1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.inline.hpp"
  32 #include "gc/shared/referencePolicy.hpp"
  33 #include "gc/shared/referenceProcessor.inline.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/allocation.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/java.hpp"
  39 #include "runtime/jniHandles.hpp"
  40 
  41 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  42 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  43 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  44 
  45 void referenceProcessor_init() {
  46   ReferenceProcessor::init_statics();
  47 }
  48 
  49 void ReferenceProcessor::init_statics() {
  50   // We need a monotonically non-decreasing time in ms but
  51   // os::javaTimeMillis() does not guarantee monotonicity.
  52   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  53 
  54   // Initialize the soft ref timestamp clock.
  55   _soft_ref_timestamp_clock = now;
  56   // Also update the soft ref clock in j.l.r.SoftReference
  57   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  58 
  59   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  60   if (is_server_compilation_mode_vm()) {
  61     _default_soft_ref_policy = new LRUMaxHeapPolicy();
  62   } else {
  63     _default_soft_ref_policy = new LRUCurrentHeapPolicy();
  64   }
  65   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  66     vm_exit_during_initialization("Could not allocate reference policy object");
  67   }
  68   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  69             RefDiscoveryPolicy == ReferentBasedDiscovery,
  70             "Unrecognized RefDiscoveryPolicy");
  71 }
  72 
  73 void ReferenceProcessor::enable_discovery(bool check_no_refs) {
  74 #ifdef ASSERT
  75   // Verify that we're not currently discovering refs
  76   assert(!_discovering_refs, "nested call?");
  77 
  78   if (check_no_refs) {
  79     // Verify that the discovered lists are empty
  80     verify_no_references_recorded();
  81   }
  82 #endif // ASSERT
  83 
  84   // Someone could have modified the value of the static
  85   // field in the j.l.r.SoftReference class that holds the
  86   // soft reference timestamp clock using reflection or
  87   // Unsafe between GCs. Unconditionally update the static
  88   // field in ReferenceProcessor here so that we use the new
  89   // value during reference discovery.
  90 
  91   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  92   _discovering_refs = true;
  93 }
  94 
  95 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  96                                        bool      mt_processing,
  97                                        uint      mt_processing_degree,
  98                                        bool      mt_discovery,
  99                                        uint      mt_discovery_degree,
 100                                        bool      atomic_discovery,
 101                                        BoolObjectClosure* is_alive_non_header)  :
 102   _discovering_refs(false),
 103   _enqueuing_is_done(false),
 104   _is_alive_non_header(is_alive_non_header),
 105   _processing_is_mt(mt_processing),
 106   _next_id(0)
 107 {
 108   _span = span;
 109   _discovery_is_atomic = atomic_discovery;
 110   _discovery_is_mt     = mt_discovery;
 111   _num_q               = MAX2(1U, mt_processing_degree);
 112   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 113   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 114             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 115 
 116   if (_discovered_refs == NULL) {
 117     vm_exit_during_initialization("Could not allocated RefProc Array");
 118   }
 119   _discoveredSoftRefs    = &_discovered_refs[0];
 120   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 121   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 122   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 123 
 124   // Initialize all entries to NULL
 125   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 126     _discovered_refs[i].set_head(NULL);
 127     _discovered_refs[i].set_length(0);
 128   }
 129 
 130   setup_policy(false /* default soft ref policy */);
 131 }
 132 
 133 #ifndef PRODUCT
 134 void ReferenceProcessor::verify_no_references_recorded() {
 135   guarantee(!_discovering_refs, "Discovering refs?");
 136   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 137     guarantee(_discovered_refs[i].is_empty(),
 138               "Found non-empty discovered list at %u", i);
 139   }
 140 }
 141 #endif
 142 
 143 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 144   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 145     if (UseCompressedOops) {
 146       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 147     } else {
 148       f->do_oop((oop*)_discovered_refs[i].adr_head());
 149     }
 150   }
 151 }
 152 
 153 void ReferenceProcessor::update_soft_ref_master_clock() {
 154   // Update (advance) the soft ref master clock field. This must be done
 155   // after processing the soft ref list.
 156 
 157   // We need a monotonically non-decreasing time in ms but
 158   // os::javaTimeMillis() does not guarantee monotonicity.
 159   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 160   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 161   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 162 
 163   NOT_PRODUCT(
 164   if (now < _soft_ref_timestamp_clock) {
 165     log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
 166                     _soft_ref_timestamp_clock, now);
 167   }
 168   )
 169   // The values of now and _soft_ref_timestamp_clock are set using
 170   // javaTimeNanos(), which is guaranteed to be monotonically
 171   // non-decreasing provided the underlying platform provides such
 172   // a time source (and it is bug free).
 173   // In product mode, however, protect ourselves from non-monotonicity.
 174   if (now > _soft_ref_timestamp_clock) {
 175     _soft_ref_timestamp_clock = now;
 176     java_lang_ref_SoftReference::set_clock(now);
 177   }
 178   // Else leave clock stalled at its old value until time progresses
 179   // past clock value.
 180 }
 181 
 182 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) const {
 183   size_t total = 0;
 184   for (uint i = 0; i < _max_num_q; ++i) {
 185     total += lists[i].length();
 186   }
 187   return total;
 188 }
 189 
 190 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 191   BoolObjectClosure*            is_alive,
 192   OopClosure*                   keep_alive,
 193   VoidClosure*                  complete_gc,
 194   AbstractRefProcTaskExecutor*  task_executor,
 195   ReferenceProcessorPhaseTimes* phase_times) {
 196   double start_time = os::elapsedTime();
 197 
 198   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 199   // Stop treating discovered references specially.
 200   disable_discovery();
 201 
 202   // If discovery was concurrent, someone could have modified
 203   // the value of the static field in the j.l.r.SoftReference
 204   // class that holds the soft reference timestamp clock using
 205   // reflection or Unsafe between when discovery was enabled and
 206   // now. Unconditionally update the static field in ReferenceProcessor
 207   // here so that we use the new value during processing of the
 208   // discovered soft refs.
 209 
 210   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 211 
 212   ReferenceProcessorStats stats(total_count(_discoveredSoftRefs),
 213                                 total_count(_discoveredWeakRefs),
 214                                 total_count(_discoveredFinalRefs),
 215                                 total_count(_discoveredPhantomRefs));
 216 
 217   // Soft references
 218   {
 219     RefProcPhaseTimesTracker tt(REF_SOFT, phase_times, this);
 220     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 221                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 222   }
 223 
 224   update_soft_ref_master_clock();
 225 
 226   // Weak references
 227   {
 228     RefProcPhaseTimesTracker tt(REF_WEAK, phase_times, this);
 229     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 230                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 231   }
 232 
 233   // Final references
 234   {
 235     RefProcPhaseTimesTracker tt(REF_FINAL, phase_times, this);
 236     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 237                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 238   }
 239 
 240   // Phantom references
 241   {
 242     RefProcPhaseTimesTracker tt(REF_PHANTOM, phase_times, this);
 243     process_discovered_reflist(_discoveredPhantomRefs, NULL, true,
 244                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 245   }
 246 
 247   // Weak global JNI references. It would make more sense (semantically) to
 248   // traverse these simultaneously with the regular weak references above, but
 249   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 250   // thus use JNI weak references to circumvent the phantom references and
 251   // resurrect a "post-mortem" object.
 252   {
 253     GCTraceTime(Debug, gc, ref) tt("JNI Weak Reference", phase_times->gc_timer());
 254     if (task_executor != NULL) {
 255       task_executor->set_single_threaded_mode();
 256     }
 257     process_phaseJNI(is_alive, keep_alive, complete_gc);
 258   }
 259 
 260   phase_times->set_total_time_ms((os::elapsedTime() - start_time) * 1000);
 261 
 262   log_develop_trace(gc, ref)("JNI Weak Reference count: " SIZE_FORMAT, count_jni_refs());
 263 
 264   return stats;
 265 }
 266 
 267 #ifndef PRODUCT
 268 // Calculate the number of jni handles.
 269 size_t ReferenceProcessor::count_jni_refs() {
 270   class CountHandleClosure: public OopClosure {
 271   private:
 272     size_t _count;
 273   public:
 274     CountHandleClosure(): _count(0) {}
 275     void do_oop(oop* unused)       { _count++; }
 276     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 277     size_t count() { return _count; }
 278   };
 279   CountHandleClosure global_handle_count;
 280   JNIHandles::weak_oops_do(&global_handle_count);
 281   return global_handle_count.count();
 282 }
 283 #endif
 284 
 285 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 286                                           OopClosure*        keep_alive,
 287                                           VoidClosure*       complete_gc) {
 288   JNIHandles::weak_oops_do(is_alive, keep_alive);
 289   complete_gc->do_void();
 290 }
 291 
 292 void ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor*  task_executor,
 293                                                        ReferenceProcessorPhaseTimes* phase_times) {
 294   // Enqueue references that are not made active again, and
 295   // clear the decks for the next collection (cycle).
 296   enqueue_discovered_reflists(task_executor, phase_times);
 297 
 298   // Stop treating discovered references specially.
 299   disable_discovery();
 300 }
 301 
 302 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list) {
 303   // Given a list of refs linked through the "discovered" field
 304   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 305   // thus distinguishing them from active References, then
 306   // prepend them to the pending list.
 307   //
 308   // The Java threads will see the Reference objects linked together through
 309   // the discovered field. Instead of trying to do the write barrier updates
 310   // in all places in the reference processor where we manipulate the discovered
 311   // field we make sure to do the barrier here where we anyway iterate through
 312   // all linked Reference objects. Note that it is important to not dirty any
 313   // cards during reference processing since this will cause card table
 314   // verification to fail for G1.
 315   log_develop_trace(gc, ref)("ReferenceProcessor::enqueue_discovered_reflist list " INTPTR_FORMAT, p2i(&refs_list));
 316 
 317   oop obj = NULL;
 318   oop next_d = refs_list.head();
 319   // Walk down the list, self-looping the next field
 320   // so that the References are not considered active.
 321   while (obj != next_d) {
 322     obj = next_d;
 323     assert(obj->is_instance(), "should be an instance object");
 324     assert(InstanceKlass::cast(obj->klass())->is_reference_instance_klass(), "should be reference object");
 325     next_d = java_lang_ref_Reference::discovered(obj);
 326     log_develop_trace(gc, ref)("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT, p2i(obj), p2i(next_d));
 327     assert(java_lang_ref_Reference::next(obj) == NULL,
 328            "Reference not active; should not be discovered");
 329     // Self-loop next, so as to make Ref not active.
 330     java_lang_ref_Reference::set_next_raw(obj, obj);
 331     if (next_d != obj) {
 332       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
 333     } else {
 334       // This is the last object.
 335       // Swap refs_list into pending list and set obj's
 336       // discovered to what we read from the pending list.
 337       oop old = Universe::swap_reference_pending_list(refs_list.head());
 338       java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
 339       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
 340     }
 341   }
 342 }
 343 
 344 // Parallel enqueue task
 345 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 346 public:
 347   RefProcEnqueueTask(ReferenceProcessor&           ref_processor,
 348                      DiscoveredList                discovered_refs[],
 349                      int                           n_queues,
 350                      ReferenceProcessorPhaseTimes* phase_times)
 351     : EnqueueTask(ref_processor, discovered_refs, n_queues, phase_times)
 352   { }
 353 
 354   virtual void work(unsigned int work_id) {
 355     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefEnqueue, _phase_times, work_id);
 356 
 357     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 358     // Simplest first cut: static partitioning.
 359     int index = work_id;
 360     // The increment on "index" must correspond to the maximum number of queues
 361     // (n_queues) with which that ReferenceProcessor was created.  That
 362     // is because of the "clever" way the discovered references lists were
 363     // allocated and are indexed into.
 364     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 365     for (int j = 0;
 366          j < ReferenceProcessor::number_of_subclasses_of_ref();
 367          j++, index += _n_queues) {
 368       _ref_processor.enqueue_discovered_reflist(_refs_lists[index]);
 369       _refs_lists[index].set_head(NULL);
 370       _refs_lists[index].set_length(0);
 371     }
 372   }
 373 };
 374 
 375 // Enqueue references that are not made active again
 376 void ReferenceProcessor::enqueue_discovered_reflists(AbstractRefProcTaskExecutor*  task_executor,
 377                                                      ReferenceProcessorPhaseTimes* phase_times) {
 378 
 379   ReferenceProcessorStats stats(total_count(_discoveredSoftRefs),
 380                                 total_count(_discoveredWeakRefs),
 381                                 total_count(_discoveredFinalRefs),
 382                                 total_count(_discoveredPhantomRefs));
 383 
 384   RefProcEnqueueTimeTracker tt(phase_times, stats);
 385 
 386   if (_processing_is_mt && task_executor != NULL) {
 387     // Parallel code
 388     RefProcEnqueueTask tsk(*this, _discovered_refs, _max_num_q, phase_times);
 389     task_executor->execute(tsk);
 390   } else {
 391     // Serial code: call the parent class's implementation
 392     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 393       enqueue_discovered_reflist(_discovered_refs[i]);
 394       _discovered_refs[i].set_head(NULL);
 395       _discovered_refs[i].set_length(0);
 396     }
 397   }
 398 }
 399 
 400 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 401   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 402   oop discovered = java_lang_ref_Reference::discovered(_ref);
 403   assert(_discovered_addr && discovered->is_oop_or_null(),
 404          "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
 405   _next = discovered;
 406   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 407   _referent = java_lang_ref_Reference::referent(_ref);
 408   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 409          "Wrong oop found in java.lang.Reference object");
 410   assert(allow_null_referent ?
 411              _referent->is_oop_or_null()
 412            : _referent->is_oop(),
 413          "Expected an oop%s for referent field at " PTR_FORMAT,
 414          (allow_null_referent ? " or NULL" : ""),
 415          p2i(_referent));
 416 }
 417 
 418 void DiscoveredListIterator::remove() {
 419   assert(_ref->is_oop(), "Dropping a bad reference");
 420   oop_store_raw(_discovered_addr, NULL);
 421 
 422   // First _prev_next ref actually points into DiscoveredList (gross).
 423   oop new_next;
 424   if (_next == _ref) {
 425     // At the end of the list, we should make _prev point to itself.
 426     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 427     // and _prev will be NULL.
 428     new_next = _prev;
 429   } else {
 430     new_next = _next;
 431   }
 432   // Remove Reference object from discovered list. Note that G1 does not need a
 433   // pre-barrier here because we know the Reference has already been found/marked,
 434   // that's how it ended up in the discovered list in the first place.
 435   oop_store_raw(_prev_next, new_next);
 436   NOT_PRODUCT(_removed++);
 437   _refs_list.dec_length(1);
 438 }
 439 
 440 void DiscoveredListIterator::clear_referent() {
 441   oop_store_raw(_referent_addr, NULL);
 442 }
 443 
 444 // NOTE: process_phase*() are largely similar, and at a high level
 445 // merely iterate over the extant list applying a predicate to
 446 // each of its elements and possibly removing that element from the
 447 // list and applying some further closures to that element.
 448 // We should consider the possibility of replacing these
 449 // process_phase*() methods by abstracting them into
 450 // a single general iterator invocation that receives appropriate
 451 // closures that accomplish this work.
 452 
 453 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 454 // referents are not alive, but that should be kept alive for policy reasons.
 455 // Keep alive the transitive closure of all such referents.
 456 void
 457 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 458                                    ReferencePolicy*   policy,
 459                                    BoolObjectClosure* is_alive,
 460                                    OopClosure*        keep_alive,
 461                                    VoidClosure*       complete_gc) {
 462   assert(policy != NULL, "Must have a non-NULL policy");
 463   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 464   // Decide which softly reachable refs should be kept alive.
 465   while (iter.has_next()) {
 466     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 467     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 468     if (referent_is_dead &&
 469         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 470       log_develop_trace(gc, ref)("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 471                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 472       // Remove Reference object from list
 473       iter.remove();
 474       // keep the referent around
 475       iter.make_referent_alive();
 476       iter.move_to_next();
 477     } else {
 478       iter.next();
 479     }
 480   }
 481   // Close the reachable set
 482   complete_gc->do_void();
 483   log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT " discovered Refs by policy, from list " INTPTR_FORMAT,
 484                              iter.removed(), iter.processed(), p2i(&refs_list));
 485 }
 486 
 487 // Traverse the list and remove any Refs that are not active, or
 488 // whose referents are either alive or NULL.
 489 void
 490 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 491                              BoolObjectClosure* is_alive,
 492                              OopClosure*        keep_alive) {
 493   assert(discovery_is_atomic(), "Error");
 494   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 495   while (iter.has_next()) {
 496     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 497     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 498     assert(next == NULL, "Should not discover inactive Reference");
 499     if (iter.is_referent_alive()) {
 500       log_develop_trace(gc, ref)("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 501                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 502       // The referent is reachable after all.
 503       // Remove Reference object from list.
 504       iter.remove();
 505       // Update the referent pointer as necessary: Note that this
 506       // should not entail any recursive marking because the
 507       // referent must already have been traversed.
 508       iter.make_referent_alive();
 509       iter.move_to_next();
 510     } else {
 511       iter.next();
 512     }
 513   }
 514   NOT_PRODUCT(
 515     if (iter.processed() > 0) {
 516       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 517         " Refs in discovered list " INTPTR_FORMAT,
 518         iter.removed(), iter.processed(), p2i(&refs_list));
 519     }
 520   )
 521 }
 522 
 523 void
 524 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 525                                                   BoolObjectClosure* is_alive,
 526                                                   OopClosure*        keep_alive,
 527                                                   VoidClosure*       complete_gc) {
 528   assert(!discovery_is_atomic(), "Error");
 529   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 530   while (iter.has_next()) {
 531     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 532     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 533     oop next = java_lang_ref_Reference::next(iter.obj());
 534     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 535          next != NULL)) {
 536       assert(next->is_oop_or_null(), "Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next));
 537       // Remove Reference object from list
 538       iter.remove();
 539       // Trace the cohorts
 540       iter.make_referent_alive();
 541       if (UseCompressedOops) {
 542         keep_alive->do_oop((narrowOop*)next_addr);
 543       } else {
 544         keep_alive->do_oop((oop*)next_addr);
 545       }
 546       iter.move_to_next();
 547     } else {
 548       iter.next();
 549     }
 550   }
 551   // Now close the newly reachable set
 552   complete_gc->do_void();
 553   NOT_PRODUCT(
 554     if (iter.processed() > 0) {
 555       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 556         " Refs in discovered list " INTPTR_FORMAT,
 557         iter.removed(), iter.processed(), p2i(&refs_list));
 558     }
 559   )
 560 }
 561 
 562 // Traverse the list and process the referents, by either
 563 // clearing them or keeping them (and their reachable
 564 // closure) alive.
 565 void
 566 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 567                                    bool               clear_referent,
 568                                    BoolObjectClosure* is_alive,
 569                                    OopClosure*        keep_alive,
 570                                    VoidClosure*       complete_gc) {
 571   ResourceMark rm;
 572   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 573   while (iter.has_next()) {
 574     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 575     if (clear_referent) {
 576       // NULL out referent pointer
 577       iter.clear_referent();
 578     } else {
 579       // keep the referent around
 580       iter.make_referent_alive();
 581     }
 582     log_develop_trace(gc, ref)("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 583                                clear_referent ? "cleared " : "", p2i(iter.obj()), iter.obj()->klass()->internal_name());
 584     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 585     iter.next();
 586   }
 587   // Close the reachable set
 588   complete_gc->do_void();
 589 }
 590 
 591 void
 592 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 593   oop obj = NULL;
 594   oop next = refs_list.head();
 595   while (next != obj) {
 596     obj = next;
 597     next = java_lang_ref_Reference::discovered(obj);
 598     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 599   }
 600   refs_list.set_head(NULL);
 601   refs_list.set_length(0);
 602 }
 603 
 604 void ReferenceProcessor::abandon_partial_discovery() {
 605   // loop over the lists
 606   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 607     if ((i % _max_num_q) == 0) {
 608       log_develop_trace(gc, ref)("Abandoning %s discovered list", list_name(i));
 609     }
 610     clear_discovered_references(_discovered_refs[i]);
 611   }
 612 }
 613 
 614 size_t ReferenceProcessor::total_reference_count(ReferenceType type) const {
 615   DiscoveredList* list = NULL;
 616 
 617   switch (type) {
 618     case REF_SOFT:
 619       list = _discoveredSoftRefs;
 620       break;
 621     case REF_WEAK:
 622       list = _discoveredWeakRefs;
 623       break;
 624     case REF_FINAL:
 625       list = _discoveredFinalRefs;
 626       break;
 627     case REF_PHANTOM:
 628       list = _discoveredPhantomRefs;
 629       break;
 630     case REF_OTHER:
 631     case REF_NONE:
 632     default:
 633       ShouldNotReachHere();
 634   }
 635   return total_count(list);
 636 }
 637 
 638 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 639 public:
 640   RefProcPhase1Task(ReferenceProcessor&           ref_processor,
 641                     DiscoveredList                refs_lists[],
 642                     ReferencePolicy*              policy,
 643                     bool                          marks_oops_alive,
 644                     ReferenceProcessorPhaseTimes* phase_times)
 645     : ProcessTask(ref_processor, refs_lists, marks_oops_alive, phase_times),
 646       _policy(policy)
 647   { }
 648   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 649                     OopClosure& keep_alive,
 650                     VoidClosure& complete_gc)
 651   {
 652     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase1, _phase_times, i);
 653 
 654     _ref_processor.process_phase1(_refs_lists[i], _policy,
 655                                   &is_alive, &keep_alive, &complete_gc);
 656   }
 657 private:
 658   ReferencePolicy* _policy;
 659 };
 660 
 661 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 662 public:
 663   RefProcPhase2Task(ReferenceProcessor&           ref_processor,
 664                     DiscoveredList                refs_lists[],
 665                     bool                          marks_oops_alive,
 666                     ReferenceProcessorPhaseTimes* phase_times)
 667     : ProcessTask(ref_processor, refs_lists, marks_oops_alive, phase_times)
 668   { }
 669   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 670                     OopClosure& keep_alive,
 671                     VoidClosure& complete_gc)
 672   {
 673     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase2, _phase_times, i);
 674 
 675     _ref_processor.process_phase2(_refs_lists[i],
 676                                   &is_alive, &keep_alive, &complete_gc);
 677   }
 678 };
 679 
 680 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 681 public:
 682   RefProcPhase3Task(ReferenceProcessor&           ref_processor,
 683                     DiscoveredList                refs_lists[],
 684                     bool                         clear_referent,
 685                     bool                          marks_oops_alive,
 686                     ReferenceProcessorPhaseTimes* phase_times)
 687     : ProcessTask(ref_processor, refs_lists, marks_oops_alive, phase_times),
 688       _clear_referent(clear_referent)
 689   { }
 690   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 691                     OopClosure& keep_alive,
 692                     VoidClosure& complete_gc)
 693   {
 694     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase3, _phase_times, i);
 695 
 696     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 697                                   &is_alive, &keep_alive, &complete_gc);
 698   }
 699 private:
 700   bool _clear_referent;
 701 };
 702 
 703 #ifndef PRODUCT
 704 void ReferenceProcessor::log_reflist_counts(DiscoveredList ref_lists[], uint active_length, size_t total_refs) {
 705   if (!log_is_enabled(Trace, gc, ref)) {
 706     return;
 707   }
 708 
 709   stringStream st;
 710   for (uint i = 0; i < active_length; ++i) {
 711     st.print(SIZE_FORMAT " ", ref_lists[i].length());
 712   }
 713   log_develop_trace(gc, ref)("%s= " SIZE_FORMAT, st.as_string(), total_refs);
 714 #ifdef ASSERT
 715   for (uint i = active_length; i < _max_num_q; i++) {
 716     assert(ref_lists[i].length() == 0, SIZE_FORMAT " unexpected References in %u",
 717            ref_lists[i].length(), i);
 718   }
 719 #endif
 720 }
 721 #endif
 722 
 723 void ReferenceProcessor::set_active_mt_degree(uint v) {
 724   _num_q = v;
 725   _next_id = 0;
 726 }
 727 
 728 // Balances reference queues.
 729 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 730 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 731 // corresponding to the active workers will be processed.
 732 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 733 {
 734   // calculate total length
 735   size_t total_refs = 0;
 736   log_develop_trace(gc, ref)("Balance ref_lists ");
 737 
 738   for (uint i = 0; i < _max_num_q; ++i) {
 739     total_refs += ref_lists[i].length();
 740   }
 741   log_reflist_counts(ref_lists, _max_num_q, total_refs);
 742   size_t avg_refs = total_refs / _num_q + 1;
 743   uint to_idx = 0;
 744   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 745     bool move_all = false;
 746     if (from_idx >= _num_q) {
 747       move_all = ref_lists[from_idx].length() > 0;
 748     }
 749     while ((ref_lists[from_idx].length() > avg_refs) ||
 750            move_all) {
 751       assert(to_idx < _num_q, "Sanity Check!");
 752       if (ref_lists[to_idx].length() < avg_refs) {
 753         // move superfluous refs
 754         size_t refs_to_move;
 755         // Move all the Ref's if the from queue will not be processed.
 756         if (move_all) {
 757           refs_to_move = MIN2(ref_lists[from_idx].length(),
 758                               avg_refs - ref_lists[to_idx].length());
 759         } else {
 760           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 761                               avg_refs - ref_lists[to_idx].length());
 762         }
 763 
 764         assert(refs_to_move > 0, "otherwise the code below will fail");
 765 
 766         oop move_head = ref_lists[from_idx].head();
 767         oop move_tail = move_head;
 768         oop new_head  = move_head;
 769         // find an element to split the list on
 770         for (size_t j = 0; j < refs_to_move; ++j) {
 771           move_tail = new_head;
 772           new_head = java_lang_ref_Reference::discovered(new_head);
 773         }
 774 
 775         // Add the chain to the to list.
 776         if (ref_lists[to_idx].head() == NULL) {
 777           // to list is empty. Make a loop at the end.
 778           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 779         } else {
 780           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 781         }
 782         ref_lists[to_idx].set_head(move_head);
 783         ref_lists[to_idx].inc_length(refs_to_move);
 784 
 785         // Remove the chain from the from list.
 786         if (move_tail == new_head) {
 787           // We found the end of the from list.
 788           ref_lists[from_idx].set_head(NULL);
 789         } else {
 790           ref_lists[from_idx].set_head(new_head);
 791         }
 792         ref_lists[from_idx].dec_length(refs_to_move);
 793         if (ref_lists[from_idx].length() == 0) {
 794           break;
 795         }
 796       } else {
 797         to_idx = (to_idx + 1) % _num_q;
 798       }
 799     }
 800   }
 801 #ifdef ASSERT
 802   size_t balanced_total_refs = 0;
 803   for (uint i = 0; i < _num_q; ++i) {
 804     balanced_total_refs += ref_lists[i].length();
 805   }
 806   log_reflist_counts(ref_lists, _num_q, balanced_total_refs);
 807   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 808 #endif
 809 }
 810 
 811 void ReferenceProcessor::balance_all_queues() {
 812   balance_queues(_discoveredSoftRefs);
 813   balance_queues(_discoveredWeakRefs);
 814   balance_queues(_discoveredFinalRefs);
 815   balance_queues(_discoveredPhantomRefs);
 816 }
 817 
 818 void ReferenceProcessor::process_discovered_reflist(
 819   DiscoveredList                refs_lists[],
 820   ReferencePolicy*              policy,
 821   bool                          clear_referent,
 822   BoolObjectClosure*            is_alive,
 823   OopClosure*                   keep_alive,
 824   VoidClosure*                  complete_gc,
 825   AbstractRefProcTaskExecutor*  task_executor,
 826   ReferenceProcessorPhaseTimes* phase_times)
 827 {
 828   bool mt_processing = task_executor != NULL && _processing_is_mt;
 829 
 830   phase_times->set_processing_is_mt(mt_processing);
 831 
 832   // If discovery used MT and a dynamic number of GC threads, then
 833   // the queues must be balanced for correctness if fewer than the
 834   // maximum number of queues were used.  The number of queue used
 835   // during discovery may be different than the number to be used
 836   // for processing so don't depend of _num_q < _max_num_q as part
 837   // of the test.
 838   bool must_balance = _discovery_is_mt;
 839 
 840   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 841       must_balance) {
 842     RefProcBalanceQueuesTimeTracker tt(phase_times);
 843     balance_queues(refs_lists);
 844   }
 845 
 846   // Phase 1 (soft refs only):
 847   // . Traverse the list and remove any SoftReferences whose
 848   //   referents are not alive, but that should be kept alive for
 849   //   policy reasons. Keep alive the transitive closure of all
 850   //   such referents.
 851   if (policy != NULL) {
 852     RefProcParPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase1, phase_times);
 853 
 854     if (mt_processing) {
 855       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/, phase_times);
 856       task_executor->execute(phase1);
 857     } else {
 858       for (uint i = 0; i < _max_num_q; i++) {
 859         process_phase1(refs_lists[i], policy,
 860                        is_alive, keep_alive, complete_gc);
 861       }
 862     }
 863   } else { // policy == NULL
 864     assert(refs_lists != _discoveredSoftRefs,
 865            "Policy must be specified for soft references.");
 866   }
 867 
 868   // Phase 2:
 869   // . Traverse the list and remove any refs whose referents are alive.
 870   {
 871     RefProcParPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase2, phase_times);
 872 
 873     if (mt_processing) {
 874       RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/, phase_times);
 875       task_executor->execute(phase2);
 876     } else {
 877       for (uint i = 0; i < _max_num_q; i++) {
 878         process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 879       }
 880     }
 881   }
 882 
 883   // Phase 3:
 884   // . Traverse the list and process referents as appropriate.
 885   {
 886     RefProcParPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase3, phase_times);
 887 
 888     if (mt_processing) {
 889       RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/, phase_times);
 890       task_executor->execute(phase3);
 891     } else {
 892       for (uint i = 0; i < _max_num_q; i++) {
 893         process_phase3(refs_lists[i], clear_referent,
 894                        is_alive, keep_alive, complete_gc);
 895       }
 896     }
 897   }
 898 }
 899 
 900 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 901   uint id = 0;
 902   // Determine the queue index to use for this object.
 903   if (_discovery_is_mt) {
 904     // During a multi-threaded discovery phase,
 905     // each thread saves to its "own" list.
 906     Thread* thr = Thread::current();
 907     id = thr->as_Worker_thread()->id();
 908   } else {
 909     // single-threaded discovery, we save in round-robin
 910     // fashion to each of the lists.
 911     if (_processing_is_mt) {
 912       id = next_id();
 913     }
 914   }
 915   assert(id < _max_num_q, "Id is out-of-bounds id %u and max id %u)", id, _max_num_q);
 916 
 917   // Get the discovered queue to which we will add
 918   DiscoveredList* list = NULL;
 919   switch (rt) {
 920     case REF_OTHER:
 921       // Unknown reference type, no special treatment
 922       break;
 923     case REF_SOFT:
 924       list = &_discoveredSoftRefs[id];
 925       break;
 926     case REF_WEAK:
 927       list = &_discoveredWeakRefs[id];
 928       break;
 929     case REF_FINAL:
 930       list = &_discoveredFinalRefs[id];
 931       break;
 932     case REF_PHANTOM:
 933       list = &_discoveredPhantomRefs[id];
 934       break;
 935     case REF_NONE:
 936       // we should not reach here if we are an InstanceRefKlass
 937     default:
 938       ShouldNotReachHere();
 939   }
 940   log_develop_trace(gc, ref)("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
 941   return list;
 942 }
 943 
 944 inline void
 945 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
 946                                               oop             obj,
 947                                               HeapWord*       discovered_addr) {
 948   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
 949   // First we must make sure this object is only enqueued once. CAS in a non null
 950   // discovered_addr.
 951   oop current_head = refs_list.head();
 952   // The last ref must have its discovered field pointing to itself.
 953   oop next_discovered = (current_head != NULL) ? current_head : obj;
 954 
 955   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
 956                                                     NULL);
 957   if (retest == NULL) {
 958     // This thread just won the right to enqueue the object.
 959     // We have separate lists for enqueueing, so no synchronization
 960     // is necessary.
 961     refs_list.set_head(obj);
 962     refs_list.inc_length(1);
 963 
 964     log_develop_trace(gc, ref)("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
 965                                p2i(obj), obj->klass()->internal_name());
 966   } else {
 967     // If retest was non NULL, another thread beat us to it:
 968     // The reference has already been discovered...
 969     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
 970                                p2i(obj), obj->klass()->internal_name());
 971     }
 972   }
 973 
 974 #ifndef PRODUCT
 975 // Non-atomic (i.e. concurrent) discovery might allow us
 976 // to observe j.l.References with NULL referents, being those
 977 // cleared concurrently by mutators during (or after) discovery.
 978 void ReferenceProcessor::verify_referent(oop obj) {
 979   bool da = discovery_is_atomic();
 980   oop referent = java_lang_ref_Reference::referent(obj);
 981   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
 982          "Bad referent " INTPTR_FORMAT " found in Reference "
 983          INTPTR_FORMAT " during %satomic discovery ",
 984          p2i(referent), p2i(obj), da ? "" : "non-");
 985 }
 986 #endif
 987 
 988 // We mention two of several possible choices here:
 989 // #0: if the reference object is not in the "originating generation"
 990 //     (or part of the heap being collected, indicated by our "span"
 991 //     we don't treat it specially (i.e. we scan it as we would
 992 //     a normal oop, treating its references as strong references).
 993 //     This means that references can't be discovered unless their
 994 //     referent is also in the same span. This is the simplest,
 995 //     most "local" and most conservative approach, albeit one
 996 //     that may cause weak references to be enqueued least promptly.
 997 //     We call this choice the "ReferenceBasedDiscovery" policy.
 998 // #1: the reference object may be in any generation (span), but if
 999 //     the referent is in the generation (span) being currently collected
1000 //     then we can discover the reference object, provided
1001 //     the object has not already been discovered by
1002 //     a different concurrently running collector (as may be the
1003 //     case, for instance, if the reference object is in CMS and
1004 //     the referent in DefNewGeneration), and provided the processing
1005 //     of this reference object by the current collector will
1006 //     appear atomic to every other collector in the system.
1007 //     (Thus, for instance, a concurrent collector may not
1008 //     discover references in other generations even if the
1009 //     referent is in its own generation). This policy may,
1010 //     in certain cases, enqueue references somewhat sooner than
1011 //     might Policy #0 above, but at marginally increased cost
1012 //     and complexity in processing these references.
1013 //     We call this choice the "RefeferentBasedDiscovery" policy.
1014 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1015   // Make sure we are discovering refs (rather than processing discovered refs).
1016   if (!_discovering_refs || !RegisterReferences) {
1017     return false;
1018   }
1019   // We only discover active references.
1020   oop next = java_lang_ref_Reference::next(obj);
1021   if (next != NULL) {   // Ref is no longer active
1022     return false;
1023   }
1024 
1025   HeapWord* obj_addr = (HeapWord*)obj;
1026   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1027       !_span.contains(obj_addr)) {
1028     // Reference is not in the originating generation;
1029     // don't treat it specially (i.e. we want to scan it as a normal
1030     // object with strong references).
1031     return false;
1032   }
1033 
1034   // We only discover references whose referents are not (yet)
1035   // known to be strongly reachable.
1036   if (is_alive_non_header() != NULL) {
1037     verify_referent(obj);
1038     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1039       return false;  // referent is reachable
1040     }
1041   }
1042   if (rt == REF_SOFT) {
1043     // For soft refs we can decide now if these are not
1044     // current candidates for clearing, in which case we
1045     // can mark through them now, rather than delaying that
1046     // to the reference-processing phase. Since all current
1047     // time-stamp policies advance the soft-ref clock only
1048     // at a full collection cycle, this is always currently
1049     // accurate.
1050     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1051       return false;
1052     }
1053   }
1054 
1055   ResourceMark rm;      // Needed for tracing.
1056 
1057   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1058   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1059   assert(discovered->is_oop_or_null(), "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
1060   if (discovered != NULL) {
1061     // The reference has already been discovered...
1062     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
1063                                p2i(obj), obj->klass()->internal_name());
1064     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1065       // assumes that an object is not processed twice;
1066       // if it's been already discovered it must be on another
1067       // generation's discovered list; so we won't discover it.
1068       return false;
1069     } else {
1070       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1071              "Unrecognized policy");
1072       // Check assumption that an object is not potentially
1073       // discovered twice except by concurrent collectors that potentially
1074       // trace the same Reference object twice.
1075       assert(UseConcMarkSweepGC || UseG1GC,
1076              "Only possible with a concurrent marking collector");
1077       return true;
1078     }
1079   }
1080 
1081   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1082     verify_referent(obj);
1083     // Discover if and only if EITHER:
1084     // .. reference is in our span, OR
1085     // .. we are an atomic collector and referent is in our span
1086     if (_span.contains(obj_addr) ||
1087         (discovery_is_atomic() &&
1088          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1089       // should_enqueue = true;
1090     } else {
1091       return false;
1092     }
1093   } else {
1094     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1095            _span.contains(obj_addr), "code inconsistency");
1096   }
1097 
1098   // Get the right type of discovered queue head.
1099   DiscoveredList* list = get_discovered_list(rt);
1100   if (list == NULL) {
1101     return false;   // nothing special needs to be done
1102   }
1103 
1104   if (_discovery_is_mt) {
1105     add_to_discovered_list_mt(*list, obj, discovered_addr);
1106   } else {
1107     // We do a raw store here: the field will be visited later when processing
1108     // the discovered references.
1109     oop current_head = list->head();
1110     // The last ref must have its discovered field pointing to itself.
1111     oop next_discovered = (current_head != NULL) ? current_head : obj;
1112 
1113     assert(discovered == NULL, "control point invariant");
1114     oop_store_raw(discovered_addr, next_discovered);
1115     list->set_head(obj);
1116     list->inc_length(1);
1117 
1118     log_develop_trace(gc, ref)("Discovered reference (" INTPTR_FORMAT ": %s)", p2i(obj), obj->klass()->internal_name());
1119   }
1120   assert(obj->is_oop(), "Discovered a bad reference");
1121   verify_referent(obj);
1122   return true;
1123 }
1124 
1125 bool ReferenceProcessor::has_discovered_references() {
1126   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
1127     if (!_discovered_refs[i].is_empty()) {
1128       return true;
1129     }
1130   }
1131   return false;
1132 }
1133 
1134 // Preclean the discovered references by removing those
1135 // whose referents are alive, and by marking from those that
1136 // are not active. These lists can be handled here
1137 // in any order and, indeed, concurrently.
1138 void ReferenceProcessor::preclean_discovered_references(
1139   BoolObjectClosure* is_alive,
1140   OopClosure* keep_alive,
1141   VoidClosure* complete_gc,
1142   YieldClosure* yield,
1143   GCTimer* gc_timer) {
1144 
1145   // Soft references
1146   {
1147     GCTraceTime(Debug, gc, ref) tm("Preclean SoftReferences", gc_timer);
1148     for (uint i = 0; i < _max_num_q; i++) {
1149       if (yield->should_return()) {
1150         return;
1151       }
1152       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1153                                   keep_alive, complete_gc, yield);
1154     }
1155   }
1156 
1157   // Weak references
1158   {
1159     GCTraceTime(Debug, gc, ref) tm("Preclean WeakReferences", gc_timer);
1160     for (uint i = 0; i < _max_num_q; i++) {
1161       if (yield->should_return()) {
1162         return;
1163       }
1164       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1165                                   keep_alive, complete_gc, yield);
1166     }
1167   }
1168 
1169   // Final references
1170   {
1171     GCTraceTime(Debug, gc, ref) tm("Preclean FinalReferences", gc_timer);
1172     for (uint i = 0; i < _max_num_q; i++) {
1173       if (yield->should_return()) {
1174         return;
1175       }
1176       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1177                                   keep_alive, complete_gc, yield);
1178     }
1179   }
1180 
1181   // Phantom references
1182   {
1183     GCTraceTime(Debug, gc, ref) tm("Preclean PhantomReferences", gc_timer);
1184     for (uint i = 0; i < _max_num_q; i++) {
1185       if (yield->should_return()) {
1186         return;
1187       }
1188       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1189                                   keep_alive, complete_gc, yield);
1190     }
1191   }
1192 }
1193 
1194 // Walk the given discovered ref list, and remove all reference objects
1195 // whose referents are still alive, whose referents are NULL or which
1196 // are not active (have a non-NULL next field). NOTE: When we are
1197 // thus precleaning the ref lists (which happens single-threaded today),
1198 // we do not disable refs discovery to honor the correct semantics of
1199 // java.lang.Reference. As a result, we need to be careful below
1200 // that ref removal steps interleave safely with ref discovery steps
1201 // (in this thread).
1202 void
1203 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1204                                                 BoolObjectClosure* is_alive,
1205                                                 OopClosure*        keep_alive,
1206                                                 VoidClosure*       complete_gc,
1207                                                 YieldClosure*      yield) {
1208   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1209   while (iter.has_next()) {
1210     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1211     oop obj = iter.obj();
1212     oop next = java_lang_ref_Reference::next(obj);
1213     if (iter.referent() == NULL || iter.is_referent_alive() ||
1214         next != NULL) {
1215       // The referent has been cleared, or is alive, or the Reference is not
1216       // active; we need to trace and mark its cohort.
1217       log_develop_trace(gc, ref)("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1218                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
1219       // Remove Reference object from list
1220       iter.remove();
1221       // Keep alive its cohort.
1222       iter.make_referent_alive();
1223       if (UseCompressedOops) {
1224         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1225         keep_alive->do_oop(next_addr);
1226       } else {
1227         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1228         keep_alive->do_oop(next_addr);
1229       }
1230       iter.move_to_next();
1231     } else {
1232       iter.next();
1233     }
1234   }
1235   // Close the reachable set
1236   complete_gc->do_void();
1237 
1238   NOT_PRODUCT(
1239     if (iter.processed() > 0) {
1240       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT " Refs in discovered list " INTPTR_FORMAT,
1241         iter.removed(), iter.processed(), p2i(&refs_list));
1242     }
1243   )
1244 }
1245 
1246 const char* ReferenceProcessor::list_name(uint i) {
1247    assert(i <= _max_num_q * number_of_subclasses_of_ref(),
1248           "Out of bounds index");
1249 
1250    int j = i / _max_num_q;
1251    switch (j) {
1252      case 0: return "SoftRef";
1253      case 1: return "WeakRef";
1254      case 2: return "FinalRef";
1255      case 3: return "PhantomRef";
1256    }
1257    ShouldNotReachHere();
1258    return NULL;
1259 }