1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCPhaseTimes.hpp"
  45 #include "gc/g1/g1HeapSizingPolicy.hpp"
  46 #include "gc/g1/g1HeapTransition.hpp"
  47 #include "gc/g1/g1HeapVerifier.hpp"
  48 #include "gc/g1/g1HotCardCache.hpp"
  49 #include "gc/g1/g1MemoryPool.hpp"
  50 #include "gc/g1/g1OopClosures.inline.hpp"
  51 #include "gc/g1/g1ParallelCleaning.hpp"
  52 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  53 #include "gc/g1/g1Policy.hpp"
  54 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  55 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  56 #include "gc/g1/g1RemSet.hpp"
  57 #include "gc/g1/g1RootClosures.hpp"
  58 #include "gc/g1/g1RootProcessor.hpp"
  59 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  60 #include "gc/g1/g1StringDedup.hpp"
  61 #include "gc/g1/g1ThreadLocalData.hpp"
  62 #include "gc/g1/g1Trace.hpp"
  63 #include "gc/g1/g1YCTypes.hpp"
  64 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  65 #include "gc/g1/g1VMOperations.hpp"
  66 #include "gc/g1/heapRegion.inline.hpp"
  67 #include "gc/g1/heapRegionRemSet.hpp"
  68 #include "gc/g1/heapRegionSet.inline.hpp"
  69 #include "gc/shared/gcBehaviours.hpp"
  70 #include "gc/shared/gcHeapSummary.hpp"
  71 #include "gc/shared/gcId.hpp"
  72 #include "gc/shared/gcLocker.hpp"
  73 #include "gc/shared/gcTimer.hpp"
  74 #include "gc/shared/gcTraceTime.inline.hpp"
  75 #include "gc/shared/generationSpec.hpp"
  76 #include "gc/shared/isGCActiveMark.hpp"
  77 #include "gc/shared/locationPrinter.inline.hpp"
  78 #include "gc/shared/oopStorageParState.hpp"
  79 #include "gc/shared/preservedMarks.inline.hpp"
  80 #include "gc/shared/suspendibleThreadSet.hpp"
  81 #include "gc/shared/referenceProcessor.inline.hpp"
  82 #include "gc/shared/taskqueue.inline.hpp"
  83 #include "gc/shared/weakProcessor.inline.hpp"
  84 #include "gc/shared/workerPolicy.hpp"
  85 #include "logging/log.hpp"
  86 #include "memory/allocation.hpp"
  87 #include "memory/iterator.hpp"
  88 #include "memory/resourceArea.hpp"
  89 #include "memory/universe.hpp"
  90 #include "oops/access.inline.hpp"
  91 #include "oops/compressedOops.inline.hpp"
  92 #include "oops/oop.inline.hpp"
  93 #include "runtime/atomic.hpp"
  94 #include "runtime/flags/flagSetting.hpp"
  95 #include "runtime/handles.inline.hpp"
  96 #include "runtime/init.hpp"
  97 #include "runtime/orderAccess.hpp"
  98 #include "runtime/threadSMR.hpp"
  99 #include "runtime/vmThread.hpp"
 100 #include "utilities/align.hpp"
 101 #include "utilities/globalDefinitions.hpp"
 102 #include "utilities/stack.inline.hpp"
 103 
 104 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 105 
 106 // INVARIANTS/NOTES
 107 //
 108 // All allocation activity covered by the G1CollectedHeap interface is
 109 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 110 // and allocate_new_tlab, which are the "entry" points to the
 111 // allocation code from the rest of the JVM.  (Note that this does not
 112 // apply to TLAB allocation, which is not part of this interface: it
 113 // is done by clients of this interface.)
 114 
 115 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 116  private:
 117   size_t _num_dirtied;
 118   G1CollectedHeap* _g1h;
 119   G1CardTable* _g1_ct;
 120 
 121   HeapRegion* region_for_card(CardValue* card_ptr) const {
 122     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 123   }
 124 
 125   bool will_become_free(HeapRegion* hr) const {
 126     // A region will be freed by free_collection_set if the region is in the
 127     // collection set and has not had an evacuation failure.
 128     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 129   }
 130 
 131  public:
 132   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 133     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 134 
 135   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 136     HeapRegion* hr = region_for_card(card_ptr);
 137 
 138     // Should only dirty cards in regions that won't be freed.
 139     if (!will_become_free(hr)) {
 140       *card_ptr = G1CardTable::dirty_card_val();
 141       _num_dirtied++;
 142     }
 143   }
 144 
 145   size_t num_dirtied()   const { return _num_dirtied; }
 146 };
 147 
 148 
 149 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 150   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 151 }
 152 
 153 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 154   // The from card cache is not the memory that is actually committed. So we cannot
 155   // take advantage of the zero_filled parameter.
 156   reset_from_card_cache(start_idx, num_regions);
 157 }
 158 
 159 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 160   Ticks start = Ticks::now();
 161   workers()->run_task(task, workers()->active_workers());
 162   return Ticks::now() - start;
 163 }
 164 
 165 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 166                                              MemRegion mr) {
 167   return new HeapRegion(hrs_index, bot(), mr);
 168 }
 169 
 170 // Private methods.
 171 
 172 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 173                                         HeapRegionType type,
 174                                         bool do_expand,
 175                                         uint node_index) {
 176   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 177          "the only time we use this to allocate a humongous region is "
 178          "when we are allocating a single humongous region");
 179 
 180   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
 181 
 182   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 183     // Currently, only attempts to allocate GC alloc regions set
 184     // do_expand to true. So, we should only reach here during a
 185     // safepoint. If this assumption changes we might have to
 186     // reconsider the use of _expand_heap_after_alloc_failure.
 187     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 188 
 189     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 190                               word_size * HeapWordSize);
 191 
 192     assert(word_size * HeapWordSize < HeapRegion::GrainBytes, 
 193            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 194            word_size * HeapWordSize);
 195     if (expand_single_region(node_index)) {
 196       // Given that expand_single_region() succeeded in expanding the heap, and we
 197       // always expand the heap by an amount aligned to the heap
 198       // region size, the free list should in theory not be empty.
 199       // In either case allocate_free_region() will check for NULL.
 200       res = _hrm->allocate_free_region(type, node_index);
 201     } else {
 202       _expand_heap_after_alloc_failure = false;
 203     }
 204   }
 205   return res;
 206 }
 207 
 208 HeapWord*
 209 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 210                                                            uint num_regions,
 211                                                            size_t word_size) {
 212   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 213   assert(is_humongous(word_size), "word_size should be humongous");
 214   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 215 
 216   // Index of last region in the series.
 217   uint last = first + num_regions - 1;
 218 
 219   // We need to initialize the region(s) we just discovered. This is
 220   // a bit tricky given that it can happen concurrently with
 221   // refinement threads refining cards on these regions and
 222   // potentially wanting to refine the BOT as they are scanning
 223   // those cards (this can happen shortly after a cleanup; see CR
 224   // 6991377). So we have to set up the region(s) carefully and in
 225   // a specific order.
 226 
 227   // The word size sum of all the regions we will allocate.
 228   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 229   assert(word_size <= word_size_sum, "sanity");
 230 
 231   // This will be the "starts humongous" region.
 232   HeapRegion* first_hr = region_at(first);
 233   // The header of the new object will be placed at the bottom of
 234   // the first region.
 235   HeapWord* new_obj = first_hr->bottom();
 236   // This will be the new top of the new object.
 237   HeapWord* obj_top = new_obj + word_size;
 238 
 239   // First, we need to zero the header of the space that we will be
 240   // allocating. When we update top further down, some refinement
 241   // threads might try to scan the region. By zeroing the header we
 242   // ensure that any thread that will try to scan the region will
 243   // come across the zero klass word and bail out.
 244   //
 245   // NOTE: It would not have been correct to have used
 246   // CollectedHeap::fill_with_object() and make the space look like
 247   // an int array. The thread that is doing the allocation will
 248   // later update the object header to a potentially different array
 249   // type and, for a very short period of time, the klass and length
 250   // fields will be inconsistent. This could cause a refinement
 251   // thread to calculate the object size incorrectly.
 252   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 253 
 254   // Next, pad out the unused tail of the last region with filler
 255   // objects, for improved usage accounting.
 256   // How many words we use for filler objects.
 257   size_t word_fill_size = word_size_sum - word_size;
 258 
 259   // How many words memory we "waste" which cannot hold a filler object.
 260   size_t words_not_fillable = 0;
 261 
 262   if (word_fill_size >= min_fill_size()) {
 263     fill_with_objects(obj_top, word_fill_size);
 264   } else if (word_fill_size > 0) {
 265     // We have space to fill, but we cannot fit an object there.
 266     words_not_fillable = word_fill_size;
 267     word_fill_size = 0;
 268   }
 269 
 270   // We will set up the first region as "starts humongous". This
 271   // will also update the BOT covering all the regions to reflect
 272   // that there is a single object that starts at the bottom of the
 273   // first region.
 274   first_hr->set_starts_humongous(obj_top, word_fill_size);
 275   _policy->remset_tracker()->update_at_allocate(first_hr);
 276   // Then, if there are any, we will set up the "continues
 277   // humongous" regions.
 278   HeapRegion* hr = NULL;
 279   for (uint i = first + 1; i <= last; ++i) {
 280     hr = region_at(i);
 281     hr->set_continues_humongous(first_hr);
 282     _policy->remset_tracker()->update_at_allocate(hr);
 283   }
 284 
 285   // Up to this point no concurrent thread would have been able to
 286   // do any scanning on any region in this series. All the top
 287   // fields still point to bottom, so the intersection between
 288   // [bottom,top] and [card_start,card_end] will be empty. Before we
 289   // update the top fields, we'll do a storestore to make sure that
 290   // no thread sees the update to top before the zeroing of the
 291   // object header and the BOT initialization.
 292   OrderAccess::storestore();
 293 
 294   // Now, we will update the top fields of the "continues humongous"
 295   // regions except the last one.
 296   for (uint i = first; i < last; ++i) {
 297     hr = region_at(i);
 298     hr->set_top(hr->end());
 299   }
 300 
 301   hr = region_at(last);
 302   // If we cannot fit a filler object, we must set top to the end
 303   // of the humongous object, otherwise we cannot iterate the heap
 304   // and the BOT will not be complete.
 305   hr->set_top(hr->end() - words_not_fillable);
 306 
 307   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 308          "obj_top should be in last region");
 309 
 310   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 311 
 312   assert(words_not_fillable == 0 ||
 313          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 314          "Miscalculation in humongous allocation");
 315 
 316   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 317 
 318   for (uint i = first; i <= last; ++i) {
 319     hr = region_at(i);
 320     _humongous_set.add(hr);
 321     _hr_printer.alloc(hr);
 322   }
 323 
 324   return new_obj;
 325 }
 326 
 327 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 328   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 329   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 330 }
 331 
 332 // If could fit into free regions w/o expansion, try.
 333 // Otherwise, if can expand, do so.
 334 // Otherwise, if using ex regions might help, try with ex given back.
 335 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 336   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 337 
 338   _verifier->verify_region_sets_optional();
 339 
 340   uint first = G1_NO_HRM_INDEX;
 341   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 342 
 343   if (obj_regions == 1) {
 344     // Only one region to allocate, try to use a fast path by directly allocating
 345     // from the free lists. Do not try to expand here, we will potentially do that
 346     // later.
 347     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
 348     if (hr != NULL) {
 349       first = hr->hrm_index();
 350     }
 351   } else {
 352     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 353     // are lucky enough to find some.
 354     first = _hrm->find_contiguous_only_empty(obj_regions);
 355     if (first != G1_NO_HRM_INDEX) {
 356       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 357     }
 358   }
 359 
 360   if (first == G1_NO_HRM_INDEX) {
 361     // Policy: We could not find enough regions for the humongous object in the
 362     // free list. Look through the heap to find a mix of free and uncommitted regions.
 363     // If so, try expansion.
 364     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 365     if (first != G1_NO_HRM_INDEX) {
 366       // We found something. Make sure these regions are committed, i.e. expand
 367       // the heap. Alternatively we could do a defragmentation GC.
 368       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 369                                     word_size * HeapWordSize);
 370 
 371       _hrm->expand_at(first, obj_regions, workers());
 372       policy()->record_new_heap_size(num_regions());
 373 
 374 #ifdef ASSERT
 375       for (uint i = first; i < first + obj_regions; ++i) {
 376         HeapRegion* hr = region_at(i);
 377         assert(hr->is_free(), "sanity");
 378         assert(hr->is_empty(), "sanity");
 379         assert(is_on_master_free_list(hr), "sanity");
 380       }
 381 #endif
 382       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 383     } else {
 384       // Policy: Potentially trigger a defragmentation GC.
 385     }
 386   }
 387 
 388   HeapWord* result = NULL;
 389   if (first != G1_NO_HRM_INDEX) {
 390     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 391     assert(result != NULL, "it should always return a valid result");
 392 
 393     // A successful humongous object allocation changes the used space
 394     // information of the old generation so we need to recalculate the
 395     // sizes and update the jstat counters here.
 396     g1mm()->update_sizes();
 397   }
 398 
 399   _verifier->verify_region_sets_optional();
 400 
 401   return result;
 402 }
 403 
 404 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 405                                              size_t requested_size,
 406                                              size_t* actual_size) {
 407   assert_heap_not_locked_and_not_at_safepoint();
 408   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 409 
 410   return attempt_allocation(min_size, requested_size, actual_size);
 411 }
 412 
 413 HeapWord*
 414 G1CollectedHeap::mem_allocate(size_t word_size,
 415                               bool*  gc_overhead_limit_was_exceeded) {
 416   assert_heap_not_locked_and_not_at_safepoint();
 417 
 418   if (is_humongous(word_size)) {
 419     return attempt_allocation_humongous(word_size);
 420   }
 421   size_t dummy = 0;
 422   return attempt_allocation(word_size, word_size, &dummy);
 423 }
 424 
 425 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 426   ResourceMark rm; // For retrieving the thread names in log messages.
 427 
 428   // Make sure you read the note in attempt_allocation_humongous().
 429 
 430   assert_heap_not_locked_and_not_at_safepoint();
 431   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 432          "be called for humongous allocation requests");
 433 
 434   // We should only get here after the first-level allocation attempt
 435   // (attempt_allocation()) failed to allocate.
 436 
 437   // We will loop until a) we manage to successfully perform the
 438   // allocation or b) we successfully schedule a collection which
 439   // fails to perform the allocation. b) is the only case when we'll
 440   // return NULL.
 441   HeapWord* result = NULL;
 442   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 443     bool should_try_gc;
 444     uint gc_count_before;
 445 
 446     {
 447       MutexLocker x(Heap_lock);
 448       result = _allocator->attempt_allocation_locked(word_size);
 449       if (result != NULL) {
 450         return result;
 451       }
 452 
 453       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 454       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 455       // waiting because the GCLocker is active to not wait too long.
 456       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 457         // No need for an ergo message here, can_expand_young_list() does this when
 458         // it returns true.
 459         result = _allocator->attempt_allocation_force(word_size);
 460         if (result != NULL) {
 461           return result;
 462         }
 463       }
 464       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 465       // the GCLocker initiated GC has been performed and then retry. This includes
 466       // the case when the GC Locker is not active but has not been performed.
 467       should_try_gc = !GCLocker::needs_gc();
 468       // Read the GC count while still holding the Heap_lock.
 469       gc_count_before = total_collections();
 470     }
 471 
 472     if (should_try_gc) {
 473       bool succeeded;
 474       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 475                                    GCCause::_g1_inc_collection_pause);
 476       if (result != NULL) {
 477         assert(succeeded, "only way to get back a non-NULL result");
 478         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 479                              Thread::current()->name(), p2i(result));
 480         return result;
 481       }
 482 
 483       if (succeeded) {
 484         // We successfully scheduled a collection which failed to allocate. No
 485         // point in trying to allocate further. We'll just return NULL.
 486         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 487                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 488         return NULL;
 489       }
 490       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 491                            Thread::current()->name(), word_size);
 492     } else {
 493       // Failed to schedule a collection.
 494       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 495         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 496                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 497         return NULL;
 498       }
 499       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 500       // The GCLocker is either active or the GCLocker initiated
 501       // GC has not yet been performed. Stall until it is and
 502       // then retry the allocation.
 503       GCLocker::stall_until_clear();
 504       gclocker_retry_count += 1;
 505     }
 506 
 507     // We can reach here if we were unsuccessful in scheduling a
 508     // collection (because another thread beat us to it) or if we were
 509     // stalled due to the GC locker. In either can we should retry the
 510     // allocation attempt in case another thread successfully
 511     // performed a collection and reclaimed enough space. We do the
 512     // first attempt (without holding the Heap_lock) here and the
 513     // follow-on attempt will be at the start of the next loop
 514     // iteration (after taking the Heap_lock).
 515     size_t dummy = 0;
 516     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 517     if (result != NULL) {
 518       return result;
 519     }
 520 
 521     // Give a warning if we seem to be looping forever.
 522     if ((QueuedAllocationWarningCount > 0) &&
 523         (try_count % QueuedAllocationWarningCount == 0)) {
 524       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 525                              Thread::current()->name(), try_count, word_size);
 526     }
 527   }
 528 
 529   ShouldNotReachHere();
 530   return NULL;
 531 }
 532 
 533 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 534   assert_at_safepoint_on_vm_thread();
 535   if (_archive_allocator == NULL) {
 536     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 537   }
 538 }
 539 
 540 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 541   // Allocations in archive regions cannot be of a size that would be considered
 542   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 543   // may be different at archive-restore time.
 544   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 545 }
 546 
 547 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 548   assert_at_safepoint_on_vm_thread();
 549   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 550   if (is_archive_alloc_too_large(word_size)) {
 551     return NULL;
 552   }
 553   return _archive_allocator->archive_mem_allocate(word_size);
 554 }
 555 
 556 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 557                                               size_t end_alignment_in_bytes) {
 558   assert_at_safepoint_on_vm_thread();
 559   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 560 
 561   // Call complete_archive to do the real work, filling in the MemRegion
 562   // array with the archive regions.
 563   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 564   delete _archive_allocator;
 565   _archive_allocator = NULL;
 566 }
 567 
 568 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 569   assert(ranges != NULL, "MemRegion array NULL");
 570   assert(count != 0, "No MemRegions provided");
 571   MemRegion reserved = _hrm->reserved();
 572   for (size_t i = 0; i < count; i++) {
 573     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 574       return false;
 575     }
 576   }
 577   return true;
 578 }
 579 
 580 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 581                                             size_t count,
 582                                             bool open) {
 583   assert(!is_init_completed(), "Expect to be called at JVM init time");
 584   assert(ranges != NULL, "MemRegion array NULL");
 585   assert(count != 0, "No MemRegions provided");
 586   MutexLocker x(Heap_lock);
 587 
 588   MemRegion reserved = _hrm->reserved();
 589   HeapWord* prev_last_addr = NULL;
 590   HeapRegion* prev_last_region = NULL;
 591 
 592   // Temporarily disable pretouching of heap pages. This interface is used
 593   // when mmap'ing archived heap data in, so pre-touching is wasted.
 594   FlagSetting fs(AlwaysPreTouch, false);
 595 
 596   // Enable archive object checking used by G1MarkSweep. We have to let it know
 597   // about each archive range, so that objects in those ranges aren't marked.
 598   G1ArchiveAllocator::enable_archive_object_check();
 599 
 600   // For each specified MemRegion range, allocate the corresponding G1
 601   // regions and mark them as archive regions. We expect the ranges
 602   // in ascending starting address order, without overlap.
 603   for (size_t i = 0; i < count; i++) {
 604     MemRegion curr_range = ranges[i];
 605     HeapWord* start_address = curr_range.start();
 606     size_t word_size = curr_range.word_size();
 607     HeapWord* last_address = curr_range.last();
 608     size_t commits = 0;
 609 
 610     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 611               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 612               p2i(start_address), p2i(last_address));
 613     guarantee(start_address > prev_last_addr,
 614               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 615               p2i(start_address), p2i(prev_last_addr));
 616     prev_last_addr = last_address;
 617 
 618     // Check for ranges that start in the same G1 region in which the previous
 619     // range ended, and adjust the start address so we don't try to allocate
 620     // the same region again. If the current range is entirely within that
 621     // region, skip it, just adjusting the recorded top.
 622     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 623     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 624       start_address = start_region->end();
 625       if (start_address > last_address) {
 626         increase_used(word_size * HeapWordSize);
 627         start_region->set_top(last_address + 1);
 628         continue;
 629       }
 630       start_region->set_top(start_address);
 631       curr_range = MemRegion(start_address, last_address + 1);
 632       start_region = _hrm->addr_to_region(start_address);
 633     }
 634 
 635     // Perform the actual region allocation, exiting if it fails.
 636     // Then note how much new space we have allocated.
 637     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 638       return false;
 639     }
 640     increase_used(word_size * HeapWordSize);
 641     if (commits != 0) {
 642       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 643                                 HeapRegion::GrainWords * HeapWordSize * commits);
 644 
 645     }
 646 
 647     // Mark each G1 region touched by the range as archive, add it to
 648     // the old set, and set top.
 649     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 650     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 651     prev_last_region = last_region;
 652 
 653     while (curr_region != NULL) {
 654       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 655              "Region already in use (index %u)", curr_region->hrm_index());
 656       if (open) {
 657         curr_region->set_open_archive();
 658       } else {
 659         curr_region->set_closed_archive();
 660       }
 661       _hr_printer.alloc(curr_region);
 662       _archive_set.add(curr_region);
 663       HeapWord* top;
 664       HeapRegion* next_region;
 665       if (curr_region != last_region) {
 666         top = curr_region->end();
 667         next_region = _hrm->next_region_in_heap(curr_region);
 668       } else {
 669         top = last_address + 1;
 670         next_region = NULL;
 671       }
 672       curr_region->set_top(top);
 673       curr_region->set_first_dead(top);
 674       curr_region->set_end_of_live(top);
 675       curr_region = next_region;
 676     }
 677 
 678     // Notify mark-sweep of the archive
 679     G1ArchiveAllocator::set_range_archive(curr_range, open);
 680   }
 681   return true;
 682 }
 683 
 684 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 685   assert(!is_init_completed(), "Expect to be called at JVM init time");
 686   assert(ranges != NULL, "MemRegion array NULL");
 687   assert(count != 0, "No MemRegions provided");
 688   MemRegion reserved = _hrm->reserved();
 689   HeapWord *prev_last_addr = NULL;
 690   HeapRegion* prev_last_region = NULL;
 691 
 692   // For each MemRegion, create filler objects, if needed, in the G1 regions
 693   // that contain the address range. The address range actually within the
 694   // MemRegion will not be modified. That is assumed to have been initialized
 695   // elsewhere, probably via an mmap of archived heap data.
 696   MutexLocker x(Heap_lock);
 697   for (size_t i = 0; i < count; i++) {
 698     HeapWord* start_address = ranges[i].start();
 699     HeapWord* last_address = ranges[i].last();
 700 
 701     assert(reserved.contains(start_address) && reserved.contains(last_address),
 702            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 703            p2i(start_address), p2i(last_address));
 704     assert(start_address > prev_last_addr,
 705            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 706            p2i(start_address), p2i(prev_last_addr));
 707 
 708     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 709     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 710     HeapWord* bottom_address = start_region->bottom();
 711 
 712     // Check for a range beginning in the same region in which the
 713     // previous one ended.
 714     if (start_region == prev_last_region) {
 715       bottom_address = prev_last_addr + 1;
 716     }
 717 
 718     // Verify that the regions were all marked as archive regions by
 719     // alloc_archive_regions.
 720     HeapRegion* curr_region = start_region;
 721     while (curr_region != NULL) {
 722       guarantee(curr_region->is_archive(),
 723                 "Expected archive region at index %u", curr_region->hrm_index());
 724       if (curr_region != last_region) {
 725         curr_region = _hrm->next_region_in_heap(curr_region);
 726       } else {
 727         curr_region = NULL;
 728       }
 729     }
 730 
 731     prev_last_addr = last_address;
 732     prev_last_region = last_region;
 733 
 734     // Fill the memory below the allocated range with dummy object(s),
 735     // if the region bottom does not match the range start, or if the previous
 736     // range ended within the same G1 region, and there is a gap.
 737     if (start_address != bottom_address) {
 738       size_t fill_size = pointer_delta(start_address, bottom_address);
 739       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 740       increase_used(fill_size * HeapWordSize);
 741     }
 742   }
 743 }
 744 
 745 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 746                                                      size_t desired_word_size,
 747                                                      size_t* actual_word_size) {
 748   assert_heap_not_locked_and_not_at_safepoint();
 749   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 750          "be called for humongous allocation requests");
 751 
 752   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 753 
 754   if (result == NULL) {
 755     *actual_word_size = desired_word_size;
 756     result = attempt_allocation_slow(desired_word_size);
 757   }
 758 
 759   assert_heap_not_locked();
 760   if (result != NULL) {
 761     assert(*actual_word_size != 0, "Actual size must have been set here");
 762     dirty_young_block(result, *actual_word_size);
 763   } else {
 764     *actual_word_size = 0;
 765   }
 766 
 767   return result;
 768 }
 769 
 770 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count, bool is_open) {
 771   assert(!is_init_completed(), "Expect to be called at JVM init time");
 772   assert(ranges != NULL, "MemRegion array NULL");
 773   assert(count != 0, "No MemRegions provided");
 774   MemRegion reserved = _hrm->reserved();
 775   HeapWord* prev_last_addr = NULL;
 776   HeapRegion* prev_last_region = NULL;
 777   size_t size_used = 0;
 778   size_t uncommitted_regions = 0;
 779 
 780   // For each Memregion, free the G1 regions that constitute it, and
 781   // notify mark-sweep that the range is no longer to be considered 'archive.'
 782   MutexLocker x(Heap_lock);
 783   for (size_t i = 0; i < count; i++) {
 784     HeapWord* start_address = ranges[i].start();
 785     HeapWord* last_address = ranges[i].last();
 786 
 787     assert(reserved.contains(start_address) && reserved.contains(last_address),
 788            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 789            p2i(start_address), p2i(last_address));
 790     assert(start_address > prev_last_addr,
 791            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 792            p2i(start_address), p2i(prev_last_addr));
 793     size_used += ranges[i].byte_size();
 794     prev_last_addr = last_address;
 795 
 796     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 797     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 798 
 799     // Check for ranges that start in the same G1 region in which the previous
 800     // range ended, and adjust the start address so we don't try to free
 801     // the same region again. If the current range is entirely within that
 802     // region, skip it.
 803     if (start_region == prev_last_region) {
 804       start_address = start_region->end();
 805       if (start_address > last_address) {
 806         continue;
 807       }
 808       start_region = _hrm->addr_to_region(start_address);
 809     }
 810     prev_last_region = last_region;
 811 
 812     // After verifying that each region was marked as an archive region by
 813     // alloc_archive_regions, set it free and empty and uncommit it.
 814     HeapRegion* curr_region = start_region;
 815     while (curr_region != NULL) {
 816       guarantee(curr_region->is_archive(),
 817                 "Expected archive region at index %u", curr_region->hrm_index());
 818       uint curr_index = curr_region->hrm_index();
 819       _archive_set.remove(curr_region);
 820       curr_region->set_free();
 821       curr_region->set_top(curr_region->bottom());
 822       if (curr_region != last_region) {
 823         curr_region = _hrm->next_region_in_heap(curr_region);
 824       } else {
 825         curr_region = NULL;
 826       }
 827       _hrm->shrink_at(curr_index, 1);
 828       uncommitted_regions++;
 829     }
 830 
 831     // Notify mark-sweep that this is no longer an archive range.
 832     G1ArchiveAllocator::clear_range_archive(ranges[i], is_open);
 833   }
 834 
 835   if (uncommitted_regions != 0) {
 836     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 837                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 838   }
 839   decrease_used(size_used);
 840 }
 841 
 842 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 843   assert(obj != NULL, "archived obj is NULL");
 844   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 845 
 846   // Loading an archived object makes it strongly reachable. If it is
 847   // loaded during concurrent marking, it must be enqueued to the SATB
 848   // queue, shading the previously white object gray.
 849   G1BarrierSet::enqueue(obj);
 850 
 851   return obj;
 852 }
 853 
 854 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 855   ResourceMark rm; // For retrieving the thread names in log messages.
 856 
 857   // The structure of this method has a lot of similarities to
 858   // attempt_allocation_slow(). The reason these two were not merged
 859   // into a single one is that such a method would require several "if
 860   // allocation is not humongous do this, otherwise do that"
 861   // conditional paths which would obscure its flow. In fact, an early
 862   // version of this code did use a unified method which was harder to
 863   // follow and, as a result, it had subtle bugs that were hard to
 864   // track down. So keeping these two methods separate allows each to
 865   // be more readable. It will be good to keep these two in sync as
 866   // much as possible.
 867 
 868   assert_heap_not_locked_and_not_at_safepoint();
 869   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 870          "should only be called for humongous allocations");
 871 
 872   // Humongous objects can exhaust the heap quickly, so we should check if we
 873   // need to start a marking cycle at each humongous object allocation. We do
 874   // the check before we do the actual allocation. The reason for doing it
 875   // before the allocation is that we avoid having to keep track of the newly
 876   // allocated memory while we do a GC.
 877   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 878                                            word_size)) {
 879     collect(GCCause::_g1_humongous_allocation);
 880   }
 881 
 882   // We will loop until a) we manage to successfully perform the
 883   // allocation or b) we successfully schedule a collection which
 884   // fails to perform the allocation. b) is the only case when we'll
 885   // return NULL.
 886   HeapWord* result = NULL;
 887   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 888     bool should_try_gc;
 889     uint gc_count_before;
 890 
 891 
 892     {
 893       MutexLocker x(Heap_lock);
 894 
 895       // Given that humongous objects are not allocated in young
 896       // regions, we'll first try to do the allocation without doing a
 897       // collection hoping that there's enough space in the heap.
 898       result = humongous_obj_allocate(word_size);
 899       if (result != NULL) {
 900         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 901         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 902         return result;
 903       }
 904 
 905       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 906       // the GCLocker initiated GC has been performed and then retry. This includes
 907       // the case when the GC Locker is not active but has not been performed.
 908       should_try_gc = !GCLocker::needs_gc();
 909       // Read the GC count while still holding the Heap_lock.
 910       gc_count_before = total_collections();
 911     }
 912 
 913     if (should_try_gc) {
 914       bool succeeded;
 915       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 916                                    GCCause::_g1_humongous_allocation);
 917       if (result != NULL) {
 918         assert(succeeded, "only way to get back a non-NULL result");
 919         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 920                              Thread::current()->name(), p2i(result));
 921         return result;
 922       }
 923 
 924       if (succeeded) {
 925         // We successfully scheduled a collection which failed to allocate. No
 926         // point in trying to allocate further. We'll just return NULL.
 927         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 928                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 929         return NULL;
 930       }
 931       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 932                            Thread::current()->name(), word_size);
 933     } else {
 934       // Failed to schedule a collection.
 935       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 936         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 937                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 938         return NULL;
 939       }
 940       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 941       // The GCLocker is either active or the GCLocker initiated
 942       // GC has not yet been performed. Stall until it is and
 943       // then retry the allocation.
 944       GCLocker::stall_until_clear();
 945       gclocker_retry_count += 1;
 946     }
 947 
 948 
 949     // We can reach here if we were unsuccessful in scheduling a
 950     // collection (because another thread beat us to it) or if we were
 951     // stalled due to the GC locker. In either can we should retry the
 952     // allocation attempt in case another thread successfully
 953     // performed a collection and reclaimed enough space.
 954     // Humongous object allocation always needs a lock, so we wait for the retry
 955     // in the next iteration of the loop, unlike for the regular iteration case.
 956     // Give a warning if we seem to be looping forever.
 957 
 958     if ((QueuedAllocationWarningCount > 0) &&
 959         (try_count % QueuedAllocationWarningCount == 0)) {
 960       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 961                              Thread::current()->name(), try_count, word_size);
 962     }
 963   }
 964 
 965   ShouldNotReachHere();
 966   return NULL;
 967 }
 968 
 969 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 970                                                            bool expect_null_mutator_alloc_region) {
 971   assert_at_safepoint_on_vm_thread();
 972   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 973          "the current alloc region was unexpectedly found to be non-NULL");
 974 
 975   if (!is_humongous(word_size)) {
 976     return _allocator->attempt_allocation_locked(word_size);
 977   } else {
 978     HeapWord* result = humongous_obj_allocate(word_size);
 979     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 980       collector_state()->set_initiate_conc_mark_if_possible(true);
 981     }
 982     return result;
 983   }
 984 
 985   ShouldNotReachHere();
 986 }
 987 
 988 class PostCompactionPrinterClosure: public HeapRegionClosure {
 989 private:
 990   G1HRPrinter* _hr_printer;
 991 public:
 992   bool do_heap_region(HeapRegion* hr) {
 993     assert(!hr->is_young(), "not expecting to find young regions");
 994     _hr_printer->post_compaction(hr);
 995     return false;
 996   }
 997 
 998   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 999     : _hr_printer(hr_printer) { }
1000 };
1001 
1002 void G1CollectedHeap::print_hrm_post_compaction() {
1003   if (_hr_printer.is_active()) {
1004     PostCompactionPrinterClosure cl(hr_printer());
1005     heap_region_iterate(&cl);
1006   }
1007 }
1008 
1009 void G1CollectedHeap::abort_concurrent_cycle() {
1010   // If we start the compaction before the CM threads finish
1011   // scanning the root regions we might trip them over as we'll
1012   // be moving objects / updating references. So let's wait until
1013   // they are done. By telling them to abort, they should complete
1014   // early.
1015   _cm->root_regions()->abort();
1016   _cm->root_regions()->wait_until_scan_finished();
1017 
1018   // Disable discovery and empty the discovered lists
1019   // for the CM ref processor.
1020   _ref_processor_cm->disable_discovery();
1021   _ref_processor_cm->abandon_partial_discovery();
1022   _ref_processor_cm->verify_no_references_recorded();
1023 
1024   // Abandon current iterations of concurrent marking and concurrent
1025   // refinement, if any are in progress.
1026   concurrent_mark()->concurrent_cycle_abort();
1027 }
1028 
1029 void G1CollectedHeap::prepare_heap_for_full_collection() {
1030   // Make sure we'll choose a new allocation region afterwards.
1031   _allocator->release_mutator_alloc_regions();
1032   _allocator->abandon_gc_alloc_regions();
1033 
1034   // We may have added regions to the current incremental collection
1035   // set between the last GC or pause and now. We need to clear the
1036   // incremental collection set and then start rebuilding it afresh
1037   // after this full GC.
1038   abandon_collection_set(collection_set());
1039 
1040   tear_down_region_sets(false /* free_list_only */);
1041 
1042   hrm()->prepare_for_full_collection_start();
1043 }
1044 
1045 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1046   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1047   assert_used_and_recalculate_used_equal(this);
1048   _verifier->verify_region_sets_optional();
1049   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1050   _verifier->check_bitmaps("Full GC Start");
1051 }
1052 
1053 void G1CollectedHeap::prepare_heap_for_mutators() {
1054   hrm()->prepare_for_full_collection_end();
1055 
1056   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1057   ClassLoaderDataGraph::purge();
1058   MetaspaceUtils::verify_metrics();
1059 
1060   // Prepare heap for normal collections.
1061   assert(num_free_regions() == 0, "we should not have added any free regions");
1062   rebuild_region_sets(false /* free_list_only */);
1063   abort_refinement();
1064   resize_heap_if_necessary();
1065 
1066   // Rebuild the strong code root lists for each region
1067   rebuild_strong_code_roots();
1068 
1069   // Purge code root memory
1070   purge_code_root_memory();
1071 
1072   // Start a new incremental collection set for the next pause
1073   start_new_collection_set();
1074 
1075   _allocator->init_mutator_alloc_regions();
1076 
1077   // Post collection state updates.
1078   MetaspaceGC::compute_new_size();
1079 }
1080 
1081 void G1CollectedHeap::abort_refinement() {
1082   if (_hot_card_cache->use_cache()) {
1083     _hot_card_cache->reset_hot_cache();
1084   }
1085 
1086   // Discard all remembered set updates.
1087   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1088   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1089          "DCQS should be empty");
1090 }
1091 
1092 void G1CollectedHeap::verify_after_full_collection() {
1093   _hrm->verify_optional();
1094   _verifier->verify_region_sets_optional();
1095   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1096   // Clear the previous marking bitmap, if needed for bitmap verification.
1097   // Note we cannot do this when we clear the next marking bitmap in
1098   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1099   // objects marked during a full GC against the previous bitmap.
1100   // But we need to clear it before calling check_bitmaps below since
1101   // the full GC has compacted objects and updated TAMS but not updated
1102   // the prev bitmap.
1103   if (G1VerifyBitmaps) {
1104     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1105     _cm->clear_prev_bitmap(workers());
1106   }
1107   // This call implicitly verifies that the next bitmap is clear after Full GC.
1108   _verifier->check_bitmaps("Full GC End");
1109 
1110   // At this point there should be no regions in the
1111   // entire heap tagged as young.
1112   assert(check_young_list_empty(), "young list should be empty at this point");
1113 
1114   // Note: since we've just done a full GC, concurrent
1115   // marking is no longer active. Therefore we need not
1116   // re-enable reference discovery for the CM ref processor.
1117   // That will be done at the start of the next marking cycle.
1118   // We also know that the STW processor should no longer
1119   // discover any new references.
1120   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1121   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1122   _ref_processor_stw->verify_no_references_recorded();
1123   _ref_processor_cm->verify_no_references_recorded();
1124 }
1125 
1126 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1127   // Post collection logging.
1128   // We should do this after we potentially resize the heap so
1129   // that all the COMMIT / UNCOMMIT events are generated before
1130   // the compaction events.
1131   print_hrm_post_compaction();
1132   heap_transition->print();
1133   print_heap_after_gc();
1134   print_heap_regions();
1135 #ifdef TRACESPINNING
1136   ParallelTaskTerminator::print_termination_counts();
1137 #endif
1138 }
1139 
1140 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1141                                          bool clear_all_soft_refs) {
1142   assert_at_safepoint_on_vm_thread();
1143 
1144   if (GCLocker::check_active_before_gc()) {
1145     // Full GC was not completed.
1146     return false;
1147   }
1148 
1149   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1150       soft_ref_policy()->should_clear_all_soft_refs();
1151 
1152   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1153   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1154 
1155   collector.prepare_collection();
1156   collector.collect();
1157   collector.complete_collection();
1158 
1159   // Full collection was successfully completed.
1160   return true;
1161 }
1162 
1163 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1164   // Currently, there is no facility in the do_full_collection(bool) API to notify
1165   // the caller that the collection did not succeed (e.g., because it was locked
1166   // out by the GC locker). So, right now, we'll ignore the return value.
1167   bool dummy = do_full_collection(true,                /* explicit_gc */
1168                                   clear_all_soft_refs);
1169 }
1170 
1171 void G1CollectedHeap::resize_heap_if_necessary() {
1172   assert_at_safepoint_on_vm_thread();
1173 
1174   // Capacity, free and used after the GC counted as full regions to
1175   // include the waste in the following calculations.
1176   const size_t capacity_after_gc = capacity();
1177   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1178 
1179   // This is enforced in arguments.cpp.
1180   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1181          "otherwise the code below doesn't make sense");
1182 
1183   // We don't have floating point command-line arguments
1184   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1185   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1186   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1187   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1188 
1189   // We have to be careful here as these two calculations can overflow
1190   // 32-bit size_t's.
1191   double used_after_gc_d = (double) used_after_gc;
1192   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1193   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1194 
1195   // Let's make sure that they are both under the max heap size, which
1196   // by default will make them fit into a size_t.
1197   double desired_capacity_upper_bound = (double) MaxHeapSize;
1198   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1199                                     desired_capacity_upper_bound);
1200   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1201                                     desired_capacity_upper_bound);
1202 
1203   // We can now safely turn them into size_t's.
1204   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1205   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1206 
1207   // This assert only makes sense here, before we adjust them
1208   // with respect to the min and max heap size.
1209   assert(minimum_desired_capacity <= maximum_desired_capacity,
1210          "minimum_desired_capacity = " SIZE_FORMAT ", "
1211          "maximum_desired_capacity = " SIZE_FORMAT,
1212          minimum_desired_capacity, maximum_desired_capacity);
1213 
1214   // Should not be greater than the heap max size. No need to adjust
1215   // it with respect to the heap min size as it's a lower bound (i.e.,
1216   // we'll try to make the capacity larger than it, not smaller).
1217   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1218   // Should not be less than the heap min size. No need to adjust it
1219   // with respect to the heap max size as it's an upper bound (i.e.,
1220   // we'll try to make the capacity smaller than it, not greater).
1221   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1222 
1223   if (capacity_after_gc < minimum_desired_capacity) {
1224     // Don't expand unless it's significant
1225     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1226 
1227     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1228                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1229                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1230                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1231 
1232     expand(expand_bytes, _workers);
1233 
1234     // No expansion, now see if we want to shrink
1235   } else if (capacity_after_gc > maximum_desired_capacity) {
1236     // Capacity too large, compute shrinking size
1237     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1238 
1239     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1240                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1241                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1242                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1243 
1244     shrink(shrink_bytes);
1245   }
1246 }
1247 
1248 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1249                                                             bool do_gc,
1250                                                             bool clear_all_soft_refs,
1251                                                             bool expect_null_mutator_alloc_region,
1252                                                             bool* gc_succeeded) {
1253   *gc_succeeded = true;
1254   // Let's attempt the allocation first.
1255   HeapWord* result =
1256     attempt_allocation_at_safepoint(word_size,
1257                                     expect_null_mutator_alloc_region);
1258   if (result != NULL) {
1259     return result;
1260   }
1261 
1262   // In a G1 heap, we're supposed to keep allocation from failing by
1263   // incremental pauses.  Therefore, at least for now, we'll favor
1264   // expansion over collection.  (This might change in the future if we can
1265   // do something smarter than full collection to satisfy a failed alloc.)
1266   result = expand_and_allocate(word_size);
1267   if (result != NULL) {
1268     return result;
1269   }
1270 
1271   if (do_gc) {
1272     // Expansion didn't work, we'll try to do a Full GC.
1273     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1274                                        clear_all_soft_refs);
1275   }
1276 
1277   return NULL;
1278 }
1279 
1280 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1281                                                      bool* succeeded) {
1282   assert_at_safepoint_on_vm_thread();
1283 
1284   // Attempts to allocate followed by Full GC.
1285   HeapWord* result =
1286     satisfy_failed_allocation_helper(word_size,
1287                                      true,  /* do_gc */
1288                                      false, /* clear_all_soft_refs */
1289                                      false, /* expect_null_mutator_alloc_region */
1290                                      succeeded);
1291 
1292   if (result != NULL || !*succeeded) {
1293     return result;
1294   }
1295 
1296   // Attempts to allocate followed by Full GC that will collect all soft references.
1297   result = satisfy_failed_allocation_helper(word_size,
1298                                             true, /* do_gc */
1299                                             true, /* clear_all_soft_refs */
1300                                             true, /* expect_null_mutator_alloc_region */
1301                                             succeeded);
1302 
1303   if (result != NULL || !*succeeded) {
1304     return result;
1305   }
1306 
1307   // Attempts to allocate, no GC
1308   result = satisfy_failed_allocation_helper(word_size,
1309                                             false, /* do_gc */
1310                                             false, /* clear_all_soft_refs */
1311                                             true,  /* expect_null_mutator_alloc_region */
1312                                             succeeded);
1313 
1314   if (result != NULL) {
1315     return result;
1316   }
1317 
1318   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1319          "Flag should have been handled and cleared prior to this point");
1320 
1321   // What else?  We might try synchronous finalization later.  If the total
1322   // space available is large enough for the allocation, then a more
1323   // complete compaction phase than we've tried so far might be
1324   // appropriate.
1325   return NULL;
1326 }
1327 
1328 // Attempting to expand the heap sufficiently
1329 // to support an allocation of the given "word_size".  If
1330 // successful, perform the allocation and return the address of the
1331 // allocated block, or else "NULL".
1332 
1333 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1334   assert_at_safepoint_on_vm_thread();
1335 
1336   _verifier->verify_region_sets_optional();
1337 
1338   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1339   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1340                             word_size * HeapWordSize);
1341 
1342 
1343   if (expand(expand_bytes, _workers)) {
1344     _hrm->verify_optional();
1345     _verifier->verify_region_sets_optional();
1346     return attempt_allocation_at_safepoint(word_size,
1347                                            false /* expect_null_mutator_alloc_region */);
1348   }
1349   return NULL;
1350 }
1351 
1352 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1353   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1354   aligned_expand_bytes = align_up(aligned_expand_bytes,
1355                                        HeapRegion::GrainBytes);
1356 
1357   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1358                             expand_bytes, aligned_expand_bytes);
1359 
1360   if (is_maximal_no_gc()) {
1361     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1362     return false;
1363   }
1364 
1365   double expand_heap_start_time_sec = os::elapsedTime();
1366   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1367   assert(regions_to_expand > 0, "Must expand by at least one region");
1368 
1369   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1370   if (expand_time_ms != NULL) {
1371     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1372   }
1373 
1374   if (expanded_by > 0) {
1375     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1376     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1377     policy()->record_new_heap_size(num_regions());
1378   } else {
1379     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1380 
1381     // The expansion of the virtual storage space was unsuccessful.
1382     // Let's see if it was because we ran out of swap.
1383     if (G1ExitOnExpansionFailure &&
1384         _hrm->available() >= regions_to_expand) {
1385       // We had head room...
1386       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1387     }
1388   }
1389   return regions_to_expand > 0;
1390 }
1391 
1392 bool G1CollectedHeap::expand_single_region(uint node_index) {
1393   log_debug(gc, ergo, heap)("Expand the heap by a single region");
1394 
1395   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1396 
1397   if (expanded_by == 0) {
1398     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1399     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1400     return false;
1401   }
1402 
1403   policy()->record_new_heap_size(num_regions());
1404   return true;
1405 }
1406 
1407 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1408   size_t aligned_shrink_bytes =
1409     ReservedSpace::page_align_size_down(shrink_bytes);
1410   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1411                                          HeapRegion::GrainBytes);
1412   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1413 
1414   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1415   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1416 
1417   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1418                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1419   if (num_regions_removed > 0) {
1420     policy()->record_new_heap_size(num_regions());
1421   } else {
1422     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1423   }
1424 }
1425 
1426 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1427   _verifier->verify_region_sets_optional();
1428 
1429   // We should only reach here at the end of a Full GC or during Remark which
1430   // means we should not not be holding to any GC alloc regions. The method
1431   // below will make sure of that and do any remaining clean up.
1432   _allocator->abandon_gc_alloc_regions();
1433 
1434   // Instead of tearing down / rebuilding the free lists here, we
1435   // could instead use the remove_all_pending() method on free_list to
1436   // remove only the ones that we need to remove.
1437   tear_down_region_sets(true /* free_list_only */);
1438   shrink_helper(shrink_bytes);
1439   rebuild_region_sets(true /* free_list_only */);
1440 
1441   _hrm->verify_optional();
1442   _verifier->verify_region_sets_optional();
1443 }
1444 
1445 class OldRegionSetChecker : public HeapRegionSetChecker {
1446 public:
1447   void check_mt_safety() {
1448     // Master Old Set MT safety protocol:
1449     // (a) If we're at a safepoint, operations on the master old set
1450     // should be invoked:
1451     // - by the VM thread (which will serialize them), or
1452     // - by the GC workers while holding the FreeList_lock, if we're
1453     //   at a safepoint for an evacuation pause (this lock is taken
1454     //   anyway when an GC alloc region is retired so that a new one
1455     //   is allocated from the free list), or
1456     // - by the GC workers while holding the OldSets_lock, if we're at a
1457     //   safepoint for a cleanup pause.
1458     // (b) If we're not at a safepoint, operations on the master old set
1459     // should be invoked while holding the Heap_lock.
1460 
1461     if (SafepointSynchronize::is_at_safepoint()) {
1462       guarantee(Thread::current()->is_VM_thread() ||
1463                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1464                 "master old set MT safety protocol at a safepoint");
1465     } else {
1466       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1467     }
1468   }
1469   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1470   const char* get_description() { return "Old Regions"; }
1471 };
1472 
1473 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1474 public:
1475   void check_mt_safety() {
1476     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1477               "May only change archive regions during initialization or safepoint.");
1478   }
1479   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1480   const char* get_description() { return "Archive Regions"; }
1481 };
1482 
1483 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1484 public:
1485   void check_mt_safety() {
1486     // Humongous Set MT safety protocol:
1487     // (a) If we're at a safepoint, operations on the master humongous
1488     // set should be invoked by either the VM thread (which will
1489     // serialize them) or by the GC workers while holding the
1490     // OldSets_lock.
1491     // (b) If we're not at a safepoint, operations on the master
1492     // humongous set should be invoked while holding the Heap_lock.
1493 
1494     if (SafepointSynchronize::is_at_safepoint()) {
1495       guarantee(Thread::current()->is_VM_thread() ||
1496                 OldSets_lock->owned_by_self(),
1497                 "master humongous set MT safety protocol at a safepoint");
1498     } else {
1499       guarantee(Heap_lock->owned_by_self(),
1500                 "master humongous set MT safety protocol outside a safepoint");
1501     }
1502   }
1503   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1504   const char* get_description() { return "Humongous Regions"; }
1505 };
1506 
1507 G1CollectedHeap::G1CollectedHeap() :
1508   CollectedHeap(),
1509   _young_gen_sampling_thread(NULL),
1510   _workers(NULL),
1511   _card_table(NULL),
1512   _soft_ref_policy(),
1513   _old_set("Old Region Set", new OldRegionSetChecker()),
1514   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1515   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1516   _bot(NULL),
1517   _listener(),
1518   _mem_node_mgr(G1MemoryNodeManager::create()),
1519   _hrm(NULL),
1520   _allocator(NULL),
1521   _verifier(NULL),
1522   _summary_bytes_used(0),
1523   _archive_allocator(NULL),
1524   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1525   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1526   _expand_heap_after_alloc_failure(true),
1527   _g1mm(NULL),
1528   _humongous_reclaim_candidates(),
1529   _has_humongous_reclaim_candidates(false),
1530   _hr_printer(),
1531   _collector_state(),
1532   _old_marking_cycles_started(0),
1533   _old_marking_cycles_completed(0),
1534   _eden(),
1535   _survivor(),
1536   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1537   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1538   _policy(G1Policy::create_policy(_gc_timer_stw)),
1539   _heap_sizing_policy(NULL),
1540   _collection_set(this, _policy),
1541   _hot_card_cache(NULL),
1542   _rem_set(NULL),
1543   _cm(NULL),
1544   _cm_thread(NULL),
1545   _cr(NULL),
1546   _task_queues(NULL),
1547   _evacuation_failed(false),
1548   _evacuation_failed_info_array(NULL),
1549   _preserved_marks_set(true /* in_c_heap */),
1550 #ifndef PRODUCT
1551   _evacuation_failure_alot_for_current_gc(false),
1552   _evacuation_failure_alot_gc_number(0),
1553   _evacuation_failure_alot_count(0),
1554 #endif
1555   _ref_processor_stw(NULL),
1556   _is_alive_closure_stw(this),
1557   _is_subject_to_discovery_stw(this),
1558   _ref_processor_cm(NULL),
1559   _is_alive_closure_cm(this),
1560   _is_subject_to_discovery_cm(this),
1561   _region_attr() {
1562 
1563   _verifier = new G1HeapVerifier(this);
1564 
1565   _allocator = new G1Allocator(this);
1566 
1567   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1568 
1569   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1570 
1571   // Override the default _filler_array_max_size so that no humongous filler
1572   // objects are created.
1573   _filler_array_max_size = _humongous_object_threshold_in_words;
1574 
1575   uint n_queues = ParallelGCThreads;
1576   _task_queues = new RefToScanQueueSet(n_queues);
1577 
1578   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1579 
1580   for (uint i = 0; i < n_queues; i++) {
1581     RefToScanQueue* q = new RefToScanQueue();
1582     q->initialize();
1583     _task_queues->register_queue(i, q);
1584     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1585   }
1586 
1587   // Initialize the G1EvacuationFailureALot counters and flags.
1588   NOT_PRODUCT(reset_evacuation_should_fail();)
1589   _gc_tracer_stw->initialize();
1590 
1591   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1592 }
1593 
1594 static size_t actual_reserved_page_size(ReservedSpace rs) {
1595   size_t page_size = os::vm_page_size();
1596   if (UseLargePages) {
1597     // There are two ways to manage large page memory.
1598     // 1. OS supports committing large page memory.
1599     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1600     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1601     //    we reserved memory without large page.
1602     if (os::can_commit_large_page_memory() || rs.special()) {
1603       // An alignment at ReservedSpace comes from preferred page size or
1604       // heap alignment, and if the alignment came from heap alignment, it could be
1605       // larger than large pages size. So need to cap with the large page size.
1606       page_size = MIN2(rs.alignment(), os::large_page_size());
1607     }
1608   }
1609 
1610   return page_size;
1611 }
1612 
1613 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1614                                                                  size_t size,
1615                                                                  size_t translation_factor) {
1616   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1617   // Allocate a new reserved space, preferring to use large pages.
1618   ReservedSpace rs(size, preferred_page_size);
1619   size_t page_size = actual_reserved_page_size(rs);
1620   G1RegionToSpaceMapper* result  =
1621     G1RegionToSpaceMapper::create_mapper(rs,
1622                                          size,
1623                                          page_size,
1624                                          HeapRegion::GrainBytes,
1625                                          translation_factor,
1626                                          mtGC);
1627 
1628   os::trace_page_sizes_for_requested_size(description,
1629                                           size,
1630                                           preferred_page_size,
1631                                           page_size,
1632                                           rs.base(),
1633                                           rs.size());
1634 
1635   return result;
1636 }
1637 
1638 jint G1CollectedHeap::initialize_concurrent_refinement() {
1639   jint ecode = JNI_OK;
1640   _cr = G1ConcurrentRefine::create(&ecode);
1641   return ecode;
1642 }
1643 
1644 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1645   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1646   if (_young_gen_sampling_thread->osthread() == NULL) {
1647     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1648     return JNI_ENOMEM;
1649   }
1650   return JNI_OK;
1651 }
1652 
1653 jint G1CollectedHeap::initialize() {
1654   os::enable_vtime();
1655 
1656   // Necessary to satisfy locking discipline assertions.
1657 
1658   MutexLocker x(Heap_lock);
1659 
1660   // While there are no constraints in the GC code that HeapWordSize
1661   // be any particular value, there are multiple other areas in the
1662   // system which believe this to be true (e.g. oop->object_size in some
1663   // cases incorrectly returns the size in wordSize units rather than
1664   // HeapWordSize).
1665   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1666 
1667   size_t init_byte_size = InitialHeapSize;
1668   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1669 
1670   // Ensure that the sizes are properly aligned.
1671   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1672   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1673   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1674 
1675   // Reserve the maximum.
1676 
1677   // When compressed oops are enabled, the preferred heap base
1678   // is calculated by subtracting the requested size from the
1679   // 32Gb boundary and using the result as the base address for
1680   // heap reservation. If the requested size is not aligned to
1681   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1682   // into the ReservedHeapSpace constructor) then the actual
1683   // base of the reserved heap may end up differing from the
1684   // address that was requested (i.e. the preferred heap base).
1685   // If this happens then we could end up using a non-optimal
1686   // compressed oops mode.
1687 
1688   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1689                                                      HeapAlignment);
1690 
1691   initialize_reserved_region(heap_rs);
1692 
1693   // Create the barrier set for the entire reserved region.
1694   G1CardTable* ct = new G1CardTable(heap_rs.region());
1695   ct->initialize();
1696   G1BarrierSet* bs = new G1BarrierSet(ct);
1697   bs->initialize();
1698   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1699   BarrierSet::set_barrier_set(bs);
1700   _card_table = ct;
1701 
1702   {
1703     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1704     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1705     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1706   }
1707 
1708   // Create the hot card cache.
1709   _hot_card_cache = new G1HotCardCache(this);
1710 
1711   // Carve out the G1 part of the heap.
1712   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1713   size_t page_size = actual_reserved_page_size(heap_rs);
1714   G1RegionToSpaceMapper* heap_storage =
1715     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1716                                               g1_rs.size(),
1717                                               page_size,
1718                                               HeapRegion::GrainBytes,
1719                                               1,
1720                                               mtJavaHeap);
1721   if(heap_storage == NULL) {
1722     vm_shutdown_during_initialization("Could not initialize G1 heap");
1723     return JNI_ERR;
1724   }
1725 
1726   os::trace_page_sizes("Heap",
1727                        MinHeapSize,
1728                        reserved_byte_size,
1729                        page_size,
1730                        heap_rs.base(),
1731                        heap_rs.size());
1732   heap_storage->set_mapping_changed_listener(&_listener);
1733 
1734   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1735   G1RegionToSpaceMapper* bot_storage =
1736     create_aux_memory_mapper("Block Offset Table",
1737                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1738                              G1BlockOffsetTable::heap_map_factor());
1739 
1740   G1RegionToSpaceMapper* cardtable_storage =
1741     create_aux_memory_mapper("Card Table",
1742                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1743                              G1CardTable::heap_map_factor());
1744 
1745   G1RegionToSpaceMapper* card_counts_storage =
1746     create_aux_memory_mapper("Card Counts Table",
1747                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1748                              G1CardCounts::heap_map_factor());
1749 
1750   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1751   G1RegionToSpaceMapper* prev_bitmap_storage =
1752     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1753   G1RegionToSpaceMapper* next_bitmap_storage =
1754     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1755 
1756   _hrm = HeapRegionManager::create_manager(this);
1757 
1758   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1759   _card_table->initialize(cardtable_storage);
1760 
1761   // Do later initialization work for concurrent refinement.
1762   _hot_card_cache->initialize(card_counts_storage);
1763 
1764   // 6843694 - ensure that the maximum region index can fit
1765   // in the remembered set structures.
1766   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1767   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1768 
1769   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1770   // start within the first card.
1771   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1772   // Also create a G1 rem set.
1773   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1774   _rem_set->initialize(max_reserved_capacity(), max_regions());
1775 
1776   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1777   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1778   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1779             "too many cards per region");
1780 
1781   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1782 
1783   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1784 
1785   {
1786     HeapWord* start = _hrm->reserved().start();
1787     HeapWord* end = _hrm->reserved().end();
1788     size_t granularity = HeapRegion::GrainBytes;
1789 
1790     _region_attr.initialize(start, end, granularity);
1791     _humongous_reclaim_candidates.initialize(start, end, granularity);
1792   }
1793 
1794   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1795                           true /* are_GC_task_threads */,
1796                           false /* are_ConcurrentGC_threads */);
1797   if (_workers == NULL) {
1798     return JNI_ENOMEM;
1799   }
1800   _workers->initialize_workers();
1801 
1802   _mem_node_mgr->set_page_size(page_size);
1803 
1804   // Create the G1ConcurrentMark data structure and thread.
1805   // (Must do this late, so that "max_regions" is defined.)
1806   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1807   if (_cm == NULL || !_cm->completed_initialization()) {
1808     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1809     return JNI_ENOMEM;
1810   }
1811   _cm_thread = _cm->cm_thread();
1812 
1813   // Now expand into the initial heap size.
1814   if (!expand(init_byte_size, _workers)) {
1815     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1816     return JNI_ENOMEM;
1817   }
1818 
1819   // Perform any initialization actions delegated to the policy.
1820   policy()->init(this, &_collection_set);
1821 
1822   jint ecode = initialize_concurrent_refinement();
1823   if (ecode != JNI_OK) {
1824     return ecode;
1825   }
1826 
1827   ecode = initialize_young_gen_sampling_thread();
1828   if (ecode != JNI_OK) {
1829     return ecode;
1830   }
1831 
1832   {
1833     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1834     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1835     dcqs.set_max_cards(concurrent_refine()->red_zone());
1836   }
1837 
1838   // Here we allocate the dummy HeapRegion that is required by the
1839   // G1AllocRegion class.
1840   HeapRegion* dummy_region = _hrm->get_dummy_region();
1841 
1842   // We'll re-use the same region whether the alloc region will
1843   // require BOT updates or not and, if it doesn't, then a non-young
1844   // region will complain that it cannot support allocations without
1845   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1846   dummy_region->set_eden();
1847   // Make sure it's full.
1848   dummy_region->set_top(dummy_region->end());
1849   G1AllocRegion::setup(this, dummy_region);
1850 
1851   _allocator->init_mutator_alloc_regions();
1852 
1853   // Do create of the monitoring and management support so that
1854   // values in the heap have been properly initialized.
1855   _g1mm = new G1MonitoringSupport(this);
1856 
1857   G1StringDedup::initialize();
1858 
1859   _preserved_marks_set.init(ParallelGCThreads);
1860 
1861   _collection_set.initialize(max_regions());
1862 
1863   return JNI_OK;
1864 }
1865 
1866 void G1CollectedHeap::stop() {
1867   // Stop all concurrent threads. We do this to make sure these threads
1868   // do not continue to execute and access resources (e.g. logging)
1869   // that are destroyed during shutdown.
1870   _cr->stop();
1871   _young_gen_sampling_thread->stop();
1872   _cm_thread->stop();
1873   if (G1StringDedup::is_enabled()) {
1874     G1StringDedup::stop();
1875   }
1876 }
1877 
1878 void G1CollectedHeap::safepoint_synchronize_begin() {
1879   SuspendibleThreadSet::synchronize();
1880 }
1881 
1882 void G1CollectedHeap::safepoint_synchronize_end() {
1883   SuspendibleThreadSet::desynchronize();
1884 }
1885 
1886 void G1CollectedHeap::post_initialize() {
1887   CollectedHeap::post_initialize();
1888   ref_processing_init();
1889 }
1890 
1891 void G1CollectedHeap::ref_processing_init() {
1892   // Reference processing in G1 currently works as follows:
1893   //
1894   // * There are two reference processor instances. One is
1895   //   used to record and process discovered references
1896   //   during concurrent marking; the other is used to
1897   //   record and process references during STW pauses
1898   //   (both full and incremental).
1899   // * Both ref processors need to 'span' the entire heap as
1900   //   the regions in the collection set may be dotted around.
1901   //
1902   // * For the concurrent marking ref processor:
1903   //   * Reference discovery is enabled at initial marking.
1904   //   * Reference discovery is disabled and the discovered
1905   //     references processed etc during remarking.
1906   //   * Reference discovery is MT (see below).
1907   //   * Reference discovery requires a barrier (see below).
1908   //   * Reference processing may or may not be MT
1909   //     (depending on the value of ParallelRefProcEnabled
1910   //     and ParallelGCThreads).
1911   //   * A full GC disables reference discovery by the CM
1912   //     ref processor and abandons any entries on it's
1913   //     discovered lists.
1914   //
1915   // * For the STW processor:
1916   //   * Non MT discovery is enabled at the start of a full GC.
1917   //   * Processing and enqueueing during a full GC is non-MT.
1918   //   * During a full GC, references are processed after marking.
1919   //
1920   //   * Discovery (may or may not be MT) is enabled at the start
1921   //     of an incremental evacuation pause.
1922   //   * References are processed near the end of a STW evacuation pause.
1923   //   * For both types of GC:
1924   //     * Discovery is atomic - i.e. not concurrent.
1925   //     * Reference discovery will not need a barrier.
1926 
1927   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1928 
1929   // Concurrent Mark ref processor
1930   _ref_processor_cm =
1931     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1932                            mt_processing,                                  // mt processing
1933                            ParallelGCThreads,                              // degree of mt processing
1934                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1935                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1936                            false,                                          // Reference discovery is not atomic
1937                            &_is_alive_closure_cm,                          // is alive closure
1938                            true);                                          // allow changes to number of processing threads
1939 
1940   // STW ref processor
1941   _ref_processor_stw =
1942     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1943                            mt_processing,                        // mt processing
1944                            ParallelGCThreads,                    // degree of mt processing
1945                            (ParallelGCThreads > 1),              // mt discovery
1946                            ParallelGCThreads,                    // degree of mt discovery
1947                            true,                                 // Reference discovery is atomic
1948                            &_is_alive_closure_stw,               // is alive closure
1949                            true);                                // allow changes to number of processing threads
1950 }
1951 
1952 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1953   return &_soft_ref_policy;
1954 }
1955 
1956 size_t G1CollectedHeap::capacity() const {
1957   return _hrm->length() * HeapRegion::GrainBytes;
1958 }
1959 
1960 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1961   return _hrm->total_free_bytes();
1962 }
1963 
1964 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1965   _hot_card_cache->drain(cl, worker_id);
1966 }
1967 
1968 // Computes the sum of the storage used by the various regions.
1969 size_t G1CollectedHeap::used() const {
1970   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1971   if (_archive_allocator != NULL) {
1972     result += _archive_allocator->used();
1973   }
1974   return result;
1975 }
1976 
1977 size_t G1CollectedHeap::used_unlocked() const {
1978   return _summary_bytes_used;
1979 }
1980 
1981 class SumUsedClosure: public HeapRegionClosure {
1982   size_t _used;
1983 public:
1984   SumUsedClosure() : _used(0) {}
1985   bool do_heap_region(HeapRegion* r) {
1986     _used += r->used();
1987     return false;
1988   }
1989   size_t result() { return _used; }
1990 };
1991 
1992 size_t G1CollectedHeap::recalculate_used() const {
1993   SumUsedClosure blk;
1994   heap_region_iterate(&blk);
1995   return blk.result();
1996 }
1997 
1998 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1999   switch (cause) {
2000     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2001     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2002     case GCCause::_wb_conc_mark:                        return true;
2003     default :                                           return false;
2004   }
2005 }
2006 
2007 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2008   switch (cause) {
2009     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2010     case GCCause::_g1_humongous_allocation: return true;
2011     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
2012     default:                                return is_user_requested_concurrent_full_gc(cause);
2013   }
2014 }
2015 
2016 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
2017   if(policy()->force_upgrade_to_full()) {
2018     return true;
2019   } else if (should_do_concurrent_full_gc(_gc_cause)) {
2020     return false;
2021   } else if (has_regions_left_for_allocation()) {
2022     return false;
2023   } else {
2024     return true;
2025   }
2026 }
2027 
2028 #ifndef PRODUCT
2029 void G1CollectedHeap::allocate_dummy_regions() {
2030   // Let's fill up most of the region
2031   size_t word_size = HeapRegion::GrainWords - 1024;
2032   // And as a result the region we'll allocate will be humongous.
2033   guarantee(is_humongous(word_size), "sanity");
2034 
2035   // _filler_array_max_size is set to humongous object threshold
2036   // but temporarily change it to use CollectedHeap::fill_with_object().
2037   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2038 
2039   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2040     // Let's use the existing mechanism for the allocation
2041     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2042     if (dummy_obj != NULL) {
2043       MemRegion mr(dummy_obj, word_size);
2044       CollectedHeap::fill_with_object(mr);
2045     } else {
2046       // If we can't allocate once, we probably cannot allocate
2047       // again. Let's get out of the loop.
2048       break;
2049     }
2050   }
2051 }
2052 #endif // !PRODUCT
2053 
2054 void G1CollectedHeap::increment_old_marking_cycles_started() {
2055   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2056          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2057          "Wrong marking cycle count (started: %d, completed: %d)",
2058          _old_marking_cycles_started, _old_marking_cycles_completed);
2059 
2060   _old_marking_cycles_started++;
2061 }
2062 
2063 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2064   MonitorLocker x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2065 
2066   // We assume that if concurrent == true, then the caller is a
2067   // concurrent thread that was joined the Suspendible Thread
2068   // Set. If there's ever a cheap way to check this, we should add an
2069   // assert here.
2070 
2071   // Given that this method is called at the end of a Full GC or of a
2072   // concurrent cycle, and those can be nested (i.e., a Full GC can
2073   // interrupt a concurrent cycle), the number of full collections
2074   // completed should be either one (in the case where there was no
2075   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2076   // behind the number of full collections started.
2077 
2078   // This is the case for the inner caller, i.e. a Full GC.
2079   assert(concurrent ||
2080          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2081          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2082          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2083          "is inconsistent with _old_marking_cycles_completed = %u",
2084          _old_marking_cycles_started, _old_marking_cycles_completed);
2085 
2086   // This is the case for the outer caller, i.e. the concurrent cycle.
2087   assert(!concurrent ||
2088          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2089          "for outer caller (concurrent cycle): "
2090          "_old_marking_cycles_started = %u "
2091          "is inconsistent with _old_marking_cycles_completed = %u",
2092          _old_marking_cycles_started, _old_marking_cycles_completed);
2093 
2094   _old_marking_cycles_completed += 1;
2095 
2096   // We need to clear the "in_progress" flag in the CM thread before
2097   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2098   // is set) so that if a waiter requests another System.gc() it doesn't
2099   // incorrectly see that a marking cycle is still in progress.
2100   if (concurrent) {
2101     _cm_thread->set_idle();
2102   }
2103 
2104   // This notify_all() will ensure that a thread that called
2105   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2106   // and it's waiting for a full GC to finish will be woken up. It is
2107   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2108   FullGCCount_lock->notify_all();
2109 }
2110 
2111 void G1CollectedHeap::collect(GCCause::Cause cause) {
2112   try_collect(cause, true);
2113 }
2114 
2115 bool G1CollectedHeap::try_collect(GCCause::Cause cause, bool retry_on_gc_failure) {
2116   assert_heap_not_locked();
2117 
2118   bool gc_succeeded;
2119   bool should_retry_gc;
2120 
2121   do {
2122     should_retry_gc = false;
2123 
2124     uint gc_count_before;
2125     uint old_marking_count_before;
2126     uint full_gc_count_before;
2127 
2128     {
2129       MutexLocker ml(Heap_lock);
2130 
2131       // Read the GC count while holding the Heap_lock
2132       gc_count_before = total_collections();
2133       full_gc_count_before = total_full_collections();
2134       old_marking_count_before = _old_marking_cycles_started;
2135     }
2136 
2137     if (should_do_concurrent_full_gc(cause)) {
2138       // Schedule an initial-mark evacuation pause that will start a
2139       // concurrent cycle. We're setting word_size to 0 which means that
2140       // we are not requesting a post-GC allocation.
2141       VM_G1CollectForAllocation op(0,     /* word_size */
2142                                    gc_count_before,
2143                                    cause,
2144                                    true,  /* should_initiate_conc_mark */
2145                                    policy()->max_pause_time_ms());
2146       VMThread::execute(&op);
2147       gc_succeeded = op.gc_succeeded();
2148       if (!gc_succeeded && retry_on_gc_failure) {
2149         if (old_marking_count_before == _old_marking_cycles_started) {
2150           should_retry_gc = op.should_retry_gc();
2151         } else {
2152           // A Full GC happened while we were trying to schedule the
2153           // concurrent cycle. No point in starting a new cycle given
2154           // that the whole heap was collected anyway.
2155         }
2156 
2157         if (should_retry_gc && GCLocker::is_active_and_needs_gc()) {
2158           GCLocker::stall_until_clear();
2159         }
2160       }
2161     } else if (GCLocker::should_discard(cause, gc_count_before)) {
2162       // Return false to be consistent with VMOp failure due to
2163       // another collection slipping in after our gc_count but before
2164       // our request is processed.  _gc_locker collections upgraded by
2165       // GCLockerInvokesConcurrent are handled above and never discarded.
2166       return false;
2167     } else {
2168       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2169           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2170 
2171         // Schedule a standard evacuation pause. We're setting word_size
2172         // to 0 which means that we are not requesting a post-GC allocation.
2173         VM_G1CollectForAllocation op(0,     /* word_size */
2174                                      gc_count_before,
2175                                      cause,
2176                                      false, /* should_initiate_conc_mark */
2177                                      policy()->max_pause_time_ms());
2178         VMThread::execute(&op);
2179         gc_succeeded = op.gc_succeeded();
2180       } else {
2181         // Schedule a Full GC.
2182         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2183         VMThread::execute(&op);
2184         gc_succeeded = op.gc_succeeded();
2185       }
2186     }
2187   } while (should_retry_gc);
2188   return gc_succeeded;
2189 }
2190 
2191 bool G1CollectedHeap::is_in(const void* p) const {
2192   if (_hrm->reserved().contains(p)) {
2193     // Given that we know that p is in the reserved space,
2194     // heap_region_containing() should successfully
2195     // return the containing region.
2196     HeapRegion* hr = heap_region_containing(p);
2197     return hr->is_in(p);
2198   } else {
2199     return false;
2200   }
2201 }
2202 
2203 #ifdef ASSERT
2204 bool G1CollectedHeap::is_in_exact(const void* p) const {
2205   bool contains = reserved_region().contains(p);
2206   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2207   if (contains && available) {
2208     return true;
2209   } else {
2210     return false;
2211   }
2212 }
2213 #endif
2214 
2215 // Iteration functions.
2216 
2217 // Iterates an ObjectClosure over all objects within a HeapRegion.
2218 
2219 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2220   ObjectClosure* _cl;
2221 public:
2222   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2223   bool do_heap_region(HeapRegion* r) {
2224     if (!r->is_continues_humongous()) {
2225       r->object_iterate(_cl);
2226     }
2227     return false;
2228   }
2229 };
2230 
2231 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2232   IterateObjectClosureRegionClosure blk(cl);
2233   heap_region_iterate(&blk);
2234 }
2235 
2236 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2237   _hrm->iterate(cl);
2238 }
2239 
2240 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2241                                                                  HeapRegionClaimer *hrclaimer,
2242                                                                  uint worker_id) const {
2243   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2244 }
2245 
2246 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2247                                                          HeapRegionClaimer *hrclaimer) const {
2248   _hrm->par_iterate(cl, hrclaimer, 0);
2249 }
2250 
2251 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2252   _collection_set.iterate(cl);
2253 }
2254 
2255 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2256   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2257 }
2258 
2259 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2260   HeapRegion* hr = heap_region_containing(addr);
2261   return hr->block_start(addr);
2262 }
2263 
2264 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2265   HeapRegion* hr = heap_region_containing(addr);
2266   return hr->block_is_obj(addr);
2267 }
2268 
2269 bool G1CollectedHeap::supports_tlab_allocation() const {
2270   return true;
2271 }
2272 
2273 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2274   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2275 }
2276 
2277 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2278   return _eden.length() * HeapRegion::GrainBytes;
2279 }
2280 
2281 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2282 // must be equal to the humongous object limit.
2283 size_t G1CollectedHeap::max_tlab_size() const {
2284   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2285 }
2286 
2287 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2288   return _allocator->unsafe_max_tlab_alloc();
2289 }
2290 
2291 size_t G1CollectedHeap::max_capacity() const {
2292   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2293 }
2294 
2295 size_t G1CollectedHeap::max_reserved_capacity() const {
2296   return _hrm->max_length() * HeapRegion::GrainBytes;
2297 }
2298 
2299 jlong G1CollectedHeap::millis_since_last_gc() {
2300   // See the notes in GenCollectedHeap::millis_since_last_gc()
2301   // for more information about the implementation.
2302   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2303                   _policy->collection_pause_end_millis();
2304   if (ret_val < 0) {
2305     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2306       ". returning zero instead.", ret_val);
2307     return 0;
2308   }
2309   return ret_val;
2310 }
2311 
2312 void G1CollectedHeap::deduplicate_string(oop str) {
2313   assert(java_lang_String::is_instance(str), "invariant");
2314 
2315   if (G1StringDedup::is_enabled()) {
2316     G1StringDedup::deduplicate(str);
2317   }
2318 }
2319 
2320 void G1CollectedHeap::prepare_for_verify() {
2321   _verifier->prepare_for_verify();
2322 }
2323 
2324 void G1CollectedHeap::verify(VerifyOption vo) {
2325   _verifier->verify(vo);
2326 }
2327 
2328 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2329   return true;
2330 }
2331 
2332 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2333   return _cm_thread->request_concurrent_phase(phase);
2334 }
2335 
2336 bool G1CollectedHeap::is_heterogeneous_heap() const {
2337   return G1Arguments::is_heterogeneous_heap();
2338 }
2339 
2340 class PrintRegionClosure: public HeapRegionClosure {
2341   outputStream* _st;
2342 public:
2343   PrintRegionClosure(outputStream* st) : _st(st) {}
2344   bool do_heap_region(HeapRegion* r) {
2345     r->print_on(_st);
2346     return false;
2347   }
2348 };
2349 
2350 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2351                                        const HeapRegion* hr,
2352                                        const VerifyOption vo) const {
2353   switch (vo) {
2354   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2355   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2356   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2357   default:                            ShouldNotReachHere();
2358   }
2359   return false; // keep some compilers happy
2360 }
2361 
2362 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2363                                        const VerifyOption vo) const {
2364   switch (vo) {
2365   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2366   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2367   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2368   default:                            ShouldNotReachHere();
2369   }
2370   return false; // keep some compilers happy
2371 }
2372 
2373 void G1CollectedHeap::print_heap_regions() const {
2374   LogTarget(Trace, gc, heap, region) lt;
2375   if (lt.is_enabled()) {
2376     LogStream ls(lt);
2377     print_regions_on(&ls);
2378   }
2379 }
2380 
2381 void G1CollectedHeap::print_on(outputStream* st) const {
2382   st->print(" %-20s", "garbage-first heap");
2383   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2384             capacity()/K, used_unlocked()/K);
2385   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2386             p2i(_hrm->reserved().start()),
2387             p2i(_hrm->reserved().end()));
2388   st->cr();
2389   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2390   uint young_regions = young_regions_count();
2391   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2392             (size_t) young_regions * HeapRegion::GrainBytes / K);
2393   uint survivor_regions = survivor_regions_count();
2394   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2395             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2396   st->cr();
2397   MetaspaceUtils::print_on(st);
2398 }
2399 
2400 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2401   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2402                "HS=humongous(starts), HC=humongous(continues), "
2403                "CS=collection set, F=free, "
2404                "OA=open archive, CA=closed archive, "
2405                "TAMS=top-at-mark-start (previous, next)");
2406   PrintRegionClosure blk(st);
2407   heap_region_iterate(&blk);
2408 }
2409 
2410 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2411   print_on(st);
2412 
2413   // Print the per-region information.
2414   print_regions_on(st);
2415 }
2416 
2417 void G1CollectedHeap::print_on_error(outputStream* st) const {
2418   this->CollectedHeap::print_on_error(st);
2419 
2420   if (_cm != NULL) {
2421     st->cr();
2422     _cm->print_on_error(st);
2423   }
2424 }
2425 
2426 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2427   workers()->print_worker_threads_on(st);
2428   _cm_thread->print_on(st);
2429   st->cr();
2430   _cm->print_worker_threads_on(st);
2431   _cr->print_threads_on(st);
2432   _young_gen_sampling_thread->print_on(st);
2433   if (G1StringDedup::is_enabled()) {
2434     G1StringDedup::print_worker_threads_on(st);
2435   }
2436 }
2437 
2438 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2439   workers()->threads_do(tc);
2440   tc->do_thread(_cm_thread);
2441   _cm->threads_do(tc);
2442   _cr->threads_do(tc);
2443   tc->do_thread(_young_gen_sampling_thread);
2444   if (G1StringDedup::is_enabled()) {
2445     G1StringDedup::threads_do(tc);
2446   }
2447 }
2448 
2449 void G1CollectedHeap::print_tracing_info() const {
2450   rem_set()->print_summary_info();
2451   concurrent_mark()->print_summary_info();
2452 }
2453 
2454 #ifndef PRODUCT
2455 // Helpful for debugging RSet issues.
2456 
2457 class PrintRSetsClosure : public HeapRegionClosure {
2458 private:
2459   const char* _msg;
2460   size_t _occupied_sum;
2461 
2462 public:
2463   bool do_heap_region(HeapRegion* r) {
2464     HeapRegionRemSet* hrrs = r->rem_set();
2465     size_t occupied = hrrs->occupied();
2466     _occupied_sum += occupied;
2467 
2468     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2469     if (occupied == 0) {
2470       tty->print_cr("  RSet is empty");
2471     } else {
2472       hrrs->print();
2473     }
2474     tty->print_cr("----------");
2475     return false;
2476   }
2477 
2478   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2479     tty->cr();
2480     tty->print_cr("========================================");
2481     tty->print_cr("%s", msg);
2482     tty->cr();
2483   }
2484 
2485   ~PrintRSetsClosure() {
2486     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2487     tty->print_cr("========================================");
2488     tty->cr();
2489   }
2490 };
2491 
2492 void G1CollectedHeap::print_cset_rsets() {
2493   PrintRSetsClosure cl("Printing CSet RSets");
2494   collection_set_iterate_all(&cl);
2495 }
2496 
2497 void G1CollectedHeap::print_all_rsets() {
2498   PrintRSetsClosure cl("Printing All RSets");;
2499   heap_region_iterate(&cl);
2500 }
2501 #endif // PRODUCT
2502 
2503 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2504   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2505 }
2506 
2507 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2508 
2509   size_t eden_used_bytes = _eden.used_bytes();
2510   size_t survivor_used_bytes = _survivor.used_bytes();
2511   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2512 
2513   size_t eden_capacity_bytes =
2514     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2515 
2516   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2517   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2518                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2519 }
2520 
2521 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2522   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2523                        stats->unused(), stats->used(), stats->region_end_waste(),
2524                        stats->regions_filled(), stats->direct_allocated(),
2525                        stats->failure_used(), stats->failure_waste());
2526 }
2527 
2528 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2529   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2530   gc_tracer->report_gc_heap_summary(when, heap_summary);
2531 
2532   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2533   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2534 }
2535 
2536 G1CollectedHeap* G1CollectedHeap::heap() {
2537   CollectedHeap* heap = Universe::heap();
2538   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2539   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2540   return (G1CollectedHeap*)heap;
2541 }
2542 
2543 void G1CollectedHeap::gc_prologue(bool full) {
2544   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2545 
2546   // This summary needs to be printed before incrementing total collections.
2547   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2548 
2549   // Update common counters.
2550   increment_total_collections(full /* full gc */);
2551   if (full || collector_state()->in_initial_mark_gc()) {
2552     increment_old_marking_cycles_started();
2553   }
2554 
2555   // Fill TLAB's and such
2556   double start = os::elapsedTime();
2557   ensure_parsability(true);
2558   phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2559 }
2560 
2561 void G1CollectedHeap::gc_epilogue(bool full) {
2562   // Update common counters.
2563   if (full) {
2564     // Update the number of full collections that have been completed.
2565     increment_old_marking_cycles_completed(false /* concurrent */);
2566   }
2567 
2568   // We are at the end of the GC. Total collections has already been increased.
2569   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2570 
2571   // FIXME: what is this about?
2572   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2573   // is set.
2574 #if COMPILER2_OR_JVMCI
2575   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2576 #endif
2577 
2578   double start = os::elapsedTime();
2579   resize_all_tlabs();
2580   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2581 
2582   MemoryService::track_memory_usage();
2583   // We have just completed a GC. Update the soft reference
2584   // policy with the new heap occupancy
2585   Universe::update_heap_info_at_gc();
2586 }
2587 
2588 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2589                                                uint gc_count_before,
2590                                                bool* succeeded,
2591                                                GCCause::Cause gc_cause) {
2592   assert_heap_not_locked_and_not_at_safepoint();
2593   VM_G1CollectForAllocation op(word_size,
2594                                gc_count_before,
2595                                gc_cause,
2596                                false, /* should_initiate_conc_mark */
2597                                policy()->max_pause_time_ms());
2598   VMThread::execute(&op);
2599 
2600   HeapWord* result = op.result();
2601   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2602   assert(result == NULL || ret_succeeded,
2603          "the result should be NULL if the VM did not succeed");
2604   *succeeded = ret_succeeded;
2605 
2606   assert_heap_not_locked();
2607   return result;
2608 }
2609 
2610 void G1CollectedHeap::do_concurrent_mark() {
2611   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2612   if (!_cm_thread->in_progress()) {
2613     _cm_thread->set_started();
2614     CGC_lock->notify();
2615   }
2616 }
2617 
2618 size_t G1CollectedHeap::pending_card_num() {
2619   struct CountCardsClosure : public ThreadClosure {
2620     size_t _cards;
2621     CountCardsClosure() : _cards(0) {}
2622     virtual void do_thread(Thread* t) {
2623       _cards += G1ThreadLocalData::dirty_card_queue(t).size();
2624     }
2625   } count_from_threads;
2626   Threads::threads_do(&count_from_threads);
2627 
2628   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2629   dcqs.verify_num_cards();
2630 
2631   return dcqs.num_cards() + count_from_threads._cards;
2632 }
2633 
2634 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2635   // We don't nominate objects with many remembered set entries, on
2636   // the assumption that such objects are likely still live.
2637   HeapRegionRemSet* rem_set = r->rem_set();
2638 
2639   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2640          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2641          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2642 }
2643 
2644 class RegisterRegionsWithRegionAttrTableClosure : public HeapRegionClosure {
2645  private:
2646   size_t _total_humongous;
2647   size_t _candidate_humongous;
2648 
2649   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2650     assert(region->is_starts_humongous(), "Must start a humongous object");
2651 
2652     oop obj = oop(region->bottom());
2653 
2654     // Dead objects cannot be eager reclaim candidates. Due to class
2655     // unloading it is unsafe to query their classes so we return early.
2656     if (g1h->is_obj_dead(obj, region)) {
2657       return false;
2658     }
2659 
2660     // If we do not have a complete remembered set for the region, then we can
2661     // not be sure that we have all references to it.
2662     if (!region->rem_set()->is_complete()) {
2663       return false;
2664     }
2665     // Candidate selection must satisfy the following constraints
2666     // while concurrent marking is in progress:
2667     //
2668     // * In order to maintain SATB invariants, an object must not be
2669     // reclaimed if it was allocated before the start of marking and
2670     // has not had its references scanned.  Such an object must have
2671     // its references (including type metadata) scanned to ensure no
2672     // live objects are missed by the marking process.  Objects
2673     // allocated after the start of concurrent marking don't need to
2674     // be scanned.
2675     //
2676     // * An object must not be reclaimed if it is on the concurrent
2677     // mark stack.  Objects allocated after the start of concurrent
2678     // marking are never pushed on the mark stack.
2679     //
2680     // Nominating only objects allocated after the start of concurrent
2681     // marking is sufficient to meet both constraints.  This may miss
2682     // some objects that satisfy the constraints, but the marking data
2683     // structures don't support efficiently performing the needed
2684     // additional tests or scrubbing of the mark stack.
2685     //
2686     // However, we presently only nominate is_typeArray() objects.
2687     // A humongous object containing references induces remembered
2688     // set entries on other regions.  In order to reclaim such an
2689     // object, those remembered sets would need to be cleaned up.
2690     //
2691     // We also treat is_typeArray() objects specially, allowing them
2692     // to be reclaimed even if allocated before the start of
2693     // concurrent mark.  For this we rely on mark stack insertion to
2694     // exclude is_typeArray() objects, preventing reclaiming an object
2695     // that is in the mark stack.  We also rely on the metadata for
2696     // such objects to be built-in and so ensured to be kept live.
2697     // Frequent allocation and drop of large binary blobs is an
2698     // important use case for eager reclaim, and this special handling
2699     // may reduce needed headroom.
2700 
2701     return obj->is_typeArray() &&
2702            g1h->is_potential_eager_reclaim_candidate(region);
2703   }
2704 
2705  public:
2706   RegisterRegionsWithRegionAttrTableClosure()
2707   : _total_humongous(0),
2708     _candidate_humongous(0) {
2709   }
2710 
2711   virtual bool do_heap_region(HeapRegion* r) {
2712     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2713 
2714     if (!r->is_starts_humongous()) {
2715       g1h->register_region_with_region_attr(r);
2716       return false;
2717     }
2718 
2719     bool is_candidate = humongous_region_is_candidate(g1h, r);
2720     uint rindex = r->hrm_index();
2721     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2722     if (is_candidate) {
2723       g1h->register_humongous_region_with_region_attr(rindex);
2724       _candidate_humongous++;
2725       // We will later handle the remembered sets of these regions.
2726     } else {
2727       g1h->register_region_with_region_attr(r);
2728     }
2729     _total_humongous++;
2730 
2731     return false;
2732   }
2733 
2734   size_t total_humongous() const { return _total_humongous; }
2735   size_t candidate_humongous() const { return _candidate_humongous; }
2736 };
2737 
2738 void G1CollectedHeap::register_regions_with_region_attr() {
2739   Ticks start = Ticks::now();
2740 
2741   RegisterRegionsWithRegionAttrTableClosure cl;
2742   heap_region_iterate(&cl);
2743 
2744   phase_times()->record_register_regions((Ticks::now() - start).seconds() * 1000.0,
2745                                          cl.total_humongous(),
2746                                          cl.candidate_humongous());
2747   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2748 }
2749 
2750 #ifndef PRODUCT
2751 void G1CollectedHeap::verify_region_attr_remset_update() {
2752   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2753   public:
2754     virtual bool do_heap_region(HeapRegion* r) {
2755       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2756       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2757       assert(r->rem_set()->is_tracked() == needs_remset_update,
2758              "Region %u remset tracking status (%s) different to region attribute (%s)",
2759              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2760       return false;
2761     }
2762   } cl;
2763   heap_region_iterate(&cl);
2764 }
2765 #endif
2766 
2767 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2768   public:
2769     bool do_heap_region(HeapRegion* hr) {
2770       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2771         hr->verify_rem_set();
2772       }
2773       return false;
2774     }
2775 };
2776 
2777 uint G1CollectedHeap::num_task_queues() const {
2778   return _task_queues->size();
2779 }
2780 
2781 #if TASKQUEUE_STATS
2782 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2783   st->print_raw_cr("GC Task Stats");
2784   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2785   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2786 }
2787 
2788 void G1CollectedHeap::print_taskqueue_stats() const {
2789   if (!log_is_enabled(Trace, gc, task, stats)) {
2790     return;
2791   }
2792   Log(gc, task, stats) log;
2793   ResourceMark rm;
2794   LogStream ls(log.trace());
2795   outputStream* st = &ls;
2796 
2797   print_taskqueue_stats_hdr(st);
2798 
2799   TaskQueueStats totals;
2800   const uint n = num_task_queues();
2801   for (uint i = 0; i < n; ++i) {
2802     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2803     totals += task_queue(i)->stats;
2804   }
2805   st->print_raw("tot "); totals.print(st); st->cr();
2806 
2807   DEBUG_ONLY(totals.verify());
2808 }
2809 
2810 void G1CollectedHeap::reset_taskqueue_stats() {
2811   const uint n = num_task_queues();
2812   for (uint i = 0; i < n; ++i) {
2813     task_queue(i)->stats.reset();
2814   }
2815 }
2816 #endif // TASKQUEUE_STATS
2817 
2818 void G1CollectedHeap::wait_for_root_region_scanning() {
2819   double scan_wait_start = os::elapsedTime();
2820   // We have to wait until the CM threads finish scanning the
2821   // root regions as it's the only way to ensure that all the
2822   // objects on them have been correctly scanned before we start
2823   // moving them during the GC.
2824   bool waited = _cm->root_regions()->wait_until_scan_finished();
2825   double wait_time_ms = 0.0;
2826   if (waited) {
2827     double scan_wait_end = os::elapsedTime();
2828     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2829   }
2830   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2831 }
2832 
2833 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2834 private:
2835   G1HRPrinter* _hr_printer;
2836 public:
2837   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2838 
2839   virtual bool do_heap_region(HeapRegion* r) {
2840     _hr_printer->cset(r);
2841     return false;
2842   }
2843 };
2844 
2845 void G1CollectedHeap::start_new_collection_set() {
2846   double start = os::elapsedTime();
2847 
2848   collection_set()->start_incremental_building();
2849 
2850   clear_region_attr();
2851 
2852   guarantee(_eden.length() == 0, "eden should have been cleared");
2853   policy()->transfer_survivors_to_cset(survivor());
2854 
2855   // We redo the verification but now wrt to the new CSet which
2856   // has just got initialized after the previous CSet was freed.
2857   _cm->verify_no_collection_set_oops();
2858 
2859   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2860 }
2861 
2862 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2863 
2864   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2865   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2866                                             collection_set()->optional_region_length());
2867 
2868   _cm->verify_no_collection_set_oops();
2869 
2870   if (_hr_printer.is_active()) {
2871     G1PrintCollectionSetClosure cl(&_hr_printer);
2872     _collection_set.iterate(&cl);
2873     _collection_set.iterate_optional(&cl);
2874   }
2875 }
2876 
2877 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2878   if (collector_state()->in_initial_mark_gc()) {
2879     return G1HeapVerifier::G1VerifyConcurrentStart;
2880   } else if (collector_state()->in_young_only_phase()) {
2881     return G1HeapVerifier::G1VerifyYoungNormal;
2882   } else {
2883     return G1HeapVerifier::G1VerifyMixed;
2884   }
2885 }
2886 
2887 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2888   if (VerifyRememberedSets) {
2889     log_info(gc, verify)("[Verifying RemSets before GC]");
2890     VerifyRegionRemSetClosure v_cl;
2891     heap_region_iterate(&v_cl);
2892   }
2893   _verifier->verify_before_gc(type);
2894   _verifier->check_bitmaps("GC Start");
2895 }
2896 
2897 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2898   if (VerifyRememberedSets) {
2899     log_info(gc, verify)("[Verifying RemSets after GC]");
2900     VerifyRegionRemSetClosure v_cl;
2901     heap_region_iterate(&v_cl);
2902   }
2903   _verifier->verify_after_gc(type);
2904   _verifier->check_bitmaps("GC End");
2905 }
2906 
2907 void G1CollectedHeap::expand_heap_after_young_collection(){
2908   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2909   if (expand_bytes > 0) {
2910     // No need for an ergo logging here,
2911     // expansion_amount() does this when it returns a value > 0.
2912     double expand_ms;
2913     if (!expand(expand_bytes, _workers, &expand_ms)) {
2914       // We failed to expand the heap. Cannot do anything about it.
2915     }
2916     phase_times()->record_expand_heap_time(expand_ms);
2917   }
2918 }
2919 
2920 const char* G1CollectedHeap::young_gc_name() const {
2921   if (collector_state()->in_initial_mark_gc()) {
2922     return "Pause Young (Concurrent Start)";
2923   } else if (collector_state()->in_young_only_phase()) {
2924     if (collector_state()->in_young_gc_before_mixed()) {
2925       return "Pause Young (Prepare Mixed)";
2926     } else {
2927       return "Pause Young (Normal)";
2928     }
2929   } else {
2930     return "Pause Young (Mixed)";
2931   }
2932 }
2933 
2934 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2935   assert_at_safepoint_on_vm_thread();
2936   guarantee(!is_gc_active(), "collection is not reentrant");
2937 
2938   if (GCLocker::check_active_before_gc()) {
2939     return false;
2940   }
2941 
2942   GCIdMark gc_id_mark;
2943 
2944   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2945   ResourceMark rm;
2946 
2947   policy()->note_gc_start();
2948 
2949   _gc_timer_stw->register_gc_start();
2950   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2951 
2952   wait_for_root_region_scanning();
2953 
2954   print_heap_before_gc();
2955   print_heap_regions();
2956   trace_heap_before_gc(_gc_tracer_stw);
2957 
2958   _verifier->verify_region_sets_optional();
2959   _verifier->verify_dirty_young_regions();
2960 
2961   // We should not be doing initial mark unless the conc mark thread is running
2962   if (!_cm_thread->should_terminate()) {
2963     // This call will decide whether this pause is an initial-mark
2964     // pause. If it is, in_initial_mark_gc() will return true
2965     // for the duration of this pause.
2966     policy()->decide_on_conc_mark_initiation();
2967   }
2968 
2969   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2970   assert(!collector_state()->in_initial_mark_gc() ||
2971          collector_state()->in_young_only_phase(), "sanity");
2972   // We also do not allow mixed GCs during marking.
2973   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2974 
2975   // Record whether this pause is an initial mark. When the current
2976   // thread has completed its logging output and it's safe to signal
2977   // the CM thread, the flag's value in the policy has been reset.
2978   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2979   if (should_start_conc_mark) {
2980     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2981   }
2982 
2983   // Inner scope for scope based logging, timers, and stats collection
2984   {
2985     G1EvacuationInfo evacuation_info;
2986 
2987     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2988 
2989     GCTraceCPUTime tcpu;
2990 
2991     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
2992 
2993     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
2994                                                             workers()->active_workers(),
2995                                                             Threads::number_of_non_daemon_threads());
2996     active_workers = workers()->update_active_workers(active_workers);
2997     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2998 
2999     G1MonitoringScope ms(g1mm(),
3000                          false /* full_gc */,
3001                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3002 
3003     G1HeapTransition heap_transition(this);
3004     size_t heap_used_bytes_before_gc = used();
3005 
3006     {
3007       IsGCActiveMark x;
3008 
3009       gc_prologue(false);
3010 
3011       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3012       verify_before_young_collection(verify_type);
3013 
3014       {
3015         // The elapsed time induced by the start time below deliberately elides
3016         // the possible verification above.
3017         double sample_start_time_sec = os::elapsedTime();
3018 
3019         // Please see comment in g1CollectedHeap.hpp and
3020         // G1CollectedHeap::ref_processing_init() to see how
3021         // reference processing currently works in G1.
3022         _ref_processor_stw->enable_discovery();
3023 
3024         // We want to temporarily turn off discovery by the
3025         // CM ref processor, if necessary, and turn it back on
3026         // on again later if we do. Using a scoped
3027         // NoRefDiscovery object will do this.
3028         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3029 
3030         policy()->record_collection_pause_start(sample_start_time_sec);
3031 
3032         // Forget the current allocation region (we might even choose it to be part
3033         // of the collection set!).
3034         _allocator->release_mutator_alloc_regions();
3035 
3036         calculate_collection_set(evacuation_info, target_pause_time_ms);
3037 
3038         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3039         G1ParScanThreadStateSet per_thread_states(this,
3040                                                   &rdcqs,
3041                                                   workers()->active_workers(),
3042                                                   collection_set()->young_region_length(),
3043                                                   collection_set()->optional_region_length());
3044         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3045 
3046         // Actually do the work...
3047         evacuate_initial_collection_set(&per_thread_states);
3048 
3049         if (_collection_set.optional_region_length() != 0) {
3050           evacuate_optional_collection_set(&per_thread_states);
3051         }
3052         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3053 
3054         start_new_collection_set();
3055 
3056         _survivor_evac_stats.adjust_desired_plab_sz();
3057         _old_evac_stats.adjust_desired_plab_sz();
3058 
3059         if (should_start_conc_mark) {
3060           // We have to do this before we notify the CM threads that
3061           // they can start working to make sure that all the
3062           // appropriate initialization is done on the CM object.
3063           concurrent_mark()->post_initial_mark();
3064           // Note that we don't actually trigger the CM thread at
3065           // this point. We do that later when we're sure that
3066           // the current thread has completed its logging output.
3067         }
3068 
3069         allocate_dummy_regions();
3070 
3071         _allocator->init_mutator_alloc_regions();
3072 
3073         expand_heap_after_young_collection();
3074 
3075         double sample_end_time_sec = os::elapsedTime();
3076         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3077         policy()->record_collection_pause_end(pause_time_ms, heap_used_bytes_before_gc);
3078       }
3079 
3080       verify_after_young_collection(verify_type);
3081 
3082 #ifdef TRACESPINNING
3083       ParallelTaskTerminator::print_termination_counts();
3084 #endif
3085 
3086       gc_epilogue(false);
3087     }
3088 
3089     // Print the remainder of the GC log output.
3090     if (evacuation_failed()) {
3091       log_info(gc)("To-space exhausted");
3092     }
3093 
3094     policy()->print_phases();
3095     heap_transition.print();
3096 
3097     _hrm->verify_optional();
3098     _verifier->verify_region_sets_optional();
3099 
3100     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3101     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3102 
3103     print_heap_after_gc();
3104     print_heap_regions();
3105     trace_heap_after_gc(_gc_tracer_stw);
3106 
3107     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3108     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3109     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3110     // before any GC notifications are raised.
3111     g1mm()->update_sizes();
3112 
3113     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3114     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3115     _gc_timer_stw->register_gc_end();
3116     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3117   }
3118   // It should now be safe to tell the concurrent mark thread to start
3119   // without its logging output interfering with the logging output
3120   // that came from the pause.
3121 
3122   if (should_start_conc_mark) {
3123     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3124     // thread(s) could be running concurrently with us. Make sure that anything
3125     // after this point does not assume that we are the only GC thread running.
3126     // Note: of course, the actual marking work will not start until the safepoint
3127     // itself is released in SuspendibleThreadSet::desynchronize().
3128     do_concurrent_mark();
3129   }
3130 
3131   return true;
3132 }
3133 
3134 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3135   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3136   workers()->run_task(&rsfp_task);
3137 }
3138 
3139 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3140   double remove_self_forwards_start = os::elapsedTime();
3141 
3142   remove_self_forwarding_pointers(rdcqs);
3143   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3144   _preserved_marks_set.restore(&task_executor);
3145 
3146   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3147 }
3148 
3149 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3150   if (!_evacuation_failed) {
3151     _evacuation_failed = true;
3152   }
3153 
3154   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3155   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3156 }
3157 
3158 bool G1ParEvacuateFollowersClosure::offer_termination() {
3159   EventGCPhaseParallel event;
3160   G1ParScanThreadState* const pss = par_scan_state();
3161   start_term_time();
3162   const bool res = terminator()->offer_termination();
3163   end_term_time();
3164   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3165   return res;
3166 }
3167 
3168 void G1ParEvacuateFollowersClosure::do_void() {
3169   EventGCPhaseParallel event;
3170   G1ParScanThreadState* const pss = par_scan_state();
3171   pss->trim_queue();
3172   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3173   do {
3174     EventGCPhaseParallel event;
3175     pss->steal_and_trim_queue(queues());
3176     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3177   } while (!offer_termination());
3178 }
3179 
3180 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3181                                         bool class_unloading_occurred) {
3182   uint num_workers = workers()->active_workers();
3183   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3184   workers()->run_task(&unlink_task);
3185 }
3186 
3187 // Clean string dedup data structures.
3188 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3189 // record the durations of the phases. Hence the almost-copy.
3190 class G1StringDedupCleaningTask : public AbstractGangTask {
3191   BoolObjectClosure* _is_alive;
3192   OopClosure* _keep_alive;
3193   G1GCPhaseTimes* _phase_times;
3194 
3195 public:
3196   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3197                             OopClosure* keep_alive,
3198                             G1GCPhaseTimes* phase_times) :
3199     AbstractGangTask("Partial Cleaning Task"),
3200     _is_alive(is_alive),
3201     _keep_alive(keep_alive),
3202     _phase_times(phase_times)
3203   {
3204     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3205     StringDedup::gc_prologue(true);
3206   }
3207 
3208   ~G1StringDedupCleaningTask() {
3209     StringDedup::gc_epilogue();
3210   }
3211 
3212   void work(uint worker_id) {
3213     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3214     {
3215       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3216       StringDedupQueue::unlink_or_oops_do(&cl);
3217     }
3218     {
3219       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3220       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3221     }
3222   }
3223 };
3224 
3225 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3226                                             OopClosure* keep_alive,
3227                                             G1GCPhaseTimes* phase_times) {
3228   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3229   workers()->run_task(&cl);
3230 }
3231 
3232 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3233  private:
3234   G1RedirtyCardsQueueSet* _qset;
3235   G1CollectedHeap* _g1h;
3236   BufferNode* volatile _nodes;
3237 
3238   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3239     size_t buffer_size = _qset->buffer_size();
3240     BufferNode* next = Atomic::load(&_nodes);
3241     while (next != NULL) {
3242       BufferNode* node = next;
3243       next = Atomic::cmpxchg(node->next(), &_nodes, node);
3244       if (next == node) {
3245         cl->apply_to_buffer(node, buffer_size, worker_id);
3246         next = node->next();
3247       }
3248     }
3249   }
3250 
3251  public:
3252   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3253     AbstractGangTask("Redirty Cards"),
3254     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3255 
3256   virtual void work(uint worker_id) {
3257     G1GCPhaseTimes* p = _g1h->phase_times();
3258     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3259 
3260     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3261     par_apply(&cl, worker_id);
3262 
3263     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3264   }
3265 };
3266 
3267 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3268   double redirty_logged_cards_start = os::elapsedTime();
3269 
3270   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3271   workers()->run_task(&redirty_task);
3272 
3273   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3274   dcq.merge_bufferlists(rdcqs);
3275 
3276   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3277 }
3278 
3279 // Weak Reference Processing support
3280 
3281 bool G1STWIsAliveClosure::do_object_b(oop p) {
3282   // An object is reachable if it is outside the collection set,
3283   // or is inside and copied.
3284   return !_g1h->is_in_cset(p) || p->is_forwarded();
3285 }
3286 
3287 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3288   assert(obj != NULL, "must not be NULL");
3289   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3290   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3291   // may falsely indicate that this is not the case here: however the collection set only
3292   // contains old regions when concurrent mark is not running.
3293   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3294 }
3295 
3296 // Non Copying Keep Alive closure
3297 class G1KeepAliveClosure: public OopClosure {
3298   G1CollectedHeap*_g1h;
3299 public:
3300   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3301   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3302   void do_oop(oop* p) {
3303     oop obj = *p;
3304     assert(obj != NULL, "the caller should have filtered out NULL values");
3305 
3306     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3307     if (!region_attr.is_in_cset_or_humongous()) {
3308       return;
3309     }
3310     if (region_attr.is_in_cset()) {
3311       assert( obj->is_forwarded(), "invariant" );
3312       *p = obj->forwardee();
3313     } else {
3314       assert(!obj->is_forwarded(), "invariant" );
3315       assert(region_attr.is_humongous(),
3316              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3317      _g1h->set_humongous_is_live(obj);
3318     }
3319   }
3320 };
3321 
3322 // Copying Keep Alive closure - can be called from both
3323 // serial and parallel code as long as different worker
3324 // threads utilize different G1ParScanThreadState instances
3325 // and different queues.
3326 
3327 class G1CopyingKeepAliveClosure: public OopClosure {
3328   G1CollectedHeap*         _g1h;
3329   G1ParScanThreadState*    _par_scan_state;
3330 
3331 public:
3332   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3333                             G1ParScanThreadState* pss):
3334     _g1h(g1h),
3335     _par_scan_state(pss)
3336   {}
3337 
3338   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3339   virtual void do_oop(      oop* p) { do_oop_work(p); }
3340 
3341   template <class T> void do_oop_work(T* p) {
3342     oop obj = RawAccess<>::oop_load(p);
3343 
3344     if (_g1h->is_in_cset_or_humongous(obj)) {
3345       // If the referent object has been forwarded (either copied
3346       // to a new location or to itself in the event of an
3347       // evacuation failure) then we need to update the reference
3348       // field and, if both reference and referent are in the G1
3349       // heap, update the RSet for the referent.
3350       //
3351       // If the referent has not been forwarded then we have to keep
3352       // it alive by policy. Therefore we have copy the referent.
3353       //
3354       // When the queue is drained (after each phase of reference processing)
3355       // the object and it's followers will be copied, the reference field set
3356       // to point to the new location, and the RSet updated.
3357       _par_scan_state->push_on_queue(p);
3358     }
3359   }
3360 };
3361 
3362 // Serial drain queue closure. Called as the 'complete_gc'
3363 // closure for each discovered list in some of the
3364 // reference processing phases.
3365 
3366 class G1STWDrainQueueClosure: public VoidClosure {
3367 protected:
3368   G1CollectedHeap* _g1h;
3369   G1ParScanThreadState* _par_scan_state;
3370 
3371   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3372 
3373 public:
3374   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3375     _g1h(g1h),
3376     _par_scan_state(pss)
3377   { }
3378 
3379   void do_void() {
3380     G1ParScanThreadState* const pss = par_scan_state();
3381     pss->trim_queue();
3382   }
3383 };
3384 
3385 // Parallel Reference Processing closures
3386 
3387 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3388 // processing during G1 evacuation pauses.
3389 
3390 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3391 private:
3392   G1CollectedHeap*          _g1h;
3393   G1ParScanThreadStateSet*  _pss;
3394   RefToScanQueueSet*        _queues;
3395   WorkGang*                 _workers;
3396 
3397 public:
3398   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3399                            G1ParScanThreadStateSet* per_thread_states,
3400                            WorkGang* workers,
3401                            RefToScanQueueSet *task_queues) :
3402     _g1h(g1h),
3403     _pss(per_thread_states),
3404     _queues(task_queues),
3405     _workers(workers)
3406   {
3407     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3408   }
3409 
3410   // Executes the given task using concurrent marking worker threads.
3411   virtual void execute(ProcessTask& task, uint ergo_workers);
3412 };
3413 
3414 // Gang task for possibly parallel reference processing
3415 
3416 class G1STWRefProcTaskProxy: public AbstractGangTask {
3417   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3418   ProcessTask&     _proc_task;
3419   G1CollectedHeap* _g1h;
3420   G1ParScanThreadStateSet* _pss;
3421   RefToScanQueueSet* _task_queues;
3422   ParallelTaskTerminator* _terminator;
3423 
3424 public:
3425   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3426                         G1CollectedHeap* g1h,
3427                         G1ParScanThreadStateSet* per_thread_states,
3428                         RefToScanQueueSet *task_queues,
3429                         ParallelTaskTerminator* terminator) :
3430     AbstractGangTask("Process reference objects in parallel"),
3431     _proc_task(proc_task),
3432     _g1h(g1h),
3433     _pss(per_thread_states),
3434     _task_queues(task_queues),
3435     _terminator(terminator)
3436   {}
3437 
3438   virtual void work(uint worker_id) {
3439     // The reference processing task executed by a single worker.
3440     ResourceMark rm;
3441     HandleMark   hm;
3442 
3443     G1STWIsAliveClosure is_alive(_g1h);
3444 
3445     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3446     pss->set_ref_discoverer(NULL);
3447 
3448     // Keep alive closure.
3449     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3450 
3451     // Complete GC closure
3452     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3453 
3454     // Call the reference processing task's work routine.
3455     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3456 
3457     // Note we cannot assert that the refs array is empty here as not all
3458     // of the processing tasks (specifically phase2 - pp2_work) execute
3459     // the complete_gc closure (which ordinarily would drain the queue) so
3460     // the queue may not be empty.
3461   }
3462 };
3463 
3464 // Driver routine for parallel reference processing.
3465 // Creates an instance of the ref processing gang
3466 // task and has the worker threads execute it.
3467 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3468   assert(_workers != NULL, "Need parallel worker threads.");
3469 
3470   assert(_workers->active_workers() >= ergo_workers,
3471          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3472          ergo_workers, _workers->active_workers());
3473   TaskTerminator terminator(ergo_workers, _queues);
3474   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, terminator.terminator());
3475 
3476   _workers->run_task(&proc_task_proxy, ergo_workers);
3477 }
3478 
3479 // End of weak reference support closures
3480 
3481 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3482   double ref_proc_start = os::elapsedTime();
3483 
3484   ReferenceProcessor* rp = _ref_processor_stw;
3485   assert(rp->discovery_enabled(), "should have been enabled");
3486 
3487   // Closure to test whether a referent is alive.
3488   G1STWIsAliveClosure is_alive(this);
3489 
3490   // Even when parallel reference processing is enabled, the processing
3491   // of JNI refs is serial and performed serially by the current thread
3492   // rather than by a worker. The following PSS will be used for processing
3493   // JNI refs.
3494 
3495   // Use only a single queue for this PSS.
3496   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3497   pss->set_ref_discoverer(NULL);
3498   assert(pss->queue_is_empty(), "pre-condition");
3499 
3500   // Keep alive closure.
3501   G1CopyingKeepAliveClosure keep_alive(this, pss);
3502 
3503   // Serial Complete GC closure
3504   G1STWDrainQueueClosure drain_queue(this, pss);
3505 
3506   // Setup the soft refs policy...
3507   rp->setup_policy(false);
3508 
3509   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3510 
3511   ReferenceProcessorStats stats;
3512   if (!rp->processing_is_mt()) {
3513     // Serial reference processing...
3514     stats = rp->process_discovered_references(&is_alive,
3515                                               &keep_alive,
3516                                               &drain_queue,
3517                                               NULL,
3518                                               pt);
3519   } else {
3520     uint no_of_gc_workers = workers()->active_workers();
3521 
3522     // Parallel reference processing
3523     assert(no_of_gc_workers <= rp->max_num_queues(),
3524            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3525            no_of_gc_workers,  rp->max_num_queues());
3526 
3527     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3528     stats = rp->process_discovered_references(&is_alive,
3529                                               &keep_alive,
3530                                               &drain_queue,
3531                                               &par_task_executor,
3532                                               pt);
3533   }
3534 
3535   _gc_tracer_stw->report_gc_reference_stats(stats);
3536 
3537   // We have completed copying any necessary live referent objects.
3538   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3539 
3540   make_pending_list_reachable();
3541 
3542   assert(!rp->discovery_enabled(), "Postcondition");
3543   rp->verify_no_references_recorded();
3544 
3545   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3546   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3547 }
3548 
3549 void G1CollectedHeap::make_pending_list_reachable() {
3550   if (collector_state()->in_initial_mark_gc()) {
3551     oop pll_head = Universe::reference_pending_list();
3552     if (pll_head != NULL) {
3553       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3554       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3555     }
3556   }
3557 }
3558 
3559 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3560   double merge_pss_time_start = os::elapsedTime();
3561   per_thread_states->flush();
3562   phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3563 }
3564 
3565 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3566   _expand_heap_after_alloc_failure = true;
3567   _evacuation_failed = false;
3568 
3569   // Disable the hot card cache.
3570   _hot_card_cache->reset_hot_cache_claimed_index();
3571   _hot_card_cache->set_use_cache(false);
3572 
3573   // Initialize the GC alloc regions.
3574   _allocator->init_gc_alloc_regions(evacuation_info);
3575 
3576   {
3577     Ticks start = Ticks::now();
3578     rem_set()->prepare_for_scan_heap_roots();
3579     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3580   }
3581 
3582   register_regions_with_region_attr();
3583   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3584 
3585   _preserved_marks_set.assert_empty();
3586 
3587 #if COMPILER2_OR_JVMCI
3588   DerivedPointerTable::clear();
3589 #endif
3590 
3591   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3592   if (collector_state()->in_initial_mark_gc()) {
3593     concurrent_mark()->pre_initial_mark();
3594 
3595     double start_clear_claimed_marks = os::elapsedTime();
3596 
3597     ClassLoaderDataGraph::clear_claimed_marks();
3598 
3599     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3600     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3601   }
3602 
3603   // Should G1EvacuationFailureALot be in effect for this GC?
3604   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3605 }
3606 
3607 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3608 protected:
3609   G1CollectedHeap* _g1h;
3610   G1ParScanThreadStateSet* _per_thread_states;
3611   RefToScanQueueSet* _task_queues;
3612   TaskTerminator _terminator;
3613   uint _num_workers;
3614 
3615   void evacuate_live_objects(G1ParScanThreadState* pss,
3616                              uint worker_id,
3617                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3618                              G1GCPhaseTimes::GCParPhases termination_phase) {
3619     G1GCPhaseTimes* p = _g1h->phase_times();
3620 
3621     Ticks start = Ticks::now();
3622     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, _terminator.terminator(), objcopy_phase);
3623     cl.do_void();
3624 
3625     assert(pss->queue_is_empty(), "should be empty");
3626 
3627     Tickspan evac_time = (Ticks::now() - start);
3628     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3629 
3630     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABWaste);
3631     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_undo_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABUndoWaste);
3632 
3633     if (termination_phase == G1GCPhaseTimes::Termination) {
3634       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3635       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3636     } else {
3637       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3638       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3639     }
3640   }
3641 
3642   virtual void start_work(uint worker_id) { }
3643 
3644   virtual void end_work(uint worker_id) { }
3645 
3646   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3647 
3648   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3649 
3650 public:
3651   G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) :
3652     AbstractGangTask(name),
3653     _g1h(G1CollectedHeap::heap()),
3654     _per_thread_states(per_thread_states),
3655     _task_queues(task_queues),
3656     _terminator(num_workers, _task_queues),
3657     _num_workers(num_workers)
3658   { }
3659 
3660   void work(uint worker_id) {
3661     start_work(worker_id);
3662 
3663     {
3664       ResourceMark rm;
3665       HandleMark   hm;
3666 
3667       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3668       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3669 
3670       scan_roots(pss, worker_id);
3671       evacuate_live_objects(pss, worker_id);
3672     }
3673 
3674     end_work(worker_id);
3675   }
3676 };
3677 
3678 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3679   G1RootProcessor* _root_processor;
3680 
3681   void verify_trim_ticks(G1ParScanThreadState* pss, const char* location) {
3682     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation at %s %.3lf " JLONG_FORMAT, location, pss->trim_ticks().seconds(), pss->trim_ticks().value());
3683   }
3684 
3685   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3686     _root_processor->evacuate_roots(pss, worker_id);
3687     verify_trim_ticks(pss, "roots");
3688     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3689     verify_trim_ticks(pss, "heap roots");
3690     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3691     verify_trim_ticks(pss, "scan cset");
3692   }
3693 
3694   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3695     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3696     verify_trim_ticks(pss, "evac live");
3697   }
3698 
3699   void start_work(uint worker_id) {
3700     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3701   }
3702 
3703   void end_work(uint worker_id) {
3704     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3705   }
3706 
3707 public:
3708   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3709                         G1ParScanThreadStateSet* per_thread_states,
3710                         RefToScanQueueSet* task_queues,
3711                         G1RootProcessor* root_processor,
3712                         uint num_workers) :
3713     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3714     _root_processor(root_processor)
3715   { }
3716 };
3717 
3718 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3719   G1GCPhaseTimes* p = phase_times();
3720 
3721   {
3722     Ticks start = Ticks::now();
3723     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3724     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3725   }
3726 
3727   Tickspan task_time;
3728   const uint num_workers = workers()->active_workers();
3729 
3730   Ticks start_processing = Ticks::now();
3731   {
3732     G1RootProcessor root_processor(this, num_workers);
3733     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3734     task_time = run_task(&g1_par_task);
3735     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3736     // To extract its code root fixup time we measure total time of this scope and
3737     // subtract from the time the WorkGang task took.
3738   }
3739   Tickspan total_processing = Ticks::now() - start_processing;
3740 
3741   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3742   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3743 }
3744 
3745 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3746 
3747   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3748     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3749     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3750   }
3751 
3752   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3753     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3754   }
3755 
3756 public:
3757   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3758                                 RefToScanQueueSet* queues,
3759                                 uint num_workers) :
3760     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3761   }
3762 };
3763 
3764 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3765   class G1MarkScope : public MarkScope { };
3766 
3767   Tickspan task_time;
3768 
3769   Ticks start_processing = Ticks::now();
3770   {
3771     G1MarkScope code_mark_scope;
3772     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3773     task_time = run_task(&task);
3774     // See comment in evacuate_collection_set() for the reason of the scope.
3775   }
3776   Tickspan total_processing = Ticks::now() - start_processing;
3777 
3778   G1GCPhaseTimes* p = phase_times();
3779   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3780 }
3781 
3782 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3783   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3784 
3785   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3786 
3787     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3788     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3789 
3790     if (time_left_ms < 0 ||
3791         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3792       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3793                                 _collection_set.optional_region_length(), time_left_ms);
3794       break;
3795     }
3796 
3797     {
3798       Ticks start = Ticks::now();
3799       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3800       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3801     }
3802 
3803     {
3804       Ticks start = Ticks::now();
3805       evacuate_next_optional_regions(per_thread_states);
3806       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3807     }
3808   }
3809 
3810   _collection_set.abandon_optional_collection_set(per_thread_states);
3811 }
3812 
3813 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
3814                                                    G1RedirtyCardsQueueSet* rdcqs,
3815                                                    G1ParScanThreadStateSet* per_thread_states) {
3816   rem_set()->cleanup_after_scan_heap_roots();
3817 
3818   // Process any discovered reference objects - we have
3819   // to do this _before_ we retire the GC alloc regions
3820   // as we may have to copy some 'reachable' referent
3821   // objects (and their reachable sub-graphs) that were
3822   // not copied during the pause.
3823   process_discovered_references(per_thread_states);
3824 
3825   G1STWIsAliveClosure is_alive(this);
3826   G1KeepAliveClosure keep_alive(this);
3827 
3828   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3829                               phase_times()->weak_phase_times());
3830 
3831   if (G1StringDedup::is_enabled()) {
3832     double string_dedup_time_ms = os::elapsedTime();
3833 
3834     string_dedup_cleaning(&is_alive, &keep_alive, phase_times());
3835 
3836     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
3837     phase_times()->record_string_deduplication_time(string_cleanup_time_ms);
3838   }
3839 
3840   _allocator->release_gc_alloc_regions(evacuation_info);
3841 
3842   if (evacuation_failed()) {
3843     restore_after_evac_failure(rdcqs);
3844 
3845     // Reset the G1EvacuationFailureALot counters and flags
3846     NOT_PRODUCT(reset_evacuation_should_fail();)
3847 
3848     double recalculate_used_start = os::elapsedTime();
3849     set_used(recalculate_used());
3850     phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3851 
3852     if (_archive_allocator != NULL) {
3853       _archive_allocator->clear_used();
3854     }
3855     for (uint i = 0; i < ParallelGCThreads; i++) {
3856       if (_evacuation_failed_info_array[i].has_failed()) {
3857         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3858       }
3859     }
3860   } else {
3861     // The "used" of the the collection set have already been subtracted
3862     // when they were freed.  Add in the bytes evacuated.
3863     increase_used(policy()->bytes_copied_during_gc());
3864   }
3865 
3866   _preserved_marks_set.assert_empty();
3867 
3868   merge_per_thread_state_info(per_thread_states);
3869 
3870   // Reset and re-enable the hot card cache.
3871   // Note the counts for the cards in the regions in the
3872   // collection set are reset when the collection set is freed.
3873   _hot_card_cache->reset_hot_cache();
3874   _hot_card_cache->set_use_cache(true);
3875 
3876   purge_code_root_memory();
3877 
3878   redirty_logged_cards(rdcqs);
3879 
3880   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
3881 
3882   eagerly_reclaim_humongous_regions();
3883 
3884   record_obj_copy_mem_stats();
3885 
3886   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3887   evacuation_info.set_bytes_copied(policy()->bytes_copied_during_gc());
3888 
3889 #if COMPILER2_OR_JVMCI
3890   double start = os::elapsedTime();
3891   DerivedPointerTable::update_pointers();
3892   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3893 #endif
3894   policy()->print_age_table();
3895 }
3896 
3897 void G1CollectedHeap::record_obj_copy_mem_stats() {
3898   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3899 
3900   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3901                                                create_g1_evac_summary(&_old_evac_stats));
3902 }
3903 
3904 void G1CollectedHeap::free_region(HeapRegion* hr,
3905                                   FreeRegionList* free_list,
3906                                   bool skip_remset,
3907                                   bool skip_hot_card_cache,
3908                                   bool locked) {
3909   assert(!hr->is_free(), "the region should not be free");
3910   assert(!hr->is_empty(), "the region should not be empty");
3911   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
3912   assert(free_list != NULL, "pre-condition");
3913 
3914   if (G1VerifyBitmaps) {
3915     MemRegion mr(hr->bottom(), hr->end());
3916     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3917   }
3918 
3919   // Clear the card counts for this region.
3920   // Note: we only need to do this if the region is not young
3921   // (since we don't refine cards in young regions).
3922   if (!skip_hot_card_cache && !hr->is_young()) {
3923     _hot_card_cache->reset_card_counts(hr);
3924   }
3925   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3926   _policy->remset_tracker()->update_at_free(hr);
3927   free_list->add_ordered(hr);
3928 }
3929 
3930 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3931                                             FreeRegionList* free_list) {
3932   assert(hr->is_humongous(), "this is only for humongous regions");
3933   assert(free_list != NULL, "pre-condition");
3934   hr->clear_humongous();
3935   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3936 }
3937 
3938 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3939                                            const uint humongous_regions_removed) {
3940   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3941     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3942     _old_set.bulk_remove(old_regions_removed);
3943     _humongous_set.bulk_remove(humongous_regions_removed);
3944   }
3945 
3946 }
3947 
3948 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3949   assert(list != NULL, "list can't be null");
3950   if (!list->is_empty()) {
3951     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3952     _hrm->insert_list_into_free_list(list);
3953   }
3954 }
3955 
3956 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3957   decrease_used(bytes);
3958 }
3959 
3960 class G1FreeCollectionSetTask : public AbstractGangTask {
3961 private:
3962 
3963   // Closure applied to all regions in the collection set to do work that needs to
3964   // be done serially in a single thread.
3965   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
3966   private:
3967     G1EvacuationInfo* _evacuation_info;
3968     const size_t* _surviving_young_words;
3969 
3970     // Bytes used in successfully evacuated regions before the evacuation.
3971     size_t _before_used_bytes;
3972     // Bytes used in unsucessfully evacuated regions before the evacuation
3973     size_t _after_used_bytes;
3974 
3975     size_t _bytes_allocated_in_old_since_last_gc;
3976 
3977     size_t _failure_used_words;
3978     size_t _failure_waste_words;
3979 
3980     FreeRegionList _local_free_list;
3981   public:
3982     G1SerialFreeCollectionSetClosure(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
3983       HeapRegionClosure(),
3984       _evacuation_info(evacuation_info),
3985       _surviving_young_words(surviving_young_words),
3986       _before_used_bytes(0),
3987       _after_used_bytes(0),
3988       _bytes_allocated_in_old_since_last_gc(0),
3989       _failure_used_words(0),
3990       _failure_waste_words(0),
3991       _local_free_list("Local Region List for CSet Freeing") {
3992     }
3993 
3994     virtual bool do_heap_region(HeapRegion* r) {
3995       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3996 
3997       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
3998       g1h->clear_region_attr(r);
3999 
4000       if (r->is_young()) {
4001         assert(r->young_index_in_cset() != 0 && (uint)r->young_index_in_cset() <= g1h->collection_set()->young_region_length(),
4002                "Young index %u is wrong for region %u of type %s with %u young regions",
4003                r->young_index_in_cset(),
4004                r->hrm_index(),
4005                r->get_type_str(),
4006                g1h->collection_set()->young_region_length());
4007         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4008         r->record_surv_words_in_group(words_survived);
4009       }
4010 
4011       if (!r->evacuation_failed()) {
4012         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4013         _before_used_bytes += r->used();
4014         g1h->free_region(r,
4015                          &_local_free_list,
4016                          true, /* skip_remset */
4017                          true, /* skip_hot_card_cache */
4018                          true  /* locked */);
4019       } else {
4020         r->uninstall_surv_rate_group();
4021         r->clear_young_index_in_cset();
4022         r->set_evacuation_failed(false);
4023         // When moving a young gen region to old gen, we "allocate" that whole region
4024         // there. This is in addition to any already evacuated objects. Notify the
4025         // policy about that.
4026         // Old gen regions do not cause an additional allocation: both the objects
4027         // still in the region and the ones already moved are accounted for elsewhere.
4028         if (r->is_young()) {
4029           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4030         }
4031         // The region is now considered to be old.
4032         r->set_old();
4033         // Do some allocation statistics accounting. Regions that failed evacuation
4034         // are always made old, so there is no need to update anything in the young
4035         // gen statistics, but we need to update old gen statistics.
4036         size_t used_words = r->marked_bytes() / HeapWordSize;
4037 
4038         _failure_used_words += used_words;
4039         _failure_waste_words += HeapRegion::GrainWords - used_words;
4040 
4041         g1h->old_set_add(r);
4042         _after_used_bytes += r->used();
4043       }
4044       return false;
4045     }
4046 
4047     void complete_work() {
4048       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4049 
4050       _evacuation_info->set_regions_freed(_local_free_list.length());
4051       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4052 
4053       g1h->prepend_to_freelist(&_local_free_list);
4054       g1h->decrement_summary_bytes(_before_used_bytes);
4055 
4056       G1Policy* policy = g1h->policy();
4057       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4058 
4059       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4060     }
4061   };
4062 
4063   G1CollectionSet* _collection_set;
4064   G1SerialFreeCollectionSetClosure _cl;
4065   const size_t* _surviving_young_words;
4066 
4067   size_t _rs_length;
4068 
4069   volatile jint _serial_work_claim;
4070 
4071   struct WorkItem {
4072     uint region_idx;
4073     bool is_young;
4074     bool evacuation_failed;
4075 
4076     WorkItem(HeapRegion* r) {
4077       region_idx = r->hrm_index();
4078       is_young = r->is_young();
4079       evacuation_failed = r->evacuation_failed();
4080     }
4081   };
4082 
4083   volatile size_t _parallel_work_claim;
4084   size_t _num_work_items;
4085   WorkItem* _work_items;
4086 
4087   void do_serial_work() {
4088     // Need to grab the lock to be allowed to modify the old region list.
4089     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4090     _collection_set->iterate(&_cl);
4091   }
4092 
4093   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4094     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4095 
4096     HeapRegion* r = g1h->region_at(region_idx);
4097     assert(!g1h->is_on_master_free_list(r), "sanity");
4098 
4099     Atomic::add(r->rem_set()->occupied_locked(), &_rs_length);
4100 
4101     if (!is_young) {
4102       g1h->_hot_card_cache->reset_card_counts(r);
4103     }
4104 
4105     if (!evacuation_failed) {
4106       r->rem_set()->clear_locked();
4107     }
4108   }
4109 
4110   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4111   private:
4112     size_t _cur_idx;
4113     WorkItem* _work_items;
4114   public:
4115     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4116 
4117     virtual bool do_heap_region(HeapRegion* r) {
4118       _work_items[_cur_idx++] = WorkItem(r);
4119       return false;
4120     }
4121   };
4122 
4123   void prepare_work() {
4124     G1PrepareFreeCollectionSetClosure cl(_work_items);
4125     _collection_set->iterate(&cl);
4126   }
4127 
4128   void complete_work() {
4129     _cl.complete_work();
4130 
4131     G1Policy* policy = G1CollectedHeap::heap()->policy();
4132     policy->record_max_rs_length(_rs_length);
4133     policy->cset_regions_freed();
4134   }
4135 public:
4136   G1FreeCollectionSetTask(G1CollectionSet* collection_set, G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4137     AbstractGangTask("G1 Free Collection Set"),
4138     _collection_set(collection_set),
4139     _cl(evacuation_info, surviving_young_words),
4140     _surviving_young_words(surviving_young_words),
4141     _rs_length(0),
4142     _serial_work_claim(0),
4143     _parallel_work_claim(0),
4144     _num_work_items(collection_set->region_length()),
4145     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4146     prepare_work();
4147   }
4148 
4149   ~G1FreeCollectionSetTask() {
4150     complete_work();
4151     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4152   }
4153 
4154   // Chunk size for work distribution. The chosen value has been determined experimentally
4155   // to be a good tradeoff between overhead and achievable parallelism.
4156   static uint chunk_size() { return 32; }
4157 
4158   virtual void work(uint worker_id) {
4159     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->phase_times();
4160 
4161     // Claim serial work.
4162     if (_serial_work_claim == 0) {
4163       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4164       if (value == 0) {
4165         double serial_time = os::elapsedTime();
4166         do_serial_work();
4167         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4168       }
4169     }
4170 
4171     // Start parallel work.
4172     double young_time = 0.0;
4173     bool has_young_time = false;
4174     double non_young_time = 0.0;
4175     bool has_non_young_time = false;
4176 
4177     while (true) {
4178       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4179       size_t cur = end - chunk_size();
4180 
4181       if (cur >= _num_work_items) {
4182         break;
4183       }
4184 
4185       EventGCPhaseParallel event;
4186       double start_time = os::elapsedTime();
4187 
4188       end = MIN2(end, _num_work_items);
4189 
4190       for (; cur < end; cur++) {
4191         bool is_young = _work_items[cur].is_young;
4192 
4193         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4194 
4195         double end_time = os::elapsedTime();
4196         double time_taken = end_time - start_time;
4197         if (is_young) {
4198           young_time += time_taken;
4199           has_young_time = true;
4200           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4201         } else {
4202           non_young_time += time_taken;
4203           has_non_young_time = true;
4204           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4205         }
4206         start_time = end_time;
4207       }
4208     }
4209 
4210     if (has_young_time) {
4211       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4212     }
4213     if (has_non_young_time) {
4214       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4215     }
4216   }
4217 };
4218 
4219 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4220   _eden.clear();
4221 
4222   double free_cset_start_time = os::elapsedTime();
4223 
4224   {
4225     uint const num_regions = _collection_set.region_length();
4226     uint const num_chunks = MAX2(num_regions / G1FreeCollectionSetTask::chunk_size(), 1U);
4227     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4228 
4229     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4230 
4231     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4232                         cl.name(), num_workers, num_regions);
4233     workers()->run_task(&cl, num_workers);
4234   }
4235   phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4236 
4237   collection_set->clear();
4238 }
4239 
4240 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4241  private:
4242   FreeRegionList* _free_region_list;
4243   HeapRegionSet* _proxy_set;
4244   uint _humongous_objects_reclaimed;
4245   uint _humongous_regions_reclaimed;
4246   size_t _freed_bytes;
4247  public:
4248 
4249   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4250     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4251   }
4252 
4253   virtual bool do_heap_region(HeapRegion* r) {
4254     if (!r->is_starts_humongous()) {
4255       return false;
4256     }
4257 
4258     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4259 
4260     oop obj = (oop)r->bottom();
4261     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4262 
4263     // The following checks whether the humongous object is live are sufficient.
4264     // The main additional check (in addition to having a reference from the roots
4265     // or the young gen) is whether the humongous object has a remembered set entry.
4266     //
4267     // A humongous object cannot be live if there is no remembered set for it
4268     // because:
4269     // - there can be no references from within humongous starts regions referencing
4270     // the object because we never allocate other objects into them.
4271     // (I.e. there are no intra-region references that may be missed by the
4272     // remembered set)
4273     // - as soon there is a remembered set entry to the humongous starts region
4274     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4275     // until the end of a concurrent mark.
4276     //
4277     // It is not required to check whether the object has been found dead by marking
4278     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4279     // all objects allocated during that time are considered live.
4280     // SATB marking is even more conservative than the remembered set.
4281     // So if at this point in the collection there is no remembered set entry,
4282     // nobody has a reference to it.
4283     // At the start of collection we flush all refinement logs, and remembered sets
4284     // are completely up-to-date wrt to references to the humongous object.
4285     //
4286     // Other implementation considerations:
4287     // - never consider object arrays at this time because they would pose
4288     // considerable effort for cleaning up the the remembered sets. This is
4289     // required because stale remembered sets might reference locations that
4290     // are currently allocated into.
4291     uint region_idx = r->hrm_index();
4292     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4293         !r->rem_set()->is_empty()) {
4294       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4295                                region_idx,
4296                                (size_t)obj->size() * HeapWordSize,
4297                                p2i(r->bottom()),
4298                                r->rem_set()->occupied(),
4299                                r->rem_set()->strong_code_roots_list_length(),
4300                                next_bitmap->is_marked(r->bottom()),
4301                                g1h->is_humongous_reclaim_candidate(region_idx),
4302                                obj->is_typeArray()
4303                               );
4304       return false;
4305     }
4306 
4307     guarantee(obj->is_typeArray(),
4308               "Only eagerly reclaiming type arrays is supported, but the object "
4309               PTR_FORMAT " is not.", p2i(r->bottom()));
4310 
4311     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4312                              region_idx,
4313                              (size_t)obj->size() * HeapWordSize,
4314                              p2i(r->bottom()),
4315                              r->rem_set()->occupied(),
4316                              r->rem_set()->strong_code_roots_list_length(),
4317                              next_bitmap->is_marked(r->bottom()),
4318                              g1h->is_humongous_reclaim_candidate(region_idx),
4319                              obj->is_typeArray()
4320                             );
4321 
4322     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4323     cm->humongous_object_eagerly_reclaimed(r);
4324     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4325            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4326            region_idx,
4327            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4328            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4329     _humongous_objects_reclaimed++;
4330     do {
4331       HeapRegion* next = g1h->next_region_in_humongous(r);
4332       _freed_bytes += r->used();
4333       r->set_containing_set(NULL);
4334       _humongous_regions_reclaimed++;
4335       g1h->free_humongous_region(r, _free_region_list);
4336       r = next;
4337     } while (r != NULL);
4338 
4339     return false;
4340   }
4341 
4342   uint humongous_objects_reclaimed() {
4343     return _humongous_objects_reclaimed;
4344   }
4345 
4346   uint humongous_regions_reclaimed() {
4347     return _humongous_regions_reclaimed;
4348   }
4349 
4350   size_t bytes_freed() const {
4351     return _freed_bytes;
4352   }
4353 };
4354 
4355 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4356   assert_at_safepoint_on_vm_thread();
4357 
4358   if (!G1EagerReclaimHumongousObjects ||
4359       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4360     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4361     return;
4362   }
4363 
4364   double start_time = os::elapsedTime();
4365 
4366   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4367 
4368   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4369   heap_region_iterate(&cl);
4370 
4371   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4372 
4373   G1HRPrinter* hrp = hr_printer();
4374   if (hrp->is_active()) {
4375     FreeRegionListIterator iter(&local_cleanup_list);
4376     while (iter.more_available()) {
4377       HeapRegion* hr = iter.get_next();
4378       hrp->cleanup(hr);
4379     }
4380   }
4381 
4382   prepend_to_freelist(&local_cleanup_list);
4383   decrement_summary_bytes(cl.bytes_freed());
4384 
4385   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4386                                                        cl.humongous_objects_reclaimed());
4387 }
4388 
4389 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4390 public:
4391   virtual bool do_heap_region(HeapRegion* r) {
4392     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4393     G1CollectedHeap::heap()->clear_region_attr(r);
4394     r->clear_young_index_in_cset();
4395     return false;
4396   }
4397 };
4398 
4399 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4400   G1AbandonCollectionSetClosure cl;
4401   collection_set_iterate_all(&cl);
4402 
4403   collection_set->clear();
4404   collection_set->stop_incremental_building();
4405 }
4406 
4407 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4408   return _allocator->is_retained_old_region(hr);
4409 }
4410 
4411 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4412   _eden.add(hr);
4413   _policy->set_region_eden(hr);
4414 }
4415 
4416 #ifdef ASSERT
4417 
4418 class NoYoungRegionsClosure: public HeapRegionClosure {
4419 private:
4420   bool _success;
4421 public:
4422   NoYoungRegionsClosure() : _success(true) { }
4423   bool do_heap_region(HeapRegion* r) {
4424     if (r->is_young()) {
4425       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4426                             p2i(r->bottom()), p2i(r->end()));
4427       _success = false;
4428     }
4429     return false;
4430   }
4431   bool success() { return _success; }
4432 };
4433 
4434 bool G1CollectedHeap::check_young_list_empty() {
4435   bool ret = (young_regions_count() == 0);
4436 
4437   NoYoungRegionsClosure closure;
4438   heap_region_iterate(&closure);
4439   ret = ret && closure.success();
4440 
4441   return ret;
4442 }
4443 
4444 #endif // ASSERT
4445 
4446 class TearDownRegionSetsClosure : public HeapRegionClosure {
4447   HeapRegionSet *_old_set;
4448 
4449 public:
4450   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4451 
4452   bool do_heap_region(HeapRegion* r) {
4453     if (r->is_old()) {
4454       _old_set->remove(r);
4455     } else if(r->is_young()) {
4456       r->uninstall_surv_rate_group();
4457     } else {
4458       // We ignore free regions, we'll empty the free list afterwards.
4459       // We ignore humongous and archive regions, we're not tearing down these
4460       // sets.
4461       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4462              "it cannot be another type");
4463     }
4464     return false;
4465   }
4466 
4467   ~TearDownRegionSetsClosure() {
4468     assert(_old_set->is_empty(), "post-condition");
4469   }
4470 };
4471 
4472 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4473   assert_at_safepoint_on_vm_thread();
4474 
4475   if (!free_list_only) {
4476     TearDownRegionSetsClosure cl(&_old_set);
4477     heap_region_iterate(&cl);
4478 
4479     // Note that emptying the _young_list is postponed and instead done as
4480     // the first step when rebuilding the regions sets again. The reason for
4481     // this is that during a full GC string deduplication needs to know if
4482     // a collected region was young or old when the full GC was initiated.
4483   }
4484   _hrm->remove_all_free_regions();
4485 }
4486 
4487 void G1CollectedHeap::increase_used(size_t bytes) {
4488   _summary_bytes_used += bytes;
4489 }
4490 
4491 void G1CollectedHeap::decrease_used(size_t bytes) {
4492   assert(_summary_bytes_used >= bytes,
4493          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4494          _summary_bytes_used, bytes);
4495   _summary_bytes_used -= bytes;
4496 }
4497 
4498 void G1CollectedHeap::set_used(size_t bytes) {
4499   _summary_bytes_used = bytes;
4500 }
4501 
4502 class RebuildRegionSetsClosure : public HeapRegionClosure {
4503 private:
4504   bool _free_list_only;
4505 
4506   HeapRegionSet* _old_set;
4507   HeapRegionManager* _hrm;
4508 
4509   size_t _total_used;
4510 
4511 public:
4512   RebuildRegionSetsClosure(bool free_list_only,
4513                            HeapRegionSet* old_set,
4514                            HeapRegionManager* hrm) :
4515     _free_list_only(free_list_only),
4516     _old_set(old_set), _hrm(hrm), _total_used(0) {
4517     assert(_hrm->num_free_regions() == 0, "pre-condition");
4518     if (!free_list_only) {
4519       assert(_old_set->is_empty(), "pre-condition");
4520     }
4521   }
4522 
4523   bool do_heap_region(HeapRegion* r) {
4524     if (r->is_empty()) {
4525       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4526       // Add free regions to the free list
4527       r->set_free();
4528       _hrm->insert_into_free_list(r);
4529     } else if (!_free_list_only) {
4530       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4531 
4532       if (r->is_archive() || r->is_humongous()) {
4533         // We ignore archive and humongous regions. We left these sets unchanged.
4534       } else {
4535         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4536         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4537         r->move_to_old();
4538         _old_set->add(r);
4539       }
4540       _total_used += r->used();
4541     }
4542 
4543     return false;
4544   }
4545 
4546   size_t total_used() {
4547     return _total_used;
4548   }
4549 };
4550 
4551 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4552   assert_at_safepoint_on_vm_thread();
4553 
4554   if (!free_list_only) {
4555     _eden.clear();
4556     _survivor.clear();
4557   }
4558 
4559   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4560   heap_region_iterate(&cl);
4561 
4562   if (!free_list_only) {
4563     set_used(cl.total_used());
4564     if (_archive_allocator != NULL) {
4565       _archive_allocator->clear_used();
4566     }
4567   }
4568   assert_used_and_recalculate_used_equal(this);
4569 }
4570 
4571 // Methods for the mutator alloc region
4572 
4573 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4574                                                       bool force,
4575                                                       uint node_index) {
4576   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4577   bool should_allocate = policy()->should_allocate_mutator_region();
4578   if (force || should_allocate) {
4579     HeapRegion* new_alloc_region = new_region(word_size,
4580                                               HeapRegionType::Eden,
4581                                               false /* do_expand */,
4582                                               node_index);
4583     if (new_alloc_region != NULL) {
4584       set_region_short_lived_locked(new_alloc_region);
4585       _hr_printer.alloc(new_alloc_region, !should_allocate);
4586       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4587       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4588       return new_alloc_region;
4589     }
4590   }
4591   return NULL;
4592 }
4593 
4594 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4595                                                   size_t allocated_bytes) {
4596   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4597   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4598 
4599   collection_set()->add_eden_region(alloc_region);
4600   increase_used(allocated_bytes);
4601   _eden.add_used_bytes(allocated_bytes);
4602   _hr_printer.retire(alloc_region);
4603 
4604   // We update the eden sizes here, when the region is retired,
4605   // instead of when it's allocated, since this is the point that its
4606   // used space has been recorded in _summary_bytes_used.
4607   g1mm()->update_eden_size();
4608 }
4609 
4610 // Methods for the GC alloc regions
4611 
4612 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4613   if (dest.is_old()) {
4614     return true;
4615   } else {
4616     return survivor_regions_count() < policy()->max_survivor_regions();
4617   }
4618 }
4619 
4620 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest) {
4621   assert(FreeList_lock->owned_by_self(), "pre-condition");
4622 
4623   if (!has_more_regions(dest)) {
4624     return NULL;
4625   }
4626 
4627   HeapRegionType type;
4628   if (dest.is_young()) {
4629     type = HeapRegionType::Survivor;
4630   } else {
4631     type = HeapRegionType::Old;
4632   }
4633 
4634   HeapRegion* new_alloc_region = new_region(word_size,
4635                                             type,
4636                                             true /* do_expand */);
4637 
4638   if (new_alloc_region != NULL) {
4639     if (type.is_survivor()) {
4640       new_alloc_region->set_survivor();
4641       _survivor.add(new_alloc_region);
4642       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4643     } else {
4644       new_alloc_region->set_old();
4645       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4646     }
4647     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4648     register_region_with_region_attr(new_alloc_region);
4649     _hr_printer.alloc(new_alloc_region);
4650     return new_alloc_region;
4651   }
4652   return NULL;
4653 }
4654 
4655 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4656                                              size_t allocated_bytes,
4657                                              G1HeapRegionAttr dest) {
4658   policy()->record_bytes_copied_during_gc(allocated_bytes);
4659   if (dest.is_old()) {
4660     old_set_add(alloc_region);
4661   } else {
4662     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4663     _survivor.add_used_bytes(allocated_bytes);
4664   }
4665 
4666   bool const during_im = collector_state()->in_initial_mark_gc();
4667   if (during_im && allocated_bytes > 0) {
4668     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4669   }
4670   _hr_printer.retire(alloc_region);
4671 }
4672 
4673 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4674   bool expanded = false;
4675   uint index = _hrm->find_highest_free(&expanded);
4676 
4677   if (index != G1_NO_HRM_INDEX) {
4678     if (expanded) {
4679       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4680                                 HeapRegion::GrainWords * HeapWordSize);
4681     }
4682     _hrm->allocate_free_regions_starting_at(index, 1);
4683     return region_at(index);
4684   }
4685   return NULL;
4686 }
4687 
4688 // Optimized nmethod scanning
4689 
4690 class RegisterNMethodOopClosure: public OopClosure {
4691   G1CollectedHeap* _g1h;
4692   nmethod* _nm;
4693 
4694   template <class T> void do_oop_work(T* p) {
4695     T heap_oop = RawAccess<>::oop_load(p);
4696     if (!CompressedOops::is_null(heap_oop)) {
4697       oop obj = CompressedOops::decode_not_null(heap_oop);
4698       HeapRegion* hr = _g1h->heap_region_containing(obj);
4699       assert(!hr->is_continues_humongous(),
4700              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4701              " starting at " HR_FORMAT,
4702              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4703 
4704       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4705       hr->add_strong_code_root_locked(_nm);
4706     }
4707   }
4708 
4709 public:
4710   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4711     _g1h(g1h), _nm(nm) {}
4712 
4713   void do_oop(oop* p)       { do_oop_work(p); }
4714   void do_oop(narrowOop* p) { do_oop_work(p); }
4715 };
4716 
4717 class UnregisterNMethodOopClosure: public OopClosure {
4718   G1CollectedHeap* _g1h;
4719   nmethod* _nm;
4720 
4721   template <class T> void do_oop_work(T* p) {
4722     T heap_oop = RawAccess<>::oop_load(p);
4723     if (!CompressedOops::is_null(heap_oop)) {
4724       oop obj = CompressedOops::decode_not_null(heap_oop);
4725       HeapRegion* hr = _g1h->heap_region_containing(obj);
4726       assert(!hr->is_continues_humongous(),
4727              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4728              " starting at " HR_FORMAT,
4729              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4730 
4731       hr->remove_strong_code_root(_nm);
4732     }
4733   }
4734 
4735 public:
4736   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4737     _g1h(g1h), _nm(nm) {}
4738 
4739   void do_oop(oop* p)       { do_oop_work(p); }
4740   void do_oop(narrowOop* p) { do_oop_work(p); }
4741 };
4742 
4743 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4744   guarantee(nm != NULL, "sanity");
4745   RegisterNMethodOopClosure reg_cl(this, nm);
4746   nm->oops_do(&reg_cl);
4747 }
4748 
4749 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4750   guarantee(nm != NULL, "sanity");
4751   UnregisterNMethodOopClosure reg_cl(this, nm);
4752   nm->oops_do(&reg_cl, true);
4753 }
4754 
4755 void G1CollectedHeap::purge_code_root_memory() {
4756   double purge_start = os::elapsedTime();
4757   G1CodeRootSet::purge();
4758   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4759   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4760 }
4761 
4762 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4763   G1CollectedHeap* _g1h;
4764 
4765 public:
4766   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4767     _g1h(g1h) {}
4768 
4769   void do_code_blob(CodeBlob* cb) {
4770     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4771     if (nm == NULL) {
4772       return;
4773     }
4774 
4775     _g1h->register_nmethod(nm);
4776   }
4777 };
4778 
4779 void G1CollectedHeap::rebuild_strong_code_roots() {
4780   RebuildStrongCodeRootClosure blob_cl(this);
4781   CodeCache::blobs_do(&blob_cl);
4782 }
4783 
4784 void G1CollectedHeap::initialize_serviceability() {
4785   _g1mm->initialize_serviceability();
4786 }
4787 
4788 MemoryUsage G1CollectedHeap::memory_usage() {
4789   return _g1mm->memory_usage();
4790 }
4791 
4792 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4793   return _g1mm->memory_managers();
4794 }
4795 
4796 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4797   return _g1mm->memory_pools();
4798 }