/* * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2017, Red Hat, Inc. and/or its affiliates. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1Arguments.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1HeapVerifier.hpp" #include "gc/g1/heapRegion.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "gc/shared/cardTableRS.hpp" #include "gc/shared/gcArguments.hpp" #include "gc/shared/workerPolicy.hpp" #include "runtime/globals.hpp" #include "runtime/globals_extension.hpp" static const double MaxRamFractionForYoung = 0.8; size_t G1Arguments::MaxMemoryForYoung; static size_t calculate_heap_alignment(size_t space_alignment) { size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint(); size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size(); return MAX3(card_table_alignment, space_alignment, page_size); } void G1Arguments::initialize_alignments() { // Set up the region size and associated fields. // // There is a circular dependency here. We base the region size on the heap // size, but the heap size should be aligned with the region size. To get // around this we use the unaligned values for the heap. HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize); HeapRegionRemSet::setup_remset_size(); SpaceAlignment = HeapRegion::GrainBytes; HeapAlignment = calculate_heap_alignment(SpaceAlignment); } size_t G1Arguments::conservative_max_heap_alignment() { return HeapRegion::max_region_size(); } void G1Arguments::initialize_verification_types() { if (strlen(VerifyGCType) > 0) { const char delimiter[] = " ,\n"; size_t length = strlen(VerifyGCType); char* type_list = NEW_C_HEAP_ARRAY(char, length + 1, mtInternal); strncpy(type_list, VerifyGCType, length + 1); char* save_ptr; char* token = strtok_r(type_list, delimiter, &save_ptr); while (token != NULL) { parse_verification_type(token); token = strtok_r(NULL, delimiter, &save_ptr); } FREE_C_HEAP_ARRAY(char, type_list); } } void G1Arguments::parse_verification_type(const char* type) { if (strcmp(type, "young-normal") == 0) { G1HeapVerifier::enable_verification_type(G1HeapVerifier::G1VerifyYoungNormal); } else if (strcmp(type, "concurrent-start") == 0) { G1HeapVerifier::enable_verification_type(G1HeapVerifier::G1VerifyConcurrentStart); } else if (strcmp(type, "mixed") == 0) { G1HeapVerifier::enable_verification_type(G1HeapVerifier::G1VerifyMixed); } else if (strcmp(type, "remark") == 0) { G1HeapVerifier::enable_verification_type(G1HeapVerifier::G1VerifyRemark); } else if (strcmp(type, "cleanup") == 0) { G1HeapVerifier::enable_verification_type(G1HeapVerifier::G1VerifyCleanup); } else if (strcmp(type, "full") == 0) { G1HeapVerifier::enable_verification_type(G1HeapVerifier::G1VerifyFull); } else { log_warning(gc, verify)("VerifyGCType: '%s' is unknown. Available types are: " "young-normal, concurrent-start, mixed, remark, cleanup and full", type); } } void G1Arguments::initialize() { GCArguments::initialize(); assert(UseG1GC, "Error"); FLAG_SET_DEFAULT(ParallelGCThreads, WorkerPolicy::parallel_worker_threads()); if (ParallelGCThreads == 0) { assert(!FLAG_IS_DEFAULT(ParallelGCThreads), "The default value for ParallelGCThreads should not be 0."); vm_exit_during_initialization("The flag -XX:+UseG1GC can not be combined with -XX:ParallelGCThreads=0", NULL); } // When dumping the CDS archive we want to reduce fragmentation by // triggering a full collection. To get as low fragmentation as // possible we only use one worker thread. if (DumpSharedSpaces) { FLAG_SET_ERGO(ParallelGCThreads, 1); } if (FLAG_IS_DEFAULT(G1ConcRefinementThreads)) { FLAG_SET_ERGO(G1ConcRefinementThreads, ParallelGCThreads); } // MarkStackSize will be set (if it hasn't been set by the user) // when concurrent marking is initialized. // Its value will be based upon the number of parallel marking threads. // But we do set the maximum mark stack size here. if (FLAG_IS_DEFAULT(MarkStackSizeMax)) { FLAG_SET_DEFAULT(MarkStackSizeMax, 128 * TASKQUEUE_SIZE); } if (FLAG_IS_DEFAULT(GCTimeRatio) || GCTimeRatio == 0) { // In G1, we want the default GC overhead goal to be higher than // it is for PS, or the heap might be expanded too aggressively. // We set it here to ~8%. FLAG_SET_DEFAULT(GCTimeRatio, 12); } // Below, we might need to calculate the pause time interval based on // the pause target. When we do so we are going to give G1 maximum // flexibility and allow it to do pauses when it needs to. So, we'll // arrange that the pause interval to be pause time target + 1 to // ensure that a) the pause time target is maximized with respect to // the pause interval and b) we maintain the invariant that pause // time target < pause interval. If the user does not want this // maximum flexibility, they will have to set the pause interval // explicitly. if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) { // The default pause time target in G1 is 200ms FLAG_SET_DEFAULT(MaxGCPauseMillis, 200); } // Then, if the interval parameter was not set, set it according to // the pause time target (this will also deal with the case when the // pause time target is the default value). if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) { FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1); } if (FLAG_IS_DEFAULT(ParallelRefProcEnabled) && ParallelGCThreads > 1) { FLAG_SET_DEFAULT(ParallelRefProcEnabled, true); } log_trace(gc)("MarkStackSize: %uk MarkStackSizeMax: %uk", (unsigned int) (MarkStackSize / K), (uint) (MarkStackSizeMax / K)); // By default do not let the target stack size to be more than 1/4 of the entries if (FLAG_IS_DEFAULT(GCDrainStackTargetSize)) { FLAG_SET_ERGO(GCDrainStackTargetSize, MIN2(GCDrainStackTargetSize, (uintx)TASKQUEUE_SIZE / 4)); } #ifdef COMPILER2 // Enable loop strip mining to offer better pause time guarantees if (FLAG_IS_DEFAULT(UseCountedLoopSafepoints)) { FLAG_SET_DEFAULT(UseCountedLoopSafepoints, true); if (FLAG_IS_DEFAULT(LoopStripMiningIter)) { FLAG_SET_DEFAULT(LoopStripMiningIter, 1000); } } #endif initialize_verification_types(); } static size_t calculate_reasonable_max_memory_for_young(FormatBuffer<100> &calc_str, double max_ram_fraction_for_young) { julong phys_mem; // If MaxRam is specified, we use that as maximum physical memory available. if (FLAG_IS_DEFAULT(MaxRAM)) { phys_mem = os::physical_memory(); calc_str.append("Physical_Memory"); } else { phys_mem = (julong)MaxRAM; calc_str.append("MaxRAM"); } julong reasonable_max = phys_mem; // If either MaxRAMFraction or MaxRAMPercentage is specified, we use them to calculate // reasonable max size of young generation. if (!FLAG_IS_DEFAULT(MaxRAMFraction)) { reasonable_max = (julong)(phys_mem / MaxRAMFraction); calc_str.append(" / MaxRAMFraction"); } else if (!FLAG_IS_DEFAULT(MaxRAMPercentage)) { reasonable_max = (julong)((phys_mem * MaxRAMPercentage) / 100); calc_str.append(" * MaxRAMPercentage / 100"); } else { // We use our own fraction to calculate max size of young generation. reasonable_max = phys_mem * max_ram_fraction_for_young; calc_str.append(" * %0.2f", max_ram_fraction_for_young); } return (size_t)reasonable_max; } void G1Arguments::initialize_heap_flags_and_sizes() { if (AllocateOldGenAt != NULL) { initialize_heterogeneous(); } GCArguments::initialize_heap_flags_and_sizes(); } void G1Arguments::initialize_heterogeneous() { FormatBuffer<100> calc_str(""); MaxMemoryForYoung = calculate_reasonable_max_memory_for_young(calc_str, MaxRamFractionForYoung); if (MaxNewSize > MaxMemoryForYoung) { if (FLAG_IS_CMDLINE(MaxNewSize)) { log_warning(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))", MaxMemoryForYoung, calc_str.buffer()); } else { log_info(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s)). " "Dram usage can be lowered by setting MaxNewSize to a lower value", MaxMemoryForYoung, calc_str.buffer()); } MaxNewSize = MaxMemoryForYoung; } if (NewSize > MaxMemoryForYoung) { if (FLAG_IS_CMDLINE(NewSize)) { log_warning(gc, ergo)("Setting NewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))", MaxMemoryForYoung, calc_str.buffer()); } NewSize = MaxMemoryForYoung; } } CollectedHeap* G1Arguments::create_heap() { return new G1CollectedHeap(); } bool G1Arguments::is_heterogeneous_heap() { return AllocateOldGenAt != NULL; } size_t G1Arguments::reasonable_max_memory_for_young() { return MaxMemoryForYoung; } size_t G1Arguments::heap_reserved_size_bytes() { return (is_heterogeneous_heap() ? 2 : 1) * MaxHeapSize; } size_t G1Arguments::heap_max_size_bytes() { return MaxHeapSize; }