1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  26 #define SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  27 
  28 #include "gc/shared/referencePolicy.hpp"
  29 #include "gc/shared/referenceProcessorStats.hpp"
  30 #include "memory/referenceType.hpp"
  31 #include "oops/instanceRefKlass.hpp"
  32 
  33 class GCTimer;
  34 
  35 // ReferenceProcessor class encapsulates the per-"collector" processing
  36 // of java.lang.Reference objects for GC. The interface is useful for supporting
  37 // a generational abstraction, in particular when there are multiple
  38 // generations that are being independently collected -- possibly
  39 // concurrently and/or incrementally.  Note, however, that the
  40 // ReferenceProcessor class abstracts away from a generational setting
  41 // by using only a heap interval (called "span" below), thus allowing
  42 // its use in a straightforward manner in a general, non-generational
  43 // setting.
  44 //
  45 // The basic idea is that each ReferenceProcessor object concerns
  46 // itself with ("weak") reference processing in a specific "span"
  47 // of the heap of interest to a specific collector. Currently,
  48 // the span is a convex interval of the heap, but, efficiency
  49 // apart, there seems to be no reason it couldn't be extended
  50 // (with appropriate modifications) to any "non-convex interval".
  51 
  52 // forward references
  53 class ReferencePolicy;
  54 class AbstractRefProcTaskExecutor;
  55 
  56 // List of discovered references.
  57 class DiscoveredList {
  58 public:
  59   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  60   inline oop head() const;
  61   HeapWord* adr_head() {
  62     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  63                                (HeapWord*)&_oop_head;
  64   }
  65   inline void set_head(oop o);
  66   inline bool is_empty() const;
  67   size_t length()               { return _len; }
  68   void   set_length(size_t len) { _len = len;  }
  69   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  70   void   dec_length(size_t dec) { _len -= dec; }
  71 private:
  72   // Set value depending on UseCompressedOops. This could be a template class
  73   // but then we have to fix all the instantiations and declarations that use this class.
  74   oop       _oop_head;
  75   narrowOop _compressed_head;
  76   size_t _len;
  77 };
  78 
  79 // Iterator for the list of discovered references.
  80 class DiscoveredListIterator {
  81 private:
  82   DiscoveredList&    _refs_list;
  83   HeapWord*          _prev_next;
  84   oop                _prev;
  85   oop                _ref;
  86   HeapWord*          _discovered_addr;
  87   oop                _next;
  88   HeapWord*          _referent_addr;
  89   oop                _referent;
  90   OopClosure*        _keep_alive;
  91   BoolObjectClosure* _is_alive;
  92 
  93   DEBUG_ONLY(
  94   oop                _first_seen; // cyclic linked list check
  95   )
  96 
  97   NOT_PRODUCT(
  98   size_t             _processed;
  99   size_t             _removed;
 100   )
 101 
 102 public:
 103   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 104                                 OopClosure*        keep_alive,
 105                                 BoolObjectClosure* is_alive);
 106 
 107   // End Of List.
 108   inline bool has_next() const { return _ref != NULL; }
 109 
 110   // Get oop to the Reference object.
 111   inline oop obj() const { return _ref; }
 112 
 113   // Get oop to the referent object.
 114   inline oop referent() const { return _referent; }
 115 
 116   // Returns true if referent is alive.
 117   inline bool is_referent_alive() const {
 118     return _is_alive->do_object_b(_referent);
 119   }
 120 
 121   // Loads data for the current reference.
 122   // The "allow_null_referent" argument tells us to allow for the possibility
 123   // of a NULL referent in the discovered Reference object. This typically
 124   // happens in the case of concurrent collectors that may have done the
 125   // discovery concurrently, or interleaved, with mutator execution.
 126   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 127 
 128   // Move to the next discovered reference.
 129   inline void next() {
 130     _prev_next = _discovered_addr;
 131     _prev = _ref;
 132     move_to_next();
 133   }
 134 
 135   // Remove the current reference from the list
 136   void remove();
 137 
 138   // Make the referent alive.
 139   inline void make_referent_alive() {
 140     if (UseCompressedOops) {
 141       _keep_alive->do_oop((narrowOop*)_referent_addr);
 142     } else {
 143       _keep_alive->do_oop((oop*)_referent_addr);
 144     }
 145   }
 146 
 147   // NULL out referent pointer.
 148   void clear_referent();
 149 
 150   // Statistics
 151   NOT_PRODUCT(
 152   inline size_t processed() const { return _processed; }
 153   inline size_t removed() const   { return _removed; }
 154   )
 155 
 156   inline void move_to_next() {
 157     if (_ref == _next) {
 158       // End of the list.
 159       _ref = NULL;
 160     } else {
 161       _ref = _next;
 162     }
 163     assert(_ref != _first_seen, "cyclic ref_list found");
 164     NOT_PRODUCT(_processed++);
 165   }
 166 };
 167 
 168 class ReferenceProcessor : public CHeapObj<mtGC> {
 169 
 170  private:
 171   size_t total_count(DiscoveredList lists[]);
 172 
 173  protected:
 174   // The SoftReference master timestamp clock
 175   static jlong _soft_ref_timestamp_clock;
 176 
 177   MemRegion   _span;                    // (right-open) interval of heap
 178                                         // subject to wkref discovery
 179 
 180   bool        _discovering_refs;        // true when discovery enabled
 181   bool        _discovery_is_atomic;     // if discovery is atomic wrt
 182                                         // other collectors in configuration
 183   bool        _discovery_is_mt;         // true if reference discovery is MT.
 184 
 185   bool        _enqueuing_is_done;       // true if all weak references enqueued
 186   bool        _processing_is_mt;        // true during phases when
 187                                         // reference processing is MT.
 188   uint        _next_id;                 // round-robin mod _num_q counter in
 189                                         // support of work distribution
 190 
 191   // For collectors that do not keep GC liveness information
 192   // in the object header, this field holds a closure that
 193   // helps the reference processor determine the reachability
 194   // of an oop. It is currently initialized to NULL for all
 195   // collectors except for CMS and G1.
 196   BoolObjectClosure* _is_alive_non_header;
 197 
 198   // Soft ref clearing policies
 199   // . the default policy
 200   static ReferencePolicy*   _default_soft_ref_policy;
 201   // . the "clear all" policy
 202   static ReferencePolicy*   _always_clear_soft_ref_policy;
 203   // . the current policy below is either one of the above
 204   ReferencePolicy*          _current_soft_ref_policy;
 205 
 206   // The discovered ref lists themselves
 207 
 208   // The active MT'ness degree of the queues below
 209   uint             _num_q;
 210   // The maximum MT'ness degree of the queues below
 211   uint             _max_num_q;
 212 
 213   // Master array of discovered oops
 214   DiscoveredList* _discovered_refs;
 215 
 216   // Arrays of lists of oops, one per thread (pointers into master array above)
 217   DiscoveredList* _discoveredSoftRefs;
 218   DiscoveredList* _discoveredWeakRefs;
 219   DiscoveredList* _discoveredFinalRefs;
 220   DiscoveredList* _discoveredPhantomRefs;
 221 
 222  public:
 223   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
 224 
 225   uint num_q()                             { return _num_q; }
 226   uint max_num_q()                         { return _max_num_q; }
 227   void set_active_mt_degree(uint v);
 228 
 229   DiscoveredList* discovered_refs()        { return _discovered_refs; }
 230 
 231   ReferencePolicy* setup_policy(bool always_clear) {
 232     _current_soft_ref_policy = always_clear ?
 233       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 234     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 235     return _current_soft_ref_policy;
 236   }
 237 
 238   // Process references with a certain reachability level.
 239   void process_discovered_reflist(DiscoveredList               refs_lists[],
 240                                   ReferencePolicy*             policy,
 241                                   bool                         clear_referent,
 242                                   BoolObjectClosure*           is_alive,
 243                                   OopClosure*                  keep_alive,
 244                                   VoidClosure*                 complete_gc,
 245                                   AbstractRefProcTaskExecutor* task_executor);
 246 
 247   void process_phaseJNI(BoolObjectClosure* is_alive,
 248                         OopClosure*        keep_alive,
 249                         VoidClosure*       complete_gc);
 250 
 251   // Work methods used by the method process_discovered_reflist
 252   // Phase1: keep alive all those referents that are otherwise
 253   // dead but which must be kept alive by policy (and their closure).
 254   void process_phase1(DiscoveredList&     refs_list,
 255                       ReferencePolicy*    policy,
 256                       BoolObjectClosure*  is_alive,
 257                       OopClosure*         keep_alive,
 258                       VoidClosure*        complete_gc);
 259   // Phase2: remove all those references whose referents are
 260   // reachable.
 261   inline void process_phase2(DiscoveredList&    refs_list,
 262                              BoolObjectClosure* is_alive,
 263                              OopClosure*        keep_alive,
 264                              VoidClosure*       complete_gc) {
 265     if (discovery_is_atomic()) {
 266       // complete_gc is ignored in this case for this phase
 267       pp2_work(refs_list, is_alive, keep_alive);
 268     } else {
 269       assert(complete_gc != NULL, "Error");
 270       pp2_work_concurrent_discovery(refs_list, is_alive,
 271                                     keep_alive, complete_gc);
 272     }
 273   }
 274   // Work methods in support of process_phase2
 275   void pp2_work(DiscoveredList&    refs_list,
 276                 BoolObjectClosure* is_alive,
 277                 OopClosure*        keep_alive);
 278   void pp2_work_concurrent_discovery(
 279                 DiscoveredList&    refs_list,
 280                 BoolObjectClosure* is_alive,
 281                 OopClosure*        keep_alive,
 282                 VoidClosure*       complete_gc);
 283   // Phase3: process the referents by either clearing them
 284   // or keeping them alive (and their closure)
 285   void process_phase3(DiscoveredList&    refs_list,
 286                       bool               clear_referent,
 287                       BoolObjectClosure* is_alive,
 288                       OopClosure*        keep_alive,
 289                       VoidClosure*       complete_gc);
 290 
 291   // Enqueue references with a certain reachability level
 292   void enqueue_discovered_reflist(DiscoveredList& refs_list);
 293 
 294   // "Preclean" all the discovered reference lists
 295   // by removing references with strongly reachable referents.
 296   // The first argument is a predicate on an oop that indicates
 297   // its (strong) reachability and the second is a closure that
 298   // may be used to incrementalize or abort the precleaning process.
 299   // The caller is responsible for taking care of potential
 300   // interference with concurrent operations on these lists
 301   // (or predicates involved) by other threads. Currently
 302   // only used by the CMS collector.
 303   void preclean_discovered_references(BoolObjectClosure* is_alive,
 304                                       OopClosure*        keep_alive,
 305                                       VoidClosure*       complete_gc,
 306                                       YieldClosure*      yield,
 307                                       GCTimer*           gc_timer);
 308 
 309   // Returns the name of the discovered reference list
 310   // occupying the i / _num_q slot.
 311   const char* list_name(uint i);
 312 
 313   void enqueue_discovered_reflists(AbstractRefProcTaskExecutor* task_executor);
 314 
 315  protected:
 316   // "Preclean" the given discovered reference list
 317   // by removing references with strongly reachable referents.
 318   // Currently used in support of CMS only.
 319   void preclean_discovered_reflist(DiscoveredList&    refs_list,
 320                                    BoolObjectClosure* is_alive,
 321                                    OopClosure*        keep_alive,
 322                                    VoidClosure*       complete_gc,
 323                                    YieldClosure*      yield);
 324 
 325   // round-robin mod _num_q (not: _not_ mode _max_num_q)
 326   uint next_id() {
 327     uint id = _next_id;
 328     assert(!_discovery_is_mt, "Round robin should only be used in serial discovery");
 329     if (++_next_id == _num_q) {
 330       _next_id = 0;
 331     }
 332     assert(_next_id < _num_q, "_next_id %u _num_q %u _max_num_q %u", _next_id, _num_q, _max_num_q);
 333     return id;
 334   }
 335   DiscoveredList* get_discovered_list(ReferenceType rt);
 336   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
 337                                         HeapWord* discovered_addr);
 338 
 339   void clear_discovered_references(DiscoveredList& refs_list);
 340 
 341   // Calculate the number of jni handles.
 342   size_t count_jni_refs();
 343 
 344   void log_reflist_counts(DiscoveredList ref_lists[], uint active_length, size_t total_count) PRODUCT_RETURN;
 345 
 346   // Balances reference queues.
 347   void balance_queues(DiscoveredList ref_lists[]);
 348 
 349   // Update (advance) the soft ref master clock field.
 350   void update_soft_ref_master_clock();
 351 
 352  public:
 353   // Default parameters give you a vanilla reference processor.
 354   ReferenceProcessor(MemRegion span,
 355                      bool mt_processing = false, uint mt_processing_degree = 1,
 356                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
 357                      bool atomic_discovery = true,
 358                      BoolObjectClosure* is_alive_non_header = NULL);
 359 
 360   // RefDiscoveryPolicy values
 361   enum DiscoveryPolicy {
 362     ReferenceBasedDiscovery = 0,
 363     ReferentBasedDiscovery  = 1,
 364     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
 365     DiscoveryPolicyMax      = ReferentBasedDiscovery
 366   };
 367 
 368   static void init_statics();
 369 
 370  public:
 371   // get and set "is_alive_non_header" field
 372   BoolObjectClosure* is_alive_non_header() {
 373     return _is_alive_non_header;
 374   }
 375   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
 376     _is_alive_non_header = is_alive_non_header;
 377   }
 378 
 379   // get and set span
 380   MemRegion span()                   { return _span; }
 381   void      set_span(MemRegion span) { _span = span; }
 382 
 383   // start and stop weak ref discovery
 384   void enable_discovery(bool check_no_refs = true);
 385   void disable_discovery()  { _discovering_refs = false; }
 386   bool discovery_enabled()  { return _discovering_refs;  }
 387 
 388   // whether discovery is atomic wrt other collectors
 389   bool discovery_is_atomic() const { return _discovery_is_atomic; }
 390   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
 391 
 392   // whether discovery is done by multiple threads same-old-timeously
 393   bool discovery_is_mt() const { return _discovery_is_mt; }
 394   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
 395 
 396   // Whether we are in a phase when _processing_ is MT.
 397   bool processing_is_mt() const { return _processing_is_mt; }
 398   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
 399 
 400   // whether all enqueueing of weak references is complete
 401   bool enqueuing_is_done()  { return _enqueuing_is_done; }
 402   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
 403 
 404   // iterate over oops
 405   void weak_oops_do(OopClosure* f);       // weak roots
 406 
 407   // Balance each of the discovered lists.
 408   void balance_all_queues();
 409   void verify_list(DiscoveredList& ref_list);
 410 
 411   // Discover a Reference object, using appropriate discovery criteria
 412   bool discover_reference(oop obj, ReferenceType rt);
 413 
 414   // Has discovered references that need handling
 415   bool has_discovered_references();
 416 
 417   // Process references found during GC (called by the garbage collector)
 418   ReferenceProcessorStats
 419   process_discovered_references(BoolObjectClosure*           is_alive,
 420                                 OopClosure*                  keep_alive,
 421                                 VoidClosure*                 complete_gc,
 422                                 AbstractRefProcTaskExecutor* task_executor,
 423                                 GCTimer *gc_timer);
 424 
 425   // Enqueue references at end of GC (called by the garbage collector)
 426   void enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
 427 
 428   // If a discovery is in process that is being superceded, abandon it: all
 429   // the discovered lists will be empty, and all the objects on them will
 430   // have NULL discovered fields.  Must be called only at a safepoint.
 431   void abandon_partial_discovery();
 432 
 433   // debugging
 434   void verify_no_references_recorded() PRODUCT_RETURN;
 435   void verify_referent(oop obj)        PRODUCT_RETURN;
 436 };
 437 
 438 // A utility class to disable reference discovery in
 439 // the scope which contains it, for given ReferenceProcessor.
 440 class NoRefDiscovery: StackObj {
 441  private:
 442   ReferenceProcessor* _rp;
 443   bool _was_discovering_refs;
 444  public:
 445   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
 446     _was_discovering_refs = _rp->discovery_enabled();
 447     if (_was_discovering_refs) {
 448       _rp->disable_discovery();
 449     }
 450   }
 451 
 452   ~NoRefDiscovery() {
 453     if (_was_discovering_refs) {
 454       _rp->enable_discovery(false /*check_no_refs*/);
 455     }
 456   }
 457 };
 458 
 459 
 460 // A utility class to temporarily mutate the span of the
 461 // given ReferenceProcessor in the scope that contains it.
 462 class ReferenceProcessorSpanMutator: StackObj {
 463  private:
 464   ReferenceProcessor* _rp;
 465   MemRegion           _saved_span;
 466 
 467  public:
 468   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
 469                                 MemRegion span):
 470     _rp(rp) {
 471     _saved_span = _rp->span();
 472     _rp->set_span(span);
 473   }
 474 
 475   ~ReferenceProcessorSpanMutator() {
 476     _rp->set_span(_saved_span);
 477   }
 478 };
 479 
 480 // A utility class to temporarily change the MT'ness of
 481 // reference discovery for the given ReferenceProcessor
 482 // in the scope that contains it.
 483 class ReferenceProcessorMTDiscoveryMutator: StackObj {
 484  private:
 485   ReferenceProcessor* _rp;
 486   bool                _saved_mt;
 487 
 488  public:
 489   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
 490                                        bool mt):
 491     _rp(rp) {
 492     _saved_mt = _rp->discovery_is_mt();
 493     _rp->set_mt_discovery(mt);
 494   }
 495 
 496   ~ReferenceProcessorMTDiscoveryMutator() {
 497     _rp->set_mt_discovery(_saved_mt);
 498   }
 499 };
 500 
 501 
 502 // A utility class to temporarily change the disposition
 503 // of the "is_alive_non_header" closure field of the
 504 // given ReferenceProcessor in the scope that contains it.
 505 class ReferenceProcessorIsAliveMutator: StackObj {
 506  private:
 507   ReferenceProcessor* _rp;
 508   BoolObjectClosure*  _saved_cl;
 509 
 510  public:
 511   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
 512                                    BoolObjectClosure*  cl):
 513     _rp(rp) {
 514     _saved_cl = _rp->is_alive_non_header();
 515     _rp->set_is_alive_non_header(cl);
 516   }
 517 
 518   ~ReferenceProcessorIsAliveMutator() {
 519     _rp->set_is_alive_non_header(_saved_cl);
 520   }
 521 };
 522 
 523 // A utility class to temporarily change the disposition
 524 // of the "discovery_is_atomic" field of the
 525 // given ReferenceProcessor in the scope that contains it.
 526 class ReferenceProcessorAtomicMutator: StackObj {
 527  private:
 528   ReferenceProcessor* _rp;
 529   bool                _saved_atomic_discovery;
 530 
 531  public:
 532   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
 533                                   bool atomic):
 534     _rp(rp) {
 535     _saved_atomic_discovery = _rp->discovery_is_atomic();
 536     _rp->set_atomic_discovery(atomic);
 537   }
 538 
 539   ~ReferenceProcessorAtomicMutator() {
 540     _rp->set_atomic_discovery(_saved_atomic_discovery);
 541   }
 542 };
 543 
 544 
 545 // A utility class to temporarily change the MT processing
 546 // disposition of the given ReferenceProcessor instance
 547 // in the scope that contains it.
 548 class ReferenceProcessorMTProcMutator: StackObj {
 549  private:
 550   ReferenceProcessor* _rp;
 551   bool  _saved_mt;
 552 
 553  public:
 554   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
 555                                   bool mt):
 556     _rp(rp) {
 557     _saved_mt = _rp->processing_is_mt();
 558     _rp->set_mt_processing(mt);
 559   }
 560 
 561   ~ReferenceProcessorMTProcMutator() {
 562     _rp->set_mt_processing(_saved_mt);
 563   }
 564 };
 565 
 566 
 567 // This class is an interface used to implement task execution for the
 568 // reference processing.
 569 class AbstractRefProcTaskExecutor {
 570 public:
 571 
 572   // Abstract tasks to execute.
 573   class ProcessTask;
 574   class EnqueueTask;
 575 
 576   // Executes a task using worker threads.
 577   virtual void execute(ProcessTask& task) = 0;
 578   virtual void execute(EnqueueTask& task) = 0;
 579 
 580   // Switch to single threaded mode.
 581   virtual void set_single_threaded_mode() { };
 582 };
 583 
 584 // Abstract reference processing task to execute.
 585 class AbstractRefProcTaskExecutor::ProcessTask {
 586 protected:
 587   ProcessTask(ReferenceProcessor& ref_processor,
 588               DiscoveredList      refs_lists[],
 589               bool                marks_oops_alive)
 590     : _ref_processor(ref_processor),
 591       _refs_lists(refs_lists),
 592       _marks_oops_alive(marks_oops_alive)
 593   { }
 594 
 595 public:
 596   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
 597                     OopClosure& keep_alive,
 598                     VoidClosure& complete_gc) = 0;
 599 
 600   // Returns true if a task marks some oops as alive.
 601   bool marks_oops_alive() const
 602   { return _marks_oops_alive; }
 603 
 604 protected:
 605   ReferenceProcessor& _ref_processor;
 606   DiscoveredList*     _refs_lists;
 607   const bool          _marks_oops_alive;
 608 };
 609 
 610 // Abstract reference processing task to execute.
 611 class AbstractRefProcTaskExecutor::EnqueueTask {
 612 protected:
 613   EnqueueTask(ReferenceProcessor& ref_processor,
 614               DiscoveredList      refs_lists[],
 615               int                 n_queues)
 616     : _ref_processor(ref_processor),
 617       _refs_lists(refs_lists),
 618       _n_queues(n_queues)
 619   { }
 620 
 621 public:
 622   virtual void work(unsigned int work_id) = 0;
 623 
 624 protected:
 625   ReferenceProcessor& _ref_processor;
 626   DiscoveredList*     _refs_lists;
 627   int                 _n_queues;
 628 };
 629 
 630 #endif // SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP