1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMark.inline.hpp"
  30 #include "gc/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc/g1/g1CollectorPolicy.hpp"
  33 #include "gc/g1/g1CollectorState.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1RemSet.hpp"
  36 #include "gc/g1/g1StringDedup.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionManager.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/g1/suspendibleThreadSet.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "logging/log.hpp"
  52 #include "memory/allocation.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.inline.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/prefetch.inline.hpp"
  59 #include "services/memTracker.hpp"
  60 
  61 // Concurrent marking bit map wrapper
  62 
  63 CMBitMapRO::CMBitMapRO(int shifter) :
  64   _bm(),
  65   _shifter(shifter) {
  66   _bmStartWord = 0;
  67   _bmWordSize = 0;
  68 }
  69 
  70 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  71                                                const HeapWord* limit) const {
  72   // First we must round addr *up* to a possible object boundary.
  73   addr = (HeapWord*)align_size_up((intptr_t)addr,
  74                                   HeapWordSize << _shifter);
  75   size_t addrOffset = heapWordToOffset(addr);
  76   assert(limit != NULL, "limit must not be NULL");
  77   size_t limitOffset = heapWordToOffset(limit);
  78   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  79   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  80   assert(nextAddr >= addr, "get_next_one postcondition");
  81   assert(nextAddr == limit || isMarked(nextAddr),
  82          "get_next_one postcondition");
  83   return nextAddr;
  84 }
  85 
  86 #ifndef PRODUCT
  87 bool CMBitMapRO::covers(MemRegion heap_rs) const {
  88   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  89   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  90          "size inconsistency");
  91   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
  92          _bmWordSize  == heap_rs.word_size();
  93 }
  94 #endif
  95 
  96 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  97   _bm.print_on_error(st, prefix);
  98 }
  99 
 100 size_t CMBitMap::compute_size(size_t heap_size) {
 101   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 102 }
 103 
 104 size_t CMBitMap::mark_distance() {
 105   return MinObjAlignmentInBytes * BitsPerByte;
 106 }
 107 
 108 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 109   _bmStartWord = heap.start();
 110   _bmWordSize = heap.word_size();
 111 
 112   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 113   _bm.set_size(_bmWordSize >> _shifter);
 114 
 115   storage->set_mapping_changed_listener(&_listener);
 116 }
 117 
 118 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 119   if (zero_filled) {
 120     return;
 121   }
 122   // We need to clear the bitmap on commit, removing any existing information.
 123   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 124   _bm->clearRange(mr);
 125 }
 126 
 127 // Closure used for clearing the given mark bitmap.
 128 class ClearBitmapHRClosure : public HeapRegionClosure {
 129  private:
 130   ConcurrentMark* _cm;
 131   CMBitMap* _bitmap;
 132   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 133  public:
 134   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 135     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 136   }
 137 
 138   virtual bool doHeapRegion(HeapRegion* r) {
 139     size_t const chunk_size_in_words = M / HeapWordSize;
 140 
 141     HeapWord* cur = r->bottom();
 142     HeapWord* const end = r->end();
 143 
 144     while (cur < end) {
 145       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 146       _bitmap->clearRange(mr);
 147 
 148       cur += chunk_size_in_words;
 149 
 150       // Abort iteration if after yielding the marking has been aborted.
 151       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 152         return true;
 153       }
 154       // Repeat the asserts from before the start of the closure. We will do them
 155       // as asserts here to minimize their overhead on the product. However, we
 156       // will have them as guarantees at the beginning / end of the bitmap
 157       // clearing to get some checking in the product.
 158       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 159       assert(!_may_yield || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 160     }
 161 
 162     return false;
 163   }
 164 };
 165 
 166 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 167   ClearBitmapHRClosure* _cl;
 168   HeapRegionClaimer     _hrclaimer;
 169   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 170 
 171 public:
 172   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 173       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 174 
 175   void work(uint worker_id) {
 176     SuspendibleThreadSetJoiner sts_join(_suspendible);
 177     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 178   }
 179 };
 180 
 181 void CMBitMap::clearAll() {
 182   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 183   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 184   uint n_workers = g1h->workers()->active_workers();
 185   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 186   g1h->workers()->run_task(&task);
 187   guarantee(cl.complete(), "Must have completed iteration.");
 188   return;
 189 }
 190 
 191 void CMBitMap::clearRange(MemRegion mr) {
 192   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 193   assert(!mr.is_empty(), "unexpected empty region");
 194   // convert address range into offset range
 195   _bm.at_put_range(heapWordToOffset(mr.start()),
 196                    heapWordToOffset(mr.end()), false);
 197 }
 198 
 199 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 200   _base(NULL), _cm(cm)
 201 {}
 202 
 203 bool CMMarkStack::allocate(size_t capacity) {
 204   // allocate a stack of the requisite depth
 205   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 206   if (!rs.is_reserved()) {
 207     warning("ConcurrentMark MarkStack allocation failure");
 208     return false;
 209   }
 210   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 211   if (!_virtual_space.initialize(rs, rs.size())) {
 212     warning("ConcurrentMark MarkStack backing store failure");
 213     // Release the virtual memory reserved for the marking stack
 214     rs.release();
 215     return false;
 216   }
 217   assert(_virtual_space.committed_size() == rs.size(),
 218          "Didn't reserve backing store for all of ConcurrentMark stack?");
 219   _base = (oop*) _virtual_space.low();
 220   setEmpty();
 221   _capacity = (jint) capacity;
 222   _saved_index = -1;
 223   _should_expand = false;
 224   return true;
 225 }
 226 
 227 void CMMarkStack::expand() {
 228   // Called, during remark, if we've overflown the marking stack during marking.
 229   assert(isEmpty(), "stack should been emptied while handling overflow");
 230   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 231   // Clear expansion flag
 232   _should_expand = false;
 233   if (_capacity == (jint) MarkStackSizeMax) {
 234     log_trace(gc)("(benign) Can't expand marking stack capacity, at max size limit");
 235     return;
 236   }
 237   // Double capacity if possible
 238   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 239   // Do not give up existing stack until we have managed to
 240   // get the double capacity that we desired.
 241   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 242                                                            sizeof(oop)));
 243   if (rs.is_reserved()) {
 244     // Release the backing store associated with old stack
 245     _virtual_space.release();
 246     // Reinitialize virtual space for new stack
 247     if (!_virtual_space.initialize(rs, rs.size())) {
 248       fatal("Not enough swap for expanded marking stack capacity");
 249     }
 250     _base = (oop*)(_virtual_space.low());
 251     _index = 0;
 252     _capacity = new_capacity;
 253   } else {
 254     // Failed to double capacity, continue;
 255     log_trace(gc)("(benign) Failed to expand marking stack capacity from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 256                   _capacity / K, new_capacity / K);
 257   }
 258 }
 259 
 260 void CMMarkStack::set_should_expand() {
 261   // If we're resetting the marking state because of an
 262   // marking stack overflow, record that we should, if
 263   // possible, expand the stack.
 264   _should_expand = _cm->has_overflown();
 265 }
 266 
 267 CMMarkStack::~CMMarkStack() {
 268   if (_base != NULL) {
 269     _base = NULL;
 270     _virtual_space.release();
 271   }
 272 }
 273 
 274 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 275   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 276   jint start = _index;
 277   jint next_index = start + n;
 278   if (next_index > _capacity) {
 279     _overflow = true;
 280     return;
 281   }
 282   // Otherwise.
 283   _index = next_index;
 284   for (int i = 0; i < n; i++) {
 285     int ind = start + i;
 286     assert(ind < _capacity, "By overflow test above.");
 287     _base[ind] = ptr_arr[i];
 288   }
 289 }
 290 
 291 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 292   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 293   jint index = _index;
 294   if (index == 0) {
 295     *n = 0;
 296     return false;
 297   } else {
 298     int k = MIN2(max, index);
 299     jint  new_ind = index - k;
 300     for (int j = 0; j < k; j++) {
 301       ptr_arr[j] = _base[new_ind + j];
 302     }
 303     _index = new_ind;
 304     *n = k;
 305     return true;
 306   }
 307 }
 308 
 309 void CMMarkStack::note_start_of_gc() {
 310   assert(_saved_index == -1,
 311          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 312   _saved_index = _index;
 313 }
 314 
 315 void CMMarkStack::note_end_of_gc() {
 316   // This is intentionally a guarantee, instead of an assert. If we
 317   // accidentally add something to the mark stack during GC, it
 318   // will be a correctness issue so it's better if we crash. we'll
 319   // only check this once per GC anyway, so it won't be a performance
 320   // issue in any way.
 321   guarantee(_saved_index == _index,
 322             "saved index: %d index: %d", _saved_index, _index);
 323   _saved_index = -1;
 324 }
 325 
 326 CMRootRegions::CMRootRegions() :
 327   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 328   _should_abort(false),  _next_survivor(NULL) { }
 329 
 330 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 331   _young_list = g1h->young_list();
 332   _cm = cm;
 333 }
 334 
 335 void CMRootRegions::prepare_for_scan() {
 336   assert(!scan_in_progress(), "pre-condition");
 337 
 338   // Currently, only survivors can be root regions.
 339   assert(_next_survivor == NULL, "pre-condition");
 340   _next_survivor = _young_list->first_survivor_region();
 341   _scan_in_progress = (_next_survivor != NULL);
 342   _should_abort = false;
 343 }
 344 
 345 HeapRegion* CMRootRegions::claim_next() {
 346   if (_should_abort) {
 347     // If someone has set the should_abort flag, we return NULL to
 348     // force the caller to bail out of their loop.
 349     return NULL;
 350   }
 351 
 352   // Currently, only survivors can be root regions.
 353   HeapRegion* res = _next_survivor;
 354   if (res != NULL) {
 355     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 356     // Read it again in case it changed while we were waiting for the lock.
 357     res = _next_survivor;
 358     if (res != NULL) {
 359       if (res == _young_list->last_survivor_region()) {
 360         // We just claimed the last survivor so store NULL to indicate
 361         // that we're done.
 362         _next_survivor = NULL;
 363       } else {
 364         _next_survivor = res->get_next_young_region();
 365       }
 366     } else {
 367       // Someone else claimed the last survivor while we were trying
 368       // to take the lock so nothing else to do.
 369     }
 370   }
 371   assert(res == NULL || res->is_survivor(), "post-condition");
 372 
 373   return res;
 374 }
 375 
 376 void CMRootRegions::scan_finished() {
 377   assert(scan_in_progress(), "pre-condition");
 378 
 379   // Currently, only survivors can be root regions.
 380   if (!_should_abort) {
 381     assert(_next_survivor == NULL, "we should have claimed all survivors");
 382   }
 383   _next_survivor = NULL;
 384 
 385   {
 386     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 387     _scan_in_progress = false;
 388     RootRegionScan_lock->notify_all();
 389   }
 390 }
 391 
 392 bool CMRootRegions::wait_until_scan_finished() {
 393   if (!scan_in_progress()) return false;
 394 
 395   {
 396     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 397     while (scan_in_progress()) {
 398       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 399     }
 400   }
 401   return true;
 402 }
 403 
 404 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 405   return MAX2((n_par_threads + 2) / 4, 1U);
 406 }
 407 
 408 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 409   _g1h(g1h),
 410   _markBitMap1(),
 411   _markBitMap2(),
 412   _parallel_marking_threads(0),
 413   _max_parallel_marking_threads(0),
 414   _sleep_factor(0.0),
 415   _marking_task_overhead(1.0),
 416   _cleanup_list("Cleanup List"),
 417   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 418   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 419             CardTableModRefBS::card_shift,
 420             false /* in_resource_area*/),
 421 
 422   _prevMarkBitMap(&_markBitMap1),
 423   _nextMarkBitMap(&_markBitMap2),
 424 
 425   _markStack(this),
 426   // _finger set in set_non_marking_state
 427 
 428   _max_worker_id(ParallelGCThreads),
 429   // _active_tasks set in set_non_marking_state
 430   // _tasks set inside the constructor
 431   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 432   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 433 
 434   _has_overflown(false),
 435   _concurrent(false),
 436   _has_aborted(false),
 437   _restart_for_overflow(false),
 438   _concurrent_marking_in_progress(false),
 439   _concurrent_phase_started(false),
 440 
 441   // _verbose_level set below
 442 
 443   _init_times(),
 444   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 445   _cleanup_times(),
 446   _total_counting_time(0.0),
 447   _total_rs_scrub_time(0.0),
 448 
 449   _parallel_workers(NULL),
 450 
 451   _count_card_bitmaps(NULL),
 452   _count_marked_bytes(NULL),
 453   _completed_initialization(false) {
 454 
 455   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 456   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 457 
 458   // Create & start a ConcurrentMark thread.
 459   _cmThread = new ConcurrentMarkThread(this);
 460   assert(cmThread() != NULL, "CM Thread should have been created");
 461   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 462   if (_cmThread->osthread() == NULL) {
 463       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 464   }
 465 
 466   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 467   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 468   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 469 
 470   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 471   satb_qs.set_buffer_size(G1SATBBufferSize);
 472 
 473   _root_regions.init(_g1h, this);
 474 
 475   if (ConcGCThreads > ParallelGCThreads) {
 476     warning("Can't have more ConcGCThreads (%u) "
 477             "than ParallelGCThreads (%u).",
 478             ConcGCThreads, ParallelGCThreads);
 479     return;
 480   }
 481   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 482     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 483     // if both are set
 484     _sleep_factor             = 0.0;
 485     _marking_task_overhead    = 1.0;
 486   } else if (G1MarkingOverheadPercent > 0) {
 487     // We will calculate the number of parallel marking threads based
 488     // on a target overhead with respect to the soft real-time goal
 489     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 490     double overall_cm_overhead =
 491       (double) MaxGCPauseMillis * marking_overhead /
 492       (double) GCPauseIntervalMillis;
 493     double cpu_ratio = 1.0 / (double) os::processor_count();
 494     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 495     double marking_task_overhead =
 496       overall_cm_overhead / marking_thread_num *
 497                                               (double) os::processor_count();
 498     double sleep_factor =
 499                        (1.0 - marking_task_overhead) / marking_task_overhead;
 500 
 501     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 502     _sleep_factor             = sleep_factor;
 503     _marking_task_overhead    = marking_task_overhead;
 504   } else {
 505     // Calculate the number of parallel marking threads by scaling
 506     // the number of parallel GC threads.
 507     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 508     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 509     _sleep_factor             = 0.0;
 510     _marking_task_overhead    = 1.0;
 511   }
 512 
 513   assert(ConcGCThreads > 0, "Should have been set");
 514   _parallel_marking_threads = ConcGCThreads;
 515   _max_parallel_marking_threads = _parallel_marking_threads;
 516 
 517   _parallel_workers = new WorkGang("G1 Marker",
 518        _max_parallel_marking_threads, false, true);
 519   if (_parallel_workers == NULL) {
 520     vm_exit_during_initialization("Failed necessary allocation.");
 521   } else {
 522     _parallel_workers->initialize_workers();
 523   }
 524 
 525   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 526     size_t mark_stack_size =
 527       MIN2(MarkStackSizeMax,
 528           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 529     // Verify that the calculated value for MarkStackSize is in range.
 530     // It would be nice to use the private utility routine from Arguments.
 531     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 532       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 533               "must be between 1 and " SIZE_FORMAT,
 534               mark_stack_size, MarkStackSizeMax);
 535       return;
 536     }
 537     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 538   } else {
 539     // Verify MarkStackSize is in range.
 540     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 541       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 542         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 543           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 544                   "must be between 1 and " SIZE_FORMAT,
 545                   MarkStackSize, MarkStackSizeMax);
 546           return;
 547         }
 548       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 549         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 550           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 551                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 552                   MarkStackSize, MarkStackSizeMax);
 553           return;
 554         }
 555       }
 556     }
 557   }
 558 
 559   if (!_markStack.allocate(MarkStackSize)) {
 560     warning("Failed to allocate CM marking stack");
 561     return;
 562   }
 563 
 564   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 565   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 566 
 567   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 568   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 569 
 570   BitMap::idx_t card_bm_size = _card_bm.size();
 571 
 572   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 573   _active_tasks = _max_worker_id;
 574 
 575   uint max_regions = _g1h->max_regions();
 576   for (uint i = 0; i < _max_worker_id; ++i) {
 577     CMTaskQueue* task_queue = new CMTaskQueue();
 578     task_queue->initialize();
 579     _task_queues->register_queue(i, task_queue);
 580 
 581     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 582     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 583 
 584     _tasks[i] = new CMTask(i, this,
 585                            _count_marked_bytes[i],
 586                            &_count_card_bitmaps[i],
 587                            task_queue, _task_queues);
 588 
 589     _accum_task_vtime[i] = 0.0;
 590   }
 591 
 592   // Calculate the card number for the bottom of the heap. Used
 593   // in biasing indexes into the accounting card bitmaps.
 594   _heap_bottom_card_num =
 595     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 596                                 CardTableModRefBS::card_shift);
 597 
 598   // Clear all the liveness counting data
 599   clear_all_count_data();
 600 
 601   // so that the call below can read a sensible value
 602   _heap_start = g1h->reserved_region().start();
 603   set_non_marking_state();
 604   _completed_initialization = true;
 605 }
 606 
 607 void ConcurrentMark::reset() {
 608   // Starting values for these two. This should be called in a STW
 609   // phase.
 610   MemRegion reserved = _g1h->g1_reserved();
 611   _heap_start = reserved.start();
 612   _heap_end   = reserved.end();
 613 
 614   // Separated the asserts so that we know which one fires.
 615   assert(_heap_start != NULL, "heap bounds should look ok");
 616   assert(_heap_end != NULL, "heap bounds should look ok");
 617   assert(_heap_start < _heap_end, "heap bounds should look ok");
 618 
 619   // Reset all the marking data structures and any necessary flags
 620   reset_marking_state();
 621 
 622   // We do reset all of them, since different phases will use
 623   // different number of active threads. So, it's easiest to have all
 624   // of them ready.
 625   for (uint i = 0; i < _max_worker_id; ++i) {
 626     _tasks[i]->reset(_nextMarkBitMap);
 627   }
 628 
 629   // we need this to make sure that the flag is on during the evac
 630   // pause with initial mark piggy-backed
 631   set_concurrent_marking_in_progress();
 632 }
 633 
 634 
 635 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 636   _markStack.set_should_expand();
 637   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 638   if (clear_overflow) {
 639     clear_has_overflown();
 640   } else {
 641     assert(has_overflown(), "pre-condition");
 642   }
 643   _finger = _heap_start;
 644 
 645   for (uint i = 0; i < _max_worker_id; ++i) {
 646     CMTaskQueue* queue = _task_queues->queue(i);
 647     queue->set_empty();
 648   }
 649 }
 650 
 651 void ConcurrentMark::set_concurrency(uint active_tasks) {
 652   assert(active_tasks <= _max_worker_id, "we should not have more");
 653 
 654   _active_tasks = active_tasks;
 655   // Need to update the three data structures below according to the
 656   // number of active threads for this phase.
 657   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 658   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 659   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 660 }
 661 
 662 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 663   set_concurrency(active_tasks);
 664 
 665   _concurrent = concurrent;
 666   // We propagate this to all tasks, not just the active ones.
 667   for (uint i = 0; i < _max_worker_id; ++i)
 668     _tasks[i]->set_concurrent(concurrent);
 669 
 670   if (concurrent) {
 671     set_concurrent_marking_in_progress();
 672   } else {
 673     // We currently assume that the concurrent flag has been set to
 674     // false before we start remark. At this point we should also be
 675     // in a STW phase.
 676     assert(!concurrent_marking_in_progress(), "invariant");
 677     assert(out_of_regions(),
 678            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 679            p2i(_finger), p2i(_heap_end));
 680   }
 681 }
 682 
 683 void ConcurrentMark::set_non_marking_state() {
 684   // We set the global marking state to some default values when we're
 685   // not doing marking.
 686   reset_marking_state();
 687   _active_tasks = 0;
 688   clear_concurrent_marking_in_progress();
 689 }
 690 
 691 ConcurrentMark::~ConcurrentMark() {
 692   // The ConcurrentMark instance is never freed.
 693   ShouldNotReachHere();
 694 }
 695 
 696 void ConcurrentMark::clearNextBitmap() {
 697   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 698 
 699   // Make sure that the concurrent mark thread looks to still be in
 700   // the current cycle.
 701   guarantee(cmThread()->during_cycle(), "invariant");
 702 
 703   // We are finishing up the current cycle by clearing the next
 704   // marking bitmap and getting it ready for the next cycle. During
 705   // this time no other cycle can start. So, let's make sure that this
 706   // is the case.
 707   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 708 
 709   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 710   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 711   _parallel_workers->run_task(&task);
 712 
 713   // Clear the liveness counting data. If the marking has been aborted, the abort()
 714   // call already did that.
 715   if (cl.complete()) {
 716     clear_all_count_data();
 717   }
 718 
 719   // Repeat the asserts from above.
 720   guarantee(cmThread()->during_cycle(), "invariant");
 721   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 722 }
 723 
 724 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 725   CMBitMap* _bitmap;
 726   bool _error;
 727  public:
 728   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 729   }
 730 
 731   virtual bool doHeapRegion(HeapRegion* r) {
 732     // This closure can be called concurrently to the mutator, so we must make sure
 733     // that the result of the getNextMarkedWordAddress() call is compared to the
 734     // value passed to it as limit to detect any found bits.
 735     // end never changes in G1.
 736     HeapWord* end = r->end();
 737     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 738   }
 739 };
 740 
 741 bool ConcurrentMark::nextMarkBitmapIsClear() {
 742   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 743   _g1h->heap_region_iterate(&cl);
 744   return cl.complete();
 745 }
 746 
 747 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 748 public:
 749   bool doHeapRegion(HeapRegion* r) {
 750     r->note_start_of_marking();
 751     return false;
 752   }
 753 };
 754 
 755 void ConcurrentMark::checkpointRootsInitialPre() {
 756   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 757   G1CollectorPolicy* g1p = g1h->g1_policy();
 758 
 759   _has_aborted = false;
 760 
 761   // Initialize marking structures. This has to be done in a STW phase.
 762   reset();
 763 
 764   // For each region note start of marking.
 765   NoteStartOfMarkHRClosure startcl;
 766   g1h->heap_region_iterate(&startcl);
 767 }
 768 
 769 
 770 void ConcurrentMark::checkpointRootsInitialPost() {
 771   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 772 
 773   // Start Concurrent Marking weak-reference discovery.
 774   ReferenceProcessor* rp = g1h->ref_processor_cm();
 775   // enable ("weak") refs discovery
 776   rp->enable_discovery();
 777   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 778 
 779   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 780   // This is the start of  the marking cycle, we're expected all
 781   // threads to have SATB queues with active set to false.
 782   satb_mq_set.set_active_all_threads(true, /* new active value */
 783                                      false /* expected_active */);
 784 
 785   _root_regions.prepare_for_scan();
 786 
 787   // update_g1_committed() will be called at the end of an evac pause
 788   // when marking is on. So, it's also called at the end of the
 789   // initial-mark pause to update the heap end, if the heap expands
 790   // during it. No need to call it here.
 791 }
 792 
 793 /*
 794  * Notice that in the next two methods, we actually leave the STS
 795  * during the barrier sync and join it immediately afterwards. If we
 796  * do not do this, the following deadlock can occur: one thread could
 797  * be in the barrier sync code, waiting for the other thread to also
 798  * sync up, whereas another one could be trying to yield, while also
 799  * waiting for the other threads to sync up too.
 800  *
 801  * Note, however, that this code is also used during remark and in
 802  * this case we should not attempt to leave / enter the STS, otherwise
 803  * we'll either hit an assert (debug / fastdebug) or deadlock
 804  * (product). So we should only leave / enter the STS if we are
 805  * operating concurrently.
 806  *
 807  * Because the thread that does the sync barrier has left the STS, it
 808  * is possible to be suspended for a Full GC or an evacuation pause
 809  * could occur. This is actually safe, since the entering the sync
 810  * barrier is one of the last things do_marking_step() does, and it
 811  * doesn't manipulate any data structures afterwards.
 812  */
 813 
 814 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 815   bool barrier_aborted;
 816   {
 817     SuspendibleThreadSetLeaver sts_leave(concurrent());
 818     barrier_aborted = !_first_overflow_barrier_sync.enter();
 819   }
 820 
 821   // at this point everyone should have synced up and not be doing any
 822   // more work
 823 
 824   if (barrier_aborted) {
 825     // If the barrier aborted we ignore the overflow condition and
 826     // just abort the whole marking phase as quickly as possible.
 827     return;
 828   }
 829 
 830   // If we're executing the concurrent phase of marking, reset the marking
 831   // state; otherwise the marking state is reset after reference processing,
 832   // during the remark pause.
 833   // If we reset here as a result of an overflow during the remark we will
 834   // see assertion failures from any subsequent set_concurrency_and_phase()
 835   // calls.
 836   if (concurrent()) {
 837     // let the task associated with with worker 0 do this
 838     if (worker_id == 0) {
 839       // task 0 is responsible for clearing the global data structures
 840       // We should be here because of an overflow. During STW we should
 841       // not clear the overflow flag since we rely on it being true when
 842       // we exit this method to abort the pause and restart concurrent
 843       // marking.
 844       reset_marking_state(true /* clear_overflow */);
 845 
 846       log_info(gc)("Concurrent Mark reset for overflow");
 847     }
 848   }
 849 
 850   // after this, each task should reset its own data structures then
 851   // then go into the second barrier
 852 }
 853 
 854 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 855   SuspendibleThreadSetLeaver sts_leave(concurrent());
 856   _second_overflow_barrier_sync.enter();
 857 
 858   // at this point everything should be re-initialized and ready to go
 859 }
 860 
 861 class CMConcurrentMarkingTask: public AbstractGangTask {
 862 private:
 863   ConcurrentMark*       _cm;
 864   ConcurrentMarkThread* _cmt;
 865 
 866 public:
 867   void work(uint worker_id) {
 868     assert(Thread::current()->is_ConcurrentGC_thread(),
 869            "this should only be done by a conc GC thread");
 870     ResourceMark rm;
 871 
 872     double start_vtime = os::elapsedVTime();
 873 
 874     {
 875       SuspendibleThreadSetJoiner sts_join;
 876 
 877       assert(worker_id < _cm->active_tasks(), "invariant");
 878       CMTask* the_task = _cm->task(worker_id);
 879       the_task->record_start_time();
 880       if (!_cm->has_aborted()) {
 881         do {
 882           double start_vtime_sec = os::elapsedVTime();
 883           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 884 
 885           the_task->do_marking_step(mark_step_duration_ms,
 886                                     true  /* do_termination */,
 887                                     false /* is_serial*/);
 888 
 889           double end_vtime_sec = os::elapsedVTime();
 890           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 891           _cm->clear_has_overflown();
 892 
 893           _cm->do_yield_check(worker_id);
 894 
 895           jlong sleep_time_ms;
 896           if (!_cm->has_aborted() && the_task->has_aborted()) {
 897             sleep_time_ms =
 898               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 899             {
 900               SuspendibleThreadSetLeaver sts_leave;
 901               os::sleep(Thread::current(), sleep_time_ms, false);
 902             }
 903           }
 904         } while (!_cm->has_aborted() && the_task->has_aborted());
 905       }
 906       the_task->record_end_time();
 907       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 908     }
 909 
 910     double end_vtime = os::elapsedVTime();
 911     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 912   }
 913 
 914   CMConcurrentMarkingTask(ConcurrentMark* cm,
 915                           ConcurrentMarkThread* cmt) :
 916       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 917 
 918   ~CMConcurrentMarkingTask() { }
 919 };
 920 
 921 // Calculates the number of active workers for a concurrent
 922 // phase.
 923 uint ConcurrentMark::calc_parallel_marking_threads() {
 924   uint n_conc_workers = 0;
 925   if (!UseDynamicNumberOfGCThreads ||
 926       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 927        !ForceDynamicNumberOfGCThreads)) {
 928     n_conc_workers = max_parallel_marking_threads();
 929   } else {
 930     n_conc_workers =
 931       AdaptiveSizePolicy::calc_default_active_workers(
 932                                    max_parallel_marking_threads(),
 933                                    1, /* Minimum workers */
 934                                    parallel_marking_threads(),
 935                                    Threads::number_of_non_daemon_threads());
 936     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 937     // that scaling has already gone into "_max_parallel_marking_threads".
 938   }
 939   assert(n_conc_workers > 0, "Always need at least 1");
 940   return n_conc_workers;
 941 }
 942 
 943 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
 944   // Currently, only survivors can be root regions.
 945   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 946   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 947 
 948   const uintx interval = PrefetchScanIntervalInBytes;
 949   HeapWord* curr = hr->bottom();
 950   const HeapWord* end = hr->top();
 951   while (curr < end) {
 952     Prefetch::read(curr, interval);
 953     oop obj = oop(curr);
 954     int size = obj->oop_iterate_size(&cl);
 955     assert(size == obj->size(), "sanity");
 956     curr += size;
 957   }
 958 }
 959 
 960 class CMRootRegionScanTask : public AbstractGangTask {
 961 private:
 962   ConcurrentMark* _cm;
 963 
 964 public:
 965   CMRootRegionScanTask(ConcurrentMark* cm) :
 966     AbstractGangTask("Root Region Scan"), _cm(cm) { }
 967 
 968   void work(uint worker_id) {
 969     assert(Thread::current()->is_ConcurrentGC_thread(),
 970            "this should only be done by a conc GC thread");
 971 
 972     CMRootRegions* root_regions = _cm->root_regions();
 973     HeapRegion* hr = root_regions->claim_next();
 974     while (hr != NULL) {
 975       _cm->scanRootRegion(hr, worker_id);
 976       hr = root_regions->claim_next();
 977     }
 978   }
 979 };
 980 
 981 void ConcurrentMark::scanRootRegions() {
 982   // Start of concurrent marking.
 983   ClassLoaderDataGraph::clear_claimed_marks();
 984 
 985   // scan_in_progress() will have been set to true only if there was
 986   // at least one root region to scan. So, if it's false, we
 987   // should not attempt to do any further work.
 988   if (root_regions()->scan_in_progress()) {
 989     GCTraceConcTime(Info, gc) tt("Concurrent Root Region Scan");
 990 
 991     _parallel_marking_threads = calc_parallel_marking_threads();
 992     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
 993            "Maximum number of marking threads exceeded");
 994     uint active_workers = MAX2(1U, parallel_marking_threads());
 995 
 996     CMRootRegionScanTask task(this);
 997     _parallel_workers->set_active_workers(active_workers);
 998     _parallel_workers->run_task(&task);
 999 
1000     // It's possible that has_aborted() is true here without actually
1001     // aborting the survivor scan earlier. This is OK as it's
1002     // mainly used for sanity checking.
1003     root_regions()->scan_finished();
1004   }
1005 }
1006 
1007 void ConcurrentMark::register_concurrent_phase_start(const char* title) {
1008   assert(!_concurrent_phase_started, "Sanity");
1009   _concurrent_phase_started = true;
1010   _g1h->gc_timer_cm()->register_gc_concurrent_start(title);
1011 }
1012 
1013 void ConcurrentMark::register_concurrent_phase_end() {
1014   if (_concurrent_phase_started) {
1015     _concurrent_phase_started = false;
1016     _g1h->gc_timer_cm()->register_gc_concurrent_end();
1017   }
1018 }
1019 
1020 void ConcurrentMark::markFromRoots() {
1021   // we might be tempted to assert that:
1022   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1023   //        "inconsistent argument?");
1024   // However that wouldn't be right, because it's possible that
1025   // a safepoint is indeed in progress as a younger generation
1026   // stop-the-world GC happens even as we mark in this generation.
1027 
1028   _restart_for_overflow = false;
1029 
1030   // _g1h has _n_par_threads
1031   _parallel_marking_threads = calc_parallel_marking_threads();
1032   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1033     "Maximum number of marking threads exceeded");
1034 
1035   uint active_workers = MAX2(1U, parallel_marking_threads());
1036   assert(active_workers > 0, "Should have been set");
1037 
1038   // Parallel task terminator is set in "set_concurrency_and_phase()"
1039   set_concurrency_and_phase(active_workers, true /* concurrent */);
1040 
1041   CMConcurrentMarkingTask markingTask(this, cmThread());
1042   _parallel_workers->set_active_workers(active_workers);
1043   _parallel_workers->run_task(&markingTask);
1044   print_stats();
1045 }
1046 
1047 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1048   // world is stopped at this checkpoint
1049   assert(SafepointSynchronize::is_at_safepoint(),
1050          "world should be stopped");
1051 
1052   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1053 
1054   // If a full collection has happened, we shouldn't do this.
1055   if (has_aborted()) {
1056     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1057     return;
1058   }
1059 
1060   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1061 
1062   if (VerifyDuringGC) {
1063     HandleMark hm;  // handle scope
1064     g1h->prepare_for_verify();
1065     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1066   }
1067   g1h->check_bitmaps("Remark Start");
1068 
1069   G1CollectorPolicy* g1p = g1h->g1_policy();
1070   g1p->record_concurrent_mark_remark_start();
1071 
1072   double start = os::elapsedTime();
1073 
1074   checkpointRootsFinalWork();
1075 
1076   double mark_work_end = os::elapsedTime();
1077 
1078   weakRefsWork(clear_all_soft_refs);
1079 
1080   if (has_overflown()) {
1081     // Oops.  We overflowed.  Restart concurrent marking.
1082     _restart_for_overflow = true;
1083     log_develop_trace(gc)("Remark led to restart for overflow.");
1084 
1085     // Verify the heap w.r.t. the previous marking bitmap.
1086     if (VerifyDuringGC) {
1087       HandleMark hm;  // handle scope
1088       g1h->prepare_for_verify();
1089       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1090     }
1091 
1092     // Clear the marking state because we will be restarting
1093     // marking due to overflowing the global mark stack.
1094     reset_marking_state();
1095   } else {
1096     {
1097       GCTraceTime(Debug, gc) trace("GC Aggregate Data", g1h->gc_timer_cm());
1098 
1099       // Aggregate the per-task counting data that we have accumulated
1100       // while marking.
1101       aggregate_count_data();
1102     }
1103 
1104     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1105     // We're done with marking.
1106     // This is the end of  the marking cycle, we're expected all
1107     // threads to have SATB queues with active set to true.
1108     satb_mq_set.set_active_all_threads(false, /* new active value */
1109                                        true /* expected_active */);
1110 
1111     if (VerifyDuringGC) {
1112       HandleMark hm;  // handle scope
1113       g1h->prepare_for_verify();
1114       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1115     }
1116     g1h->check_bitmaps("Remark End");
1117     assert(!restart_for_overflow(), "sanity");
1118     // Completely reset the marking state since marking completed
1119     set_non_marking_state();
1120   }
1121 
1122   // Expand the marking stack, if we have to and if we can.
1123   if (_markStack.should_expand()) {
1124     _markStack.expand();
1125   }
1126 
1127   // Statistics
1128   double now = os::elapsedTime();
1129   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1130   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1131   _remark_times.add((now - start) * 1000.0);
1132 
1133   g1p->record_concurrent_mark_remark_end();
1134 
1135   G1CMIsAliveClosure is_alive(g1h);
1136   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1137 }
1138 
1139 // Base class of the closures that finalize and verify the
1140 // liveness counting data.
1141 class CMCountDataClosureBase: public HeapRegionClosure {
1142 protected:
1143   G1CollectedHeap* _g1h;
1144   ConcurrentMark* _cm;
1145   CardTableModRefBS* _ct_bs;
1146 
1147   BitMap* _region_bm;
1148   BitMap* _card_bm;
1149 
1150   // Takes a region that's not empty (i.e., it has at least one
1151   // live object in it and sets its corresponding bit on the region
1152   // bitmap to 1.
1153   void set_bit_for_region(HeapRegion* hr) {
1154     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1155     _region_bm->par_at_put(index, true);
1156   }
1157 
1158 public:
1159   CMCountDataClosureBase(G1CollectedHeap* g1h,
1160                          BitMap* region_bm, BitMap* card_bm):
1161     _g1h(g1h), _cm(g1h->concurrent_mark()),
1162     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1163     _region_bm(region_bm), _card_bm(card_bm) { }
1164 };
1165 
1166 // Closure that calculates the # live objects per region. Used
1167 // for verification purposes during the cleanup pause.
1168 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1169   CMBitMapRO* _bm;
1170   size_t _region_marked_bytes;
1171 
1172 public:
1173   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1174                          BitMap* region_bm, BitMap* card_bm) :
1175     CMCountDataClosureBase(g1h, region_bm, card_bm),
1176     _bm(bm), _region_marked_bytes(0) { }
1177 
1178   bool doHeapRegion(HeapRegion* hr) {
1179     HeapWord* ntams = hr->next_top_at_mark_start();
1180     HeapWord* start = hr->bottom();
1181 
1182     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1183            "Preconditions not met - "
1184            "start: " PTR_FORMAT ", ntams: " PTR_FORMAT ", end: " PTR_FORMAT,
1185            p2i(start), p2i(ntams), p2i(hr->end()));
1186 
1187     // Find the first marked object at or after "start".
1188     start = _bm->getNextMarkedWordAddress(start, ntams);
1189 
1190     size_t marked_bytes = 0;
1191 
1192     while (start < ntams) {
1193       oop obj = oop(start);
1194       int obj_sz = obj->size();
1195       HeapWord* obj_end = start + obj_sz;
1196 
1197       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1198       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1199 
1200       // Note: if we're looking at the last region in heap - obj_end
1201       // could be actually just beyond the end of the heap; end_idx
1202       // will then correspond to a (non-existent) card that is also
1203       // just beyond the heap.
1204       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1205         // end of object is not card aligned - increment to cover
1206         // all the cards spanned by the object
1207         end_idx += 1;
1208       }
1209 
1210       // Set the bits in the card BM for the cards spanned by this object.
1211       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1212 
1213       // Add the size of this object to the number of marked bytes.
1214       marked_bytes += (size_t)obj_sz * HeapWordSize;
1215 
1216       // This will happen if we are handling a humongous object that spans
1217       // several heap regions.
1218       if (obj_end > hr->end()) {
1219         break;
1220       }
1221       // Find the next marked object after this one.
1222       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1223     }
1224 
1225     // Mark the allocated-since-marking portion...
1226     HeapWord* top = hr->top();
1227     if (ntams < top) {
1228       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1229       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1230 
1231       // Note: if we're looking at the last region in heap - top
1232       // could be actually just beyond the end of the heap; end_idx
1233       // will then correspond to a (non-existent) card that is also
1234       // just beyond the heap.
1235       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1236         // end of object is not card aligned - increment to cover
1237         // all the cards spanned by the object
1238         end_idx += 1;
1239       }
1240       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1241 
1242       // This definitely means the region has live objects.
1243       set_bit_for_region(hr);
1244     }
1245 
1246     // Update the live region bitmap.
1247     if (marked_bytes > 0) {
1248       set_bit_for_region(hr);
1249     }
1250 
1251     // Set the marked bytes for the current region so that
1252     // it can be queried by a calling verification routine
1253     _region_marked_bytes = marked_bytes;
1254 
1255     return false;
1256   }
1257 
1258   size_t region_marked_bytes() const { return _region_marked_bytes; }
1259 };
1260 
1261 // Heap region closure used for verifying the counting data
1262 // that was accumulated concurrently and aggregated during
1263 // the remark pause. This closure is applied to the heap
1264 // regions during the STW cleanup pause.
1265 
1266 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1267   G1CollectedHeap* _g1h;
1268   ConcurrentMark* _cm;
1269   CalcLiveObjectsClosure _calc_cl;
1270   BitMap* _region_bm;   // Region BM to be verified
1271   BitMap* _card_bm;     // Card BM to be verified
1272 
1273   BitMap* _exp_region_bm; // Expected Region BM values
1274   BitMap* _exp_card_bm;   // Expected card BM values
1275 
1276   int _failures;
1277 
1278 public:
1279   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1280                                 BitMap* region_bm,
1281                                 BitMap* card_bm,
1282                                 BitMap* exp_region_bm,
1283                                 BitMap* exp_card_bm) :
1284     _g1h(g1h), _cm(g1h->concurrent_mark()),
1285     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1286     _region_bm(region_bm), _card_bm(card_bm),
1287     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1288     _failures(0) { }
1289 
1290   int failures() const { return _failures; }
1291 
1292   bool doHeapRegion(HeapRegion* hr) {
1293     int failures = 0;
1294 
1295     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1296     // this region and set the corresponding bits in the expected region
1297     // and card bitmaps.
1298     bool res = _calc_cl.doHeapRegion(hr);
1299     assert(res == false, "should be continuing");
1300 
1301     // Verify the marked bytes for this region.
1302     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1303     size_t act_marked_bytes = hr->next_marked_bytes();
1304 
1305     if (exp_marked_bytes > act_marked_bytes) {
1306       if (hr->is_starts_humongous()) {
1307         // For start_humongous regions, the size of the whole object will be
1308         // in exp_marked_bytes.
1309         HeapRegion* region = hr;
1310         int num_regions;
1311         for (num_regions = 0; region != NULL; num_regions++) {
1312           region = _g1h->next_region_in_humongous(region);
1313         }
1314         if ((num_regions-1) * HeapRegion::GrainBytes >= exp_marked_bytes) {
1315           failures += 1;
1316         } else if (num_regions * HeapRegion::GrainBytes < exp_marked_bytes) {
1317           failures += 1;
1318         }
1319       } else {
1320         // We're not OK if expected marked bytes > actual marked bytes. It means
1321         // we have missed accounting some objects during the actual marking.
1322         failures += 1;
1323       }
1324     }
1325 
1326     // Verify the bit, for this region, in the actual and expected
1327     // (which was just calculated) region bit maps.
1328     // We're not OK if the bit in the calculated expected region
1329     // bitmap is set and the bit in the actual region bitmap is not.
1330     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1331 
1332     bool expected = _exp_region_bm->at(index);
1333     bool actual = _region_bm->at(index);
1334     if (expected && !actual) {
1335       failures += 1;
1336     }
1337 
1338     // Verify that the card bit maps for the cards spanned by the current
1339     // region match. We have an error if we have a set bit in the expected
1340     // bit map and the corresponding bit in the actual bitmap is not set.
1341 
1342     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1343     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1344 
1345     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1346       expected = _exp_card_bm->at(i);
1347       actual = _card_bm->at(i);
1348 
1349       if (expected && !actual) {
1350         failures += 1;
1351       }
1352     }
1353 
1354     _failures += failures;
1355 
1356     // We could stop iteration over the heap when we
1357     // find the first violating region by returning true.
1358     return false;
1359   }
1360 };
1361 
1362 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1363 protected:
1364   G1CollectedHeap* _g1h;
1365   ConcurrentMark* _cm;
1366   BitMap* _actual_region_bm;
1367   BitMap* _actual_card_bm;
1368 
1369   uint    _n_workers;
1370 
1371   BitMap* _expected_region_bm;
1372   BitMap* _expected_card_bm;
1373 
1374   int  _failures;
1375 
1376   HeapRegionClaimer _hrclaimer;
1377 
1378 public:
1379   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1380                             BitMap* region_bm, BitMap* card_bm,
1381                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1382     : AbstractGangTask("G1 verify final counting"),
1383       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1384       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1385       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1386       _failures(0),
1387       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1388     assert(VerifyDuringGC, "don't call this otherwise");
1389     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1390     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1391   }
1392 
1393   void work(uint worker_id) {
1394     assert(worker_id < _n_workers, "invariant");
1395 
1396     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1397                                             _actual_region_bm, _actual_card_bm,
1398                                             _expected_region_bm,
1399                                             _expected_card_bm);
1400 
1401     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1402 
1403     Atomic::add(verify_cl.failures(), &_failures);
1404   }
1405 
1406   int failures() const { return _failures; }
1407 };
1408 
1409 // Closure that finalizes the liveness counting data.
1410 // Used during the cleanup pause.
1411 // Sets the bits corresponding to the interval [NTAMS, top]
1412 // (which contains the implicitly live objects) in the
1413 // card liveness bitmap. Also sets the bit for each region,
1414 // containing live data, in the region liveness bitmap.
1415 
1416 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1417  public:
1418   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1419                               BitMap* region_bm,
1420                               BitMap* card_bm) :
1421     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1422 
1423   bool doHeapRegion(HeapRegion* hr) {
1424     HeapWord* ntams = hr->next_top_at_mark_start();
1425     HeapWord* top   = hr->top();
1426 
1427     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1428 
1429     // Mark the allocated-since-marking portion...
1430     if (ntams < top) {
1431       // This definitely means the region has live objects.
1432       set_bit_for_region(hr);
1433 
1434       // Now set the bits in the card bitmap for [ntams, top)
1435       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1436       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1437 
1438       // Note: if we're looking at the last region in heap - top
1439       // could be actually just beyond the end of the heap; end_idx
1440       // will then correspond to a (non-existent) card that is also
1441       // just beyond the heap.
1442       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1443         // end of object is not card aligned - increment to cover
1444         // all the cards spanned by the object
1445         end_idx += 1;
1446       }
1447 
1448       assert(end_idx <= _card_bm->size(),
1449              "oob: end_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1450              end_idx, _card_bm->size());
1451       assert(start_idx < _card_bm->size(),
1452              "oob: start_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1453              start_idx, _card_bm->size());
1454 
1455       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1456     }
1457 
1458     // Set the bit for the region if it contains live data
1459     if (hr->next_marked_bytes() > 0) {
1460       set_bit_for_region(hr);
1461     }
1462 
1463     return false;
1464   }
1465 };
1466 
1467 class G1ParFinalCountTask: public AbstractGangTask {
1468 protected:
1469   G1CollectedHeap* _g1h;
1470   ConcurrentMark* _cm;
1471   BitMap* _actual_region_bm;
1472   BitMap* _actual_card_bm;
1473 
1474   uint    _n_workers;
1475   HeapRegionClaimer _hrclaimer;
1476 
1477 public:
1478   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1479     : AbstractGangTask("G1 final counting"),
1480       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1481       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1482       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1483   }
1484 
1485   void work(uint worker_id) {
1486     assert(worker_id < _n_workers, "invariant");
1487 
1488     FinalCountDataUpdateClosure final_update_cl(_g1h,
1489                                                 _actual_region_bm,
1490                                                 _actual_card_bm);
1491 
1492     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1493   }
1494 };
1495 
1496 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1497   G1CollectedHeap* _g1;
1498   size_t _freed_bytes;
1499   FreeRegionList* _local_cleanup_list;
1500   uint _old_regions_removed;
1501   uint _humongous_regions_removed;
1502   HRRSCleanupTask* _hrrs_cleanup_task;
1503 
1504 public:
1505   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1506                              FreeRegionList* local_cleanup_list,
1507                              HRRSCleanupTask* hrrs_cleanup_task) :
1508     _g1(g1),
1509     _freed_bytes(0),
1510     _local_cleanup_list(local_cleanup_list),
1511     _old_regions_removed(0),
1512     _humongous_regions_removed(0),
1513     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1514 
1515   size_t freed_bytes() { return _freed_bytes; }
1516   const uint old_regions_removed() { return _old_regions_removed; }
1517   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1518 
1519   bool doHeapRegion(HeapRegion *hr) {
1520     if (hr->is_archive()) {
1521       return false;
1522     }
1523     // We use a claim value of zero here because all regions
1524     // were claimed with value 1 in the FinalCount task.
1525     _g1->reset_gc_time_stamps(hr);
1526     hr->note_end_of_marking();
1527 
1528     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1529       _freed_bytes += hr->used();
1530       hr->set_containing_set(NULL);
1531       if (hr->is_humongous()) {
1532         _humongous_regions_removed++;
1533         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1534       } else {
1535         _old_regions_removed++;
1536         _g1->free_region(hr, _local_cleanup_list, true);
1537       }
1538     } else {
1539       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1540     }
1541 
1542     return false;
1543   }
1544 };
1545 
1546 class G1ParNoteEndTask: public AbstractGangTask {
1547   friend class G1NoteEndOfConcMarkClosure;
1548 
1549 protected:
1550   G1CollectedHeap* _g1h;
1551   FreeRegionList* _cleanup_list;
1552   HeapRegionClaimer _hrclaimer;
1553 
1554 public:
1555   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1556       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1557   }
1558 
1559   void work(uint worker_id) {
1560     FreeRegionList local_cleanup_list("Local Cleanup List");
1561     HRRSCleanupTask hrrs_cleanup_task;
1562     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1563                                            &hrrs_cleanup_task);
1564     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1565     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1566 
1567     // Now update the lists
1568     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1569     {
1570       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1571       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1572 
1573       // If we iterate over the global cleanup list at the end of
1574       // cleanup to do this printing we will not guarantee to only
1575       // generate output for the newly-reclaimed regions (the list
1576       // might not be empty at the beginning of cleanup; we might
1577       // still be working on its previous contents). So we do the
1578       // printing here, before we append the new regions to the global
1579       // cleanup list.
1580 
1581       G1HRPrinter* hr_printer = _g1h->hr_printer();
1582       if (hr_printer->is_active()) {
1583         FreeRegionListIterator iter(&local_cleanup_list);
1584         while (iter.more_available()) {
1585           HeapRegion* hr = iter.get_next();
1586           hr_printer->cleanup(hr);
1587         }
1588       }
1589 
1590       _cleanup_list->add_ordered(&local_cleanup_list);
1591       assert(local_cleanup_list.is_empty(), "post-condition");
1592 
1593       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1594     }
1595   }
1596 };
1597 
1598 class G1ParScrubRemSetTask: public AbstractGangTask {
1599 protected:
1600   G1RemSet* _g1rs;
1601   BitMap* _region_bm;
1602   BitMap* _card_bm;
1603   HeapRegionClaimer _hrclaimer;
1604 
1605 public:
1606   G1ParScrubRemSetTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1607       AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()), _region_bm(region_bm), _card_bm(card_bm), _hrclaimer(n_workers) {
1608   }
1609 
1610   void work(uint worker_id) {
1611     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
1612   }
1613 
1614 };
1615 
1616 void ConcurrentMark::cleanup() {
1617   // world is stopped at this checkpoint
1618   assert(SafepointSynchronize::is_at_safepoint(),
1619          "world should be stopped");
1620   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1621 
1622   // If a full collection has happened, we shouldn't do this.
1623   if (has_aborted()) {
1624     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1625     return;
1626   }
1627 
1628   g1h->verify_region_sets_optional();
1629 
1630   if (VerifyDuringGC) {
1631     HandleMark hm;  // handle scope
1632     g1h->prepare_for_verify();
1633     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1634   }
1635   g1h->check_bitmaps("Cleanup Start");
1636 
1637   G1CollectorPolicy* g1p = g1h->g1_policy();
1638   g1p->record_concurrent_mark_cleanup_start();
1639 
1640   double start = os::elapsedTime();
1641 
1642   HeapRegionRemSet::reset_for_cleanup_tasks();
1643 
1644   // Do counting once more with the world stopped for good measure.
1645   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1646 
1647   g1h->workers()->run_task(&g1_par_count_task);
1648 
1649   if (VerifyDuringGC) {
1650     // Verify that the counting data accumulated during marking matches
1651     // that calculated by walking the marking bitmap.
1652 
1653     // Bitmaps to hold expected values
1654     BitMap expected_region_bm(_region_bm.size(), true);
1655     BitMap expected_card_bm(_card_bm.size(), true);
1656 
1657     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
1658                                                  &_region_bm,
1659                                                  &_card_bm,
1660                                                  &expected_region_bm,
1661                                                  &expected_card_bm);
1662 
1663     g1h->workers()->run_task(&g1_par_verify_task);
1664 
1665     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
1666   }
1667 
1668   size_t start_used_bytes = g1h->used();
1669   g1h->collector_state()->set_mark_in_progress(false);
1670 
1671   double count_end = os::elapsedTime();
1672   double this_final_counting_time = (count_end - start);
1673   _total_counting_time += this_final_counting_time;
1674 
1675   if (log_is_enabled(Trace, gc, liveness)) {
1676     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1677     _g1h->heap_region_iterate(&cl);
1678   }
1679 
1680   // Install newly created mark bitMap as "prev".
1681   swapMarkBitMaps();
1682 
1683   g1h->reset_gc_time_stamp();
1684 
1685   uint n_workers = _g1h->workers()->active_workers();
1686 
1687   // Note end of marking in all heap regions.
1688   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1689   g1h->workers()->run_task(&g1_par_note_end_task);
1690   g1h->check_gc_time_stamps();
1691 
1692   if (!cleanup_list_is_empty()) {
1693     // The cleanup list is not empty, so we'll have to process it
1694     // concurrently. Notify anyone else that might be wanting free
1695     // regions that there will be more free regions coming soon.
1696     g1h->set_free_regions_coming();
1697   }
1698 
1699   // call below, since it affects the metric by which we sort the heap
1700   // regions.
1701   if (G1ScrubRemSets) {
1702     double rs_scrub_start = os::elapsedTime();
1703     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm, n_workers);
1704     g1h->workers()->run_task(&g1_par_scrub_rs_task);
1705 
1706     double rs_scrub_end = os::elapsedTime();
1707     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
1708     _total_rs_scrub_time += this_rs_scrub_time;
1709   }
1710 
1711   // this will also free any regions totally full of garbage objects,
1712   // and sort the regions.
1713   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1714 
1715   // Statistics.
1716   double end = os::elapsedTime();
1717   _cleanup_times.add((end - start) * 1000.0);
1718 
1719   // Clean up will have freed any regions completely full of garbage.
1720   // Update the soft reference policy with the new heap occupancy.
1721   Universe::update_heap_info_at_gc();
1722 
1723   if (VerifyDuringGC) {
1724     HandleMark hm;  // handle scope
1725     g1h->prepare_for_verify();
1726     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1727   }
1728 
1729   g1h->check_bitmaps("Cleanup End");
1730 
1731   g1h->verify_region_sets_optional();
1732 
1733   // We need to make this be a "collection" so any collection pause that
1734   // races with it goes around and waits for completeCleanup to finish.
1735   g1h->increment_total_collections();
1736 
1737   // Clean out dead classes and update Metaspace sizes.
1738   if (ClassUnloadingWithConcurrentMark) {
1739     ClassLoaderDataGraph::purge();
1740   }
1741   MetaspaceGC::compute_new_size();
1742 
1743   // We reclaimed old regions so we should calculate the sizes to make
1744   // sure we update the old gen/space data.
1745   g1h->g1mm()->update_sizes();
1746   g1h->allocation_context_stats().update_after_mark();
1747 
1748   g1h->trace_heap_after_concurrent_cycle();
1749 }
1750 
1751 void ConcurrentMark::completeCleanup() {
1752   if (has_aborted()) return;
1753 
1754   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1755 
1756   _cleanup_list.verify_optional();
1757   FreeRegionList tmp_free_list("Tmp Free List");
1758 
1759   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1760                                   "cleanup list has %u entries",
1761                                   _cleanup_list.length());
1762 
1763   // No one else should be accessing the _cleanup_list at this point,
1764   // so it is not necessary to take any locks
1765   while (!_cleanup_list.is_empty()) {
1766     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1767     assert(hr != NULL, "Got NULL from a non-empty list");
1768     hr->par_clear();
1769     tmp_free_list.add_ordered(hr);
1770 
1771     // Instead of adding one region at a time to the secondary_free_list,
1772     // we accumulate them in the local list and move them a few at a
1773     // time. This also cuts down on the number of notify_all() calls
1774     // we do during this process. We'll also append the local list when
1775     // _cleanup_list is empty (which means we just removed the last
1776     // region from the _cleanup_list).
1777     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1778         _cleanup_list.is_empty()) {
1779       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1780                                       "appending %u entries to the secondary_free_list, "
1781                                       "cleanup list still has %u entries",
1782                                       tmp_free_list.length(),
1783                                       _cleanup_list.length());
1784 
1785       {
1786         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1787         g1h->secondary_free_list_add(&tmp_free_list);
1788         SecondaryFreeList_lock->notify_all();
1789       }
1790 #ifndef PRODUCT
1791       if (G1StressConcRegionFreeing) {
1792         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1793           os::sleep(Thread::current(), (jlong) 1, false);
1794         }
1795       }
1796 #endif
1797     }
1798   }
1799   assert(tmp_free_list.is_empty(), "post-condition");
1800 }
1801 
1802 // Supporting Object and Oop closures for reference discovery
1803 // and processing in during marking
1804 
1805 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1806   HeapWord* addr = (HeapWord*)obj;
1807   return addr != NULL &&
1808          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1809 }
1810 
1811 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1812 // Uses the CMTask associated with a worker thread (for serial reference
1813 // processing the CMTask for worker 0 is used) to preserve (mark) and
1814 // trace referent objects.
1815 //
1816 // Using the CMTask and embedded local queues avoids having the worker
1817 // threads operating on the global mark stack. This reduces the risk
1818 // of overflowing the stack - which we would rather avoid at this late
1819 // state. Also using the tasks' local queues removes the potential
1820 // of the workers interfering with each other that could occur if
1821 // operating on the global stack.
1822 
1823 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1824   ConcurrentMark* _cm;
1825   CMTask*         _task;
1826   int             _ref_counter_limit;
1827   int             _ref_counter;
1828   bool            _is_serial;
1829  public:
1830   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
1831     _cm(cm), _task(task), _is_serial(is_serial),
1832     _ref_counter_limit(G1RefProcDrainInterval) {
1833     assert(_ref_counter_limit > 0, "sanity");
1834     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1835     _ref_counter = _ref_counter_limit;
1836   }
1837 
1838   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1839   virtual void do_oop(      oop* p) { do_oop_work(p); }
1840 
1841   template <class T> void do_oop_work(T* p) {
1842     if (!_cm->has_overflown()) {
1843       oop obj = oopDesc::load_decode_heap_oop(p);
1844       _task->deal_with_reference(obj);
1845       _ref_counter--;
1846 
1847       if (_ref_counter == 0) {
1848         // We have dealt with _ref_counter_limit references, pushing them
1849         // and objects reachable from them on to the local stack (and
1850         // possibly the global stack). Call CMTask::do_marking_step() to
1851         // process these entries.
1852         //
1853         // We call CMTask::do_marking_step() in a loop, which we'll exit if
1854         // there's nothing more to do (i.e. we're done with the entries that
1855         // were pushed as a result of the CMTask::deal_with_reference() calls
1856         // above) or we overflow.
1857         //
1858         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
1859         // flag while there may still be some work to do. (See the comment at
1860         // the beginning of CMTask::do_marking_step() for those conditions -
1861         // one of which is reaching the specified time target.) It is only
1862         // when CMTask::do_marking_step() returns without setting the
1863         // has_aborted() flag that the marking step has completed.
1864         do {
1865           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1866           _task->do_marking_step(mark_step_duration_ms,
1867                                  false      /* do_termination */,
1868                                  _is_serial);
1869         } while (_task->has_aborted() && !_cm->has_overflown());
1870         _ref_counter = _ref_counter_limit;
1871       }
1872     }
1873   }
1874 };
1875 
1876 // 'Drain' oop closure used by both serial and parallel reference processing.
1877 // Uses the CMTask associated with a given worker thread (for serial
1878 // reference processing the CMtask for worker 0 is used). Calls the
1879 // do_marking_step routine, with an unbelievably large timeout value,
1880 // to drain the marking data structures of the remaining entries
1881 // added by the 'keep alive' oop closure above.
1882 
1883 class G1CMDrainMarkingStackClosure: public VoidClosure {
1884   ConcurrentMark* _cm;
1885   CMTask*         _task;
1886   bool            _is_serial;
1887  public:
1888   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
1889     _cm(cm), _task(task), _is_serial(is_serial) {
1890     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1891   }
1892 
1893   void do_void() {
1894     do {
1895       // We call CMTask::do_marking_step() to completely drain the local
1896       // and global marking stacks of entries pushed by the 'keep alive'
1897       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1898       //
1899       // CMTask::do_marking_step() is called in a loop, which we'll exit
1900       // if there's nothing more to do (i.e. we've completely drained the
1901       // entries that were pushed as a a result of applying the 'keep alive'
1902       // closure to the entries on the discovered ref lists) or we overflow
1903       // the global marking stack.
1904       //
1905       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
1906       // flag while there may still be some work to do. (See the comment at
1907       // the beginning of CMTask::do_marking_step() for those conditions -
1908       // one of which is reaching the specified time target.) It is only
1909       // when CMTask::do_marking_step() returns without setting the
1910       // has_aborted() flag that the marking step has completed.
1911 
1912       _task->do_marking_step(1000000000.0 /* something very large */,
1913                              true         /* do_termination */,
1914                              _is_serial);
1915     } while (_task->has_aborted() && !_cm->has_overflown());
1916   }
1917 };
1918 
1919 // Implementation of AbstractRefProcTaskExecutor for parallel
1920 // reference processing at the end of G1 concurrent marking
1921 
1922 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1923 private:
1924   G1CollectedHeap* _g1h;
1925   ConcurrentMark*  _cm;
1926   WorkGang*        _workers;
1927   uint             _active_workers;
1928 
1929 public:
1930   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1931                           ConcurrentMark* cm,
1932                           WorkGang* workers,
1933                           uint n_workers) :
1934     _g1h(g1h), _cm(cm),
1935     _workers(workers), _active_workers(n_workers) { }
1936 
1937   // Executes the given task using concurrent marking worker threads.
1938   virtual void execute(ProcessTask& task);
1939   virtual void execute(EnqueueTask& task);
1940 };
1941 
1942 class G1CMRefProcTaskProxy: public AbstractGangTask {
1943   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1944   ProcessTask&     _proc_task;
1945   G1CollectedHeap* _g1h;
1946   ConcurrentMark*  _cm;
1947 
1948 public:
1949   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1950                      G1CollectedHeap* g1h,
1951                      ConcurrentMark* cm) :
1952     AbstractGangTask("Process reference objects in parallel"),
1953     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1954     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1955     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1956   }
1957 
1958   virtual void work(uint worker_id) {
1959     ResourceMark rm;
1960     HandleMark hm;
1961     CMTask* task = _cm->task(worker_id);
1962     G1CMIsAliveClosure g1_is_alive(_g1h);
1963     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1964     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1965 
1966     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1967   }
1968 };
1969 
1970 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1971   assert(_workers != NULL, "Need parallel worker threads.");
1972   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1973 
1974   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1975 
1976   // We need to reset the concurrency level before each
1977   // proxy task execution, so that the termination protocol
1978   // and overflow handling in CMTask::do_marking_step() knows
1979   // how many workers to wait for.
1980   _cm->set_concurrency(_active_workers);
1981   _workers->run_task(&proc_task_proxy);
1982 }
1983 
1984 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1985   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1986   EnqueueTask& _enq_task;
1987 
1988 public:
1989   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1990     AbstractGangTask("Enqueue reference objects in parallel"),
1991     _enq_task(enq_task) { }
1992 
1993   virtual void work(uint worker_id) {
1994     _enq_task.work(worker_id);
1995   }
1996 };
1997 
1998 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1999   assert(_workers != NULL, "Need parallel worker threads.");
2000   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2001 
2002   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2003 
2004   // Not strictly necessary but...
2005   //
2006   // We need to reset the concurrency level before each
2007   // proxy task execution, so that the termination protocol
2008   // and overflow handling in CMTask::do_marking_step() knows
2009   // how many workers to wait for.
2010   _cm->set_concurrency(_active_workers);
2011   _workers->run_task(&enq_task_proxy);
2012 }
2013 
2014 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2015   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2016 }
2017 
2018 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2019   if (has_overflown()) {
2020     // Skip processing the discovered references if we have
2021     // overflown the global marking stack. Reference objects
2022     // only get discovered once so it is OK to not
2023     // de-populate the discovered reference lists. We could have,
2024     // but the only benefit would be that, when marking restarts,
2025     // less reference objects are discovered.
2026     return;
2027   }
2028 
2029   ResourceMark rm;
2030   HandleMark   hm;
2031 
2032   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2033 
2034   // Is alive closure.
2035   G1CMIsAliveClosure g1_is_alive(g1h);
2036 
2037   // Inner scope to exclude the cleaning of the string and symbol
2038   // tables from the displayed time.
2039   {
2040     GCTraceTime(Debug, gc) trace("GC Ref Proc", g1h->gc_timer_cm());
2041 
2042     ReferenceProcessor* rp = g1h->ref_processor_cm();
2043 
2044     // See the comment in G1CollectedHeap::ref_processing_init()
2045     // about how reference processing currently works in G1.
2046 
2047     // Set the soft reference policy
2048     rp->setup_policy(clear_all_soft_refs);
2049     assert(_markStack.isEmpty(), "mark stack should be empty");
2050 
2051     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2052     // in serial reference processing. Note these closures are also
2053     // used for serially processing (by the the current thread) the
2054     // JNI references during parallel reference processing.
2055     //
2056     // These closures do not need to synchronize with the worker
2057     // threads involved in parallel reference processing as these
2058     // instances are executed serially by the current thread (e.g.
2059     // reference processing is not multi-threaded and is thus
2060     // performed by the current thread instead of a gang worker).
2061     //
2062     // The gang tasks involved in parallel reference processing create
2063     // their own instances of these closures, which do their own
2064     // synchronization among themselves.
2065     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2066     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2067 
2068     // We need at least one active thread. If reference processing
2069     // is not multi-threaded we use the current (VMThread) thread,
2070     // otherwise we use the work gang from the G1CollectedHeap and
2071     // we utilize all the worker threads we can.
2072     bool processing_is_mt = rp->processing_is_mt();
2073     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2074     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2075 
2076     // Parallel processing task executor.
2077     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2078                                               g1h->workers(), active_workers);
2079     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2080 
2081     // Set the concurrency level. The phase was already set prior to
2082     // executing the remark task.
2083     set_concurrency(active_workers);
2084 
2085     // Set the degree of MT processing here.  If the discovery was done MT,
2086     // the number of threads involved during discovery could differ from
2087     // the number of active workers.  This is OK as long as the discovered
2088     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2089     rp->set_active_mt_degree(active_workers);
2090 
2091     // Process the weak references.
2092     const ReferenceProcessorStats& stats =
2093         rp->process_discovered_references(&g1_is_alive,
2094                                           &g1_keep_alive,
2095                                           &g1_drain_mark_stack,
2096                                           executor,
2097                                           g1h->gc_timer_cm());
2098     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2099 
2100     // The do_oop work routines of the keep_alive and drain_marking_stack
2101     // oop closures will set the has_overflown flag if we overflow the
2102     // global marking stack.
2103 
2104     assert(_markStack.overflow() || _markStack.isEmpty(),
2105             "mark stack should be empty (unless it overflowed)");
2106 
2107     if (_markStack.overflow()) {
2108       // This should have been done already when we tried to push an
2109       // entry on to the global mark stack. But let's do it again.
2110       set_has_overflown();
2111     }
2112 
2113     assert(rp->num_q() == active_workers, "why not");
2114 
2115     rp->enqueue_discovered_references(executor);
2116 
2117     rp->verify_no_references_recorded();
2118     assert(!rp->discovery_enabled(), "Post condition");
2119   }
2120 
2121   if (has_overflown()) {
2122     // We can not trust g1_is_alive if the marking stack overflowed
2123     return;
2124   }
2125 
2126   assert(_markStack.isEmpty(), "Marking should have completed");
2127 
2128   // Unload Klasses, String, Symbols, Code Cache, etc.
2129   {
2130     GCTraceTime(Debug, gc) trace("Unloading", g1h->gc_timer_cm());
2131 
2132     if (ClassUnloadingWithConcurrentMark) {
2133       bool purged_classes;
2134 
2135       {
2136         GCTraceTime(Trace, gc) trace("System Dictionary Unloading", g1h->gc_timer_cm());
2137         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2138       }
2139 
2140       {
2141         GCTraceTime(Trace, gc) trace("Parallel Unloading", g1h->gc_timer_cm());
2142         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2143       }
2144     }
2145 
2146     if (G1StringDedup::is_enabled()) {
2147       GCTraceTime(Trace, gc) trace("String Deduplication Unlink", g1h->gc_timer_cm());
2148       G1StringDedup::unlink(&g1_is_alive);
2149     }
2150   }
2151 }
2152 
2153 void ConcurrentMark::swapMarkBitMaps() {
2154   CMBitMapRO* temp = _prevMarkBitMap;
2155   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2156   _nextMarkBitMap  = (CMBitMap*)  temp;
2157 }
2158 
2159 // Closure for marking entries in SATB buffers.
2160 class CMSATBBufferClosure : public SATBBufferClosure {
2161 private:
2162   CMTask* _task;
2163   G1CollectedHeap* _g1h;
2164 
2165   // This is very similar to CMTask::deal_with_reference, but with
2166   // more relaxed requirements for the argument, so this must be more
2167   // circumspect about treating the argument as an object.
2168   void do_entry(void* entry) const {
2169     _task->increment_refs_reached();
2170     HeapRegion* hr = _g1h->heap_region_containing(entry);
2171     if (entry < hr->next_top_at_mark_start()) {
2172       // Until we get here, we don't know whether entry refers to a valid
2173       // object; it could instead have been a stale reference.
2174       oop obj = static_cast<oop>(entry);
2175       assert(obj->is_oop(true /* ignore mark word */),
2176              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
2177       _task->make_reference_grey(obj, hr);
2178     }
2179   }
2180 
2181 public:
2182   CMSATBBufferClosure(CMTask* task, G1CollectedHeap* g1h)
2183     : _task(task), _g1h(g1h) { }
2184 
2185   virtual void do_buffer(void** buffer, size_t size) {
2186     for (size_t i = 0; i < size; ++i) {
2187       do_entry(buffer[i]);
2188     }
2189   }
2190 };
2191 
2192 class G1RemarkThreadsClosure : public ThreadClosure {
2193   CMSATBBufferClosure _cm_satb_cl;
2194   G1CMOopClosure _cm_cl;
2195   MarkingCodeBlobClosure _code_cl;
2196   int _thread_parity;
2197 
2198  public:
2199   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task) :
2200     _cm_satb_cl(task, g1h),
2201     _cm_cl(g1h, g1h->concurrent_mark(), task),
2202     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2203     _thread_parity(Threads::thread_claim_parity()) {}
2204 
2205   void do_thread(Thread* thread) {
2206     if (thread->is_Java_thread()) {
2207       if (thread->claim_oops_do(true, _thread_parity)) {
2208         JavaThread* jt = (JavaThread*)thread;
2209 
2210         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2211         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2212         // * Alive if on the stack of an executing method
2213         // * Weakly reachable otherwise
2214         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2215         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2216         jt->nmethods_do(&_code_cl);
2217 
2218         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
2219       }
2220     } else if (thread->is_VM_thread()) {
2221       if (thread->claim_oops_do(true, _thread_parity)) {
2222         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
2223       }
2224     }
2225   }
2226 };
2227 
2228 class CMRemarkTask: public AbstractGangTask {
2229 private:
2230   ConcurrentMark* _cm;
2231 public:
2232   void work(uint worker_id) {
2233     // Since all available tasks are actually started, we should
2234     // only proceed if we're supposed to be active.
2235     if (worker_id < _cm->active_tasks()) {
2236       CMTask* task = _cm->task(worker_id);
2237       task->record_start_time();
2238       {
2239         ResourceMark rm;
2240         HandleMark hm;
2241 
2242         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2243         Threads::threads_do(&threads_f);
2244       }
2245 
2246       do {
2247         task->do_marking_step(1000000000.0 /* something very large */,
2248                               true         /* do_termination       */,
2249                               false        /* is_serial            */);
2250       } while (task->has_aborted() && !_cm->has_overflown());
2251       // If we overflow, then we do not want to restart. We instead
2252       // want to abort remark and do concurrent marking again.
2253       task->record_end_time();
2254     }
2255   }
2256 
2257   CMRemarkTask(ConcurrentMark* cm, uint active_workers) :
2258     AbstractGangTask("Par Remark"), _cm(cm) {
2259     _cm->terminator()->reset_for_reuse(active_workers);
2260   }
2261 };
2262 
2263 void ConcurrentMark::checkpointRootsFinalWork() {
2264   ResourceMark rm;
2265   HandleMark   hm;
2266   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2267 
2268   GCTraceTime(Debug, gc) trace("Finalize Marking", g1h->gc_timer_cm());
2269 
2270   g1h->ensure_parsability(false);
2271 
2272   // this is remark, so we'll use up all active threads
2273   uint active_workers = g1h->workers()->active_workers();
2274   set_concurrency_and_phase(active_workers, false /* concurrent */);
2275   // Leave _parallel_marking_threads at it's
2276   // value originally calculated in the ConcurrentMark
2277   // constructor and pass values of the active workers
2278   // through the gang in the task.
2279 
2280   {
2281     StrongRootsScope srs(active_workers);
2282 
2283     CMRemarkTask remarkTask(this, active_workers);
2284     // We will start all available threads, even if we decide that the
2285     // active_workers will be fewer. The extra ones will just bail out
2286     // immediately.
2287     g1h->workers()->run_task(&remarkTask);
2288   }
2289 
2290   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2291   guarantee(has_overflown() ||
2292             satb_mq_set.completed_buffers_num() == 0,
2293             "Invariant: has_overflown = %s, num buffers = %d",
2294             BOOL_TO_STR(has_overflown()),
2295             satb_mq_set.completed_buffers_num());
2296 
2297   print_stats();
2298 }
2299 
2300 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2301   // Note we are overriding the read-only view of the prev map here, via
2302   // the cast.
2303   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2304 }
2305 
2306 HeapRegion*
2307 ConcurrentMark::claim_region(uint worker_id) {
2308   // "checkpoint" the finger
2309   HeapWord* finger = _finger;
2310 
2311   // _heap_end will not change underneath our feet; it only changes at
2312   // yield points.
2313   while (finger < _heap_end) {
2314     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2315 
2316     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
2317 
2318     // Above heap_region_containing may return NULL as we always scan claim
2319     // until the end of the heap. In this case, just jump to the next region.
2320     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2321 
2322     // Is the gap between reading the finger and doing the CAS too long?
2323     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2324     if (res == finger && curr_region != NULL) {
2325       // we succeeded
2326       HeapWord*   bottom        = curr_region->bottom();
2327       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2328 
2329       // notice that _finger == end cannot be guaranteed here since,
2330       // someone else might have moved the finger even further
2331       assert(_finger >= end, "the finger should have moved forward");
2332 
2333       if (limit > bottom) {
2334         return curr_region;
2335       } else {
2336         assert(limit == bottom,
2337                "the region limit should be at bottom");
2338         // we return NULL and the caller should try calling
2339         // claim_region() again.
2340         return NULL;
2341       }
2342     } else {
2343       assert(_finger > finger, "the finger should have moved forward");
2344       // read it again
2345       finger = _finger;
2346     }
2347   }
2348 
2349   return NULL;
2350 }
2351 
2352 #ifndef PRODUCT
2353 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
2354 private:
2355   G1CollectedHeap* _g1h;
2356   const char* _phase;
2357   int _info;
2358 
2359 public:
2360   VerifyNoCSetOops(const char* phase, int info = -1) :
2361     _g1h(G1CollectedHeap::heap()),
2362     _phase(phase),
2363     _info(info)
2364   { }
2365 
2366   void operator()(oop obj) const {
2367     guarantee(obj->is_oop(),
2368               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
2369               p2i(obj), _phase, _info);
2370     guarantee(!_g1h->obj_in_cs(obj),
2371               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
2372               p2i(obj), _phase, _info);
2373   }
2374 };
2375 
2376 void ConcurrentMark::verify_no_cset_oops() {
2377   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2378   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
2379     return;
2380   }
2381 
2382   // Verify entries on the global mark stack
2383   _markStack.iterate(VerifyNoCSetOops("Stack"));
2384 
2385   // Verify entries on the task queues
2386   for (uint i = 0; i < _max_worker_id; ++i) {
2387     CMTaskQueue* queue = _task_queues->queue(i);
2388     queue->iterate(VerifyNoCSetOops("Queue", i));
2389   }
2390 
2391   // Verify the global finger
2392   HeapWord* global_finger = finger();
2393   if (global_finger != NULL && global_finger < _heap_end) {
2394     // Since we always iterate over all regions, we might get a NULL HeapRegion
2395     // here.
2396     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
2397     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2398               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
2399               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
2400   }
2401 
2402   // Verify the task fingers
2403   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2404   for (uint i = 0; i < parallel_marking_threads(); ++i) {
2405     CMTask* task = _tasks[i];
2406     HeapWord* task_finger = task->finger();
2407     if (task_finger != NULL && task_finger < _heap_end) {
2408       // See above note on the global finger verification.
2409       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2410       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2411                 !task_hr->in_collection_set(),
2412                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2413                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2414     }
2415   }
2416 }
2417 #endif // PRODUCT
2418 
2419 // Aggregate the counting data that was constructed concurrently
2420 // with marking.
2421 class AggregateCountDataHRClosure: public HeapRegionClosure {
2422   G1CollectedHeap* _g1h;
2423   ConcurrentMark* _cm;
2424   CardTableModRefBS* _ct_bs;
2425   BitMap* _cm_card_bm;
2426   uint _max_worker_id;
2427 
2428  public:
2429   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2430                               BitMap* cm_card_bm,
2431                               uint max_worker_id) :
2432     _g1h(g1h), _cm(g1h->concurrent_mark()),
2433     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
2434     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2435 
2436   bool doHeapRegion(HeapRegion* hr) {
2437     HeapWord* start = hr->bottom();
2438     HeapWord* limit = hr->next_top_at_mark_start();
2439     HeapWord* end = hr->end();
2440 
2441     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
2442            "Preconditions not met - "
2443            "start: " PTR_FORMAT ", limit: " PTR_FORMAT ", "
2444            "top: " PTR_FORMAT ", end: " PTR_FORMAT,
2445            p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end()));
2446 
2447     assert(hr->next_marked_bytes() == 0, "Precondition");
2448 
2449     if (start == limit) {
2450       // NTAMS of this region has not been set so nothing to do.
2451       return false;
2452     }
2453 
2454     // 'start' should be in the heap.
2455     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
2456     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
2457     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
2458 
2459     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
2460     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
2461     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
2462 
2463     // If ntams is not card aligned then we bump card bitmap index
2464     // for limit so that we get the all the cards spanned by
2465     // the object ending at ntams.
2466     // Note: if this is the last region in the heap then ntams
2467     // could be actually just beyond the end of the the heap;
2468     // limit_idx will then  correspond to a (non-existent) card
2469     // that is also outside the heap.
2470     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
2471       limit_idx += 1;
2472     }
2473 
2474     assert(limit_idx <= end_idx, "or else use atomics");
2475 
2476     // Aggregate the "stripe" in the count data associated with hr.
2477     uint hrm_index = hr->hrm_index();
2478     size_t marked_bytes = 0;
2479 
2480     for (uint i = 0; i < _max_worker_id; i += 1) {
2481       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
2482       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
2483 
2484       // Fetch the marked_bytes in this region for task i and
2485       // add it to the running total for this region.
2486       marked_bytes += marked_bytes_array[hrm_index];
2487 
2488       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
2489       // into the global card bitmap.
2490       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
2491 
2492       while (scan_idx < limit_idx) {
2493         assert(task_card_bm->at(scan_idx) == true, "should be");
2494         _cm_card_bm->set_bit(scan_idx);
2495         assert(_cm_card_bm->at(scan_idx) == true, "should be");
2496 
2497         // BitMap::get_next_one_offset() can handle the case when
2498         // its left_offset parameter is greater than its right_offset
2499         // parameter. It does, however, have an early exit if
2500         // left_offset == right_offset. So let's limit the value
2501         // passed in for left offset here.
2502         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
2503         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
2504       }
2505     }
2506 
2507     // Update the marked bytes for this region.
2508     hr->add_to_marked_bytes(marked_bytes);
2509 
2510     // Next heap region
2511     return false;
2512   }
2513 };
2514 
2515 class G1AggregateCountDataTask: public AbstractGangTask {
2516 protected:
2517   G1CollectedHeap* _g1h;
2518   ConcurrentMark* _cm;
2519   BitMap* _cm_card_bm;
2520   uint _max_worker_id;
2521   uint _active_workers;
2522   HeapRegionClaimer _hrclaimer;
2523 
2524 public:
2525   G1AggregateCountDataTask(G1CollectedHeap* g1h,
2526                            ConcurrentMark* cm,
2527                            BitMap* cm_card_bm,
2528                            uint max_worker_id,
2529                            uint n_workers) :
2530       AbstractGangTask("Count Aggregation"),
2531       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
2532       _max_worker_id(max_worker_id),
2533       _active_workers(n_workers),
2534       _hrclaimer(_active_workers) {
2535   }
2536 
2537   void work(uint worker_id) {
2538     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
2539 
2540     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
2541   }
2542 };
2543 
2544 
2545 void ConcurrentMark::aggregate_count_data() {
2546   uint n_workers = _g1h->workers()->active_workers();
2547 
2548   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
2549                                            _max_worker_id, n_workers);
2550 
2551   _g1h->workers()->run_task(&g1_par_agg_task);
2552 }
2553 
2554 // Clear the per-worker arrays used to store the per-region counting data
2555 void ConcurrentMark::clear_all_count_data() {
2556   // Clear the global card bitmap - it will be filled during
2557   // liveness count aggregation (during remark) and the
2558   // final counting task.
2559   _card_bm.clear();
2560 
2561   // Clear the global region bitmap - it will be filled as part
2562   // of the final counting task.
2563   _region_bm.clear();
2564 
2565   uint max_regions = _g1h->max_regions();
2566   assert(_max_worker_id > 0, "uninitialized");
2567 
2568   for (uint i = 0; i < _max_worker_id; i += 1) {
2569     BitMap* task_card_bm = count_card_bitmap_for(i);
2570     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
2571 
2572     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
2573     assert(marked_bytes_array != NULL, "uninitialized");
2574 
2575     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
2576     task_card_bm->clear();
2577   }
2578 }
2579 
2580 void ConcurrentMark::print_stats() {
2581   if (!log_is_enabled(Debug, gc, stats)) {
2582     return;
2583   }
2584   log_debug(gc, stats)("---------------------------------------------------------------------");
2585   for (size_t i = 0; i < _active_tasks; ++i) {
2586     _tasks[i]->print_stats();
2587     log_debug(gc, stats)("---------------------------------------------------------------------");
2588   }
2589 }
2590 
2591 // abandon current marking iteration due to a Full GC
2592 void ConcurrentMark::abort() {
2593   if (!cmThread()->during_cycle() || _has_aborted) {
2594     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2595     return;
2596   }
2597 
2598   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2599   // concurrent bitmap clearing.
2600   _nextMarkBitMap->clearAll();
2601 
2602   // Note we cannot clear the previous marking bitmap here
2603   // since VerifyDuringGC verifies the objects marked during
2604   // a full GC against the previous bitmap.
2605 
2606   // Clear the liveness counting data
2607   clear_all_count_data();
2608   // Empty mark stack
2609   reset_marking_state();
2610   for (uint i = 0; i < _max_worker_id; ++i) {
2611     _tasks[i]->clear_region_fields();
2612   }
2613   _first_overflow_barrier_sync.abort();
2614   _second_overflow_barrier_sync.abort();
2615   _has_aborted = true;
2616 
2617   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2618   satb_mq_set.abandon_partial_marking();
2619   // This can be called either during or outside marking, we'll read
2620   // the expected_active value from the SATB queue set.
2621   satb_mq_set.set_active_all_threads(
2622                                  false, /* new active value */
2623                                  satb_mq_set.is_active() /* expected_active */);
2624 
2625   _g1h->trace_heap_after_concurrent_cycle();
2626 
2627   // Close any open concurrent phase timing
2628   register_concurrent_phase_end();
2629 
2630   _g1h->register_concurrent_cycle_end();
2631 }
2632 
2633 static void print_ms_time_info(const char* prefix, const char* name,
2634                                NumberSeq& ns) {
2635   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2636                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2637   if (ns.num() > 0) {
2638     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2639                            prefix, ns.sd(), ns.maximum());
2640   }
2641 }
2642 
2643 void ConcurrentMark::print_summary_info() {
2644   LogHandle(gc, marking) log;
2645   if (!log.is_trace()) {
2646     return;
2647   }
2648 
2649   log.trace(" Concurrent marking:");
2650   print_ms_time_info("  ", "init marks", _init_times);
2651   print_ms_time_info("  ", "remarks", _remark_times);
2652   {
2653     print_ms_time_info("     ", "final marks", _remark_mark_times);
2654     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2655 
2656   }
2657   print_ms_time_info("  ", "cleanups", _cleanup_times);
2658   log.trace("    Final counting total time = %8.2f s (avg = %8.2f ms).",
2659             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2660   if (G1ScrubRemSets) {
2661     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2662               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2663   }
2664   log.trace("  Total stop_world time = %8.2f s.",
2665             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2666   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2667             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2668 }
2669 
2670 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2671   _parallel_workers->print_worker_threads_on(st);
2672 }
2673 
2674 void ConcurrentMark::print_on_error(outputStream* st) const {
2675   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2676       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2677   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2678   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2679 }
2680 
2681 // We take a break if someone is trying to stop the world.
2682 bool ConcurrentMark::do_yield_check(uint worker_id) {
2683   if (SuspendibleThreadSet::should_yield()) {
2684     if (worker_id == 0) {
2685       _g1h->g1_policy()->record_concurrent_pause();
2686     }
2687     SuspendibleThreadSet::yield();
2688     return true;
2689   } else {
2690     return false;
2691   }
2692 }
2693 
2694 // Closure for iteration over bitmaps
2695 class CMBitMapClosure : public BitMapClosure {
2696 private:
2697   // the bitmap that is being iterated over
2698   CMBitMap*                   _nextMarkBitMap;
2699   ConcurrentMark*             _cm;
2700   CMTask*                     _task;
2701 
2702 public:
2703   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
2704     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2705 
2706   bool do_bit(size_t offset) {
2707     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2708     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2709     assert( addr < _cm->finger(), "invariant");
2710     assert(addr >= _task->finger(), "invariant");
2711 
2712     // We move that task's local finger along.
2713     _task->move_finger_to(addr);
2714 
2715     _task->scan_object(oop(addr));
2716     // we only partially drain the local queue and global stack
2717     _task->drain_local_queue(true);
2718     _task->drain_global_stack(true);
2719 
2720     // if the has_aborted flag has been raised, we need to bail out of
2721     // the iteration
2722     return !_task->has_aborted();
2723   }
2724 };
2725 
2726 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2727   ReferenceProcessor* result = NULL;
2728   if (G1UseConcMarkReferenceProcessing) {
2729     result = g1h->ref_processor_cm();
2730     assert(result != NULL, "should not be NULL");
2731   }
2732   return result;
2733 }
2734 
2735 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2736                                ConcurrentMark* cm,
2737                                CMTask* task)
2738   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2739     _g1h(g1h), _cm(cm), _task(task)
2740 { }
2741 
2742 void CMTask::setup_for_region(HeapRegion* hr) {
2743   assert(hr != NULL,
2744         "claim_region() should have filtered out NULL regions");
2745   _curr_region  = hr;
2746   _finger       = hr->bottom();
2747   update_region_limit();
2748 }
2749 
2750 void CMTask::update_region_limit() {
2751   HeapRegion* hr            = _curr_region;
2752   HeapWord* bottom          = hr->bottom();
2753   HeapWord* limit           = hr->next_top_at_mark_start();
2754 
2755   if (limit == bottom) {
2756     // The region was collected underneath our feet.
2757     // We set the finger to bottom to ensure that the bitmap
2758     // iteration that will follow this will not do anything.
2759     // (this is not a condition that holds when we set the region up,
2760     // as the region is not supposed to be empty in the first place)
2761     _finger = bottom;
2762   } else if (limit >= _region_limit) {
2763     assert(limit >= _finger, "peace of mind");
2764   } else {
2765     assert(limit < _region_limit, "only way to get here");
2766     // This can happen under some pretty unusual circumstances.  An
2767     // evacuation pause empties the region underneath our feet (NTAMS
2768     // at bottom). We then do some allocation in the region (NTAMS
2769     // stays at bottom), followed by the region being used as a GC
2770     // alloc region (NTAMS will move to top() and the objects
2771     // originally below it will be grayed). All objects now marked in
2772     // the region are explicitly grayed, if below the global finger,
2773     // and we do not need in fact to scan anything else. So, we simply
2774     // set _finger to be limit to ensure that the bitmap iteration
2775     // doesn't do anything.
2776     _finger = limit;
2777   }
2778 
2779   _region_limit = limit;
2780 }
2781 
2782 void CMTask::giveup_current_region() {
2783   assert(_curr_region != NULL, "invariant");
2784   clear_region_fields();
2785 }
2786 
2787 void CMTask::clear_region_fields() {
2788   // Values for these three fields that indicate that we're not
2789   // holding on to a region.
2790   _curr_region   = NULL;
2791   _finger        = NULL;
2792   _region_limit  = NULL;
2793 }
2794 
2795 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2796   if (cm_oop_closure == NULL) {
2797     assert(_cm_oop_closure != NULL, "invariant");
2798   } else {
2799     assert(_cm_oop_closure == NULL, "invariant");
2800   }
2801   _cm_oop_closure = cm_oop_closure;
2802 }
2803 
2804 void CMTask::reset(CMBitMap* nextMarkBitMap) {
2805   guarantee(nextMarkBitMap != NULL, "invariant");
2806   _nextMarkBitMap                = nextMarkBitMap;
2807   clear_region_fields();
2808 
2809   _calls                         = 0;
2810   _elapsed_time_ms               = 0.0;
2811   _termination_time_ms           = 0.0;
2812   _termination_start_time_ms     = 0.0;
2813 }
2814 
2815 bool CMTask::should_exit_termination() {
2816   regular_clock_call();
2817   // This is called when we are in the termination protocol. We should
2818   // quit if, for some reason, this task wants to abort or the global
2819   // stack is not empty (this means that we can get work from it).
2820   return !_cm->mark_stack_empty() || has_aborted();
2821 }
2822 
2823 void CMTask::reached_limit() {
2824   assert(_words_scanned >= _words_scanned_limit ||
2825          _refs_reached >= _refs_reached_limit ,
2826          "shouldn't have been called otherwise");
2827   regular_clock_call();
2828 }
2829 
2830 void CMTask::regular_clock_call() {
2831   if (has_aborted()) return;
2832 
2833   // First, we need to recalculate the words scanned and refs reached
2834   // limits for the next clock call.
2835   recalculate_limits();
2836 
2837   // During the regular clock call we do the following
2838 
2839   // (1) If an overflow has been flagged, then we abort.
2840   if (_cm->has_overflown()) {
2841     set_has_aborted();
2842     return;
2843   }
2844 
2845   // If we are not concurrent (i.e. we're doing remark) we don't need
2846   // to check anything else. The other steps are only needed during
2847   // the concurrent marking phase.
2848   if (!concurrent()) return;
2849 
2850   // (2) If marking has been aborted for Full GC, then we also abort.
2851   if (_cm->has_aborted()) {
2852     set_has_aborted();
2853     return;
2854   }
2855 
2856   double curr_time_ms = os::elapsedVTime() * 1000.0;
2857 
2858   // (4) We check whether we should yield. If we have to, then we abort.
2859   if (SuspendibleThreadSet::should_yield()) {
2860     // We should yield. To do this we abort the task. The caller is
2861     // responsible for yielding.
2862     set_has_aborted();
2863     return;
2864   }
2865 
2866   // (5) We check whether we've reached our time quota. If we have,
2867   // then we abort.
2868   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2869   if (elapsed_time_ms > _time_target_ms) {
2870     set_has_aborted();
2871     _has_timed_out = true;
2872     return;
2873   }
2874 
2875   // (6) Finally, we check whether there are enough completed STAB
2876   // buffers available for processing. If there are, we abort.
2877   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2878   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2879     // we do need to process SATB buffers, we'll abort and restart
2880     // the marking task to do so
2881     set_has_aborted();
2882     return;
2883   }
2884 }
2885 
2886 void CMTask::recalculate_limits() {
2887   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2888   _words_scanned_limit      = _real_words_scanned_limit;
2889 
2890   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2891   _refs_reached_limit       = _real_refs_reached_limit;
2892 }
2893 
2894 void CMTask::decrease_limits() {
2895   // This is called when we believe that we're going to do an infrequent
2896   // operation which will increase the per byte scanned cost (i.e. move
2897   // entries to/from the global stack). It basically tries to decrease the
2898   // scanning limit so that the clock is called earlier.
2899 
2900   _words_scanned_limit = _real_words_scanned_limit -
2901     3 * words_scanned_period / 4;
2902   _refs_reached_limit  = _real_refs_reached_limit -
2903     3 * refs_reached_period / 4;
2904 }
2905 
2906 void CMTask::move_entries_to_global_stack() {
2907   // local array where we'll store the entries that will be popped
2908   // from the local queue
2909   oop buffer[global_stack_transfer_size];
2910 
2911   int n = 0;
2912   oop obj;
2913   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
2914     buffer[n] = obj;
2915     ++n;
2916   }
2917 
2918   if (n > 0) {
2919     // we popped at least one entry from the local queue
2920 
2921     if (!_cm->mark_stack_push(buffer, n)) {
2922       set_has_aborted();
2923     }
2924   }
2925 
2926   // this operation was quite expensive, so decrease the limits
2927   decrease_limits();
2928 }
2929 
2930 void CMTask::get_entries_from_global_stack() {
2931   // local array where we'll store the entries that will be popped
2932   // from the global stack.
2933   oop buffer[global_stack_transfer_size];
2934   int n;
2935   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
2936   assert(n <= global_stack_transfer_size,
2937          "we should not pop more than the given limit");
2938   if (n > 0) {
2939     // yes, we did actually pop at least one entry
2940     for (int i = 0; i < n; ++i) {
2941       bool success = _task_queue->push(buffer[i]);
2942       // We only call this when the local queue is empty or under a
2943       // given target limit. So, we do not expect this push to fail.
2944       assert(success, "invariant");
2945     }
2946   }
2947 
2948   // this operation was quite expensive, so decrease the limits
2949   decrease_limits();
2950 }
2951 
2952 void CMTask::drain_local_queue(bool partially) {
2953   if (has_aborted()) return;
2954 
2955   // Decide what the target size is, depending whether we're going to
2956   // drain it partially (so that other tasks can steal if they run out
2957   // of things to do) or totally (at the very end).
2958   size_t target_size;
2959   if (partially) {
2960     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2961   } else {
2962     target_size = 0;
2963   }
2964 
2965   if (_task_queue->size() > target_size) {
2966     oop obj;
2967     bool ret = _task_queue->pop_local(obj);
2968     while (ret) {
2969       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
2970       assert(!_g1h->is_on_master_free_list(
2971                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
2972 
2973       scan_object(obj);
2974 
2975       if (_task_queue->size() <= target_size || has_aborted()) {
2976         ret = false;
2977       } else {
2978         ret = _task_queue->pop_local(obj);
2979       }
2980     }
2981   }
2982 }
2983 
2984 void CMTask::drain_global_stack(bool partially) {
2985   if (has_aborted()) return;
2986 
2987   // We have a policy to drain the local queue before we attempt to
2988   // drain the global stack.
2989   assert(partially || _task_queue->size() == 0, "invariant");
2990 
2991   // Decide what the target size is, depending whether we're going to
2992   // drain it partially (so that other tasks can steal if they run out
2993   // of things to do) or totally (at the very end).  Notice that,
2994   // because we move entries from the global stack in chunks or
2995   // because another task might be doing the same, we might in fact
2996   // drop below the target. But, this is not a problem.
2997   size_t target_size;
2998   if (partially) {
2999     target_size = _cm->partial_mark_stack_size_target();
3000   } else {
3001     target_size = 0;
3002   }
3003 
3004   if (_cm->mark_stack_size() > target_size) {
3005     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3006       get_entries_from_global_stack();
3007       drain_local_queue(partially);
3008     }
3009   }
3010 }
3011 
3012 // SATB Queue has several assumptions on whether to call the par or
3013 // non-par versions of the methods. this is why some of the code is
3014 // replicated. We should really get rid of the single-threaded version
3015 // of the code to simplify things.
3016 void CMTask::drain_satb_buffers() {
3017   if (has_aborted()) return;
3018 
3019   // We set this so that the regular clock knows that we're in the
3020   // middle of draining buffers and doesn't set the abort flag when it
3021   // notices that SATB buffers are available for draining. It'd be
3022   // very counter productive if it did that. :-)
3023   _draining_satb_buffers = true;
3024 
3025   CMSATBBufferClosure satb_cl(this, _g1h);
3026   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3027 
3028   // This keeps claiming and applying the closure to completed buffers
3029   // until we run out of buffers or we need to abort.
3030   while (!has_aborted() &&
3031          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
3032     regular_clock_call();
3033   }
3034 
3035   _draining_satb_buffers = false;
3036 
3037   assert(has_aborted() ||
3038          concurrent() ||
3039          satb_mq_set.completed_buffers_num() == 0, "invariant");
3040 
3041   // again, this was a potentially expensive operation, decrease the
3042   // limits to get the regular clock call early
3043   decrease_limits();
3044 }
3045 
3046 void CMTask::print_stats() {
3047   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
3048                        _worker_id, _calls);
3049   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3050                        _elapsed_time_ms, _termination_time_ms);
3051   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3052                        _step_times_ms.num(), _step_times_ms.avg(),
3053                        _step_times_ms.sd());
3054   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
3055                        _step_times_ms.maximum(), _step_times_ms.sum());
3056 }
3057 
3058 bool ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
3059   return _task_queues->steal(worker_id, hash_seed, obj);
3060 }
3061 
3062 /*****************************************************************************
3063 
3064     The do_marking_step(time_target_ms, ...) method is the building
3065     block of the parallel marking framework. It can be called in parallel
3066     with other invocations of do_marking_step() on different tasks
3067     (but only one per task, obviously) and concurrently with the
3068     mutator threads, or during remark, hence it eliminates the need
3069     for two versions of the code. When called during remark, it will
3070     pick up from where the task left off during the concurrent marking
3071     phase. Interestingly, tasks are also claimable during evacuation
3072     pauses too, since do_marking_step() ensures that it aborts before
3073     it needs to yield.
3074 
3075     The data structures that it uses to do marking work are the
3076     following:
3077 
3078       (1) Marking Bitmap. If there are gray objects that appear only
3079       on the bitmap (this happens either when dealing with an overflow
3080       or when the initial marking phase has simply marked the roots
3081       and didn't push them on the stack), then tasks claim heap
3082       regions whose bitmap they then scan to find gray objects. A
3083       global finger indicates where the end of the last claimed region
3084       is. A local finger indicates how far into the region a task has
3085       scanned. The two fingers are used to determine how to gray an
3086       object (i.e. whether simply marking it is OK, as it will be
3087       visited by a task in the future, or whether it needs to be also
3088       pushed on a stack).
3089 
3090       (2) Local Queue. The local queue of the task which is accessed
3091       reasonably efficiently by the task. Other tasks can steal from
3092       it when they run out of work. Throughout the marking phase, a
3093       task attempts to keep its local queue short but not totally
3094       empty, so that entries are available for stealing by other
3095       tasks. Only when there is no more work, a task will totally
3096       drain its local queue.
3097 
3098       (3) Global Mark Stack. This handles local queue overflow. During
3099       marking only sets of entries are moved between it and the local
3100       queues, as access to it requires a mutex and more fine-grain
3101       interaction with it which might cause contention. If it
3102       overflows, then the marking phase should restart and iterate
3103       over the bitmap to identify gray objects. Throughout the marking
3104       phase, tasks attempt to keep the global mark stack at a small
3105       length but not totally empty, so that entries are available for
3106       popping by other tasks. Only when there is no more work, tasks
3107       will totally drain the global mark stack.
3108 
3109       (4) SATB Buffer Queue. This is where completed SATB buffers are
3110       made available. Buffers are regularly removed from this queue
3111       and scanned for roots, so that the queue doesn't get too
3112       long. During remark, all completed buffers are processed, as
3113       well as the filled in parts of any uncompleted buffers.
3114 
3115     The do_marking_step() method tries to abort when the time target
3116     has been reached. There are a few other cases when the
3117     do_marking_step() method also aborts:
3118 
3119       (1) When the marking phase has been aborted (after a Full GC).
3120 
3121       (2) When a global overflow (on the global stack) has been
3122       triggered. Before the task aborts, it will actually sync up with
3123       the other tasks to ensure that all the marking data structures
3124       (local queues, stacks, fingers etc.)  are re-initialized so that
3125       when do_marking_step() completes, the marking phase can
3126       immediately restart.
3127 
3128       (3) When enough completed SATB buffers are available. The
3129       do_marking_step() method only tries to drain SATB buffers right
3130       at the beginning. So, if enough buffers are available, the
3131       marking step aborts and the SATB buffers are processed at
3132       the beginning of the next invocation.
3133 
3134       (4) To yield. when we have to yield then we abort and yield
3135       right at the end of do_marking_step(). This saves us from a lot
3136       of hassle as, by yielding we might allow a Full GC. If this
3137       happens then objects will be compacted underneath our feet, the
3138       heap might shrink, etc. We save checking for this by just
3139       aborting and doing the yield right at the end.
3140 
3141     From the above it follows that the do_marking_step() method should
3142     be called in a loop (or, otherwise, regularly) until it completes.
3143 
3144     If a marking step completes without its has_aborted() flag being
3145     true, it means it has completed the current marking phase (and
3146     also all other marking tasks have done so and have all synced up).
3147 
3148     A method called regular_clock_call() is invoked "regularly" (in
3149     sub ms intervals) throughout marking. It is this clock method that
3150     checks all the abort conditions which were mentioned above and
3151     decides when the task should abort. A work-based scheme is used to
3152     trigger this clock method: when the number of object words the
3153     marking phase has scanned or the number of references the marking
3154     phase has visited reach a given limit. Additional invocations to
3155     the method clock have been planted in a few other strategic places
3156     too. The initial reason for the clock method was to avoid calling
3157     vtime too regularly, as it is quite expensive. So, once it was in
3158     place, it was natural to piggy-back all the other conditions on it
3159     too and not constantly check them throughout the code.
3160 
3161     If do_termination is true then do_marking_step will enter its
3162     termination protocol.
3163 
3164     The value of is_serial must be true when do_marking_step is being
3165     called serially (i.e. by the VMThread) and do_marking_step should
3166     skip any synchronization in the termination and overflow code.
3167     Examples include the serial remark code and the serial reference
3168     processing closures.
3169 
3170     The value of is_serial must be false when do_marking_step is
3171     being called by any of the worker threads in a work gang.
3172     Examples include the concurrent marking code (CMMarkingTask),
3173     the MT remark code, and the MT reference processing closures.
3174 
3175  *****************************************************************************/
3176 
3177 void CMTask::do_marking_step(double time_target_ms,
3178                              bool do_termination,
3179                              bool is_serial) {
3180   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3181   assert(concurrent() == _cm->concurrent(), "they should be the same");
3182 
3183   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3184   assert(_task_queues != NULL, "invariant");
3185   assert(_task_queue != NULL, "invariant");
3186   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3187 
3188   assert(!_claimed,
3189          "only one thread should claim this task at any one time");
3190 
3191   // OK, this doesn't safeguard again all possible scenarios, as it is
3192   // possible for two threads to set the _claimed flag at the same
3193   // time. But it is only for debugging purposes anyway and it will
3194   // catch most problems.
3195   _claimed = true;
3196 
3197   _start_time_ms = os::elapsedVTime() * 1000.0;
3198 
3199   // If do_stealing is true then do_marking_step will attempt to
3200   // steal work from the other CMTasks. It only makes sense to
3201   // enable stealing when the termination protocol is enabled
3202   // and do_marking_step() is not being called serially.
3203   bool do_stealing = do_termination && !is_serial;
3204 
3205   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
3206   _time_target_ms = time_target_ms - diff_prediction_ms;
3207 
3208   // set up the variables that are used in the work-based scheme to
3209   // call the regular clock method
3210   _words_scanned = 0;
3211   _refs_reached  = 0;
3212   recalculate_limits();
3213 
3214   // clear all flags
3215   clear_has_aborted();
3216   _has_timed_out = false;
3217   _draining_satb_buffers = false;
3218 
3219   ++_calls;
3220 
3221   // Set up the bitmap and oop closures. Anything that uses them is
3222   // eventually called from this method, so it is OK to allocate these
3223   // statically.
3224   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3225   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
3226   set_cm_oop_closure(&cm_oop_closure);
3227 
3228   if (_cm->has_overflown()) {
3229     // This can happen if the mark stack overflows during a GC pause
3230     // and this task, after a yield point, restarts. We have to abort
3231     // as we need to get into the overflow protocol which happens
3232     // right at the end of this task.
3233     set_has_aborted();
3234   }
3235 
3236   // First drain any available SATB buffers. After this, we will not
3237   // look at SATB buffers before the next invocation of this method.
3238   // If enough completed SATB buffers are queued up, the regular clock
3239   // will abort this task so that it restarts.
3240   drain_satb_buffers();
3241   // ...then partially drain the local queue and the global stack
3242   drain_local_queue(true);
3243   drain_global_stack(true);
3244 
3245   do {
3246     if (!has_aborted() && _curr_region != NULL) {
3247       // This means that we're already holding on to a region.
3248       assert(_finger != NULL, "if region is not NULL, then the finger "
3249              "should not be NULL either");
3250 
3251       // We might have restarted this task after an evacuation pause
3252       // which might have evacuated the region we're holding on to
3253       // underneath our feet. Let's read its limit again to make sure
3254       // that we do not iterate over a region of the heap that
3255       // contains garbage (update_region_limit() will also move
3256       // _finger to the start of the region if it is found empty).
3257       update_region_limit();
3258       // We will start from _finger not from the start of the region,
3259       // as we might be restarting this task after aborting half-way
3260       // through scanning this region. In this case, _finger points to
3261       // the address where we last found a marked object. If this is a
3262       // fresh region, _finger points to start().
3263       MemRegion mr = MemRegion(_finger, _region_limit);
3264 
3265       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
3266              "humongous regions should go around loop once only");
3267 
3268       // Some special cases:
3269       // If the memory region is empty, we can just give up the region.
3270       // If the current region is humongous then we only need to check
3271       // the bitmap for the bit associated with the start of the object,
3272       // scan the object if it's live, and give up the region.
3273       // Otherwise, let's iterate over the bitmap of the part of the region
3274       // that is left.
3275       // If the iteration is successful, give up the region.
3276       if (mr.is_empty()) {
3277         giveup_current_region();
3278         regular_clock_call();
3279       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
3280         if (_nextMarkBitMap->isMarked(mr.start())) {
3281           // The object is marked - apply the closure
3282           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
3283           bitmap_closure.do_bit(offset);
3284         }
3285         // Even if this task aborted while scanning the humongous object
3286         // we can (and should) give up the current region.
3287         giveup_current_region();
3288         regular_clock_call();
3289       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
3290         giveup_current_region();
3291         regular_clock_call();
3292       } else {
3293         assert(has_aborted(), "currently the only way to do so");
3294         // The only way to abort the bitmap iteration is to return
3295         // false from the do_bit() method. However, inside the
3296         // do_bit() method we move the _finger to point to the
3297         // object currently being looked at. So, if we bail out, we
3298         // have definitely set _finger to something non-null.
3299         assert(_finger != NULL, "invariant");
3300 
3301         // Region iteration was actually aborted. So now _finger
3302         // points to the address of the object we last scanned. If we
3303         // leave it there, when we restart this task, we will rescan
3304         // the object. It is easy to avoid this. We move the finger by
3305         // enough to point to the next possible object header (the
3306         // bitmap knows by how much we need to move it as it knows its
3307         // granularity).
3308         assert(_finger < _region_limit, "invariant");
3309         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
3310         // Check if bitmap iteration was aborted while scanning the last object
3311         if (new_finger >= _region_limit) {
3312           giveup_current_region();
3313         } else {
3314           move_finger_to(new_finger);
3315         }
3316       }
3317     }
3318     // At this point we have either completed iterating over the
3319     // region we were holding on to, or we have aborted.
3320 
3321     // We then partially drain the local queue and the global stack.
3322     // (Do we really need this?)
3323     drain_local_queue(true);
3324     drain_global_stack(true);
3325 
3326     // Read the note on the claim_region() method on why it might
3327     // return NULL with potentially more regions available for
3328     // claiming and why we have to check out_of_regions() to determine
3329     // whether we're done or not.
3330     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
3331       // We are going to try to claim a new region. We should have
3332       // given up on the previous one.
3333       // Separated the asserts so that we know which one fires.
3334       assert(_curr_region  == NULL, "invariant");
3335       assert(_finger       == NULL, "invariant");
3336       assert(_region_limit == NULL, "invariant");
3337       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
3338       if (claimed_region != NULL) {
3339         // Yes, we managed to claim one
3340         setup_for_region(claimed_region);
3341         assert(_curr_region == claimed_region, "invariant");
3342       }
3343       // It is important to call the regular clock here. It might take
3344       // a while to claim a region if, for example, we hit a large
3345       // block of empty regions. So we need to call the regular clock
3346       // method once round the loop to make sure it's called
3347       // frequently enough.
3348       regular_clock_call();
3349     }
3350 
3351     if (!has_aborted() && _curr_region == NULL) {
3352       assert(_cm->out_of_regions(),
3353              "at this point we should be out of regions");
3354     }
3355   } while ( _curr_region != NULL && !has_aborted());
3356 
3357   if (!has_aborted()) {
3358     // We cannot check whether the global stack is empty, since other
3359     // tasks might be pushing objects to it concurrently.
3360     assert(_cm->out_of_regions(),
3361            "at this point we should be out of regions");
3362     // Try to reduce the number of available SATB buffers so that
3363     // remark has less work to do.
3364     drain_satb_buffers();
3365   }
3366 
3367   // Since we've done everything else, we can now totally drain the
3368   // local queue and global stack.
3369   drain_local_queue(false);
3370   drain_global_stack(false);
3371 
3372   // Attempt at work stealing from other task's queues.
3373   if (do_stealing && !has_aborted()) {
3374     // We have not aborted. This means that we have finished all that
3375     // we could. Let's try to do some stealing...
3376 
3377     // We cannot check whether the global stack is empty, since other
3378     // tasks might be pushing objects to it concurrently.
3379     assert(_cm->out_of_regions() && _task_queue->size() == 0,
3380            "only way to reach here");
3381     while (!has_aborted()) {
3382       oop obj;
3383       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
3384         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
3385                "any stolen object should be marked");
3386         scan_object(obj);
3387 
3388         // And since we're towards the end, let's totally drain the
3389         // local queue and global stack.
3390         drain_local_queue(false);
3391         drain_global_stack(false);
3392       } else {
3393         break;
3394       }
3395     }
3396   }
3397 
3398   // We still haven't aborted. Now, let's try to get into the
3399   // termination protocol.
3400   if (do_termination && !has_aborted()) {
3401     // We cannot check whether the global stack is empty, since other
3402     // tasks might be concurrently pushing objects on it.
3403     // Separated the asserts so that we know which one fires.
3404     assert(_cm->out_of_regions(), "only way to reach here");
3405     assert(_task_queue->size() == 0, "only way to reach here");
3406     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
3407 
3408     // The CMTask class also extends the TerminatorTerminator class,
3409     // hence its should_exit_termination() method will also decide
3410     // whether to exit the termination protocol or not.
3411     bool finished = (is_serial ||
3412                      _cm->terminator()->offer_termination(this));
3413     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
3414     _termination_time_ms +=
3415       termination_end_time_ms - _termination_start_time_ms;
3416 
3417     if (finished) {
3418       // We're all done.
3419 
3420       if (_worker_id == 0) {
3421         // let's allow task 0 to do this
3422         if (concurrent()) {
3423           assert(_cm->concurrent_marking_in_progress(), "invariant");
3424           // we need to set this to false before the next
3425           // safepoint. This way we ensure that the marking phase
3426           // doesn't observe any more heap expansions.
3427           _cm->clear_concurrent_marking_in_progress();
3428         }
3429       }
3430 
3431       // We can now guarantee that the global stack is empty, since
3432       // all other tasks have finished. We separated the guarantees so
3433       // that, if a condition is false, we can immediately find out
3434       // which one.
3435       guarantee(_cm->out_of_regions(), "only way to reach here");
3436       guarantee(_cm->mark_stack_empty(), "only way to reach here");
3437       guarantee(_task_queue->size() == 0, "only way to reach here");
3438       guarantee(!_cm->has_overflown(), "only way to reach here");
3439       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
3440     } else {
3441       // Apparently there's more work to do. Let's abort this task. It
3442       // will restart it and we can hopefully find more things to do.
3443       set_has_aborted();
3444     }
3445   }
3446 
3447   // Mainly for debugging purposes to make sure that a pointer to the
3448   // closure which was statically allocated in this frame doesn't
3449   // escape it by accident.
3450   set_cm_oop_closure(NULL);
3451   double end_time_ms = os::elapsedVTime() * 1000.0;
3452   double elapsed_time_ms = end_time_ms - _start_time_ms;
3453   // Update the step history.
3454   _step_times_ms.add(elapsed_time_ms);
3455 
3456   if (has_aborted()) {
3457     // The task was aborted for some reason.
3458     if (_has_timed_out) {
3459       double diff_ms = elapsed_time_ms - _time_target_ms;
3460       // Keep statistics of how well we did with respect to hitting
3461       // our target only if we actually timed out (if we aborted for
3462       // other reasons, then the results might get skewed).
3463       _marking_step_diffs_ms.add(diff_ms);
3464     }
3465 
3466     if (_cm->has_overflown()) {
3467       // This is the interesting one. We aborted because a global
3468       // overflow was raised. This means we have to restart the
3469       // marking phase and start iterating over regions. However, in
3470       // order to do this we have to make sure that all tasks stop
3471       // what they are doing and re-initialize in a safe manner. We
3472       // will achieve this with the use of two barrier sync points.
3473 
3474       if (!is_serial) {
3475         // We only need to enter the sync barrier if being called
3476         // from a parallel context
3477         _cm->enter_first_sync_barrier(_worker_id);
3478 
3479         // When we exit this sync barrier we know that all tasks have
3480         // stopped doing marking work. So, it's now safe to
3481         // re-initialize our data structures. At the end of this method,
3482         // task 0 will clear the global data structures.
3483       }
3484 
3485       // We clear the local state of this task...
3486       clear_region_fields();
3487 
3488       if (!is_serial) {
3489         // ...and enter the second barrier.
3490         _cm->enter_second_sync_barrier(_worker_id);
3491       }
3492       // At this point, if we're during the concurrent phase of
3493       // marking, everything has been re-initialized and we're
3494       // ready to restart.
3495     }
3496   }
3497 
3498   _claimed = false;
3499 }
3500 
3501 CMTask::CMTask(uint worker_id,
3502                ConcurrentMark* cm,
3503                size_t* marked_bytes,
3504                BitMap* card_bm,
3505                CMTaskQueue* task_queue,
3506                CMTaskQueueSet* task_queues)
3507   : _g1h(G1CollectedHeap::heap()),
3508     _worker_id(worker_id), _cm(cm),
3509     _claimed(false),
3510     _nextMarkBitMap(NULL), _hash_seed(17),
3511     _task_queue(task_queue),
3512     _task_queues(task_queues),
3513     _cm_oop_closure(NULL),
3514     _marked_bytes_array(marked_bytes),
3515     _card_bm(card_bm) {
3516   guarantee(task_queue != NULL, "invariant");
3517   guarantee(task_queues != NULL, "invariant");
3518 
3519   _marking_step_diffs_ms.add(0.5);
3520 }
3521 
3522 // These are formatting macros that are used below to ensure
3523 // consistent formatting. The *_H_* versions are used to format the
3524 // header for a particular value and they should be kept consistent
3525 // with the corresponding macro. Also note that most of the macros add
3526 // the necessary white space (as a prefix) which makes them a bit
3527 // easier to compose.
3528 
3529 // All the output lines are prefixed with this string to be able to
3530 // identify them easily in a large log file.
3531 #define G1PPRL_LINE_PREFIX            "###"
3532 
3533 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
3534 #ifdef _LP64
3535 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
3536 #else // _LP64
3537 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
3538 #endif // _LP64
3539 
3540 // For per-region info
3541 #define G1PPRL_TYPE_FORMAT            "   %-4s"
3542 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
3543 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
3544 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
3545 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
3546 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
3547 
3548 // For summary info
3549 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
3550 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
3551 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
3552 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
3553 
3554 G1PrintRegionLivenessInfoClosure::
3555 G1PrintRegionLivenessInfoClosure(const char* phase_name)
3556   : _total_used_bytes(0), _total_capacity_bytes(0),
3557     _total_prev_live_bytes(0), _total_next_live_bytes(0),
3558     _hum_used_bytes(0), _hum_capacity_bytes(0),
3559     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
3560     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
3561   G1CollectedHeap* g1h = G1CollectedHeap::heap();
3562   MemRegion g1_reserved = g1h->g1_reserved();
3563   double now = os::elapsedTime();
3564 
3565   // Print the header of the output.
3566   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
3567   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
3568                           G1PPRL_SUM_ADDR_FORMAT("reserved")
3569                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
3570                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
3571                           HeapRegion::GrainBytes);
3572   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3573   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3574                           G1PPRL_TYPE_H_FORMAT
3575                           G1PPRL_ADDR_BASE_H_FORMAT
3576                           G1PPRL_BYTE_H_FORMAT
3577                           G1PPRL_BYTE_H_FORMAT
3578                           G1PPRL_BYTE_H_FORMAT
3579                           G1PPRL_DOUBLE_H_FORMAT
3580                           G1PPRL_BYTE_H_FORMAT
3581                           G1PPRL_BYTE_H_FORMAT,
3582                           "type", "address-range",
3583                           "used", "prev-live", "next-live", "gc-eff",
3584                           "remset", "code-roots");
3585   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3586                           G1PPRL_TYPE_H_FORMAT
3587                           G1PPRL_ADDR_BASE_H_FORMAT
3588                           G1PPRL_BYTE_H_FORMAT
3589                           G1PPRL_BYTE_H_FORMAT
3590                           G1PPRL_BYTE_H_FORMAT
3591                           G1PPRL_DOUBLE_H_FORMAT
3592                           G1PPRL_BYTE_H_FORMAT
3593                           G1PPRL_BYTE_H_FORMAT,
3594                           "", "",
3595                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3596                           "(bytes)", "(bytes)");
3597 }
3598 
3599 // It takes as a parameter a reference to one of the _hum_* fields, it
3600 // deduces the corresponding value for a region in a humongous region
3601 // series (either the region size, or what's left if the _hum_* field
3602 // is < the region size), and updates the _hum_* field accordingly.
3603 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
3604   size_t bytes = 0;
3605   // The > 0 check is to deal with the prev and next live bytes which
3606   // could be 0.
3607   if (*hum_bytes > 0) {
3608     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
3609     *hum_bytes -= bytes;
3610   }
3611   return bytes;
3612 }
3613 
3614 // It deduces the values for a region in a humongous region series
3615 // from the _hum_* fields and updates those accordingly. It assumes
3616 // that that _hum_* fields have already been set up from the "starts
3617 // humongous" region and we visit the regions in address order.
3618 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
3619                                                      size_t* capacity_bytes,
3620                                                      size_t* prev_live_bytes,
3621                                                      size_t* next_live_bytes) {
3622   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
3623   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
3624   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
3625   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
3626   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
3627 }
3628 
3629 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3630   const char* type       = r->get_type_str();
3631   HeapWord* bottom       = r->bottom();
3632   HeapWord* end          = r->end();
3633   size_t capacity_bytes  = r->capacity();
3634   size_t used_bytes      = r->used();
3635   size_t prev_live_bytes = r->live_bytes();
3636   size_t next_live_bytes = r->next_live_bytes();
3637   double gc_eff          = r->gc_efficiency();
3638   size_t remset_bytes    = r->rem_set()->mem_size();
3639   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3640 
3641   if (r->is_starts_humongous()) {
3642     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
3643            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
3644            "they should have been zeroed after the last time we used them");
3645     // Set up the _hum_* fields.
3646     _hum_capacity_bytes  = capacity_bytes;
3647     _hum_used_bytes      = used_bytes;
3648     _hum_prev_live_bytes = prev_live_bytes;
3649     _hum_next_live_bytes = next_live_bytes;
3650     get_hum_bytes(&used_bytes, &capacity_bytes,
3651                   &prev_live_bytes, &next_live_bytes);
3652     end = bottom + HeapRegion::GrainWords;
3653   } else if (r->is_continues_humongous()) {
3654     get_hum_bytes(&used_bytes, &capacity_bytes,
3655                   &prev_live_bytes, &next_live_bytes);
3656     assert(end == bottom + HeapRegion::GrainWords, "invariant");
3657   }
3658 
3659   _total_used_bytes      += used_bytes;
3660   _total_capacity_bytes  += capacity_bytes;
3661   _total_prev_live_bytes += prev_live_bytes;
3662   _total_next_live_bytes += next_live_bytes;
3663   _total_remset_bytes    += remset_bytes;
3664   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3665 
3666   // Print a line for this particular region.
3667   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3668                           G1PPRL_TYPE_FORMAT
3669                           G1PPRL_ADDR_BASE_FORMAT
3670                           G1PPRL_BYTE_FORMAT
3671                           G1PPRL_BYTE_FORMAT
3672                           G1PPRL_BYTE_FORMAT
3673                           G1PPRL_DOUBLE_FORMAT
3674                           G1PPRL_BYTE_FORMAT
3675                           G1PPRL_BYTE_FORMAT,
3676                           type, p2i(bottom), p2i(end),
3677                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3678                           remset_bytes, strong_code_roots_bytes);
3679 
3680   return false;
3681 }
3682 
3683 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3684   // add static memory usages to remembered set sizes
3685   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3686   // Print the footer of the output.
3687   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3688   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3689                          " SUMMARY"
3690                          G1PPRL_SUM_MB_FORMAT("capacity")
3691                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3692                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3693                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3694                          G1PPRL_SUM_MB_FORMAT("remset")
3695                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3696                          bytes_to_mb(_total_capacity_bytes),
3697                          bytes_to_mb(_total_used_bytes),
3698                          perc(_total_used_bytes, _total_capacity_bytes),
3699                          bytes_to_mb(_total_prev_live_bytes),
3700                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3701                          bytes_to_mb(_total_next_live_bytes),
3702                          perc(_total_next_live_bytes, _total_capacity_bytes),
3703                          bytes_to_mb(_total_remset_bytes),
3704                          bytes_to_mb(_total_strong_code_roots_bytes));
3705 }