1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1BiasedArray.hpp"
  30 #include "gc/g1/g1CardTable.hpp"
  31 #include "gc/g1/g1CollectionSet.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.hpp"
  34 #include "gc/g1/g1DirtyCardQueue.hpp"
  35 #include "gc/g1/g1EdenRegions.hpp"
  36 #include "gc/g1/g1EvacFailure.hpp"
  37 #include "gc/g1/g1EvacStats.hpp"
  38 #include "gc/g1/g1EvacuationInfo.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1HeapTransition.hpp"
  41 #include "gc/g1/g1HeapVerifier.hpp"
  42 #include "gc/g1/g1HRPrinter.hpp"
  43 #include "gc/g1/g1HeapRegionAttr.hpp"
  44 #include "gc/g1/g1MonitoringSupport.hpp"
  45 #include "gc/g1/g1SurvivorRegions.hpp"
  46 #include "gc/g1/g1YCTypes.hpp"
  47 #include "gc/g1/heapRegionManager.hpp"
  48 #include "gc/g1/heapRegionSet.hpp"
  49 #include "gc/g1/heterogeneousHeapRegionManager.hpp"
  50 #include "gc/shared/barrierSet.hpp"
  51 #include "gc/shared/collectedHeap.hpp"
  52 #include "gc/shared/gcHeapSummary.hpp"
  53 #include "gc/shared/plab.hpp"
  54 #include "gc/shared/preservedMarks.hpp"
  55 #include "gc/shared/softRefPolicy.hpp"
  56 #include "memory/memRegion.hpp"
  57 #include "utilities/stack.hpp"
  58 
  59 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  60 // It uses the "Garbage First" heap organization and algorithm, which
  61 // may combine concurrent marking with parallel, incremental compaction of
  62 // heap subsets that will yield large amounts of garbage.
  63 
  64 // Forward declarations
  65 class HeapRegion;
  66 class GenerationSpec;
  67 class G1ParScanThreadState;
  68 class G1ParScanThreadStateSet;
  69 class G1ParScanThreadState;
  70 class MemoryPool;
  71 class MemoryManager;
  72 class ObjectClosure;
  73 class SpaceClosure;
  74 class CompactibleSpaceClosure;
  75 class Space;
  76 class G1CollectionSet;
  77 class G1Policy;
  78 class G1HotCardCache;
  79 class G1RemSet;
  80 class G1YoungRemSetSamplingThread;
  81 class HeapRegionRemSetIterator;
  82 class G1ConcurrentMark;
  83 class G1ConcurrentMarkThread;
  84 class G1ConcurrentRefine;
  85 class GenerationCounters;
  86 class STWGCTimer;
  87 class G1NewTracer;
  88 class EvacuationFailedInfo;
  89 class nmethod;
  90 class WorkGang;
  91 class G1Allocator;
  92 class G1ArchiveAllocator;
  93 class G1FullGCScope;
  94 class G1HeapVerifier;
  95 class G1HeapSizingPolicy;
  96 class G1HeapSummary;
  97 class G1EvacSummary;
  98 
  99 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
 100 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
 101 
 102 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 103 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 104 
 105 // The G1 STW is alive closure.
 106 // An instance is embedded into the G1CH and used as the
 107 // (optional) _is_alive_non_header closure in the STW
 108 // reference processor. It is also extensively used during
 109 // reference processing during STW evacuation pauses.
 110 class G1STWIsAliveClosure : public BoolObjectClosure {
 111   G1CollectedHeap* _g1h;
 112 public:
 113   G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 114   bool do_object_b(oop p);
 115 };
 116 
 117 class G1STWSubjectToDiscoveryClosure : public BoolObjectClosure {
 118   G1CollectedHeap* _g1h;
 119 public:
 120   G1STWSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 121   bool do_object_b(oop p);
 122 };
 123 
 124 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 125  private:
 126   void reset_from_card_cache(uint start_idx, size_t num_regions);
 127  public:
 128   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 129 };
 130 
 131 class G1CollectedHeap : public CollectedHeap {
 132   friend class G1FreeCollectionSetTask;
 133   friend class VM_CollectForMetadataAllocation;
 134   friend class VM_G1CollectForAllocation;
 135   friend class VM_G1CollectFull;
 136   friend class VMStructs;
 137   friend class MutatorAllocRegion;
 138   friend class G1Allocator;
 139   friend class G1FullCollector;
 140   friend class G1GCAllocRegion;
 141   friend class G1HeapVerifier;
 142 
 143   // Closures used in implementation.
 144   friend class G1ParScanThreadState;
 145   friend class G1ParScanThreadStateSet;
 146   friend class G1EvacuateRegionsTask;
 147   friend class G1PLABAllocator;
 148 
 149   // Other related classes.
 150   friend class HeapRegionClaimer;
 151 
 152   // Testing classes.
 153   friend class G1CheckRegionAttrTableClosure;
 154 
 155 private:
 156   G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
 157 
 158   WorkGang* _workers;
 159   G1CardTable* _card_table;
 160 
 161   SoftRefPolicy      _soft_ref_policy;
 162 
 163   static size_t _humongous_object_threshold_in_words;
 164 
 165   // These sets keep track of old, archive and humongous regions respectively.
 166   HeapRegionSet _old_set;
 167   HeapRegionSet _archive_set;
 168   HeapRegionSet _humongous_set;
 169 
 170   void eagerly_reclaim_humongous_regions();
 171   // Start a new incremental collection set for the next pause.
 172   void start_new_collection_set();
 173 
 174   // The block offset table for the G1 heap.
 175   G1BlockOffsetTable* _bot;
 176 
 177   // Tears down the region sets / lists so that they are empty and the
 178   // regions on the heap do not belong to a region set / list. The
 179   // only exception is the humongous set which we leave unaltered. If
 180   // free_list_only is true, it will only tear down the master free
 181   // list. It is called before a Full GC (free_list_only == false) or
 182   // before heap shrinking (free_list_only == true).
 183   void tear_down_region_sets(bool free_list_only);
 184 
 185   // Rebuilds the region sets / lists so that they are repopulated to
 186   // reflect the contents of the heap. The only exception is the
 187   // humongous set which was not torn down in the first place. If
 188   // free_list_only is true, it will only rebuild the master free
 189   // list. It is called after a Full GC (free_list_only == false) or
 190   // after heap shrinking (free_list_only == true).
 191   void rebuild_region_sets(bool free_list_only);
 192 
 193   // Callback for region mapping changed events.
 194   G1RegionMappingChangedListener _listener;
 195 
 196   // The sequence of all heap regions in the heap.
 197   HeapRegionManager* _hrm;
 198 
 199   // Manages all allocations with regions except humongous object allocations.
 200   G1Allocator* _allocator;
 201 
 202   // Manages all heap verification.
 203   G1HeapVerifier* _verifier;
 204 
 205   // Outside of GC pauses, the number of bytes used in all regions other
 206   // than the current allocation region(s).
 207   volatile size_t _summary_bytes_used;
 208 
 209   void increase_used(size_t bytes);
 210   void decrease_used(size_t bytes);
 211 
 212   void set_used(size_t bytes);
 213 
 214   // Class that handles archive allocation ranges.
 215   G1ArchiveAllocator* _archive_allocator;
 216 
 217   // GC allocation statistics policy for survivors.
 218   G1EvacStats _survivor_evac_stats;
 219 
 220   // GC allocation statistics policy for tenured objects.
 221   G1EvacStats _old_evac_stats;
 222 
 223   // It specifies whether we should attempt to expand the heap after a
 224   // region allocation failure. If heap expansion fails we set this to
 225   // false so that we don't re-attempt the heap expansion (it's likely
 226   // that subsequent expansion attempts will also fail if one fails).
 227   // Currently, it is only consulted during GC and it's reset at the
 228   // start of each GC.
 229   bool _expand_heap_after_alloc_failure;
 230 
 231   // Helper for monitoring and management support.
 232   G1MonitoringSupport* _g1mm;
 233 
 234   // Records whether the region at the given index is (still) a
 235   // candidate for eager reclaim.  Only valid for humongous start
 236   // regions; other regions have unspecified values.  Humongous start
 237   // regions are initialized at start of collection pause, with
 238   // candidates removed from the set as they are found reachable from
 239   // roots or the young generation.
 240   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 241    protected:
 242     bool default_value() const { return false; }
 243    public:
 244     void clear() { G1BiasedMappedArray<bool>::clear(); }
 245     void set_candidate(uint region, bool value) {
 246       set_by_index(region, value);
 247     }
 248     bool is_candidate(uint region) {
 249       return get_by_index(region);
 250     }
 251   };
 252 
 253   HumongousReclaimCandidates _humongous_reclaim_candidates;
 254   // Stores whether during humongous object registration we found candidate regions.
 255   // If not, we can skip a few steps.
 256   bool _has_humongous_reclaim_candidates;
 257 
 258   G1HRPrinter _hr_printer;
 259 
 260   // It decides whether an explicit GC should start a concurrent cycle
 261   // instead of doing a STW GC. Currently, a concurrent cycle is
 262   // explicitly started if:
 263   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 264   // (b) cause == _g1_humongous_allocation
 265   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 266   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 267   // (e) cause == _wb_conc_mark
 268   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 269 
 270   // Return true if should upgrade to full gc after an incremental one.
 271   bool should_upgrade_to_full_gc(GCCause::Cause cause);
 272 
 273   // indicates whether we are in young or mixed GC mode
 274   G1CollectorState _collector_state;
 275 
 276   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 277   // concurrent cycles) we have started.
 278   volatile uint _old_marking_cycles_started;
 279 
 280   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 281   // concurrent cycles) we have completed.
 282   volatile uint _old_marking_cycles_completed;
 283 
 284   // This is a non-product method that is helpful for testing. It is
 285   // called at the end of a GC and artificially expands the heap by
 286   // allocating a number of dead regions. This way we can induce very
 287   // frequent marking cycles and stress the cleanup / concurrent
 288   // cleanup code more (as all the regions that will be allocated by
 289   // this method will be found dead by the marking cycle).
 290   void allocate_dummy_regions() PRODUCT_RETURN;
 291 
 292   // If the HR printer is active, dump the state of the regions in the
 293   // heap after a compaction.
 294   void print_hrm_post_compaction();
 295 
 296   // Create a memory mapper for auxiliary data structures of the given size and
 297   // translation factor.
 298   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 299                                                          size_t size,
 300                                                          size_t translation_factor);
 301 
 302   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 303 
 304   // These are macros so that, if the assert fires, we get the correct
 305   // line number, file, etc.
 306 
 307 #define heap_locking_asserts_params(_extra_message_)                          \
 308   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 309   (_extra_message_),                                                          \
 310   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 311   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 312   BOOL_TO_STR(Thread::current()->is_VM_thread())
 313 
 314 #define assert_heap_locked()                                                  \
 315   do {                                                                        \
 316     assert(Heap_lock->owned_by_self(),                                        \
 317            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 318   } while (0)
 319 
 320 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 321   do {                                                                        \
 322     assert(Heap_lock->owned_by_self() ||                                      \
 323            (SafepointSynchronize::is_at_safepoint() &&                        \
 324              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 325            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 326                                         "should be at a safepoint"));         \
 327   } while (0)
 328 
 329 #define assert_heap_locked_and_not_at_safepoint()                             \
 330   do {                                                                        \
 331     assert(Heap_lock->owned_by_self() &&                                      \
 332                                     !SafepointSynchronize::is_at_safepoint(), \
 333           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 334                                        "should not be at a safepoint"));      \
 335   } while (0)
 336 
 337 #define assert_heap_not_locked()                                              \
 338   do {                                                                        \
 339     assert(!Heap_lock->owned_by_self(),                                       \
 340         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 341   } while (0)
 342 
 343 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 344   do {                                                                        \
 345     assert(!Heap_lock->owned_by_self() &&                                     \
 346                                     !SafepointSynchronize::is_at_safepoint(), \
 347       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 348                                    "should not be at a safepoint"));          \
 349   } while (0)
 350 
 351 #define assert_at_safepoint_on_vm_thread()                                    \
 352   do {                                                                        \
 353     assert_at_safepoint();                                                    \
 354     assert(Thread::current_or_null() != NULL, "no current thread");           \
 355     assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \
 356   } while (0)
 357 
 358 #define assert_used_and_recalculate_used_equal(g1h)                           \
 359   do {                                                                        \
 360     size_t cur_used_bytes = g1h->used();                                      \
 361     size_t recal_used_bytes = g1h->recalculate_used();                        \
 362     assert(cur_used_bytes == recal_used_bytes, "Used(" SIZE_FORMAT ") is not" \
 363            " same as recalculated used(" SIZE_FORMAT ").",                    \
 364            cur_used_bytes, recal_used_bytes);                                 \
 365   } while (0)
 366 
 367   const char* young_gc_name() const;
 368 
 369   // The young region list.
 370   G1EdenRegions _eden;
 371   G1SurvivorRegions _survivor;
 372 
 373   STWGCTimer* _gc_timer_stw;
 374 
 375   G1NewTracer* _gc_tracer_stw;
 376 
 377   // The current policy object for the collector.
 378   G1Policy* _policy;
 379   G1HeapSizingPolicy* _heap_sizing_policy;
 380 
 381   G1CollectionSet _collection_set;
 382 
 383   // Try to allocate a single non-humongous HeapRegion sufficient for
 384   // an allocation of the given word_size. If do_expand is true,
 385   // attempt to expand the heap if necessary to satisfy the allocation
 386   // request. 'type' takes the type of region to be allocated. (Use constants
 387   // Old, Eden, Humongous, Survivor defined in HeapRegionType.)
 388   HeapRegion* new_region(size_t word_size, HeapRegionType type, bool do_expand);
 389 
 390   // Initialize a contiguous set of free regions of length num_regions
 391   // and starting at index first so that they appear as a single
 392   // humongous region.
 393   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 394                                                       uint num_regions,
 395                                                       size_t word_size);
 396 
 397   // Attempt to allocate a humongous object of the given size. Return
 398   // NULL if unsuccessful.
 399   HeapWord* humongous_obj_allocate(size_t word_size);
 400 
 401   // The following two methods, allocate_new_tlab() and
 402   // mem_allocate(), are the two main entry points from the runtime
 403   // into the G1's allocation routines. They have the following
 404   // assumptions:
 405   //
 406   // * They should both be called outside safepoints.
 407   //
 408   // * They should both be called without holding the Heap_lock.
 409   //
 410   // * All allocation requests for new TLABs should go to
 411   //   allocate_new_tlab().
 412   //
 413   // * All non-TLAB allocation requests should go to mem_allocate().
 414   //
 415   // * If either call cannot satisfy the allocation request using the
 416   //   current allocating region, they will try to get a new one. If
 417   //   this fails, they will attempt to do an evacuation pause and
 418   //   retry the allocation.
 419   //
 420   // * If all allocation attempts fail, even after trying to schedule
 421   //   an evacuation pause, allocate_new_tlab() will return NULL,
 422   //   whereas mem_allocate() will attempt a heap expansion and/or
 423   //   schedule a Full GC.
 424   //
 425   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 426   //   should never be called with word_size being humongous. All
 427   //   humongous allocation requests should go to mem_allocate() which
 428   //   will satisfy them with a special path.
 429 
 430   virtual HeapWord* allocate_new_tlab(size_t min_size,
 431                                       size_t requested_size,
 432                                       size_t* actual_size);
 433 
 434   virtual HeapWord* mem_allocate(size_t word_size,
 435                                  bool*  gc_overhead_limit_was_exceeded);
 436 
 437   // First-level mutator allocation attempt: try to allocate out of
 438   // the mutator alloc region without taking the Heap_lock. This
 439   // should only be used for non-humongous allocations.
 440   inline HeapWord* attempt_allocation(size_t min_word_size,
 441                                       size_t desired_word_size,
 442                                       size_t* actual_word_size);
 443 
 444   // Second-level mutator allocation attempt: take the Heap_lock and
 445   // retry the allocation attempt, potentially scheduling a GC
 446   // pause. This should only be used for non-humongous allocations.
 447   HeapWord* attempt_allocation_slow(size_t word_size);
 448 
 449   // Takes the Heap_lock and attempts a humongous allocation. It can
 450   // potentially schedule a GC pause.
 451   HeapWord* attempt_allocation_humongous(size_t word_size);
 452 
 453   // Allocation attempt that should be called during safepoints (e.g.,
 454   // at the end of a successful GC). expect_null_mutator_alloc_region
 455   // specifies whether the mutator alloc region is expected to be NULL
 456   // or not.
 457   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 458                                             bool expect_null_mutator_alloc_region);
 459 
 460   // These methods are the "callbacks" from the G1AllocRegion class.
 461 
 462   // For mutator alloc regions.
 463   void update_as_mutator_region(HeapRegion* alloc_region, bool is_reused);
 464   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 465   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 466                                    size_t allocated_bytes);
 467   void reuse_retained_survivor_region(HeapRegion* alloc_region);
 468 
 469   // For GC alloc regions.
 470   bool has_more_regions(G1HeapRegionAttr dest);
 471   HeapRegion* new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest);
 472   void retire_gc_alloc_region(HeapRegion* alloc_region,
 473                               size_t allocated_bytes, G1HeapRegionAttr dest);
 474 
 475   void update_retained_survivor_gc_alloc_region(HeapRegion* alloc_region);
 476 
 477   // - if explicit_gc is true, the GC is for a System.gc() etc,
 478   //   otherwise it's for a failed allocation.
 479   // - if clear_all_soft_refs is true, all soft references should be
 480   //   cleared during the GC.
 481   // - it returns false if it is unable to do the collection due to the
 482   //   GC locker being active, true otherwise.
 483   bool do_full_collection(bool explicit_gc,
 484                           bool clear_all_soft_refs);
 485 
 486   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 487   virtual void do_full_collection(bool clear_all_soft_refs);
 488 
 489   // Callback from VM_G1CollectForAllocation operation.
 490   // This function does everything necessary/possible to satisfy a
 491   // failed allocation request (including collection, expansion, etc.)
 492   HeapWord* satisfy_failed_allocation(size_t word_size,
 493                                       bool* succeeded);
 494   // Internal helpers used during full GC to split it up to
 495   // increase readability.
 496   void abort_concurrent_cycle();
 497   void verify_before_full_collection(bool explicit_gc);
 498   void prepare_heap_for_full_collection();
 499   void prepare_heap_for_mutators();
 500   void abort_refinement();
 501   void verify_after_full_collection();
 502   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 503 
 504   // Helper method for satisfy_failed_allocation()
 505   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 506                                              bool do_gc,
 507                                              bool clear_all_soft_refs,
 508                                              bool expect_null_mutator_alloc_region,
 509                                              bool* gc_succeeded);
 510 
 511   // Attempting to expand the heap sufficiently
 512   // to support an allocation of the given "word_size".  If
 513   // successful, perform the allocation and return the address of the
 514   // allocated block, or else "NULL".
 515   HeapWord* expand_and_allocate(size_t word_size);
 516 
 517   // Process any reference objects discovered.
 518   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 519 
 520   // If during an initial mark pause we may install a pending list head which is not
 521   // otherwise reachable ensure that it is marked in the bitmap for concurrent marking
 522   // to discover.
 523   void make_pending_list_reachable();
 524 
 525   // Merges the information gathered on a per-thread basis for all worker threads
 526   // during GC into global variables.
 527   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 528 public:
 529   G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
 530 
 531   WorkGang* workers() const { return _workers; }
 532 
 533   // Runs the given AbstractGangTask with the current active workers, returning the
 534   // total time taken.
 535   Tickspan run_task(AbstractGangTask* task);
 536 
 537   G1Allocator* allocator() {
 538     return _allocator;
 539   }
 540 
 541   G1HeapVerifier* verifier() {
 542     return _verifier;
 543   }
 544 
 545   G1MonitoringSupport* g1mm() {
 546     assert(_g1mm != NULL, "should have been initialized");
 547     return _g1mm;
 548   }
 549 
 550   void resize_heap_if_necessary();
 551 
 552   // Expand the garbage-first heap by at least the given size (in bytes!).
 553   // Returns true if the heap was expanded by the requested amount;
 554   // false otherwise.
 555   // (Rounds up to a HeapRegion boundary.)
 556   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 557 
 558   // Returns the PLAB statistics for a given destination.
 559   inline G1EvacStats* alloc_buffer_stats(G1HeapRegionAttr dest);
 560 
 561   // Determines PLAB size for a given destination.
 562   inline size_t desired_plab_sz(G1HeapRegionAttr dest);
 563 
 564   // Do anything common to GC's.
 565   void gc_prologue(bool full);
 566   void gc_epilogue(bool full);
 567 
 568   // Does the given region fulfill remembered set based eager reclaim candidate requirements?
 569   bool is_potential_eager_reclaim_candidate(HeapRegion* r) const;
 570 
 571   // Modify the reclaim candidate set and test for presence.
 572   // These are only valid for starts_humongous regions.
 573   inline void set_humongous_reclaim_candidate(uint region, bool value);
 574   inline bool is_humongous_reclaim_candidate(uint region);
 575 
 576   // Remove from the reclaim candidate set.  Also remove from the
 577   // collection set so that later encounters avoid the slow path.
 578   inline void set_humongous_is_live(oop obj);
 579 
 580   // Register the given region to be part of the collection set.
 581   inline void register_humongous_region_with_region_attr(uint index);
 582   // Update region attributes table with information about all regions.
 583   void register_regions_with_region_attr();
 584   // We register a region with the fast "in collection set" test. We
 585   // simply set to true the array slot corresponding to this region.
 586   void register_young_region_with_region_attr(HeapRegion* r) {
 587     _region_attr.set_in_young(r->hrm_index());
 588   }
 589   inline void register_region_with_region_attr(HeapRegion* r);
 590   inline void register_old_region_with_region_attr(HeapRegion* r);
 591   inline void register_optional_region_with_region_attr(HeapRegion* r);
 592 
 593   void clear_region_attr(const HeapRegion* hr) {
 594     _region_attr.clear(hr);
 595   }
 596 
 597   void clear_region_attr() {
 598     _region_attr.clear();
 599   }
 600 
 601   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 602 
 603   // This is called at the start of either a concurrent cycle or a Full
 604   // GC to update the number of old marking cycles started.
 605   void increment_old_marking_cycles_started();
 606 
 607   // This is called at the end of either a concurrent cycle or a Full
 608   // GC to update the number of old marking cycles completed. Those two
 609   // can happen in a nested fashion, i.e., we start a concurrent
 610   // cycle, a Full GC happens half-way through it which ends first,
 611   // and then the cycle notices that a Full GC happened and ends
 612   // too. The concurrent parameter is a boolean to help us do a bit
 613   // tighter consistency checking in the method. If concurrent is
 614   // false, the caller is the inner caller in the nesting (i.e., the
 615   // Full GC). If concurrent is true, the caller is the outer caller
 616   // in this nesting (i.e., the concurrent cycle). Further nesting is
 617   // not currently supported. The end of this call also notifies
 618   // the FullGCCount_lock in case a Java thread is waiting for a full
 619   // GC to happen (e.g., it called System.gc() with
 620   // +ExplicitGCInvokesConcurrent).
 621   void increment_old_marking_cycles_completed(bool concurrent);
 622 
 623   uint old_marking_cycles_completed() {
 624     return _old_marking_cycles_completed;
 625   }
 626 
 627   G1HRPrinter* hr_printer() { return &_hr_printer; }
 628 
 629   // Allocates a new heap region instance.
 630   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 631 
 632   // Allocate the highest free region in the reserved heap. This will commit
 633   // regions as necessary.
 634   HeapRegion* alloc_highest_free_region();
 635 
 636   // Frees a non-humongous region by initializing its contents and
 637   // adding it to the free list that's passed as a parameter (this is
 638   // usually a local list which will be appended to the master free
 639   // list later). The used bytes of freed regions are accumulated in
 640   // pre_used. If skip_remset is true, the region's RSet will not be freed
 641   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 642   // be freed up. The assumption is that this will be done later.
 643   // The locked parameter indicates if the caller has already taken
 644   // care of proper synchronization. This may allow some optimizations.
 645   void free_region(HeapRegion* hr,
 646                    FreeRegionList* free_list,
 647                    bool skip_remset,
 648                    bool skip_hot_card_cache = false,
 649                    bool locked = false);
 650 
 651   // It dirties the cards that cover the block so that the post
 652   // write barrier never queues anything when updating objects on this
 653   // block. It is assumed (and in fact we assert) that the block
 654   // belongs to a young region.
 655   inline void dirty_young_block(HeapWord* start, size_t word_size);
 656 
 657   // Frees a humongous region by collapsing it into individual regions
 658   // and calling free_region() for each of them. The freed regions
 659   // will be added to the free list that's passed as a parameter (this
 660   // is usually a local list which will be appended to the master free
 661   // list later).
 662   // The method assumes that only a single thread is ever calling
 663   // this for a particular region at once.
 664   void free_humongous_region(HeapRegion* hr,
 665                              FreeRegionList* free_list);
 666 
 667   // Facility for allocating in 'archive' regions in high heap memory and
 668   // recording the allocated ranges. These should all be called from the
 669   // VM thread at safepoints, without the heap lock held. They can be used
 670   // to create and archive a set of heap regions which can be mapped at the
 671   // same fixed addresses in a subsequent JVM invocation.
 672   void begin_archive_alloc_range(bool open = false);
 673 
 674   // Check if the requested size would be too large for an archive allocation.
 675   bool is_archive_alloc_too_large(size_t word_size);
 676 
 677   // Allocate memory of the requested size from the archive region. This will
 678   // return NULL if the size is too large or if no memory is available. It
 679   // does not trigger a garbage collection.
 680   HeapWord* archive_mem_allocate(size_t word_size);
 681 
 682   // Optionally aligns the end address and returns the allocated ranges in
 683   // an array of MemRegions in order of ascending addresses.
 684   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 685                                size_t end_alignment_in_bytes = 0);
 686 
 687   // Facility for allocating a fixed range within the heap and marking
 688   // the containing regions as 'archive'. For use at JVM init time, when the
 689   // caller may mmap archived heap data at the specified range(s).
 690   // Verify that the MemRegions specified in the argument array are within the
 691   // reserved heap.
 692   bool check_archive_addresses(MemRegion* range, size_t count);
 693 
 694   // Commit the appropriate G1 regions containing the specified MemRegions
 695   // and mark them as 'archive' regions. The regions in the array must be
 696   // non-overlapping and in order of ascending address.
 697   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 698 
 699   // Insert any required filler objects in the G1 regions around the specified
 700   // ranges to make the regions parseable. This must be called after
 701   // alloc_archive_regions, and after class loading has occurred.
 702   void fill_archive_regions(MemRegion* range, size_t count);
 703 
 704   // For each of the specified MemRegions, uncommit the containing G1 regions
 705   // which had been allocated by alloc_archive_regions. This should be called
 706   // rather than fill_archive_regions at JVM init time if the archive file
 707   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 708   void dealloc_archive_regions(MemRegion* range, size_t count, bool is_open);
 709 
 710   oop materialize_archived_object(oop obj);
 711 
 712 private:
 713 
 714   // Shrink the garbage-first heap by at most the given size (in bytes!).
 715   // (Rounds down to a HeapRegion boundary.)
 716   void shrink(size_t expand_bytes);
 717   void shrink_helper(size_t expand_bytes);
 718 
 719   #if TASKQUEUE_STATS
 720   static void print_taskqueue_stats_hdr(outputStream* const st);
 721   void print_taskqueue_stats() const;
 722   void reset_taskqueue_stats();
 723   #endif // TASKQUEUE_STATS
 724 
 725   // Schedule the VM operation that will do an evacuation pause to
 726   // satisfy an allocation request of word_size. *succeeded will
 727   // return whether the VM operation was successful (it did do an
 728   // evacuation pause) or not (another thread beat us to it or the GC
 729   // locker was active). Given that we should not be holding the
 730   // Heap_lock when we enter this method, we will pass the
 731   // gc_count_before (i.e., total_collections()) as a parameter since
 732   // it has to be read while holding the Heap_lock. Currently, both
 733   // methods that call do_collection_pause() release the Heap_lock
 734   // before the call, so it's easy to read gc_count_before just before.
 735   HeapWord* do_collection_pause(size_t         word_size,
 736                                 uint           gc_count_before,
 737                                 bool*          succeeded,
 738                                 GCCause::Cause gc_cause);
 739 
 740   void wait_for_root_region_scanning();
 741 
 742   // The guts of the incremental collection pause, executed by the vm
 743   // thread. It returns false if it is unable to do the collection due
 744   // to the GC locker being active, true otherwise
 745   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 746 
 747   G1HeapVerifier::G1VerifyType young_collection_verify_type() const;
 748   void verify_before_young_collection(G1HeapVerifier::G1VerifyType type);
 749   void verify_after_young_collection(G1HeapVerifier::G1VerifyType type);
 750 
 751   void calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms);
 752 
 753   // Actually do the work of evacuating the parts of the collection set.
 754   void evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states);
 755   void evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states);
 756 private:
 757   // Evacuate the next set of optional regions.
 758   void evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states);
 759 
 760 public:
 761   void pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info);
 762   void post_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 763 
 764   void expand_heap_after_young_collection();
 765   // Update object copying statistics.
 766   void record_obj_copy_mem_stats();
 767 
 768   // The hot card cache for remembered set insertion optimization.
 769   G1HotCardCache* _hot_card_cache;
 770 
 771   // The g1 remembered set of the heap.
 772   G1RemSet* _rem_set;
 773 
 774   // A set of cards that cover the objects for which the Rsets should be updated
 775   // concurrently after the collection.
 776   G1DirtyCardQueueSet _dirty_card_queue_set;
 777 
 778   // After a collection pause, convert the regions in the collection set into free
 779   // regions.
 780   void free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 781 
 782   // Abandon the current collection set without recording policy
 783   // statistics or updating free lists.
 784   void abandon_collection_set(G1CollectionSet* collection_set);
 785 
 786   // The concurrent marker (and the thread it runs in.)
 787   G1ConcurrentMark* _cm;
 788   G1ConcurrentMarkThread* _cm_thread;
 789 
 790   // The concurrent refiner.
 791   G1ConcurrentRefine* _cr;
 792 
 793   // The parallel task queues
 794   RefToScanQueueSet *_task_queues;
 795 
 796   // True iff a evacuation has failed in the current collection.
 797   bool _evacuation_failed;
 798 
 799   EvacuationFailedInfo* _evacuation_failed_info_array;
 800 
 801   // Failed evacuations cause some logical from-space objects to have
 802   // forwarding pointers to themselves.  Reset them.
 803   void remove_self_forwarding_pointers();
 804 
 805   // Restore the objects in the regions in the collection set after an
 806   // evacuation failure.
 807   void restore_after_evac_failure();
 808 
 809   PreservedMarksSet _preserved_marks_set;
 810 
 811   // Preserve the mark of "obj", if necessary, in preparation for its mark
 812   // word being overwritten with a self-forwarding-pointer.
 813   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 814 
 815 #ifndef PRODUCT
 816   // Support for forcing evacuation failures. Analogous to
 817   // PromotionFailureALot for the other collectors.
 818 
 819   // Records whether G1EvacuationFailureALot should be in effect
 820   // for the current GC
 821   bool _evacuation_failure_alot_for_current_gc;
 822 
 823   // Used to record the GC number for interval checking when
 824   // determining whether G1EvaucationFailureALot is in effect
 825   // for the current GC.
 826   size_t _evacuation_failure_alot_gc_number;
 827 
 828   // Count of the number of evacuations between failures.
 829   volatile size_t _evacuation_failure_alot_count;
 830 
 831   // Set whether G1EvacuationFailureALot should be in effect
 832   // for the current GC (based upon the type of GC and which
 833   // command line flags are set);
 834   inline bool evacuation_failure_alot_for_gc_type(bool for_young_gc,
 835                                                   bool during_initial_mark,
 836                                                   bool mark_or_rebuild_in_progress);
 837 
 838   inline void set_evacuation_failure_alot_for_current_gc();
 839 
 840   // Return true if it's time to cause an evacuation failure.
 841   inline bool evacuation_should_fail();
 842 
 843   // Reset the G1EvacuationFailureALot counters.  Should be called at
 844   // the end of an evacuation pause in which an evacuation failure occurred.
 845   inline void reset_evacuation_should_fail();
 846 #endif // !PRODUCT
 847 
 848   // ("Weak") Reference processing support.
 849   //
 850   // G1 has 2 instances of the reference processor class. One
 851   // (_ref_processor_cm) handles reference object discovery
 852   // and subsequent processing during concurrent marking cycles.
 853   //
 854   // The other (_ref_processor_stw) handles reference object
 855   // discovery and processing during full GCs and incremental
 856   // evacuation pauses.
 857   //
 858   // During an incremental pause, reference discovery will be
 859   // temporarily disabled for _ref_processor_cm and will be
 860   // enabled for _ref_processor_stw. At the end of the evacuation
 861   // pause references discovered by _ref_processor_stw will be
 862   // processed and discovery will be disabled. The previous
 863   // setting for reference object discovery for _ref_processor_cm
 864   // will be re-instated.
 865   //
 866   // At the start of marking:
 867   //  * Discovery by the CM ref processor is verified to be inactive
 868   //    and it's discovered lists are empty.
 869   //  * Discovery by the CM ref processor is then enabled.
 870   //
 871   // At the end of marking:
 872   //  * Any references on the CM ref processor's discovered
 873   //    lists are processed (possibly MT).
 874   //
 875   // At the start of full GC we:
 876   //  * Disable discovery by the CM ref processor and
 877   //    empty CM ref processor's discovered lists
 878   //    (without processing any entries).
 879   //  * Verify that the STW ref processor is inactive and it's
 880   //    discovered lists are empty.
 881   //  * Temporarily set STW ref processor discovery as single threaded.
 882   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 883   //    field.
 884   //  * Finally enable discovery by the STW ref processor.
 885   //
 886   // The STW ref processor is used to record any discovered
 887   // references during the full GC.
 888   //
 889   // At the end of a full GC we:
 890   //  * Enqueue any reference objects discovered by the STW ref processor
 891   //    that have non-live referents. This has the side-effect of
 892   //    making the STW ref processor inactive by disabling discovery.
 893   //  * Verify that the CM ref processor is still inactive
 894   //    and no references have been placed on it's discovered
 895   //    lists (also checked as a precondition during initial marking).
 896 
 897   // The (stw) reference processor...
 898   ReferenceProcessor* _ref_processor_stw;
 899 
 900   // During reference object discovery, the _is_alive_non_header
 901   // closure (if non-null) is applied to the referent object to
 902   // determine whether the referent is live. If so then the
 903   // reference object does not need to be 'discovered' and can
 904   // be treated as a regular oop. This has the benefit of reducing
 905   // the number of 'discovered' reference objects that need to
 906   // be processed.
 907   //
 908   // Instance of the is_alive closure for embedding into the
 909   // STW reference processor as the _is_alive_non_header field.
 910   // Supplying a value for the _is_alive_non_header field is
 911   // optional but doing so prevents unnecessary additions to
 912   // the discovered lists during reference discovery.
 913   G1STWIsAliveClosure _is_alive_closure_stw;
 914 
 915   G1STWSubjectToDiscoveryClosure _is_subject_to_discovery_stw;
 916 
 917   // The (concurrent marking) reference processor...
 918   ReferenceProcessor* _ref_processor_cm;
 919 
 920   // Instance of the concurrent mark is_alive closure for embedding
 921   // into the Concurrent Marking reference processor as the
 922   // _is_alive_non_header field. Supplying a value for the
 923   // _is_alive_non_header field is optional but doing so prevents
 924   // unnecessary additions to the discovered lists during reference
 925   // discovery.
 926   G1CMIsAliveClosure _is_alive_closure_cm;
 927 
 928   G1CMSubjectToDiscoveryClosure _is_subject_to_discovery_cm;
 929 public:
 930 
 931   RefToScanQueue *task_queue(uint i) const;
 932 
 933   uint num_task_queues() const;
 934 
 935   // A set of cards where updates happened during the GC
 936   G1DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 937 
 938   // Create a G1CollectedHeap.
 939   // Must call the initialize method afterwards.
 940   // May not return if something goes wrong.
 941   G1CollectedHeap();
 942 
 943 private:
 944   jint initialize_concurrent_refinement();
 945   jint initialize_young_gen_sampling_thread();
 946 public:
 947   // Initialize the G1CollectedHeap to have the initial and
 948   // maximum sizes and remembered and barrier sets
 949   // specified by the policy object.
 950   jint initialize();
 951 
 952   virtual void stop();
 953   virtual void safepoint_synchronize_begin();
 954   virtual void safepoint_synchronize_end();
 955 
 956   // Does operations required after initialization has been done.
 957   void post_initialize();
 958 
 959   // Initialize weak reference processing.
 960   void ref_processing_init();
 961 
 962   virtual Name kind() const {
 963     return CollectedHeap::G1;
 964   }
 965 
 966   virtual const char* name() const {
 967     return "G1";
 968   }
 969 
 970   const G1CollectorState* collector_state() const { return &_collector_state; }
 971   G1CollectorState* collector_state() { return &_collector_state; }
 972 
 973   // The current policy object for the collector.
 974   G1Policy* policy() const { return _policy; }
 975   // The remembered set.
 976   G1RemSet* rem_set() const { return _rem_set; }
 977 
 978   inline G1GCPhaseTimes* phase_times() const;
 979 
 980   HeapRegionManager* hrm() const { return _hrm; }
 981 
 982   const G1CollectionSet* collection_set() const { return &_collection_set; }
 983   G1CollectionSet* collection_set() { return &_collection_set; }
 984 
 985   virtual SoftRefPolicy* soft_ref_policy();
 986 
 987   virtual void initialize_serviceability();
 988   virtual MemoryUsage memory_usage();
 989   virtual GrowableArray<GCMemoryManager*> memory_managers();
 990   virtual GrowableArray<MemoryPool*> memory_pools();
 991 
 992   // Try to minimize the remembered set.
 993   void scrub_rem_set();
 994 
 995   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
 996   void iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_i);
 997 
 998   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
 999   void iterate_dirty_card_closure(G1CardTableEntryClosure* cl, uint worker_i);
1000 
1001   // The shared block offset table array.
1002   G1BlockOffsetTable* bot() const { return _bot; }
1003 
1004   // Reference Processing accessors
1005 
1006   // The STW reference processor....
1007   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1008 
1009   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1010 
1011   // The Concurrent Marking reference processor...
1012   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1013 
1014   size_t unused_committed_regions_in_bytes() const;
1015 
1016   virtual size_t capacity() const;
1017   virtual size_t used() const;
1018   // This should be called when we're not holding the heap lock. The
1019   // result might be a bit inaccurate.
1020   size_t used_unlocked() const;
1021   size_t recalculate_used() const;
1022 
1023   // These virtual functions do the actual allocation.
1024   // Some heaps may offer a contiguous region for shared non-blocking
1025   // allocation, via inlined code (by exporting the address of the top and
1026   // end fields defining the extent of the contiguous allocation region.)
1027   // But G1CollectedHeap doesn't yet support this.
1028 
1029   virtual bool is_maximal_no_gc() const {
1030     return _hrm->available() == 0;
1031   }
1032 
1033   // Returns whether there are any regions left in the heap for allocation.
1034   bool has_regions_left_for_allocation() const {
1035     return !is_maximal_no_gc() || num_free_regions() != 0;
1036   }
1037 
1038   // The current number of regions in the heap.
1039   uint num_regions() const { return _hrm->length(); }
1040 
1041   // The max number of regions in the heap.
1042   uint max_regions() const { return _hrm->max_length(); }
1043 
1044   // Max number of regions that can be comitted.
1045   uint max_expandable_regions() const { return _hrm->max_expandable_length(); }
1046 
1047   // The number of regions that are completely free.
1048   uint num_free_regions() const { return _hrm->num_free_regions(); }
1049 
1050   // The number of regions that can be allocated into.
1051   uint num_free_or_available_regions() const { return num_free_regions() + _hrm->available(); }
1052 
1053   MemoryUsage get_auxiliary_data_memory_usage() const {
1054     return _hrm->get_auxiliary_data_memory_usage();
1055   }
1056 
1057   // The number of regions that are not completely free.
1058   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1059 
1060 #ifdef ASSERT
1061   bool is_on_master_free_list(HeapRegion* hr) {
1062     return _hrm->is_free(hr);
1063   }
1064 #endif // ASSERT
1065 
1066   inline void old_set_add(HeapRegion* hr);
1067   inline void old_set_remove(HeapRegion* hr);
1068 
1069   inline void archive_set_add(HeapRegion* hr);
1070 
1071   size_t non_young_capacity_bytes() {
1072     return (old_regions_count() + _archive_set.length() + humongous_regions_count()) * HeapRegion::GrainBytes;
1073   }
1074 
1075   // Determine whether the given region is one that we are using as an
1076   // old GC alloc region.
1077   bool is_old_gc_alloc_region(HeapRegion* hr);
1078 
1079   // Perform a collection of the heap; intended for use in implementing
1080   // "System.gc".  This probably implies as full a collection as the
1081   // "CollectedHeap" supports.
1082   virtual void collect(GCCause::Cause cause);
1083 
1084   // Perform a collection of the heap with the given cause; if the VM operation
1085   // fails to execute for any reason, retry only if retry_on_gc_failure is set.
1086   // Returns whether this collection actually executed.
1087   bool try_collect(GCCause::Cause cause, bool retry_on_gc_failure);
1088 
1089   // True iff an evacuation has failed in the most-recent collection.
1090   bool evacuation_failed() { return _evacuation_failed; }
1091 
1092   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1093   void prepend_to_freelist(FreeRegionList* list);
1094   void decrement_summary_bytes(size_t bytes);
1095 
1096   virtual bool is_in(const void* p) const;
1097 #ifdef ASSERT
1098   // Returns whether p is in one of the available areas of the heap. Slow but
1099   // extensive version.
1100   bool is_in_exact(const void* p) const;
1101 #endif
1102 
1103   // Return "TRUE" iff the given object address is within the collection
1104   // set. Assumes that the reference points into the heap.
1105   inline bool is_in_cset(const HeapRegion *hr);
1106   inline bool is_in_cset(oop obj);
1107   inline bool is_in_cset(HeapWord* addr);
1108 
1109   inline bool is_in_cset_or_humongous(const oop obj);
1110 
1111  private:
1112   // This array is used for a quick test on whether a reference points into
1113   // the collection set or not. Each of the array's elements denotes whether the
1114   // corresponding region is in the collection set or not.
1115   G1HeapRegionAttrBiasedMappedArray _region_attr;
1116 
1117  public:
1118 
1119   inline G1HeapRegionAttr region_attr(const void* obj);
1120 
1121   // Return "TRUE" iff the given object address is in the reserved
1122   // region of g1.
1123   bool is_in_g1_reserved(const void* p) const {
1124     return _hrm->reserved().contains(p);
1125   }
1126 
1127   // Returns a MemRegion that corresponds to the space that has been
1128   // reserved for the heap
1129   MemRegion g1_reserved() const {
1130     return _hrm->reserved();
1131   }
1132 
1133   G1HotCardCache* g1_hot_card_cache() const { return _hot_card_cache; }
1134 
1135   G1CardTable* card_table() const {
1136     return _card_table;
1137   }
1138 
1139   // Iteration functions.
1140 
1141   // Iterate over all objects, calling "cl.do_object" on each.
1142   virtual void object_iterate(ObjectClosure* cl);
1143 
1144   virtual void safe_object_iterate(ObjectClosure* cl) {
1145     object_iterate(cl);
1146   }
1147 
1148   // Iterate over heap regions, in address order, terminating the
1149   // iteration early if the "do_heap_region" method returns "true".
1150   void heap_region_iterate(HeapRegionClosure* blk) const;
1151 
1152   // Return the region with the given index. It assumes the index is valid.
1153   inline HeapRegion* region_at(uint index) const;
1154   inline HeapRegion* region_at_or_null(uint index) const;
1155 
1156   // Return the next region (by index) that is part of the same
1157   // humongous object that hr is part of.
1158   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1159 
1160   // Calculate the region index of the given address. Given address must be
1161   // within the heap.
1162   inline uint addr_to_region(HeapWord* addr) const;
1163 
1164   inline HeapWord* bottom_addr_for_region(uint index) const;
1165 
1166   // Two functions to iterate over the heap regions in parallel. Threads
1167   // compete using the HeapRegionClaimer to claim the regions before
1168   // applying the closure on them.
1169   // The _from_worker_offset version uses the HeapRegionClaimer and
1170   // the worker id to calculate a start offset to prevent all workers to
1171   // start from the point.
1172   void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1173                                                   HeapRegionClaimer* hrclaimer,
1174                                                   uint worker_id) const;
1175 
1176   void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1177                                           HeapRegionClaimer* hrclaimer) const;
1178 
1179   // Iterate over all regions currently in the current collection set.
1180   void collection_set_iterate_all(HeapRegionClosure* blk);
1181 
1182   // Iterate over the regions in the current increment of the collection set.
1183   // Starts the iteration so that the start regions of a given worker id over the
1184   // set active_workers are evenly spread across the set of collection set regions
1185   // to be iterated.
1186   void collection_set_iterate_increment_from(HeapRegionClosure *blk, uint worker_id);
1187 
1188   // Returns the HeapRegion that contains addr. addr must not be NULL.
1189   template <class T>
1190   inline HeapRegion* heap_region_containing(const T addr) const;
1191 
1192   // Returns the HeapRegion that contains addr, or NULL if that is an uncommitted
1193   // region. addr must not be NULL.
1194   template <class T>
1195   inline HeapRegion* heap_region_containing_or_null(const T addr) const;
1196 
1197   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1198   // each address in the (reserved) heap is a member of exactly
1199   // one block.  The defining characteristic of a block is that it is
1200   // possible to find its size, and thus to progress forward to the next
1201   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1202   // represent Java objects, or they might be free blocks in a
1203   // free-list-based heap (or subheap), as long as the two kinds are
1204   // distinguishable and the size of each is determinable.
1205 
1206   // Returns the address of the start of the "block" that contains the
1207   // address "addr".  We say "blocks" instead of "object" since some heaps
1208   // may not pack objects densely; a chunk may either be an object or a
1209   // non-object.
1210   virtual HeapWord* block_start(const void* addr) const;
1211 
1212   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1213   // the block is an object.
1214   virtual bool block_is_obj(const HeapWord* addr) const;
1215 
1216   // Section on thread-local allocation buffers (TLABs)
1217   // See CollectedHeap for semantics.
1218 
1219   bool supports_tlab_allocation() const;
1220   size_t tlab_capacity(Thread* ignored) const;
1221   size_t tlab_used(Thread* ignored) const;
1222   size_t max_tlab_size() const;
1223   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1224 
1225   inline bool is_in_young(const oop obj);
1226 
1227   // Returns "true" iff the given word_size is "very large".
1228   static bool is_humongous(size_t word_size) {
1229     // Note this has to be strictly greater-than as the TLABs
1230     // are capped at the humongous threshold and we want to
1231     // ensure that we don't try to allocate a TLAB as
1232     // humongous and that we don't allocate a humongous
1233     // object in a TLAB.
1234     return word_size > _humongous_object_threshold_in_words;
1235   }
1236 
1237   // Returns the humongous threshold for a specific region size
1238   static size_t humongous_threshold_for(size_t region_size) {
1239     return (region_size / 2);
1240   }
1241 
1242   // Returns the number of regions the humongous object of the given word size
1243   // requires.
1244   static size_t humongous_obj_size_in_regions(size_t word_size);
1245 
1246   // Print the maximum heap capacity.
1247   virtual size_t max_capacity() const;
1248 
1249   // Return the size of reserved memory. Returns different value than max_capacity() when AllocateOldGenAt is used.
1250   virtual size_t max_reserved_capacity() const;
1251 
1252   virtual jlong millis_since_last_gc();
1253 
1254 
1255   // Convenience function to be used in situations where the heap type can be
1256   // asserted to be this type.
1257   static G1CollectedHeap* heap();
1258 
1259   void set_region_short_lived_locked(HeapRegion* hr);
1260   // Used to re-set survivor region to eden region.
1261   void set_retained_region_short_lived_locked(HeapRegion* hr);
1262   // add appropriate methods for any other surv rate groups
1263 
1264   const G1SurvivorRegions* survivor() const { return &_survivor; }
1265 
1266   // Returns eden region count without any retained region.
1267   // At the end of GC, all retained regions were already added to _eden so
1268   // we have to subtract the retained region count to return only eden regions.
1269   uint eden_regions_count() const;
1270   // Returns survivor region count with retained region.
1271   // At the end of GC, all retained regions were already removed from _survivor so
1272   // we have to add the retained region count to return survivor regions.
1273   uint survivor_regions_count() const;
1274   // Returns used bytes of mutator regions without used bytes of a retained region.
1275   size_t eden_regions_used_bytes() const;
1276   // Returns used bytes of survivor regions with used bytes of a retained region.
1277   size_t survivor_regions_used_bytes() const;
1278   uint young_regions_count() const { return _eden.length() + _survivor.length(); }
1279   uint old_regions_count() const { return _old_set.length(); }
1280   uint archive_regions_count() const { return _archive_set.length(); }
1281   uint humongous_regions_count() const { return _humongous_set.length(); }
1282 
1283   void convert_survivor_to_eden() { _survivor.convert_to_eden(); }
1284 
1285 #ifdef ASSERT
1286   bool check_young_list_empty();
1287 #endif
1288 
1289   // *** Stuff related to concurrent marking.  It's not clear to me that so
1290   // many of these need to be public.
1291 
1292   // The functions below are helper functions that a subclass of
1293   // "CollectedHeap" can use in the implementation of its virtual
1294   // functions.
1295   // This performs a concurrent marking of the live objects in a
1296   // bitmap off to the side.
1297   void do_concurrent_mark();
1298 
1299   bool is_marked_next(oop obj) const;
1300 
1301   // Determine if an object is dead, given the object and also
1302   // the region to which the object belongs. An object is dead
1303   // iff a) it was not allocated since the last mark, b) it
1304   // is not marked, and c) it is not in an archive region.
1305   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1306     return
1307       hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
1308       !hr->is_archive();
1309   }
1310 
1311   // This function returns true when an object has been
1312   // around since the previous marking and hasn't yet
1313   // been marked during this marking, and is not in an archive region.
1314   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1315     return
1316       !hr->obj_allocated_since_next_marking(obj) &&
1317       !is_marked_next(obj) &&
1318       !hr->is_archive();
1319   }
1320 
1321   // Determine if an object is dead, given only the object itself.
1322   // This will find the region to which the object belongs and
1323   // then call the region version of the same function.
1324 
1325   // Added if it is NULL it isn't dead.
1326 
1327   inline bool is_obj_dead(const oop obj) const;
1328 
1329   inline bool is_obj_ill(const oop obj) const;
1330 
1331   inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
1332   inline bool is_obj_dead_full(const oop obj) const;
1333 
1334   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1335 
1336   // Refinement
1337 
1338   G1ConcurrentRefine* concurrent_refine() const { return _cr; }
1339 
1340   // Optimized nmethod scanning support routines
1341 
1342   // Register the given nmethod with the G1 heap.
1343   virtual void register_nmethod(nmethod* nm);
1344 
1345   // Unregister the given nmethod from the G1 heap.
1346   virtual void unregister_nmethod(nmethod* nm);
1347 
1348   // No nmethod flushing needed.
1349   virtual void flush_nmethod(nmethod* nm) {}
1350 
1351   // No nmethod verification implemented.
1352   virtual void verify_nmethod(nmethod* nm) {}
1353 
1354   // Free up superfluous code root memory.
1355   void purge_code_root_memory();
1356 
1357   // Rebuild the strong code root lists for each region
1358   // after a full GC.
1359   void rebuild_strong_code_roots();
1360 
1361   // Partial cleaning of VM internal data structures.
1362   void string_dedup_cleaning(BoolObjectClosure* is_alive,
1363                              OopClosure* keep_alive,
1364                              G1GCPhaseTimes* phase_times = NULL);
1365 
1366   // Performs cleaning of data structures after class unloading.
1367   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1368 
1369   // Redirty logged cards in the refinement queue.
1370   void redirty_logged_cards();
1371   // Verification
1372 
1373   // Deduplicate the string
1374   virtual void deduplicate_string(oop str);
1375 
1376   // Perform any cleanup actions necessary before allowing a verification.
1377   virtual void prepare_for_verify();
1378 
1379   // Perform verification.
1380 
1381   // vo == UsePrevMarking -> use "prev" marking information,
1382   // vo == UseNextMarking -> use "next" marking information
1383   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
1384   //
1385   // NOTE: Only the "prev" marking information is guaranteed to be
1386   // consistent most of the time, so most calls to this should use
1387   // vo == UsePrevMarking.
1388   // Currently, there is only one case where this is called with
1389   // vo == UseNextMarking, which is to verify the "next" marking
1390   // information at the end of remark.
1391   // Currently there is only one place where this is called with
1392   // vo == UseFullMarking, which is to verify the marking during a
1393   // full GC.
1394   void verify(VerifyOption vo);
1395 
1396   // WhiteBox testing support.
1397   virtual bool supports_concurrent_phase_control() const;
1398   virtual bool request_concurrent_phase(const char* phase);
1399   bool is_heterogeneous_heap() const;
1400 
1401   virtual WorkGang* get_safepoint_workers() { return _workers; }
1402 
1403   // The methods below are here for convenience and dispatch the
1404   // appropriate method depending on value of the given VerifyOption
1405   // parameter. The values for that parameter, and their meanings,
1406   // are the same as those above.
1407 
1408   bool is_obj_dead_cond(const oop obj,
1409                         const HeapRegion* hr,
1410                         const VerifyOption vo) const;
1411 
1412   bool is_obj_dead_cond(const oop obj,
1413                         const VerifyOption vo) const;
1414 
1415   G1HeapSummary create_g1_heap_summary();
1416   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1417 
1418   // Printing
1419 private:
1420   void print_heap_regions() const;
1421   void print_regions_on(outputStream* st) const;
1422 
1423 public:
1424   virtual void print_on(outputStream* st) const;
1425   virtual void print_extended_on(outputStream* st) const;
1426   virtual void print_on_error(outputStream* st) const;
1427 
1428   virtual void print_gc_threads_on(outputStream* st) const;
1429   virtual void gc_threads_do(ThreadClosure* tc) const;
1430 
1431   // Override
1432   void print_tracing_info() const;
1433 
1434   // The following two methods are helpful for debugging RSet issues.
1435   void print_cset_rsets() PRODUCT_RETURN;
1436   void print_all_rsets() PRODUCT_RETURN;
1437 
1438   size_t pending_card_num();
1439 };
1440 
1441 class G1ParEvacuateFollowersClosure : public VoidClosure {
1442 private:
1443   double _start_term;
1444   double _term_time;
1445   size_t _term_attempts;
1446 
1447   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1448   void end_term_time() { _term_time += (os::elapsedTime() - _start_term); }
1449 protected:
1450   G1CollectedHeap*              _g1h;
1451   G1ParScanThreadState*         _par_scan_state;
1452   RefToScanQueueSet*            _queues;
1453   ParallelTaskTerminator*       _terminator;
1454   G1GCPhaseTimes::GCParPhases   _phase;
1455 
1456   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1457   RefToScanQueueSet*      queues()         { return _queues; }
1458   ParallelTaskTerminator* terminator()     { return _terminator; }
1459 
1460 public:
1461   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1462                                 G1ParScanThreadState* par_scan_state,
1463                                 RefToScanQueueSet* queues,
1464                                 ParallelTaskTerminator* terminator,
1465                                 G1GCPhaseTimes::GCParPhases phase)
1466     : _start_term(0.0), _term_time(0.0), _term_attempts(0),
1467       _g1h(g1h), _par_scan_state(par_scan_state),
1468       _queues(queues), _terminator(terminator), _phase(phase) {}
1469 
1470   void do_void();
1471 
1472   double term_time() const { return _term_time; }
1473   size_t term_attempts() const { return _term_attempts; }
1474 
1475 private:
1476   inline bool offer_termination();
1477 };
1478 
1479 #endif // SHARE_GC_G1_G1COLLECTEDHEAP_HPP