1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectorPolicy.hpp"
  38 #include "gc/g1/g1CollectorState.hpp"
  39 #include "gc/g1/g1EvacStats.inline.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1MarkSweep.hpp"
  42 #include "gc/g1/g1OopClosures.inline.hpp"
  43 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  44 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  45 #include "gc/g1/g1RemSet.inline.hpp"
  46 #include "gc/g1/g1RootClosures.hpp"
  47 #include "gc/g1/g1RootProcessor.hpp"
  48 #include "gc/g1/g1StringDedup.hpp"
  49 #include "gc/g1/g1YCTypes.hpp"
  50 #include "gc/g1/heapRegion.inline.hpp"
  51 #include "gc/g1/heapRegionRemSet.hpp"
  52 #include "gc/g1/heapRegionSet.inline.hpp"
  53 #include "gc/g1/suspendibleThreadSet.hpp"
  54 #include "gc/g1/vm_operations_g1.hpp"
  55 #include "gc/shared/gcHeapSummary.hpp"
  56 #include "gc/shared/gcId.hpp"
  57 #include "gc/shared/gcLocker.inline.hpp"
  58 #include "gc/shared/gcTimer.hpp"
  59 #include "gc/shared/gcTrace.hpp"
  60 #include "gc/shared/gcTraceTime.inline.hpp"
  61 #include "gc/shared/generationSpec.hpp"
  62 #include "gc/shared/isGCActiveMark.hpp"
  63 #include "gc/shared/referenceProcessor.hpp"
  64 #include "gc/shared/taskqueue.inline.hpp"
  65 #include "logging/log.hpp"
  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Local to this file.
  88 
  89 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure() : _concurrent(true) { }
  93 
  94   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  95     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108 
 109   void set_concurrent(bool b) { _concurrent = b; }
 110 };
 111 
 112 
 113 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 114  private:
 115   size_t _num_dirtied;
 116   G1CollectedHeap* _g1h;
 117   G1SATBCardTableLoggingModRefBS* _g1_bs;
 118 
 119   HeapRegion* region_for_card(jbyte* card_ptr) const {
 120     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 121   }
 122 
 123   bool will_become_free(HeapRegion* hr) const {
 124     // A region will be freed by free_collection_set if the region is in the
 125     // collection set and has not had an evacuation failure.
 126     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 127   }
 128 
 129  public:
 130   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 131     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 132 
 133   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 134     HeapRegion* hr = region_for_card(card_ptr);
 135 
 136     // Should only dirty cards in regions that won't be freed.
 137     if (!will_become_free(hr)) {
 138       *card_ptr = CardTableModRefBS::dirty_card_val();
 139       _num_dirtied++;
 140     }
 141 
 142     return true;
 143   }
 144 
 145   size_t num_dirtied()   const { return _num_dirtied; }
 146 };
 147 
 148 
 149 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 150   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 151 }
 152 
 153 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 154   // The from card cache is not the memory that is actually committed. So we cannot
 155   // take advantage of the zero_filled parameter.
 156   reset_from_card_cache(start_idx, num_regions);
 157 }
 158 
 159 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 160 {
 161   // Claim the right to put the region on the dirty cards region list
 162   // by installing a self pointer.
 163   HeapRegion* next = hr->get_next_dirty_cards_region();
 164   if (next == NULL) {
 165     HeapRegion* res = (HeapRegion*)
 166       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 167                           NULL);
 168     if (res == NULL) {
 169       HeapRegion* head;
 170       do {
 171         // Put the region to the dirty cards region list.
 172         head = _dirty_cards_region_list;
 173         next = (HeapRegion*)
 174           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 175         if (next == head) {
 176           assert(hr->get_next_dirty_cards_region() == hr,
 177                  "hr->get_next_dirty_cards_region() != hr");
 178           if (next == NULL) {
 179             // The last region in the list points to itself.
 180             hr->set_next_dirty_cards_region(hr);
 181           } else {
 182             hr->set_next_dirty_cards_region(next);
 183           }
 184         }
 185       } while (next != head);
 186     }
 187   }
 188 }
 189 
 190 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 191 {
 192   HeapRegion* head;
 193   HeapRegion* hr;
 194   do {
 195     head = _dirty_cards_region_list;
 196     if (head == NULL) {
 197       return NULL;
 198     }
 199     HeapRegion* new_head = head->get_next_dirty_cards_region();
 200     if (head == new_head) {
 201       // The last region.
 202       new_head = NULL;
 203     }
 204     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 205                                           head);
 206   } while (hr != head);
 207   assert(hr != NULL, "invariant");
 208   hr->set_next_dirty_cards_region(NULL);
 209   return hr;
 210 }
 211 
 212 // Returns true if the reference points to an object that
 213 // can move in an incremental collection.
 214 bool G1CollectedHeap::is_scavengable(const void* p) {
 215   HeapRegion* hr = heap_region_containing(p);
 216   return !hr->is_pinned();
 217 }
 218 
 219 // Private methods.
 220 
 221 HeapRegion*
 222 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 223   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 224   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 225     if (!_secondary_free_list.is_empty()) {
 226       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 227                                       "secondary_free_list has %u entries",
 228                                       _secondary_free_list.length());
 229       // It looks as if there are free regions available on the
 230       // secondary_free_list. Let's move them to the free_list and try
 231       // again to allocate from it.
 232       append_secondary_free_list();
 233 
 234       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 235              "empty we should have moved at least one entry to the free_list");
 236       HeapRegion* res = _hrm.allocate_free_region(is_old);
 237       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 238                                       "allocated " HR_FORMAT " from secondary_free_list",
 239                                       HR_FORMAT_PARAMS(res));
 240       return res;
 241     }
 242 
 243     // Wait here until we get notified either when (a) there are no
 244     // more free regions coming or (b) some regions have been moved on
 245     // the secondary_free_list.
 246     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 247   }
 248 
 249   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 250                                   "could not allocate from secondary_free_list");
 251   return NULL;
 252 }
 253 
 254 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 255   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 256          "the only time we use this to allocate a humongous region is "
 257          "when we are allocating a single humongous region");
 258 
 259   HeapRegion* res;
 260   if (G1StressConcRegionFreeing) {
 261     if (!_secondary_free_list.is_empty()) {
 262       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 263                                       "forced to look at the secondary_free_list");
 264       res = new_region_try_secondary_free_list(is_old);
 265       if (res != NULL) {
 266         return res;
 267       }
 268     }
 269   }
 270 
 271   res = _hrm.allocate_free_region(is_old);
 272 
 273   if (res == NULL) {
 274     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 275                                     "res == NULL, trying the secondary_free_list");
 276     res = new_region_try_secondary_free_list(is_old);
 277   }
 278   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 279     // Currently, only attempts to allocate GC alloc regions set
 280     // do_expand to true. So, we should only reach here during a
 281     // safepoint. If this assumption changes we might have to
 282     // reconsider the use of _expand_heap_after_alloc_failure.
 283     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 284 
 285     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 286                               word_size * HeapWordSize);
 287 
 288     if (expand(word_size * HeapWordSize)) {
 289       // Given that expand() succeeded in expanding the heap, and we
 290       // always expand the heap by an amount aligned to the heap
 291       // region size, the free list should in theory not be empty.
 292       // In either case allocate_free_region() will check for NULL.
 293       res = _hrm.allocate_free_region(is_old);
 294     } else {
 295       _expand_heap_after_alloc_failure = false;
 296     }
 297   }
 298   return res;
 299 }
 300 
 301 HeapWord*
 302 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 303                                                            uint num_regions,
 304                                                            size_t word_size,
 305                                                            AllocationContext_t context) {
 306   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 307   assert(is_humongous(word_size), "word_size should be humongous");
 308   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 309 
 310   // Index of last region in the series.
 311   uint last = first + num_regions - 1;
 312 
 313   // We need to initialize the region(s) we just discovered. This is
 314   // a bit tricky given that it can happen concurrently with
 315   // refinement threads refining cards on these regions and
 316   // potentially wanting to refine the BOT as they are scanning
 317   // those cards (this can happen shortly after a cleanup; see CR
 318   // 6991377). So we have to set up the region(s) carefully and in
 319   // a specific order.
 320 
 321   // The word size sum of all the regions we will allocate.
 322   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 323   assert(word_size <= word_size_sum, "sanity");
 324 
 325   // This will be the "starts humongous" region.
 326   HeapRegion* first_hr = region_at(first);
 327   // The header of the new object will be placed at the bottom of
 328   // the first region.
 329   HeapWord* new_obj = first_hr->bottom();
 330   // This will be the new top of the new object.
 331   HeapWord* obj_top = new_obj + word_size;
 332 
 333   // First, we need to zero the header of the space that we will be
 334   // allocating. When we update top further down, some refinement
 335   // threads might try to scan the region. By zeroing the header we
 336   // ensure that any thread that will try to scan the region will
 337   // come across the zero klass word and bail out.
 338   //
 339   // NOTE: It would not have been correct to have used
 340   // CollectedHeap::fill_with_object() and make the space look like
 341   // an int array. The thread that is doing the allocation will
 342   // later update the object header to a potentially different array
 343   // type and, for a very short period of time, the klass and length
 344   // fields will be inconsistent. This could cause a refinement
 345   // thread to calculate the object size incorrectly.
 346   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 347 
 348   // How many words we use for filler objects.
 349   size_t word_fill_size = word_size_sum - word_size;
 350 
 351   // How many words memory we "waste" which cannot hold a filler object.
 352   size_t words_not_fillable = 0;
 353 
 354   if (word_fill_size >= min_fill_size()) {
 355     fill_with_objects(obj_top, word_fill_size);
 356   } else if (word_fill_size > 0) {
 357     // We have space to fill, but we cannot fit an object there.
 358     words_not_fillable = word_fill_size;
 359     word_fill_size = 0;
 360   }
 361 
 362   // We will set up the first region as "starts humongous". This
 363   // will also update the BOT covering all the regions to reflect
 364   // that there is a single object that starts at the bottom of the
 365   // first region.
 366   first_hr->set_starts_humongous(obj_top, word_fill_size);
 367   first_hr->set_allocation_context(context);
 368   // Then, if there are any, we will set up the "continues
 369   // humongous" regions.
 370   HeapRegion* hr = NULL;
 371   for (uint i = first + 1; i <= last; ++i) {
 372     hr = region_at(i);
 373     hr->set_continues_humongous(first_hr);
 374     hr->set_allocation_context(context);
 375   }
 376 
 377   // Up to this point no concurrent thread would have been able to
 378   // do any scanning on any region in this series. All the top
 379   // fields still point to bottom, so the intersection between
 380   // [bottom,top] and [card_start,card_end] will be empty. Before we
 381   // update the top fields, we'll do a storestore to make sure that
 382   // no thread sees the update to top before the zeroing of the
 383   // object header and the BOT initialization.
 384   OrderAccess::storestore();
 385 
 386   // Now, we will update the top fields of the "continues humongous"
 387   // regions except the last one.
 388   for (uint i = first; i < last; ++i) {
 389     hr = region_at(i);
 390     hr->set_top(hr->end());
 391   }
 392 
 393   hr = region_at(last);
 394   // If we cannot fit a filler object, we must set top to the end
 395   // of the humongous object, otherwise we cannot iterate the heap
 396   // and the BOT will not be complete.
 397   hr->set_top(hr->end() - words_not_fillable);
 398 
 399   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 400          "obj_top should be in last region");
 401 
 402   check_bitmaps("Humongous Region Allocation", first_hr);
 403 
 404   assert(words_not_fillable == 0 ||
 405          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 406          "Miscalculation in humongous allocation");
 407 
 408   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 409 
 410   for (uint i = first; i <= last; ++i) {
 411     hr = region_at(i);
 412     _humongous_set.add(hr);
 413     _hr_printer.alloc(hr);
 414   }
 415 
 416   return new_obj;
 417 }
 418 
 419 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 420   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 421   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 422 }
 423 
 424 // If could fit into free regions w/o expansion, try.
 425 // Otherwise, if can expand, do so.
 426 // Otherwise, if using ex regions might help, try with ex given back.
 427 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 428   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 429 
 430   verify_region_sets_optional();
 431 
 432   uint first = G1_NO_HRM_INDEX;
 433   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 434 
 435   if (obj_regions == 1) {
 436     // Only one region to allocate, try to use a fast path by directly allocating
 437     // from the free lists. Do not try to expand here, we will potentially do that
 438     // later.
 439     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 440     if (hr != NULL) {
 441       first = hr->hrm_index();
 442     }
 443   } else {
 444     // We can't allocate humongous regions spanning more than one region while
 445     // cleanupComplete() is running, since some of the regions we find to be
 446     // empty might not yet be added to the free list. It is not straightforward
 447     // to know in which list they are on so that we can remove them. We only
 448     // need to do this if we need to allocate more than one region to satisfy the
 449     // current humongous allocation request. If we are only allocating one region
 450     // we use the one-region region allocation code (see above), that already
 451     // potentially waits for regions from the secondary free list.
 452     wait_while_free_regions_coming();
 453     append_secondary_free_list_if_not_empty_with_lock();
 454 
 455     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 456     // are lucky enough to find some.
 457     first = _hrm.find_contiguous_only_empty(obj_regions);
 458     if (first != G1_NO_HRM_INDEX) {
 459       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 460     }
 461   }
 462 
 463   if (first == G1_NO_HRM_INDEX) {
 464     // Policy: We could not find enough regions for the humongous object in the
 465     // free list. Look through the heap to find a mix of free and uncommitted regions.
 466     // If so, try expansion.
 467     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 468     if (first != G1_NO_HRM_INDEX) {
 469       // We found something. Make sure these regions are committed, i.e. expand
 470       // the heap. Alternatively we could do a defragmentation GC.
 471       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 472                                     word_size * HeapWordSize);
 473 
 474 
 475       _hrm.expand_at(first, obj_regions);
 476       g1_policy()->record_new_heap_size(num_regions());
 477 
 478 #ifdef ASSERT
 479       for (uint i = first; i < first + obj_regions; ++i) {
 480         HeapRegion* hr = region_at(i);
 481         assert(hr->is_free(), "sanity");
 482         assert(hr->is_empty(), "sanity");
 483         assert(is_on_master_free_list(hr), "sanity");
 484       }
 485 #endif
 486       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 487     } else {
 488       // Policy: Potentially trigger a defragmentation GC.
 489     }
 490   }
 491 
 492   HeapWord* result = NULL;
 493   if (first != G1_NO_HRM_INDEX) {
 494     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 495                                                        word_size, context);
 496     assert(result != NULL, "it should always return a valid result");
 497 
 498     // A successful humongous object allocation changes the used space
 499     // information of the old generation so we need to recalculate the
 500     // sizes and update the jstat counters here.
 501     g1mm()->update_sizes();
 502   }
 503 
 504   verify_region_sets_optional();
 505 
 506   return result;
 507 }
 508 
 509 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 510   assert_heap_not_locked_and_not_at_safepoint();
 511   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 512 
 513   uint dummy_gc_count_before;
 514   uint dummy_gclocker_retry_count = 0;
 515   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 516 }
 517 
 518 HeapWord*
 519 G1CollectedHeap::mem_allocate(size_t word_size,
 520                               bool*  gc_overhead_limit_was_exceeded) {
 521   assert_heap_not_locked_and_not_at_safepoint();
 522 
 523   // Loop until the allocation is satisfied, or unsatisfied after GC.
 524   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 525     uint gc_count_before;
 526 
 527     HeapWord* result = NULL;
 528     if (!is_humongous(word_size)) {
 529       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 530     } else {
 531       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 532     }
 533     if (result != NULL) {
 534       return result;
 535     }
 536 
 537     // Create the garbage collection operation...
 538     VM_G1CollectForAllocation op(gc_count_before, word_size);
 539     op.set_allocation_context(AllocationContext::current());
 540 
 541     // ...and get the VM thread to execute it.
 542     VMThread::execute(&op);
 543 
 544     if (op.prologue_succeeded() && op.pause_succeeded()) {
 545       // If the operation was successful we'll return the result even
 546       // if it is NULL. If the allocation attempt failed immediately
 547       // after a Full GC, it's unlikely we'll be able to allocate now.
 548       HeapWord* result = op.result();
 549       if (result != NULL && !is_humongous(word_size)) {
 550         // Allocations that take place on VM operations do not do any
 551         // card dirtying and we have to do it here. We only have to do
 552         // this for non-humongous allocations, though.
 553         dirty_young_block(result, word_size);
 554       }
 555       return result;
 556     } else {
 557       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 558         return NULL;
 559       }
 560       assert(op.result() == NULL,
 561              "the result should be NULL if the VM op did not succeed");
 562     }
 563 
 564     // Give a warning if we seem to be looping forever.
 565     if ((QueuedAllocationWarningCount > 0) &&
 566         (try_count % QueuedAllocationWarningCount == 0)) {
 567       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 568     }
 569   }
 570 
 571   ShouldNotReachHere();
 572   return NULL;
 573 }
 574 
 575 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 576                                                    AllocationContext_t context,
 577                                                    uint* gc_count_before_ret,
 578                                                    uint* gclocker_retry_count_ret) {
 579   // Make sure you read the note in attempt_allocation_humongous().
 580 
 581   assert_heap_not_locked_and_not_at_safepoint();
 582   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 583          "be called for humongous allocation requests");
 584 
 585   // We should only get here after the first-level allocation attempt
 586   // (attempt_allocation()) failed to allocate.
 587 
 588   // We will loop until a) we manage to successfully perform the
 589   // allocation or b) we successfully schedule a collection which
 590   // fails to perform the allocation. b) is the only case when we'll
 591   // return NULL.
 592   HeapWord* result = NULL;
 593   for (int try_count = 1; /* we'll return */; try_count += 1) {
 594     bool should_try_gc;
 595     uint gc_count_before;
 596 
 597     {
 598       MutexLockerEx x(Heap_lock);
 599       result = _allocator->attempt_allocation_locked(word_size, context);
 600       if (result != NULL) {
 601         return result;
 602       }
 603 
 604       if (GC_locker::is_active_and_needs_gc()) {
 605         if (g1_policy()->can_expand_young_list()) {
 606           // No need for an ergo verbose message here,
 607           // can_expand_young_list() does this when it returns true.
 608           result = _allocator->attempt_allocation_force(word_size, context);
 609           if (result != NULL) {
 610             return result;
 611           }
 612         }
 613         should_try_gc = false;
 614       } else {
 615         // The GCLocker may not be active but the GCLocker initiated
 616         // GC may not yet have been performed (GCLocker::needs_gc()
 617         // returns true). In this case we do not try this GC and
 618         // wait until the GCLocker initiated GC is performed, and
 619         // then retry the allocation.
 620         if (GC_locker::needs_gc()) {
 621           should_try_gc = false;
 622         } else {
 623           // Read the GC count while still holding the Heap_lock.
 624           gc_count_before = total_collections();
 625           should_try_gc = true;
 626         }
 627       }
 628     }
 629 
 630     if (should_try_gc) {
 631       bool succeeded;
 632       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 633                                    GCCause::_g1_inc_collection_pause);
 634       if (result != NULL) {
 635         assert(succeeded, "only way to get back a non-NULL result");
 636         return result;
 637       }
 638 
 639       if (succeeded) {
 640         // If we get here we successfully scheduled a collection which
 641         // failed to allocate. No point in trying to allocate
 642         // further. We'll just return NULL.
 643         MutexLockerEx x(Heap_lock);
 644         *gc_count_before_ret = total_collections();
 645         return NULL;
 646       }
 647     } else {
 648       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 649         MutexLockerEx x(Heap_lock);
 650         *gc_count_before_ret = total_collections();
 651         return NULL;
 652       }
 653       // The GCLocker is either active or the GCLocker initiated
 654       // GC has not yet been performed. Stall until it is and
 655       // then retry the allocation.
 656       GC_locker::stall_until_clear();
 657       (*gclocker_retry_count_ret) += 1;
 658     }
 659 
 660     // We can reach here if we were unsuccessful in scheduling a
 661     // collection (because another thread beat us to it) or if we were
 662     // stalled due to the GC locker. In either can we should retry the
 663     // allocation attempt in case another thread successfully
 664     // performed a collection and reclaimed enough space. We do the
 665     // first attempt (without holding the Heap_lock) here and the
 666     // follow-on attempt will be at the start of the next loop
 667     // iteration (after taking the Heap_lock).
 668     result = _allocator->attempt_allocation(word_size, context);
 669     if (result != NULL) {
 670       return result;
 671     }
 672 
 673     // Give a warning if we seem to be looping forever.
 674     if ((QueuedAllocationWarningCount > 0) &&
 675         (try_count % QueuedAllocationWarningCount == 0)) {
 676       warning("G1CollectedHeap::attempt_allocation_slow() "
 677               "retries %d times", try_count);
 678     }
 679   }
 680 
 681   ShouldNotReachHere();
 682   return NULL;
 683 }
 684 
 685 void G1CollectedHeap::begin_archive_alloc_range() {
 686   assert_at_safepoint(true /* should_be_vm_thread */);
 687   if (_archive_allocator == NULL) {
 688     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 689   }
 690 }
 691 
 692 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 693   // Allocations in archive regions cannot be of a size that would be considered
 694   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 695   // may be different at archive-restore time.
 696   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 697 }
 698 
 699 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 700   assert_at_safepoint(true /* should_be_vm_thread */);
 701   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 702   if (is_archive_alloc_too_large(word_size)) {
 703     return NULL;
 704   }
 705   return _archive_allocator->archive_mem_allocate(word_size);
 706 }
 707 
 708 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 709                                               size_t end_alignment_in_bytes) {
 710   assert_at_safepoint(true /* should_be_vm_thread */);
 711   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 712 
 713   // Call complete_archive to do the real work, filling in the MemRegion
 714   // array with the archive regions.
 715   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 716   delete _archive_allocator;
 717   _archive_allocator = NULL;
 718 }
 719 
 720 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 721   assert(ranges != NULL, "MemRegion array NULL");
 722   assert(count != 0, "No MemRegions provided");
 723   MemRegion reserved = _hrm.reserved();
 724   for (size_t i = 0; i < count; i++) {
 725     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 726       return false;
 727     }
 728   }
 729   return true;
 730 }
 731 
 732 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 733   assert(!is_init_completed(), "Expect to be called at JVM init time");
 734   assert(ranges != NULL, "MemRegion array NULL");
 735   assert(count != 0, "No MemRegions provided");
 736   MutexLockerEx x(Heap_lock);
 737 
 738   MemRegion reserved = _hrm.reserved();
 739   HeapWord* prev_last_addr = NULL;
 740   HeapRegion* prev_last_region = NULL;
 741 
 742   // Temporarily disable pretouching of heap pages. This interface is used
 743   // when mmap'ing archived heap data in, so pre-touching is wasted.
 744   FlagSetting fs(AlwaysPreTouch, false);
 745 
 746   // Enable archive object checking in G1MarkSweep. We have to let it know
 747   // about each archive range, so that objects in those ranges aren't marked.
 748   G1MarkSweep::enable_archive_object_check();
 749 
 750   // For each specified MemRegion range, allocate the corresponding G1
 751   // regions and mark them as archive regions. We expect the ranges in
 752   // ascending starting address order, without overlap.
 753   for (size_t i = 0; i < count; i++) {
 754     MemRegion curr_range = ranges[i];
 755     HeapWord* start_address = curr_range.start();
 756     size_t word_size = curr_range.word_size();
 757     HeapWord* last_address = curr_range.last();
 758     size_t commits = 0;
 759 
 760     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 761               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 762               p2i(start_address), p2i(last_address));
 763     guarantee(start_address > prev_last_addr,
 764               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 765               p2i(start_address), p2i(prev_last_addr));
 766     prev_last_addr = last_address;
 767 
 768     // Check for ranges that start in the same G1 region in which the previous
 769     // range ended, and adjust the start address so we don't try to allocate
 770     // the same region again. If the current range is entirely within that
 771     // region, skip it, just adjusting the recorded top.
 772     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 773     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 774       start_address = start_region->end();
 775       if (start_address > last_address) {
 776         increase_used(word_size * HeapWordSize);
 777         start_region->set_top(last_address + 1);
 778         continue;
 779       }
 780       start_region->set_top(start_address);
 781       curr_range = MemRegion(start_address, last_address + 1);
 782       start_region = _hrm.addr_to_region(start_address);
 783     }
 784 
 785     // Perform the actual region allocation, exiting if it fails.
 786     // Then note how much new space we have allocated.
 787     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 788       return false;
 789     }
 790     increase_used(word_size * HeapWordSize);
 791     if (commits != 0) {
 792       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 793                                 HeapRegion::GrainWords * HeapWordSize * commits);
 794 
 795     }
 796 
 797     // Mark each G1 region touched by the range as archive, add it to the old set,
 798     // and set the allocation context and top.
 799     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 800     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 801     prev_last_region = last_region;
 802 
 803     while (curr_region != NULL) {
 804       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 805              "Region already in use (index %u)", curr_region->hrm_index());
 806       curr_region->set_allocation_context(AllocationContext::system());
 807       curr_region->set_archive();
 808       _hr_printer.alloc(curr_region);
 809       _old_set.add(curr_region);
 810       if (curr_region != last_region) {
 811         curr_region->set_top(curr_region->end());
 812         curr_region = _hrm.next_region_in_heap(curr_region);
 813       } else {
 814         curr_region->set_top(last_address + 1);
 815         curr_region = NULL;
 816       }
 817     }
 818 
 819     // Notify mark-sweep of the archive range.
 820     G1MarkSweep::set_range_archive(curr_range, true);
 821   }
 822   return true;
 823 }
 824 
 825 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 826   assert(!is_init_completed(), "Expect to be called at JVM init time");
 827   assert(ranges != NULL, "MemRegion array NULL");
 828   assert(count != 0, "No MemRegions provided");
 829   MemRegion reserved = _hrm.reserved();
 830   HeapWord *prev_last_addr = NULL;
 831   HeapRegion* prev_last_region = NULL;
 832 
 833   // For each MemRegion, create filler objects, if needed, in the G1 regions
 834   // that contain the address range. The address range actually within the
 835   // MemRegion will not be modified. That is assumed to have been initialized
 836   // elsewhere, probably via an mmap of archived heap data.
 837   MutexLockerEx x(Heap_lock);
 838   for (size_t i = 0; i < count; i++) {
 839     HeapWord* start_address = ranges[i].start();
 840     HeapWord* last_address = ranges[i].last();
 841 
 842     assert(reserved.contains(start_address) && reserved.contains(last_address),
 843            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 844            p2i(start_address), p2i(last_address));
 845     assert(start_address > prev_last_addr,
 846            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 847            p2i(start_address), p2i(prev_last_addr));
 848 
 849     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 850     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 851     HeapWord* bottom_address = start_region->bottom();
 852 
 853     // Check for a range beginning in the same region in which the
 854     // previous one ended.
 855     if (start_region == prev_last_region) {
 856       bottom_address = prev_last_addr + 1;
 857     }
 858 
 859     // Verify that the regions were all marked as archive regions by
 860     // alloc_archive_regions.
 861     HeapRegion* curr_region = start_region;
 862     while (curr_region != NULL) {
 863       guarantee(curr_region->is_archive(),
 864                 "Expected archive region at index %u", curr_region->hrm_index());
 865       if (curr_region != last_region) {
 866         curr_region = _hrm.next_region_in_heap(curr_region);
 867       } else {
 868         curr_region = NULL;
 869       }
 870     }
 871 
 872     prev_last_addr = last_address;
 873     prev_last_region = last_region;
 874 
 875     // Fill the memory below the allocated range with dummy object(s),
 876     // if the region bottom does not match the range start, or if the previous
 877     // range ended within the same G1 region, and there is a gap.
 878     if (start_address != bottom_address) {
 879       size_t fill_size = pointer_delta(start_address, bottom_address);
 880       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 881       increase_used(fill_size * HeapWordSize);
 882     }
 883   }
 884 }
 885 
 886 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 887                                                      uint* gc_count_before_ret,
 888                                                      uint* gclocker_retry_count_ret) {
 889   assert_heap_not_locked_and_not_at_safepoint();
 890   assert(!is_humongous(word_size), "attempt_allocation() should not "
 891          "be called for humongous allocation requests");
 892 
 893   AllocationContext_t context = AllocationContext::current();
 894   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 895 
 896   if (result == NULL) {
 897     result = attempt_allocation_slow(word_size,
 898                                      context,
 899                                      gc_count_before_ret,
 900                                      gclocker_retry_count_ret);
 901   }
 902   assert_heap_not_locked();
 903   if (result != NULL) {
 904     dirty_young_block(result, word_size);
 905   }
 906   return result;
 907 }
 908 
 909 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 910   assert(!is_init_completed(), "Expect to be called at JVM init time");
 911   assert(ranges != NULL, "MemRegion array NULL");
 912   assert(count != 0, "No MemRegions provided");
 913   MemRegion reserved = _hrm.reserved();
 914   HeapWord* prev_last_addr = NULL;
 915   HeapRegion* prev_last_region = NULL;
 916   size_t size_used = 0;
 917   size_t uncommitted_regions = 0;
 918 
 919   // For each Memregion, free the G1 regions that constitute it, and
 920   // notify mark-sweep that the range is no longer to be considered 'archive.'
 921   MutexLockerEx x(Heap_lock);
 922   for (size_t i = 0; i < count; i++) {
 923     HeapWord* start_address = ranges[i].start();
 924     HeapWord* last_address = ranges[i].last();
 925 
 926     assert(reserved.contains(start_address) && reserved.contains(last_address),
 927            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 928            p2i(start_address), p2i(last_address));
 929     assert(start_address > prev_last_addr,
 930            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 931            p2i(start_address), p2i(prev_last_addr));
 932     size_used += ranges[i].byte_size();
 933     prev_last_addr = last_address;
 934 
 935     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 936     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 937 
 938     // Check for ranges that start in the same G1 region in which the previous
 939     // range ended, and adjust the start address so we don't try to free
 940     // the same region again. If the current range is entirely within that
 941     // region, skip it.
 942     if (start_region == prev_last_region) {
 943       start_address = start_region->end();
 944       if (start_address > last_address) {
 945         continue;
 946       }
 947       start_region = _hrm.addr_to_region(start_address);
 948     }
 949     prev_last_region = last_region;
 950 
 951     // After verifying that each region was marked as an archive region by
 952     // alloc_archive_regions, set it free and empty and uncommit it.
 953     HeapRegion* curr_region = start_region;
 954     while (curr_region != NULL) {
 955       guarantee(curr_region->is_archive(),
 956                 "Expected archive region at index %u", curr_region->hrm_index());
 957       uint curr_index = curr_region->hrm_index();
 958       _old_set.remove(curr_region);
 959       curr_region->set_free();
 960       curr_region->set_top(curr_region->bottom());
 961       if (curr_region != last_region) {
 962         curr_region = _hrm.next_region_in_heap(curr_region);
 963       } else {
 964         curr_region = NULL;
 965       }
 966       _hrm.shrink_at(curr_index, 1);
 967       uncommitted_regions++;
 968     }
 969 
 970     // Notify mark-sweep that this is no longer an archive range.
 971     G1MarkSweep::set_range_archive(ranges[i], false);
 972   }
 973 
 974   if (uncommitted_regions != 0) {
 975     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 976                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 977   }
 978   decrease_used(size_used);
 979 }
 980 
 981 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 982                                                         uint* gc_count_before_ret,
 983                                                         uint* gclocker_retry_count_ret) {
 984   // The structure of this method has a lot of similarities to
 985   // attempt_allocation_slow(). The reason these two were not merged
 986   // into a single one is that such a method would require several "if
 987   // allocation is not humongous do this, otherwise do that"
 988   // conditional paths which would obscure its flow. In fact, an early
 989   // version of this code did use a unified method which was harder to
 990   // follow and, as a result, it had subtle bugs that were hard to
 991   // track down. So keeping these two methods separate allows each to
 992   // be more readable. It will be good to keep these two in sync as
 993   // much as possible.
 994 
 995   assert_heap_not_locked_and_not_at_safepoint();
 996   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 997          "should only be called for humongous allocations");
 998 
 999   // Humongous objects can exhaust the heap quickly, so we should check if we
1000   // need to start a marking cycle at each humongous object allocation. We do
1001   // the check before we do the actual allocation. The reason for doing it
1002   // before the allocation is that we avoid having to keep track of the newly
1003   // allocated memory while we do a GC.
1004   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1005                                            word_size)) {
1006     collect(GCCause::_g1_humongous_allocation);
1007   }
1008 
1009   // We will loop until a) we manage to successfully perform the
1010   // allocation or b) we successfully schedule a collection which
1011   // fails to perform the allocation. b) is the only case when we'll
1012   // return NULL.
1013   HeapWord* result = NULL;
1014   for (int try_count = 1; /* we'll return */; try_count += 1) {
1015     bool should_try_gc;
1016     uint gc_count_before;
1017 
1018     {
1019       MutexLockerEx x(Heap_lock);
1020 
1021       // Given that humongous objects are not allocated in young
1022       // regions, we'll first try to do the allocation without doing a
1023       // collection hoping that there's enough space in the heap.
1024       result = humongous_obj_allocate(word_size, AllocationContext::current());
1025       if (result != NULL) {
1026         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
1027         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
1028         return result;
1029       }
1030 
1031       if (GC_locker::is_active_and_needs_gc()) {
1032         should_try_gc = false;
1033       } else {
1034          // The GCLocker may not be active but the GCLocker initiated
1035         // GC may not yet have been performed (GCLocker::needs_gc()
1036         // returns true). In this case we do not try this GC and
1037         // wait until the GCLocker initiated GC is performed, and
1038         // then retry the allocation.
1039         if (GC_locker::needs_gc()) {
1040           should_try_gc = false;
1041         } else {
1042           // Read the GC count while still holding the Heap_lock.
1043           gc_count_before = total_collections();
1044           should_try_gc = true;
1045         }
1046       }
1047     }
1048 
1049     if (should_try_gc) {
1050       // If we failed to allocate the humongous object, we should try to
1051       // do a collection pause (if we're allowed) in case it reclaims
1052       // enough space for the allocation to succeed after the pause.
1053 
1054       bool succeeded;
1055       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1056                                    GCCause::_g1_humongous_allocation);
1057       if (result != NULL) {
1058         assert(succeeded, "only way to get back a non-NULL result");
1059         return result;
1060       }
1061 
1062       if (succeeded) {
1063         // If we get here we successfully scheduled a collection which
1064         // failed to allocate. No point in trying to allocate
1065         // further. We'll just return NULL.
1066         MutexLockerEx x(Heap_lock);
1067         *gc_count_before_ret = total_collections();
1068         return NULL;
1069       }
1070     } else {
1071       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1072         MutexLockerEx x(Heap_lock);
1073         *gc_count_before_ret = total_collections();
1074         return NULL;
1075       }
1076       // The GCLocker is either active or the GCLocker initiated
1077       // GC has not yet been performed. Stall until it is and
1078       // then retry the allocation.
1079       GC_locker::stall_until_clear();
1080       (*gclocker_retry_count_ret) += 1;
1081     }
1082 
1083     // We can reach here if we were unsuccessful in scheduling a
1084     // collection (because another thread beat us to it) or if we were
1085     // stalled due to the GC locker. In either can we should retry the
1086     // allocation attempt in case another thread successfully
1087     // performed a collection and reclaimed enough space.  Give a
1088     // warning if we seem to be looping forever.
1089 
1090     if ((QueuedAllocationWarningCount > 0) &&
1091         (try_count % QueuedAllocationWarningCount == 0)) {
1092       warning("G1CollectedHeap::attempt_allocation_humongous() "
1093               "retries %d times", try_count);
1094     }
1095   }
1096 
1097   ShouldNotReachHere();
1098   return NULL;
1099 }
1100 
1101 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1102                                                            AllocationContext_t context,
1103                                                            bool expect_null_mutator_alloc_region) {
1104   assert_at_safepoint(true /* should_be_vm_thread */);
1105   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1106          "the current alloc region was unexpectedly found to be non-NULL");
1107 
1108   if (!is_humongous(word_size)) {
1109     return _allocator->attempt_allocation_locked(word_size, context);
1110   } else {
1111     HeapWord* result = humongous_obj_allocate(word_size, context);
1112     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1113       collector_state()->set_initiate_conc_mark_if_possible(true);
1114     }
1115     return result;
1116   }
1117 
1118   ShouldNotReachHere();
1119 }
1120 
1121 class PostMCRemSetClearClosure: public HeapRegionClosure {
1122   G1CollectedHeap* _g1h;
1123   ModRefBarrierSet* _mr_bs;
1124 public:
1125   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1126     _g1h(g1h), _mr_bs(mr_bs) {}
1127 
1128   bool doHeapRegion(HeapRegion* r) {
1129     HeapRegionRemSet* hrrs = r->rem_set();
1130 
1131     _g1h->reset_gc_time_stamps(r);
1132 
1133     if (r->is_continues_humongous()) {
1134       // We'll assert that the strong code root list and RSet is empty
1135       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1136       assert(hrrs->occupied() == 0, "RSet should be empty");
1137     } else {
1138       hrrs->clear();
1139     }
1140     // You might think here that we could clear just the cards
1141     // corresponding to the used region.  But no: if we leave a dirty card
1142     // in a region we might allocate into, then it would prevent that card
1143     // from being enqueued, and cause it to be missed.
1144     // Re: the performance cost: we shouldn't be doing full GC anyway!
1145     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1146 
1147     return false;
1148   }
1149 };
1150 
1151 void G1CollectedHeap::clear_rsets_post_compaction() {
1152   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1153   heap_region_iterate(&rs_clear);
1154 }
1155 
1156 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1157   G1CollectedHeap*   _g1h;
1158   UpdateRSOopClosure _cl;
1159 public:
1160   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1161     _cl(g1->g1_rem_set(), worker_i),
1162     _g1h(g1)
1163   { }
1164 
1165   bool doHeapRegion(HeapRegion* r) {
1166     if (!r->is_continues_humongous()) {
1167       _cl.set_from(r);
1168       r->oop_iterate(&_cl);
1169     }
1170     return false;
1171   }
1172 };
1173 
1174 class ParRebuildRSTask: public AbstractGangTask {
1175   G1CollectedHeap* _g1;
1176   HeapRegionClaimer _hrclaimer;
1177 
1178 public:
1179   ParRebuildRSTask(G1CollectedHeap* g1) :
1180       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1181 
1182   void work(uint worker_id) {
1183     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1184     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1185   }
1186 };
1187 
1188 class PostCompactionPrinterClosure: public HeapRegionClosure {
1189 private:
1190   G1HRPrinter* _hr_printer;
1191 public:
1192   bool doHeapRegion(HeapRegion* hr) {
1193     assert(!hr->is_young(), "not expecting to find young regions");
1194     _hr_printer->post_compaction(hr);
1195     return false;
1196   }
1197 
1198   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1199     : _hr_printer(hr_printer) { }
1200 };
1201 
1202 void G1CollectedHeap::print_hrm_post_compaction() {
1203   if (_hr_printer.is_active()) {
1204     PostCompactionPrinterClosure cl(hr_printer());
1205     heap_region_iterate(&cl);
1206   }
1207 
1208 }
1209 
1210 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1211                                          bool clear_all_soft_refs) {
1212   assert_at_safepoint(true /* should_be_vm_thread */);
1213 
1214   if (GC_locker::check_active_before_gc()) {
1215     return false;
1216   }
1217 
1218   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1219   gc_timer->register_gc_start();
1220 
1221   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1222   GCIdMark gc_id_mark;
1223   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1224 
1225   SvcGCMarker sgcm(SvcGCMarker::FULL);
1226   ResourceMark rm;
1227 
1228   print_heap_before_gc();
1229   trace_heap_before_gc(gc_tracer);
1230 
1231   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1232 
1233   verify_region_sets_optional();
1234 
1235   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1236                            collector_policy()->should_clear_all_soft_refs();
1237 
1238   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1239 
1240   {
1241     IsGCActiveMark x;
1242 
1243     // Timing
1244     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1245     GCTraceCPUTime tcpu;
1246 
1247     {
1248       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1249       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1250       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1251 
1252       g1_policy()->record_full_collection_start();
1253 
1254       // Note: When we have a more flexible GC logging framework that
1255       // allows us to add optional attributes to a GC log record we
1256       // could consider timing and reporting how long we wait in the
1257       // following two methods.
1258       wait_while_free_regions_coming();
1259       // If we start the compaction before the CM threads finish
1260       // scanning the root regions we might trip them over as we'll
1261       // be moving objects / updating references. So let's wait until
1262       // they are done. By telling them to abort, they should complete
1263       // early.
1264       _cm->root_regions()->abort();
1265       _cm->root_regions()->wait_until_scan_finished();
1266       append_secondary_free_list_if_not_empty_with_lock();
1267 
1268       gc_prologue(true);
1269       increment_total_collections(true /* full gc */);
1270       increment_old_marking_cycles_started();
1271 
1272       assert(used() == recalculate_used(), "Should be equal");
1273 
1274       verify_before_gc();
1275 
1276       check_bitmaps("Full GC Start");
1277       pre_full_gc_dump(gc_timer);
1278 
1279 #if defined(COMPILER2) || INCLUDE_JVMCI
1280       DerivedPointerTable::clear();
1281 #endif
1282 
1283       // Disable discovery and empty the discovered lists
1284       // for the CM ref processor.
1285       ref_processor_cm()->disable_discovery();
1286       ref_processor_cm()->abandon_partial_discovery();
1287       ref_processor_cm()->verify_no_references_recorded();
1288 
1289       // Abandon current iterations of concurrent marking and concurrent
1290       // refinement, if any are in progress. We have to do this before
1291       // wait_until_scan_finished() below.
1292       concurrent_mark()->abort();
1293 
1294       // Make sure we'll choose a new allocation region afterwards.
1295       _allocator->release_mutator_alloc_region();
1296       _allocator->abandon_gc_alloc_regions();
1297       g1_rem_set()->cleanupHRRS();
1298 
1299       // We may have added regions to the current incremental collection
1300       // set between the last GC or pause and now. We need to clear the
1301       // incremental collection set and then start rebuilding it afresh
1302       // after this full GC.
1303       abandon_collection_set(g1_policy()->inc_cset_head());
1304       g1_policy()->clear_incremental_cset();
1305       g1_policy()->stop_incremental_cset_building();
1306 
1307       tear_down_region_sets(false /* free_list_only */);
1308       collector_state()->set_gcs_are_young(true);
1309 
1310       // See the comments in g1CollectedHeap.hpp and
1311       // G1CollectedHeap::ref_processing_init() about
1312       // how reference processing currently works in G1.
1313 
1314       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1315       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1316 
1317       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1318       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1319 
1320       ref_processor_stw()->enable_discovery();
1321       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1322 
1323       // Do collection work
1324       {
1325         HandleMark hm;  // Discard invalid handles created during gc
1326         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1327       }
1328 
1329       assert(num_free_regions() == 0, "we should not have added any free regions");
1330       rebuild_region_sets(false /* free_list_only */);
1331 
1332       // Enqueue any discovered reference objects that have
1333       // not been removed from the discovered lists.
1334       ref_processor_stw()->enqueue_discovered_references();
1335 
1336 #if defined(COMPILER2) || INCLUDE_JVMCI
1337       DerivedPointerTable::update_pointers();
1338 #endif
1339 
1340       MemoryService::track_memory_usage();
1341 
1342       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1343       ref_processor_stw()->verify_no_references_recorded();
1344 
1345       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1346       ClassLoaderDataGraph::purge();
1347       MetaspaceAux::verify_metrics();
1348 
1349       // Note: since we've just done a full GC, concurrent
1350       // marking is no longer active. Therefore we need not
1351       // re-enable reference discovery for the CM ref processor.
1352       // That will be done at the start of the next marking cycle.
1353       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1354       ref_processor_cm()->verify_no_references_recorded();
1355 
1356       reset_gc_time_stamp();
1357       // Since everything potentially moved, we will clear all remembered
1358       // sets, and clear all cards.  Later we will rebuild remembered
1359       // sets. We will also reset the GC time stamps of the regions.
1360       clear_rsets_post_compaction();
1361       check_gc_time_stamps();
1362 
1363       resize_if_necessary_after_full_collection();
1364 
1365       // We should do this after we potentially resize the heap so
1366       // that all the COMMIT / UNCOMMIT events are generated before
1367       // the compaction events.
1368       print_hrm_post_compaction();
1369 
1370       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1371       if (hot_card_cache->use_cache()) {
1372         hot_card_cache->reset_card_counts();
1373         hot_card_cache->reset_hot_cache();
1374       }
1375 
1376       // Rebuild remembered sets of all regions.
1377       uint n_workers =
1378         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1379                                                 workers()->active_workers(),
1380                                                 Threads::number_of_non_daemon_threads());
1381       workers()->set_active_workers(n_workers);
1382 
1383       ParRebuildRSTask rebuild_rs_task(this);
1384       workers()->run_task(&rebuild_rs_task);
1385 
1386       // Rebuild the strong code root lists for each region
1387       rebuild_strong_code_roots();
1388 
1389       if (true) { // FIXME
1390         MetaspaceGC::compute_new_size();
1391       }
1392 
1393 #ifdef TRACESPINNING
1394       ParallelTaskTerminator::print_termination_counts();
1395 #endif
1396 
1397       // Discard all rset updates
1398       JavaThread::dirty_card_queue_set().abandon_logs();
1399       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1400 
1401       _young_list->reset_sampled_info();
1402       // At this point there should be no regions in the
1403       // entire heap tagged as young.
1404       assert(check_young_list_empty(true /* check_heap */),
1405              "young list should be empty at this point");
1406 
1407       // Update the number of full collections that have been completed.
1408       increment_old_marking_cycles_completed(false /* concurrent */);
1409 
1410       _hrm.verify_optional();
1411       verify_region_sets_optional();
1412 
1413       verify_after_gc();
1414 
1415       // Clear the previous marking bitmap, if needed for bitmap verification.
1416       // Note we cannot do this when we clear the next marking bitmap in
1417       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1418       // objects marked during a full GC against the previous bitmap.
1419       // But we need to clear it before calling check_bitmaps below since
1420       // the full GC has compacted objects and updated TAMS but not updated
1421       // the prev bitmap.
1422       if (G1VerifyBitmaps) {
1423         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1424       }
1425       check_bitmaps("Full GC End");
1426 
1427       // Start a new incremental collection set for the next pause
1428       assert(g1_policy()->collection_set() == NULL, "must be");
1429       g1_policy()->start_incremental_cset_building();
1430 
1431       clear_cset_fast_test();
1432 
1433       _allocator->init_mutator_alloc_region();
1434 
1435       g1_policy()->record_full_collection_end();
1436 
1437       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1438       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1439       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1440       // before any GC notifications are raised.
1441       g1mm()->update_sizes();
1442 
1443       gc_epilogue(true);
1444     }
1445 
1446     g1_policy()->print_detailed_heap_transition();
1447 
1448     print_heap_after_gc();
1449     trace_heap_after_gc(gc_tracer);
1450 
1451     post_full_gc_dump(gc_timer);
1452 
1453     gc_timer->register_gc_end();
1454     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1455   }
1456 
1457   return true;
1458 }
1459 
1460 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1461   // Currently, there is no facility in the do_full_collection(bool) API to notify
1462   // the caller that the collection did not succeed (e.g., because it was locked
1463   // out by the GC locker). So, right now, we'll ignore the return value.
1464   bool dummy = do_full_collection(true,                /* explicit_gc */
1465                                   clear_all_soft_refs);
1466 }
1467 
1468 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1469   // Include bytes that will be pre-allocated to support collections, as "used".
1470   const size_t used_after_gc = used();
1471   const size_t capacity_after_gc = capacity();
1472   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1473 
1474   // This is enforced in arguments.cpp.
1475   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1476          "otherwise the code below doesn't make sense");
1477 
1478   // We don't have floating point command-line arguments
1479   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1480   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1481   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1482   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1483 
1484   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1485   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1486 
1487   // We have to be careful here as these two calculations can overflow
1488   // 32-bit size_t's.
1489   double used_after_gc_d = (double) used_after_gc;
1490   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1491   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1492 
1493   // Let's make sure that they are both under the max heap size, which
1494   // by default will make them fit into a size_t.
1495   double desired_capacity_upper_bound = (double) max_heap_size;
1496   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1497                                     desired_capacity_upper_bound);
1498   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1499                                     desired_capacity_upper_bound);
1500 
1501   // We can now safely turn them into size_t's.
1502   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1503   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1504 
1505   // This assert only makes sense here, before we adjust them
1506   // with respect to the min and max heap size.
1507   assert(minimum_desired_capacity <= maximum_desired_capacity,
1508          "minimum_desired_capacity = " SIZE_FORMAT ", "
1509          "maximum_desired_capacity = " SIZE_FORMAT,
1510          minimum_desired_capacity, maximum_desired_capacity);
1511 
1512   // Should not be greater than the heap max size. No need to adjust
1513   // it with respect to the heap min size as it's a lower bound (i.e.,
1514   // we'll try to make the capacity larger than it, not smaller).
1515   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1516   // Should not be less than the heap min size. No need to adjust it
1517   // with respect to the heap max size as it's an upper bound (i.e.,
1518   // we'll try to make the capacity smaller than it, not greater).
1519   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1520 
1521   if (capacity_after_gc < minimum_desired_capacity) {
1522     // Don't expand unless it's significant
1523     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1524 
1525     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1526                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1527                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1528 
1529     expand(expand_bytes);
1530 
1531     // No expansion, now see if we want to shrink
1532   } else if (capacity_after_gc > maximum_desired_capacity) {
1533     // Capacity too large, compute shrinking size
1534     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1535 
1536     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1537                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1538                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1539 
1540     shrink(shrink_bytes);
1541   }
1542 }
1543 
1544 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1545                                                             AllocationContext_t context,
1546                                                             bool do_gc,
1547                                                             bool clear_all_soft_refs,
1548                                                             bool expect_null_mutator_alloc_region,
1549                                                             bool* gc_succeeded) {
1550   *gc_succeeded = true;
1551   // Let's attempt the allocation first.
1552   HeapWord* result =
1553     attempt_allocation_at_safepoint(word_size,
1554                                     context,
1555                                     expect_null_mutator_alloc_region);
1556   if (result != NULL) {
1557     assert(*gc_succeeded, "sanity");
1558     return result;
1559   }
1560 
1561   // In a G1 heap, we're supposed to keep allocation from failing by
1562   // incremental pauses.  Therefore, at least for now, we'll favor
1563   // expansion over collection.  (This might change in the future if we can
1564   // do something smarter than full collection to satisfy a failed alloc.)
1565   result = expand_and_allocate(word_size, context);
1566   if (result != NULL) {
1567     assert(*gc_succeeded, "sanity");
1568     return result;
1569   }
1570 
1571   if (do_gc) {
1572     // Expansion didn't work, we'll try to do a Full GC.
1573     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1574                                        clear_all_soft_refs);
1575   }
1576 
1577   return NULL;
1578 }
1579 
1580 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1581                                                      AllocationContext_t context,
1582                                                      bool* succeeded) {
1583   assert_at_safepoint(true /* should_be_vm_thread */);
1584 
1585   // Attempts to allocate followed by Full GC.
1586   HeapWord* result =
1587     satisfy_failed_allocation_helper(word_size,
1588                                      context,
1589                                      true,  /* do_gc */
1590                                      false, /* clear_all_soft_refs */
1591                                      false, /* expect_null_mutator_alloc_region */
1592                                      succeeded);
1593 
1594   if (result != NULL || !*succeeded) {
1595     return result;
1596   }
1597 
1598   // Attempts to allocate followed by Full GC that will collect all soft references.
1599   result = satisfy_failed_allocation_helper(word_size,
1600                                             context,
1601                                             true, /* do_gc */
1602                                             true, /* clear_all_soft_refs */
1603                                             true, /* expect_null_mutator_alloc_region */
1604                                             succeeded);
1605 
1606   if (result != NULL || !*succeeded) {
1607     return result;
1608   }
1609 
1610   // Attempts to allocate, no GC
1611   result = satisfy_failed_allocation_helper(word_size,
1612                                             context,
1613                                             false, /* do_gc */
1614                                             false, /* clear_all_soft_refs */
1615                                             true,  /* expect_null_mutator_alloc_region */
1616                                             succeeded);
1617 
1618   if (result != NULL) {
1619     assert(*succeeded, "sanity");
1620     return result;
1621   }
1622 
1623   assert(!collector_policy()->should_clear_all_soft_refs(),
1624          "Flag should have been handled and cleared prior to this point");
1625 
1626   // What else?  We might try synchronous finalization later.  If the total
1627   // space available is large enough for the allocation, then a more
1628   // complete compaction phase than we've tried so far might be
1629   // appropriate.
1630   assert(*succeeded, "sanity");
1631   return NULL;
1632 }
1633 
1634 // Attempting to expand the heap sufficiently
1635 // to support an allocation of the given "word_size".  If
1636 // successful, perform the allocation and return the address of the
1637 // allocated block, or else "NULL".
1638 
1639 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1640   assert_at_safepoint(true /* should_be_vm_thread */);
1641 
1642   verify_region_sets_optional();
1643 
1644   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1645   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1646                             word_size * HeapWordSize);
1647 
1648 
1649   if (expand(expand_bytes)) {
1650     _hrm.verify_optional();
1651     verify_region_sets_optional();
1652     return attempt_allocation_at_safepoint(word_size,
1653                                            context,
1654                                            false /* expect_null_mutator_alloc_region */);
1655   }
1656   return NULL;
1657 }
1658 
1659 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1660   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1661   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1662                                        HeapRegion::GrainBytes);
1663 
1664   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",
1665                             expand_bytes, aligned_expand_bytes);
1666 
1667   if (is_maximal_no_gc()) {
1668     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1669     return false;
1670   }
1671 
1672   double expand_heap_start_time_sec = os::elapsedTime();
1673   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1674   assert(regions_to_expand > 0, "Must expand by at least one region");
1675 
1676   uint expanded_by = _hrm.expand_by(regions_to_expand);
1677   if (expand_time_ms != NULL) {
1678     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1679   }
1680 
1681   if (expanded_by > 0) {
1682     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1683     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1684     g1_policy()->record_new_heap_size(num_regions());
1685   } else {
1686     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1687 
1688     // The expansion of the virtual storage space was unsuccessful.
1689     // Let's see if it was because we ran out of swap.
1690     if (G1ExitOnExpansionFailure &&
1691         _hrm.available() >= regions_to_expand) {
1692       // We had head room...
1693       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1694     }
1695   }
1696   return regions_to_expand > 0;
1697 }
1698 
1699 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1700   size_t aligned_shrink_bytes =
1701     ReservedSpace::page_align_size_down(shrink_bytes);
1702   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1703                                          HeapRegion::GrainBytes);
1704   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1705 
1706   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1707   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1708 
1709 
1710   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1711                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1712   if (num_regions_removed > 0) {
1713     g1_policy()->record_new_heap_size(num_regions());
1714   } else {
1715     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1716   }
1717 }
1718 
1719 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1720   verify_region_sets_optional();
1721 
1722   // We should only reach here at the end of a Full GC which means we
1723   // should not not be holding to any GC alloc regions. The method
1724   // below will make sure of that and do any remaining clean up.
1725   _allocator->abandon_gc_alloc_regions();
1726 
1727   // Instead of tearing down / rebuilding the free lists here, we
1728   // could instead use the remove_all_pending() method on free_list to
1729   // remove only the ones that we need to remove.
1730   tear_down_region_sets(true /* free_list_only */);
1731   shrink_helper(shrink_bytes);
1732   rebuild_region_sets(true /* free_list_only */);
1733 
1734   _hrm.verify_optional();
1735   verify_region_sets_optional();
1736 }
1737 
1738 // Public methods.
1739 
1740 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1741   CollectedHeap(),
1742   _g1_policy(policy_),
1743   _dirty_card_queue_set(false),
1744   _is_alive_closure_cm(this),
1745   _is_alive_closure_stw(this),
1746   _ref_processor_cm(NULL),
1747   _ref_processor_stw(NULL),
1748   _bot_shared(NULL),
1749   _cg1r(NULL),
1750   _g1mm(NULL),
1751   _refine_cte_cl(NULL),
1752   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1753   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1754   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1755   _humongous_reclaim_candidates(),
1756   _has_humongous_reclaim_candidates(false),
1757   _archive_allocator(NULL),
1758   _free_regions_coming(false),
1759   _young_list(new YoungList(this)),
1760   _gc_time_stamp(0),
1761   _summary_bytes_used(0),
1762   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1763   _old_evac_stats(OldPLABSize, PLABWeight),
1764   _expand_heap_after_alloc_failure(true),
1765   _old_marking_cycles_started(0),
1766   _old_marking_cycles_completed(0),
1767   _heap_summary_sent(false),
1768   _in_cset_fast_test(),
1769   _dirty_cards_region_list(NULL),
1770   _worker_cset_start_region(NULL),
1771   _worker_cset_start_region_time_stamp(NULL),
1772   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1773   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1774   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1775   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1776 
1777   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1778                           /* are_GC_task_threads */true,
1779                           /* are_ConcurrentGC_threads */false);
1780   _workers->initialize_workers();
1781 
1782   _allocator = G1Allocator::create_allocator(this);
1783   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1784 
1785   // Override the default _filler_array_max_size so that no humongous filler
1786   // objects are created.
1787   _filler_array_max_size = _humongous_object_threshold_in_words;
1788 
1789   uint n_queues = ParallelGCThreads;
1790   _task_queues = new RefToScanQueueSet(n_queues);
1791 
1792   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1793   assert(n_rem_sets > 0, "Invariant.");
1794 
1795   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1796   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1797   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1798 
1799   for (uint i = 0; i < n_queues; i++) {
1800     RefToScanQueue* q = new RefToScanQueue();
1801     q->initialize();
1802     _task_queues->register_queue(i, q);
1803     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1804   }
1805   clear_cset_start_regions();
1806 
1807   // Initialize the G1EvacuationFailureALot counters and flags.
1808   NOT_PRODUCT(reset_evacuation_should_fail();)
1809 
1810   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1811 }
1812 
1813 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1814                                                                  size_t size,
1815                                                                  size_t translation_factor) {
1816   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1817   // Allocate a new reserved space, preferring to use large pages.
1818   ReservedSpace rs(size, preferred_page_size);
1819   G1RegionToSpaceMapper* result  =
1820     G1RegionToSpaceMapper::create_mapper(rs,
1821                                          size,
1822                                          rs.alignment(),
1823                                          HeapRegion::GrainBytes,
1824                                          translation_factor,
1825                                          mtGC);
1826   if (TracePageSizes) {
1827     tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1828                   description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1829   }
1830   return result;
1831 }
1832 
1833 jint G1CollectedHeap::initialize() {
1834   CollectedHeap::pre_initialize();
1835   os::enable_vtime();
1836 
1837   // Necessary to satisfy locking discipline assertions.
1838 
1839   MutexLocker x(Heap_lock);
1840 
1841   // While there are no constraints in the GC code that HeapWordSize
1842   // be any particular value, there are multiple other areas in the
1843   // system which believe this to be true (e.g. oop->object_size in some
1844   // cases incorrectly returns the size in wordSize units rather than
1845   // HeapWordSize).
1846   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1847 
1848   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1849   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1850   size_t heap_alignment = collector_policy()->heap_alignment();
1851 
1852   // Ensure that the sizes are properly aligned.
1853   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1854   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1855   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1856 
1857   _refine_cte_cl = new RefineCardTableEntryClosure();
1858 
1859   jint ecode = JNI_OK;
1860   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1861   if (_cg1r == NULL) {
1862     return ecode;
1863   }
1864 
1865   // Reserve the maximum.
1866 
1867   // When compressed oops are enabled, the preferred heap base
1868   // is calculated by subtracting the requested size from the
1869   // 32Gb boundary and using the result as the base address for
1870   // heap reservation. If the requested size is not aligned to
1871   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1872   // into the ReservedHeapSpace constructor) then the actual
1873   // base of the reserved heap may end up differing from the
1874   // address that was requested (i.e. the preferred heap base).
1875   // If this happens then we could end up using a non-optimal
1876   // compressed oops mode.
1877 
1878   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1879                                                  heap_alignment);
1880 
1881   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1882 
1883   // Create the barrier set for the entire reserved region.
1884   G1SATBCardTableLoggingModRefBS* bs
1885     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1886   bs->initialize();
1887   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1888   set_barrier_set(bs);
1889 
1890   // Also create a G1 rem set.
1891   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1892 
1893   // Carve out the G1 part of the heap.
1894 
1895   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1896   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1897   G1RegionToSpaceMapper* heap_storage =
1898     G1RegionToSpaceMapper::create_mapper(g1_rs,
1899                                          g1_rs.size(),
1900                                          page_size,
1901                                          HeapRegion::GrainBytes,
1902                                          1,
1903                                          mtJavaHeap);
1904   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1905                        max_byte_size, page_size,
1906                        heap_rs.base(),
1907                        heap_rs.size());
1908   heap_storage->set_mapping_changed_listener(&_listener);
1909 
1910   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1911   G1RegionToSpaceMapper* bot_storage =
1912     create_aux_memory_mapper("Block offset table",
1913                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1914                              G1BlockOffsetSharedArray::heap_map_factor());
1915 
1916   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1917   G1RegionToSpaceMapper* cardtable_storage =
1918     create_aux_memory_mapper("Card table",
1919                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1920                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1921 
1922   G1RegionToSpaceMapper* card_counts_storage =
1923     create_aux_memory_mapper("Card counts table",
1924                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1925                              G1CardCounts::heap_map_factor());
1926 
1927   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1928   G1RegionToSpaceMapper* prev_bitmap_storage =
1929     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1930   G1RegionToSpaceMapper* next_bitmap_storage =
1931     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1932 
1933   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1934   g1_barrier_set()->initialize(cardtable_storage);
1935    // Do later initialization work for concurrent refinement.
1936   _cg1r->init(card_counts_storage);
1937 
1938   // 6843694 - ensure that the maximum region index can fit
1939   // in the remembered set structures.
1940   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1941   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1942 
1943   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1944   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1945   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1946             "too many cards per region");
1947 
1948   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1949 
1950   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1951 
1952   {
1953     HeapWord* start = _hrm.reserved().start();
1954     HeapWord* end = _hrm.reserved().end();
1955     size_t granularity = HeapRegion::GrainBytes;
1956 
1957     _in_cset_fast_test.initialize(start, end, granularity);
1958     _humongous_reclaim_candidates.initialize(start, end, granularity);
1959   }
1960 
1961   // Create the ConcurrentMark data structure and thread.
1962   // (Must do this late, so that "max_regions" is defined.)
1963   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1964   if (_cm == NULL || !_cm->completed_initialization()) {
1965     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1966     return JNI_ENOMEM;
1967   }
1968   _cmThread = _cm->cmThread();
1969 
1970   // Initialize the from_card cache structure of HeapRegionRemSet.
1971   HeapRegionRemSet::init_heap(max_regions());
1972 
1973   // Now expand into the initial heap size.
1974   if (!expand(init_byte_size)) {
1975     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1976     return JNI_ENOMEM;
1977   }
1978 
1979   // Perform any initialization actions delegated to the policy.
1980   g1_policy()->init();
1981 
1982   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1983                                                SATB_Q_FL_lock,
1984                                                G1SATBProcessCompletedThreshold,
1985                                                Shared_SATB_Q_lock);
1986 
1987   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1988                                                 DirtyCardQ_CBL_mon,
1989                                                 DirtyCardQ_FL_lock,
1990                                                 concurrent_g1_refine()->yellow_zone(),
1991                                                 concurrent_g1_refine()->red_zone(),
1992                                                 Shared_DirtyCardQ_lock);
1993 
1994   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1995                                     DirtyCardQ_CBL_mon,
1996                                     DirtyCardQ_FL_lock,
1997                                     -1, // never trigger processing
1998                                     -1, // no limit on length
1999                                     Shared_DirtyCardQ_lock,
2000                                     &JavaThread::dirty_card_queue_set());
2001 
2002   // Here we allocate the dummy HeapRegion that is required by the
2003   // G1AllocRegion class.
2004   HeapRegion* dummy_region = _hrm.get_dummy_region();
2005 
2006   // We'll re-use the same region whether the alloc region will
2007   // require BOT updates or not and, if it doesn't, then a non-young
2008   // region will complain that it cannot support allocations without
2009   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2010   dummy_region->set_eden();
2011   // Make sure it's full.
2012   dummy_region->set_top(dummy_region->end());
2013   G1AllocRegion::setup(this, dummy_region);
2014 
2015   _allocator->init_mutator_alloc_region();
2016 
2017   // Do create of the monitoring and management support so that
2018   // values in the heap have been properly initialized.
2019   _g1mm = new G1MonitoringSupport(this);
2020 
2021   G1StringDedup::initialize();
2022 
2023   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2024   for (uint i = 0; i < ParallelGCThreads; i++) {
2025     new (&_preserved_objs[i]) OopAndMarkOopStack();
2026   }
2027 
2028   return JNI_OK;
2029 }
2030 
2031 void G1CollectedHeap::stop() {
2032   // Stop all concurrent threads. We do this to make sure these threads
2033   // do not continue to execute and access resources (e.g. logging)
2034   // that are destroyed during shutdown.
2035   _cg1r->stop();
2036   _cmThread->stop();
2037   if (G1StringDedup::is_enabled()) {
2038     G1StringDedup::stop();
2039   }
2040 }
2041 
2042 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2043   return HeapRegion::max_region_size();
2044 }
2045 
2046 void G1CollectedHeap::post_initialize() {
2047   CollectedHeap::post_initialize();
2048   ref_processing_init();
2049 }
2050 
2051 void G1CollectedHeap::ref_processing_init() {
2052   // Reference processing in G1 currently works as follows:
2053   //
2054   // * There are two reference processor instances. One is
2055   //   used to record and process discovered references
2056   //   during concurrent marking; the other is used to
2057   //   record and process references during STW pauses
2058   //   (both full and incremental).
2059   // * Both ref processors need to 'span' the entire heap as
2060   //   the regions in the collection set may be dotted around.
2061   //
2062   // * For the concurrent marking ref processor:
2063   //   * Reference discovery is enabled at initial marking.
2064   //   * Reference discovery is disabled and the discovered
2065   //     references processed etc during remarking.
2066   //   * Reference discovery is MT (see below).
2067   //   * Reference discovery requires a barrier (see below).
2068   //   * Reference processing may or may not be MT
2069   //     (depending on the value of ParallelRefProcEnabled
2070   //     and ParallelGCThreads).
2071   //   * A full GC disables reference discovery by the CM
2072   //     ref processor and abandons any entries on it's
2073   //     discovered lists.
2074   //
2075   // * For the STW processor:
2076   //   * Non MT discovery is enabled at the start of a full GC.
2077   //   * Processing and enqueueing during a full GC is non-MT.
2078   //   * During a full GC, references are processed after marking.
2079   //
2080   //   * Discovery (may or may not be MT) is enabled at the start
2081   //     of an incremental evacuation pause.
2082   //   * References are processed near the end of a STW evacuation pause.
2083   //   * For both types of GC:
2084   //     * Discovery is atomic - i.e. not concurrent.
2085   //     * Reference discovery will not need a barrier.
2086 
2087   MemRegion mr = reserved_region();
2088 
2089   // Concurrent Mark ref processor
2090   _ref_processor_cm =
2091     new ReferenceProcessor(mr,    // span
2092                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2093                                 // mt processing
2094                            ParallelGCThreads,
2095                                 // degree of mt processing
2096                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2097                                 // mt discovery
2098                            MAX2(ParallelGCThreads, ConcGCThreads),
2099                                 // degree of mt discovery
2100                            false,
2101                                 // Reference discovery is not atomic
2102                            &_is_alive_closure_cm);
2103                                 // is alive closure
2104                                 // (for efficiency/performance)
2105 
2106   // STW ref processor
2107   _ref_processor_stw =
2108     new ReferenceProcessor(mr,    // span
2109                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2110                                 // mt processing
2111                            ParallelGCThreads,
2112                                 // degree of mt processing
2113                            (ParallelGCThreads > 1),
2114                                 // mt discovery
2115                            ParallelGCThreads,
2116                                 // degree of mt discovery
2117                            true,
2118                                 // Reference discovery is atomic
2119                            &_is_alive_closure_stw);
2120                                 // is alive closure
2121                                 // (for efficiency/performance)
2122 }
2123 
2124 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2125   return g1_policy();
2126 }
2127 
2128 size_t G1CollectedHeap::capacity() const {
2129   return _hrm.length() * HeapRegion::GrainBytes;
2130 }
2131 
2132 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2133   hr->reset_gc_time_stamp();
2134 }
2135 
2136 #ifndef PRODUCT
2137 
2138 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2139 private:
2140   unsigned _gc_time_stamp;
2141   bool _failures;
2142 
2143 public:
2144   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2145     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2146 
2147   virtual bool doHeapRegion(HeapRegion* hr) {
2148     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2149     if (_gc_time_stamp != region_gc_time_stamp) {
2150       log_info(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2151                            region_gc_time_stamp, _gc_time_stamp);
2152       _failures = true;
2153     }
2154     return false;
2155   }
2156 
2157   bool failures() { return _failures; }
2158 };
2159 
2160 void G1CollectedHeap::check_gc_time_stamps() {
2161   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2162   heap_region_iterate(&cl);
2163   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2164 }
2165 #endif // PRODUCT
2166 
2167 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2168   _cg1r->hot_card_cache()->drain(cl, worker_i);
2169 }
2170 
2171 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2172   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2173   size_t n_completed_buffers = 0;
2174   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2175     n_completed_buffers++;
2176   }
2177   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2178   dcqs.clear_n_completed_buffers();
2179   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2180 }
2181 
2182 // Computes the sum of the storage used by the various regions.
2183 size_t G1CollectedHeap::used() const {
2184   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2185   if (_archive_allocator != NULL) {
2186     result += _archive_allocator->used();
2187   }
2188   return result;
2189 }
2190 
2191 size_t G1CollectedHeap::used_unlocked() const {
2192   return _summary_bytes_used;
2193 }
2194 
2195 class SumUsedClosure: public HeapRegionClosure {
2196   size_t _used;
2197 public:
2198   SumUsedClosure() : _used(0) {}
2199   bool doHeapRegion(HeapRegion* r) {
2200     _used += r->used();
2201     return false;
2202   }
2203   size_t result() { return _used; }
2204 };
2205 
2206 size_t G1CollectedHeap::recalculate_used() const {
2207   double recalculate_used_start = os::elapsedTime();
2208 
2209   SumUsedClosure blk;
2210   heap_region_iterate(&blk);
2211 
2212   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2213   return blk.result();
2214 }
2215 
2216 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2217   switch (cause) {
2218     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2219     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2220     case GCCause::_update_allocation_context_stats_inc: return true;
2221     case GCCause::_wb_conc_mark:                        return true;
2222     default :                                           return false;
2223   }
2224 }
2225 
2226 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2227   switch (cause) {
2228     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2229     case GCCause::_g1_humongous_allocation: return true;
2230     default:                                return is_user_requested_concurrent_full_gc(cause);
2231   }
2232 }
2233 
2234 #ifndef PRODUCT
2235 void G1CollectedHeap::allocate_dummy_regions() {
2236   // Let's fill up most of the region
2237   size_t word_size = HeapRegion::GrainWords - 1024;
2238   // And as a result the region we'll allocate will be humongous.
2239   guarantee(is_humongous(word_size), "sanity");
2240 
2241   // _filler_array_max_size is set to humongous object threshold
2242   // but temporarily change it to use CollectedHeap::fill_with_object().
2243   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2244 
2245   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2246     // Let's use the existing mechanism for the allocation
2247     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2248                                                  AllocationContext::system());
2249     if (dummy_obj != NULL) {
2250       MemRegion mr(dummy_obj, word_size);
2251       CollectedHeap::fill_with_object(mr);
2252     } else {
2253       // If we can't allocate once, we probably cannot allocate
2254       // again. Let's get out of the loop.
2255       break;
2256     }
2257   }
2258 }
2259 #endif // !PRODUCT
2260 
2261 void G1CollectedHeap::increment_old_marking_cycles_started() {
2262   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2263          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2264          "Wrong marking cycle count (started: %d, completed: %d)",
2265          _old_marking_cycles_started, _old_marking_cycles_completed);
2266 
2267   _old_marking_cycles_started++;
2268 }
2269 
2270 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2271   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2272 
2273   // We assume that if concurrent == true, then the caller is a
2274   // concurrent thread that was joined the Suspendible Thread
2275   // Set. If there's ever a cheap way to check this, we should add an
2276   // assert here.
2277 
2278   // Given that this method is called at the end of a Full GC or of a
2279   // concurrent cycle, and those can be nested (i.e., a Full GC can
2280   // interrupt a concurrent cycle), the number of full collections
2281   // completed should be either one (in the case where there was no
2282   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2283   // behind the number of full collections started.
2284 
2285   // This is the case for the inner caller, i.e. a Full GC.
2286   assert(concurrent ||
2287          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2288          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2289          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2290          "is inconsistent with _old_marking_cycles_completed = %u",
2291          _old_marking_cycles_started, _old_marking_cycles_completed);
2292 
2293   // This is the case for the outer caller, i.e. the concurrent cycle.
2294   assert(!concurrent ||
2295          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2296          "for outer caller (concurrent cycle): "
2297          "_old_marking_cycles_started = %u "
2298          "is inconsistent with _old_marking_cycles_completed = %u",
2299          _old_marking_cycles_started, _old_marking_cycles_completed);
2300 
2301   _old_marking_cycles_completed += 1;
2302 
2303   // We need to clear the "in_progress" flag in the CM thread before
2304   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2305   // is set) so that if a waiter requests another System.gc() it doesn't
2306   // incorrectly see that a marking cycle is still in progress.
2307   if (concurrent) {
2308     _cmThread->set_idle();
2309   }
2310 
2311   // This notify_all() will ensure that a thread that called
2312   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2313   // and it's waiting for a full GC to finish will be woken up. It is
2314   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2315   FullGCCount_lock->notify_all();
2316 }
2317 
2318 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2319   GCIdMarkAndRestore conc_gc_id_mark;
2320   collector_state()->set_concurrent_cycle_started(true);
2321   _gc_timer_cm->register_gc_start(start_time);
2322 
2323   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2324   trace_heap_before_gc(_gc_tracer_cm);
2325   _cmThread->set_gc_id(GCId::current());
2326 }
2327 
2328 void G1CollectedHeap::register_concurrent_cycle_end() {
2329   if (collector_state()->concurrent_cycle_started()) {
2330     Ticks end_tick = Ticks::now();
2331     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2332     if (_cm->has_aborted()) {
2333       _gc_tracer_cm->report_concurrent_mode_failure();
2334 
2335       if (_cm->concurrent_marking_from_roots()) {
2336         _gc_timer_cm->register_gc_concurrent_end(end_tick);
2337       }
2338     }
2339 
2340     _gc_timer_cm->register_gc_end(end_tick);
2341     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2342 
2343     // Clear state variables to prepare for the next concurrent cycle.
2344     collector_state()->set_concurrent_cycle_started(false);
2345     _heap_summary_sent = false;
2346   }
2347 }
2348 
2349 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2350   if (collector_state()->concurrent_cycle_started()) {
2351     // This function can be called when:
2352     //  the cleanup pause is run
2353     //  the concurrent cycle is aborted before the cleanup pause.
2354     //  the concurrent cycle is aborted after the cleanup pause,
2355     //   but before the concurrent cycle end has been registered.
2356     // Make sure that we only send the heap information once.
2357     if (!_heap_summary_sent) {
2358       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2359       trace_heap_after_gc(_gc_tracer_cm);
2360       _heap_summary_sent = true;
2361     }
2362   }
2363 }
2364 
2365 void G1CollectedHeap::collect(GCCause::Cause cause) {
2366   assert_heap_not_locked();
2367 
2368   uint gc_count_before;
2369   uint old_marking_count_before;
2370   uint full_gc_count_before;
2371   bool retry_gc;
2372 
2373   do {
2374     retry_gc = false;
2375 
2376     {
2377       MutexLocker ml(Heap_lock);
2378 
2379       // Read the GC count while holding the Heap_lock
2380       gc_count_before = total_collections();
2381       full_gc_count_before = total_full_collections();
2382       old_marking_count_before = _old_marking_cycles_started;
2383     }
2384 
2385     if (should_do_concurrent_full_gc(cause)) {
2386       // Schedule an initial-mark evacuation pause that will start a
2387       // concurrent cycle. We're setting word_size to 0 which means that
2388       // we are not requesting a post-GC allocation.
2389       VM_G1IncCollectionPause op(gc_count_before,
2390                                  0,     /* word_size */
2391                                  true,  /* should_initiate_conc_mark */
2392                                  g1_policy()->max_pause_time_ms(),
2393                                  cause);
2394       op.set_allocation_context(AllocationContext::current());
2395 
2396       VMThread::execute(&op);
2397       if (!op.pause_succeeded()) {
2398         if (old_marking_count_before == _old_marking_cycles_started) {
2399           retry_gc = op.should_retry_gc();
2400         } else {
2401           // A Full GC happened while we were trying to schedule the
2402           // initial-mark GC. No point in starting a new cycle given
2403           // that the whole heap was collected anyway.
2404         }
2405 
2406         if (retry_gc) {
2407           if (GC_locker::is_active_and_needs_gc()) {
2408             GC_locker::stall_until_clear();
2409           }
2410         }
2411       }
2412     } else {
2413       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2414           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2415 
2416         // Schedule a standard evacuation pause. We're setting word_size
2417         // to 0 which means that we are not requesting a post-GC allocation.
2418         VM_G1IncCollectionPause op(gc_count_before,
2419                                    0,     /* word_size */
2420                                    false, /* should_initiate_conc_mark */
2421                                    g1_policy()->max_pause_time_ms(),
2422                                    cause);
2423         VMThread::execute(&op);
2424       } else {
2425         // Schedule a Full GC.
2426         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2427         VMThread::execute(&op);
2428       }
2429     }
2430   } while (retry_gc);
2431 }
2432 
2433 bool G1CollectedHeap::is_in(const void* p) const {
2434   if (_hrm.reserved().contains(p)) {
2435     // Given that we know that p is in the reserved space,
2436     // heap_region_containing() should successfully
2437     // return the containing region.
2438     HeapRegion* hr = heap_region_containing(p);
2439     return hr->is_in(p);
2440   } else {
2441     return false;
2442   }
2443 }
2444 
2445 #ifdef ASSERT
2446 bool G1CollectedHeap::is_in_exact(const void* p) const {
2447   bool contains = reserved_region().contains(p);
2448   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2449   if (contains && available) {
2450     return true;
2451   } else {
2452     return false;
2453   }
2454 }
2455 #endif
2456 
2457 bool G1CollectedHeap::obj_in_cs(oop obj) {
2458   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2459   return r != NULL && r->in_collection_set();
2460 }
2461 
2462 // Iteration functions.
2463 
2464 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2465 
2466 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2467   ExtendedOopClosure* _cl;
2468 public:
2469   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2470   bool doHeapRegion(HeapRegion* r) {
2471     if (!r->is_continues_humongous()) {
2472       r->oop_iterate(_cl);
2473     }
2474     return false;
2475   }
2476 };
2477 
2478 // Iterates an ObjectClosure over all objects within a HeapRegion.
2479 
2480 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2481   ObjectClosure* _cl;
2482 public:
2483   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2484   bool doHeapRegion(HeapRegion* r) {
2485     if (!r->is_continues_humongous()) {
2486       r->object_iterate(_cl);
2487     }
2488     return false;
2489   }
2490 };
2491 
2492 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2493   IterateObjectClosureRegionClosure blk(cl);
2494   heap_region_iterate(&blk);
2495 }
2496 
2497 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2498   _hrm.iterate(cl);
2499 }
2500 
2501 void
2502 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2503                                          uint worker_id,
2504                                          HeapRegionClaimer *hrclaimer,
2505                                          bool concurrent) const {
2506   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2507 }
2508 
2509 // Clear the cached CSet starting regions and (more importantly)
2510 // the time stamps. Called when we reset the GC time stamp.
2511 void G1CollectedHeap::clear_cset_start_regions() {
2512   assert(_worker_cset_start_region != NULL, "sanity");
2513   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2514 
2515   for (uint i = 0; i < ParallelGCThreads; i++) {
2516     _worker_cset_start_region[i] = NULL;
2517     _worker_cset_start_region_time_stamp[i] = 0;
2518   }
2519 }
2520 
2521 // Given the id of a worker, obtain or calculate a suitable
2522 // starting region for iterating over the current collection set.
2523 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2524   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2525 
2526   HeapRegion* result = NULL;
2527   unsigned gc_time_stamp = get_gc_time_stamp();
2528 
2529   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2530     // Cached starting region for current worker was set
2531     // during the current pause - so it's valid.
2532     // Note: the cached starting heap region may be NULL
2533     // (when the collection set is empty).
2534     result = _worker_cset_start_region[worker_i];
2535     assert(result == NULL || result->in_collection_set(), "sanity");
2536     return result;
2537   }
2538 
2539   // The cached entry was not valid so let's calculate
2540   // a suitable starting heap region for this worker.
2541 
2542   // We want the parallel threads to start their collection
2543   // set iteration at different collection set regions to
2544   // avoid contention.
2545   // If we have:
2546   //          n collection set regions
2547   //          p threads
2548   // Then thread t will start at region floor ((t * n) / p)
2549 
2550   result = g1_policy()->collection_set();
2551   uint cs_size = g1_policy()->cset_region_length();
2552   uint active_workers = workers()->active_workers();
2553 
2554   uint end_ind   = (cs_size * worker_i) / active_workers;
2555   uint start_ind = 0;
2556 
2557   if (worker_i > 0 &&
2558       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2559     // Previous workers starting region is valid
2560     // so let's iterate from there
2561     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2562     result = _worker_cset_start_region[worker_i - 1];
2563   }
2564 
2565   for (uint i = start_ind; i < end_ind; i++) {
2566     result = result->next_in_collection_set();
2567   }
2568 
2569   // Note: the calculated starting heap region may be NULL
2570   // (when the collection set is empty).
2571   assert(result == NULL || result->in_collection_set(), "sanity");
2572   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2573          "should be updated only once per pause");
2574   _worker_cset_start_region[worker_i] = result;
2575   OrderAccess::storestore();
2576   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2577   return result;
2578 }
2579 
2580 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2581   HeapRegion* r = g1_policy()->collection_set();
2582   while (r != NULL) {
2583     HeapRegion* next = r->next_in_collection_set();
2584     if (cl->doHeapRegion(r)) {
2585       cl->incomplete();
2586       return;
2587     }
2588     r = next;
2589   }
2590 }
2591 
2592 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2593                                                   HeapRegionClosure *cl) {
2594   if (r == NULL) {
2595     // The CSet is empty so there's nothing to do.
2596     return;
2597   }
2598 
2599   assert(r->in_collection_set(),
2600          "Start region must be a member of the collection set.");
2601   HeapRegion* cur = r;
2602   while (cur != NULL) {
2603     HeapRegion* next = cur->next_in_collection_set();
2604     if (cl->doHeapRegion(cur) && false) {
2605       cl->incomplete();
2606       return;
2607     }
2608     cur = next;
2609   }
2610   cur = g1_policy()->collection_set();
2611   while (cur != r) {
2612     HeapRegion* next = cur->next_in_collection_set();
2613     if (cl->doHeapRegion(cur) && false) {
2614       cl->incomplete();
2615       return;
2616     }
2617     cur = next;
2618   }
2619 }
2620 
2621 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2622   HeapRegion* result = _hrm.next_region_in_heap(from);
2623   while (result != NULL && result->is_pinned()) {
2624     result = _hrm.next_region_in_heap(result);
2625   }
2626   return result;
2627 }
2628 
2629 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2630   HeapRegion* hr = heap_region_containing(addr);
2631   return hr->block_start(addr);
2632 }
2633 
2634 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2635   HeapRegion* hr = heap_region_containing(addr);
2636   return hr->block_size(addr);
2637 }
2638 
2639 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2640   HeapRegion* hr = heap_region_containing(addr);
2641   return hr->block_is_obj(addr);
2642 }
2643 
2644 bool G1CollectedHeap::supports_tlab_allocation() const {
2645   return true;
2646 }
2647 
2648 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2649   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2650 }
2651 
2652 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2653   return young_list()->eden_used_bytes();
2654 }
2655 
2656 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2657 // must be equal to the humongous object limit.
2658 size_t G1CollectedHeap::max_tlab_size() const {
2659   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2660 }
2661 
2662 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2663   AllocationContext_t context = AllocationContext::current();
2664   return _allocator->unsafe_max_tlab_alloc(context);
2665 }
2666 
2667 size_t G1CollectedHeap::max_capacity() const {
2668   return _hrm.reserved().byte_size();
2669 }
2670 
2671 jlong G1CollectedHeap::millis_since_last_gc() {
2672   // assert(false, "NYI");
2673   return 0;
2674 }
2675 
2676 void G1CollectedHeap::prepare_for_verify() {
2677   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2678     ensure_parsability(false);
2679   }
2680   g1_rem_set()->prepare_for_verify();
2681 }
2682 
2683 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2684                                               VerifyOption vo) {
2685   switch (vo) {
2686   case VerifyOption_G1UsePrevMarking:
2687     return hr->obj_allocated_since_prev_marking(obj);
2688   case VerifyOption_G1UseNextMarking:
2689     return hr->obj_allocated_since_next_marking(obj);
2690   case VerifyOption_G1UseMarkWord:
2691     return false;
2692   default:
2693     ShouldNotReachHere();
2694   }
2695   return false; // keep some compilers happy
2696 }
2697 
2698 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2699   switch (vo) {
2700   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2701   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2702   case VerifyOption_G1UseMarkWord:    return NULL;
2703   default:                            ShouldNotReachHere();
2704   }
2705   return NULL; // keep some compilers happy
2706 }
2707 
2708 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2709   switch (vo) {
2710   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2711   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2712   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2713   default:                            ShouldNotReachHere();
2714   }
2715   return false; // keep some compilers happy
2716 }
2717 
2718 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2719   switch (vo) {
2720   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2721   case VerifyOption_G1UseNextMarking: return "NTAMS";
2722   case VerifyOption_G1UseMarkWord:    return "NONE";
2723   default:                            ShouldNotReachHere();
2724   }
2725   return NULL; // keep some compilers happy
2726 }
2727 
2728 class VerifyRootsClosure: public OopClosure {
2729 private:
2730   G1CollectedHeap* _g1h;
2731   VerifyOption     _vo;
2732   bool             _failures;
2733 public:
2734   // _vo == UsePrevMarking -> use "prev" marking information,
2735   // _vo == UseNextMarking -> use "next" marking information,
2736   // _vo == UseMarkWord    -> use mark word from object header.
2737   VerifyRootsClosure(VerifyOption vo) :
2738     _g1h(G1CollectedHeap::heap()),
2739     _vo(vo),
2740     _failures(false) { }
2741 
2742   bool failures() { return _failures; }
2743 
2744   template <class T> void do_oop_nv(T* p) {
2745     T heap_oop = oopDesc::load_heap_oop(p);
2746     if (!oopDesc::is_null(heap_oop)) {
2747       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2748       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2749         LogHandle(gc, verify) log;
2750         log.info("Root location " PTR_FORMAT " points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2751         if (_vo == VerifyOption_G1UseMarkWord) {
2752           log.info("  Mark word: " PTR_FORMAT, p2i(obj->mark()));
2753         }
2754         ResourceMark rm;
2755         obj->print_on(log.info_stream());
2756         _failures = true;
2757       }
2758     }
2759   }
2760 
2761   void do_oop(oop* p)       { do_oop_nv(p); }
2762   void do_oop(narrowOop* p) { do_oop_nv(p); }
2763 };
2764 
2765 class G1VerifyCodeRootOopClosure: public OopClosure {
2766   G1CollectedHeap* _g1h;
2767   OopClosure* _root_cl;
2768   nmethod* _nm;
2769   VerifyOption _vo;
2770   bool _failures;
2771 
2772   template <class T> void do_oop_work(T* p) {
2773     // First verify that this root is live
2774     _root_cl->do_oop(p);
2775 
2776     if (!G1VerifyHeapRegionCodeRoots) {
2777       // We're not verifying the code roots attached to heap region.
2778       return;
2779     }
2780 
2781     // Don't check the code roots during marking verification in a full GC
2782     if (_vo == VerifyOption_G1UseMarkWord) {
2783       return;
2784     }
2785 
2786     // Now verify that the current nmethod (which contains p) is
2787     // in the code root list of the heap region containing the
2788     // object referenced by p.
2789 
2790     T heap_oop = oopDesc::load_heap_oop(p);
2791     if (!oopDesc::is_null(heap_oop)) {
2792       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2793 
2794       // Now fetch the region containing the object
2795       HeapRegion* hr = _g1h->heap_region_containing(obj);
2796       HeapRegionRemSet* hrrs = hr->rem_set();
2797       // Verify that the strong code root list for this region
2798       // contains the nmethod
2799       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2800         log_info(gc, verify)("Code root location " PTR_FORMAT " "
2801                              "from nmethod " PTR_FORMAT " not in strong "
2802                              "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2803                              p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2804         _failures = true;
2805       }
2806     }
2807   }
2808 
2809 public:
2810   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2811     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2812 
2813   void do_oop(oop* p) { do_oop_work(p); }
2814   void do_oop(narrowOop* p) { do_oop_work(p); }
2815 
2816   void set_nmethod(nmethod* nm) { _nm = nm; }
2817   bool failures() { return _failures; }
2818 };
2819 
2820 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2821   G1VerifyCodeRootOopClosure* _oop_cl;
2822 
2823 public:
2824   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2825     _oop_cl(oop_cl) {}
2826 
2827   void do_code_blob(CodeBlob* cb) {
2828     nmethod* nm = cb->as_nmethod_or_null();
2829     if (nm != NULL) {
2830       _oop_cl->set_nmethod(nm);
2831       nm->oops_do(_oop_cl);
2832     }
2833   }
2834 };
2835 
2836 class YoungRefCounterClosure : public OopClosure {
2837   G1CollectedHeap* _g1h;
2838   int              _count;
2839  public:
2840   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2841   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2842   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2843 
2844   int count() { return _count; }
2845   void reset_count() { _count = 0; };
2846 };
2847 
2848 class VerifyKlassClosure: public KlassClosure {
2849   YoungRefCounterClosure _young_ref_counter_closure;
2850   OopClosure *_oop_closure;
2851  public:
2852   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2853   void do_klass(Klass* k) {
2854     k->oops_do(_oop_closure);
2855 
2856     _young_ref_counter_closure.reset_count();
2857     k->oops_do(&_young_ref_counter_closure);
2858     if (_young_ref_counter_closure.count() > 0) {
2859       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2860     }
2861   }
2862 };
2863 
2864 class VerifyLivenessOopClosure: public OopClosure {
2865   G1CollectedHeap* _g1h;
2866   VerifyOption _vo;
2867 public:
2868   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2869     _g1h(g1h), _vo(vo)
2870   { }
2871   void do_oop(narrowOop *p) { do_oop_work(p); }
2872   void do_oop(      oop *p) { do_oop_work(p); }
2873 
2874   template <class T> void do_oop_work(T *p) {
2875     oop obj = oopDesc::load_decode_heap_oop(p);
2876     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2877               "Dead object referenced by a not dead object");
2878   }
2879 };
2880 
2881 class VerifyObjsInRegionClosure: public ObjectClosure {
2882 private:
2883   G1CollectedHeap* _g1h;
2884   size_t _live_bytes;
2885   HeapRegion *_hr;
2886   VerifyOption _vo;
2887 public:
2888   // _vo == UsePrevMarking -> use "prev" marking information,
2889   // _vo == UseNextMarking -> use "next" marking information,
2890   // _vo == UseMarkWord    -> use mark word from object header.
2891   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2892     : _live_bytes(0), _hr(hr), _vo(vo) {
2893     _g1h = G1CollectedHeap::heap();
2894   }
2895   void do_object(oop o) {
2896     VerifyLivenessOopClosure isLive(_g1h, _vo);
2897     assert(o != NULL, "Huh?");
2898     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2899       // If the object is alive according to the mark word,
2900       // then verify that the marking information agrees.
2901       // Note we can't verify the contra-positive of the
2902       // above: if the object is dead (according to the mark
2903       // word), it may not be marked, or may have been marked
2904       // but has since became dead, or may have been allocated
2905       // since the last marking.
2906       if (_vo == VerifyOption_G1UseMarkWord) {
2907         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2908       }
2909 
2910       o->oop_iterate_no_header(&isLive);
2911       if (!_hr->obj_allocated_since_prev_marking(o)) {
2912         size_t obj_size = o->size();    // Make sure we don't overflow
2913         _live_bytes += (obj_size * HeapWordSize);
2914       }
2915     }
2916   }
2917   size_t live_bytes() { return _live_bytes; }
2918 };
2919 
2920 class VerifyArchiveOopClosure: public OopClosure {
2921 public:
2922   VerifyArchiveOopClosure(HeapRegion *hr) { }
2923   void do_oop(narrowOop *p) { do_oop_work(p); }
2924   void do_oop(      oop *p) { do_oop_work(p); }
2925 
2926   template <class T> void do_oop_work(T *p) {
2927     oop obj = oopDesc::load_decode_heap_oop(p);
2928     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2929               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2930               p2i(p), p2i(obj));
2931   }
2932 };
2933 
2934 class VerifyArchiveRegionClosure: public ObjectClosure {
2935 public:
2936   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2937   // Verify that all object pointers are to archive regions.
2938   void do_object(oop o) {
2939     VerifyArchiveOopClosure checkOop(NULL);
2940     assert(o != NULL, "Should not be here for NULL oops");
2941     o->oop_iterate_no_header(&checkOop);
2942   }
2943 };
2944 
2945 class VerifyRegionClosure: public HeapRegionClosure {
2946 private:
2947   bool             _par;
2948   VerifyOption     _vo;
2949   bool             _failures;
2950 public:
2951   // _vo == UsePrevMarking -> use "prev" marking information,
2952   // _vo == UseNextMarking -> use "next" marking information,
2953   // _vo == UseMarkWord    -> use mark word from object header.
2954   VerifyRegionClosure(bool par, VerifyOption vo)
2955     : _par(par),
2956       _vo(vo),
2957       _failures(false) {}
2958 
2959   bool failures() {
2960     return _failures;
2961   }
2962 
2963   bool doHeapRegion(HeapRegion* r) {
2964     // For archive regions, verify there are no heap pointers to
2965     // non-pinned regions. For all others, verify liveness info.
2966     if (r->is_archive()) {
2967       VerifyArchiveRegionClosure verify_oop_pointers(r);
2968       r->object_iterate(&verify_oop_pointers);
2969       return true;
2970     }
2971     if (!r->is_continues_humongous()) {
2972       bool failures = false;
2973       r->verify(_vo, &failures);
2974       if (failures) {
2975         _failures = true;
2976       } else if (!r->is_starts_humongous()) {
2977         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2978         r->object_iterate(&not_dead_yet_cl);
2979         if (_vo != VerifyOption_G1UseNextMarking) {
2980           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2981             log_info(gc, verify)("[" PTR_FORMAT "," PTR_FORMAT "] max_live_bytes " SIZE_FORMAT " < calculated " SIZE_FORMAT,
2982                                  p2i(r->bottom()), p2i(r->end()), r->max_live_bytes(), not_dead_yet_cl.live_bytes());
2983             _failures = true;
2984           }
2985         } else {
2986           // When vo == UseNextMarking we cannot currently do a sanity
2987           // check on the live bytes as the calculation has not been
2988           // finalized yet.
2989         }
2990       }
2991     }
2992     return false; // stop the region iteration if we hit a failure
2993   }
2994 };
2995 
2996 // This is the task used for parallel verification of the heap regions
2997 
2998 class G1ParVerifyTask: public AbstractGangTask {
2999 private:
3000   G1CollectedHeap*  _g1h;
3001   VerifyOption      _vo;
3002   bool              _failures;
3003   HeapRegionClaimer _hrclaimer;
3004 
3005 public:
3006   // _vo == UsePrevMarking -> use "prev" marking information,
3007   // _vo == UseNextMarking -> use "next" marking information,
3008   // _vo == UseMarkWord    -> use mark word from object header.
3009   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3010       AbstractGangTask("Parallel verify task"),
3011       _g1h(g1h),
3012       _vo(vo),
3013       _failures(false),
3014       _hrclaimer(g1h->workers()->active_workers()) {}
3015 
3016   bool failures() {
3017     return _failures;
3018   }
3019 
3020   void work(uint worker_id) {
3021     HandleMark hm;
3022     VerifyRegionClosure blk(true, _vo);
3023     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3024     if (blk.failures()) {
3025       _failures = true;
3026     }
3027   }
3028 };
3029 
3030 void G1CollectedHeap::verify(VerifyOption vo) {
3031   if (!SafepointSynchronize::is_at_safepoint()) {
3032     log_info(gc, verify)("Skipping verification. Not at safepoint.");
3033   }
3034 
3035   assert(Thread::current()->is_VM_thread(),
3036          "Expected to be executed serially by the VM thread at this point");
3037 
3038   log_debug(gc, verify)("Roots");
3039   VerifyRootsClosure rootsCl(vo);
3040   VerifyKlassClosure klassCl(this, &rootsCl);
3041   CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3042 
3043   // We apply the relevant closures to all the oops in the
3044   // system dictionary, class loader data graph, the string table
3045   // and the nmethods in the code cache.
3046   G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3047   G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3048 
3049   {
3050     G1RootProcessor root_processor(this, 1);
3051     root_processor.process_all_roots(&rootsCl,
3052                                      &cldCl,
3053                                      &blobsCl);
3054   }
3055 
3056   bool failures = rootsCl.failures() || codeRootsCl.failures();
3057 
3058   if (vo != VerifyOption_G1UseMarkWord) {
3059     // If we're verifying during a full GC then the region sets
3060     // will have been torn down at the start of the GC. Therefore
3061     // verifying the region sets will fail. So we only verify
3062     // the region sets when not in a full GC.
3063     log_debug(gc, verify)("HeapRegionSets");
3064     verify_region_sets();
3065   }
3066 
3067   log_debug(gc, verify)("HeapRegions");
3068   if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3069 
3070     G1ParVerifyTask task(this, vo);
3071     workers()->run_task(&task);
3072     if (task.failures()) {
3073       failures = true;
3074     }
3075 
3076   } else {
3077     VerifyRegionClosure blk(false, vo);
3078     heap_region_iterate(&blk);
3079     if (blk.failures()) {
3080       failures = true;
3081     }
3082   }
3083 
3084   if (G1StringDedup::is_enabled()) {
3085     log_debug(gc, verify)("StrDedup");
3086     G1StringDedup::verify();
3087   }
3088 
3089   if (failures) {
3090     log_info(gc, verify)("Heap after failed verification:");
3091     // It helps to have the per-region information in the output to
3092     // help us track down what went wrong. This is why we call
3093     // print_extended_on() instead of print_on().
3094     LogHandle(gc, verify) log;
3095     ResourceMark rm;
3096     print_extended_on(log.info_stream());
3097   }
3098   guarantee(!failures, "there should not have been any failures");
3099 }
3100 
3101 double G1CollectedHeap::verify(bool guard, const char* msg) {
3102   double verify_time_ms = 0.0;
3103 
3104   if (guard && total_collections() >= VerifyGCStartAt) {
3105     double verify_start = os::elapsedTime();
3106     HandleMark hm;  // Discard invalid handles created during verification
3107     prepare_for_verify();
3108     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3109     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3110   }
3111 
3112   return verify_time_ms;
3113 }
3114 
3115 void G1CollectedHeap::verify_before_gc() {
3116   double verify_time_ms = verify(VerifyBeforeGC, "Before GC");
3117   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3118 }
3119 
3120 void G1CollectedHeap::verify_after_gc() {
3121   double verify_time_ms = verify(VerifyAfterGC, "After GC");
3122   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3123 }
3124 
3125 class PrintRegionClosure: public HeapRegionClosure {
3126   outputStream* _st;
3127 public:
3128   PrintRegionClosure(outputStream* st) : _st(st) {}
3129   bool doHeapRegion(HeapRegion* r) {
3130     r->print_on(_st);
3131     return false;
3132   }
3133 };
3134 
3135 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3136                                        const HeapRegion* hr,
3137                                        const VerifyOption vo) const {
3138   switch (vo) {
3139   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3140   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3141   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3142   default:                            ShouldNotReachHere();
3143   }
3144   return false; // keep some compilers happy
3145 }
3146 
3147 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3148                                        const VerifyOption vo) const {
3149   switch (vo) {
3150   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3151   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3152   case VerifyOption_G1UseMarkWord: {
3153     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3154     return !obj->is_gc_marked() && !hr->is_archive();
3155   }
3156   default:                            ShouldNotReachHere();
3157   }
3158   return false; // keep some compilers happy
3159 }
3160 
3161 void G1CollectedHeap::print_on(outputStream* st) const {
3162   st->print(" %-20s", "garbage-first heap");
3163   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3164             capacity()/K, used_unlocked()/K);
3165   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3166             p2i(_hrm.reserved().start()),
3167             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3168             p2i(_hrm.reserved().end()));
3169   st->cr();
3170   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3171   uint young_regions = _young_list->length();
3172   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3173             (size_t) young_regions * HeapRegion::GrainBytes / K);
3174   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3175   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3176             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3177   st->cr();
3178   MetaspaceAux::print_on(st);
3179 }
3180 
3181 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3182   print_on(st);
3183 
3184   // Print the per-region information.
3185   st->cr();
3186   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
3187                "HS=humongous(starts), HC=humongous(continues), "
3188                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3189                "AC=allocation context, "
3190                "TAMS=top-at-mark-start (previous, next)");
3191   PrintRegionClosure blk(st);
3192   heap_region_iterate(&blk);
3193 }
3194 
3195 void G1CollectedHeap::print_on_error(outputStream* st) const {
3196   this->CollectedHeap::print_on_error(st);
3197 
3198   if (_cm != NULL) {
3199     st->cr();
3200     _cm->print_on_error(st);
3201   }
3202 }
3203 
3204 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3205   workers()->print_worker_threads_on(st);
3206   _cmThread->print_on(st);
3207   st->cr();
3208   _cm->print_worker_threads_on(st);
3209   _cg1r->print_worker_threads_on(st);
3210   if (G1StringDedup::is_enabled()) {
3211     G1StringDedup::print_worker_threads_on(st);
3212   }
3213 }
3214 
3215 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3216   workers()->threads_do(tc);
3217   tc->do_thread(_cmThread);
3218   _cg1r->threads_do(tc);
3219   if (G1StringDedup::is_enabled()) {
3220     G1StringDedup::threads_do(tc);
3221   }
3222 }
3223 
3224 void G1CollectedHeap::print_tracing_info() const {
3225   // We'll overload this to mean "trace GC pause statistics."
3226   if (TraceYoungGenTime || TraceOldGenTime) {
3227     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3228     // to that.
3229     g1_policy()->print_tracing_info();
3230   }
3231   g1_rem_set()->print_summary_info();
3232   concurrent_mark()->print_summary_info();
3233   g1_policy()->print_yg_surv_rate_info();
3234 }
3235 
3236 #ifndef PRODUCT
3237 // Helpful for debugging RSet issues.
3238 
3239 class PrintRSetsClosure : public HeapRegionClosure {
3240 private:
3241   const char* _msg;
3242   size_t _occupied_sum;
3243 
3244 public:
3245   bool doHeapRegion(HeapRegion* r) {
3246     HeapRegionRemSet* hrrs = r->rem_set();
3247     size_t occupied = hrrs->occupied();
3248     _occupied_sum += occupied;
3249 
3250     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
3251     if (occupied == 0) {
3252       tty->print_cr("  RSet is empty");
3253     } else {
3254       hrrs->print();
3255     }
3256     tty->print_cr("----------");
3257     return false;
3258   }
3259 
3260   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3261     tty->cr();
3262     tty->print_cr("========================================");
3263     tty->print_cr("%s", msg);
3264     tty->cr();
3265   }
3266 
3267   ~PrintRSetsClosure() {
3268     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3269     tty->print_cr("========================================");
3270     tty->cr();
3271   }
3272 };
3273 
3274 void G1CollectedHeap::print_cset_rsets() {
3275   PrintRSetsClosure cl("Printing CSet RSets");
3276   collection_set_iterate(&cl);
3277 }
3278 
3279 void G1CollectedHeap::print_all_rsets() {
3280   PrintRSetsClosure cl("Printing All RSets");;
3281   heap_region_iterate(&cl);
3282 }
3283 #endif // PRODUCT
3284 
3285 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3286   YoungList* young_list = heap()->young_list();
3287 
3288   size_t eden_used_bytes = young_list->eden_used_bytes();
3289   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3290 
3291   size_t eden_capacity_bytes =
3292     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3293 
3294   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3295   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3296 }
3297 
3298 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3299   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3300                        stats->unused(), stats->used(), stats->region_end_waste(),
3301                        stats->regions_filled(), stats->direct_allocated(),
3302                        stats->failure_used(), stats->failure_waste());
3303 }
3304 
3305 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3306   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3307   gc_tracer->report_gc_heap_summary(when, heap_summary);
3308 
3309   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3310   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3311 }
3312 
3313 
3314 G1CollectedHeap* G1CollectedHeap::heap() {
3315   CollectedHeap* heap = Universe::heap();
3316   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3317   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3318   return (G1CollectedHeap*)heap;
3319 }
3320 
3321 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3322   // always_do_update_barrier = false;
3323   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3324   // Fill TLAB's and such
3325   accumulate_statistics_all_tlabs();
3326   ensure_parsability(true);
3327 
3328   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
3329 }
3330 
3331 void G1CollectedHeap::gc_epilogue(bool full) {
3332   // we are at the end of the GC. Total collections has already been increased.
3333   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
3334 
3335   // FIXME: what is this about?
3336   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3337   // is set.
3338 #if defined(COMPILER2) || INCLUDE_JVMCI
3339   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3340 #endif
3341   // always_do_update_barrier = true;
3342 
3343   resize_all_tlabs();
3344   allocation_context_stats().update(full);
3345 
3346   // We have just completed a GC. Update the soft reference
3347   // policy with the new heap occupancy
3348   Universe::update_heap_info_at_gc();
3349 }
3350 
3351 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3352                                                uint gc_count_before,
3353                                                bool* succeeded,
3354                                                GCCause::Cause gc_cause) {
3355   assert_heap_not_locked_and_not_at_safepoint();
3356   g1_policy()->record_stop_world_start();
3357   VM_G1IncCollectionPause op(gc_count_before,
3358                              word_size,
3359                              false, /* should_initiate_conc_mark */
3360                              g1_policy()->max_pause_time_ms(),
3361                              gc_cause);
3362 
3363   op.set_allocation_context(AllocationContext::current());
3364   VMThread::execute(&op);
3365 
3366   HeapWord* result = op.result();
3367   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3368   assert(result == NULL || ret_succeeded,
3369          "the result should be NULL if the VM did not succeed");
3370   *succeeded = ret_succeeded;
3371 
3372   assert_heap_not_locked();
3373   return result;
3374 }
3375 
3376 void
3377 G1CollectedHeap::doConcurrentMark() {
3378   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3379   if (!_cmThread->in_progress()) {
3380     _cmThread->set_started();
3381     CGC_lock->notify();
3382   }
3383 }
3384 
3385 size_t G1CollectedHeap::pending_card_num() {
3386   size_t extra_cards = 0;
3387   JavaThread *curr = Threads::first();
3388   while (curr != NULL) {
3389     DirtyCardQueue& dcq = curr->dirty_card_queue();
3390     extra_cards += dcq.size();
3391     curr = curr->next();
3392   }
3393   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3394   size_t buffer_size = dcqs.buffer_size();
3395   size_t buffer_num = dcqs.completed_buffers_num();
3396 
3397   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3398   // in bytes - not the number of 'entries'. We need to convert
3399   // into a number of cards.
3400   return (buffer_size * buffer_num + extra_cards) / oopSize;
3401 }
3402 
3403 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3404  private:
3405   size_t _total_humongous;
3406   size_t _candidate_humongous;
3407 
3408   DirtyCardQueue _dcq;
3409 
3410   // We don't nominate objects with many remembered set entries, on
3411   // the assumption that such objects are likely still live.
3412   bool is_remset_small(HeapRegion* region) const {
3413     HeapRegionRemSet* const rset = region->rem_set();
3414     return G1EagerReclaimHumongousObjectsWithStaleRefs
3415       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3416       : rset->is_empty();
3417   }
3418 
3419   bool is_typeArray_region(HeapRegion* region) const {
3420     return oop(region->bottom())->is_typeArray();
3421   }
3422 
3423   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3424     assert(region->is_starts_humongous(), "Must start a humongous object");
3425 
3426     // Candidate selection must satisfy the following constraints
3427     // while concurrent marking is in progress:
3428     //
3429     // * In order to maintain SATB invariants, an object must not be
3430     // reclaimed if it was allocated before the start of marking and
3431     // has not had its references scanned.  Such an object must have
3432     // its references (including type metadata) scanned to ensure no
3433     // live objects are missed by the marking process.  Objects
3434     // allocated after the start of concurrent marking don't need to
3435     // be scanned.
3436     //
3437     // * An object must not be reclaimed if it is on the concurrent
3438     // mark stack.  Objects allocated after the start of concurrent
3439     // marking are never pushed on the mark stack.
3440     //
3441     // Nominating only objects allocated after the start of concurrent
3442     // marking is sufficient to meet both constraints.  This may miss
3443     // some objects that satisfy the constraints, but the marking data
3444     // structures don't support efficiently performing the needed
3445     // additional tests or scrubbing of the mark stack.
3446     //
3447     // However, we presently only nominate is_typeArray() objects.
3448     // A humongous object containing references induces remembered
3449     // set entries on other regions.  In order to reclaim such an
3450     // object, those remembered sets would need to be cleaned up.
3451     //
3452     // We also treat is_typeArray() objects specially, allowing them
3453     // to be reclaimed even if allocated before the start of
3454     // concurrent mark.  For this we rely on mark stack insertion to
3455     // exclude is_typeArray() objects, preventing reclaiming an object
3456     // that is in the mark stack.  We also rely on the metadata for
3457     // such objects to be built-in and so ensured to be kept live.
3458     // Frequent allocation and drop of large binary blobs is an
3459     // important use case for eager reclaim, and this special handling
3460     // may reduce needed headroom.
3461 
3462     return is_typeArray_region(region) && is_remset_small(region);
3463   }
3464 
3465  public:
3466   RegisterHumongousWithInCSetFastTestClosure()
3467   : _total_humongous(0),
3468     _candidate_humongous(0),
3469     _dcq(&JavaThread::dirty_card_queue_set()) {
3470   }
3471 
3472   virtual bool doHeapRegion(HeapRegion* r) {
3473     if (!r->is_starts_humongous()) {
3474       return false;
3475     }
3476     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3477 
3478     bool is_candidate = humongous_region_is_candidate(g1h, r);
3479     uint rindex = r->hrm_index();
3480     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3481     if (is_candidate) {
3482       _candidate_humongous++;
3483       g1h->register_humongous_region_with_cset(rindex);
3484       // Is_candidate already filters out humongous object with large remembered sets.
3485       // If we have a humongous object with a few remembered sets, we simply flush these
3486       // remembered set entries into the DCQS. That will result in automatic
3487       // re-evaluation of their remembered set entries during the following evacuation
3488       // phase.
3489       if (!r->rem_set()->is_empty()) {
3490         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3491                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3492         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3493         HeapRegionRemSetIterator hrrs(r->rem_set());
3494         size_t card_index;
3495         while (hrrs.has_next(card_index)) {
3496           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3497           // The remembered set might contain references to already freed
3498           // regions. Filter out such entries to avoid failing card table
3499           // verification.
3500           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3501             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3502               *card_ptr = CardTableModRefBS::dirty_card_val();
3503               _dcq.enqueue(card_ptr);
3504             }
3505           }
3506         }
3507         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3508                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3509                hrrs.n_yielded(), r->rem_set()->occupied());
3510         r->rem_set()->clear_locked();
3511       }
3512       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3513     }
3514     _total_humongous++;
3515 
3516     return false;
3517   }
3518 
3519   size_t total_humongous() const { return _total_humongous; }
3520   size_t candidate_humongous() const { return _candidate_humongous; }
3521 
3522   void flush_rem_set_entries() { _dcq.flush(); }
3523 };
3524 
3525 void G1CollectedHeap::register_humongous_regions_with_cset() {
3526   if (!G1EagerReclaimHumongousObjects) {
3527     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3528     return;
3529   }
3530   double time = os::elapsed_counter();
3531 
3532   // Collect reclaim candidate information and register candidates with cset.
3533   RegisterHumongousWithInCSetFastTestClosure cl;
3534   heap_region_iterate(&cl);
3535 
3536   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3537   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3538                                                                   cl.total_humongous(),
3539                                                                   cl.candidate_humongous());
3540   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3541 
3542   // Finally flush all remembered set entries to re-check into the global DCQS.
3543   cl.flush_rem_set_entries();
3544 }
3545 
3546 #ifdef ASSERT
3547 class VerifyCSetClosure: public HeapRegionClosure {
3548 public:
3549   bool doHeapRegion(HeapRegion* hr) {
3550     // Here we check that the CSet region's RSet is ready for parallel
3551     // iteration. The fields that we'll verify are only manipulated
3552     // when the region is part of a CSet and is collected. Afterwards,
3553     // we reset these fields when we clear the region's RSet (when the
3554     // region is freed) so they are ready when the region is
3555     // re-allocated. The only exception to this is if there's an
3556     // evacuation failure and instead of freeing the region we leave
3557     // it in the heap. In that case, we reset these fields during
3558     // evacuation failure handling.
3559     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3560 
3561     // Here's a good place to add any other checks we'd like to
3562     // perform on CSet regions.
3563     return false;
3564   }
3565 };
3566 #endif // ASSERT
3567 
3568 uint G1CollectedHeap::num_task_queues() const {
3569   return _task_queues->size();
3570 }
3571 
3572 #if TASKQUEUE_STATS
3573 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3574   st->print_raw_cr("GC Task Stats");
3575   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3576   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3577 }
3578 
3579 void G1CollectedHeap::print_taskqueue_stats() const {
3580   if (!develop_log_is_enabled(Trace, gc, task, stats)) {
3581     return;
3582   }
3583   LogHandle(gc, task, stats) log;
3584   ResourceMark rm;
3585   outputStream* st = log.trace_stream();
3586 
3587   print_taskqueue_stats_hdr(st);
3588 
3589   TaskQueueStats totals;
3590   const uint n = num_task_queues();
3591   for (uint i = 0; i < n; ++i) {
3592     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3593     totals += task_queue(i)->stats;
3594   }
3595   st->print_raw("tot "); totals.print(st); st->cr();
3596 
3597   DEBUG_ONLY(totals.verify());
3598 }
3599 
3600 void G1CollectedHeap::reset_taskqueue_stats() {
3601   const uint n = num_task_queues();
3602   for (uint i = 0; i < n; ++i) {
3603     task_queue(i)->stats.reset();
3604   }
3605 }
3606 #endif // TASKQUEUE_STATS
3607 
3608 void G1CollectedHeap::log_gc_footer(double pause_time_counter) {
3609   if (evacuation_failed()) {
3610     log_info(gc)("To-space exhausted");
3611   }
3612 
3613   double pause_time_sec = TimeHelper::counter_to_seconds(pause_time_counter);
3614   g1_policy()->print_phases(pause_time_sec);
3615 
3616   g1_policy()->print_detailed_heap_transition();
3617 }
3618 
3619 
3620 void G1CollectedHeap::wait_for_root_region_scanning() {
3621   double scan_wait_start = os::elapsedTime();
3622   // We have to wait until the CM threads finish scanning the
3623   // root regions as it's the only way to ensure that all the
3624   // objects on them have been correctly scanned before we start
3625   // moving them during the GC.
3626   bool waited = _cm->root_regions()->wait_until_scan_finished();
3627   double wait_time_ms = 0.0;
3628   if (waited) {
3629     double scan_wait_end = os::elapsedTime();
3630     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3631   }
3632   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3633 }
3634 
3635 bool
3636 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3637   assert_at_safepoint(true /* should_be_vm_thread */);
3638   guarantee(!is_gc_active(), "collection is not reentrant");
3639 
3640   if (GC_locker::check_active_before_gc()) {
3641     return false;
3642   }
3643 
3644   _gc_timer_stw->register_gc_start();
3645 
3646   GCIdMark gc_id_mark;
3647   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3648 
3649   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3650   ResourceMark rm;
3651 
3652   wait_for_root_region_scanning();
3653 
3654   print_heap_before_gc();
3655   trace_heap_before_gc(_gc_tracer_stw);
3656 
3657   verify_region_sets_optional();
3658   verify_dirty_young_regions();
3659 
3660   // This call will decide whether this pause is an initial-mark
3661   // pause. If it is, during_initial_mark_pause() will return true
3662   // for the duration of this pause.
3663   g1_policy()->decide_on_conc_mark_initiation();
3664 
3665   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3666   assert(!collector_state()->during_initial_mark_pause() ||
3667           collector_state()->gcs_are_young(), "sanity");
3668 
3669   // We also do not allow mixed GCs during marking.
3670   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3671 
3672   // Record whether this pause is an initial mark. When the current
3673   // thread has completed its logging output and it's safe to signal
3674   // the CM thread, the flag's value in the policy has been reset.
3675   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3676 
3677   // Inner scope for scope based logging, timers, and stats collection
3678   {
3679     EvacuationInfo evacuation_info;
3680 
3681     if (collector_state()->during_initial_mark_pause()) {
3682       // We are about to start a marking cycle, so we increment the
3683       // full collection counter.
3684       increment_old_marking_cycles_started();
3685       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3686     }
3687 
3688     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3689 
3690     GCTraceCPUTime tcpu;
3691 
3692     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3693                                                                   workers()->active_workers(),
3694                                                                   Threads::number_of_non_daemon_threads());
3695     workers()->set_active_workers(active_workers);
3696     FormatBuffer<> gc_string("Pause ");
3697     if (collector_state()->during_initial_mark_pause()) {
3698       gc_string.append("Initial Mark");
3699     } else if (collector_state()->gcs_are_young()) {
3700       gc_string.append("Young");
3701     } else {
3702       gc_string.append("Mixed");
3703     }
3704     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3705 
3706     double pause_start_sec = os::elapsedTime();
3707     double pause_start_counter = os::elapsed_counter();
3708     g1_policy()->note_gc_start(active_workers);
3709 
3710     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3711     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3712 
3713     // If the secondary_free_list is not empty, append it to the
3714     // free_list. No need to wait for the cleanup operation to finish;
3715     // the region allocation code will check the secondary_free_list
3716     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3717     // set, skip this step so that the region allocation code has to
3718     // get entries from the secondary_free_list.
3719     if (!G1StressConcRegionFreeing) {
3720       append_secondary_free_list_if_not_empty_with_lock();
3721     }
3722 
3723     assert(check_young_list_well_formed(), "young list should be well formed");
3724 
3725     // Don't dynamically change the number of GC threads this early.  A value of
3726     // 0 is used to indicate serial work.  When parallel work is done,
3727     // it will be set.
3728 
3729     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3730       IsGCActiveMark x;
3731 
3732       gc_prologue(false);
3733       increment_total_collections(false /* full gc */);
3734       increment_gc_time_stamp();
3735 
3736       verify_before_gc();
3737 
3738       check_bitmaps("GC Start");
3739 
3740 #if defined(COMPILER2) || INCLUDE_JVMCI
3741       DerivedPointerTable::clear();
3742 #endif
3743 
3744       // Please see comment in g1CollectedHeap.hpp and
3745       // G1CollectedHeap::ref_processing_init() to see how
3746       // reference processing currently works in G1.
3747 
3748       // Enable discovery in the STW reference processor
3749       if (g1_policy()->should_process_references()) {
3750         ref_processor_stw()->enable_discovery();
3751       } else {
3752         ref_processor_stw()->disable_discovery();
3753       }
3754 
3755       {
3756         // We want to temporarily turn off discovery by the
3757         // CM ref processor, if necessary, and turn it back on
3758         // on again later if we do. Using a scoped
3759         // NoRefDiscovery object will do this.
3760         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3761 
3762         // Forget the current alloc region (we might even choose it to be part
3763         // of the collection set!).
3764         _allocator->release_mutator_alloc_region();
3765 
3766         // This timing is only used by the ergonomics to handle our pause target.
3767         // It is unclear why this should not include the full pause. We will
3768         // investigate this in CR 7178365.
3769         //
3770         // Preserving the old comment here if that helps the investigation:
3771         //
3772         // The elapsed time induced by the start time below deliberately elides
3773         // the possible verification above.
3774         double sample_start_time_sec = os::elapsedTime();
3775 
3776         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3777 
3778         if (collector_state()->during_initial_mark_pause()) {
3779           concurrent_mark()->checkpointRootsInitialPre();
3780         }
3781 
3782         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3783         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3784 
3785         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3786 
3787         // Make sure the remembered sets are up to date. This needs to be
3788         // done before register_humongous_regions_with_cset(), because the
3789         // remembered sets are used there to choose eager reclaim candidates.
3790         // If the remembered sets are not up to date we might miss some
3791         // entries that need to be handled.
3792         g1_rem_set()->cleanupHRRS();
3793 
3794         register_humongous_regions_with_cset();
3795 
3796         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3797 
3798         _cm->note_start_of_gc();
3799         // We call this after finalize_cset() to
3800         // ensure that the CSet has been finalized.
3801         _cm->verify_no_cset_oops();
3802 
3803         if (_hr_printer.is_active()) {
3804           HeapRegion* hr = g1_policy()->collection_set();
3805           while (hr != NULL) {
3806             _hr_printer.cset(hr);
3807             hr = hr->next_in_collection_set();
3808           }
3809         }
3810 
3811 #ifdef ASSERT
3812         VerifyCSetClosure cl;
3813         collection_set_iterate(&cl);
3814 #endif // ASSERT
3815 
3816         // Initialize the GC alloc regions.
3817         _allocator->init_gc_alloc_regions(evacuation_info);
3818 
3819         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3820         pre_evacuate_collection_set();
3821 
3822         // Actually do the work...
3823         evacuate_collection_set(evacuation_info, &per_thread_states);
3824 
3825         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3826 
3827         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3828         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3829 
3830         eagerly_reclaim_humongous_regions();
3831 
3832         g1_policy()->clear_collection_set();
3833 
3834         // Start a new incremental collection set for the next pause.
3835         g1_policy()->start_incremental_cset_building();
3836 
3837         clear_cset_fast_test();
3838 
3839         _young_list->reset_sampled_info();
3840 
3841         // Don't check the whole heap at this point as the
3842         // GC alloc regions from this pause have been tagged
3843         // as survivors and moved on to the survivor list.
3844         // Survivor regions will fail the !is_young() check.
3845         assert(check_young_list_empty(false /* check_heap */),
3846           "young list should be empty");
3847 
3848         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3849                                              _young_list->first_survivor_region(),
3850                                              _young_list->last_survivor_region());
3851 
3852         _young_list->reset_auxilary_lists();
3853 
3854         if (evacuation_failed()) {
3855           set_used(recalculate_used());
3856           if (_archive_allocator != NULL) {
3857             _archive_allocator->clear_used();
3858           }
3859           for (uint i = 0; i < ParallelGCThreads; i++) {
3860             if (_evacuation_failed_info_array[i].has_failed()) {
3861               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3862             }
3863           }
3864         } else {
3865           // The "used" of the the collection set have already been subtracted
3866           // when they were freed.  Add in the bytes evacuated.
3867           increase_used(g1_policy()->bytes_copied_during_gc());
3868         }
3869 
3870         if (collector_state()->during_initial_mark_pause()) {
3871           // We have to do this before we notify the CM threads that
3872           // they can start working to make sure that all the
3873           // appropriate initialization is done on the CM object.
3874           concurrent_mark()->checkpointRootsInitialPost();
3875           collector_state()->set_mark_in_progress(true);
3876           // Note that we don't actually trigger the CM thread at
3877           // this point. We do that later when we're sure that
3878           // the current thread has completed its logging output.
3879         }
3880 
3881         allocate_dummy_regions();
3882 
3883         _allocator->init_mutator_alloc_region();
3884 
3885         {
3886           size_t expand_bytes = g1_policy()->expansion_amount();
3887           if (expand_bytes > 0) {
3888             size_t bytes_before = capacity();
3889             // No need for an ergo logging here,
3890             // expansion_amount() does this when it returns a value > 0.
3891             double expand_ms;
3892             if (!expand(expand_bytes, &expand_ms)) {
3893               // We failed to expand the heap. Cannot do anything about it.
3894             }
3895             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3896           }
3897         }
3898 
3899         // We redo the verification but now wrt to the new CSet which
3900         // has just got initialized after the previous CSet was freed.
3901         _cm->verify_no_cset_oops();
3902         _cm->note_end_of_gc();
3903 
3904         // This timing is only used by the ergonomics to handle our pause target.
3905         // It is unclear why this should not include the full pause. We will
3906         // investigate this in CR 7178365.
3907         double sample_end_time_sec = os::elapsedTime();
3908         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3909         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3910         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3911 
3912         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3913         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3914 
3915         MemoryService::track_memory_usage();
3916 
3917         // In prepare_for_verify() below we'll need to scan the deferred
3918         // update buffers to bring the RSets up-to-date if
3919         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3920         // the update buffers we'll probably need to scan cards on the
3921         // regions we just allocated to (i.e., the GC alloc
3922         // regions). However, during the last GC we called
3923         // set_saved_mark() on all the GC alloc regions, so card
3924         // scanning might skip the [saved_mark_word()...top()] area of
3925         // those regions (i.e., the area we allocated objects into
3926         // during the last GC). But it shouldn't. Given that
3927         // saved_mark_word() is conditional on whether the GC time stamp
3928         // on the region is current or not, by incrementing the GC time
3929         // stamp here we invalidate all the GC time stamps on all the
3930         // regions and saved_mark_word() will simply return top() for
3931         // all the regions. This is a nicer way of ensuring this rather
3932         // than iterating over the regions and fixing them. In fact, the
3933         // GC time stamp increment here also ensures that
3934         // saved_mark_word() will return top() between pauses, i.e.,
3935         // during concurrent refinement. So we don't need the
3936         // is_gc_active() check to decided which top to use when
3937         // scanning cards (see CR 7039627).
3938         increment_gc_time_stamp();
3939 
3940         verify_after_gc();
3941         check_bitmaps("GC End");
3942 
3943         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3944         ref_processor_stw()->verify_no_references_recorded();
3945 
3946         // CM reference discovery will be re-enabled if necessary.
3947       }
3948 
3949 #ifdef TRACESPINNING
3950       ParallelTaskTerminator::print_termination_counts();
3951 #endif
3952 
3953       gc_epilogue(false);
3954     }
3955 
3956     // Print the remainder of the GC log output.
3957     log_gc_footer(os::elapsed_counter() - pause_start_counter);
3958 
3959     // It is not yet to safe to tell the concurrent mark to
3960     // start as we have some optional output below. We don't want the
3961     // output from the concurrent mark thread interfering with this
3962     // logging output either.
3963 
3964     _hrm.verify_optional();
3965     verify_region_sets_optional();
3966 
3967     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3968     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3969 
3970     print_heap_after_gc();
3971     trace_heap_after_gc(_gc_tracer_stw);
3972 
3973     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3974     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3975     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3976     // before any GC notifications are raised.
3977     g1mm()->update_sizes();
3978 
3979     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3980     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3981     _gc_timer_stw->register_gc_end();
3982     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3983   }
3984   // It should now be safe to tell the concurrent mark thread to start
3985   // without its logging output interfering with the logging output
3986   // that came from the pause.
3987 
3988   if (should_start_conc_mark) {
3989     // CAUTION: after the doConcurrentMark() call below,
3990     // the concurrent marking thread(s) could be running
3991     // concurrently with us. Make sure that anything after
3992     // this point does not assume that we are the only GC thread
3993     // running. Note: of course, the actual marking work will
3994     // not start until the safepoint itself is released in
3995     // SuspendibleThreadSet::desynchronize().
3996     doConcurrentMark();
3997   }
3998 
3999   return true;
4000 }
4001 
4002 void G1CollectedHeap::restore_preserved_marks() {
4003   G1RestorePreservedMarksTask rpm_task(_preserved_objs);
4004   workers()->run_task(&rpm_task);
4005 }
4006 
4007 void G1CollectedHeap::remove_self_forwarding_pointers() {
4008   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4009   workers()->run_task(&rsfp_task);
4010 }
4011 
4012 void G1CollectedHeap::restore_after_evac_failure() {
4013   double remove_self_forwards_start = os::elapsedTime();
4014 
4015   remove_self_forwarding_pointers();
4016   restore_preserved_marks();
4017 
4018   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4019 }
4020 
4021 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4022   if (!_evacuation_failed) {
4023     _evacuation_failed = true;
4024   }
4025 
4026   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4027 
4028   // We want to call the "for_promotion_failure" version only in the
4029   // case of a promotion failure.
4030   if (m->must_be_preserved_for_promotion_failure(obj)) {
4031     OopAndMarkOop elem(obj, m);
4032     _preserved_objs[worker_id].push(elem);
4033   }
4034 }
4035 
4036 bool G1ParEvacuateFollowersClosure::offer_termination() {
4037   G1ParScanThreadState* const pss = par_scan_state();
4038   start_term_time();
4039   const bool res = terminator()->offer_termination();
4040   end_term_time();
4041   return res;
4042 }
4043 
4044 void G1ParEvacuateFollowersClosure::do_void() {
4045   G1ParScanThreadState* const pss = par_scan_state();
4046   pss->trim_queue();
4047   do {
4048     pss->steal_and_trim_queue(queues());
4049   } while (!offer_termination());
4050 }
4051 
4052 class G1ParTask : public AbstractGangTask {
4053 protected:
4054   G1CollectedHeap*         _g1h;
4055   G1ParScanThreadStateSet* _pss;
4056   RefToScanQueueSet*       _queues;
4057   G1RootProcessor*         _root_processor;
4058   ParallelTaskTerminator   _terminator;
4059   uint                     _n_workers;
4060 
4061 public:
4062   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4063     : AbstractGangTask("G1 collection"),
4064       _g1h(g1h),
4065       _pss(per_thread_states),
4066       _queues(task_queues),
4067       _root_processor(root_processor),
4068       _terminator(n_workers, _queues),
4069       _n_workers(n_workers)
4070   {}
4071 
4072   void work(uint worker_id) {
4073     if (worker_id >= _n_workers) return;  // no work needed this round
4074 
4075     double start_sec = os::elapsedTime();
4076     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4077 
4078     {
4079       ResourceMark rm;
4080       HandleMark   hm;
4081 
4082       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4083 
4084       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4085       pss->set_ref_processor(rp);
4086 
4087       double start_strong_roots_sec = os::elapsedTime();
4088 
4089       _root_processor->evacuate_roots(pss->closures(), worker_id);
4090 
4091       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4092 
4093       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4094       // treating the nmethods visited to act as roots for concurrent marking.
4095       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4096       // objects copied by the current evacuation.
4097       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4098                                                                              pss->closures()->weak_codeblobs(),
4099                                                                              worker_id);
4100 
4101       _pss->add_cards_scanned(worker_id, cards_scanned);
4102 
4103       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4104 
4105       double term_sec = 0.0;
4106       size_t evac_term_attempts = 0;
4107       {
4108         double start = os::elapsedTime();
4109         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4110         evac.do_void();
4111 
4112         evac_term_attempts = evac.term_attempts();
4113         term_sec = evac.term_time();
4114         double elapsed_sec = os::elapsedTime() - start;
4115         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4116         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4117         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4118       }
4119 
4120       assert(pss->queue_is_empty(), "should be empty");
4121 
4122       if (log_is_enabled(Debug, gc, task, stats)) {
4123         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4124         size_t lab_waste;
4125         size_t lab_undo_waste;
4126         pss->waste(lab_waste, lab_undo_waste);
4127         _g1h->print_termination_stats(worker_id,
4128                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4129                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4130                                       term_sec * 1000.0,                          /* evac term time */
4131                                       evac_term_attempts,                         /* evac term attempts */
4132                                       lab_waste,                                  /* alloc buffer waste */
4133                                       lab_undo_waste                              /* undo waste */
4134                                       );
4135       }
4136 
4137       // Close the inner scope so that the ResourceMark and HandleMark
4138       // destructors are executed here and are included as part of the
4139       // "GC Worker Time".
4140     }
4141     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4142   }
4143 };
4144 
4145 void G1CollectedHeap::print_termination_stats_hdr() {
4146   log_debug(gc, task, stats)("GC Termination Stats");
4147   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4148   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
4149   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4150 }
4151 
4152 void G1CollectedHeap::print_termination_stats(uint worker_id,
4153                                               double elapsed_ms,
4154                                               double strong_roots_ms,
4155                                               double term_ms,
4156                                               size_t term_attempts,
4157                                               size_t alloc_buffer_waste,
4158                                               size_t undo_waste) const {
4159   log_debug(gc, task, stats)
4160               ("%3d %9.2f %9.2f %6.2f "
4161                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4162                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4163                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4164                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4165                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4166                alloc_buffer_waste * HeapWordSize / K,
4167                undo_waste * HeapWordSize / K);
4168 }
4169 
4170 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4171 private:
4172   BoolObjectClosure* _is_alive;
4173   int _initial_string_table_size;
4174   int _initial_symbol_table_size;
4175 
4176   bool  _process_strings;
4177   int _strings_processed;
4178   int _strings_removed;
4179 
4180   bool  _process_symbols;
4181   int _symbols_processed;
4182   int _symbols_removed;
4183 
4184 public:
4185   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4186     AbstractGangTask("String/Symbol Unlinking"),
4187     _is_alive(is_alive),
4188     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4189     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4190 
4191     _initial_string_table_size = StringTable::the_table()->table_size();
4192     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4193     if (process_strings) {
4194       StringTable::clear_parallel_claimed_index();
4195     }
4196     if (process_symbols) {
4197       SymbolTable::clear_parallel_claimed_index();
4198     }
4199   }
4200 
4201   ~G1StringSymbolTableUnlinkTask() {
4202     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4203               "claim value %d after unlink less than initial string table size %d",
4204               StringTable::parallel_claimed_index(), _initial_string_table_size);
4205     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4206               "claim value %d after unlink less than initial symbol table size %d",
4207               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4208 
4209     log_debug(gc, stringdedup)("Cleaned string and symbol table, "
4210                                "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4211                                "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4212                                strings_processed(), strings_removed(),
4213                                symbols_processed(), symbols_removed());
4214   }
4215 
4216   void work(uint worker_id) {
4217     int strings_processed = 0;
4218     int strings_removed = 0;
4219     int symbols_processed = 0;
4220     int symbols_removed = 0;
4221     if (_process_strings) {
4222       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4223       Atomic::add(strings_processed, &_strings_processed);
4224       Atomic::add(strings_removed, &_strings_removed);
4225     }
4226     if (_process_symbols) {
4227       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4228       Atomic::add(symbols_processed, &_symbols_processed);
4229       Atomic::add(symbols_removed, &_symbols_removed);
4230     }
4231   }
4232 
4233   size_t strings_processed() const { return (size_t)_strings_processed; }
4234   size_t strings_removed()   const { return (size_t)_strings_removed; }
4235 
4236   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4237   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4238 };
4239 
4240 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4241 private:
4242   static Monitor* _lock;
4243 
4244   BoolObjectClosure* const _is_alive;
4245   const bool               _unloading_occurred;
4246   const uint               _num_workers;
4247 
4248   // Variables used to claim nmethods.
4249   nmethod* _first_nmethod;
4250   volatile nmethod* _claimed_nmethod;
4251 
4252   // The list of nmethods that need to be processed by the second pass.
4253   volatile nmethod* _postponed_list;
4254   volatile uint     _num_entered_barrier;
4255 
4256  public:
4257   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4258       _is_alive(is_alive),
4259       _unloading_occurred(unloading_occurred),
4260       _num_workers(num_workers),
4261       _first_nmethod(NULL),
4262       _claimed_nmethod(NULL),
4263       _postponed_list(NULL),
4264       _num_entered_barrier(0)
4265   {
4266     nmethod::increase_unloading_clock();
4267     // Get first alive nmethod
4268     NMethodIterator iter = NMethodIterator();
4269     if(iter.next_alive()) {
4270       _first_nmethod = iter.method();
4271     }
4272     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4273   }
4274 
4275   ~G1CodeCacheUnloadingTask() {
4276     CodeCache::verify_clean_inline_caches();
4277 
4278     CodeCache::set_needs_cache_clean(false);
4279     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4280 
4281     CodeCache::verify_icholder_relocations();
4282   }
4283 
4284  private:
4285   void add_to_postponed_list(nmethod* nm) {
4286       nmethod* old;
4287       do {
4288         old = (nmethod*)_postponed_list;
4289         nm->set_unloading_next(old);
4290       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4291   }
4292 
4293   void clean_nmethod(nmethod* nm) {
4294     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4295 
4296     if (postponed) {
4297       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4298       add_to_postponed_list(nm);
4299     }
4300 
4301     // Mark that this thread has been cleaned/unloaded.
4302     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4303     nm->set_unloading_clock(nmethod::global_unloading_clock());
4304   }
4305 
4306   void clean_nmethod_postponed(nmethod* nm) {
4307     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4308   }
4309 
4310   static const int MaxClaimNmethods = 16;
4311 
4312   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4313     nmethod* first;
4314     NMethodIterator last;
4315 
4316     do {
4317       *num_claimed_nmethods = 0;
4318 
4319       first = (nmethod*)_claimed_nmethod;
4320       last = NMethodIterator(first);
4321 
4322       if (first != NULL) {
4323 
4324         for (int i = 0; i < MaxClaimNmethods; i++) {
4325           if (!last.next_alive()) {
4326             break;
4327           }
4328           claimed_nmethods[i] = last.method();
4329           (*num_claimed_nmethods)++;
4330         }
4331       }
4332 
4333     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4334   }
4335 
4336   nmethod* claim_postponed_nmethod() {
4337     nmethod* claim;
4338     nmethod* next;
4339 
4340     do {
4341       claim = (nmethod*)_postponed_list;
4342       if (claim == NULL) {
4343         return NULL;
4344       }
4345 
4346       next = claim->unloading_next();
4347 
4348     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4349 
4350     return claim;
4351   }
4352 
4353  public:
4354   // Mark that we're done with the first pass of nmethod cleaning.
4355   void barrier_mark(uint worker_id) {
4356     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4357     _num_entered_barrier++;
4358     if (_num_entered_barrier == _num_workers) {
4359       ml.notify_all();
4360     }
4361   }
4362 
4363   // See if we have to wait for the other workers to
4364   // finish their first-pass nmethod cleaning work.
4365   void barrier_wait(uint worker_id) {
4366     if (_num_entered_barrier < _num_workers) {
4367       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4368       while (_num_entered_barrier < _num_workers) {
4369           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4370       }
4371     }
4372   }
4373 
4374   // Cleaning and unloading of nmethods. Some work has to be postponed
4375   // to the second pass, when we know which nmethods survive.
4376   void work_first_pass(uint worker_id) {
4377     // The first nmethods is claimed by the first worker.
4378     if (worker_id == 0 && _first_nmethod != NULL) {
4379       clean_nmethod(_first_nmethod);
4380       _first_nmethod = NULL;
4381     }
4382 
4383     int num_claimed_nmethods;
4384     nmethod* claimed_nmethods[MaxClaimNmethods];
4385 
4386     while (true) {
4387       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4388 
4389       if (num_claimed_nmethods == 0) {
4390         break;
4391       }
4392 
4393       for (int i = 0; i < num_claimed_nmethods; i++) {
4394         clean_nmethod(claimed_nmethods[i]);
4395       }
4396     }
4397   }
4398 
4399   void work_second_pass(uint worker_id) {
4400     nmethod* nm;
4401     // Take care of postponed nmethods.
4402     while ((nm = claim_postponed_nmethod()) != NULL) {
4403       clean_nmethod_postponed(nm);
4404     }
4405   }
4406 };
4407 
4408 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4409 
4410 class G1KlassCleaningTask : public StackObj {
4411   BoolObjectClosure*                      _is_alive;
4412   volatile jint                           _clean_klass_tree_claimed;
4413   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4414 
4415  public:
4416   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4417       _is_alive(is_alive),
4418       _clean_klass_tree_claimed(0),
4419       _klass_iterator() {
4420   }
4421 
4422  private:
4423   bool claim_clean_klass_tree_task() {
4424     if (_clean_klass_tree_claimed) {
4425       return false;
4426     }
4427 
4428     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4429   }
4430 
4431   InstanceKlass* claim_next_klass() {
4432     Klass* klass;
4433     do {
4434       klass =_klass_iterator.next_klass();
4435     } while (klass != NULL && !klass->is_instance_klass());
4436 
4437     // this can be null so don't call InstanceKlass::cast
4438     return static_cast<InstanceKlass*>(klass);
4439   }
4440 
4441 public:
4442 
4443   void clean_klass(InstanceKlass* ik) {
4444     ik->clean_weak_instanceklass_links(_is_alive);
4445   }
4446 
4447   void work() {
4448     ResourceMark rm;
4449 
4450     // One worker will clean the subklass/sibling klass tree.
4451     if (claim_clean_klass_tree_task()) {
4452       Klass::clean_subklass_tree(_is_alive);
4453     }
4454 
4455     // All workers will help cleaning the classes,
4456     InstanceKlass* klass;
4457     while ((klass = claim_next_klass()) != NULL) {
4458       clean_klass(klass);
4459     }
4460   }
4461 };
4462 
4463 // To minimize the remark pause times, the tasks below are done in parallel.
4464 class G1ParallelCleaningTask : public AbstractGangTask {
4465 private:
4466   G1StringSymbolTableUnlinkTask _string_symbol_task;
4467   G1CodeCacheUnloadingTask      _code_cache_task;
4468   G1KlassCleaningTask           _klass_cleaning_task;
4469 
4470 public:
4471   // The constructor is run in the VMThread.
4472   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4473       AbstractGangTask("Parallel Cleaning"),
4474       _string_symbol_task(is_alive, process_strings, process_symbols),
4475       _code_cache_task(num_workers, is_alive, unloading_occurred),
4476       _klass_cleaning_task(is_alive) {
4477   }
4478 
4479   // The parallel work done by all worker threads.
4480   void work(uint worker_id) {
4481     // Do first pass of code cache cleaning.
4482     _code_cache_task.work_first_pass(worker_id);
4483 
4484     // Let the threads mark that the first pass is done.
4485     _code_cache_task.barrier_mark(worker_id);
4486 
4487     // Clean the Strings and Symbols.
4488     _string_symbol_task.work(worker_id);
4489 
4490     // Wait for all workers to finish the first code cache cleaning pass.
4491     _code_cache_task.barrier_wait(worker_id);
4492 
4493     // Do the second code cache cleaning work, which realize on
4494     // the liveness information gathered during the first pass.
4495     _code_cache_task.work_second_pass(worker_id);
4496 
4497     // Clean all klasses that were not unloaded.
4498     _klass_cleaning_task.work();
4499   }
4500 };
4501 
4502 
4503 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4504                                         bool process_strings,
4505                                         bool process_symbols,
4506                                         bool class_unloading_occurred) {
4507   uint n_workers = workers()->active_workers();
4508 
4509   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4510                                         n_workers, class_unloading_occurred);
4511   workers()->run_task(&g1_unlink_task);
4512 }
4513 
4514 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4515                                                      bool process_strings, bool process_symbols) {
4516   {
4517     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4518     workers()->run_task(&g1_unlink_task);
4519   }
4520 
4521   if (G1StringDedup::is_enabled()) {
4522     G1StringDedup::unlink(is_alive);
4523   }
4524 }
4525 
4526 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4527  private:
4528   DirtyCardQueueSet* _queue;
4529   G1CollectedHeap* _g1h;
4530  public:
4531   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
4532     _queue(queue), _g1h(g1h) { }
4533 
4534   virtual void work(uint worker_id) {
4535     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
4536     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4537 
4538     RedirtyLoggedCardTableEntryClosure cl(_g1h);
4539     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4540 
4541     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
4542   }
4543 };
4544 
4545 void G1CollectedHeap::redirty_logged_cards() {
4546   double redirty_logged_cards_start = os::elapsedTime();
4547 
4548   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
4549   dirty_card_queue_set().reset_for_par_iteration();
4550   workers()->run_task(&redirty_task);
4551 
4552   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4553   dcq.merge_bufferlists(&dirty_card_queue_set());
4554   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4555 
4556   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4557 }
4558 
4559 // Weak Reference Processing support
4560 
4561 // An always "is_alive" closure that is used to preserve referents.
4562 // If the object is non-null then it's alive.  Used in the preservation
4563 // of referent objects that are pointed to by reference objects
4564 // discovered by the CM ref processor.
4565 class G1AlwaysAliveClosure: public BoolObjectClosure {
4566   G1CollectedHeap* _g1;
4567 public:
4568   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4569   bool do_object_b(oop p) {
4570     if (p != NULL) {
4571       return true;
4572     }
4573     return false;
4574   }
4575 };
4576 
4577 bool G1STWIsAliveClosure::do_object_b(oop p) {
4578   // An object is reachable if it is outside the collection set,
4579   // or is inside and copied.
4580   return !_g1->is_in_cset(p) || p->is_forwarded();
4581 }
4582 
4583 // Non Copying Keep Alive closure
4584 class G1KeepAliveClosure: public OopClosure {
4585   G1CollectedHeap* _g1;
4586 public:
4587   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4588   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4589   void do_oop(oop* p) {
4590     oop obj = *p;
4591     assert(obj != NULL, "the caller should have filtered out NULL values");
4592 
4593     const InCSetState cset_state = _g1->in_cset_state(obj);
4594     if (!cset_state.is_in_cset_or_humongous()) {
4595       return;
4596     }
4597     if (cset_state.is_in_cset()) {
4598       assert( obj->is_forwarded(), "invariant" );
4599       *p = obj->forwardee();
4600     } else {
4601       assert(!obj->is_forwarded(), "invariant" );
4602       assert(cset_state.is_humongous(),
4603              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4604       _g1->set_humongous_is_live(obj);
4605     }
4606   }
4607 };
4608 
4609 // Copying Keep Alive closure - can be called from both
4610 // serial and parallel code as long as different worker
4611 // threads utilize different G1ParScanThreadState instances
4612 // and different queues.
4613 
4614 class G1CopyingKeepAliveClosure: public OopClosure {
4615   G1CollectedHeap*         _g1h;
4616   OopClosure*              _copy_non_heap_obj_cl;
4617   G1ParScanThreadState*    _par_scan_state;
4618 
4619 public:
4620   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4621                             OopClosure* non_heap_obj_cl,
4622                             G1ParScanThreadState* pss):
4623     _g1h(g1h),
4624     _copy_non_heap_obj_cl(non_heap_obj_cl),
4625     _par_scan_state(pss)
4626   {}
4627 
4628   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4629   virtual void do_oop(      oop* p) { do_oop_work(p); }
4630 
4631   template <class T> void do_oop_work(T* p) {
4632     oop obj = oopDesc::load_decode_heap_oop(p);
4633 
4634     if (_g1h->is_in_cset_or_humongous(obj)) {
4635       // If the referent object has been forwarded (either copied
4636       // to a new location or to itself in the event of an
4637       // evacuation failure) then we need to update the reference
4638       // field and, if both reference and referent are in the G1
4639       // heap, update the RSet for the referent.
4640       //
4641       // If the referent has not been forwarded then we have to keep
4642       // it alive by policy. Therefore we have copy the referent.
4643       //
4644       // If the reference field is in the G1 heap then we can push
4645       // on the PSS queue. When the queue is drained (after each
4646       // phase of reference processing) the object and it's followers
4647       // will be copied, the reference field set to point to the
4648       // new location, and the RSet updated. Otherwise we need to
4649       // use the the non-heap or metadata closures directly to copy
4650       // the referent object and update the pointer, while avoiding
4651       // updating the RSet.
4652 
4653       if (_g1h->is_in_g1_reserved(p)) {
4654         _par_scan_state->push_on_queue(p);
4655       } else {
4656         assert(!Metaspace::contains((const void*)p),
4657                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4658         _copy_non_heap_obj_cl->do_oop(p);
4659       }
4660     }
4661   }
4662 };
4663 
4664 // Serial drain queue closure. Called as the 'complete_gc'
4665 // closure for each discovered list in some of the
4666 // reference processing phases.
4667 
4668 class G1STWDrainQueueClosure: public VoidClosure {
4669 protected:
4670   G1CollectedHeap* _g1h;
4671   G1ParScanThreadState* _par_scan_state;
4672 
4673   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4674 
4675 public:
4676   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4677     _g1h(g1h),
4678     _par_scan_state(pss)
4679   { }
4680 
4681   void do_void() {
4682     G1ParScanThreadState* const pss = par_scan_state();
4683     pss->trim_queue();
4684   }
4685 };
4686 
4687 // Parallel Reference Processing closures
4688 
4689 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4690 // processing during G1 evacuation pauses.
4691 
4692 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4693 private:
4694   G1CollectedHeap*          _g1h;
4695   G1ParScanThreadStateSet*  _pss;
4696   RefToScanQueueSet*        _queues;
4697   WorkGang*                 _workers;
4698   uint                      _active_workers;
4699 
4700 public:
4701   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4702                            G1ParScanThreadStateSet* per_thread_states,
4703                            WorkGang* workers,
4704                            RefToScanQueueSet *task_queues,
4705                            uint n_workers) :
4706     _g1h(g1h),
4707     _pss(per_thread_states),
4708     _queues(task_queues),
4709     _workers(workers),
4710     _active_workers(n_workers)
4711   {
4712     assert(n_workers > 0, "shouldn't call this otherwise");
4713   }
4714 
4715   // Executes the given task using concurrent marking worker threads.
4716   virtual void execute(ProcessTask& task);
4717   virtual void execute(EnqueueTask& task);
4718 };
4719 
4720 // Gang task for possibly parallel reference processing
4721 
4722 class G1STWRefProcTaskProxy: public AbstractGangTask {
4723   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4724   ProcessTask&     _proc_task;
4725   G1CollectedHeap* _g1h;
4726   G1ParScanThreadStateSet* _pss;
4727   RefToScanQueueSet* _task_queues;
4728   ParallelTaskTerminator* _terminator;
4729 
4730 public:
4731   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4732                         G1CollectedHeap* g1h,
4733                         G1ParScanThreadStateSet* per_thread_states,
4734                         RefToScanQueueSet *task_queues,
4735                         ParallelTaskTerminator* terminator) :
4736     AbstractGangTask("Process reference objects in parallel"),
4737     _proc_task(proc_task),
4738     _g1h(g1h),
4739     _pss(per_thread_states),
4740     _task_queues(task_queues),
4741     _terminator(terminator)
4742   {}
4743 
4744   virtual void work(uint worker_id) {
4745     // The reference processing task executed by a single worker.
4746     ResourceMark rm;
4747     HandleMark   hm;
4748 
4749     G1STWIsAliveClosure is_alive(_g1h);
4750 
4751     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4752     pss->set_ref_processor(NULL);
4753 
4754     // Keep alive closure.
4755     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4756 
4757     // Complete GC closure
4758     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4759 
4760     // Call the reference processing task's work routine.
4761     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4762 
4763     // Note we cannot assert that the refs array is empty here as not all
4764     // of the processing tasks (specifically phase2 - pp2_work) execute
4765     // the complete_gc closure (which ordinarily would drain the queue) so
4766     // the queue may not be empty.
4767   }
4768 };
4769 
4770 // Driver routine for parallel reference processing.
4771 // Creates an instance of the ref processing gang
4772 // task and has the worker threads execute it.
4773 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4774   assert(_workers != NULL, "Need parallel worker threads.");
4775 
4776   ParallelTaskTerminator terminator(_active_workers, _queues);
4777   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4778 
4779   _workers->run_task(&proc_task_proxy);
4780 }
4781 
4782 // Gang task for parallel reference enqueueing.
4783 
4784 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4785   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4786   EnqueueTask& _enq_task;
4787 
4788 public:
4789   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4790     AbstractGangTask("Enqueue reference objects in parallel"),
4791     _enq_task(enq_task)
4792   { }
4793 
4794   virtual void work(uint worker_id) {
4795     _enq_task.work(worker_id);
4796   }
4797 };
4798 
4799 // Driver routine for parallel reference enqueueing.
4800 // Creates an instance of the ref enqueueing gang
4801 // task and has the worker threads execute it.
4802 
4803 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4804   assert(_workers != NULL, "Need parallel worker threads.");
4805 
4806   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4807 
4808   _workers->run_task(&enq_task_proxy);
4809 }
4810 
4811 // End of weak reference support closures
4812 
4813 // Abstract task used to preserve (i.e. copy) any referent objects
4814 // that are in the collection set and are pointed to by reference
4815 // objects discovered by the CM ref processor.
4816 
4817 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4818 protected:
4819   G1CollectedHeap*         _g1h;
4820   G1ParScanThreadStateSet* _pss;
4821   RefToScanQueueSet*       _queues;
4822   ParallelTaskTerminator   _terminator;
4823   uint                     _n_workers;
4824 
4825 public:
4826   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4827     AbstractGangTask("ParPreserveCMReferents"),
4828     _g1h(g1h),
4829     _pss(per_thread_states),
4830     _queues(task_queues),
4831     _terminator(workers, _queues),
4832     _n_workers(workers)
4833   { }
4834 
4835   void work(uint worker_id) {
4836     ResourceMark rm;
4837     HandleMark   hm;
4838 
4839     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4840     pss->set_ref_processor(NULL);
4841     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4842 
4843     // Is alive closure
4844     G1AlwaysAliveClosure always_alive(_g1h);
4845 
4846     // Copying keep alive closure. Applied to referent objects that need
4847     // to be copied.
4848     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4849 
4850     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4851 
4852     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4853     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4854 
4855     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4856     // So this must be true - but assert just in case someone decides to
4857     // change the worker ids.
4858     assert(worker_id < limit, "sanity");
4859     assert(!rp->discovery_is_atomic(), "check this code");
4860 
4861     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4862     for (uint idx = worker_id; idx < limit; idx += stride) {
4863       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4864 
4865       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4866       while (iter.has_next()) {
4867         // Since discovery is not atomic for the CM ref processor, we
4868         // can see some null referent objects.
4869         iter.load_ptrs(DEBUG_ONLY(true));
4870         oop ref = iter.obj();
4871 
4872         // This will filter nulls.
4873         if (iter.is_referent_alive()) {
4874           iter.make_referent_alive();
4875         }
4876         iter.move_to_next();
4877       }
4878     }
4879 
4880     // Drain the queue - which may cause stealing
4881     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4882     drain_queue.do_void();
4883     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4884     assert(pss->queue_is_empty(), "should be");
4885   }
4886 };
4887 
4888 void G1CollectedHeap::process_weak_jni_handles() {
4889   double ref_proc_start = os::elapsedTime();
4890 
4891   G1STWIsAliveClosure is_alive(this);
4892   G1KeepAliveClosure keep_alive(this);
4893   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4894 
4895   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4896   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4897 }
4898 
4899 // Weak Reference processing during an evacuation pause (part 1).
4900 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4901   double ref_proc_start = os::elapsedTime();
4902 
4903   ReferenceProcessor* rp = _ref_processor_stw;
4904   assert(rp->discovery_enabled(), "should have been enabled");
4905 
4906   // Any reference objects, in the collection set, that were 'discovered'
4907   // by the CM ref processor should have already been copied (either by
4908   // applying the external root copy closure to the discovered lists, or
4909   // by following an RSet entry).
4910   //
4911   // But some of the referents, that are in the collection set, that these
4912   // reference objects point to may not have been copied: the STW ref
4913   // processor would have seen that the reference object had already
4914   // been 'discovered' and would have skipped discovering the reference,
4915   // but would not have treated the reference object as a regular oop.
4916   // As a result the copy closure would not have been applied to the
4917   // referent object.
4918   //
4919   // We need to explicitly copy these referent objects - the references
4920   // will be processed at the end of remarking.
4921   //
4922   // We also need to do this copying before we process the reference
4923   // objects discovered by the STW ref processor in case one of these
4924   // referents points to another object which is also referenced by an
4925   // object discovered by the STW ref processor.
4926 
4927   uint no_of_gc_workers = workers()->active_workers();
4928 
4929   G1ParPreserveCMReferentsTask keep_cm_referents(this,
4930                                                  per_thread_states,
4931                                                  no_of_gc_workers,
4932                                                  _task_queues);
4933 
4934   workers()->run_task(&keep_cm_referents);
4935 
4936   // Closure to test whether a referent is alive.
4937   G1STWIsAliveClosure is_alive(this);
4938 
4939   // Even when parallel reference processing is enabled, the processing
4940   // of JNI refs is serial and performed serially by the current thread
4941   // rather than by a worker. The following PSS will be used for processing
4942   // JNI refs.
4943 
4944   // Use only a single queue for this PSS.
4945   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4946   pss->set_ref_processor(NULL);
4947   assert(pss->queue_is_empty(), "pre-condition");
4948 
4949   // Keep alive closure.
4950   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4951 
4952   // Serial Complete GC closure
4953   G1STWDrainQueueClosure drain_queue(this, pss);
4954 
4955   // Setup the soft refs policy...
4956   rp->setup_policy(false);
4957 
4958   ReferenceProcessorStats stats;
4959   if (!rp->processing_is_mt()) {
4960     // Serial reference processing...
4961     stats = rp->process_discovered_references(&is_alive,
4962                                               &keep_alive,
4963                                               &drain_queue,
4964                                               NULL,
4965                                               _gc_timer_stw);
4966   } else {
4967     // Parallel reference processing
4968     assert(rp->num_q() == no_of_gc_workers, "sanity");
4969     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
4970 
4971     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4972     stats = rp->process_discovered_references(&is_alive,
4973                                               &keep_alive,
4974                                               &drain_queue,
4975                                               &par_task_executor,
4976                                               _gc_timer_stw);
4977   }
4978 
4979   _gc_tracer_stw->report_gc_reference_stats(stats);
4980 
4981   // We have completed copying any necessary live referent objects.
4982   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4983 
4984   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4985   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4986 }
4987 
4988 // Weak Reference processing during an evacuation pause (part 2).
4989 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4990   double ref_enq_start = os::elapsedTime();
4991 
4992   ReferenceProcessor* rp = _ref_processor_stw;
4993   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4994 
4995   // Now enqueue any remaining on the discovered lists on to
4996   // the pending list.
4997   if (!rp->processing_is_mt()) {
4998     // Serial reference processing...
4999     rp->enqueue_discovered_references();
5000   } else {
5001     // Parallel reference enqueueing
5002 
5003     uint n_workers = workers()->active_workers();
5004 
5005     assert(rp->num_q() == n_workers, "sanity");
5006     assert(n_workers <= rp->max_num_q(), "sanity");
5007 
5008     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5009     rp->enqueue_discovered_references(&par_task_executor);
5010   }
5011 
5012   rp->verify_no_references_recorded();
5013   assert(!rp->discovery_enabled(), "should have been disabled");
5014 
5015   // FIXME
5016   // CM's reference processing also cleans up the string and symbol tables.
5017   // Should we do that here also? We could, but it is a serial operation
5018   // and could significantly increase the pause time.
5019 
5020   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5021   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5022 }
5023 
5024 void G1CollectedHeap::pre_evacuate_collection_set() {
5025   _expand_heap_after_alloc_failure = true;
5026   _evacuation_failed = false;
5027 
5028   // Disable the hot card cache.
5029   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5030   hot_card_cache->reset_hot_cache_claimed_index();
5031   hot_card_cache->set_use_cache(false);
5032 
5033   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5034 }
5035 
5036 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5037   // Should G1EvacuationFailureALot be in effect for this GC?
5038   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5039 
5040   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5041   double start_par_time_sec = os::elapsedTime();
5042   double end_par_time_sec;
5043 
5044   {
5045     const uint n_workers = workers()->active_workers();
5046     G1RootProcessor root_processor(this, n_workers);
5047     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5048     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5049     if (collector_state()->during_initial_mark_pause()) {
5050       ClassLoaderDataGraph::clear_claimed_marks();
5051     }
5052 
5053     print_termination_stats_hdr();
5054 
5055     workers()->run_task(&g1_par_task);
5056     end_par_time_sec = os::elapsedTime();
5057 
5058     // Closing the inner scope will execute the destructor
5059     // for the G1RootProcessor object. We record the current
5060     // elapsed time before closing the scope so that time
5061     // taken for the destructor is NOT included in the
5062     // reported parallel time.
5063   }
5064 
5065   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5066 
5067   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5068   phase_times->record_par_time(par_time_ms);
5069 
5070   double code_root_fixup_time_ms =
5071         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5072   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5073 }
5074 
5075 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5076   // Process any discovered reference objects - we have
5077   // to do this _before_ we retire the GC alloc regions
5078   // as we may have to copy some 'reachable' referent
5079   // objects (and their reachable sub-graphs) that were
5080   // not copied during the pause.
5081   if (g1_policy()->should_process_references()) {
5082     process_discovered_references(per_thread_states);
5083   } else {
5084     ref_processor_stw()->verify_no_references_recorded();
5085     process_weak_jni_handles();
5086   }
5087 
5088   if (G1StringDedup::is_enabled()) {
5089     double fixup_start = os::elapsedTime();
5090 
5091     G1STWIsAliveClosure is_alive(this);
5092     G1KeepAliveClosure keep_alive(this);
5093     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
5094 
5095     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5096     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
5097   }
5098 
5099   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5100 
5101   if (evacuation_failed()) {
5102     restore_after_evac_failure();
5103 
5104     // Reset the G1EvacuationFailureALot counters and flags
5105     // Note: the values are reset only when an actual
5106     // evacuation failure occurs.
5107     NOT_PRODUCT(reset_evacuation_should_fail();)
5108   }
5109 
5110   // Enqueue any remaining references remaining on the STW
5111   // reference processor's discovered lists. We need to do
5112   // this after the card table is cleaned (and verified) as
5113   // the act of enqueueing entries on to the pending list
5114   // will log these updates (and dirty their associated
5115   // cards). We need these updates logged to update any
5116   // RSets.
5117   if (g1_policy()->should_process_references()) {
5118     enqueue_discovered_references(per_thread_states);
5119   } else {
5120     g1_policy()->phase_times()->record_ref_enq_time(0);
5121   }
5122 
5123   _allocator->release_gc_alloc_regions(evacuation_info);
5124 
5125   per_thread_states->flush();
5126 
5127   record_obj_copy_mem_stats();
5128 
5129   _survivor_evac_stats.adjust_desired_plab_sz();
5130   _old_evac_stats.adjust_desired_plab_sz();
5131 
5132   // Reset and re-enable the hot card cache.
5133   // Note the counts for the cards in the regions in the
5134   // collection set are reset when the collection set is freed.
5135   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5136   hot_card_cache->reset_hot_cache();
5137   hot_card_cache->set_use_cache(true);
5138 
5139   purge_code_root_memory();
5140 
5141   redirty_logged_cards();
5142 #if defined(COMPILER2) || INCLUDE_JVMCI
5143   DerivedPointerTable::update_pointers();
5144 #endif
5145 }
5146 
5147 void G1CollectedHeap::record_obj_copy_mem_stats() {
5148   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
5149 
5150   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5151                                                create_g1_evac_summary(&_old_evac_stats));
5152 }
5153 
5154 void G1CollectedHeap::free_region(HeapRegion* hr,
5155                                   FreeRegionList* free_list,
5156                                   bool par,
5157                                   bool locked) {
5158   assert(!hr->is_free(), "the region should not be free");
5159   assert(!hr->is_empty(), "the region should not be empty");
5160   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5161   assert(free_list != NULL, "pre-condition");
5162 
5163   if (G1VerifyBitmaps) {
5164     MemRegion mr(hr->bottom(), hr->end());
5165     concurrent_mark()->clearRangePrevBitmap(mr);
5166   }
5167 
5168   // Clear the card counts for this region.
5169   // Note: we only need to do this if the region is not young
5170   // (since we don't refine cards in young regions).
5171   if (!hr->is_young()) {
5172     _cg1r->hot_card_cache()->reset_card_counts(hr);
5173   }
5174   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5175   free_list->add_ordered(hr);
5176 }
5177 
5178 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5179                                             FreeRegionList* free_list,
5180                                             bool par) {
5181   assert(hr->is_humongous(), "this is only for humongous regions");
5182   assert(free_list != NULL, "pre-condition");
5183   hr->clear_humongous();
5184   free_region(hr, free_list, par);
5185 }
5186 
5187 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
5188                                            const uint humongous_regions_removed) {
5189   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
5190     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5191     _old_set.bulk_remove(old_regions_removed);
5192     _humongous_set.bulk_remove(humongous_regions_removed);
5193   }
5194 
5195 }
5196 
5197 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5198   assert(list != NULL, "list can't be null");
5199   if (!list->is_empty()) {
5200     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5201     _hrm.insert_list_into_free_list(list);
5202   }
5203 }
5204 
5205 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5206   decrease_used(bytes);
5207 }
5208 
5209 class G1ParCleanupCTTask : public AbstractGangTask {
5210   G1SATBCardTableModRefBS* _ct_bs;
5211   G1CollectedHeap* _g1h;
5212   HeapRegion* volatile _su_head;
5213 public:
5214   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5215                      G1CollectedHeap* g1h) :
5216     AbstractGangTask("G1 Par Cleanup CT Task"),
5217     _ct_bs(ct_bs), _g1h(g1h) { }
5218 
5219   void work(uint worker_id) {
5220     HeapRegion* r;
5221     while (r = _g1h->pop_dirty_cards_region()) {
5222       clear_cards(r);
5223     }
5224   }
5225 
5226   void clear_cards(HeapRegion* r) {
5227     // Cards of the survivors should have already been dirtied.
5228     if (!r->is_survivor()) {
5229       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5230     }
5231   }
5232 };
5233 
5234 #ifndef PRODUCT
5235 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5236   G1CollectedHeap* _g1h;
5237   G1SATBCardTableModRefBS* _ct_bs;
5238 public:
5239   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5240     : _g1h(g1h), _ct_bs(ct_bs) { }
5241   virtual bool doHeapRegion(HeapRegion* r) {
5242     if (r->is_survivor()) {
5243       _g1h->verify_dirty_region(r);
5244     } else {
5245       _g1h->verify_not_dirty_region(r);
5246     }
5247     return false;
5248   }
5249 };
5250 
5251 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5252   // All of the region should be clean.
5253   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5254   MemRegion mr(hr->bottom(), hr->end());
5255   ct_bs->verify_not_dirty_region(mr);
5256 }
5257 
5258 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5259   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5260   // dirty allocated blocks as they allocate them. The thread that
5261   // retires each region and replaces it with a new one will do a
5262   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5263   // not dirty that area (one less thing to have to do while holding
5264   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5265   // is dirty.
5266   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5267   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5268   if (hr->is_young()) {
5269     ct_bs->verify_g1_young_region(mr);
5270   } else {
5271     ct_bs->verify_dirty_region(mr);
5272   }
5273 }
5274 
5275 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5276   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5277   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5278     verify_dirty_region(hr);
5279   }
5280 }
5281 
5282 void G1CollectedHeap::verify_dirty_young_regions() {
5283   verify_dirty_young_list(_young_list->first_region());
5284 }
5285 
5286 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5287                                                HeapWord* tams, HeapWord* end) {
5288   guarantee(tams <= end,
5289             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5290   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5291   if (result < end) {
5292     log_info(gc, verify)("## wrong marked address on %s bitmap: " PTR_FORMAT, bitmap_name, p2i(result));
5293     log_info(gc, verify)("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT, bitmap_name, p2i(tams), p2i(end));
5294     return false;
5295   }
5296   return true;
5297 }
5298 
5299 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5300   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5301   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5302 
5303   HeapWord* bottom = hr->bottom();
5304   HeapWord* ptams  = hr->prev_top_at_mark_start();
5305   HeapWord* ntams  = hr->next_top_at_mark_start();
5306   HeapWord* end    = hr->end();
5307 
5308   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5309 
5310   bool res_n = true;
5311   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5312   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5313   // if we happen to be in that state.
5314   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5315     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5316   }
5317   if (!res_p || !res_n) {
5318     log_info(gc, verify)("#### Bitmap verification failed for " HR_FORMAT, HR_FORMAT_PARAMS(hr));
5319     log_info(gc, verify)("#### Caller: %s", caller);
5320     return false;
5321   }
5322   return true;
5323 }
5324 
5325 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5326   if (!G1VerifyBitmaps) return;
5327 
5328   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5329 }
5330 
5331 class G1VerifyBitmapClosure : public HeapRegionClosure {
5332 private:
5333   const char* _caller;
5334   G1CollectedHeap* _g1h;
5335   bool _failures;
5336 
5337 public:
5338   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5339     _caller(caller), _g1h(g1h), _failures(false) { }
5340 
5341   bool failures() { return _failures; }
5342 
5343   virtual bool doHeapRegion(HeapRegion* hr) {
5344     bool result = _g1h->verify_bitmaps(_caller, hr);
5345     if (!result) {
5346       _failures = true;
5347     }
5348     return false;
5349   }
5350 };
5351 
5352 void G1CollectedHeap::check_bitmaps(const char* caller) {
5353   if (!G1VerifyBitmaps) return;
5354 
5355   G1VerifyBitmapClosure cl(caller, this);
5356   heap_region_iterate(&cl);
5357   guarantee(!cl.failures(), "bitmap verification");
5358 }
5359 
5360 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5361  private:
5362   bool _failures;
5363  public:
5364   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5365 
5366   virtual bool doHeapRegion(HeapRegion* hr) {
5367     uint i = hr->hrm_index();
5368     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5369     if (hr->is_humongous()) {
5370       if (hr->in_collection_set()) {
5371         log_info(gc, verify)("## humongous region %u in CSet", i);
5372         _failures = true;
5373         return true;
5374       }
5375       if (cset_state.is_in_cset()) {
5376         log_info(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for humongous region %u", cset_state.value(), i);
5377         _failures = true;
5378         return true;
5379       }
5380       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5381         log_info(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for continues humongous region %u", cset_state.value(), i);
5382         _failures = true;
5383         return true;
5384       }
5385     } else {
5386       if (cset_state.is_humongous()) {
5387         log_info(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for non-humongous region %u", cset_state.value(), i);
5388         _failures = true;
5389         return true;
5390       }
5391       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5392         log_info(gc, verify)("## in CSet %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
5393                              hr->in_collection_set(), cset_state.value(), i);
5394         _failures = true;
5395         return true;
5396       }
5397       if (cset_state.is_in_cset()) {
5398         if (hr->is_young() != (cset_state.is_young())) {
5399           log_info(gc, verify)("## is_young %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
5400                                hr->is_young(), cset_state.value(), i);
5401           _failures = true;
5402           return true;
5403         }
5404         if (hr->is_old() != (cset_state.is_old())) {
5405           log_info(gc, verify)("## is_old %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
5406                                hr->is_old(), cset_state.value(), i);
5407           _failures = true;
5408           return true;
5409         }
5410       }
5411     }
5412     return false;
5413   }
5414 
5415   bool failures() const { return _failures; }
5416 };
5417 
5418 bool G1CollectedHeap::check_cset_fast_test() {
5419   G1CheckCSetFastTableClosure cl;
5420   _hrm.iterate(&cl);
5421   return !cl.failures();
5422 }
5423 #endif // PRODUCT
5424 
5425 void G1CollectedHeap::cleanUpCardTable() {
5426   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5427   double start = os::elapsedTime();
5428 
5429   {
5430     // Iterate over the dirty cards region list.
5431     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5432 
5433     workers()->run_task(&cleanup_task);
5434 #ifndef PRODUCT
5435     if (G1VerifyCTCleanup || VerifyAfterGC) {
5436       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5437       heap_region_iterate(&cleanup_verifier);
5438     }
5439 #endif
5440   }
5441 
5442   double elapsed = os::elapsedTime() - start;
5443   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5444 }
5445 
5446 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5447   size_t pre_used = 0;
5448   FreeRegionList local_free_list("Local List for CSet Freeing");
5449 
5450   double young_time_ms     = 0.0;
5451   double non_young_time_ms = 0.0;
5452 
5453   // Since the collection set is a superset of the the young list,
5454   // all we need to do to clear the young list is clear its
5455   // head and length, and unlink any young regions in the code below
5456   _young_list->clear();
5457 
5458   G1CollectorPolicy* policy = g1_policy();
5459 
5460   double start_sec = os::elapsedTime();
5461   bool non_young = true;
5462 
5463   HeapRegion* cur = cs_head;
5464   int age_bound = -1;
5465   size_t rs_lengths = 0;
5466 
5467   while (cur != NULL) {
5468     assert(!is_on_master_free_list(cur), "sanity");
5469     if (non_young) {
5470       if (cur->is_young()) {
5471         double end_sec = os::elapsedTime();
5472         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5473         non_young_time_ms += elapsed_ms;
5474 
5475         start_sec = os::elapsedTime();
5476         non_young = false;
5477       }
5478     } else {
5479       if (!cur->is_young()) {
5480         double end_sec = os::elapsedTime();
5481         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5482         young_time_ms += elapsed_ms;
5483 
5484         start_sec = os::elapsedTime();
5485         non_young = true;
5486       }
5487     }
5488 
5489     rs_lengths += cur->rem_set()->occupied_locked();
5490 
5491     HeapRegion* next = cur->next_in_collection_set();
5492     assert(cur->in_collection_set(), "bad CS");
5493     cur->set_next_in_collection_set(NULL);
5494     clear_in_cset(cur);
5495 
5496     if (cur->is_young()) {
5497       int index = cur->young_index_in_cset();
5498       assert(index != -1, "invariant");
5499       assert((uint) index < policy->young_cset_region_length(), "invariant");
5500       size_t words_survived = surviving_young_words[index];
5501       cur->record_surv_words_in_group(words_survived);
5502 
5503       // At this point the we have 'popped' cur from the collection set
5504       // (linked via next_in_collection_set()) but it is still in the
5505       // young list (linked via next_young_region()). Clear the
5506       // _next_young_region field.
5507       cur->set_next_young_region(NULL);
5508     } else {
5509       int index = cur->young_index_in_cset();
5510       assert(index == -1, "invariant");
5511     }
5512 
5513     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5514             (!cur->is_young() && cur->young_index_in_cset() == -1),
5515             "invariant" );
5516 
5517     if (!cur->evacuation_failed()) {
5518       MemRegion used_mr = cur->used_region();
5519 
5520       // And the region is empty.
5521       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5522       pre_used += cur->used();
5523       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5524     } else {
5525       cur->uninstall_surv_rate_group();
5526       if (cur->is_young()) {
5527         cur->set_young_index_in_cset(-1);
5528       }
5529       cur->set_evacuation_failed(false);
5530       // When moving a young gen region to old gen, we "allocate" that whole region
5531       // there. This is in addition to any already evacuated objects. Notify the
5532       // policy about that.
5533       // Old gen regions do not cause an additional allocation: both the objects
5534       // still in the region and the ones already moved are accounted for elsewhere.
5535       if (cur->is_young()) {
5536         policy->add_bytes_allocated_in_old_since_last_gc(HeapRegion::GrainBytes);
5537       }
5538       // The region is now considered to be old.
5539       cur->set_old();
5540       // Do some allocation statistics accounting. Regions that failed evacuation
5541       // are always made old, so there is no need to update anything in the young
5542       // gen statistics, but we need to update old gen statistics.
5543       size_t used_words = cur->marked_bytes() / HeapWordSize;
5544       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5545       _old_set.add(cur);
5546       evacuation_info.increment_collectionset_used_after(cur->used());
5547     }
5548     cur = next;
5549   }
5550 
5551   evacuation_info.set_regions_freed(local_free_list.length());
5552   policy->record_max_rs_lengths(rs_lengths);
5553   policy->cset_regions_freed();
5554 
5555   double end_sec = os::elapsedTime();
5556   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5557 
5558   if (non_young) {
5559     non_young_time_ms += elapsed_ms;
5560   } else {
5561     young_time_ms += elapsed_ms;
5562   }
5563 
5564   prepend_to_freelist(&local_free_list);
5565   decrement_summary_bytes(pre_used);
5566   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5567   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5568 }
5569 
5570 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5571  private:
5572   FreeRegionList* _free_region_list;
5573   HeapRegionSet* _proxy_set;
5574   uint _humongous_regions_removed;
5575   size_t _freed_bytes;
5576  public:
5577 
5578   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5579     _free_region_list(free_region_list), _humongous_regions_removed(0), _freed_bytes(0) {
5580   }
5581 
5582   virtual bool doHeapRegion(HeapRegion* r) {
5583     if (!r->is_starts_humongous()) {
5584       return false;
5585     }
5586 
5587     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5588 
5589     oop obj = (oop)r->bottom();
5590     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5591 
5592     // The following checks whether the humongous object is live are sufficient.
5593     // The main additional check (in addition to having a reference from the roots
5594     // or the young gen) is whether the humongous object has a remembered set entry.
5595     //
5596     // A humongous object cannot be live if there is no remembered set for it
5597     // because:
5598     // - there can be no references from within humongous starts regions referencing
5599     // the object because we never allocate other objects into them.
5600     // (I.e. there are no intra-region references that may be missed by the
5601     // remembered set)
5602     // - as soon there is a remembered set entry to the humongous starts region
5603     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5604     // until the end of a concurrent mark.
5605     //
5606     // It is not required to check whether the object has been found dead by marking
5607     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5608     // all objects allocated during that time are considered live.
5609     // SATB marking is even more conservative than the remembered set.
5610     // So if at this point in the collection there is no remembered set entry,
5611     // nobody has a reference to it.
5612     // At the start of collection we flush all refinement logs, and remembered sets
5613     // are completely up-to-date wrt to references to the humongous object.
5614     //
5615     // Other implementation considerations:
5616     // - never consider object arrays at this time because they would pose
5617     // considerable effort for cleaning up the the remembered sets. This is
5618     // required because stale remembered sets might reference locations that
5619     // are currently allocated into.
5620     uint region_idx = r->hrm_index();
5621     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5622         !r->rem_set()->is_empty()) {
5623       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5624                                region_idx,
5625                                (size_t)obj->size() * HeapWordSize,
5626                                p2i(r->bottom()),
5627                                r->rem_set()->occupied(),
5628                                r->rem_set()->strong_code_roots_list_length(),
5629                                next_bitmap->isMarked(r->bottom()),
5630                                g1h->is_humongous_reclaim_candidate(region_idx),
5631                                obj->is_typeArray()
5632                               );
5633       return false;
5634     }
5635 
5636     guarantee(obj->is_typeArray(),
5637               "Only eagerly reclaiming type arrays is supported, but the object "
5638               PTR_FORMAT " is not.", p2i(r->bottom()));
5639 
5640     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5641                              region_idx,
5642                              (size_t)obj->size() * HeapWordSize,
5643                              p2i(r->bottom()),
5644                              r->rem_set()->occupied(),
5645                              r->rem_set()->strong_code_roots_list_length(),
5646                              next_bitmap->isMarked(r->bottom()),
5647                              g1h->is_humongous_reclaim_candidate(region_idx),
5648                              obj->is_typeArray()
5649                             );
5650 
5651     // Need to clear mark bit of the humongous object if already set.
5652     if (next_bitmap->isMarked(r->bottom())) {
5653       next_bitmap->clear(r->bottom());
5654     }
5655     do {
5656       HeapRegion* next = g1h->next_region_in_humongous(r);
5657       _freed_bytes += r->used();
5658       r->set_containing_set(NULL);
5659       _humongous_regions_removed++;
5660       g1h->free_humongous_region(r, _free_region_list, false);
5661       r = next;
5662     } while (r != NULL);
5663 
5664     return false;
5665   }
5666 
5667   uint humongous_free_count() {
5668     return _humongous_regions_removed;
5669   }
5670 
5671   size_t bytes_freed() const {
5672     return _freed_bytes;
5673   }
5674 };
5675 
5676 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5677   assert_at_safepoint(true);
5678 
5679   if (!G1EagerReclaimHumongousObjects ||
5680       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5681     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5682     return;
5683   }
5684 
5685   double start_time = os::elapsedTime();
5686 
5687   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5688 
5689   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5690   heap_region_iterate(&cl);
5691 
5692   remove_from_old_sets(0, cl.humongous_free_count());
5693 
5694   G1HRPrinter* hrp = hr_printer();
5695   if (hrp->is_active()) {
5696     FreeRegionListIterator iter(&local_cleanup_list);
5697     while (iter.more_available()) {
5698       HeapRegion* hr = iter.get_next();
5699       hrp->cleanup(hr);
5700     }
5701   }
5702 
5703   prepend_to_freelist(&local_cleanup_list);
5704   decrement_summary_bytes(cl.bytes_freed());
5705 
5706   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5707                                                                     cl.humongous_free_count());
5708 }
5709 
5710 // This routine is similar to the above but does not record
5711 // any policy statistics or update free lists; we are abandoning
5712 // the current incremental collection set in preparation of a
5713 // full collection. After the full GC we will start to build up
5714 // the incremental collection set again.
5715 // This is only called when we're doing a full collection
5716 // and is immediately followed by the tearing down of the young list.
5717 
5718 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5719   HeapRegion* cur = cs_head;
5720 
5721   while (cur != NULL) {
5722     HeapRegion* next = cur->next_in_collection_set();
5723     assert(cur->in_collection_set(), "bad CS");
5724     cur->set_next_in_collection_set(NULL);
5725     clear_in_cset(cur);
5726     cur->set_young_index_in_cset(-1);
5727     cur = next;
5728   }
5729 }
5730 
5731 void G1CollectedHeap::set_free_regions_coming() {
5732   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5733 
5734   assert(!free_regions_coming(), "pre-condition");
5735   _free_regions_coming = true;
5736 }
5737 
5738 void G1CollectedHeap::reset_free_regions_coming() {
5739   assert(free_regions_coming(), "pre-condition");
5740 
5741   {
5742     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5743     _free_regions_coming = false;
5744     SecondaryFreeList_lock->notify_all();
5745   }
5746 
5747   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5748 }
5749 
5750 void G1CollectedHeap::wait_while_free_regions_coming() {
5751   // Most of the time we won't have to wait, so let's do a quick test
5752   // first before we take the lock.
5753   if (!free_regions_coming()) {
5754     return;
5755   }
5756 
5757   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5758 
5759   {
5760     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5761     while (free_regions_coming()) {
5762       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5763     }
5764   }
5765 
5766   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5767 }
5768 
5769 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5770   return _allocator->is_retained_old_region(hr);
5771 }
5772 
5773 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5774   _young_list->push_region(hr);
5775 }
5776 
5777 class NoYoungRegionsClosure: public HeapRegionClosure {
5778 private:
5779   bool _success;
5780 public:
5781   NoYoungRegionsClosure() : _success(true) { }
5782   bool doHeapRegion(HeapRegion* r) {
5783     if (r->is_young()) {
5784       log_info(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5785                            p2i(r->bottom()), p2i(r->end()));
5786       _success = false;
5787     }
5788     return false;
5789   }
5790   bool success() { return _success; }
5791 };
5792 
5793 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5794   bool ret = _young_list->check_list_empty(check_sample);
5795 
5796   if (check_heap) {
5797     NoYoungRegionsClosure closure;
5798     heap_region_iterate(&closure);
5799     ret = ret && closure.success();
5800   }
5801 
5802   return ret;
5803 }
5804 
5805 class TearDownRegionSetsClosure : public HeapRegionClosure {
5806 private:
5807   HeapRegionSet *_old_set;
5808 
5809 public:
5810   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5811 
5812   bool doHeapRegion(HeapRegion* r) {
5813     if (r->is_old()) {
5814       _old_set->remove(r);
5815     } else {
5816       // We ignore free regions, we'll empty the free list afterwards.
5817       // We ignore young regions, we'll empty the young list afterwards.
5818       // We ignore humongous regions, we're not tearing down the
5819       // humongous regions set.
5820       assert(r->is_free() || r->is_young() || r->is_humongous(),
5821              "it cannot be another type");
5822     }
5823     return false;
5824   }
5825 
5826   ~TearDownRegionSetsClosure() {
5827     assert(_old_set->is_empty(), "post-condition");
5828   }
5829 };
5830 
5831 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5832   assert_at_safepoint(true /* should_be_vm_thread */);
5833 
5834   if (!free_list_only) {
5835     TearDownRegionSetsClosure cl(&_old_set);
5836     heap_region_iterate(&cl);
5837 
5838     // Note that emptying the _young_list is postponed and instead done as
5839     // the first step when rebuilding the regions sets again. The reason for
5840     // this is that during a full GC string deduplication needs to know if
5841     // a collected region was young or old when the full GC was initiated.
5842   }
5843   _hrm.remove_all_free_regions();
5844 }
5845 
5846 void G1CollectedHeap::increase_used(size_t bytes) {
5847   _summary_bytes_used += bytes;
5848 }
5849 
5850 void G1CollectedHeap::decrease_used(size_t bytes) {
5851   assert(_summary_bytes_used >= bytes,
5852          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5853          _summary_bytes_used, bytes);
5854   _summary_bytes_used -= bytes;
5855 }
5856 
5857 void G1CollectedHeap::set_used(size_t bytes) {
5858   _summary_bytes_used = bytes;
5859 }
5860 
5861 class RebuildRegionSetsClosure : public HeapRegionClosure {
5862 private:
5863   bool            _free_list_only;
5864   HeapRegionSet*   _old_set;
5865   HeapRegionManager*   _hrm;
5866   size_t          _total_used;
5867 
5868 public:
5869   RebuildRegionSetsClosure(bool free_list_only,
5870                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5871     _free_list_only(free_list_only),
5872     _old_set(old_set), _hrm(hrm), _total_used(0) {
5873     assert(_hrm->num_free_regions() == 0, "pre-condition");
5874     if (!free_list_only) {
5875       assert(_old_set->is_empty(), "pre-condition");
5876     }
5877   }
5878 
5879   bool doHeapRegion(HeapRegion* r) {
5880     if (r->is_empty()) {
5881       // Add free regions to the free list
5882       r->set_free();
5883       r->set_allocation_context(AllocationContext::system());
5884       _hrm->insert_into_free_list(r);
5885     } else if (!_free_list_only) {
5886       assert(!r->is_young(), "we should not come across young regions");
5887 
5888       if (r->is_humongous()) {
5889         // We ignore humongous regions. We left the humongous set unchanged.
5890       } else {
5891         // Objects that were compacted would have ended up on regions
5892         // that were previously old or free.  Archive regions (which are
5893         // old) will not have been touched.
5894         assert(r->is_free() || r->is_old(), "invariant");
5895         // We now consider them old, so register as such. Leave
5896         // archive regions set that way, however, while still adding
5897         // them to the old set.
5898         if (!r->is_archive()) {
5899           r->set_old();
5900         }
5901         _old_set->add(r);
5902       }
5903       _total_used += r->used();
5904     }
5905 
5906     return false;
5907   }
5908 
5909   size_t total_used() {
5910     return _total_used;
5911   }
5912 };
5913 
5914 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5915   assert_at_safepoint(true /* should_be_vm_thread */);
5916 
5917   if (!free_list_only) {
5918     _young_list->empty_list();
5919   }
5920 
5921   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5922   heap_region_iterate(&cl);
5923 
5924   if (!free_list_only) {
5925     set_used(cl.total_used());
5926     if (_archive_allocator != NULL) {
5927       _archive_allocator->clear_used();
5928     }
5929   }
5930   assert(used_unlocked() == recalculate_used(),
5931          "inconsistent used_unlocked(), "
5932          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5933          used_unlocked(), recalculate_used());
5934 }
5935 
5936 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5937   _refine_cte_cl->set_concurrent(concurrent);
5938 }
5939 
5940 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5941   HeapRegion* hr = heap_region_containing(p);
5942   return hr->is_in(p);
5943 }
5944 
5945 // Methods for the mutator alloc region
5946 
5947 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5948                                                       bool force) {
5949   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5950   assert(!force || g1_policy()->can_expand_young_list(),
5951          "if force is true we should be able to expand the young list");
5952   bool young_list_full = g1_policy()->is_young_list_full();
5953   if (force || !young_list_full) {
5954     HeapRegion* new_alloc_region = new_region(word_size,
5955                                               false /* is_old */,
5956                                               false /* do_expand */);
5957     if (new_alloc_region != NULL) {
5958       set_region_short_lived_locked(new_alloc_region);
5959       _hr_printer.alloc(new_alloc_region, young_list_full);
5960       check_bitmaps("Mutator Region Allocation", new_alloc_region);
5961       return new_alloc_region;
5962     }
5963   }
5964   return NULL;
5965 }
5966 
5967 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5968                                                   size_t allocated_bytes) {
5969   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5970   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5971 
5972   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
5973   increase_used(allocated_bytes);
5974   _hr_printer.retire(alloc_region);
5975   // We update the eden sizes here, when the region is retired,
5976   // instead of when it's allocated, since this is the point that its
5977   // used space has been recored in _summary_bytes_used.
5978   g1mm()->update_eden_size();
5979 }
5980 
5981 // Methods for the GC alloc regions
5982 
5983 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
5984                                                  uint count,
5985                                                  InCSetState dest) {
5986   assert(FreeList_lock->owned_by_self(), "pre-condition");
5987 
5988   if (count < g1_policy()->max_regions(dest)) {
5989     const bool is_survivor = (dest.is_young());
5990     HeapRegion* new_alloc_region = new_region(word_size,
5991                                               !is_survivor,
5992                                               true /* do_expand */);
5993     if (new_alloc_region != NULL) {
5994       // We really only need to do this for old regions given that we
5995       // should never scan survivors. But it doesn't hurt to do it
5996       // for survivors too.
5997       new_alloc_region->record_timestamp();
5998       if (is_survivor) {
5999         new_alloc_region->set_survivor();
6000         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6001       } else {
6002         new_alloc_region->set_old();
6003         check_bitmaps("Old Region Allocation", new_alloc_region);
6004       }
6005       _hr_printer.alloc(new_alloc_region);
6006       bool during_im = collector_state()->during_initial_mark_pause();
6007       new_alloc_region->note_start_of_copying(during_im);
6008       return new_alloc_region;
6009     }
6010   }
6011   return NULL;
6012 }
6013 
6014 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6015                                              size_t allocated_bytes,
6016                                              InCSetState dest) {
6017   bool during_im = collector_state()->during_initial_mark_pause();
6018   alloc_region->note_end_of_copying(during_im);
6019   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6020   if (dest.is_young()) {
6021     young_list()->add_survivor_region(alloc_region);
6022   } else {
6023     _old_set.add(alloc_region);
6024   }
6025   _hr_printer.retire(alloc_region);
6026 }
6027 
6028 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6029   bool expanded = false;
6030   uint index = _hrm.find_highest_free(&expanded);
6031 
6032   if (index != G1_NO_HRM_INDEX) {
6033     if (expanded) {
6034       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
6035                                 HeapRegion::GrainWords * HeapWordSize);
6036     }
6037     _hrm.allocate_free_regions_starting_at(index, 1);
6038     return region_at(index);
6039   }
6040   return NULL;
6041 }
6042 
6043 // Heap region set verification
6044 
6045 class VerifyRegionListsClosure : public HeapRegionClosure {
6046 private:
6047   HeapRegionSet*   _old_set;
6048   HeapRegionSet*   _humongous_set;
6049   HeapRegionManager*   _hrm;
6050 
6051 public:
6052   uint _old_count;
6053   uint _humongous_count;
6054   uint _free_count;
6055 
6056   VerifyRegionListsClosure(HeapRegionSet* old_set,
6057                            HeapRegionSet* humongous_set,
6058                            HeapRegionManager* hrm) :
6059     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6060     _old_count(), _humongous_count(), _free_count(){ }
6061 
6062   bool doHeapRegion(HeapRegion* hr) {
6063     if (hr->is_young()) {
6064       // TODO
6065     } else if (hr->is_humongous()) {
6066       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6067       _humongous_count++;
6068     } else if (hr->is_empty()) {
6069       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6070       _free_count++;
6071     } else if (hr->is_old()) {
6072       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6073       _old_count++;
6074     } else {
6075       // There are no other valid region types. Check for one invalid
6076       // one we can identify: pinned without old or humongous set.
6077       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6078       ShouldNotReachHere();
6079     }
6080     return false;
6081   }
6082 
6083   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6084     guarantee(old_set->length() == _old_count, "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count);
6085     guarantee(humongous_set->length() == _humongous_count, "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count);
6086     guarantee(free_list->num_free_regions() == _free_count, "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count);
6087   }
6088 };
6089 
6090 void G1CollectedHeap::verify_region_sets() {
6091   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6092 
6093   // First, check the explicit lists.
6094   _hrm.verify();
6095   {
6096     // Given that a concurrent operation might be adding regions to
6097     // the secondary free list we have to take the lock before
6098     // verifying it.
6099     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6100     _secondary_free_list.verify_list();
6101   }
6102 
6103   // If a concurrent region freeing operation is in progress it will
6104   // be difficult to correctly attributed any free regions we come
6105   // across to the correct free list given that they might belong to
6106   // one of several (free_list, secondary_free_list, any local lists,
6107   // etc.). So, if that's the case we will skip the rest of the
6108   // verification operation. Alternatively, waiting for the concurrent
6109   // operation to complete will have a non-trivial effect on the GC's
6110   // operation (no concurrent operation will last longer than the
6111   // interval between two calls to verification) and it might hide
6112   // any issues that we would like to catch during testing.
6113   if (free_regions_coming()) {
6114     return;
6115   }
6116 
6117   // Make sure we append the secondary_free_list on the free_list so
6118   // that all free regions we will come across can be safely
6119   // attributed to the free_list.
6120   append_secondary_free_list_if_not_empty_with_lock();
6121 
6122   // Finally, make sure that the region accounting in the lists is
6123   // consistent with what we see in the heap.
6124 
6125   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6126   heap_region_iterate(&cl);
6127   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6128 }
6129 
6130 // Optimized nmethod scanning
6131 
6132 class RegisterNMethodOopClosure: public OopClosure {
6133   G1CollectedHeap* _g1h;
6134   nmethod* _nm;
6135 
6136   template <class T> void do_oop_work(T* p) {
6137     T heap_oop = oopDesc::load_heap_oop(p);
6138     if (!oopDesc::is_null(heap_oop)) {
6139       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6140       HeapRegion* hr = _g1h->heap_region_containing(obj);
6141       assert(!hr->is_continues_humongous(),
6142              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6143              " starting at " HR_FORMAT,
6144              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6145 
6146       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6147       hr->add_strong_code_root_locked(_nm);
6148     }
6149   }
6150 
6151 public:
6152   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6153     _g1h(g1h), _nm(nm) {}
6154 
6155   void do_oop(oop* p)       { do_oop_work(p); }
6156   void do_oop(narrowOop* p) { do_oop_work(p); }
6157 };
6158 
6159 class UnregisterNMethodOopClosure: public OopClosure {
6160   G1CollectedHeap* _g1h;
6161   nmethod* _nm;
6162 
6163   template <class T> void do_oop_work(T* p) {
6164     T heap_oop = oopDesc::load_heap_oop(p);
6165     if (!oopDesc::is_null(heap_oop)) {
6166       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6167       HeapRegion* hr = _g1h->heap_region_containing(obj);
6168       assert(!hr->is_continues_humongous(),
6169              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6170              " starting at " HR_FORMAT,
6171              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6172 
6173       hr->remove_strong_code_root(_nm);
6174     }
6175   }
6176 
6177 public:
6178   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6179     _g1h(g1h), _nm(nm) {}
6180 
6181   void do_oop(oop* p)       { do_oop_work(p); }
6182   void do_oop(narrowOop* p) { do_oop_work(p); }
6183 };
6184 
6185 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6186   CollectedHeap::register_nmethod(nm);
6187 
6188   guarantee(nm != NULL, "sanity");
6189   RegisterNMethodOopClosure reg_cl(this, nm);
6190   nm->oops_do(&reg_cl);
6191 }
6192 
6193 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6194   CollectedHeap::unregister_nmethod(nm);
6195 
6196   guarantee(nm != NULL, "sanity");
6197   UnregisterNMethodOopClosure reg_cl(this, nm);
6198   nm->oops_do(&reg_cl, true);
6199 }
6200 
6201 void G1CollectedHeap::purge_code_root_memory() {
6202   double purge_start = os::elapsedTime();
6203   G1CodeRootSet::purge();
6204   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6205   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6206 }
6207 
6208 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6209   G1CollectedHeap* _g1h;
6210 
6211 public:
6212   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6213     _g1h(g1h) {}
6214 
6215   void do_code_blob(CodeBlob* cb) {
6216     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6217     if (nm == NULL) {
6218       return;
6219     }
6220 
6221     if (ScavengeRootsInCode) {
6222       _g1h->register_nmethod(nm);
6223     }
6224   }
6225 };
6226 
6227 void G1CollectedHeap::rebuild_strong_code_roots() {
6228   RebuildStrongCodeRootClosure blob_cl(this);
6229   CodeCache::blobs_do(&blob_cl);
6230 }