subregion in this string.
1475      * @param   other     the string argument.
1476      * @param   ooffset   the starting offset of the subregion in the string
1477      *                    argument.
1478      * @param   len       the number of characters to compare.
1479      * @return  {@code true} if the specified subregion of this string
1480      *          exactly matches the specified subregion of the string argument;
1481      *          {@code false} otherwise.
1482      */
1483     public boolean regionMatches(int toffset, String other, int ooffset,
1484             int len) {
1485         char ta[] = value;
1486         int to = toffset;
1487         char pa[] = other.value;
1488         int po = ooffset;
1489         // Note: toffset, ooffset, or len might be near -1>>>1.
1490         if ((ooffset < 0) || (toffset < 0)
1491                 || (toffset > (long)value.length - len)
1492                 || (ooffset > (long)other.value.length - len)) {
1493             return false;
1494         }
1495         while (len-- > 0) {
1496             if (ta[to++] != pa[po++]) {
1497                 return false;
1498             }
1499         }
1500         return true;
1501     }
1502 
1503     /**
1504      * Tests if two string regions are equal.
1505      * <p>
1506      * A substring of this {@code String} object is compared to a substring
1507      * of the argument {@code other}. The result is {@code true} if these
1508      * substrings represent character sequences that are the same, ignoring
1509      * case if and only if {@code ignoreCase} is true. The substring of
1510      * this {@code String} object to be compared begins at index
1511      * {@code toffset} and has length {@code len}. The substring of
1512      * {@code other} to be compared begins at index {@code ooffset} and
1513      * has length {@code len}. The result is {@code false} if and only if
1514      * at least one of the following is true:
1515      * <ul><li>{@code toffset} is negative.
1516      * <li>{@code ooffset} is negative.
1517      * <li>{@code toffset+len} is greater than the length of this
1518      * {@code String} object.
1519      * <li>{@code ooffset+len} is greater than the length of the other
1520      * argument.
1521      * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1522      * integer <i>k</i> less than {@code len} such that:
1523      * <blockquote><pre>
1524      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1525      * </pre></blockquote>
1526      * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1527      * integer <i>k</i> less than {@code len} such that:
1528      * <blockquote><pre>
1529      * Character.toLowerCase(this.charAt(toffset+k)) !=
1530      Character.toLowerCase(other.charAt(ooffset+k))
1531      * </pre></blockquote>
1532      * and:
1533      * <blockquote><pre>
1534      * Character.toUpperCase(this.charAt(toffset+k)) !=
1535      *         Character.toUpperCase(other.charAt(ooffset+k))
1536      * </pre></blockquote>
1537      * </ul>
1538      *
1539      * @param   ignoreCase   if {@code true}, ignore case when comparing
1540      *                       characters.
1541      * @param   toffset      the starting offset of the subregion in this
1542      *                       string.
1543      * @param   other        the string argument.
1544      * @param   ooffset      the starting offset of the subregion in the string
1545      *                       argument.
1546      * @param   len          the number of characters to compare.
1547      * @return  {@code true} if the specified subregion of this string
1548      *          matches the specified subregion of the string argument;
1549      *          {@code false} otherwise. Whether the matching is exact
1550      *          or case insensitive depends on the {@code ignoreCase}
1551      *          argument.
1552      */
1553     public boolean regionMatches(boolean ignoreCase, int toffset,
1554             String other, int ooffset, int len) {
1555         char ta[] = value;
1556         int to = toffset;
1557         char pa[] = other.value;
1558         int po = ooffset;
1559         // Note: toffset, ooffset, or len might be near -1>>>1.
1560         if ((ooffset < 0) || (toffset < 0)
1561                 || (toffset > (long)value.length - len)
1562                 || (ooffset > (long)other.value.length - len)) {
1563             return false;
1564         }
1565         while (len-- > 0) {
1566             char c1 = ta[to++];
1567             char c2 = pa[po++];
1568             if (c1 == c2) {
1569                 continue;
1570             }
1571             if (ignoreCase) {
1572                 // If characters don't match but case may be ignored,
1573                 // try converting both characters to uppercase.
1574                 // If the results match, then the comparison scan should
1575                 // continue.
1576                 char u1 = Character.toUpperCase(c1);
1577                 char u2 = Character.toUpperCase(c2);
1578                 if (u1 == u2) {
1579                     continue;
1580                 }
1581                 // Unfortunately, conversion to uppercase does not work properly
1582                 // for the Georgian alphabet, which has strange rules about case
1583                 // conversion.  So we need to make one last check before
1584                 // exiting.
1585                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
1586                     continue;
1587                 }
1588             }
1589             return false;
1590         }
1591         return true;
1592     }
1593 
1594     /**
1595      * Tests if the substring of this string beginning at the
1596      * specified index starts with the specified prefix.
1597      *
1598      * @param   prefix    the prefix.
1599      * @param   toffset   where to begin looking in this string.
1600      * @return  {@code true} if the character sequence represented by the
1601      *          argument is a prefix of the substring of this object starting
1602      *          at index {@code toffset}; {@code false} otherwise.
1603      *          The result is {@code false} if {@code toffset} is
1604      *          negative or greater than the length of this
1605      *          {@code String} object; otherwise the result is the same
1606      *          as the result of the expression
1607      *          <pre>
1608      *          this.substring(toffset).startsWith(prefix)
1609      *          </pre>
1610      */
1611     public boolean startsWith(String prefix, int toffset) {
1612         char ta[] = value;
1613         int to = toffset;
1614         char pa[] = prefix.value;
1615         int po = 0;
1616         int pc = prefix.value.length;
1617         // Note: toffset might be near -1>>>1.
1618         if ((toffset < 0) || (toffset > value.length - pc)) {
1619             return false;
1620         }
1621         while (--pc >= 0) {
1622             if (ta[to++] != pa[po++]) {
1623                 return false;
1624             }
1625         }
1626         return true;
1627     }
1628 
1629     /**
1630      * Tests if this string starts with the specified prefix.
1631      *
1632      * @param   prefix   the prefix.
1633      * @return  {@code true} if the character sequence represented by the
1634      *          argument is a prefix of the character sequence represented by
1635      *          this string; {@code false} otherwise.
1636      *          Note also that {@code true} will be returned if the
1637      *          argument is an empty string or is equal to this
1638      *          {@code String} object as determined by the
1639      *          {@link #equals(Object)} method.
1640      * @since   1.0
1641      */
1642     public boolean startsWith(String prefix) {
1643         return startsWith(prefix, 0);
1644     }
1645 
1646     /**
1647      * Tests if this string ends with the specified suffix.
1648      *
1649      * @param   suffix   the suffix.
1650      * @return  {@code true} if the character sequence represented by the
1651      *          argument is a suffix of the character sequence represented by
1652      *          this object; {@code false} otherwise. Note that the
1653      *          result will be {@code true} if the argument is the
1654      *          empty string or is equal to this {@code String} object
1655      *          as determined by the {@link #equals(Object)} method.
1656      */
1657     public boolean endsWith(String suffix) {
1658         return startsWith(suffix, value.length - suffix.value.length);
1659     }
1660 
1661     /**
1662      * Returns a hash code for this string. The hash code for a
1663      * {@code String} object is computed as
1664      * <blockquote><pre>
1665      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1666      * </pre></blockquote>
1667      * using {@code int} arithmetic, where {@code s[i]} is the
1668      * <i>i</i>th character of the string, {@code n} is the length of
1669      * the string, and {@code ^} indicates exponentiation.
1670      * (The hash value of the empty string is zero.)
1671      *
1672      * @return  a hash code value for this object.
1673      */
1674     public int hashCode() {
1675         int h = hash;
1676         if (h == 0) {
1677             for (char v : value) {
1678                 h = 31 * h + v;
1679             }
1680             hash = h;
1681         }
1682         return h;
1683     }
1684 
1685     /**
1686      * Returns the index within this string of the first occurrence of
1687      * the specified character. If a character with value
1688      * {@code ch} occurs in the character sequence represented by
1689      * this {@code String} object, then the index (in Unicode
1690      * code units) of the first such occurrence is returned. For
1691      * values of {@code ch} in the range from 0 to 0xFFFF
1692      * (inclusive), this is the smallest value <i>k</i> such that:
1693      * <blockquote><pre>
1694      * this.charAt(<i>k</i>) == ch
1695      * </pre></blockquote>
1696      * is true. For other values of {@code ch}, it is the
1697      * smallest value <i>k</i> such that:
1698      * <blockquote><pre>
1699      * this.codePointAt(<i>k</i>) == ch
1700      * </pre></blockquote>
1701      * is true. In either case, if no such character occurs in this
1702      * string, then {@code -1} is returned.
1703      *
1704      * @param   ch   a character (Unicode code point).
1705      * @return  the index of the first occurrence of the character in the
1706      *          character sequence represented by this object, or
1707      *          {@code -1} if the character does not occur.
1708      */
1709     public int indexOf(int ch) {
1710         return indexOf(ch, 0);
1711     }
1712 
1713     /**
1714      * Returns the index within this string of the first occurrence of the
1715      * specified character, starting the search at the specified index.
1716      * <p>
1717      * If a character with value {@code ch} occurs in the
1718      * character sequence represented by this {@code String}
1719      * object at an index no smaller than {@code fromIndex}, then
1720      * the index of the first such occurrence is returned. For values
1721      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1722      * this is the smallest value <i>k</i> such that:
1723      * <blockquote><pre>
1724      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1725      * </pre></blockquote>
1726      * is true. For other values of {@code ch}, it is the
1727      * smallest value <i>k</i> such that:
1728      * <blockquote><pre>
1729      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1730      * </pre></blockquote>
1731      * is true. In either case, if no such character occurs in this
1732      * string at or after position {@code fromIndex}, then
1733      * {@code -1} is returned.
1734      *
1735      * <p>
1736      * There is no restriction on the value of {@code fromIndex}. If it
1737      * is negative, it has the same effect as if it were zero: this entire
1738      * string may be searched. If it is greater than the length of this
1739      * string, it has the same effect as if it were equal to the length of
1740      * this string: {@code -1} is returned.
1741      *
1742      * <p>All indices are specified in {@code char} values
1743      * (Unicode code units).
1744      *
1745      * @param   ch          a character (Unicode code point).
1746      * @param   fromIndex   the index to start the search from.
1747      * @return  the index of the first occurrence of the character in the
1748      *          character sequence represented by this object that is greater
1749      *          than or equal to {@code fromIndex}, or {@code -1}
1750      *          if the character does not occur.
1751      */
1752     public int indexOf(int ch, int fromIndex) {
1753         final int max = value.length;
1754         if (fromIndex < 0) {
1755             fromIndex = 0;
1756         } else if (fromIndex >= max) {
1757             // Note: fromIndex might be near -1>>>1.
1758             return -1;
1759         }
1760 
1761         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1762             // handle most cases here (ch is a BMP code point or a
1763             // negative value (invalid code point))
1764             final char[] value = this.value;
1765             for (int i = fromIndex; i < max; i++) {
1766                 if (value[i] == ch) {
1767                     return i;
1768                 }
1769             }
1770             return -1;
1771         } else {
1772             return indexOfSupplementary(ch, fromIndex);
1773         }
1774     }
1775 
1776     /**
1777      * Handles (rare) calls of indexOf with a supplementary character.
1778      */
1779     private int indexOfSupplementary(int ch, int fromIndex) {
1780         if (Character.isValidCodePoint(ch)) {
1781             final char[] value = this.value;
1782             final char hi = Character.highSurrogate(ch);
1783             final char lo = Character.lowSurrogate(ch);
1784             final int max = value.length - 1;
1785             for (int i = fromIndex; i < max; i++) {
1786                 if (value[i] == hi && value[i + 1] == lo) {
1787                     return i;
1788                 }
1789             }
1790         }
1791         return -1;
1792     }
1793 
1794     /**
1795      * Returns the index within this string of the last occurrence of
1796      * the specified character. For values of {@code ch} in the
1797      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1798      * units) returned is the largest value <i>k</i> such that:
1799      * <blockquote><pre>
1800      * this.charAt(<i>k</i>) == ch
1801      * </pre></blockquote>
1802      * is true. For other values of {@code ch}, it is the
1803      * largest value <i>k</i> such that:
1804      * <blockquote><pre>
1805      * this.codePointAt(<i>k</i>) == ch
1806      * </pre></blockquote>
1807      * is true.  In either case, if no such character occurs in this
1808      * string, then {@code -1} is returned.  The
1809      * {@code String} is searched backwards starting at the last
1810      * character.
1811      *
1812      * @param   ch   a character (Unicode code point).
1813      * @return  the index of the last occurrence of the character in the
1814      *          character sequence represented by this object, or
1815      *          {@code -1} if the character does not occur.
1816      */
1817     public int lastIndexOf(int ch) {
1818         return lastIndexOf(ch, value.length - 1);
1819     }
1820 
1821     /**
1822      * Returns the index within this string of the last occurrence of
1823      * the specified character, searching backward starting at the
1824      * specified index. For values of {@code ch} in the range
1825      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1826      * value <i>k</i> such that:
1827      * <blockquote><pre>
1828      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1829      * </pre></blockquote>
1830      * is true. For other values of {@code ch}, it is the
1831      * largest value <i>k</i> such that:
1832      * <blockquote><pre>
1833      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1834      * </pre></blockquote>
1835      * is true. In either case, if no such character occurs in this
1836      * string at or before position {@code fromIndex}, then
1837      * {@code -1} is returned.
1838      *
1839      * <p>All indices are specified in {@code char} values
1840      * (Unicode code units).
1841      *
1842      * @param   ch          a character (Unicode code point).
1843      * @param   fromIndex   the index to start the search from. There is no
1844      *          restriction on the value of {@code fromIndex}. If it is
1845      *          greater than or equal to the length of this string, it has
1846      *          the same effect as if it were equal to one less than the
1847      *          length of this string: this entire string may be searched.
1848      *          If it is negative, it has the same effect as if it were -1:
1849      *          -1 is returned.
1850      * @return  the index of the last occurrence of the character in the
1851      *          character sequence represented by this object that is less
1852      *          than or equal to {@code fromIndex}, or {@code -1}
1853      *          if the character does not occur before that point.
1854      */
1855     public int lastIndexOf(int ch, int fromIndex) {
1856         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1857             // handle most cases here (ch is a BMP code point or a
1858             // negative value (invalid code point))
1859             final char[] value = this.value;
1860             int i = Math.min(fromIndex, value.length - 1);
1861             for (; i >= 0; i--) {
1862                 if (value[i] == ch) {
1863                     return i;
1864                 }
1865             }
1866             return -1;
1867         } else {
1868             return lastIndexOfSupplementary(ch, fromIndex);
1869         }
1870     }
1871 
1872     /**
1873      * Handles (rare) calls of lastIndexOf with a supplementary character.
1874      */
1875     private int lastIndexOfSupplementary(int ch, int fromIndex) {
1876         if (Character.isValidCodePoint(ch)) {
1877             final char[] value = this.value;
1878             char hi = Character.highSurrogate(ch);
1879             char lo = Character.lowSurrogate(ch);
1880             int i = Math.min(fromIndex, value.length - 2);
1881             for (; i >= 0; i--) {
1882                 if (value[i] == hi && value[i + 1] == lo) {
1883                     return i;
1884                 }
1885             }
1886         }
1887         return -1;
1888     }
1889 
1890     /**
1891      * Returns the index within this string of the first occurrence of the
1892      * specified substring.
1893      *
1894      * <p>The returned index is the smallest value {@code k} for which:
1895      * <pre>{@code
1896      * this.startsWith(str, k)
1897      * }</pre>
1898      * If no such value of {@code k} exists, then {@code -1} is returned.
1899      *
1900      * @param   str   the substring to search for.
1901      * @return  the index of the first occurrence of the specified substring,
1902      *          or {@code -1} if there is no such occurrence.
1903      */
1904     public int indexOf(String str) {
1905         return indexOf(str, 0);
1906     }
1907 
1908     /**
1909      * Returns the index within this string of the first occurrence of the
1910      * specified substring, starting at the specified index.
1911      *
1912      * <p>The returned index is the smallest value {@code k} for which:
1913      * <pre>{@code
1914      *     k >= Math.min(fromIndex, this.length()) &&
1915      *                   this.startsWith(str, k)
1916      * }</pre>
1917      * If no such value of {@code k} exists, then {@code -1} is returned.
1918      *
1919      * @param   str         the substring to search for.
1920      * @param   fromIndex   the index from which to start the search.
1921      * @return  the index of the first occurrence of the specified substring,
1922      *          starting at the specified index,
1923      *          or {@code -1} if there is no such occurrence.
1924      */
1925     public int indexOf(String str, int fromIndex) {
1926         return indexOf(value, 0, value.length,
1927                 str.value, 0, str.value.length, fromIndex);
1928     }
1929 
1930     /**
1931      * Code shared by String and AbstractStringBuilder to do searches. The
1932      * source is the character array being searched, and the target
1933      * is the string being searched for.
1934      *
1935      * @param   source       the characters being searched.
1936      * @param   sourceOffset offset of the source string.
1937      * @param   sourceCount  count of the source string.
1938      * @param   target       the characters being searched for.
1939      * @param   fromIndex    the index to begin searching from.
1940      */
1941     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1942             String target, int fromIndex) {
1943         return indexOf(source, sourceOffset, sourceCount,
1944                        target.value, 0, target.value.length,
1945                        fromIndex);
1946     }
1947 
1948     /**
1949      * Code shared by String and StringBuffer to do searches. The
1950      * source is the character array being searched, and the target
1951      * is the string being searched for.
1952      *
1953      * @param   source       the characters being searched.
1954      * @param   sourceOffset offset of the source string.
1955      * @param   sourceCount  count of the source string.
1956      * @param   target       the characters being searched for.
1957      * @param   targetOffset offset of the target string.
1958      * @param   targetCount  count of the target string.
1959      * @param   fromIndex    the index to begin searching from.
1960      */
1961     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1962             char[] target, int targetOffset, int targetCount,
1963             int fromIndex) {
1964         if (fromIndex >= sourceCount) {
1965             return (targetCount == 0 ? sourceCount : -1);
1966         }
1967         if (fromIndex < 0) {
1968             fromIndex = 0;
1969         }
1970         if (targetCount == 0) {
1971             return fromIndex;
1972         }
1973 
1974         char first = target[targetOffset];
1975         int max = sourceOffset + (sourceCount - targetCount);
1976 
1977         for (int i = sourceOffset + fromIndex; i <= max; i++) {
1978             /* Look for first character. */
1979             if (source[i] != first) {
1980                 while (++i <= max && source[i] != first);
1981             }
1982 
1983             /* Found first character, now look at the rest of v2 */
1984             if (i <= max) {
1985                 int j = i + 1;
1986                 int end = j + targetCount - 1;
1987                 for (int k = targetOffset + 1; j < end && source[j]
1988                         == target[k]; j++, k++);
1989 
1990                 if (j == end) {
1991                     /* Found whole string. */
1992                     return i - sourceOffset;
1993                 }
1994             }
1995         }
1996         return -1;
1997     }
1998 
1999     /**
2000      * Returns the index within this string of the last occurrence of the
2001      * specified substring.  The last occurrence of the empty string ""
2002      * is considered to occur at the index value {@code this.length()}.
2003      *
2004      * <p>The returned index is the largest value {@code k} for which:
2005      * <pre>{@code
2006      * this.startsWith(str, k)
2007      * }</pre>
2008      * If no such value of {@code k} exists, then {@code -1} is returned.
2009      *
2010      * @param   str   the substring to search for.
2011      * @return  the index of the last occurrence of the specified substring,
2012      *          or {@code -1} if there is no such occurrence.
2013      */
2014     public int lastIndexOf(String str) {
2015         return lastIndexOf(str, value.length);
2016     }
2017 
2018     /**
2019      * Returns the index within this string of the last occurrence of the
2020      * specified substring, searching backward starting at the specified index.
2021      *
2022      * <p>The returned index is the largest value {@code k} for which:
2023      * <pre>{@code
2024      *     k <= Math.min(fromIndex, this.length()) &&
2025      *                   this.startsWith(str, k)
2026      * }</pre>
2027      * If no such value of {@code k} exists, then {@code -1} is returned.
2028      *
2029      * @param   str         the substring to search for.
2030      * @param   fromIndex   the index to start the search from.
2031      * @return  the index of the last occurrence of the specified substring,
2032      *          searching backward from the specified index,
2033      *          or {@code -1} if there is no such occurrence.
2034      */
2035     public int lastIndexOf(String str, int fromIndex) {
2036         return lastIndexOf(value, 0, value.length,
2037                 str.value, 0, str.value.length, fromIndex);
2038     }
2039 
2040     /**
2041      * Code shared by String and AbstractStringBuilder to do searches. The
2042      * source is the character array being searched, and the target
2043      * is the string being searched for.
2044      *
2045      * @param   source       the characters being searched.
2046      * @param   sourceOffset offset of the source string.
2047      * @param   sourceCount  count of the source string.
2048      * @param   target       the characters being searched for.
2049      * @param   fromIndex    the index to begin searching from.
2050      */
2051     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
2052             String target, int fromIndex) {
2053         return lastIndexOf(source, sourceOffset, sourceCount,
2054                        target.value, 0, target.value.length,
2055                        fromIndex);
2056     }
2057 
2058     /**
2059      * Code shared by String and StringBuffer to do searches. The
2060      * source is the character array being searched, and the target
2061      * is the string being searched for.
2062      *
2063      * @param   source       the characters being searched.
2064      * @param   sourceOffset offset of the source string.
2065      * @param   sourceCount  count of the source string.
2066      * @param   target       the characters being searched for.
2067      * @param   targetOffset offset of the target string.
2068      * @param   targetCount  count of the target string.
2069      * @param   fromIndex    the index to begin searching from.
2070      */
2071     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
2072             char[] target, int targetOffset, int targetCount,
2073             int fromIndex) {
2074         /*
2075          * Check arguments; return immediately where possible. For
2076          * consistency, don't check for null str.
2077          */
2078         int rightIndex = sourceCount - targetCount;
2079         if (fromIndex < 0) {
2080             return -1;
2081         }
2082         if (fromIndex > rightIndex) {
2083             fromIndex = rightIndex;
2084         }
2085         /* Empty string always matches. */
2086         if (targetCount == 0) {
2087             return fromIndex;
2088         }
2089 
2090         int strLastIndex = targetOffset + targetCount - 1;
2091         char strLastChar = target[strLastIndex];
2092         int min = sourceOffset + targetCount - 1;
2093         int i = min + fromIndex;
2094 
2095     startSearchForLastChar:
2096         while (true) {
2097             while (i >= min && source[i] != strLastChar) {
2098                 i--;
2099             }
2100             if (i < min) {
2101                 return -1;
2102             }
2103             int j = i - 1;
2104             int start = j - (targetCount - 1);
2105             int k = strLastIndex - 1;
2106 
2107             while (j > start) {
2108                 if (source[j--] != target[k--]) {
2109                     i--;
2110                     continue startSearchForLastChar;
2111                 }
2112             }
2113             return start - sourceOffset + 1;
2114         }
2115     }
2116 
2117     /**
2118      * Returns a string that is a substring of this string. The
2119      * substring begins with the character at the specified index and
2120      * extends to the end of this string. <p>
2121      * Examples:
2122      * <blockquote><pre>
2123      * "unhappy".substring(2) returns "happy"
2124      * "Harbison".substring(3) returns "bison"
2125      * "emptiness".substring(9) returns "" (an empty string)
2126      * </pre></blockquote>
2127      *
2128      * @param      beginIndex   the beginning index, inclusive.
2129      * @return     the specified substring.
2130      * @exception  IndexOutOfBoundsException  if
2131      *             {@code beginIndex} is negative or larger than the
2132      *             length of this {@code String} object.
2133      */
2134     public String substring(int beginIndex) {
2135         if (beginIndex < 0) {
2136             throw new StringIndexOutOfBoundsException(beginIndex);
2137         }
2138         int subLen = value.length - beginIndex;
2139         if (subLen < 0) {
2140             throw new StringIndexOutOfBoundsException(subLen);
2141         }
2142         return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
2143     }
2144 
2145     /**
2146      * Returns a string that is a substring of this string. The
2147      * substring begins at the specified {@code beginIndex} and
2148      * extends to the character at index {@code endIndex - 1}.
2149      * Thus the length of the substring is {@code endIndex-beginIndex}.
2150      * <p>
2151      * Examples:
2152      * <blockquote><pre>
2153      * "hamburger".substring(4, 8) returns "urge"
2154      * "smiles".substring(1, 5) returns "mile"
2155      * </pre></blockquote>
2156      *
2157      * @param      beginIndex   the beginning index, inclusive.
2158      * @param      endIndex     the ending index, exclusive.
2159      * @return     the specified substring.
2160      * @exception  IndexOutOfBoundsException  if the
2161      *             {@code beginIndex} is negative, or
2162      *             {@code endIndex} is larger than the length of
2163      *             this {@code String} object, or
2164      *             {@code beginIndex} is larger than
2165      *             {@code endIndex}.
2166      */
2167     public String substring(int beginIndex, int endIndex) {
2168         if (beginIndex < 0) {
2169             throw new StringIndexOutOfBoundsException(beginIndex);
2170         }
2171         if (endIndex > value.length) {
2172             throw new StringIndexOutOfBoundsException(endIndex);
2173         }
2174         int subLen = endIndex - beginIndex;
2175         if (subLen < 0) {
2176             throw new StringIndexOutOfBoundsException(subLen);
2177         }
2178         return ((beginIndex == 0) && (endIndex == value.length)) ? this
2179                 : new String(value, beginIndex, subLen);
2180     }
2181 
2182     /**
2183      * Returns a character sequence that is a subsequence of this sequence.
2184      *
2185      * <p> An invocation of this method of the form
2186      *
2187      * <blockquote><pre>
2188      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
2189      *
2190      * behaves in exactly the same way as the invocation
2191      *
2192      * <blockquote><pre>
2193      * str.substring(begin,&nbsp;end)</pre></blockquote>
2194      *
2195      * @apiNote
2196      * This method is defined so that the {@code String} class can implement
2197      * the {@link CharSequence} interface.
2198      *
2199      * @param   beginIndex   the begin index, inclusive.
2200      * @param   endIndex     the end index, exclusive.
2201      * @return  the specified subsequence.
2202      *
2203      * @throws  IndexOutOfBoundsException
2204      *          if {@code beginIndex} or {@code endIndex} is negative,
2205      *          if {@code endIndex} is greater than {@code length()},
2206      *          or if {@code beginIndex} is greater than {@code endIndex}
2207      *
2208      * @since 1.4
2209      * @spec JSR-51
2210      */
2211     public CharSequence subSequence(int beginIndex, int endIndex) {
2212         return this.substring(beginIndex, endIndex);
2213     }
2214 
2215     /**
2216      * Concatenates the specified string to the end of this string.
2217      * <p>
2218      * If the length of the argument string is {@code 0}, then this
2219      * {@code String} object is returned. Otherwise, a
2220      * {@code String} object is returned that represents a character
2221      * sequence that is the concatenation of the character sequence
2222      * represented by this {@code String} object and the character
2223      * sequence represented by the argument string.<p>
2224      * Examples:
2225      * <blockquote><pre>
2226      * "cares".concat("s") returns "caress"
2227      * "to".concat("get").concat("her") returns "together"
2228      * </pre></blockquote>
2229      *
2230      * @param   str   the {@code String} that is concatenated to the end
2231      *                of this {@code String}.
2232      * @return  a string that represents the concatenation of this object's
2233      *          characters followed by the string argument's characters.
2234      */
2235     public String concat(String str) {
2236         int otherLen = str.length();
2237         if (otherLen == 0) {
2238             return this;
2239         }
2240         int len = value.length;
2241         char buf[] = Arrays.copyOf(value, len + otherLen);
2242         str.getChars(buf, len);
2243         return new String(buf, true);
2244     }
2245 
2246     /**
2247      * Returns a string resulting from replacing all occurrences of
2248      * {@code oldChar} in this string with {@code newChar}.
2249      * <p>
2250      * If the character {@code oldChar} does not occur in the
2251      * character sequence represented by this {@code String} object,
2252      * then a reference to this {@code String} object is returned.
2253      * Otherwise, a {@code String} object is returned that
2254      * represents a character sequence identical to the character sequence
2255      * represented by this {@code String} object, except that every
2256      * occurrence of {@code oldChar} is replaced by an occurrence
2257      * of {@code newChar}.
2258      * <p>
2259      * Examples:
2260      * <blockquote><pre>
2261      * "mesquite in your cellar".replace('e', 'o')
2262      *         returns "mosquito in your collar"
2263      * "the war of baronets".replace('r', 'y')
2264      *         returns "the way of bayonets"
2265      * "sparring with a purple porpoise".replace('p', 't')
2266      *         returns "starring with a turtle tortoise"
2267      * "JonL".replace('q', 'x') returns "JonL" (no change)
2268      * </pre></blockquote>
2269      *
2270      * @param   oldChar   the old character.
2271      * @param   newChar   the new character.
2272      * @return  a string derived from this string by replacing every
2273      *          occurrence of {@code oldChar} with {@code newChar}.
2274      */
2275     public String replace(char oldChar, char newChar) {
2276         if (oldChar != newChar) {
2277             int len = value.length;
2278             int i = -1;
2279             char[] val = value; /* avoid getfield opcode */
2280 
2281             while (++i < len) {
2282                 if (val[i] == oldChar) {
2283                     break;
2284                 }
2285             }
2286             if (i < len) {
2287                 char buf[] = new char[len];
2288                 for (int j = 0; j < i; j++) {
2289                     buf[j] = val[j];
2290                 }
2291                 while (i < len) {
2292                     char c = val[i];
2293                     buf[i] = (c == oldChar) ? newChar : c;
2294                     i++;
2295                 }
2296                 return new String(buf, true);
2297             }
2298         }
2299         return this;
2300     }
2301 
2302     /**
2303      * Tells whether or not this string matches the given <a
2304      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2305      *
2306      * <p> An invocation of this method of the form
2307      * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
2308      * same result as the expression
2309      *
2310      * <blockquote>
2311      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
2312      * matches(<i>regex</i>, <i>str</i>)}
2313      * </blockquote>
2314      *
2315      * @param   regex
2316      *          the regular expression to which this string is to be matched
2317      *
2318      * @return  {@code true} if, and only if, this string matches the
2319      *          given regular expression
2320      *
2321      * @throws  PatternSyntaxException
2322      *          if the regular expression's syntax is invalid
2323      *
2324      * @see java.util.regex.Pattern
2325      *
2326      * @since 1.4
2327      * @spec JSR-51
2328      */
2329     public boolean matches(String regex) {
2330         return Pattern.matches(regex, this);
2331     }
2332 
2333     /**
2334      * Returns true if and only if this string contains the specified
2335      * sequence of char values.
2336      *
2337      * @param s the sequence to search for
2338      * @return true if this string contains {@code s}, false otherwise
2339      * @since 1.5
2340      */
2341     public boolean contains(CharSequence s) {
2342         return indexOf(s.toString()) >= 0;
2343     }
2344 
2345     /**
2346      * Replaces the first substring of this string that matches the given <a
2347      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2348      * given replacement.
2349      *
2350      * <p> An invocation of this method of the form
2351      * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2352      * yields exactly the same result as the expression
2353      *
2354      * <blockquote>
2355      * <code>
2356      * {@link java.util.regex.Pattern}.{@link
2357      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2358      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2359      * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2360      * </code>
2361      * </blockquote>
2362      *
2363      *<p>
2364      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2365      * replacement string may cause the results to be different than if it were
2366      * being treated as a literal replacement string; see
2367      * {@link java.util.regex.Matcher#replaceFirst}.
2368      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2369      * meaning of these characters, if desired.
2370      *
2371      * @param   regex
2372      *          the regular expression to which this string is to be matched
2373      * @param   replacement
2374      *          the string to be substituted for the first match
2375      *
2376      * @return  The resulting {@code String}
2377      *
2378      * @throws  PatternSyntaxException
2379      *          if the regular expression's syntax is invalid
2380      *
2381      * @see java.util.regex.Pattern
2382      *
2383      * @since 1.4
2384      * @spec JSR-51
2385      */
2386     public String replaceFirst(String regex, String replacement) {
2387         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2388     }
2389 
2390     /**
2391      * Replaces each substring of this string that matches the given <a
2392      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2393      * given replacement.
2394      *
2395      * <p> An invocation of this method of the form
2396      * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2397      * yields exactly the same result as the expression
2398      *
2399      * <blockquote>
2400      * <code>
2401      * {@link java.util.regex.Pattern}.{@link
2402      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2403      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2404      * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2405      * </code>
2406      * </blockquote>
2407      *
2408      *<p>
2409      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2410      * replacement string may cause the results to be different than if it were
2411      * being treated as a literal replacement string; see
2412      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2413      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2414      * meaning of these characters, if desired.
2415      *
2416      * @param   regex
2417      *          the regular expression to which this string is to be matched
2418      * @param   replacement
2419      *          the string to be substituted for each match
2420      *
2421      * @return  The resulting {@code String}
2422      *
2423      * @throws  PatternSyntaxException
2424      *          if the regular expression's syntax is invalid
2425      *
2426      * @see java.util.regex.Pattern
2427      *
2428      * @since 1.4
2429      * @spec JSR-51
2430      */
2431     public String replaceAll(String regex, String replacement) {
2432         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2433     }
2434 
2435     /**
2436      * Replaces each substring of this string that matches the literal target
2437      * sequence with the specified literal replacement sequence. The
2438      * replacement proceeds from the beginning of the string to the end, for
2439      * example, replacing "aa" with "b" in the string "aaa" will result in
2440      * "ba" rather than "ab".
2441      *
2442      * @param  target The sequence of char values to be replaced
2443      * @param  replacement The replacement sequence of char values
2444      * @return  The resulting string
2445      * @since 1.5
2446      */
2447     public String replace(CharSequence target, CharSequence replacement) {
2448         return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(
2449                 this).replaceAll(Matcher.quoteReplacement(replacement.toString()));
2450     }
2451 
2452     /**
2453      * Splits this string around matches of the given
2454      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2455      *
2456      * <p> The array returned by this method contains each substring of this
2457      * string that is terminated by another substring that matches the given
2458      * expression or is terminated by the end of the string.  The substrings in
2459      * the array are in the order in which they occur in this string.  If the
2460      * expression does not match any part of the input then the resulting array
2461      * has just one element, namely this string.
2462      *
2463      * <p> When there is a positive-width match at the beginning of this
2464      * string then an empty leading substring is included at the beginning
2465      * of the resulting array. A zero-width match at the beginning however
2466      * never produces such empty leading substring.
2467      *
2468      * <p> The {@code limit} parameter controls the number of times the
2469      * pattern is applied and therefore affects the length of the resulting
2470      * array.  If the limit <i>n</i> is greater than zero then the pattern
2471      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2472      * length will be no greater than <i>n</i>, and the array's last entry
2473      * will contain all input beyond the last matched delimiter.  If <i>n</i>
2474      * is non-positive then the pattern will be applied as many times as
2475      * possible and the array can have any length.  If <i>n</i> is zero then
2476      * the pattern will be applied as many times as possible, the array can
2477      * have any length, and trailing empty strings will be discarded.
2478      *
2479      * <p> The string {@code "boo:and:foo"}, for example, yields the
2480      * following results with these parameters:
2481      *
2482      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
2483      * <tr>
2484      *     <th>Regex</th>
2485      *     <th>Limit</th>
2486      *     <th>Result</th>
2487      * </tr>
2488      * <tr><td align=center>:</td>
2489      *     <td align=center>2</td>
2490      *     <td>{@code { "boo", "and:foo" }}</td></tr>
2491      * <tr><td align=center>:</td>
2492      *     <td align=center>5</td>
2493      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2494      * <tr><td align=center>:</td>
2495      *     <td align=center>-2</td>
2496      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2497      * <tr><td align=center>o</td>
2498      *     <td align=center>5</td>
2499      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2500      * <tr><td align=center>o</td>
2501      *     <td align=center>-2</td>
2502      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2503      * <tr><td align=center>o</td>
2504      *     <td align=center>0</td>
2505      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2506      * </table></blockquote>
2507      *
2508      * <p> An invocation of this method of the form
2509      * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2510      * yields the same result as the expression
2511      *
2512      * <blockquote>
2513      * <code>
2514      * {@link java.util.regex.Pattern}.{@link
2515      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2516      * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2517      * </code>
2518      * </blockquote>
2519      *
2520      *
2521      * @param  regex
2522      *         the delimiting regular expression
2523      *
2524      * @param  limit
2525      *         the result threshold, as described above
2526      *
2527      * @return  the array of strings computed by splitting this string
2528      *          around matches of the given regular expression
2529      *
2530      * @throws  PatternSyntaxException
2531      *          if the regular expression's syntax is invalid
2532      *
2533      * @see java.util.regex.Pattern
2534      *
2535      * @since 1.4
2536      * @spec JSR-51
2537      */
2538     public String[] split(String regex, int limit) {
2539         /* fastpath if the regex is a
2540          (1)one-char String and this character is not one of the
2541             RegEx's meta characters ".$|()[{^?*+\\", or
2542          (2)two-char String and the first char is the backslash and
2543             the second is not the ascii digit or ascii letter.
2544          */
2545         char ch = 0;
2546         if (((regex.value.length == 1 &&
2547              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2548              (regex.length() == 2 &&
2549               regex.charAt(0) == '\\' &&
2550               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2551               ((ch-'a')|('z'-ch)) < 0 &&
2552               ((ch-'A')|('Z'-ch)) < 0)) &&
2553             (ch < Character.MIN_HIGH_SURROGATE ||
2554              ch > Character.MAX_LOW_SURROGATE))
2555         {
2556             int off = 0;
2557             int next = 0;
2558             boolean limited = limit > 0;
2559             ArrayList<String> list = new ArrayList<>();
2560             while ((next = indexOf(ch, off)) != -1) {
2561                 if (!limited || list.size() < limit - 1) {
2562                     list.add(substring(off, next));
2563                     off = next + 1;
2564                 } else {    // last one
2565                     //assert (list.size() == limit - 1);
2566                     list.add(substring(off, value.length));
2567                     off = value.length;
2568                     break;
2569                 }
2570             }
2571             // If no match was found, return this
2572             if (off == 0)
2573                 return new String[]{this};
2574 
2575             // Add remaining segment
2576             if (!limited || list.size() < limit)
2577                 list.add(substring(off, value.length));
2578 
2579             // Construct result
2580             int resultSize = list.size();
2581             if (limit == 0) {
2582                 while (resultSize > 0 && list.get(resultSize - 1).length() == 0) {
2583                     resultSize--;
2584                 }
2585             }
2586             String[] result = new String[resultSize];
2587             return list.subList(0, resultSize).toArray(result);
2588         }
2589         return Pattern.compile(regex).split(this, limit);
2590     }
2591 
2592     /**
2593      * Splits this string around matches of the given <a
2594      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2595      *
2596      * <p> This method works as if by invoking the two-argument {@link
2597      * #split(String, int) split} method with the given expression and a limit
2598      * argument of zero.  Trailing empty strings are therefore not included in
2599      * the resulting array.
2600      *
2601      * <p> The string {@code "boo:and:foo"}, for example, yields the following
2602      * results with these expressions:
2603      *
2604      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
2605      * <tr>
2606      *  <th>Regex</th>
2607      *  <th>Result</th>
2608      * </tr>
2609      * <tr><td align=center>:</td>
2610      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2611      * <tr><td align=center>o</td>
2612      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2613      * </table></blockquote>
2614      *
2615      *
2616      * @param  regex
2617      *         the delimiting regular expression
2618      *
2619      * @return  the array of strings computed by splitting this string
2620      *          around matches of the given regular expression
2621      *
2622      * @throws  PatternSyntaxException
2623      *          if the regular expression's syntax is invalid
2624      *
2625      * @see java.util.regex.Pattern
2626      *
2627      * @since 1.4
2628      * @spec JSR-51
2629      */
2630     public String[] split(String regex) {
2631         return split(regex, 0);
2632     }
2633 
2634     /**
2635      * Returns a new String composed of copies of the
2636      * {@code CharSequence elements} joined together with a copy of
2637      * the specified {@code delimiter}.
2638      *
2639      * <blockquote>For example,
2640      * <pre>{@code
2641      *     String message = String.join("-", "Java", "is", "cool");
2642      *     // message returned is: "Java-is-cool"
2643      * }</pre></blockquote>
2644      *
2645      * Note that if an element is null, then {@code "null"} is added.
2646      *
2647      * @param  delimiter the delimiter that separates each element
2648      * @param  elements the elements to join together.
2649      *
2650      * @return a new {@code String} that is composed of the {@code elements}
2651      *         separated by the {@code delimiter}
2652      *
2653      * @throws NullPointerException If {@code delimiter} or {@code elements}
2654      *         is {@code null}
2655      *
2656      * @see java.util.StringJoiner
2657      * @since 1.8
2658      */
2659     public static String join(CharSequence delimiter, CharSequence... elements) {
2660         Objects.requireNonNull(delimiter);
2661         Objects.requireNonNull(elements);
2662         // Number of elements not likely worth Arrays.stream overhead.
2663         StringJoiner joiner = new StringJoiner(delimiter);
2664         for (CharSequence cs: elements) {
2665             joiner.add(cs);
2666         }
2667         return joiner.toString();
2668     }
2669 
2670     /**
2671      * Returns a new {@code String} composed of copies of the
2672      * {@code CharSequence elements} joined together with a copy of the
2673      * specified {@code delimiter}.
2674      *
2675      * <blockquote>For example,
2676      * <pre>{@code
2677      *     List<String> strings = new LinkedList<>();
2678      *     strings.add("Java");strings.add("is");
2679      *     strings.add("cool");
2680      *     String message = String.join(" ", strings);
2681      *     //message returned is: "Java is cool"
2682      *
2683      *     Set<String> strings = new LinkedHashSet<>();
2684      *     strings.add("Java"); strings.add("is");
2685      *     strings.add("very"); strings.add("cool");
2686      *     String message = String.join("-", strings);
2687      *     //message returned is: "Java-is-very-cool"
2688      * }</pre></blockquote>
2689      *
2690      * Note that if an individual element is {@code null}, then {@code "null"} is added.
2691      *
2692      * @param  delimiter a sequence of characters that is used to separate each
2693      *         of the {@code elements} in the resulting {@code String}
2694      * @param  elements an {@code Iterable} that will have its {@code elements}
2695      *         joined together.
2696      *
2697      * @return a new {@code String} that is composed from the {@code elements}
2698      *         argument
2699      *
2700      * @throws NullPointerException If {@code delimiter} or {@code elements}
2701      *         is {@code null}
2702      *
2703      * @see    #join(CharSequence,CharSequence...)
2704      * @see    java.util.StringJoiner
2705      * @since 1.8
2706      */
2707     public static String join(CharSequence delimiter,
2708             Iterable<? extends CharSequence> elements) {
2709         Objects.requireNonNull(delimiter);
2710         Objects.requireNonNull(elements);
2711         StringJoiner joiner = new StringJoiner(delimiter);
2712         for (CharSequence cs: elements) {
2713             joiner.add(cs);
2714         }
2715         return joiner.toString();
2716     }
2717 
2718     /**
2719      * Converts all of the characters in this {@code String} to lower
2720      * case using the rules of the given {@code Locale}.  Case mapping is based
2721      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2722      * class. Since case mappings are not always 1:1 char mappings, the resulting
2723      * {@code String} may be a different length than the original {@code String}.
2724      * <p>
2725      * Examples of lowercase  mappings are in the following table:
2726      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
2727      * <tr>
2728      *   <th>Language Code of Locale</th>
2729      *   <th>Upper Case</th>
2730      *   <th>Lower Case</th>
2731      *   <th>Description</th>
2732      * </tr>
2733      * <tr>
2734      *   <td>tr (Turkish)</td>
2735      *   <td>\u0130</td>
2736      *   <td>\u0069</td>
2737      *   <td>capital letter I with dot above -&gt; small letter i</td>
2738      * </tr>
2739      * <tr>
2740      *   <td>tr (Turkish)</td>
2741      *   <td>\u0049</td>
2742      *   <td>\u0131</td>
2743      *   <td>capital letter I -&gt; small letter dotless i </td>
2744      * </tr>
2745      * <tr>
2746      *   <td>(all)</td>
2747      *   <td>French Fries</td>
2748      *   <td>french fries</td>
2749      *   <td>lowercased all chars in String</td>
2750      * </tr>
2751      * <tr>
2752      *   <td>(all)</td>
2753      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
2754      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
2755      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
2756      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
2757      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
2758      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
2759      *   <td>lowercased all chars in String</td>
2760      * </tr>
2761      * </table>
2762      *
2763      * @param locale use the case transformation rules for this locale
2764      * @return the {@code String}, converted to lowercase.
2765      * @see     java.lang.String#toLowerCase()
2766      * @see     java.lang.String#toUpperCase()
2767      * @see     java.lang.String#toUpperCase(Locale)
2768      * @since   1.1
2769      */
2770     public String toLowerCase(Locale locale) {
2771         if (locale == null) {
2772             throw new NullPointerException();
2773         }
2774         int first;
2775         boolean hasSurr = false;
2776         final int len = value.length;
2777 
2778         // Now check if there are any characters that need to be changed, or are surrogate
2779         for (first = 0 ; first < len; first++) {
2780             int cp = (int)value[first];
2781             if (Character.isSurrogate((char)cp)) {
2782                 hasSurr = true;
2783                 break;
2784             }
2785             if (cp != Character.toLowerCase(cp)) {  // no need to check Character.ERROR
2786                 break;
2787             }
2788         }
2789         if (first == len)
2790             return this;
2791         char[] result = new char[len];
2792         System.arraycopy(value, 0, result, 0, first);  // Just copy the first few
2793                                                        // lowerCase characters.
2794         String lang = locale.getLanguage();
2795         if (lang == "tr" || lang == "az" || lang == "lt") {
2796             return toLowerCaseEx(result, first, locale, true);
2797         }
2798         if (hasSurr) {
2799             return toLowerCaseEx(result, first, locale, false);
2800         }
2801         for (int i = first; i < len; i++) {
2802             int cp = (int)value[i];
2803             if (cp == '\u03A3' ||                       // GREEK CAPITAL LETTER SIGMA
2804                 Character.isSurrogate((char)cp)) {
2805                 return toLowerCaseEx(result, i, locale, false);
2806             }
2807             if (cp == '\u0130') {                       // LATIN CAPITAL LETTER I WITH DOT ABOVE
2808                 return toLowerCaseEx(result, i, locale, true);
2809             }
2810             cp = Character.toLowerCase(cp);
2811             if (!Character.isBmpCodePoint(cp)) {
2812                 return toLowerCaseEx(result, i, locale, false);
2813             }
2814             result[i] = (char)cp;
2815         }
2816         return new String(result, true);
2817     }
2818 
2819     private String toLowerCaseEx(char[] result, int first, Locale locale, boolean localeDependent) {
2820         int resultOffset = first;
2821         int srcCount;
2822         for (int i = first; i < value.length; i += srcCount) {
2823             int srcChar = (int)value[i];
2824             int lowerChar;
2825             char[] lowerCharArray;
2826             srcCount = 1;
2827             if (Character.isSurrogate((char)srcChar)) {
2828                 srcChar = codePointAt(i);
2829                 srcCount = Character.charCount(srcChar);
2830             }
2831             if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
2832                 lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
2833             } else {
2834                 lowerChar = Character.toLowerCase(srcChar);
2835             }
2836             if (Character.isBmpCodePoint(lowerChar)) {    // Character.ERROR is not a bmp
2837                 result[resultOffset++] = (char)lowerChar;
2838             } else {
2839                 if (lowerChar == Character.ERROR) {
2840                     lowerCharArray = ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
2841                 } else if (srcCount == 2) {
2842                     resultOffset += Character.toChars(lowerChar, result, resultOffset);
2843                     continue;
2844                 } else {
2845                     lowerCharArray = Character.toChars(lowerChar);
2846                 }
2847                 /* Grow result if needed */
2848                 int mapLen = lowerCharArray.length;
2849                 if (mapLen > srcCount) {
2850                     char[] result2 = new char[result.length + mapLen - srcCount];
2851                     System.arraycopy(result, 0, result2, 0, resultOffset);
2852                     result = result2;
2853                 }
2854                 for (int x = 0; x < mapLen; ++x) {
2855                     result[resultOffset++] = lowerCharArray[x];
2856                 }
2857             }
2858         }
2859         return new String(result, 0, resultOffset);
2860     }
2861 
2862     /**
2863      * Converts all of the characters in this {@code String} to lower
2864      * case using the rules of the default locale. This is equivalent to calling
2865      * {@code toLowerCase(Locale.getDefault())}.
2866      * <p>
2867      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2868      * results if used for strings that are intended to be interpreted locale
2869      * independently.
2870      * Examples are programming language identifiers, protocol keys, and HTML
2871      * tags.
2872      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2873      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2874      * LATIN SMALL LETTER DOTLESS I character.
2875      * To obtain correct results for locale insensitive strings, use
2876      * {@code toLowerCase(Locale.ROOT)}.
2877      *
2878      * @return  the {@code String}, converted to lowercase.
2879      * @see     java.lang.String#toLowerCase(Locale)
2880      */
2881     public String toLowerCase() {
2882         return toLowerCase(Locale.getDefault());
2883     }
2884 
2885     /**
2886      * Converts all of the characters in this {@code String} to upper
2887      * case using the rules of the given {@code Locale}. Case mapping is based
2888      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2889      * class. Since case mappings are not always 1:1 char mappings, the resulting
2890      * {@code String} may be a different length than the original {@code String}.
2891      * <p>
2892      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2893      *
2894      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
2895      * <tr>
2896      *   <th>Language Code of Locale</th>
2897      *   <th>Lower Case</th>
2898      *   <th>Upper Case</th>
2899      *   <th>Description</th>
2900      * </tr>
2901      * <tr>
2902      *   <td>tr (Turkish)</td>
2903      *   <td>\u0069</td>
2904      *   <td>\u0130</td>
2905      *   <td>small letter i -&gt; capital letter I with dot above</td>
2906      * </tr>
2907      * <tr>
2908      *   <td>tr (Turkish)</td>
2909      *   <td>\u0131</td>
2910      *   <td>\u0049</td>
2911      *   <td>small letter dotless i -&gt; capital letter I</td>
2912      * </tr>
2913      * <tr>
2914      *   <td>(all)</td>
2915      *   <td>\u00df</td>
2916      *   <td>\u0053 \u0053</td>
2917      *   <td>small letter sharp s -&gt; two letters: SS</td>
2918      * </tr>
2919      * <tr>
2920      *   <td>(all)</td>
2921      *   <td>Fahrvergn&uuml;gen</td>
2922      *   <td>FAHRVERGN&Uuml;GEN</td>
2923      *   <td></td>
2924      * </tr>
2925      * </table>
2926      * @param locale use the case transformation rules for this locale
2927      * @return the {@code String}, converted to uppercase.
2928      * @see     java.lang.String#toUpperCase()
2929      * @see     java.lang.String#toLowerCase()
2930      * @see     java.lang.String#toLowerCase(Locale)
2931      * @since   1.1
2932      */
2933     public String toUpperCase(Locale locale) {
2934         if (locale == null) {
2935             throw new NullPointerException();
2936         }
2937         int first;
2938         boolean hasSurr = false;
2939         final int len = value.length;
2940 
2941         // Now check if there are any characters that need to be changed, or are surrogate
2942         for (first = 0 ; first < len; first++ ) {
2943             int cp = (int)value[first];
2944             if (Character.isSurrogate((char)cp)) {
2945                 hasSurr = true;
2946                 break;
2947             }
2948             if (cp != Character.toUpperCaseEx(cp)) {   // no need to check Character.ERROR
2949                 break;
2950             }
2951         }
2952         if (first == len) {
2953             return this;
2954         }
2955         char[] result = new char[len];
2956         System.arraycopy(value, 0, result, 0, first);  // Just copy the first few
2957                                                        // upperCase characters.
2958         String lang = locale.getLanguage();
2959         if (lang == "tr" || lang == "az" || lang == "lt") {
2960             return toUpperCaseEx(result, first, locale, true);
2961         }
2962         if (hasSurr) {
2963             return toUpperCaseEx(result, first, locale, false);
2964         }
2965         for (int i = first; i < len; i++) {
2966             int cp = (int)value[i];
2967             if (Character.isSurrogate((char)cp)) {
2968                 return toUpperCaseEx(result, i, locale, false);
2969             }
2970             cp = Character.toUpperCaseEx(cp);
2971             if (!Character.isBmpCodePoint(cp)) {    // Character.ERROR is not bmp
2972                 return toUpperCaseEx(result, i, locale, false);
2973             }
2974             result[i] = (char)cp;
2975         }
2976         return new String(result, true);
2977     }
2978 
2979     private String toUpperCaseEx(char[] result, int first, Locale locale,
2980                                  boolean localeDependent) {
2981         int resultOffset = first;
2982         int srcCount;
2983         for (int i = first; i < value.length; i += srcCount) {
2984             int srcChar = (int)value[i];
2985             int upperChar;
2986             char[] upperCharArray;
2987             srcCount = 1;
2988             if (Character.isSurrogate((char)srcChar)) {
2989                 srcChar = codePointAt(i);
2990                 srcCount = Character.charCount(srcChar);
2991             }
2992             if (localeDependent) {
2993                 upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
2994             } else {
2995                 upperChar = Character.toUpperCaseEx(srcChar);
2996             }
2997             if (Character.isBmpCodePoint(upperChar)) {
2998                 result[resultOffset++] = (char)upperChar;
2999             } else {
3000                 if (upperChar == Character.ERROR) {
3001                     if (localeDependent) {
3002                         upperCharArray =
3003                             ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
3004                     } else {
3005                         upperCharArray = Character.toUpperCaseCharArray(srcChar);
3006                     }
3007                 } else if (srcCount == 2) {
3008                     resultOffset += Character.toChars(upperChar, result, resultOffset);
3009                     continue;
3010                 } else {
3011                     upperCharArray = Character.toChars(upperChar);
3012                 }
3013                 /* Grow result if needed */
3014                 int mapLen = upperCharArray.length;
3015                 if (mapLen > srcCount) {
3016                     char[] result2 = new char[result.length + mapLen - srcCount];
3017                     System.arraycopy(result, 0, result2, 0, resultOffset);
3018                     result = result2;
3019                  }
3020                  for (int x = 0; x < mapLen; ++x) {
3021                     result[resultOffset++] = upperCharArray[x];
3022                  }
3023             }
3024         }
3025         return new String(result, 0, resultOffset);
3026     }
3027 
3028     /**
3029      * Converts all of the characters in this {@code String} to upper
3030      * case using the rules of the default locale. This method is equivalent to
3031      * {@code toUpperCase(Locale.getDefault())}.
3032      * <p>
3033      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
3034      * results if used for strings that are intended to be interpreted locale
3035      * independently.
3036      * Examples are programming language identifiers, protocol keys, and HTML
3037      * tags.
3038      * For instance, {@code "title".toUpperCase()} in a Turkish locale
3039      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
3040      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
3041      * To obtain correct results for locale insensitive strings, use
3042      * {@code toUpperCase(Locale.ROOT)}.
3043      *
3044      * @return  the {@code String}, converted to uppercase.
3045      * @see     java.lang.String#toUpperCase(Locale)
3046      */
3047     public String toUpperCase() {
3048         return toUpperCase(Locale.getDefault());
3049     }
3050 
3051     /**
3052      * Returns a string whose value is this string, with any leading and trailing
3053      * whitespace removed.
3054      * <p>
3055      * If this {@code String} object represents an empty character
3056      * sequence, or the first and last characters of character sequence
3057      * represented by this {@code String} object both have codes
3058      * greater than {@code '\u005Cu0020'} (the space character), then a
3059      * reference to this {@code String} object is returned.
3060      * <p>
3061      * Otherwise, if there is no character with a code greater than
3062      * {@code '\u005Cu0020'} in the string, then a
3063      * {@code String} object representing an empty string is
3064      * returned.
3065      * <p>
3066      * Otherwise, let <i>k</i> be the index of the first character in the
3067      * string whose code is greater than {@code '\u005Cu0020'}, and let
3068      * <i>m</i> be the index of the last character in the string whose code
3069      * is greater than {@code '\u005Cu0020'}. A {@code String}
3070      * object is returned, representing the substring of this string that
3071      * begins with the character at index <i>k</i> and ends with the
3072      * character at index <i>m</i>-that is, the result of
3073      * {@code this.substring(k, m + 1)}.
3074      * <p>
3075      * This method may be used to trim whitespace (as defined above) from
3076      * the beginning and end of a string.
3077      *
3078      * @return  A string whose value is this string, with any leading and trailing white
3079      *          space removed, or this string if it has no leading or
3080      *          trailing white space.
3081      */
3082     public String trim() {
3083         int len = value.length;
3084         int st = 0;
3085         char[] val = value;    /* avoid getfield opcode */
3086 
3087         while ((st < len) && (val[st] <= ' ')) {
3088             st++;
3089         }
3090         while ((st < len) && (val[len - 1] <= ' ')) {
3091             len--;
3092         }
3093         return ((st > 0) || (len < value.length)) ? substring(st, len) : this;
3094     }
3095 
3096     /**
3097      * This object (which is already a string!) is itself returned.
3098      *
3099      * @return  the string itself.
3100      */
3101     public String toString() {
3102         return this;
3103     }
3104 
3105     /**
3106      * Converts this string to a new character array.
3107      *
3108      * @return  a newly allocated character array whose length is the length
3109      *          of this string and whose contents are initialized to contain
3110      *          the character sequence represented by this string.
3111      */
3112     public char[] toCharArray() {
3113         // Cannot use Arrays.copyOf because of class initialization order issues
3114         char result[] = new char[value.length];
3115         System.arraycopy(value, 0, result, 0, value.length);
3116         return result;
3117     }
3118 
3119     /**
3120      * Returns a formatted string using the specified format string and
3121      * arguments.
3122      *
3123      * <p> The locale always used is the one returned by {@link
3124      * java.util.Locale#getDefault() Locale.getDefault()}.
3125      *
3126      * @param  format
3127      *         A <a href="../util/Formatter.html#syntax">format string</a>
3128      *
3129      * @param  args
3130      *         Arguments referenced by the format specifiers in the format
3131      *         string.  If there are more arguments than format specifiers, the
3132      *         extra arguments are ignored.  The number of arguments is
3133      *         variable and may be zero.  The maximum number of arguments is
3134      *         limited by the maximum dimension of a Java array as defined by
3135      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
3136      *         The behaviour on a
3137      *         {@code null} argument depends on the <a
3138      *         href="../util/Formatter.html#syntax">conversion</a>.
3139      *
3140      * @throws  java.util.IllegalFormatException
3141      *          If a format string contains an illegal syntax, a format
3142      *          specifier that is incompatible with the given arguments,
3143      *          insufficient arguments given the format string, or other
3144      *          illegal conditions.  For specification of all possible
3145      *          formatting errors, see the <a
3146      *          href="../util/Formatter.html#detail">Details</a> section of the
3147      *          formatter class specification.
3148      *
3149      * @return  A formatted string
3150      *
3151      * @see  java.util.Formatter
3152      * @since  1.5
3153      */
3154     public static String format(String format, Object... args) {
3155         return new Formatter().format(format, args).toString();
3156     }
3157 
3158     /**
3159      * Returns a formatted string using the specified locale, format string,
3160      * and arguments.
3161      *
3162      * @param  l
3163      *         The {@linkplain java.util.Locale locale} to apply during
3164      *         formatting.  If {@code l} is {@code null} then no localization
3165      *         is applied.
3166      *
3167      * @param  format
3168      *         A <a href="../util/Formatter.html#syntax">format string</a>
3169      *
3170      * @param  args
3171      *         Arguments referenced by the format specifiers in the format
3172      *         string.  If there are more arguments than format specifiers, the
3173      *         extra arguments are ignored.  The number of arguments is
3174      *         variable and may be zero.  The maximum number of arguments is
3175      *         limited by the maximum dimension of a Java array as defined by
3176      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
3177      *         The behaviour on a
3178      *         {@code null} argument depends on the
3179      *         <a href="../util/Formatter.html#syntax">conversion</a>.
3180      *
3181      * @throws  java.util.IllegalFormatException
3182      *          If a format string contains an illegal syntax, a format
3183      *          specifier that is incompatible with the given arguments,
3184      *          insufficient arguments given the format string, or other
3185      *          illegal conditions.  For specification of all possible
3186      *          formatting errors, see the <a
3187      *          href="../util/Formatter.html#detail">Details</a> section of the
3188      *          formatter class specification
3189      *
3190      * @return  A formatted string
3191      *
3192      * @see  java.util.Formatter
3193      * @since  1.5
3194      */
3195     public static String format(Locale l, String format, Object... args) {
3196         return new Formatter(l).format(format, args).toString();
3197     }
3198 
3199     /**
3200      * Returns the string representation of the {@code Object} argument.
3201      *
3202      * @param   obj   an {@code Object}.
3203      * @return  if the argument is {@code null}, then a string equal to
3204      *          {@code "null"}; otherwise, the value of
3205      *          {@code obj.toString()} is returned.
3206      * @see     java.lang.Object#toString()
3207      */
3208     public static String valueOf(Object obj) {
3209         return (obj == null) ? "null" : obj.toString();
3210     }
3211 
3212     /**
3213      * Returns the string representation of the {@code char} array
3214      * argument. The contents of the character array are copied; subsequent
3215      * modification of the character array does not affect the returned
3216      * string.
3217      *
3218      * @param   data     the character array.
3219      * @return  a {@code String} that contains the characters of the
3220      *          character array.
3221      */
3222     public static String valueOf(char data[]) {
3223         return new String(data);
3224     }
3225 
3226     /**
3227      * Returns the string representation of a specific subarray of the
3228      * {@code char} array argument.
3229      * <p>
3230      * The {@code offset} argument is the index of the first
3231      * character of the subarray. The {@code count} argument
3232      * specifies the length of the subarray. The contents of the subarray
3233      * are copied; subsequent modification of the character array does not
3234      * affect the returned string.
3235      *
3236      * @param   data     the character array.
3237      * @param   offset   initial offset of the subarray.
3238      * @param   count    length of the subarray.
3239      * @return  a {@code String} that contains the characters of the
3240      *          specified subarray of the character array.
3241      * @exception IndexOutOfBoundsException if {@code offset} is
3242      *          negative, or {@code count} is negative, or
3243      *          {@code offset+count} is larger than
3244      *          {@code data.length}.
3245      */
3246     public static String valueOf(char data[], int offset, int count) {
3247         return new String(data, offset, count);
3248     }
3249 
3250     /**
3251      * Equivalent to {@link #valueOf(char[], int, int)}.
3252      *
3253      * @param   data     the character array.
3254      * @param   offset   initial offset of the subarray.
3255      * @param   count    length of the subarray.
3256      * @return  a {@code String} that contains the characters of the
3257      *          specified subarray of the character array.
3258      * @exception IndexOutOfBoundsException if {@code offset} is
3259      *          negative, or {@code count} is negative, or
3260      *          {@code offset+count} is larger than
3261      *          {@code data.length}.
3262      */
3263     public static String copyValueOf(char data[], int offset, int count) {
3264         return new String(data, offset, count);
3265     }
3266 
3267     /**
3268      * Equivalent to {@link #valueOf(char[])}.
3269      *
3270      * @param   data   the character array.
3271      * @return  a {@code String} that contains the characters of the
3272      *          character array.
3273      */
3274     public static String copyValueOf(char data[]) {
3275         return new String(data);
3276     }
3277 
3278     /**
3279      * Returns the string representation of the {@code boolean} argument.
3280      *
3281      * @param   b   a {@code boolean}.
3282      * @return  if the argument is {@code true}, a string equal to
3283      *          {@code "true"} is returned; otherwise, a string equal to
3284      *          {@code "false"} is returned.
3285      */
3286     public static String valueOf(boolean b) {
3287         return b ? "true" : "false";
3288     }
3289 
3290     /**
3291      * Returns the string representation of the {@code char}
3292      * argument.
3293      *
3294      * @param   c   a {@code char}.
3295      * @return  a string of length {@code 1} containing
3296      *          as its single character the argument {@code c}.
3297      */
3298     public static String valueOf(char c) {
3299         char data[] = {c};
3300         return new String(data, true);
3301     }
3302 
3303     /**
3304      * Returns the string representation of the {@code int} argument.
3305      * <p>
3306      * The representation is exactly the one returned by the
3307      * {@code Integer.toString} method of one argument.
3308      *
3309      * @param   i   an {@code int}.
3310      * @return  a string representation of the {@code int} argument.
3311      * @see     java.lang.Integer#toString(int, int)
3312      */
3313     public static String valueOf(int i) {
3314         return Integer.toString(i);
3315     }
3316 
3317     /**
3318      * Returns the string representation of the {@code long} argument.
3319      * <p>
3320      * The representation is exactly the one returned by the
3321      * {@code Long.toString} method of one argument.
3322      *
3323      * @param   l   a {@code long}.
3324      * @return  a string representation of the {@code long} argument.
3325      * @see     java.lang.Long#toString(long)
3326      */
3327     public static String valueOf(long l) {
3328         return Long.toString(l);
3329     }
3330 
3331     /**
3332      * Returns the string representation of the {@code float} argument.
3333      * <p>
3334      * The representation is exactly the one returned by the
3335      * {@code Float.toString} method of one argument.
3336      *
3337      * @param   f   a {@code float}.
3338      * @return  a string representation of the {@code float} argument.
3339      * @see     java.lang.Float#toString(float)
3340      */
3341     public static String valueOf(float f) {
3342         return Float.toString(f);
3343     }
3344 
3345     /**
3346      * Returns the string representation of the {@code double} argument.
3347      * <p>
3348      * The representation is exactly the one returned by the
3349      * {@code Double.toString} method of one argument.
3350      *
3351      * @param   d   a {@code double}.
3352      * @return  a  string representation of the {@code double} argument.
3353      * @see     java.lang.Double#toString(double)
3354      */
3355     public static String valueOf(double d) {
3356         return Double.toString(d);
3357     }
3358 
3359     /**
3360      * Returns a canonical representation for the string object.
3361      * <p>
3362      * A pool of strings, initially empty, is maintained privately by the
3363      * class {@code String}.
3364      * <p>
3365      * When the intern method is invoked, if the pool already contains a
3366      * string equal to this {@code String} object as determined by
3367      * the {@link #equals(Object)} method, then the string from the pool is
3368      * returned. Otherwise, this {@code String} object is added to the
3369      * pool and a reference to this {@code String} object is returned.
3370      * <p>
3371      * It follows that for any two strings {@code s} and {@code t},
3372      * {@code s.intern() == t.intern()} is {@code true}
3373      * if and only if {@code s.equals(t)} is {@code true}.
3374      * <p>
3375      * All literal strings and string-valued constant expressions are
3376      * interned. String literals are defined in section 3.10.5 of the
3377      * <cite>The Java&trade; Language Specification</cite>.
3378      *
3379      * @return  a string that has the same contents as this string, but is
3380      *          guaranteed to be from a pool of unique strings.
3381      */
3382     public native String intern();
3383 }