1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMark.inline.hpp"
  30 #include "gc/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc/g1/g1CollectorPolicy.hpp"
  33 #include "gc/g1/g1CollectorState.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1RemSet.hpp"
  36 #include "gc/g1/g1StringDedup.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionManager.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/g1/suspendibleThreadSet.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "logging/log.hpp"
  52 #include "memory/allocation.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.inline.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/prefetch.inline.hpp"
  59 #include "services/memTracker.hpp"
  60 
  61 // Concurrent marking bit map wrapper
  62 
  63 CMBitMapRO::CMBitMapRO(int shifter) :
  64   _bm(),
  65   _shifter(shifter) {
  66   _bmStartWord = 0;
  67   _bmWordSize = 0;
  68 }
  69 
  70 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  71                                                const HeapWord* limit) const {
  72   // First we must round addr *up* to a possible object boundary.
  73   addr = (HeapWord*)align_size_up((intptr_t)addr,
  74                                   HeapWordSize << _shifter);
  75   size_t addrOffset = heapWordToOffset(addr);
  76   assert(limit != NULL, "limit must not be NULL");
  77   size_t limitOffset = heapWordToOffset(limit);
  78   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  79   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  80   assert(nextAddr >= addr, "get_next_one postcondition");
  81   assert(nextAddr == limit || isMarked(nextAddr),
  82          "get_next_one postcondition");
  83   return nextAddr;
  84 }
  85 
  86 #ifndef PRODUCT
  87 bool CMBitMapRO::covers(MemRegion heap_rs) const {
  88   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  89   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  90          "size inconsistency");
  91   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
  92          _bmWordSize  == heap_rs.word_size();
  93 }
  94 #endif
  95 
  96 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  97   _bm.print_on_error(st, prefix);
  98 }
  99 
 100 size_t CMBitMap::compute_size(size_t heap_size) {
 101   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 102 }
 103 
 104 size_t CMBitMap::mark_distance() {
 105   return MinObjAlignmentInBytes * BitsPerByte;
 106 }
 107 
 108 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 109   _bmStartWord = heap.start();
 110   _bmWordSize = heap.word_size();
 111 
 112   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 113   _bm.set_size(_bmWordSize >> _shifter);
 114 
 115   storage->set_mapping_changed_listener(&_listener);
 116 }
 117 
 118 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 119   if (zero_filled) {
 120     return;
 121   }
 122   // We need to clear the bitmap on commit, removing any existing information.
 123   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 124   _bm->clearRange(mr);
 125 }
 126 
 127 // Closure used for clearing the given mark bitmap.
 128 class ClearBitmapHRClosure : public HeapRegionClosure {
 129  private:
 130   ConcurrentMark* _cm;
 131   CMBitMap* _bitmap;
 132   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 133  public:
 134   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 135     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 136   }
 137 
 138   virtual bool doHeapRegion(HeapRegion* r) {
 139     size_t const chunk_size_in_words = M / HeapWordSize;
 140 
 141     HeapWord* cur = r->bottom();
 142     HeapWord* const end = r->end();
 143 
 144     while (cur < end) {
 145       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 146       _bitmap->clearRange(mr);
 147 
 148       cur += chunk_size_in_words;
 149 
 150       // Abort iteration if after yielding the marking has been aborted.
 151       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 152         return true;
 153       }
 154       // Repeat the asserts from before the start of the closure. We will do them
 155       // as asserts here to minimize their overhead on the product. However, we
 156       // will have them as guarantees at the beginning / end of the bitmap
 157       // clearing to get some checking in the product.
 158       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 159       assert(!_may_yield || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 160     }
 161 
 162     return false;
 163   }
 164 };
 165 
 166 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 167   ClearBitmapHRClosure* _cl;
 168   HeapRegionClaimer     _hrclaimer;
 169   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 170 
 171 public:
 172   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 173       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 174 
 175   void work(uint worker_id) {
 176     SuspendibleThreadSetJoiner sts_join(_suspendible);
 177     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 178   }
 179 };
 180 
 181 void CMBitMap::clearAll() {
 182   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 183   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 184   uint n_workers = g1h->workers()->active_workers();
 185   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 186   g1h->workers()->run_task(&task);
 187   guarantee(cl.complete(), "Must have completed iteration.");
 188   return;
 189 }
 190 
 191 void CMBitMap::clearRange(MemRegion mr) {
 192   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 193   assert(!mr.is_empty(), "unexpected empty region");
 194   // convert address range into offset range
 195   _bm.at_put_range(heapWordToOffset(mr.start()),
 196                    heapWordToOffset(mr.end()), false);
 197 }
 198 
 199 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 200   _base(NULL), _cm(cm)
 201 {}
 202 
 203 bool CMMarkStack::allocate(size_t capacity) {
 204   // allocate a stack of the requisite depth
 205   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 206   if (!rs.is_reserved()) {
 207     warning("ConcurrentMark MarkStack allocation failure");
 208     return false;
 209   }
 210   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 211   if (!_virtual_space.initialize(rs, rs.size())) {
 212     warning("ConcurrentMark MarkStack backing store failure");
 213     // Release the virtual memory reserved for the marking stack
 214     rs.release();
 215     return false;
 216   }
 217   assert(_virtual_space.committed_size() == rs.size(),
 218          "Didn't reserve backing store for all of ConcurrentMark stack?");
 219   _base = (oop*) _virtual_space.low();
 220   setEmpty();
 221   _capacity = (jint) capacity;
 222   _saved_index = -1;
 223   _should_expand = false;
 224   return true;
 225 }
 226 
 227 void CMMarkStack::expand() {
 228   // Called, during remark, if we've overflown the marking stack during marking.
 229   assert(isEmpty(), "stack should been emptied while handling overflow");
 230   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 231   // Clear expansion flag
 232   _should_expand = false;
 233   if (_capacity == (jint) MarkStackSizeMax) {
 234     log_trace(gc)("(benign) Can't expand marking stack capacity, at max size limit");
 235     return;
 236   }
 237   // Double capacity if possible
 238   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 239   // Do not give up existing stack until we have managed to
 240   // get the double capacity that we desired.
 241   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 242                                                            sizeof(oop)));
 243   if (rs.is_reserved()) {
 244     // Release the backing store associated with old stack
 245     _virtual_space.release();
 246     // Reinitialize virtual space for new stack
 247     if (!_virtual_space.initialize(rs, rs.size())) {
 248       fatal("Not enough swap for expanded marking stack capacity");
 249     }
 250     _base = (oop*)(_virtual_space.low());
 251     _index = 0;
 252     _capacity = new_capacity;
 253   } else {
 254     // Failed to double capacity, continue;
 255     log_trace(gc)("(benign) Failed to expand marking stack capacity from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 256                   _capacity / K, new_capacity / K);
 257   }
 258 }
 259 
 260 void CMMarkStack::set_should_expand() {
 261   // If we're resetting the marking state because of an
 262   // marking stack overflow, record that we should, if
 263   // possible, expand the stack.
 264   _should_expand = _cm->has_overflown();
 265 }
 266 
 267 CMMarkStack::~CMMarkStack() {
 268   if (_base != NULL) {
 269     _base = NULL;
 270     _virtual_space.release();
 271   }
 272 }
 273 
 274 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 275   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 276   jint start = _index;
 277   jint next_index = start + n;
 278   if (next_index > _capacity) {
 279     _overflow = true;
 280     return;
 281   }
 282   // Otherwise.
 283   _index = next_index;
 284   for (int i = 0; i < n; i++) {
 285     int ind = start + i;
 286     assert(ind < _capacity, "By overflow test above.");
 287     _base[ind] = ptr_arr[i];
 288   }
 289 }
 290 
 291 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 292   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 293   jint index = _index;
 294   if (index == 0) {
 295     *n = 0;
 296     return false;
 297   } else {
 298     int k = MIN2(max, index);
 299     jint  new_ind = index - k;
 300     for (int j = 0; j < k; j++) {
 301       ptr_arr[j] = _base[new_ind + j];
 302     }
 303     _index = new_ind;
 304     *n = k;
 305     return true;
 306   }
 307 }
 308 
 309 void CMMarkStack::note_start_of_gc() {
 310   assert(_saved_index == -1,
 311          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 312   _saved_index = _index;
 313 }
 314 
 315 void CMMarkStack::note_end_of_gc() {
 316   // This is intentionally a guarantee, instead of an assert. If we
 317   // accidentally add something to the mark stack during GC, it
 318   // will be a correctness issue so it's better if we crash. we'll
 319   // only check this once per GC anyway, so it won't be a performance
 320   // issue in any way.
 321   guarantee(_saved_index == _index,
 322             "saved index: %d index: %d", _saved_index, _index);
 323   _saved_index = -1;
 324 }
 325 
 326 CMRootRegions::CMRootRegions() :
 327   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 328   _should_abort(false),  _next_survivor(NULL) { }
 329 
 330 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 331   _young_list = g1h->young_list();
 332   _cm = cm;
 333 }
 334 
 335 void CMRootRegions::prepare_for_scan() {
 336   assert(!scan_in_progress(), "pre-condition");
 337 
 338   // Currently, only survivors can be root regions.
 339   assert(_next_survivor == NULL, "pre-condition");
 340   _next_survivor = _young_list->first_survivor_region();
 341   _scan_in_progress = (_next_survivor != NULL);
 342   _should_abort = false;
 343 }
 344 
 345 HeapRegion* CMRootRegions::claim_next() {
 346   if (_should_abort) {
 347     // If someone has set the should_abort flag, we return NULL to
 348     // force the caller to bail out of their loop.
 349     return NULL;
 350   }
 351 
 352   // Currently, only survivors can be root regions.
 353   HeapRegion* res = _next_survivor;
 354   if (res != NULL) {
 355     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 356     // Read it again in case it changed while we were waiting for the lock.
 357     res = _next_survivor;
 358     if (res != NULL) {
 359       if (res == _young_list->last_survivor_region()) {
 360         // We just claimed the last survivor so store NULL to indicate
 361         // that we're done.
 362         _next_survivor = NULL;
 363       } else {
 364         _next_survivor = res->get_next_young_region();
 365       }
 366     } else {
 367       // Someone else claimed the last survivor while we were trying
 368       // to take the lock so nothing else to do.
 369     }
 370   }
 371   assert(res == NULL || res->is_survivor(), "post-condition");
 372 
 373   return res;
 374 }
 375 
 376 void CMRootRegions::scan_finished() {
 377   assert(scan_in_progress(), "pre-condition");
 378 
 379   // Currently, only survivors can be root regions.
 380   if (!_should_abort) {
 381     assert(_next_survivor == NULL, "we should have claimed all survivors");
 382   }
 383   _next_survivor = NULL;
 384 
 385   {
 386     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 387     _scan_in_progress = false;
 388     RootRegionScan_lock->notify_all();
 389   }
 390 }
 391 
 392 bool CMRootRegions::wait_until_scan_finished() {
 393   if (!scan_in_progress()) return false;
 394 
 395   {
 396     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 397     while (scan_in_progress()) {
 398       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 399     }
 400   }
 401   return true;
 402 }
 403 
 404 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 405   return MAX2((n_par_threads + 2) / 4, 1U);
 406 }
 407 
 408 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 409   _g1h(g1h),
 410   _markBitMap1(),
 411   _markBitMap2(),
 412   _parallel_marking_threads(0),
 413   _max_parallel_marking_threads(0),
 414   _sleep_factor(0.0),
 415   _marking_task_overhead(1.0),
 416   _cleanup_list("Cleanup List"),
 417   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 418   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 419             CardTableModRefBS::card_shift,
 420             false /* in_resource_area*/),
 421 
 422   _prevMarkBitMap(&_markBitMap1),
 423   _nextMarkBitMap(&_markBitMap2),
 424 
 425   _markStack(this),
 426   // _finger set in set_non_marking_state
 427 
 428   _max_worker_id(ParallelGCThreads),
 429   // _active_tasks set in set_non_marking_state
 430   // _tasks set inside the constructor
 431   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 432   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 433 
 434   _has_overflown(false),
 435   _concurrent(false),
 436   _has_aborted(false),
 437   _restart_for_overflow(false),
 438   _concurrent_marking_in_progress(false),
 439   _concurrent_marking_from_roots(false),
 440 
 441   // _verbose_level set below
 442 
 443   _init_times(),
 444   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 445   _cleanup_times(),
 446   _total_counting_time(0.0),
 447   _total_rs_scrub_time(0.0),
 448 
 449   _parallel_workers(NULL),
 450 
 451   _count_card_bitmaps(NULL),
 452   _count_marked_bytes(NULL),
 453   _completed_initialization(false) {
 454 
 455   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 456   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 457 
 458   // Create & start a ConcurrentMark thread.
 459   _cmThread = new ConcurrentMarkThread(this);
 460   assert(cmThread() != NULL, "CM Thread should have been created");
 461   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 462   if (_cmThread->osthread() == NULL) {
 463       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 464   }
 465 
 466   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 467   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 468   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 469 
 470   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 471   satb_qs.set_buffer_size(G1SATBBufferSize);
 472 
 473   _root_regions.init(_g1h, this);
 474 
 475   if (ConcGCThreads > ParallelGCThreads) {
 476     warning("Can't have more ConcGCThreads (%u) "
 477             "than ParallelGCThreads (%u).",
 478             ConcGCThreads, ParallelGCThreads);
 479     return;
 480   }
 481   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 482     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 483     // if both are set
 484     _sleep_factor             = 0.0;
 485     _marking_task_overhead    = 1.0;
 486   } else if (G1MarkingOverheadPercent > 0) {
 487     // We will calculate the number of parallel marking threads based
 488     // on a target overhead with respect to the soft real-time goal
 489     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 490     double overall_cm_overhead =
 491       (double) MaxGCPauseMillis * marking_overhead /
 492       (double) GCPauseIntervalMillis;
 493     double cpu_ratio = 1.0 / (double) os::processor_count();
 494     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 495     double marking_task_overhead =
 496       overall_cm_overhead / marking_thread_num *
 497                                               (double) os::processor_count();
 498     double sleep_factor =
 499                        (1.0 - marking_task_overhead) / marking_task_overhead;
 500 
 501     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 502     _sleep_factor             = sleep_factor;
 503     _marking_task_overhead    = marking_task_overhead;
 504   } else {
 505     // Calculate the number of parallel marking threads by scaling
 506     // the number of parallel GC threads.
 507     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 508     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 509     _sleep_factor             = 0.0;
 510     _marking_task_overhead    = 1.0;
 511   }
 512 
 513   assert(ConcGCThreads > 0, "Should have been set");
 514   _parallel_marking_threads = ConcGCThreads;
 515   _max_parallel_marking_threads = _parallel_marking_threads;
 516 
 517   _parallel_workers = new WorkGang("G1 Marker",
 518        _max_parallel_marking_threads, false, true);
 519   if (_parallel_workers == NULL) {
 520     vm_exit_during_initialization("Failed necessary allocation.");
 521   } else {
 522     _parallel_workers->initialize_workers();
 523   }
 524 
 525   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 526     size_t mark_stack_size =
 527       MIN2(MarkStackSizeMax,
 528           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 529     // Verify that the calculated value for MarkStackSize is in range.
 530     // It would be nice to use the private utility routine from Arguments.
 531     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 532       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 533               "must be between 1 and " SIZE_FORMAT,
 534               mark_stack_size, MarkStackSizeMax);
 535       return;
 536     }
 537     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 538   } else {
 539     // Verify MarkStackSize is in range.
 540     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 541       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 542         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 543           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 544                   "must be between 1 and " SIZE_FORMAT,
 545                   MarkStackSize, MarkStackSizeMax);
 546           return;
 547         }
 548       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 549         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 550           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 551                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 552                   MarkStackSize, MarkStackSizeMax);
 553           return;
 554         }
 555       }
 556     }
 557   }
 558 
 559   if (!_markStack.allocate(MarkStackSize)) {
 560     warning("Failed to allocate CM marking stack");
 561     return;
 562   }
 563 
 564   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 565   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 566 
 567   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 568   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 569 
 570   BitMap::idx_t card_bm_size = _card_bm.size();
 571 
 572   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 573   _active_tasks = _max_worker_id;
 574 
 575   uint max_regions = _g1h->max_regions();
 576   for (uint i = 0; i < _max_worker_id; ++i) {
 577     CMTaskQueue* task_queue = new CMTaskQueue();
 578     task_queue->initialize();
 579     _task_queues->register_queue(i, task_queue);
 580 
 581     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 582     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 583 
 584     _tasks[i] = new CMTask(i, this,
 585                            _count_marked_bytes[i],
 586                            &_count_card_bitmaps[i],
 587                            task_queue, _task_queues);
 588 
 589     _accum_task_vtime[i] = 0.0;
 590   }
 591 
 592   // Calculate the card number for the bottom of the heap. Used
 593   // in biasing indexes into the accounting card bitmaps.
 594   _heap_bottom_card_num =
 595     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 596                                 CardTableModRefBS::card_shift);
 597 
 598   // Clear all the liveness counting data
 599   clear_all_count_data();
 600 
 601   // so that the call below can read a sensible value
 602   _heap_start = g1h->reserved_region().start();
 603   set_non_marking_state();
 604   _completed_initialization = true;
 605 }
 606 
 607 void ConcurrentMark::reset() {
 608   // Starting values for these two. This should be called in a STW
 609   // phase.
 610   MemRegion reserved = _g1h->g1_reserved();
 611   _heap_start = reserved.start();
 612   _heap_end   = reserved.end();
 613 
 614   // Separated the asserts so that we know which one fires.
 615   assert(_heap_start != NULL, "heap bounds should look ok");
 616   assert(_heap_end != NULL, "heap bounds should look ok");
 617   assert(_heap_start < _heap_end, "heap bounds should look ok");
 618 
 619   // Reset all the marking data structures and any necessary flags
 620   reset_marking_state();
 621 
 622   // We do reset all of them, since different phases will use
 623   // different number of active threads. So, it's easiest to have all
 624   // of them ready.
 625   for (uint i = 0; i < _max_worker_id; ++i) {
 626     _tasks[i]->reset(_nextMarkBitMap);
 627   }
 628 
 629   // we need this to make sure that the flag is on during the evac
 630   // pause with initial mark piggy-backed
 631   set_concurrent_marking_in_progress();
 632 }
 633 
 634 
 635 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 636   _markStack.set_should_expand();
 637   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 638   if (clear_overflow) {
 639     clear_has_overflown();
 640   } else {
 641     assert(has_overflown(), "pre-condition");
 642   }
 643   _finger = _heap_start;
 644 
 645   for (uint i = 0; i < _max_worker_id; ++i) {
 646     CMTaskQueue* queue = _task_queues->queue(i);
 647     queue->set_empty();
 648   }
 649 }
 650 
 651 void ConcurrentMark::set_concurrency(uint active_tasks) {
 652   assert(active_tasks <= _max_worker_id, "we should not have more");
 653 
 654   _active_tasks = active_tasks;
 655   // Need to update the three data structures below according to the
 656   // number of active threads for this phase.
 657   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 658   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 659   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 660 }
 661 
 662 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 663   set_concurrency(active_tasks);
 664 
 665   _concurrent = concurrent;
 666   // We propagate this to all tasks, not just the active ones.
 667   for (uint i = 0; i < _max_worker_id; ++i)
 668     _tasks[i]->set_concurrent(concurrent);
 669 
 670   if (concurrent) {
 671     set_concurrent_marking_in_progress();
 672   } else {
 673     // We currently assume that the concurrent flag has been set to
 674     // false before we start remark. At this point we should also be
 675     // in a STW phase.
 676     assert(!concurrent_marking_in_progress(), "invariant");
 677     assert(out_of_regions(),
 678            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 679            p2i(_finger), p2i(_heap_end));
 680   }
 681 }
 682 
 683 void ConcurrentMark::set_non_marking_state() {
 684   // We set the global marking state to some default values when we're
 685   // not doing marking.
 686   reset_marking_state();
 687   _active_tasks = 0;
 688   clear_concurrent_marking_in_progress();
 689 }
 690 
 691 ConcurrentMark::~ConcurrentMark() {
 692   // The ConcurrentMark instance is never freed.
 693   ShouldNotReachHere();
 694 }
 695 
 696 void ConcurrentMark::clearNextBitmap() {
 697   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 698 
 699   // Make sure that the concurrent mark thread looks to still be in
 700   // the current cycle.
 701   guarantee(cmThread()->during_cycle(), "invariant");
 702 
 703   // We are finishing up the current cycle by clearing the next
 704   // marking bitmap and getting it ready for the next cycle. During
 705   // this time no other cycle can start. So, let's make sure that this
 706   // is the case.
 707   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 708 
 709   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 710   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 711   _parallel_workers->run_task(&task);
 712 
 713   // Clear the liveness counting data. If the marking has been aborted, the abort()
 714   // call already did that.
 715   if (cl.complete()) {
 716     clear_all_count_data();
 717   }
 718 
 719   // Repeat the asserts from above.
 720   guarantee(cmThread()->during_cycle(), "invariant");
 721   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 722 }
 723 
 724 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 725   CMBitMap* _bitmap;
 726   bool _error;
 727  public:
 728   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 729   }
 730 
 731   virtual bool doHeapRegion(HeapRegion* r) {
 732     // This closure can be called concurrently to the mutator, so we must make sure
 733     // that the result of the getNextMarkedWordAddress() call is compared to the
 734     // value passed to it as limit to detect any found bits.
 735     // end never changes in G1.
 736     HeapWord* end = r->end();
 737     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 738   }
 739 };
 740 
 741 bool ConcurrentMark::nextMarkBitmapIsClear() {
 742   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 743   _g1h->heap_region_iterate(&cl);
 744   return cl.complete();
 745 }
 746 
 747 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 748 public:
 749   bool doHeapRegion(HeapRegion* r) {
 750     r->note_start_of_marking();
 751     return false;
 752   }
 753 };
 754 
 755 void ConcurrentMark::checkpointRootsInitialPre() {
 756   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 757   G1CollectorPolicy* g1p = g1h->g1_policy();
 758 
 759   _has_aborted = false;
 760 
 761   // Initialize marking structures. This has to be done in a STW phase.
 762   reset();
 763 
 764   // For each region note start of marking.
 765   NoteStartOfMarkHRClosure startcl;
 766   g1h->heap_region_iterate(&startcl);
 767 }
 768 
 769 
 770 void ConcurrentMark::checkpointRootsInitialPost() {
 771   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 772 
 773   // Start Concurrent Marking weak-reference discovery.
 774   ReferenceProcessor* rp = g1h->ref_processor_cm();
 775   // enable ("weak") refs discovery
 776   rp->enable_discovery();
 777   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 778 
 779   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 780   // This is the start of  the marking cycle, we're expected all
 781   // threads to have SATB queues with active set to false.
 782   satb_mq_set.set_active_all_threads(true, /* new active value */
 783                                      false /* expected_active */);
 784 
 785   _root_regions.prepare_for_scan();
 786 
 787   // update_g1_committed() will be called at the end of an evac pause
 788   // when marking is on. So, it's also called at the end of the
 789   // initial-mark pause to update the heap end, if the heap expands
 790   // during it. No need to call it here.
 791 }
 792 
 793 /*
 794  * Notice that in the next two methods, we actually leave the STS
 795  * during the barrier sync and join it immediately afterwards. If we
 796  * do not do this, the following deadlock can occur: one thread could
 797  * be in the barrier sync code, waiting for the other thread to also
 798  * sync up, whereas another one could be trying to yield, while also
 799  * waiting for the other threads to sync up too.
 800  *
 801  * Note, however, that this code is also used during remark and in
 802  * this case we should not attempt to leave / enter the STS, otherwise
 803  * we'll either hit an assert (debug / fastdebug) or deadlock
 804  * (product). So we should only leave / enter the STS if we are
 805  * operating concurrently.
 806  *
 807  * Because the thread that does the sync barrier has left the STS, it
 808  * is possible to be suspended for a Full GC or an evacuation pause
 809  * could occur. This is actually safe, since the entering the sync
 810  * barrier is one of the last things do_marking_step() does, and it
 811  * doesn't manipulate any data structures afterwards.
 812  */
 813 
 814 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 815   bool barrier_aborted;
 816   {
 817     SuspendibleThreadSetLeaver sts_leave(concurrent());
 818     barrier_aborted = !_first_overflow_barrier_sync.enter();
 819   }
 820 
 821   // at this point everyone should have synced up and not be doing any
 822   // more work
 823 
 824   if (barrier_aborted) {
 825     // If the barrier aborted we ignore the overflow condition and
 826     // just abort the whole marking phase as quickly as possible.
 827     return;
 828   }
 829 
 830   // If we're executing the concurrent phase of marking, reset the marking
 831   // state; otherwise the marking state is reset after reference processing,
 832   // during the remark pause.
 833   // If we reset here as a result of an overflow during the remark we will
 834   // see assertion failures from any subsequent set_concurrency_and_phase()
 835   // calls.
 836   if (concurrent()) {
 837     // let the task associated with with worker 0 do this
 838     if (worker_id == 0) {
 839       // task 0 is responsible for clearing the global data structures
 840       // We should be here because of an overflow. During STW we should
 841       // not clear the overflow flag since we rely on it being true when
 842       // we exit this method to abort the pause and restart concurrent
 843       // marking.
 844       reset_marking_state(true /* clear_overflow */);
 845 
 846       log_info(gc)("Concurrent Mark reset for overflow");
 847     }
 848   }
 849 
 850   // after this, each task should reset its own data structures then
 851   // then go into the second barrier
 852 }
 853 
 854 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 855   SuspendibleThreadSetLeaver sts_leave(concurrent());
 856   _second_overflow_barrier_sync.enter();
 857 
 858   // at this point everything should be re-initialized and ready to go
 859 }
 860 
 861 class CMConcurrentMarkingTask: public AbstractGangTask {
 862 private:
 863   ConcurrentMark*       _cm;
 864   ConcurrentMarkThread* _cmt;
 865 
 866 public:
 867   void work(uint worker_id) {
 868     assert(Thread::current()->is_ConcurrentGC_thread(),
 869            "this should only be done by a conc GC thread");
 870     ResourceMark rm;
 871 
 872     double start_vtime = os::elapsedVTime();
 873 
 874     {
 875       SuspendibleThreadSetJoiner sts_join;
 876 
 877       assert(worker_id < _cm->active_tasks(), "invariant");
 878       CMTask* the_task = _cm->task(worker_id);
 879       the_task->record_start_time();
 880       if (!_cm->has_aborted()) {
 881         do {
 882           double start_vtime_sec = os::elapsedVTime();
 883           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 884 
 885           the_task->do_marking_step(mark_step_duration_ms,
 886                                     true  /* do_termination */,
 887                                     false /* is_serial*/);
 888 
 889           double end_vtime_sec = os::elapsedVTime();
 890           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 891           _cm->clear_has_overflown();
 892 
 893           _cm->do_yield_check(worker_id);
 894 
 895           jlong sleep_time_ms;
 896           if (!_cm->has_aborted() && the_task->has_aborted()) {
 897             sleep_time_ms =
 898               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 899             {
 900               SuspendibleThreadSetLeaver sts_leave;
 901               os::sleep(Thread::current(), sleep_time_ms, false);
 902             }
 903           }
 904         } while (!_cm->has_aborted() && the_task->has_aborted());
 905       }
 906       the_task->record_end_time();
 907       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 908     }
 909 
 910     double end_vtime = os::elapsedVTime();
 911     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 912   }
 913 
 914   CMConcurrentMarkingTask(ConcurrentMark* cm,
 915                           ConcurrentMarkThread* cmt) :
 916       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 917 
 918   ~CMConcurrentMarkingTask() { }
 919 };
 920 
 921 // Calculates the number of active workers for a concurrent
 922 // phase.
 923 uint ConcurrentMark::calc_parallel_marking_threads() {
 924   uint n_conc_workers = 0;
 925   if (!UseDynamicNumberOfGCThreads ||
 926       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 927        !ForceDynamicNumberOfGCThreads)) {
 928     n_conc_workers = max_parallel_marking_threads();
 929   } else {
 930     n_conc_workers =
 931       AdaptiveSizePolicy::calc_default_active_workers(
 932                                    max_parallel_marking_threads(),
 933                                    1, /* Minimum workers */
 934                                    parallel_marking_threads(),
 935                                    Threads::number_of_non_daemon_threads());
 936     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 937     // that scaling has already gone into "_max_parallel_marking_threads".
 938   }
 939   assert(n_conc_workers > 0, "Always need at least 1");
 940   return n_conc_workers;
 941 }
 942 
 943 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
 944   // Currently, only survivors can be root regions.
 945   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 946   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 947 
 948   const uintx interval = PrefetchScanIntervalInBytes;
 949   HeapWord* curr = hr->bottom();
 950   const HeapWord* end = hr->top();
 951   while (curr < end) {
 952     Prefetch::read(curr, interval);
 953     oop obj = oop(curr);
 954     int size = obj->oop_iterate_size(&cl);
 955     assert(size == obj->size(), "sanity");
 956     curr += size;
 957   }
 958 }
 959 
 960 class CMRootRegionScanTask : public AbstractGangTask {
 961 private:
 962   ConcurrentMark* _cm;
 963 
 964 public:
 965   CMRootRegionScanTask(ConcurrentMark* cm) :
 966     AbstractGangTask("Root Region Scan"), _cm(cm) { }
 967 
 968   void work(uint worker_id) {
 969     assert(Thread::current()->is_ConcurrentGC_thread(),
 970            "this should only be done by a conc GC thread");
 971 
 972     CMRootRegions* root_regions = _cm->root_regions();
 973     HeapRegion* hr = root_regions->claim_next();
 974     while (hr != NULL) {
 975       _cm->scanRootRegion(hr, worker_id);
 976       hr = root_regions->claim_next();
 977     }
 978   }
 979 };
 980 
 981 void ConcurrentMark::scanRootRegions() {
 982   // Start of concurrent marking.
 983   ClassLoaderDataGraph::clear_claimed_marks();
 984 
 985   // scan_in_progress() will have been set to true only if there was
 986   // at least one root region to scan. So, if it's false, we
 987   // should not attempt to do any further work.
 988   if (root_regions()->scan_in_progress()) {
 989     GCTraceConcTime(Info, gc) tt("Concurrent Root Region Scan");
 990 
 991     _parallel_marking_threads = calc_parallel_marking_threads();
 992     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
 993            "Maximum number of marking threads exceeded");
 994     uint active_workers = MAX2(1U, parallel_marking_threads());
 995 
 996     CMRootRegionScanTask task(this);
 997     _parallel_workers->set_active_workers(active_workers);
 998     _parallel_workers->run_task(&task);
 999 
1000     // It's possible that has_aborted() is true here without actually
1001     // aborting the survivor scan earlier. This is OK as it's
1002     // mainly used for sanity checking.
1003     root_regions()->scan_finished();
1004   }
1005 }
1006 
1007 void ConcurrentMark::register_mark_from_roots_phase_start() {
1008   _concurrent_marking_from_roots = true;
1009   _g1h->gc_timer_cm()->register_gc_concurrent_start("Concurrent Mark");
1010 }
1011 
1012 void ConcurrentMark::register_mark_from_roots_phase_end() {
1013   _concurrent_marking_from_roots = false;
1014   if (!has_aborted()) {
1015     _g1h->gc_timer_cm()->register_gc_concurrent_end();
1016   }
1017 }
1018 
1019 void ConcurrentMark::markFromRoots() {
1020   // we might be tempted to assert that:
1021   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1022   //        "inconsistent argument?");
1023   // However that wouldn't be right, because it's possible that
1024   // a safepoint is indeed in progress as a younger generation
1025   // stop-the-world GC happens even as we mark in this generation.
1026 
1027   register_mark_from_roots_phase_start();
1028 
1029   _restart_for_overflow = false;
1030 
1031   // _g1h has _n_par_threads
1032   _parallel_marking_threads = calc_parallel_marking_threads();
1033   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1034     "Maximum number of marking threads exceeded");
1035 
1036   uint active_workers = MAX2(1U, parallel_marking_threads());
1037   assert(active_workers > 0, "Should have been set");
1038 
1039   // Parallel task terminator is set in "set_concurrency_and_phase()"
1040   set_concurrency_and_phase(active_workers, true /* concurrent */);
1041 
1042   CMConcurrentMarkingTask markingTask(this, cmThread());
1043   _parallel_workers->set_active_workers(active_workers);
1044   _parallel_workers->run_task(&markingTask);
1045 
1046   register_mark_from_roots_phase_end();
1047 
1048   print_stats();
1049 }
1050 
1051 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1052   // world is stopped at this checkpoint
1053   assert(SafepointSynchronize::is_at_safepoint(),
1054          "world should be stopped");
1055 
1056   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1057 
1058   // If a full collection has happened, we shouldn't do this.
1059   if (has_aborted()) {
1060     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1061     return;
1062   }
1063 
1064   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1065 
1066   if (VerifyDuringGC) {
1067     HandleMark hm;  // handle scope
1068     g1h->prepare_for_verify();
1069     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1070   }
1071   g1h->check_bitmaps("Remark Start");
1072 
1073   G1CollectorPolicy* g1p = g1h->g1_policy();
1074   g1p->record_concurrent_mark_remark_start();
1075 
1076   double start = os::elapsedTime();
1077 
1078   checkpointRootsFinalWork();
1079 
1080   double mark_work_end = os::elapsedTime();
1081 
1082   weakRefsWork(clear_all_soft_refs);
1083 
1084   if (has_overflown()) {
1085     // Oops.  We overflowed.  Restart concurrent marking.
1086     _restart_for_overflow = true;
1087     log_develop_trace(gc)("Remark led to restart for overflow.");
1088 
1089     // Verify the heap w.r.t. the previous marking bitmap.
1090     if (VerifyDuringGC) {
1091       HandleMark hm;  // handle scope
1092       g1h->prepare_for_verify();
1093       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1094     }
1095 
1096     // Clear the marking state because we will be restarting
1097     // marking due to overflowing the global mark stack.
1098     reset_marking_state();
1099   } else {
1100     {
1101       GCTraceTime(Debug, gc) trace("GC Aggregate Data", g1h->gc_timer_cm());
1102 
1103       // Aggregate the per-task counting data that we have accumulated
1104       // while marking.
1105       aggregate_count_data();
1106     }
1107 
1108     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1109     // We're done with marking.
1110     // This is the end of  the marking cycle, we're expected all
1111     // threads to have SATB queues with active set to true.
1112     satb_mq_set.set_active_all_threads(false, /* new active value */
1113                                        true /* expected_active */);
1114 
1115     if (VerifyDuringGC) {
1116       HandleMark hm;  // handle scope
1117       g1h->prepare_for_verify();
1118       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1119     }
1120     g1h->check_bitmaps("Remark End");
1121     assert(!restart_for_overflow(), "sanity");
1122     // Completely reset the marking state since marking completed
1123     set_non_marking_state();
1124   }
1125 
1126   // Expand the marking stack, if we have to and if we can.
1127   if (_markStack.should_expand()) {
1128     _markStack.expand();
1129   }
1130 
1131   // Statistics
1132   double now = os::elapsedTime();
1133   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1134   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1135   _remark_times.add((now - start) * 1000.0);
1136 
1137   g1p->record_concurrent_mark_remark_end();
1138 
1139   G1CMIsAliveClosure is_alive(g1h);
1140   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1141 }
1142 
1143 // Base class of the closures that finalize and verify the
1144 // liveness counting data.
1145 class CMCountDataClosureBase: public HeapRegionClosure {
1146 protected:
1147   G1CollectedHeap* _g1h;
1148   ConcurrentMark* _cm;
1149   CardTableModRefBS* _ct_bs;
1150 
1151   BitMap* _region_bm;
1152   BitMap* _card_bm;
1153 
1154   // Takes a region that's not empty (i.e., it has at least one
1155   // live object in it and sets its corresponding bit on the region
1156   // bitmap to 1.
1157   void set_bit_for_region(HeapRegion* hr) {
1158     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1159     _region_bm->par_at_put(index, true);
1160   }
1161 
1162 public:
1163   CMCountDataClosureBase(G1CollectedHeap* g1h,
1164                          BitMap* region_bm, BitMap* card_bm):
1165     _g1h(g1h), _cm(g1h->concurrent_mark()),
1166     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1167     _region_bm(region_bm), _card_bm(card_bm) { }
1168 };
1169 
1170 // Closure that calculates the # live objects per region. Used
1171 // for verification purposes during the cleanup pause.
1172 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1173   CMBitMapRO* _bm;
1174   size_t _region_marked_bytes;
1175 
1176 public:
1177   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1178                          BitMap* region_bm, BitMap* card_bm) :
1179     CMCountDataClosureBase(g1h, region_bm, card_bm),
1180     _bm(bm), _region_marked_bytes(0) { }
1181 
1182   bool doHeapRegion(HeapRegion* hr) {
1183     HeapWord* ntams = hr->next_top_at_mark_start();
1184     HeapWord* start = hr->bottom();
1185 
1186     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1187            "Preconditions not met - "
1188            "start: " PTR_FORMAT ", ntams: " PTR_FORMAT ", end: " PTR_FORMAT,
1189            p2i(start), p2i(ntams), p2i(hr->end()));
1190 
1191     // Find the first marked object at or after "start".
1192     start = _bm->getNextMarkedWordAddress(start, ntams);
1193 
1194     size_t marked_bytes = 0;
1195 
1196     while (start < ntams) {
1197       oop obj = oop(start);
1198       int obj_sz = obj->size();
1199       HeapWord* obj_end = start + obj_sz;
1200 
1201       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1202       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1203 
1204       // Note: if we're looking at the last region in heap - obj_end
1205       // could be actually just beyond the end of the heap; end_idx
1206       // will then correspond to a (non-existent) card that is also
1207       // just beyond the heap.
1208       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1209         // end of object is not card aligned - increment to cover
1210         // all the cards spanned by the object
1211         end_idx += 1;
1212       }
1213 
1214       // Set the bits in the card BM for the cards spanned by this object.
1215       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1216 
1217       // Add the size of this object to the number of marked bytes.
1218       marked_bytes += (size_t)obj_sz * HeapWordSize;
1219 
1220       // This will happen if we are handling a humongous object that spans
1221       // several heap regions.
1222       if (obj_end > hr->end()) {
1223         break;
1224       }
1225       // Find the next marked object after this one.
1226       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1227     }
1228 
1229     // Mark the allocated-since-marking portion...
1230     HeapWord* top = hr->top();
1231     if (ntams < top) {
1232       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1233       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1234 
1235       // Note: if we're looking at the last region in heap - top
1236       // could be actually just beyond the end of the heap; end_idx
1237       // will then correspond to a (non-existent) card that is also
1238       // just beyond the heap.
1239       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1240         // end of object is not card aligned - increment to cover
1241         // all the cards spanned by the object
1242         end_idx += 1;
1243       }
1244       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1245 
1246       // This definitely means the region has live objects.
1247       set_bit_for_region(hr);
1248     }
1249 
1250     // Update the live region bitmap.
1251     if (marked_bytes > 0) {
1252       set_bit_for_region(hr);
1253     }
1254 
1255     // Set the marked bytes for the current region so that
1256     // it can be queried by a calling verification routine
1257     _region_marked_bytes = marked_bytes;
1258 
1259     return false;
1260   }
1261 
1262   size_t region_marked_bytes() const { return _region_marked_bytes; }
1263 };
1264 
1265 // Heap region closure used for verifying the counting data
1266 // that was accumulated concurrently and aggregated during
1267 // the remark pause. This closure is applied to the heap
1268 // regions during the STW cleanup pause.
1269 
1270 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1271   G1CollectedHeap* _g1h;
1272   ConcurrentMark* _cm;
1273   CalcLiveObjectsClosure _calc_cl;
1274   BitMap* _region_bm;   // Region BM to be verified
1275   BitMap* _card_bm;     // Card BM to be verified
1276 
1277   BitMap* _exp_region_bm; // Expected Region BM values
1278   BitMap* _exp_card_bm;   // Expected card BM values
1279 
1280   int _failures;
1281 
1282 public:
1283   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1284                                 BitMap* region_bm,
1285                                 BitMap* card_bm,
1286                                 BitMap* exp_region_bm,
1287                                 BitMap* exp_card_bm) :
1288     _g1h(g1h), _cm(g1h->concurrent_mark()),
1289     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1290     _region_bm(region_bm), _card_bm(card_bm),
1291     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1292     _failures(0) { }
1293 
1294   int failures() const { return _failures; }
1295 
1296   bool doHeapRegion(HeapRegion* hr) {
1297     int failures = 0;
1298 
1299     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1300     // this region and set the corresponding bits in the expected region
1301     // and card bitmaps.
1302     bool res = _calc_cl.doHeapRegion(hr);
1303     assert(res == false, "should be continuing");
1304 
1305     // Verify the marked bytes for this region.
1306     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1307     size_t act_marked_bytes = hr->next_marked_bytes();
1308 
1309     if (exp_marked_bytes > act_marked_bytes) {
1310       if (hr->is_starts_humongous()) {
1311         // For start_humongous regions, the size of the whole object will be
1312         // in exp_marked_bytes.
1313         HeapRegion* region = hr;
1314         int num_regions;
1315         for (num_regions = 0; region != NULL; num_regions++) {
1316           region = _g1h->next_region_in_humongous(region);
1317         }
1318         if ((num_regions-1) * HeapRegion::GrainBytes >= exp_marked_bytes) {
1319           failures += 1;
1320         } else if (num_regions * HeapRegion::GrainBytes < exp_marked_bytes) {
1321           failures += 1;
1322         }
1323       } else {
1324         // We're not OK if expected marked bytes > actual marked bytes. It means
1325         // we have missed accounting some objects during the actual marking.
1326         failures += 1;
1327       }
1328     }
1329 
1330     // Verify the bit, for this region, in the actual and expected
1331     // (which was just calculated) region bit maps.
1332     // We're not OK if the bit in the calculated expected region
1333     // bitmap is set and the bit in the actual region bitmap is not.
1334     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1335 
1336     bool expected = _exp_region_bm->at(index);
1337     bool actual = _region_bm->at(index);
1338     if (expected && !actual) {
1339       failures += 1;
1340     }
1341 
1342     // Verify that the card bit maps for the cards spanned by the current
1343     // region match. We have an error if we have a set bit in the expected
1344     // bit map and the corresponding bit in the actual bitmap is not set.
1345 
1346     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1347     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1348 
1349     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1350       expected = _exp_card_bm->at(i);
1351       actual = _card_bm->at(i);
1352 
1353       if (expected && !actual) {
1354         failures += 1;
1355       }
1356     }
1357 
1358     _failures += failures;
1359 
1360     // We could stop iteration over the heap when we
1361     // find the first violating region by returning true.
1362     return false;
1363   }
1364 };
1365 
1366 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1367 protected:
1368   G1CollectedHeap* _g1h;
1369   ConcurrentMark* _cm;
1370   BitMap* _actual_region_bm;
1371   BitMap* _actual_card_bm;
1372 
1373   uint    _n_workers;
1374 
1375   BitMap* _expected_region_bm;
1376   BitMap* _expected_card_bm;
1377 
1378   int  _failures;
1379 
1380   HeapRegionClaimer _hrclaimer;
1381 
1382 public:
1383   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1384                             BitMap* region_bm, BitMap* card_bm,
1385                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1386     : AbstractGangTask("G1 verify final counting"),
1387       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1388       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1389       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1390       _failures(0),
1391       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1392     assert(VerifyDuringGC, "don't call this otherwise");
1393     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1394     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1395   }
1396 
1397   void work(uint worker_id) {
1398     assert(worker_id < _n_workers, "invariant");
1399 
1400     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1401                                             _actual_region_bm, _actual_card_bm,
1402                                             _expected_region_bm,
1403                                             _expected_card_bm);
1404 
1405     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1406 
1407     Atomic::add(verify_cl.failures(), &_failures);
1408   }
1409 
1410   int failures() const { return _failures; }
1411 };
1412 
1413 // Closure that finalizes the liveness counting data.
1414 // Used during the cleanup pause.
1415 // Sets the bits corresponding to the interval [NTAMS, top]
1416 // (which contains the implicitly live objects) in the
1417 // card liveness bitmap. Also sets the bit for each region,
1418 // containing live data, in the region liveness bitmap.
1419 
1420 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1421  public:
1422   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1423                               BitMap* region_bm,
1424                               BitMap* card_bm) :
1425     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1426 
1427   bool doHeapRegion(HeapRegion* hr) {
1428     HeapWord* ntams = hr->next_top_at_mark_start();
1429     HeapWord* top   = hr->top();
1430 
1431     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1432 
1433     // Mark the allocated-since-marking portion...
1434     if (ntams < top) {
1435       // This definitely means the region has live objects.
1436       set_bit_for_region(hr);
1437 
1438       // Now set the bits in the card bitmap for [ntams, top)
1439       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1440       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1441 
1442       // Note: if we're looking at the last region in heap - top
1443       // could be actually just beyond the end of the heap; end_idx
1444       // will then correspond to a (non-existent) card that is also
1445       // just beyond the heap.
1446       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1447         // end of object is not card aligned - increment to cover
1448         // all the cards spanned by the object
1449         end_idx += 1;
1450       }
1451 
1452       assert(end_idx <= _card_bm->size(),
1453              "oob: end_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1454              end_idx, _card_bm->size());
1455       assert(start_idx < _card_bm->size(),
1456              "oob: start_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1457              start_idx, _card_bm->size());
1458 
1459       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1460     }
1461 
1462     // Set the bit for the region if it contains live data
1463     if (hr->next_marked_bytes() > 0) {
1464       set_bit_for_region(hr);
1465     }
1466 
1467     return false;
1468   }
1469 };
1470 
1471 class G1ParFinalCountTask: public AbstractGangTask {
1472 protected:
1473   G1CollectedHeap* _g1h;
1474   ConcurrentMark* _cm;
1475   BitMap* _actual_region_bm;
1476   BitMap* _actual_card_bm;
1477 
1478   uint    _n_workers;
1479   HeapRegionClaimer _hrclaimer;
1480 
1481 public:
1482   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1483     : AbstractGangTask("G1 final counting"),
1484       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1485       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1486       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1487   }
1488 
1489   void work(uint worker_id) {
1490     assert(worker_id < _n_workers, "invariant");
1491 
1492     FinalCountDataUpdateClosure final_update_cl(_g1h,
1493                                                 _actual_region_bm,
1494                                                 _actual_card_bm);
1495 
1496     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1497   }
1498 };
1499 
1500 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1501   G1CollectedHeap* _g1;
1502   size_t _freed_bytes;
1503   FreeRegionList* _local_cleanup_list;
1504   uint _old_regions_removed;
1505   uint _humongous_regions_removed;
1506   HRRSCleanupTask* _hrrs_cleanup_task;
1507 
1508 public:
1509   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1510                              FreeRegionList* local_cleanup_list,
1511                              HRRSCleanupTask* hrrs_cleanup_task) :
1512     _g1(g1),
1513     _freed_bytes(0),
1514     _local_cleanup_list(local_cleanup_list),
1515     _old_regions_removed(0),
1516     _humongous_regions_removed(0),
1517     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1518 
1519   size_t freed_bytes() { return _freed_bytes; }
1520   const uint old_regions_removed() { return _old_regions_removed; }
1521   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1522 
1523   bool doHeapRegion(HeapRegion *hr) {
1524     if (hr->is_archive()) {
1525       return false;
1526     }
1527     // We use a claim value of zero here because all regions
1528     // were claimed with value 1 in the FinalCount task.
1529     _g1->reset_gc_time_stamps(hr);
1530     hr->note_end_of_marking();
1531 
1532     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1533       _freed_bytes += hr->used();
1534       hr->set_containing_set(NULL);
1535       if (hr->is_humongous()) {
1536         _humongous_regions_removed++;
1537         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1538       } else {
1539         _old_regions_removed++;
1540         _g1->free_region(hr, _local_cleanup_list, true);
1541       }
1542     } else {
1543       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1544     }
1545 
1546     return false;
1547   }
1548 };
1549 
1550 class G1ParNoteEndTask: public AbstractGangTask {
1551   friend class G1NoteEndOfConcMarkClosure;
1552 
1553 protected:
1554   G1CollectedHeap* _g1h;
1555   FreeRegionList* _cleanup_list;
1556   HeapRegionClaimer _hrclaimer;
1557 
1558 public:
1559   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1560       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1561   }
1562 
1563   void work(uint worker_id) {
1564     FreeRegionList local_cleanup_list("Local Cleanup List");
1565     HRRSCleanupTask hrrs_cleanup_task;
1566     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1567                                            &hrrs_cleanup_task);
1568     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1569     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1570 
1571     // Now update the lists
1572     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1573     {
1574       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1575       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1576 
1577       // If we iterate over the global cleanup list at the end of
1578       // cleanup to do this printing we will not guarantee to only
1579       // generate output for the newly-reclaimed regions (the list
1580       // might not be empty at the beginning of cleanup; we might
1581       // still be working on its previous contents). So we do the
1582       // printing here, before we append the new regions to the global
1583       // cleanup list.
1584 
1585       G1HRPrinter* hr_printer = _g1h->hr_printer();
1586       if (hr_printer->is_active()) {
1587         FreeRegionListIterator iter(&local_cleanup_list);
1588         while (iter.more_available()) {
1589           HeapRegion* hr = iter.get_next();
1590           hr_printer->cleanup(hr);
1591         }
1592       }
1593 
1594       _cleanup_list->add_ordered(&local_cleanup_list);
1595       assert(local_cleanup_list.is_empty(), "post-condition");
1596 
1597       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1598     }
1599   }
1600 };
1601 
1602 class G1ParScrubRemSetTask: public AbstractGangTask {
1603 protected:
1604   G1RemSet* _g1rs;
1605   BitMap* _region_bm;
1606   BitMap* _card_bm;
1607   HeapRegionClaimer _hrclaimer;
1608 
1609 public:
1610   G1ParScrubRemSetTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1611       AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()), _region_bm(region_bm), _card_bm(card_bm), _hrclaimer(n_workers) {
1612   }
1613 
1614   void work(uint worker_id) {
1615     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
1616   }
1617 
1618 };
1619 
1620 void ConcurrentMark::cleanup() {
1621   // world is stopped at this checkpoint
1622   assert(SafepointSynchronize::is_at_safepoint(),
1623          "world should be stopped");
1624   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1625 
1626   // If a full collection has happened, we shouldn't do this.
1627   if (has_aborted()) {
1628     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1629     return;
1630   }
1631 
1632   g1h->verify_region_sets_optional();
1633 
1634   if (VerifyDuringGC) {
1635     HandleMark hm;  // handle scope
1636     g1h->prepare_for_verify();
1637     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1638   }
1639   g1h->check_bitmaps("Cleanup Start");
1640 
1641   G1CollectorPolicy* g1p = g1h->g1_policy();
1642   g1p->record_concurrent_mark_cleanup_start();
1643 
1644   double start = os::elapsedTime();
1645 
1646   HeapRegionRemSet::reset_for_cleanup_tasks();
1647 
1648   // Do counting once more with the world stopped for good measure.
1649   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1650 
1651   g1h->workers()->run_task(&g1_par_count_task);
1652 
1653   if (VerifyDuringGC) {
1654     // Verify that the counting data accumulated during marking matches
1655     // that calculated by walking the marking bitmap.
1656 
1657     // Bitmaps to hold expected values
1658     BitMap expected_region_bm(_region_bm.size(), true);
1659     BitMap expected_card_bm(_card_bm.size(), true);
1660 
1661     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
1662                                                  &_region_bm,
1663                                                  &_card_bm,
1664                                                  &expected_region_bm,
1665                                                  &expected_card_bm);
1666 
1667     g1h->workers()->run_task(&g1_par_verify_task);
1668 
1669     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
1670   }
1671 
1672   size_t start_used_bytes = g1h->used();
1673   g1h->collector_state()->set_mark_in_progress(false);
1674 
1675   double count_end = os::elapsedTime();
1676   double this_final_counting_time = (count_end - start);
1677   _total_counting_time += this_final_counting_time;
1678 
1679   if (log_is_enabled(Trace, gc, liveness)) {
1680     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1681     _g1h->heap_region_iterate(&cl);
1682   }
1683 
1684   // Install newly created mark bitMap as "prev".
1685   swapMarkBitMaps();
1686 
1687   g1h->reset_gc_time_stamp();
1688 
1689   uint n_workers = _g1h->workers()->active_workers();
1690 
1691   // Note end of marking in all heap regions.
1692   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1693   g1h->workers()->run_task(&g1_par_note_end_task);
1694   g1h->check_gc_time_stamps();
1695 
1696   if (!cleanup_list_is_empty()) {
1697     // The cleanup list is not empty, so we'll have to process it
1698     // concurrently. Notify anyone else that might be wanting free
1699     // regions that there will be more free regions coming soon.
1700     g1h->set_free_regions_coming();
1701   }
1702 
1703   // call below, since it affects the metric by which we sort the heap
1704   // regions.
1705   if (G1ScrubRemSets) {
1706     double rs_scrub_start = os::elapsedTime();
1707     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm, n_workers);
1708     g1h->workers()->run_task(&g1_par_scrub_rs_task);
1709 
1710     double rs_scrub_end = os::elapsedTime();
1711     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
1712     _total_rs_scrub_time += this_rs_scrub_time;
1713   }
1714 
1715   // this will also free any regions totally full of garbage objects,
1716   // and sort the regions.
1717   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1718 
1719   // Statistics.
1720   double end = os::elapsedTime();
1721   _cleanup_times.add((end - start) * 1000.0);
1722 
1723   // Clean up will have freed any regions completely full of garbage.
1724   // Update the soft reference policy with the new heap occupancy.
1725   Universe::update_heap_info_at_gc();
1726 
1727   if (VerifyDuringGC) {
1728     HandleMark hm;  // handle scope
1729     g1h->prepare_for_verify();
1730     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1731   }
1732 
1733   g1h->check_bitmaps("Cleanup End");
1734 
1735   g1h->verify_region_sets_optional();
1736 
1737   // We need to make this be a "collection" so any collection pause that
1738   // races with it goes around and waits for completeCleanup to finish.
1739   g1h->increment_total_collections();
1740 
1741   // Clean out dead classes and update Metaspace sizes.
1742   if (ClassUnloadingWithConcurrentMark) {
1743     ClassLoaderDataGraph::purge();
1744   }
1745   MetaspaceGC::compute_new_size();
1746 
1747   // We reclaimed old regions so we should calculate the sizes to make
1748   // sure we update the old gen/space data.
1749   g1h->g1mm()->update_sizes();
1750   g1h->allocation_context_stats().update_after_mark();
1751 
1752   g1h->trace_heap_after_concurrent_cycle();
1753 }
1754 
1755 void ConcurrentMark::completeCleanup() {
1756   if (has_aborted()) return;
1757 
1758   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1759 
1760   _cleanup_list.verify_optional();
1761   FreeRegionList tmp_free_list("Tmp Free List");
1762 
1763   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1764                                   "cleanup list has %u entries",
1765                                   _cleanup_list.length());
1766 
1767   // No one else should be accessing the _cleanup_list at this point,
1768   // so it is not necessary to take any locks
1769   while (!_cleanup_list.is_empty()) {
1770     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1771     assert(hr != NULL, "Got NULL from a non-empty list");
1772     hr->par_clear();
1773     tmp_free_list.add_ordered(hr);
1774 
1775     // Instead of adding one region at a time to the secondary_free_list,
1776     // we accumulate them in the local list and move them a few at a
1777     // time. This also cuts down on the number of notify_all() calls
1778     // we do during this process. We'll also append the local list when
1779     // _cleanup_list is empty (which means we just removed the last
1780     // region from the _cleanup_list).
1781     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1782         _cleanup_list.is_empty()) {
1783       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1784                                       "appending %u entries to the secondary_free_list, "
1785                                       "cleanup list still has %u entries",
1786                                       tmp_free_list.length(),
1787                                       _cleanup_list.length());
1788 
1789       {
1790         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1791         g1h->secondary_free_list_add(&tmp_free_list);
1792         SecondaryFreeList_lock->notify_all();
1793       }
1794 #ifndef PRODUCT
1795       if (G1StressConcRegionFreeing) {
1796         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1797           os::sleep(Thread::current(), (jlong) 1, false);
1798         }
1799       }
1800 #endif
1801     }
1802   }
1803   assert(tmp_free_list.is_empty(), "post-condition");
1804 }
1805 
1806 // Supporting Object and Oop closures for reference discovery
1807 // and processing in during marking
1808 
1809 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1810   HeapWord* addr = (HeapWord*)obj;
1811   return addr != NULL &&
1812          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1813 }
1814 
1815 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1816 // Uses the CMTask associated with a worker thread (for serial reference
1817 // processing the CMTask for worker 0 is used) to preserve (mark) and
1818 // trace referent objects.
1819 //
1820 // Using the CMTask and embedded local queues avoids having the worker
1821 // threads operating on the global mark stack. This reduces the risk
1822 // of overflowing the stack - which we would rather avoid at this late
1823 // state. Also using the tasks' local queues removes the potential
1824 // of the workers interfering with each other that could occur if
1825 // operating on the global stack.
1826 
1827 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1828   ConcurrentMark* _cm;
1829   CMTask*         _task;
1830   int             _ref_counter_limit;
1831   int             _ref_counter;
1832   bool            _is_serial;
1833  public:
1834   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
1835     _cm(cm), _task(task), _is_serial(is_serial),
1836     _ref_counter_limit(G1RefProcDrainInterval) {
1837     assert(_ref_counter_limit > 0, "sanity");
1838     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1839     _ref_counter = _ref_counter_limit;
1840   }
1841 
1842   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1843   virtual void do_oop(      oop* p) { do_oop_work(p); }
1844 
1845   template <class T> void do_oop_work(T* p) {
1846     if (!_cm->has_overflown()) {
1847       oop obj = oopDesc::load_decode_heap_oop(p);
1848       _task->deal_with_reference(obj);
1849       _ref_counter--;
1850 
1851       if (_ref_counter == 0) {
1852         // We have dealt with _ref_counter_limit references, pushing them
1853         // and objects reachable from them on to the local stack (and
1854         // possibly the global stack). Call CMTask::do_marking_step() to
1855         // process these entries.
1856         //
1857         // We call CMTask::do_marking_step() in a loop, which we'll exit if
1858         // there's nothing more to do (i.e. we're done with the entries that
1859         // were pushed as a result of the CMTask::deal_with_reference() calls
1860         // above) or we overflow.
1861         //
1862         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
1863         // flag while there may still be some work to do. (See the comment at
1864         // the beginning of CMTask::do_marking_step() for those conditions -
1865         // one of which is reaching the specified time target.) It is only
1866         // when CMTask::do_marking_step() returns without setting the
1867         // has_aborted() flag that the marking step has completed.
1868         do {
1869           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1870           _task->do_marking_step(mark_step_duration_ms,
1871                                  false      /* do_termination */,
1872                                  _is_serial);
1873         } while (_task->has_aborted() && !_cm->has_overflown());
1874         _ref_counter = _ref_counter_limit;
1875       }
1876     }
1877   }
1878 };
1879 
1880 // 'Drain' oop closure used by both serial and parallel reference processing.
1881 // Uses the CMTask associated with a given worker thread (for serial
1882 // reference processing the CMtask for worker 0 is used). Calls the
1883 // do_marking_step routine, with an unbelievably large timeout value,
1884 // to drain the marking data structures of the remaining entries
1885 // added by the 'keep alive' oop closure above.
1886 
1887 class G1CMDrainMarkingStackClosure: public VoidClosure {
1888   ConcurrentMark* _cm;
1889   CMTask*         _task;
1890   bool            _is_serial;
1891  public:
1892   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
1893     _cm(cm), _task(task), _is_serial(is_serial) {
1894     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1895   }
1896 
1897   void do_void() {
1898     do {
1899       // We call CMTask::do_marking_step() to completely drain the local
1900       // and global marking stacks of entries pushed by the 'keep alive'
1901       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1902       //
1903       // CMTask::do_marking_step() is called in a loop, which we'll exit
1904       // if there's nothing more to do (i.e. we've completely drained the
1905       // entries that were pushed as a a result of applying the 'keep alive'
1906       // closure to the entries on the discovered ref lists) or we overflow
1907       // the global marking stack.
1908       //
1909       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
1910       // flag while there may still be some work to do. (See the comment at
1911       // the beginning of CMTask::do_marking_step() for those conditions -
1912       // one of which is reaching the specified time target.) It is only
1913       // when CMTask::do_marking_step() returns without setting the
1914       // has_aborted() flag that the marking step has completed.
1915 
1916       _task->do_marking_step(1000000000.0 /* something very large */,
1917                              true         /* do_termination */,
1918                              _is_serial);
1919     } while (_task->has_aborted() && !_cm->has_overflown());
1920   }
1921 };
1922 
1923 // Implementation of AbstractRefProcTaskExecutor for parallel
1924 // reference processing at the end of G1 concurrent marking
1925 
1926 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1927 private:
1928   G1CollectedHeap* _g1h;
1929   ConcurrentMark*  _cm;
1930   WorkGang*        _workers;
1931   uint             _active_workers;
1932 
1933 public:
1934   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1935                           ConcurrentMark* cm,
1936                           WorkGang* workers,
1937                           uint n_workers) :
1938     _g1h(g1h), _cm(cm),
1939     _workers(workers), _active_workers(n_workers) { }
1940 
1941   // Executes the given task using concurrent marking worker threads.
1942   virtual void execute(ProcessTask& task);
1943   virtual void execute(EnqueueTask& task);
1944 };
1945 
1946 class G1CMRefProcTaskProxy: public AbstractGangTask {
1947   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1948   ProcessTask&     _proc_task;
1949   G1CollectedHeap* _g1h;
1950   ConcurrentMark*  _cm;
1951 
1952 public:
1953   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1954                      G1CollectedHeap* g1h,
1955                      ConcurrentMark* cm) :
1956     AbstractGangTask("Process reference objects in parallel"),
1957     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1958     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1959     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1960   }
1961 
1962   virtual void work(uint worker_id) {
1963     ResourceMark rm;
1964     HandleMark hm;
1965     CMTask* task = _cm->task(worker_id);
1966     G1CMIsAliveClosure g1_is_alive(_g1h);
1967     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1968     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1969 
1970     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1971   }
1972 };
1973 
1974 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1975   assert(_workers != NULL, "Need parallel worker threads.");
1976   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1977 
1978   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1979 
1980   // We need to reset the concurrency level before each
1981   // proxy task execution, so that the termination protocol
1982   // and overflow handling in CMTask::do_marking_step() knows
1983   // how many workers to wait for.
1984   _cm->set_concurrency(_active_workers);
1985   _workers->run_task(&proc_task_proxy);
1986 }
1987 
1988 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1989   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1990   EnqueueTask& _enq_task;
1991 
1992 public:
1993   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1994     AbstractGangTask("Enqueue reference objects in parallel"),
1995     _enq_task(enq_task) { }
1996 
1997   virtual void work(uint worker_id) {
1998     _enq_task.work(worker_id);
1999   }
2000 };
2001 
2002 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2003   assert(_workers != NULL, "Need parallel worker threads.");
2004   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2005 
2006   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2007 
2008   // Not strictly necessary but...
2009   //
2010   // We need to reset the concurrency level before each
2011   // proxy task execution, so that the termination protocol
2012   // and overflow handling in CMTask::do_marking_step() knows
2013   // how many workers to wait for.
2014   _cm->set_concurrency(_active_workers);
2015   _workers->run_task(&enq_task_proxy);
2016 }
2017 
2018 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2019   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2020 }
2021 
2022 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2023   if (has_overflown()) {
2024     // Skip processing the discovered references if we have
2025     // overflown the global marking stack. Reference objects
2026     // only get discovered once so it is OK to not
2027     // de-populate the discovered reference lists. We could have,
2028     // but the only benefit would be that, when marking restarts,
2029     // less reference objects are discovered.
2030     return;
2031   }
2032 
2033   ResourceMark rm;
2034   HandleMark   hm;
2035 
2036   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2037 
2038   // Is alive closure.
2039   G1CMIsAliveClosure g1_is_alive(g1h);
2040 
2041   // Inner scope to exclude the cleaning of the string and symbol
2042   // tables from the displayed time.
2043   {
2044     GCTraceTime(Debug, gc) trace("GC Ref Proc", g1h->gc_timer_cm());
2045 
2046     ReferenceProcessor* rp = g1h->ref_processor_cm();
2047 
2048     // See the comment in G1CollectedHeap::ref_processing_init()
2049     // about how reference processing currently works in G1.
2050 
2051     // Set the soft reference policy
2052     rp->setup_policy(clear_all_soft_refs);
2053     assert(_markStack.isEmpty(), "mark stack should be empty");
2054 
2055     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2056     // in serial reference processing. Note these closures are also
2057     // used for serially processing (by the the current thread) the
2058     // JNI references during parallel reference processing.
2059     //
2060     // These closures do not need to synchronize with the worker
2061     // threads involved in parallel reference processing as these
2062     // instances are executed serially by the current thread (e.g.
2063     // reference processing is not multi-threaded and is thus
2064     // performed by the current thread instead of a gang worker).
2065     //
2066     // The gang tasks involved in parallel reference processing create
2067     // their own instances of these closures, which do their own
2068     // synchronization among themselves.
2069     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2070     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2071 
2072     // We need at least one active thread. If reference processing
2073     // is not multi-threaded we use the current (VMThread) thread,
2074     // otherwise we use the work gang from the G1CollectedHeap and
2075     // we utilize all the worker threads we can.
2076     bool processing_is_mt = rp->processing_is_mt();
2077     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2078     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2079 
2080     // Parallel processing task executor.
2081     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2082                                               g1h->workers(), active_workers);
2083     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2084 
2085     // Set the concurrency level. The phase was already set prior to
2086     // executing the remark task.
2087     set_concurrency(active_workers);
2088 
2089     // Set the degree of MT processing here.  If the discovery was done MT,
2090     // the number of threads involved during discovery could differ from
2091     // the number of active workers.  This is OK as long as the discovered
2092     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2093     rp->set_active_mt_degree(active_workers);
2094 
2095     // Process the weak references.
2096     const ReferenceProcessorStats& stats =
2097         rp->process_discovered_references(&g1_is_alive,
2098                                           &g1_keep_alive,
2099                                           &g1_drain_mark_stack,
2100                                           executor,
2101                                           g1h->gc_timer_cm());
2102     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2103 
2104     // The do_oop work routines of the keep_alive and drain_marking_stack
2105     // oop closures will set the has_overflown flag if we overflow the
2106     // global marking stack.
2107 
2108     assert(_markStack.overflow() || _markStack.isEmpty(),
2109             "mark stack should be empty (unless it overflowed)");
2110 
2111     if (_markStack.overflow()) {
2112       // This should have been done already when we tried to push an
2113       // entry on to the global mark stack. But let's do it again.
2114       set_has_overflown();
2115     }
2116 
2117     assert(rp->num_q() == active_workers, "why not");
2118 
2119     rp->enqueue_discovered_references(executor);
2120 
2121     rp->verify_no_references_recorded();
2122     assert(!rp->discovery_enabled(), "Post condition");
2123   }
2124 
2125   if (has_overflown()) {
2126     // We can not trust g1_is_alive if the marking stack overflowed
2127     return;
2128   }
2129 
2130   assert(_markStack.isEmpty(), "Marking should have completed");
2131 
2132   // Unload Klasses, String, Symbols, Code Cache, etc.
2133   {
2134     GCTraceTime(Debug, gc) trace("Unloading", g1h->gc_timer_cm());
2135 
2136     if (ClassUnloadingWithConcurrentMark) {
2137       bool purged_classes;
2138 
2139       {
2140         GCTraceTime(Trace, gc) trace("System Dictionary Unloading", g1h->gc_timer_cm());
2141         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2142       }
2143 
2144       {
2145         GCTraceTime(Trace, gc) trace("Parallel Unloading", g1h->gc_timer_cm());
2146         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2147       }
2148     }
2149 
2150     if (G1StringDedup::is_enabled()) {
2151       GCTraceTime(Trace, gc) trace("String Deduplication Unlink", g1h->gc_timer_cm());
2152       G1StringDedup::unlink(&g1_is_alive);
2153     }
2154   }
2155 }
2156 
2157 void ConcurrentMark::swapMarkBitMaps() {
2158   CMBitMapRO* temp = _prevMarkBitMap;
2159   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2160   _nextMarkBitMap  = (CMBitMap*)  temp;
2161 }
2162 
2163 // Closure for marking entries in SATB buffers.
2164 class CMSATBBufferClosure : public SATBBufferClosure {
2165 private:
2166   CMTask* _task;
2167   G1CollectedHeap* _g1h;
2168 
2169   // This is very similar to CMTask::deal_with_reference, but with
2170   // more relaxed requirements for the argument, so this must be more
2171   // circumspect about treating the argument as an object.
2172   void do_entry(void* entry) const {
2173     _task->increment_refs_reached();
2174     HeapRegion* hr = _g1h->heap_region_containing(entry);
2175     if (entry < hr->next_top_at_mark_start()) {
2176       // Until we get here, we don't know whether entry refers to a valid
2177       // object; it could instead have been a stale reference.
2178       oop obj = static_cast<oop>(entry);
2179       assert(obj->is_oop(true /* ignore mark word */),
2180              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
2181       _task->make_reference_grey(obj, hr);
2182     }
2183   }
2184 
2185 public:
2186   CMSATBBufferClosure(CMTask* task, G1CollectedHeap* g1h)
2187     : _task(task), _g1h(g1h) { }
2188 
2189   virtual void do_buffer(void** buffer, size_t size) {
2190     for (size_t i = 0; i < size; ++i) {
2191       do_entry(buffer[i]);
2192     }
2193   }
2194 };
2195 
2196 class G1RemarkThreadsClosure : public ThreadClosure {
2197   CMSATBBufferClosure _cm_satb_cl;
2198   G1CMOopClosure _cm_cl;
2199   MarkingCodeBlobClosure _code_cl;
2200   int _thread_parity;
2201 
2202  public:
2203   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task) :
2204     _cm_satb_cl(task, g1h),
2205     _cm_cl(g1h, g1h->concurrent_mark(), task),
2206     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2207     _thread_parity(Threads::thread_claim_parity()) {}
2208 
2209   void do_thread(Thread* thread) {
2210     if (thread->is_Java_thread()) {
2211       if (thread->claim_oops_do(true, _thread_parity)) {
2212         JavaThread* jt = (JavaThread*)thread;
2213 
2214         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2215         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2216         // * Alive if on the stack of an executing method
2217         // * Weakly reachable otherwise
2218         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2219         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2220         jt->nmethods_do(&_code_cl);
2221 
2222         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
2223       }
2224     } else if (thread->is_VM_thread()) {
2225       if (thread->claim_oops_do(true, _thread_parity)) {
2226         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
2227       }
2228     }
2229   }
2230 };
2231 
2232 class CMRemarkTask: public AbstractGangTask {
2233 private:
2234   ConcurrentMark* _cm;
2235 public:
2236   void work(uint worker_id) {
2237     // Since all available tasks are actually started, we should
2238     // only proceed if we're supposed to be active.
2239     if (worker_id < _cm->active_tasks()) {
2240       CMTask* task = _cm->task(worker_id);
2241       task->record_start_time();
2242       {
2243         ResourceMark rm;
2244         HandleMark hm;
2245 
2246         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2247         Threads::threads_do(&threads_f);
2248       }
2249 
2250       do {
2251         task->do_marking_step(1000000000.0 /* something very large */,
2252                               true         /* do_termination       */,
2253                               false        /* is_serial            */);
2254       } while (task->has_aborted() && !_cm->has_overflown());
2255       // If we overflow, then we do not want to restart. We instead
2256       // want to abort remark and do concurrent marking again.
2257       task->record_end_time();
2258     }
2259   }
2260 
2261   CMRemarkTask(ConcurrentMark* cm, uint active_workers) :
2262     AbstractGangTask("Par Remark"), _cm(cm) {
2263     _cm->terminator()->reset_for_reuse(active_workers);
2264   }
2265 };
2266 
2267 void ConcurrentMark::checkpointRootsFinalWork() {
2268   ResourceMark rm;
2269   HandleMark   hm;
2270   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2271 
2272   GCTraceTime(Debug, gc) trace("Finalize Marking", g1h->gc_timer_cm());
2273 
2274   g1h->ensure_parsability(false);
2275 
2276   // this is remark, so we'll use up all active threads
2277   uint active_workers = g1h->workers()->active_workers();
2278   set_concurrency_and_phase(active_workers, false /* concurrent */);
2279   // Leave _parallel_marking_threads at it's
2280   // value originally calculated in the ConcurrentMark
2281   // constructor and pass values of the active workers
2282   // through the gang in the task.
2283 
2284   {
2285     StrongRootsScope srs(active_workers);
2286 
2287     CMRemarkTask remarkTask(this, active_workers);
2288     // We will start all available threads, even if we decide that the
2289     // active_workers will be fewer. The extra ones will just bail out
2290     // immediately.
2291     g1h->workers()->run_task(&remarkTask);
2292   }
2293 
2294   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2295   guarantee(has_overflown() ||
2296             satb_mq_set.completed_buffers_num() == 0,
2297             "Invariant: has_overflown = %s, num buffers = %d",
2298             BOOL_TO_STR(has_overflown()),
2299             satb_mq_set.completed_buffers_num());
2300 
2301   print_stats();
2302 }
2303 
2304 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2305   // Note we are overriding the read-only view of the prev map here, via
2306   // the cast.
2307   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2308 }
2309 
2310 HeapRegion*
2311 ConcurrentMark::claim_region(uint worker_id) {
2312   // "checkpoint" the finger
2313   HeapWord* finger = _finger;
2314 
2315   // _heap_end will not change underneath our feet; it only changes at
2316   // yield points.
2317   while (finger < _heap_end) {
2318     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2319 
2320     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
2321 
2322     // Above heap_region_containing may return NULL as we always scan claim
2323     // until the end of the heap. In this case, just jump to the next region.
2324     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2325 
2326     // Is the gap between reading the finger and doing the CAS too long?
2327     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2328     if (res == finger && curr_region != NULL) {
2329       // we succeeded
2330       HeapWord*   bottom        = curr_region->bottom();
2331       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2332 
2333       // notice that _finger == end cannot be guaranteed here since,
2334       // someone else might have moved the finger even further
2335       assert(_finger >= end, "the finger should have moved forward");
2336 
2337       if (limit > bottom) {
2338         return curr_region;
2339       } else {
2340         assert(limit == bottom,
2341                "the region limit should be at bottom");
2342         // we return NULL and the caller should try calling
2343         // claim_region() again.
2344         return NULL;
2345       }
2346     } else {
2347       assert(_finger > finger, "the finger should have moved forward");
2348       // read it again
2349       finger = _finger;
2350     }
2351   }
2352 
2353   return NULL;
2354 }
2355 
2356 #ifndef PRODUCT
2357 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
2358 private:
2359   G1CollectedHeap* _g1h;
2360   const char* _phase;
2361   int _info;
2362 
2363 public:
2364   VerifyNoCSetOops(const char* phase, int info = -1) :
2365     _g1h(G1CollectedHeap::heap()),
2366     _phase(phase),
2367     _info(info)
2368   { }
2369 
2370   void operator()(oop obj) const {
2371     guarantee(obj->is_oop(),
2372               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
2373               p2i(obj), _phase, _info);
2374     guarantee(!_g1h->obj_in_cs(obj),
2375               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
2376               p2i(obj), _phase, _info);
2377   }
2378 };
2379 
2380 void ConcurrentMark::verify_no_cset_oops() {
2381   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2382   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
2383     return;
2384   }
2385 
2386   // Verify entries on the global mark stack
2387   _markStack.iterate(VerifyNoCSetOops("Stack"));
2388 
2389   // Verify entries on the task queues
2390   for (uint i = 0; i < _max_worker_id; ++i) {
2391     CMTaskQueue* queue = _task_queues->queue(i);
2392     queue->iterate(VerifyNoCSetOops("Queue", i));
2393   }
2394 
2395   // Verify the global finger
2396   HeapWord* global_finger = finger();
2397   if (global_finger != NULL && global_finger < _heap_end) {
2398     // Since we always iterate over all regions, we might get a NULL HeapRegion
2399     // here.
2400     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
2401     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2402               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
2403               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
2404   }
2405 
2406   // Verify the task fingers
2407   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2408   for (uint i = 0; i < parallel_marking_threads(); ++i) {
2409     CMTask* task = _tasks[i];
2410     HeapWord* task_finger = task->finger();
2411     if (task_finger != NULL && task_finger < _heap_end) {
2412       // See above note on the global finger verification.
2413       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2414       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2415                 !task_hr->in_collection_set(),
2416                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2417                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2418     }
2419   }
2420 }
2421 #endif // PRODUCT
2422 
2423 // Aggregate the counting data that was constructed concurrently
2424 // with marking.
2425 class AggregateCountDataHRClosure: public HeapRegionClosure {
2426   G1CollectedHeap* _g1h;
2427   ConcurrentMark* _cm;
2428   CardTableModRefBS* _ct_bs;
2429   BitMap* _cm_card_bm;
2430   uint _max_worker_id;
2431 
2432  public:
2433   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2434                               BitMap* cm_card_bm,
2435                               uint max_worker_id) :
2436     _g1h(g1h), _cm(g1h->concurrent_mark()),
2437     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
2438     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2439 
2440   bool doHeapRegion(HeapRegion* hr) {
2441     HeapWord* start = hr->bottom();
2442     HeapWord* limit = hr->next_top_at_mark_start();
2443     HeapWord* end = hr->end();
2444 
2445     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
2446            "Preconditions not met - "
2447            "start: " PTR_FORMAT ", limit: " PTR_FORMAT ", "
2448            "top: " PTR_FORMAT ", end: " PTR_FORMAT,
2449            p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end()));
2450 
2451     assert(hr->next_marked_bytes() == 0, "Precondition");
2452 
2453     if (start == limit) {
2454       // NTAMS of this region has not been set so nothing to do.
2455       return false;
2456     }
2457 
2458     // 'start' should be in the heap.
2459     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
2460     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
2461     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
2462 
2463     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
2464     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
2465     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
2466 
2467     // If ntams is not card aligned then we bump card bitmap index
2468     // for limit so that we get the all the cards spanned by
2469     // the object ending at ntams.
2470     // Note: if this is the last region in the heap then ntams
2471     // could be actually just beyond the end of the the heap;
2472     // limit_idx will then  correspond to a (non-existent) card
2473     // that is also outside the heap.
2474     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
2475       limit_idx += 1;
2476     }
2477 
2478     assert(limit_idx <= end_idx, "or else use atomics");
2479 
2480     // Aggregate the "stripe" in the count data associated with hr.
2481     uint hrm_index = hr->hrm_index();
2482     size_t marked_bytes = 0;
2483 
2484     for (uint i = 0; i < _max_worker_id; i += 1) {
2485       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
2486       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
2487 
2488       // Fetch the marked_bytes in this region for task i and
2489       // add it to the running total for this region.
2490       marked_bytes += marked_bytes_array[hrm_index];
2491 
2492       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
2493       // into the global card bitmap.
2494       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
2495 
2496       while (scan_idx < limit_idx) {
2497         assert(task_card_bm->at(scan_idx) == true, "should be");
2498         _cm_card_bm->set_bit(scan_idx);
2499         assert(_cm_card_bm->at(scan_idx) == true, "should be");
2500 
2501         // BitMap::get_next_one_offset() can handle the case when
2502         // its left_offset parameter is greater than its right_offset
2503         // parameter. It does, however, have an early exit if
2504         // left_offset == right_offset. So let's limit the value
2505         // passed in for left offset here.
2506         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
2507         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
2508       }
2509     }
2510 
2511     // Update the marked bytes for this region.
2512     hr->add_to_marked_bytes(marked_bytes);
2513 
2514     // Next heap region
2515     return false;
2516   }
2517 };
2518 
2519 class G1AggregateCountDataTask: public AbstractGangTask {
2520 protected:
2521   G1CollectedHeap* _g1h;
2522   ConcurrentMark* _cm;
2523   BitMap* _cm_card_bm;
2524   uint _max_worker_id;
2525   uint _active_workers;
2526   HeapRegionClaimer _hrclaimer;
2527 
2528 public:
2529   G1AggregateCountDataTask(G1CollectedHeap* g1h,
2530                            ConcurrentMark* cm,
2531                            BitMap* cm_card_bm,
2532                            uint max_worker_id,
2533                            uint n_workers) :
2534       AbstractGangTask("Count Aggregation"),
2535       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
2536       _max_worker_id(max_worker_id),
2537       _active_workers(n_workers),
2538       _hrclaimer(_active_workers) {
2539   }
2540 
2541   void work(uint worker_id) {
2542     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
2543 
2544     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
2545   }
2546 };
2547 
2548 
2549 void ConcurrentMark::aggregate_count_data() {
2550   uint n_workers = _g1h->workers()->active_workers();
2551 
2552   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
2553                                            _max_worker_id, n_workers);
2554 
2555   _g1h->workers()->run_task(&g1_par_agg_task);
2556 }
2557 
2558 // Clear the per-worker arrays used to store the per-region counting data
2559 void ConcurrentMark::clear_all_count_data() {
2560   // Clear the global card bitmap - it will be filled during
2561   // liveness count aggregation (during remark) and the
2562   // final counting task.
2563   _card_bm.clear();
2564 
2565   // Clear the global region bitmap - it will be filled as part
2566   // of the final counting task.
2567   _region_bm.clear();
2568 
2569   uint max_regions = _g1h->max_regions();
2570   assert(_max_worker_id > 0, "uninitialized");
2571 
2572   for (uint i = 0; i < _max_worker_id; i += 1) {
2573     BitMap* task_card_bm = count_card_bitmap_for(i);
2574     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
2575 
2576     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
2577     assert(marked_bytes_array != NULL, "uninitialized");
2578 
2579     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
2580     task_card_bm->clear();
2581   }
2582 }
2583 
2584 void ConcurrentMark::print_stats() {
2585   if (!log_is_enabled(Debug, gc, stats)) {
2586     return;
2587   }
2588   log_debug(gc, stats)("---------------------------------------------------------------------");
2589   for (size_t i = 0; i < _active_tasks; ++i) {
2590     _tasks[i]->print_stats();
2591     log_debug(gc, stats)("---------------------------------------------------------------------");
2592   }
2593 }
2594 
2595 // abandon current marking iteration due to a Full GC
2596 void ConcurrentMark::abort() {
2597   if (!cmThread()->during_cycle() || _has_aborted) {
2598     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2599     return;
2600   }
2601 
2602   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2603   // concurrent bitmap clearing.
2604   _nextMarkBitMap->clearAll();
2605 
2606   // Note we cannot clear the previous marking bitmap here
2607   // since VerifyDuringGC verifies the objects marked during
2608   // a full GC against the previous bitmap.
2609 
2610   // Clear the liveness counting data
2611   clear_all_count_data();
2612   // Empty mark stack
2613   reset_marking_state();
2614   for (uint i = 0; i < _max_worker_id; ++i) {
2615     _tasks[i]->clear_region_fields();
2616   }
2617   _first_overflow_barrier_sync.abort();
2618   _second_overflow_barrier_sync.abort();
2619   _has_aborted = true;
2620 
2621   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2622   satb_mq_set.abandon_partial_marking();
2623   // This can be called either during or outside marking, we'll read
2624   // the expected_active value from the SATB queue set.
2625   satb_mq_set.set_active_all_threads(
2626                                  false, /* new active value */
2627                                  satb_mq_set.is_active() /* expected_active */);
2628 
2629   _g1h->trace_heap_after_concurrent_cycle();
2630   _g1h->register_concurrent_cycle_end();
2631 }
2632 
2633 static void print_ms_time_info(const char* prefix, const char* name,
2634                                NumberSeq& ns) {
2635   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2636                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2637   if (ns.num() > 0) {
2638     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2639                            prefix, ns.sd(), ns.maximum());
2640   }
2641 }
2642 
2643 void ConcurrentMark::print_summary_info() {
2644   LogHandle(gc, marking) log;
2645   if (!log.is_trace()) {
2646     return;
2647   }
2648 
2649   log.trace(" Concurrent marking:");
2650   print_ms_time_info("  ", "init marks", _init_times);
2651   print_ms_time_info("  ", "remarks", _remark_times);
2652   {
2653     print_ms_time_info("     ", "final marks", _remark_mark_times);
2654     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2655 
2656   }
2657   print_ms_time_info("  ", "cleanups", _cleanup_times);
2658   log.trace("    Final counting total time = %8.2f s (avg = %8.2f ms).",
2659             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2660   if (G1ScrubRemSets) {
2661     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2662               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2663   }
2664   log.trace("  Total stop_world time = %8.2f s.",
2665             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2666   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2667             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2668 }
2669 
2670 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2671   _parallel_workers->print_worker_threads_on(st);
2672 }
2673 
2674 void ConcurrentMark::print_on_error(outputStream* st) const {
2675   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2676       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2677   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2678   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2679 }
2680 
2681 // We take a break if someone is trying to stop the world.
2682 bool ConcurrentMark::do_yield_check(uint worker_id) {
2683   if (SuspendibleThreadSet::should_yield()) {
2684     if (worker_id == 0) {
2685       _g1h->g1_policy()->record_concurrent_pause();
2686     }
2687     SuspendibleThreadSet::yield();
2688     return true;
2689   } else {
2690     return false;
2691   }
2692 }
2693 
2694 // Closure for iteration over bitmaps
2695 class CMBitMapClosure : public BitMapClosure {
2696 private:
2697   // the bitmap that is being iterated over
2698   CMBitMap*                   _nextMarkBitMap;
2699   ConcurrentMark*             _cm;
2700   CMTask*                     _task;
2701 
2702 public:
2703   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
2704     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2705 
2706   bool do_bit(size_t offset) {
2707     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2708     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2709     assert( addr < _cm->finger(), "invariant");
2710     assert(addr >= _task->finger(), "invariant");
2711 
2712     // We move that task's local finger along.
2713     _task->move_finger_to(addr);
2714 
2715     _task->scan_object(oop(addr));
2716     // we only partially drain the local queue and global stack
2717     _task->drain_local_queue(true);
2718     _task->drain_global_stack(true);
2719 
2720     // if the has_aborted flag has been raised, we need to bail out of
2721     // the iteration
2722     return !_task->has_aborted();
2723   }
2724 };
2725 
2726 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2727   ReferenceProcessor* result = NULL;
2728   if (G1UseConcMarkReferenceProcessing) {
2729     result = g1h->ref_processor_cm();
2730     assert(result != NULL, "should not be NULL");
2731   }
2732   return result;
2733 }
2734 
2735 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2736                                ConcurrentMark* cm,
2737                                CMTask* task)
2738   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2739     _g1h(g1h), _cm(cm), _task(task)
2740 { }
2741 
2742 void CMTask::setup_for_region(HeapRegion* hr) {
2743   assert(hr != NULL,
2744         "claim_region() should have filtered out NULL regions");
2745   _curr_region  = hr;
2746   _finger       = hr->bottom();
2747   update_region_limit();
2748 }
2749 
2750 void CMTask::update_region_limit() {
2751   HeapRegion* hr            = _curr_region;
2752   HeapWord* bottom          = hr->bottom();
2753   HeapWord* limit           = hr->next_top_at_mark_start();
2754 
2755   if (limit == bottom) {
2756     // The region was collected underneath our feet.
2757     // We set the finger to bottom to ensure that the bitmap
2758     // iteration that will follow this will not do anything.
2759     // (this is not a condition that holds when we set the region up,
2760     // as the region is not supposed to be empty in the first place)
2761     _finger = bottom;
2762   } else if (limit >= _region_limit) {
2763     assert(limit >= _finger, "peace of mind");
2764   } else {
2765     assert(limit < _region_limit, "only way to get here");
2766     // This can happen under some pretty unusual circumstances.  An
2767     // evacuation pause empties the region underneath our feet (NTAMS
2768     // at bottom). We then do some allocation in the region (NTAMS
2769     // stays at bottom), followed by the region being used as a GC
2770     // alloc region (NTAMS will move to top() and the objects
2771     // originally below it will be grayed). All objects now marked in
2772     // the region are explicitly grayed, if below the global finger,
2773     // and we do not need in fact to scan anything else. So, we simply
2774     // set _finger to be limit to ensure that the bitmap iteration
2775     // doesn't do anything.
2776     _finger = limit;
2777   }
2778 
2779   _region_limit = limit;
2780 }
2781 
2782 void CMTask::giveup_current_region() {
2783   assert(_curr_region != NULL, "invariant");
2784   clear_region_fields();
2785 }
2786 
2787 void CMTask::clear_region_fields() {
2788   // Values for these three fields that indicate that we're not
2789   // holding on to a region.
2790   _curr_region   = NULL;
2791   _finger        = NULL;
2792   _region_limit  = NULL;
2793 }
2794 
2795 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2796   if (cm_oop_closure == NULL) {
2797     assert(_cm_oop_closure != NULL, "invariant");
2798   } else {
2799     assert(_cm_oop_closure == NULL, "invariant");
2800   }
2801   _cm_oop_closure = cm_oop_closure;
2802 }
2803 
2804 void CMTask::reset(CMBitMap* nextMarkBitMap) {
2805   guarantee(nextMarkBitMap != NULL, "invariant");
2806   _nextMarkBitMap                = nextMarkBitMap;
2807   clear_region_fields();
2808 
2809   _calls                         = 0;
2810   _elapsed_time_ms               = 0.0;
2811   _termination_time_ms           = 0.0;
2812   _termination_start_time_ms     = 0.0;
2813 }
2814 
2815 bool CMTask::should_exit_termination() {
2816   regular_clock_call();
2817   // This is called when we are in the termination protocol. We should
2818   // quit if, for some reason, this task wants to abort or the global
2819   // stack is not empty (this means that we can get work from it).
2820   return !_cm->mark_stack_empty() || has_aborted();
2821 }
2822 
2823 void CMTask::reached_limit() {
2824   assert(_words_scanned >= _words_scanned_limit ||
2825          _refs_reached >= _refs_reached_limit ,
2826          "shouldn't have been called otherwise");
2827   regular_clock_call();
2828 }
2829 
2830 void CMTask::regular_clock_call() {
2831   if (has_aborted()) return;
2832 
2833   // First, we need to recalculate the words scanned and refs reached
2834   // limits for the next clock call.
2835   recalculate_limits();
2836 
2837   // During the regular clock call we do the following
2838 
2839   // (1) If an overflow has been flagged, then we abort.
2840   if (_cm->has_overflown()) {
2841     set_has_aborted();
2842     return;
2843   }
2844 
2845   // If we are not concurrent (i.e. we're doing remark) we don't need
2846   // to check anything else. The other steps are only needed during
2847   // the concurrent marking phase.
2848   if (!concurrent()) return;
2849 
2850   // (2) If marking has been aborted for Full GC, then we also abort.
2851   if (_cm->has_aborted()) {
2852     set_has_aborted();
2853     return;
2854   }
2855 
2856   double curr_time_ms = os::elapsedVTime() * 1000.0;
2857 
2858   // (4) We check whether we should yield. If we have to, then we abort.
2859   if (SuspendibleThreadSet::should_yield()) {
2860     // We should yield. To do this we abort the task. The caller is
2861     // responsible for yielding.
2862     set_has_aborted();
2863     return;
2864   }
2865 
2866   // (5) We check whether we've reached our time quota. If we have,
2867   // then we abort.
2868   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2869   if (elapsed_time_ms > _time_target_ms) {
2870     set_has_aborted();
2871     _has_timed_out = true;
2872     return;
2873   }
2874 
2875   // (6) Finally, we check whether there are enough completed STAB
2876   // buffers available for processing. If there are, we abort.
2877   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2878   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2879     // we do need to process SATB buffers, we'll abort and restart
2880     // the marking task to do so
2881     set_has_aborted();
2882     return;
2883   }
2884 }
2885 
2886 void CMTask::recalculate_limits() {
2887   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2888   _words_scanned_limit      = _real_words_scanned_limit;
2889 
2890   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2891   _refs_reached_limit       = _real_refs_reached_limit;
2892 }
2893 
2894 void CMTask::decrease_limits() {
2895   // This is called when we believe that we're going to do an infrequent
2896   // operation which will increase the per byte scanned cost (i.e. move
2897   // entries to/from the global stack). It basically tries to decrease the
2898   // scanning limit so that the clock is called earlier.
2899 
2900   _words_scanned_limit = _real_words_scanned_limit -
2901     3 * words_scanned_period / 4;
2902   _refs_reached_limit  = _real_refs_reached_limit -
2903     3 * refs_reached_period / 4;
2904 }
2905 
2906 void CMTask::move_entries_to_global_stack() {
2907   // local array where we'll store the entries that will be popped
2908   // from the local queue
2909   oop buffer[global_stack_transfer_size];
2910 
2911   int n = 0;
2912   oop obj;
2913   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
2914     buffer[n] = obj;
2915     ++n;
2916   }
2917 
2918   if (n > 0) {
2919     // we popped at least one entry from the local queue
2920 
2921     if (!_cm->mark_stack_push(buffer, n)) {
2922       set_has_aborted();
2923     }
2924   }
2925 
2926   // this operation was quite expensive, so decrease the limits
2927   decrease_limits();
2928 }
2929 
2930 void CMTask::get_entries_from_global_stack() {
2931   // local array where we'll store the entries that will be popped
2932   // from the global stack.
2933   oop buffer[global_stack_transfer_size];
2934   int n;
2935   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
2936   assert(n <= global_stack_transfer_size,
2937          "we should not pop more than the given limit");
2938   if (n > 0) {
2939     // yes, we did actually pop at least one entry
2940     for (int i = 0; i < n; ++i) {
2941       bool success = _task_queue->push(buffer[i]);
2942       // We only call this when the local queue is empty or under a
2943       // given target limit. So, we do not expect this push to fail.
2944       assert(success, "invariant");
2945     }
2946   }
2947 
2948   // this operation was quite expensive, so decrease the limits
2949   decrease_limits();
2950 }
2951 
2952 void CMTask::drain_local_queue(bool partially) {
2953   if (has_aborted()) return;
2954 
2955   // Decide what the target size is, depending whether we're going to
2956   // drain it partially (so that other tasks can steal if they run out
2957   // of things to do) or totally (at the very end).
2958   size_t target_size;
2959   if (partially) {
2960     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2961   } else {
2962     target_size = 0;
2963   }
2964 
2965   if (_task_queue->size() > target_size) {
2966     oop obj;
2967     bool ret = _task_queue->pop_local(obj);
2968     while (ret) {
2969       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
2970       assert(!_g1h->is_on_master_free_list(
2971                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
2972 
2973       scan_object(obj);
2974 
2975       if (_task_queue->size() <= target_size || has_aborted()) {
2976         ret = false;
2977       } else {
2978         ret = _task_queue->pop_local(obj);
2979       }
2980     }
2981   }
2982 }
2983 
2984 void CMTask::drain_global_stack(bool partially) {
2985   if (has_aborted()) return;
2986 
2987   // We have a policy to drain the local queue before we attempt to
2988   // drain the global stack.
2989   assert(partially || _task_queue->size() == 0, "invariant");
2990 
2991   // Decide what the target size is, depending whether we're going to
2992   // drain it partially (so that other tasks can steal if they run out
2993   // of things to do) or totally (at the very end).  Notice that,
2994   // because we move entries from the global stack in chunks or
2995   // because another task might be doing the same, we might in fact
2996   // drop below the target. But, this is not a problem.
2997   size_t target_size;
2998   if (partially) {
2999     target_size = _cm->partial_mark_stack_size_target();
3000   } else {
3001     target_size = 0;
3002   }
3003 
3004   if (_cm->mark_stack_size() > target_size) {
3005     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3006       get_entries_from_global_stack();
3007       drain_local_queue(partially);
3008     }
3009   }
3010 }
3011 
3012 // SATB Queue has several assumptions on whether to call the par or
3013 // non-par versions of the methods. this is why some of the code is
3014 // replicated. We should really get rid of the single-threaded version
3015 // of the code to simplify things.
3016 void CMTask::drain_satb_buffers() {
3017   if (has_aborted()) return;
3018 
3019   // We set this so that the regular clock knows that we're in the
3020   // middle of draining buffers and doesn't set the abort flag when it
3021   // notices that SATB buffers are available for draining. It'd be
3022   // very counter productive if it did that. :-)
3023   _draining_satb_buffers = true;
3024 
3025   CMSATBBufferClosure satb_cl(this, _g1h);
3026   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3027 
3028   // This keeps claiming and applying the closure to completed buffers
3029   // until we run out of buffers or we need to abort.
3030   while (!has_aborted() &&
3031          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
3032     regular_clock_call();
3033   }
3034 
3035   _draining_satb_buffers = false;
3036 
3037   assert(has_aborted() ||
3038          concurrent() ||
3039          satb_mq_set.completed_buffers_num() == 0, "invariant");
3040 
3041   // again, this was a potentially expensive operation, decrease the
3042   // limits to get the regular clock call early
3043   decrease_limits();
3044 }
3045 
3046 void CMTask::print_stats() {
3047   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
3048                        _worker_id, _calls);
3049   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3050                        _elapsed_time_ms, _termination_time_ms);
3051   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3052                        _step_times_ms.num(), _step_times_ms.avg(),
3053                        _step_times_ms.sd());
3054   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
3055                        _step_times_ms.maximum(), _step_times_ms.sum());
3056 }
3057 
3058 bool ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
3059   return _task_queues->steal(worker_id, hash_seed, obj);
3060 }
3061 
3062 /*****************************************************************************
3063 
3064     The do_marking_step(time_target_ms, ...) method is the building
3065     block of the parallel marking framework. It can be called in parallel
3066     with other invocations of do_marking_step() on different tasks
3067     (but only one per task, obviously) and concurrently with the
3068     mutator threads, or during remark, hence it eliminates the need
3069     for two versions of the code. When called during remark, it will
3070     pick up from where the task left off during the concurrent marking
3071     phase. Interestingly, tasks are also claimable during evacuation
3072     pauses too, since do_marking_step() ensures that it aborts before
3073     it needs to yield.
3074 
3075     The data structures that it uses to do marking work are the
3076     following:
3077 
3078       (1) Marking Bitmap. If there are gray objects that appear only
3079       on the bitmap (this happens either when dealing with an overflow
3080       or when the initial marking phase has simply marked the roots
3081       and didn't push them on the stack), then tasks claim heap
3082       regions whose bitmap they then scan to find gray objects. A
3083       global finger indicates where the end of the last claimed region
3084       is. A local finger indicates how far into the region a task has
3085       scanned. The two fingers are used to determine how to gray an
3086       object (i.e. whether simply marking it is OK, as it will be
3087       visited by a task in the future, or whether it needs to be also
3088       pushed on a stack).
3089 
3090       (2) Local Queue. The local queue of the task which is accessed
3091       reasonably efficiently by the task. Other tasks can steal from
3092       it when they run out of work. Throughout the marking phase, a
3093       task attempts to keep its local queue short but not totally
3094       empty, so that entries are available for stealing by other
3095       tasks. Only when there is no more work, a task will totally
3096       drain its local queue.
3097 
3098       (3) Global Mark Stack. This handles local queue overflow. During
3099       marking only sets of entries are moved between it and the local
3100       queues, as access to it requires a mutex and more fine-grain
3101       interaction with it which might cause contention. If it
3102       overflows, then the marking phase should restart and iterate
3103       over the bitmap to identify gray objects. Throughout the marking
3104       phase, tasks attempt to keep the global mark stack at a small
3105       length but not totally empty, so that entries are available for
3106       popping by other tasks. Only when there is no more work, tasks
3107       will totally drain the global mark stack.
3108 
3109       (4) SATB Buffer Queue. This is where completed SATB buffers are
3110       made available. Buffers are regularly removed from this queue
3111       and scanned for roots, so that the queue doesn't get too
3112       long. During remark, all completed buffers are processed, as
3113       well as the filled in parts of any uncompleted buffers.
3114 
3115     The do_marking_step() method tries to abort when the time target
3116     has been reached. There are a few other cases when the
3117     do_marking_step() method also aborts:
3118 
3119       (1) When the marking phase has been aborted (after a Full GC).
3120 
3121       (2) When a global overflow (on the global stack) has been
3122       triggered. Before the task aborts, it will actually sync up with
3123       the other tasks to ensure that all the marking data structures
3124       (local queues, stacks, fingers etc.)  are re-initialized so that
3125       when do_marking_step() completes, the marking phase can
3126       immediately restart.
3127 
3128       (3) When enough completed SATB buffers are available. The
3129       do_marking_step() method only tries to drain SATB buffers right
3130       at the beginning. So, if enough buffers are available, the
3131       marking step aborts and the SATB buffers are processed at
3132       the beginning of the next invocation.
3133 
3134       (4) To yield. when we have to yield then we abort and yield
3135       right at the end of do_marking_step(). This saves us from a lot
3136       of hassle as, by yielding we might allow a Full GC. If this
3137       happens then objects will be compacted underneath our feet, the
3138       heap might shrink, etc. We save checking for this by just
3139       aborting and doing the yield right at the end.
3140 
3141     From the above it follows that the do_marking_step() method should
3142     be called in a loop (or, otherwise, regularly) until it completes.
3143 
3144     If a marking step completes without its has_aborted() flag being
3145     true, it means it has completed the current marking phase (and
3146     also all other marking tasks have done so and have all synced up).
3147 
3148     A method called regular_clock_call() is invoked "regularly" (in
3149     sub ms intervals) throughout marking. It is this clock method that
3150     checks all the abort conditions which were mentioned above and
3151     decides when the task should abort. A work-based scheme is used to
3152     trigger this clock method: when the number of object words the
3153     marking phase has scanned or the number of references the marking
3154     phase has visited reach a given limit. Additional invocations to
3155     the method clock have been planted in a few other strategic places
3156     too. The initial reason for the clock method was to avoid calling
3157     vtime too regularly, as it is quite expensive. So, once it was in
3158     place, it was natural to piggy-back all the other conditions on it
3159     too and not constantly check them throughout the code.
3160 
3161     If do_termination is true then do_marking_step will enter its
3162     termination protocol.
3163 
3164     The value of is_serial must be true when do_marking_step is being
3165     called serially (i.e. by the VMThread) and do_marking_step should
3166     skip any synchronization in the termination and overflow code.
3167     Examples include the serial remark code and the serial reference
3168     processing closures.
3169 
3170     The value of is_serial must be false when do_marking_step is
3171     being called by any of the worker threads in a work gang.
3172     Examples include the concurrent marking code (CMMarkingTask),
3173     the MT remark code, and the MT reference processing closures.
3174 
3175  *****************************************************************************/
3176 
3177 void CMTask::do_marking_step(double time_target_ms,
3178                              bool do_termination,
3179                              bool is_serial) {
3180   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3181   assert(concurrent() == _cm->concurrent(), "they should be the same");
3182 
3183   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3184   assert(_task_queues != NULL, "invariant");
3185   assert(_task_queue != NULL, "invariant");
3186   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3187 
3188   assert(!_claimed,
3189          "only one thread should claim this task at any one time");
3190 
3191   // OK, this doesn't safeguard again all possible scenarios, as it is
3192   // possible for two threads to set the _claimed flag at the same
3193   // time. But it is only for debugging purposes anyway and it will
3194   // catch most problems.
3195   _claimed = true;
3196 
3197   _start_time_ms = os::elapsedVTime() * 1000.0;
3198 
3199   // If do_stealing is true then do_marking_step will attempt to
3200   // steal work from the other CMTasks. It only makes sense to
3201   // enable stealing when the termination protocol is enabled
3202   // and do_marking_step() is not being called serially.
3203   bool do_stealing = do_termination && !is_serial;
3204 
3205   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
3206   _time_target_ms = time_target_ms - diff_prediction_ms;
3207 
3208   // set up the variables that are used in the work-based scheme to
3209   // call the regular clock method
3210   _words_scanned = 0;
3211   _refs_reached  = 0;
3212   recalculate_limits();
3213 
3214   // clear all flags
3215   clear_has_aborted();
3216   _has_timed_out = false;
3217   _draining_satb_buffers = false;
3218 
3219   ++_calls;
3220 
3221   // Set up the bitmap and oop closures. Anything that uses them is
3222   // eventually called from this method, so it is OK to allocate these
3223   // statically.
3224   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3225   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
3226   set_cm_oop_closure(&cm_oop_closure);
3227 
3228   if (_cm->has_overflown()) {
3229     // This can happen if the mark stack overflows during a GC pause
3230     // and this task, after a yield point, restarts. We have to abort
3231     // as we need to get into the overflow protocol which happens
3232     // right at the end of this task.
3233     set_has_aborted();
3234   }
3235 
3236   // First drain any available SATB buffers. After this, we will not
3237   // look at SATB buffers before the next invocation of this method.
3238   // If enough completed SATB buffers are queued up, the regular clock
3239   // will abort this task so that it restarts.
3240   drain_satb_buffers();
3241   // ...then partially drain the local queue and the global stack
3242   drain_local_queue(true);
3243   drain_global_stack(true);
3244 
3245   do {
3246     if (!has_aborted() && _curr_region != NULL) {
3247       // This means that we're already holding on to a region.
3248       assert(_finger != NULL, "if region is not NULL, then the finger "
3249              "should not be NULL either");
3250 
3251       // We might have restarted this task after an evacuation pause
3252       // which might have evacuated the region we're holding on to
3253       // underneath our feet. Let's read its limit again to make sure
3254       // that we do not iterate over a region of the heap that
3255       // contains garbage (update_region_limit() will also move
3256       // _finger to the start of the region if it is found empty).
3257       update_region_limit();
3258       // We will start from _finger not from the start of the region,
3259       // as we might be restarting this task after aborting half-way
3260       // through scanning this region. In this case, _finger points to
3261       // the address where we last found a marked object. If this is a
3262       // fresh region, _finger points to start().
3263       MemRegion mr = MemRegion(_finger, _region_limit);
3264 
3265       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
3266              "humongous regions should go around loop once only");
3267 
3268       // Some special cases:
3269       // If the memory region is empty, we can just give up the region.
3270       // If the current region is humongous then we only need to check
3271       // the bitmap for the bit associated with the start of the object,
3272       // scan the object if it's live, and give up the region.
3273       // Otherwise, let's iterate over the bitmap of the part of the region
3274       // that is left.
3275       // If the iteration is successful, give up the region.
3276       if (mr.is_empty()) {
3277         giveup_current_region();
3278         regular_clock_call();
3279       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
3280         if (_nextMarkBitMap->isMarked(mr.start())) {
3281           // The object is marked - apply the closure
3282           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
3283           bitmap_closure.do_bit(offset);
3284         }
3285         // Even if this task aborted while scanning the humongous object
3286         // we can (and should) give up the current region.
3287         giveup_current_region();
3288         regular_clock_call();
3289       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
3290         giveup_current_region();
3291         regular_clock_call();
3292       } else {
3293         assert(has_aborted(), "currently the only way to do so");
3294         // The only way to abort the bitmap iteration is to return
3295         // false from the do_bit() method. However, inside the
3296         // do_bit() method we move the _finger to point to the
3297         // object currently being looked at. So, if we bail out, we
3298         // have definitely set _finger to something non-null.
3299         assert(_finger != NULL, "invariant");
3300 
3301         // Region iteration was actually aborted. So now _finger
3302         // points to the address of the object we last scanned. If we
3303         // leave it there, when we restart this task, we will rescan
3304         // the object. It is easy to avoid this. We move the finger by
3305         // enough to point to the next possible object header (the
3306         // bitmap knows by how much we need to move it as it knows its
3307         // granularity).
3308         assert(_finger < _region_limit, "invariant");
3309         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
3310         // Check if bitmap iteration was aborted while scanning the last object
3311         if (new_finger >= _region_limit) {
3312           giveup_current_region();
3313         } else {
3314           move_finger_to(new_finger);
3315         }
3316       }
3317     }
3318     // At this point we have either completed iterating over the
3319     // region we were holding on to, or we have aborted.
3320 
3321     // We then partially drain the local queue and the global stack.
3322     // (Do we really need this?)
3323     drain_local_queue(true);
3324     drain_global_stack(true);
3325 
3326     // Read the note on the claim_region() method on why it might
3327     // return NULL with potentially more regions available for
3328     // claiming and why we have to check out_of_regions() to determine
3329     // whether we're done or not.
3330     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
3331       // We are going to try to claim a new region. We should have
3332       // given up on the previous one.
3333       // Separated the asserts so that we know which one fires.
3334       assert(_curr_region  == NULL, "invariant");
3335       assert(_finger       == NULL, "invariant");
3336       assert(_region_limit == NULL, "invariant");
3337       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
3338       if (claimed_region != NULL) {
3339         // Yes, we managed to claim one
3340         setup_for_region(claimed_region);
3341         assert(_curr_region == claimed_region, "invariant");
3342       }
3343       // It is important to call the regular clock here. It might take
3344       // a while to claim a region if, for example, we hit a large
3345       // block of empty regions. So we need to call the regular clock
3346       // method once round the loop to make sure it's called
3347       // frequently enough.
3348       regular_clock_call();
3349     }
3350 
3351     if (!has_aborted() && _curr_region == NULL) {
3352       assert(_cm->out_of_regions(),
3353              "at this point we should be out of regions");
3354     }
3355   } while ( _curr_region != NULL && !has_aborted());
3356 
3357   if (!has_aborted()) {
3358     // We cannot check whether the global stack is empty, since other
3359     // tasks might be pushing objects to it concurrently.
3360     assert(_cm->out_of_regions(),
3361            "at this point we should be out of regions");
3362     // Try to reduce the number of available SATB buffers so that
3363     // remark has less work to do.
3364     drain_satb_buffers();
3365   }
3366 
3367   // Since we've done everything else, we can now totally drain the
3368   // local queue and global stack.
3369   drain_local_queue(false);
3370   drain_global_stack(false);
3371 
3372   // Attempt at work stealing from other task's queues.
3373   if (do_stealing && !has_aborted()) {
3374     // We have not aborted. This means that we have finished all that
3375     // we could. Let's try to do some stealing...
3376 
3377     // We cannot check whether the global stack is empty, since other
3378     // tasks might be pushing objects to it concurrently.
3379     assert(_cm->out_of_regions() && _task_queue->size() == 0,
3380            "only way to reach here");
3381     while (!has_aborted()) {
3382       oop obj;
3383       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
3384         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
3385                "any stolen object should be marked");
3386         scan_object(obj);
3387 
3388         // And since we're towards the end, let's totally drain the
3389         // local queue and global stack.
3390         drain_local_queue(false);
3391         drain_global_stack(false);
3392       } else {
3393         break;
3394       }
3395     }
3396   }
3397 
3398   // We still haven't aborted. Now, let's try to get into the
3399   // termination protocol.
3400   if (do_termination && !has_aborted()) {
3401     // We cannot check whether the global stack is empty, since other
3402     // tasks might be concurrently pushing objects on it.
3403     // Separated the asserts so that we know which one fires.
3404     assert(_cm->out_of_regions(), "only way to reach here");
3405     assert(_task_queue->size() == 0, "only way to reach here");
3406     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
3407 
3408     // The CMTask class also extends the TerminatorTerminator class,
3409     // hence its should_exit_termination() method will also decide
3410     // whether to exit the termination protocol or not.
3411     bool finished = (is_serial ||
3412                      _cm->terminator()->offer_termination(this));
3413     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
3414     _termination_time_ms +=
3415       termination_end_time_ms - _termination_start_time_ms;
3416 
3417     if (finished) {
3418       // We're all done.
3419 
3420       if (_worker_id == 0) {
3421         // let's allow task 0 to do this
3422         if (concurrent()) {
3423           assert(_cm->concurrent_marking_in_progress(), "invariant");
3424           // we need to set this to false before the next
3425           // safepoint. This way we ensure that the marking phase
3426           // doesn't observe any more heap expansions.
3427           _cm->clear_concurrent_marking_in_progress();
3428         }
3429       }
3430 
3431       // We can now guarantee that the global stack is empty, since
3432       // all other tasks have finished. We separated the guarantees so
3433       // that, if a condition is false, we can immediately find out
3434       // which one.
3435       guarantee(_cm->out_of_regions(), "only way to reach here");
3436       guarantee(_cm->mark_stack_empty(), "only way to reach here");
3437       guarantee(_task_queue->size() == 0, "only way to reach here");
3438       guarantee(!_cm->has_overflown(), "only way to reach here");
3439       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
3440     } else {
3441       // Apparently there's more work to do. Let's abort this task. It
3442       // will restart it and we can hopefully find more things to do.
3443       set_has_aborted();
3444     }
3445   }
3446 
3447   // Mainly for debugging purposes to make sure that a pointer to the
3448   // closure which was statically allocated in this frame doesn't
3449   // escape it by accident.
3450   set_cm_oop_closure(NULL);
3451   double end_time_ms = os::elapsedVTime() * 1000.0;
3452   double elapsed_time_ms = end_time_ms - _start_time_ms;
3453   // Update the step history.
3454   _step_times_ms.add(elapsed_time_ms);
3455 
3456   if (has_aborted()) {
3457     // The task was aborted for some reason.
3458     if (_has_timed_out) {
3459       double diff_ms = elapsed_time_ms - _time_target_ms;
3460       // Keep statistics of how well we did with respect to hitting
3461       // our target only if we actually timed out (if we aborted for
3462       // other reasons, then the results might get skewed).
3463       _marking_step_diffs_ms.add(diff_ms);
3464     }
3465 
3466     if (_cm->has_overflown()) {
3467       // This is the interesting one. We aborted because a global
3468       // overflow was raised. This means we have to restart the
3469       // marking phase and start iterating over regions. However, in
3470       // order to do this we have to make sure that all tasks stop
3471       // what they are doing and re-initialize in a safe manner. We
3472       // will achieve this with the use of two barrier sync points.
3473 
3474       if (!is_serial) {
3475         // We only need to enter the sync barrier if being called
3476         // from a parallel context
3477         _cm->enter_first_sync_barrier(_worker_id);
3478 
3479         // When we exit this sync barrier we know that all tasks have
3480         // stopped doing marking work. So, it's now safe to
3481         // re-initialize our data structures. At the end of this method,
3482         // task 0 will clear the global data structures.
3483       }
3484 
3485       // We clear the local state of this task...
3486       clear_region_fields();
3487 
3488       if (!is_serial) {
3489         // ...and enter the second barrier.
3490         _cm->enter_second_sync_barrier(_worker_id);
3491       }
3492       // At this point, if we're during the concurrent phase of
3493       // marking, everything has been re-initialized and we're
3494       // ready to restart.
3495     }
3496   }
3497 
3498   _claimed = false;
3499 }
3500 
3501 CMTask::CMTask(uint worker_id,
3502                ConcurrentMark* cm,
3503                size_t* marked_bytes,
3504                BitMap* card_bm,
3505                CMTaskQueue* task_queue,
3506                CMTaskQueueSet* task_queues)
3507   : _g1h(G1CollectedHeap::heap()),
3508     _worker_id(worker_id), _cm(cm),
3509     _claimed(false),
3510     _nextMarkBitMap(NULL), _hash_seed(17),
3511     _task_queue(task_queue),
3512     _task_queues(task_queues),
3513     _cm_oop_closure(NULL),
3514     _marked_bytes_array(marked_bytes),
3515     _card_bm(card_bm) {
3516   guarantee(task_queue != NULL, "invariant");
3517   guarantee(task_queues != NULL, "invariant");
3518 
3519   _marking_step_diffs_ms.add(0.5);
3520 }
3521 
3522 // These are formatting macros that are used below to ensure
3523 // consistent formatting. The *_H_* versions are used to format the
3524 // header for a particular value and they should be kept consistent
3525 // with the corresponding macro. Also note that most of the macros add
3526 // the necessary white space (as a prefix) which makes them a bit
3527 // easier to compose.
3528 
3529 // All the output lines are prefixed with this string to be able to
3530 // identify them easily in a large log file.
3531 #define G1PPRL_LINE_PREFIX            "###"
3532 
3533 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
3534 #ifdef _LP64
3535 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
3536 #else // _LP64
3537 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
3538 #endif // _LP64
3539 
3540 // For per-region info
3541 #define G1PPRL_TYPE_FORMAT            "   %-4s"
3542 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
3543 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
3544 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
3545 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
3546 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
3547 
3548 // For summary info
3549 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
3550 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
3551 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
3552 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
3553 
3554 G1PrintRegionLivenessInfoClosure::
3555 G1PrintRegionLivenessInfoClosure(const char* phase_name)
3556   : _total_used_bytes(0), _total_capacity_bytes(0),
3557     _total_prev_live_bytes(0), _total_next_live_bytes(0),
3558     _hum_used_bytes(0), _hum_capacity_bytes(0),
3559     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
3560     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
3561   G1CollectedHeap* g1h = G1CollectedHeap::heap();
3562   MemRegion g1_reserved = g1h->g1_reserved();
3563   double now = os::elapsedTime();
3564 
3565   // Print the header of the output.
3566   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
3567   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
3568                           G1PPRL_SUM_ADDR_FORMAT("reserved")
3569                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
3570                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
3571                           HeapRegion::GrainBytes);
3572   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3573   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3574                           G1PPRL_TYPE_H_FORMAT
3575                           G1PPRL_ADDR_BASE_H_FORMAT
3576                           G1PPRL_BYTE_H_FORMAT
3577                           G1PPRL_BYTE_H_FORMAT
3578                           G1PPRL_BYTE_H_FORMAT
3579                           G1PPRL_DOUBLE_H_FORMAT
3580                           G1PPRL_BYTE_H_FORMAT
3581                           G1PPRL_BYTE_H_FORMAT,
3582                           "type", "address-range",
3583                           "used", "prev-live", "next-live", "gc-eff",
3584                           "remset", "code-roots");
3585   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3586                           G1PPRL_TYPE_H_FORMAT
3587                           G1PPRL_ADDR_BASE_H_FORMAT
3588                           G1PPRL_BYTE_H_FORMAT
3589                           G1PPRL_BYTE_H_FORMAT
3590                           G1PPRL_BYTE_H_FORMAT
3591                           G1PPRL_DOUBLE_H_FORMAT
3592                           G1PPRL_BYTE_H_FORMAT
3593                           G1PPRL_BYTE_H_FORMAT,
3594                           "", "",
3595                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3596                           "(bytes)", "(bytes)");
3597 }
3598 
3599 // It takes as a parameter a reference to one of the _hum_* fields, it
3600 // deduces the corresponding value for a region in a humongous region
3601 // series (either the region size, or what's left if the _hum_* field
3602 // is < the region size), and updates the _hum_* field accordingly.
3603 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
3604   size_t bytes = 0;
3605   // The > 0 check is to deal with the prev and next live bytes which
3606   // could be 0.
3607   if (*hum_bytes > 0) {
3608     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
3609     *hum_bytes -= bytes;
3610   }
3611   return bytes;
3612 }
3613 
3614 // It deduces the values for a region in a humongous region series
3615 // from the _hum_* fields and updates those accordingly. It assumes
3616 // that that _hum_* fields have already been set up from the "starts
3617 // humongous" region and we visit the regions in address order.
3618 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
3619                                                      size_t* capacity_bytes,
3620                                                      size_t* prev_live_bytes,
3621                                                      size_t* next_live_bytes) {
3622   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
3623   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
3624   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
3625   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
3626   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
3627 }
3628 
3629 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3630   const char* type       = r->get_type_str();
3631   HeapWord* bottom       = r->bottom();
3632   HeapWord* end          = r->end();
3633   size_t capacity_bytes  = r->capacity();
3634   size_t used_bytes      = r->used();
3635   size_t prev_live_bytes = r->live_bytes();
3636   size_t next_live_bytes = r->next_live_bytes();
3637   double gc_eff          = r->gc_efficiency();
3638   size_t remset_bytes    = r->rem_set()->mem_size();
3639   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3640 
3641   if (r->is_starts_humongous()) {
3642     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
3643            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
3644            "they should have been zeroed after the last time we used them");
3645     // Set up the _hum_* fields.
3646     _hum_capacity_bytes  = capacity_bytes;
3647     _hum_used_bytes      = used_bytes;
3648     _hum_prev_live_bytes = prev_live_bytes;
3649     _hum_next_live_bytes = next_live_bytes;
3650     get_hum_bytes(&used_bytes, &capacity_bytes,
3651                   &prev_live_bytes, &next_live_bytes);
3652     end = bottom + HeapRegion::GrainWords;
3653   } else if (r->is_continues_humongous()) {
3654     get_hum_bytes(&used_bytes, &capacity_bytes,
3655                   &prev_live_bytes, &next_live_bytes);
3656     assert(end == bottom + HeapRegion::GrainWords, "invariant");
3657   }
3658 
3659   _total_used_bytes      += used_bytes;
3660   _total_capacity_bytes  += capacity_bytes;
3661   _total_prev_live_bytes += prev_live_bytes;
3662   _total_next_live_bytes += next_live_bytes;
3663   _total_remset_bytes    += remset_bytes;
3664   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3665 
3666   // Print a line for this particular region.
3667   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3668                           G1PPRL_TYPE_FORMAT
3669                           G1PPRL_ADDR_BASE_FORMAT
3670                           G1PPRL_BYTE_FORMAT
3671                           G1PPRL_BYTE_FORMAT
3672                           G1PPRL_BYTE_FORMAT
3673                           G1PPRL_DOUBLE_FORMAT
3674                           G1PPRL_BYTE_FORMAT
3675                           G1PPRL_BYTE_FORMAT,
3676                           type, p2i(bottom), p2i(end),
3677                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3678                           remset_bytes, strong_code_roots_bytes);
3679 
3680   return false;
3681 }
3682 
3683 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3684   // add static memory usages to remembered set sizes
3685   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3686   // Print the footer of the output.
3687   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3688   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3689                          " SUMMARY"
3690                          G1PPRL_SUM_MB_FORMAT("capacity")
3691                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3692                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3693                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3694                          G1PPRL_SUM_MB_FORMAT("remset")
3695                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3696                          bytes_to_mb(_total_capacity_bytes),
3697                          bytes_to_mb(_total_used_bytes),
3698                          perc(_total_used_bytes, _total_capacity_bytes),
3699                          bytes_to_mb(_total_prev_live_bytes),
3700                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3701                          bytes_to_mb(_total_next_live_bytes),
3702                          perc(_total_next_live_bytes, _total_capacity_bytes),
3703                          bytes_to_mb(_total_remset_bytes),
3704                          bytes_to_mb(_total_strong_code_roots_bytes));
3705 }