1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "jvm.h"
  30 #include "classfile/classLoader.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "logging/log.hpp"
  39 #include "logging/logStream.hpp"
  40 #include "memory/allocation.inline.hpp"
  41 #include "memory/filemap.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "os_share_windows.hpp"
  44 #include "os_windows.inline.hpp"
  45 #include "prims/jniFastGetField.hpp"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/align.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 #include "symbolengine.hpp"
  77 #include "windbghelp.hpp"
  78 
  79 
  80 #ifdef _DEBUG
  81 #include <crtdbg.h>
  82 #endif
  83 
  84 
  85 #include <windows.h>
  86 #include <sys/types.h>
  87 #include <sys/stat.h>
  88 #include <sys/timeb.h>
  89 #include <objidl.h>
  90 #include <shlobj.h>
  91 
  92 #include <malloc.h>
  93 #include <signal.h>
  94 #include <direct.h>
  95 #include <errno.h>
  96 #include <fcntl.h>
  97 #include <io.h>
  98 #include <process.h>              // For _beginthreadex(), _endthreadex()
  99 #include <imagehlp.h>             // For os::dll_address_to_function_name
 100 // for enumerating dll libraries
 101 #include <vdmdbg.h>
 102 #include <psapi.h>
 103 #include <mmsystem.h>
 104 #include <winsock2.h>
 105 
 106 // for timer info max values which include all bits
 107 #define ALL_64_BITS CONST64(-1)
 108 
 109 // For DLL loading/load error detection
 110 // Values of PE COFF
 111 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 112 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 113 
 114 static HANDLE main_process;
 115 static HANDLE main_thread;
 116 static int    main_thread_id;
 117 
 118 static FILETIME process_creation_time;
 119 static FILETIME process_exit_time;
 120 static FILETIME process_user_time;
 121 static FILETIME process_kernel_time;
 122 
 123 #ifdef _M_AMD64
 124   #define __CPU__ amd64
 125 #else
 126   #define __CPU__ i486
 127 #endif
 128 
 129 #if INCLUDE_AOT
 130 PVOID  topLevelVectoredExceptionHandler = NULL;
 131 LONG WINAPI topLevelVectoredExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 132 #endif
 133 
 134 // save DLL module handle, used by GetModuleFileName
 135 
 136 HINSTANCE vm_lib_handle;
 137 
 138 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 139   switch (reason) {
 140   case DLL_PROCESS_ATTACH:
 141     vm_lib_handle = hinst;
 142     if (ForceTimeHighResolution) {
 143       timeBeginPeriod(1L);
 144     }
 145     WindowsDbgHelp::pre_initialize();
 146     SymbolEngine::pre_initialize();
 147     break;
 148   case DLL_PROCESS_DETACH:
 149     if (ForceTimeHighResolution) {
 150       timeEndPeriod(1L);
 151     }
 152 #if INCLUDE_AOT
 153     if (topLevelVectoredExceptionHandler != NULL) {
 154       RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
 155       topLevelVectoredExceptionHandler = NULL;
 156     }
 157 #endif
 158     break;
 159   default:
 160     break;
 161   }
 162   return true;
 163 }
 164 
 165 static inline double fileTimeAsDouble(FILETIME* time) {
 166   const double high  = (double) ((unsigned int) ~0);
 167   const double split = 10000000.0;
 168   double result = (time->dwLowDateTime / split) +
 169                    time->dwHighDateTime * (high/split);
 170   return result;
 171 }
 172 
 173 // Implementation of os
 174 
 175 bool os::unsetenv(const char* name) {
 176   assert(name != NULL, "Null pointer");
 177   return (SetEnvironmentVariable(name, NULL) == TRUE);
 178 }
 179 
 180 // No setuid programs under Windows.
 181 bool os::have_special_privileges() {
 182   return false;
 183 }
 184 
 185 
 186 // This method is  a periodic task to check for misbehaving JNI applications
 187 // under CheckJNI, we can add any periodic checks here.
 188 // For Windows at the moment does nothing
 189 void os::run_periodic_checks() {
 190   return;
 191 }
 192 
 193 // previous UnhandledExceptionFilter, if there is one
 194 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 195 
 196 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 197 
 198 void os::init_system_properties_values() {
 199   // sysclasspath, java_home, dll_dir
 200   {
 201     char *home_path;
 202     char *dll_path;
 203     char *pslash;
 204     const char *bin = "\\bin";
 205     char home_dir[MAX_PATH + 1];
 206     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 207 
 208     if (alt_home_dir != NULL)  {
 209       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 210       home_dir[MAX_PATH] = '\0';
 211     } else {
 212       os::jvm_path(home_dir, sizeof(home_dir));
 213       // Found the full path to jvm.dll.
 214       // Now cut the path to <java_home>/jre if we can.
 215       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 216       pslash = strrchr(home_dir, '\\');
 217       if (pslash != NULL) {
 218         *pslash = '\0';                   // get rid of \{client|server}
 219         pslash = strrchr(home_dir, '\\');
 220         if (pslash != NULL) {
 221           *pslash = '\0';                 // get rid of \bin
 222         }
 223       }
 224     }
 225 
 226     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 227     strcpy(home_path, home_dir);
 228     Arguments::set_java_home(home_path);
 229     FREE_C_HEAP_ARRAY(char, home_path);
 230 
 231     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 232                                 mtInternal);
 233     strcpy(dll_path, home_dir);
 234     strcat(dll_path, bin);
 235     Arguments::set_dll_dir(dll_path);
 236     FREE_C_HEAP_ARRAY(char, dll_path);
 237 
 238     if (!set_boot_path('\\', ';')) {
 239       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 240     }
 241   }
 242 
 243 // library_path
 244 #define EXT_DIR "\\lib\\ext"
 245 #define BIN_DIR "\\bin"
 246 #define PACKAGE_DIR "\\Sun\\Java"
 247   {
 248     // Win32 library search order (See the documentation for LoadLibrary):
 249     //
 250     // 1. The directory from which application is loaded.
 251     // 2. The system wide Java Extensions directory (Java only)
 252     // 3. System directory (GetSystemDirectory)
 253     // 4. Windows directory (GetWindowsDirectory)
 254     // 5. The PATH environment variable
 255     // 6. The current directory
 256 
 257     char *library_path;
 258     char tmp[MAX_PATH];
 259     char *path_str = ::getenv("PATH");
 260 
 261     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 262                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 263 
 264     library_path[0] = '\0';
 265 
 266     GetModuleFileName(NULL, tmp, sizeof(tmp));
 267     *(strrchr(tmp, '\\')) = '\0';
 268     strcat(library_path, tmp);
 269 
 270     GetWindowsDirectory(tmp, sizeof(tmp));
 271     strcat(library_path, ";");
 272     strcat(library_path, tmp);
 273     strcat(library_path, PACKAGE_DIR BIN_DIR);
 274 
 275     GetSystemDirectory(tmp, sizeof(tmp));
 276     strcat(library_path, ";");
 277     strcat(library_path, tmp);
 278 
 279     GetWindowsDirectory(tmp, sizeof(tmp));
 280     strcat(library_path, ";");
 281     strcat(library_path, tmp);
 282 
 283     if (path_str) {
 284       strcat(library_path, ";");
 285       strcat(library_path, path_str);
 286     }
 287 
 288     strcat(library_path, ";.");
 289 
 290     Arguments::set_library_path(library_path);
 291     FREE_C_HEAP_ARRAY(char, library_path);
 292   }
 293 
 294   // Default extensions directory
 295   {
 296     char path[MAX_PATH];
 297     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 298     GetWindowsDirectory(path, MAX_PATH);
 299     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 300             path, PACKAGE_DIR, EXT_DIR);
 301     Arguments::set_ext_dirs(buf);
 302   }
 303   #undef EXT_DIR
 304   #undef BIN_DIR
 305   #undef PACKAGE_DIR
 306 
 307 #ifndef _WIN64
 308   // set our UnhandledExceptionFilter and save any previous one
 309   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 310 #endif
 311 
 312   // Done
 313   return;
 314 }
 315 
 316 void os::breakpoint() {
 317   DebugBreak();
 318 }
 319 
 320 // Invoked from the BREAKPOINT Macro
 321 extern "C" void breakpoint() {
 322   os::breakpoint();
 323 }
 324 
 325 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 326 // So far, this method is only used by Native Memory Tracking, which is
 327 // only supported on Windows XP or later.
 328 //
 329 int os::get_native_stack(address* stack, int frames, int toSkip) {
 330   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 331   for (int index = captured; index < frames; index ++) {
 332     stack[index] = NULL;
 333   }
 334   return captured;
 335 }
 336 
 337 
 338 // os::current_stack_base()
 339 //
 340 //   Returns the base of the stack, which is the stack's
 341 //   starting address.  This function must be called
 342 //   while running on the stack of the thread being queried.
 343 
 344 address os::current_stack_base() {
 345   MEMORY_BASIC_INFORMATION minfo;
 346   address stack_bottom;
 347   size_t stack_size;
 348 
 349   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 350   stack_bottom =  (address)minfo.AllocationBase;
 351   stack_size = minfo.RegionSize;
 352 
 353   // Add up the sizes of all the regions with the same
 354   // AllocationBase.
 355   while (1) {
 356     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 357     if (stack_bottom == (address)minfo.AllocationBase) {
 358       stack_size += minfo.RegionSize;
 359     } else {
 360       break;
 361     }
 362   }
 363   return stack_bottom + stack_size;
 364 }
 365 
 366 size_t os::current_stack_size() {
 367   size_t sz;
 368   MEMORY_BASIC_INFORMATION minfo;
 369   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 370   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 371   return sz;
 372 }
 373 
 374 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
 375   MEMORY_BASIC_INFORMATION minfo;
 376   committed_start = NULL;
 377   committed_size = 0;
 378   address top = start + size;
 379   const address start_addr = start;
 380   while (start < top) {
 381     VirtualQuery(start, &minfo, sizeof(minfo));
 382     if ((minfo.State & MEM_COMMIT) == 0) {  // not committed
 383       if (committed_start != NULL) {
 384         break;
 385       }
 386     } else {  // committed
 387       if (committed_start == NULL) {
 388         committed_start = start;
 389       }
 390       size_t offset = start - (address)minfo.BaseAddress;
 391       committed_size += minfo.RegionSize - offset;
 392     }
 393     start = (address)minfo.BaseAddress + minfo.RegionSize;
 394   }
 395 
 396   if (committed_start == NULL) {
 397     assert(committed_size == 0, "Sanity");
 398     return false;
 399   } else {
 400     assert(committed_start >= start_addr && committed_start < top, "Out of range");
 401     // current region may go beyond the limit, trim to the limit
 402     committed_size = MIN2(committed_size, size_t(top - committed_start));
 403     return true;
 404   }
 405 }
 406 
 407 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 408   const struct tm* time_struct_ptr = localtime(clock);
 409   if (time_struct_ptr != NULL) {
 410     *res = *time_struct_ptr;
 411     return res;
 412   }
 413   return NULL;
 414 }
 415 
 416 struct tm* os::gmtime_pd(const time_t* clock, struct tm* res) {
 417   const struct tm* time_struct_ptr = gmtime(clock);
 418   if (time_struct_ptr != NULL) {
 419     *res = *time_struct_ptr;
 420     return res;
 421   }
 422   return NULL;
 423 }
 424 
 425 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 426 
 427 // Thread start routine for all newly created threads
 428 static unsigned __stdcall thread_native_entry(Thread* thread) {
 429 
 430   thread->record_stack_base_and_size();
 431 
 432   // Try to randomize the cache line index of hot stack frames.
 433   // This helps when threads of the same stack traces evict each other's
 434   // cache lines. The threads can be either from the same JVM instance, or
 435   // from different JVM instances. The benefit is especially true for
 436   // processors with hyperthreading technology.
 437   static int counter = 0;
 438   int pid = os::current_process_id();
 439   _alloca(((pid ^ counter++) & 7) * 128);
 440 
 441   thread->initialize_thread_current();
 442 
 443   OSThread* osthr = thread->osthread();
 444   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 445 
 446   if (UseNUMA) {
 447     int lgrp_id = os::numa_get_group_id();
 448     if (lgrp_id != -1) {
 449       thread->set_lgrp_id(lgrp_id);
 450     }
 451   }
 452 
 453   // Diagnostic code to investigate JDK-6573254
 454   int res = 30115;  // non-java thread
 455   if (thread->is_Java_thread()) {
 456     res = 20115;    // java thread
 457   }
 458 
 459   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 460 
 461   // Install a win32 structured exception handler around every thread created
 462   // by VM, so VM can generate error dump when an exception occurred in non-
 463   // Java thread (e.g. VM thread).
 464   __try {
 465     thread->call_run();
 466   } __except(topLevelExceptionFilter(
 467                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 468     // Nothing to do.
 469   }
 470 
 471   // Note: at this point the thread object may already have deleted itself.
 472   // Do not dereference it from here on out.
 473 
 474   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 475 
 476   // One less thread is executing
 477   // When the VMThread gets here, the main thread may have already exited
 478   // which frees the CodeHeap containing the Atomic::add code
 479   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 480     Atomic::dec(&os::win32::_os_thread_count);
 481   }
 482 
 483   // Thread must not return from exit_process_or_thread(), but if it does,
 484   // let it proceed to exit normally
 485   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 486 }
 487 
 488 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 489                                   int thread_id) {
 490   // Allocate the OSThread object
 491   OSThread* osthread = new OSThread(NULL, NULL);
 492   if (osthread == NULL) return NULL;
 493 
 494   // Initialize the JDK library's interrupt event.
 495   // This should really be done when OSThread is constructed,
 496   // but there is no way for a constructor to report failure to
 497   // allocate the event.
 498   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 499   if (interrupt_event == NULL) {
 500     delete osthread;
 501     return NULL;
 502   }
 503   osthread->set_interrupt_event(interrupt_event);
 504 
 505   // Store info on the Win32 thread into the OSThread
 506   osthread->set_thread_handle(thread_handle);
 507   osthread->set_thread_id(thread_id);
 508 
 509   if (UseNUMA) {
 510     int lgrp_id = os::numa_get_group_id();
 511     if (lgrp_id != -1) {
 512       thread->set_lgrp_id(lgrp_id);
 513     }
 514   }
 515 
 516   // Initial thread state is INITIALIZED, not SUSPENDED
 517   osthread->set_state(INITIALIZED);
 518 
 519   return osthread;
 520 }
 521 
 522 
 523 bool os::create_attached_thread(JavaThread* thread) {
 524 #ifdef ASSERT
 525   thread->verify_not_published();
 526 #endif
 527   HANDLE thread_h;
 528   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 529                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 530     fatal("DuplicateHandle failed\n");
 531   }
 532   OSThread* osthread = create_os_thread(thread, thread_h,
 533                                         (int)current_thread_id());
 534   if (osthread == NULL) {
 535     return false;
 536   }
 537 
 538   // Initial thread state is RUNNABLE
 539   osthread->set_state(RUNNABLE);
 540 
 541   thread->set_osthread(osthread);
 542 
 543   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 544     os::current_thread_id());
 545 
 546   return true;
 547 }
 548 
 549 bool os::create_main_thread(JavaThread* thread) {
 550 #ifdef ASSERT
 551   thread->verify_not_published();
 552 #endif
 553   if (_starting_thread == NULL) {
 554     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 555     if (_starting_thread == NULL) {
 556       return false;
 557     }
 558   }
 559 
 560   // The primordial thread is runnable from the start)
 561   _starting_thread->set_state(RUNNABLE);
 562 
 563   thread->set_osthread(_starting_thread);
 564   return true;
 565 }
 566 
 567 // Helper function to trace _beginthreadex attributes,
 568 //  similar to os::Posix::describe_pthread_attr()
 569 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 570                                                size_t stacksize, unsigned initflag) {
 571   stringStream ss(buf, buflen);
 572   if (stacksize == 0) {
 573     ss.print("stacksize: default, ");
 574   } else {
 575     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 576   }
 577   ss.print("flags: ");
 578   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 579   #define ALL(X) \
 580     X(CREATE_SUSPENDED) \
 581     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 582   ALL(PRINT_FLAG)
 583   #undef ALL
 584   #undef PRINT_FLAG
 585   return buf;
 586 }
 587 
 588 // Allocate and initialize a new OSThread
 589 bool os::create_thread(Thread* thread, ThreadType thr_type,
 590                        size_t stack_size) {
 591   unsigned thread_id;
 592 
 593   // Allocate the OSThread object
 594   OSThread* osthread = new OSThread(NULL, NULL);
 595   if (osthread == NULL) {
 596     return false;
 597   }
 598 
 599   // Initialize the JDK library's interrupt event.
 600   // This should really be done when OSThread is constructed,
 601   // but there is no way for a constructor to report failure to
 602   // allocate the event.
 603   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 604   if (interrupt_event == NULL) {
 605     delete osthread;
 606     return false;
 607   }
 608   osthread->set_interrupt_event(interrupt_event);
 609   // We don't call set_interrupted(false) as it will trip the assert in there
 610   // as we are not operating on the current thread. We don't need to call it
 611   // because the initial state is already correct.
 612 
 613   thread->set_osthread(osthread);
 614 
 615   if (stack_size == 0) {
 616     switch (thr_type) {
 617     case os::java_thread:
 618       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 619       if (JavaThread::stack_size_at_create() > 0) {
 620         stack_size = JavaThread::stack_size_at_create();
 621       }
 622       break;
 623     case os::compiler_thread:
 624       if (CompilerThreadStackSize > 0) {
 625         stack_size = (size_t)(CompilerThreadStackSize * K);
 626         break;
 627       } // else fall through:
 628         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 629     case os::vm_thread:
 630     case os::pgc_thread:
 631     case os::cgc_thread:
 632     case os::watcher_thread:
 633       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 634       break;
 635     }
 636   }
 637 
 638   // Create the Win32 thread
 639   //
 640   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 641   // does not specify stack size. Instead, it specifies the size of
 642   // initially committed space. The stack size is determined by
 643   // PE header in the executable. If the committed "stack_size" is larger
 644   // than default value in the PE header, the stack is rounded up to the
 645   // nearest multiple of 1MB. For example if the launcher has default
 646   // stack size of 320k, specifying any size less than 320k does not
 647   // affect the actual stack size at all, it only affects the initial
 648   // commitment. On the other hand, specifying 'stack_size' larger than
 649   // default value may cause significant increase in memory usage, because
 650   // not only the stack space will be rounded up to MB, but also the
 651   // entire space is committed upfront.
 652   //
 653   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 654   // for CreateThread() that can treat 'stack_size' as stack size. However we
 655   // are not supposed to call CreateThread() directly according to MSDN
 656   // document because JVM uses C runtime library. The good news is that the
 657   // flag appears to work with _beginthredex() as well.
 658 
 659   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 660   HANDLE thread_handle =
 661     (HANDLE)_beginthreadex(NULL,
 662                            (unsigned)stack_size,
 663                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 664                            thread,
 665                            initflag,
 666                            &thread_id);
 667 
 668   char buf[64];
 669   if (thread_handle != NULL) {
 670     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 671       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 672   } else {
 673     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 674       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 675     // Log some OS information which might explain why creating the thread failed.
 676     log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 677     LogStream st(Log(os, thread)::info());
 678     os::print_memory_info(&st);
 679   }
 680 
 681   if (thread_handle == NULL) {
 682     // Need to clean up stuff we've allocated so far
 683     thread->set_osthread(NULL);
 684     delete osthread;
 685     return false;
 686   }
 687 
 688   Atomic::inc(&os::win32::_os_thread_count);
 689 
 690   // Store info on the Win32 thread into the OSThread
 691   osthread->set_thread_handle(thread_handle);
 692   osthread->set_thread_id(thread_id);
 693 
 694   // Initial thread state is INITIALIZED, not SUSPENDED
 695   osthread->set_state(INITIALIZED);
 696 
 697   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 698   return true;
 699 }
 700 
 701 
 702 // Free Win32 resources related to the OSThread
 703 void os::free_thread(OSThread* osthread) {
 704   assert(osthread != NULL, "osthread not set");
 705 
 706   // We are told to free resources of the argument thread,
 707   // but we can only really operate on the current thread.
 708   assert(Thread::current()->osthread() == osthread,
 709          "os::free_thread but not current thread");
 710 
 711   CloseHandle(osthread->thread_handle());
 712   delete osthread;
 713 }
 714 
 715 static jlong first_filetime;
 716 static jlong initial_performance_count;
 717 static jlong performance_frequency;
 718 
 719 
 720 jlong as_long(LARGE_INTEGER x) {
 721   jlong result = 0; // initialization to avoid warning
 722   set_high(&result, x.HighPart);
 723   set_low(&result, x.LowPart);
 724   return result;
 725 }
 726 
 727 
 728 jlong os::elapsed_counter() {
 729   LARGE_INTEGER count;
 730   QueryPerformanceCounter(&count);
 731   return as_long(count) - initial_performance_count;
 732 }
 733 
 734 
 735 jlong os::elapsed_frequency() {
 736   return performance_frequency;
 737 }
 738 
 739 
 740 julong os::available_memory() {
 741   return win32::available_memory();
 742 }
 743 
 744 julong os::win32::available_memory() {
 745   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 746   // value if total memory is larger than 4GB
 747   MEMORYSTATUSEX ms;
 748   ms.dwLength = sizeof(ms);
 749   GlobalMemoryStatusEx(&ms);
 750 
 751   return (julong)ms.ullAvailPhys;
 752 }
 753 
 754 julong os::physical_memory() {
 755   return win32::physical_memory();
 756 }
 757 
 758 bool os::has_allocatable_memory_limit(julong* limit) {
 759   MEMORYSTATUSEX ms;
 760   ms.dwLength = sizeof(ms);
 761   GlobalMemoryStatusEx(&ms);
 762 #ifdef _LP64
 763   *limit = (julong)ms.ullAvailVirtual;
 764   return true;
 765 #else
 766   // Limit to 1400m because of the 2gb address space wall
 767   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 768   return true;
 769 #endif
 770 }
 771 
 772 int os::active_processor_count() {
 773   // User has overridden the number of active processors
 774   if (ActiveProcessorCount > 0) {
 775     log_trace(os)("active_processor_count: "
 776                   "active processor count set by user : %d",
 777                   ActiveProcessorCount);
 778     return ActiveProcessorCount;
 779   }
 780 
 781   DWORD_PTR lpProcessAffinityMask = 0;
 782   DWORD_PTR lpSystemAffinityMask = 0;
 783   int proc_count = processor_count();
 784   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 785       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 786     // Nof active processors is number of bits in process affinity mask
 787     int bitcount = 0;
 788     while (lpProcessAffinityMask != 0) {
 789       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 790       bitcount++;
 791     }
 792     return bitcount;
 793   } else {
 794     return proc_count;
 795   }
 796 }
 797 
 798 void os::set_native_thread_name(const char *name) {
 799 
 800   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 801   //
 802   // Note that unfortunately this only works if the process
 803   // is already attached to a debugger; debugger must observe
 804   // the exception below to show the correct name.
 805 
 806   // If there is no debugger attached skip raising the exception
 807   if (!IsDebuggerPresent()) {
 808     return;
 809   }
 810 
 811   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 812   struct {
 813     DWORD dwType;     // must be 0x1000
 814     LPCSTR szName;    // pointer to name (in user addr space)
 815     DWORD dwThreadID; // thread ID (-1=caller thread)
 816     DWORD dwFlags;    // reserved for future use, must be zero
 817   } info;
 818 
 819   info.dwType = 0x1000;
 820   info.szName = name;
 821   info.dwThreadID = -1;
 822   info.dwFlags = 0;
 823 
 824   __try {
 825     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 826   } __except(EXCEPTION_EXECUTE_HANDLER) {}
 827 }
 828 
 829 bool os::distribute_processes(uint length, uint* distribution) {
 830   // Not yet implemented.
 831   return false;
 832 }
 833 
 834 bool os::bind_to_processor(uint processor_id) {
 835   // Not yet implemented.
 836   return false;
 837 }
 838 
 839 void os::win32::initialize_performance_counter() {
 840   LARGE_INTEGER count;
 841   QueryPerformanceFrequency(&count);
 842   performance_frequency = as_long(count);
 843   QueryPerformanceCounter(&count);
 844   initial_performance_count = as_long(count);
 845 }
 846 
 847 
 848 double os::elapsedTime() {
 849   return (double) elapsed_counter() / (double) elapsed_frequency();
 850 }
 851 
 852 
 853 // Windows format:
 854 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 855 // Java format:
 856 //   Java standards require the number of milliseconds since 1/1/1970
 857 
 858 // Constant offset - calculated using offset()
 859 static jlong  _offset   = 116444736000000000;
 860 // Fake time counter for reproducible results when debugging
 861 static jlong  fake_time = 0;
 862 
 863 #ifdef ASSERT
 864 // Just to be safe, recalculate the offset in debug mode
 865 static jlong _calculated_offset = 0;
 866 static int   _has_calculated_offset = 0;
 867 
 868 jlong offset() {
 869   if (_has_calculated_offset) return _calculated_offset;
 870   SYSTEMTIME java_origin;
 871   java_origin.wYear          = 1970;
 872   java_origin.wMonth         = 1;
 873   java_origin.wDayOfWeek     = 0; // ignored
 874   java_origin.wDay           = 1;
 875   java_origin.wHour          = 0;
 876   java_origin.wMinute        = 0;
 877   java_origin.wSecond        = 0;
 878   java_origin.wMilliseconds  = 0;
 879   FILETIME jot;
 880   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 881     fatal("Error = %d\nWindows error", GetLastError());
 882   }
 883   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 884   _has_calculated_offset = 1;
 885   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 886   return _calculated_offset;
 887 }
 888 #else
 889 jlong offset() {
 890   return _offset;
 891 }
 892 #endif
 893 
 894 jlong windows_to_java_time(FILETIME wt) {
 895   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 896   return (a - offset()) / 10000;
 897 }
 898 
 899 // Returns time ticks in (10th of micro seconds)
 900 jlong windows_to_time_ticks(FILETIME wt) {
 901   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 902   return (a - offset());
 903 }
 904 
 905 FILETIME java_to_windows_time(jlong l) {
 906   jlong a = (l * 10000) + offset();
 907   FILETIME result;
 908   result.dwHighDateTime = high(a);
 909   result.dwLowDateTime  = low(a);
 910   return result;
 911 }
 912 
 913 bool os::supports_vtime() { return true; }
 914 bool os::enable_vtime() { return false; }
 915 bool os::vtime_enabled() { return false; }
 916 
 917 double os::elapsedVTime() {
 918   FILETIME created;
 919   FILETIME exited;
 920   FILETIME kernel;
 921   FILETIME user;
 922   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 923     // the resolution of windows_to_java_time() should be sufficient (ms)
 924     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 925   } else {
 926     return elapsedTime();
 927   }
 928 }
 929 
 930 jlong os::javaTimeMillis() {
 931   FILETIME wt;
 932   GetSystemTimeAsFileTime(&wt);
 933   return windows_to_java_time(wt);
 934 }
 935 
 936 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 937   FILETIME wt;
 938   GetSystemTimeAsFileTime(&wt);
 939   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 940   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 941   seconds = secs;
 942   nanos = jlong(ticks - (secs*10000000)) * 100;
 943 }
 944 
 945 jlong os::javaTimeNanos() {
 946     LARGE_INTEGER current_count;
 947     QueryPerformanceCounter(&current_count);
 948     double current = as_long(current_count);
 949     double freq = performance_frequency;
 950     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 951     return time;
 952 }
 953 
 954 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 955   jlong freq = performance_frequency;
 956   if (freq < NANOSECS_PER_SEC) {
 957     // the performance counter is 64 bits and we will
 958     // be multiplying it -- so no wrap in 64 bits
 959     info_ptr->max_value = ALL_64_BITS;
 960   } else if (freq > NANOSECS_PER_SEC) {
 961     // use the max value the counter can reach to
 962     // determine the max value which could be returned
 963     julong max_counter = (julong)ALL_64_BITS;
 964     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 965   } else {
 966     // the performance counter is 64 bits and we will
 967     // be using it directly -- so no wrap in 64 bits
 968     info_ptr->max_value = ALL_64_BITS;
 969   }
 970 
 971   // using a counter, so no skipping
 972   info_ptr->may_skip_backward = false;
 973   info_ptr->may_skip_forward = false;
 974 
 975   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 976 }
 977 
 978 char* os::local_time_string(char *buf, size_t buflen) {
 979   SYSTEMTIME st;
 980   GetLocalTime(&st);
 981   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 982                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 983   return buf;
 984 }
 985 
 986 bool os::getTimesSecs(double* process_real_time,
 987                       double* process_user_time,
 988                       double* process_system_time) {
 989   HANDLE h_process = GetCurrentProcess();
 990   FILETIME create_time, exit_time, kernel_time, user_time;
 991   BOOL result = GetProcessTimes(h_process,
 992                                 &create_time,
 993                                 &exit_time,
 994                                 &kernel_time,
 995                                 &user_time);
 996   if (result != 0) {
 997     FILETIME wt;
 998     GetSystemTimeAsFileTime(&wt);
 999     jlong rtc_millis = windows_to_java_time(wt);
1000     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
1001     *process_user_time =
1002       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
1003     *process_system_time =
1004       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
1005     return true;
1006   } else {
1007     return false;
1008   }
1009 }
1010 
1011 void os::shutdown() {
1012   // allow PerfMemory to attempt cleanup of any persistent resources
1013   perfMemory_exit();
1014 
1015   // flush buffered output, finish log files
1016   ostream_abort();
1017 
1018   // Check for abort hook
1019   abort_hook_t abort_hook = Arguments::abort_hook();
1020   if (abort_hook != NULL) {
1021     abort_hook();
1022   }
1023 }
1024 
1025 
1026 static HANDLE dumpFile = NULL;
1027 
1028 // Check if dump file can be created.
1029 void os::check_dump_limit(char* buffer, size_t buffsz) {
1030   bool status = true;
1031   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1032     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1033     status = false;
1034   }
1035 
1036 #ifndef ASSERT
1037   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1038     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1039     status = false;
1040   }
1041 #endif
1042 
1043   if (status) {
1044     const char* cwd = get_current_directory(NULL, 0);
1045     int pid = current_process_id();
1046     if (cwd != NULL) {
1047       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1048     } else {
1049       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1050     }
1051 
1052     if (dumpFile == NULL &&
1053        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1054                  == INVALID_HANDLE_VALUE) {
1055       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1056       status = false;
1057     }
1058   }
1059   VMError::record_coredump_status(buffer, status);
1060 }
1061 
1062 void os::abort(bool dump_core, void* siginfo, const void* context) {
1063   EXCEPTION_POINTERS ep;
1064   MINIDUMP_EXCEPTION_INFORMATION mei;
1065   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1066 
1067   HANDLE hProcess = GetCurrentProcess();
1068   DWORD processId = GetCurrentProcessId();
1069   MINIDUMP_TYPE dumpType;
1070 
1071   shutdown();
1072   if (!dump_core || dumpFile == NULL) {
1073     if (dumpFile != NULL) {
1074       CloseHandle(dumpFile);
1075     }
1076     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1077   }
1078 
1079   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1080     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1081 
1082   if (siginfo != NULL && context != NULL) {
1083     ep.ContextRecord = (PCONTEXT) context;
1084     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1085 
1086     mei.ThreadId = GetCurrentThreadId();
1087     mei.ExceptionPointers = &ep;
1088     pmei = &mei;
1089   } else {
1090     pmei = NULL;
1091   }
1092 
1093   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1094   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1095   if (!WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) &&
1096       !WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL)) {
1097     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1098   }
1099   CloseHandle(dumpFile);
1100   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1101 }
1102 
1103 // Die immediately, no exit hook, no abort hook, no cleanup.
1104 void os::die() {
1105   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1106 }
1107 
1108 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1109 //  * dirent_md.c       1.15 00/02/02
1110 //
1111 // The declarations for DIR and struct dirent are in jvm_win32.h.
1112 
1113 // Caller must have already run dirname through JVM_NativePath, which removes
1114 // duplicate slashes and converts all instances of '/' into '\\'.
1115 
1116 DIR * os::opendir(const char *dirname) {
1117   assert(dirname != NULL, "just checking");   // hotspot change
1118   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1119   DWORD fattr;                                // hotspot change
1120   char alt_dirname[4] = { 0, 0, 0, 0 };
1121 
1122   if (dirp == 0) {
1123     errno = ENOMEM;
1124     return 0;
1125   }
1126 
1127   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1128   // as a directory in FindFirstFile().  We detect this case here and
1129   // prepend the current drive name.
1130   //
1131   if (dirname[1] == '\0' && dirname[0] == '\\') {
1132     alt_dirname[0] = _getdrive() + 'A' - 1;
1133     alt_dirname[1] = ':';
1134     alt_dirname[2] = '\\';
1135     alt_dirname[3] = '\0';
1136     dirname = alt_dirname;
1137   }
1138 
1139   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1140   if (dirp->path == 0) {
1141     free(dirp);
1142     errno = ENOMEM;
1143     return 0;
1144   }
1145   strcpy(dirp->path, dirname);
1146 
1147   fattr = GetFileAttributes(dirp->path);
1148   if (fattr == 0xffffffff) {
1149     free(dirp->path);
1150     free(dirp);
1151     errno = ENOENT;
1152     return 0;
1153   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1154     free(dirp->path);
1155     free(dirp);
1156     errno = ENOTDIR;
1157     return 0;
1158   }
1159 
1160   // Append "*.*", or possibly "\\*.*", to path
1161   if (dirp->path[1] == ':' &&
1162       (dirp->path[2] == '\0' ||
1163       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1164     // No '\\' needed for cases like "Z:" or "Z:\"
1165     strcat(dirp->path, "*.*");
1166   } else {
1167     strcat(dirp->path, "\\*.*");
1168   }
1169 
1170   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1171   if (dirp->handle == INVALID_HANDLE_VALUE) {
1172     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1173       free(dirp->path);
1174       free(dirp);
1175       errno = EACCES;
1176       return 0;
1177     }
1178   }
1179   return dirp;
1180 }
1181 
1182 struct dirent * os::readdir(DIR *dirp) {
1183   assert(dirp != NULL, "just checking");      // hotspot change
1184   if (dirp->handle == INVALID_HANDLE_VALUE) {
1185     return NULL;
1186   }
1187 
1188   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1189 
1190   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1191     if (GetLastError() == ERROR_INVALID_HANDLE) {
1192       errno = EBADF;
1193       return NULL;
1194     }
1195     FindClose(dirp->handle);
1196     dirp->handle = INVALID_HANDLE_VALUE;
1197   }
1198 
1199   return &dirp->dirent;
1200 }
1201 
1202 int os::closedir(DIR *dirp) {
1203   assert(dirp != NULL, "just checking");      // hotspot change
1204   if (dirp->handle != INVALID_HANDLE_VALUE) {
1205     if (!FindClose(dirp->handle)) {
1206       errno = EBADF;
1207       return -1;
1208     }
1209     dirp->handle = INVALID_HANDLE_VALUE;
1210   }
1211   free(dirp->path);
1212   free(dirp);
1213   return 0;
1214 }
1215 
1216 // This must be hard coded because it's the system's temporary
1217 // directory not the java application's temp directory, ala java.io.tmpdir.
1218 const char* os::get_temp_directory() {
1219   static char path_buf[MAX_PATH];
1220   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1221     return path_buf;
1222   } else {
1223     path_buf[0] = '\0';
1224     return path_buf;
1225   }
1226 }
1227 
1228 // Needs to be in os specific directory because windows requires another
1229 // header file <direct.h>
1230 const char* os::get_current_directory(char *buf, size_t buflen) {
1231   int n = static_cast<int>(buflen);
1232   if (buflen > INT_MAX)  n = INT_MAX;
1233   return _getcwd(buf, n);
1234 }
1235 
1236 //-----------------------------------------------------------
1237 // Helper functions for fatal error handler
1238 #ifdef _WIN64
1239 // Helper routine which returns true if address in
1240 // within the NTDLL address space.
1241 //
1242 static bool _addr_in_ntdll(address addr) {
1243   HMODULE hmod;
1244   MODULEINFO minfo;
1245 
1246   hmod = GetModuleHandle("NTDLL.DLL");
1247   if (hmod == NULL) return false;
1248   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1249                                           &minfo, sizeof(MODULEINFO))) {
1250     return false;
1251   }
1252 
1253   if ((addr >= minfo.lpBaseOfDll) &&
1254       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1255     return true;
1256   } else {
1257     return false;
1258   }
1259 }
1260 #endif
1261 
1262 struct _modinfo {
1263   address addr;
1264   char*   full_path;   // point to a char buffer
1265   int     buflen;      // size of the buffer
1266   address base_addr;
1267 };
1268 
1269 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1270                                   address top_address, void * param) {
1271   struct _modinfo *pmod = (struct _modinfo *)param;
1272   if (!pmod) return -1;
1273 
1274   if (base_addr   <= pmod->addr &&
1275       top_address > pmod->addr) {
1276     // if a buffer is provided, copy path name to the buffer
1277     if (pmod->full_path) {
1278       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1279     }
1280     pmod->base_addr = base_addr;
1281     return 1;
1282   }
1283   return 0;
1284 }
1285 
1286 bool os::dll_address_to_library_name(address addr, char* buf,
1287                                      int buflen, int* offset) {
1288   // buf is not optional, but offset is optional
1289   assert(buf != NULL, "sanity check");
1290 
1291 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1292 //       return the full path to the DLL file, sometimes it returns path
1293 //       to the corresponding PDB file (debug info); sometimes it only
1294 //       returns partial path, which makes life painful.
1295 
1296   struct _modinfo mi;
1297   mi.addr      = addr;
1298   mi.full_path = buf;
1299   mi.buflen    = buflen;
1300   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1301     // buf already contains path name
1302     if (offset) *offset = addr - mi.base_addr;
1303     return true;
1304   }
1305 
1306   buf[0] = '\0';
1307   if (offset) *offset = -1;
1308   return false;
1309 }
1310 
1311 bool os::dll_address_to_function_name(address addr, char *buf,
1312                                       int buflen, int *offset,
1313                                       bool demangle) {
1314   // buf is not optional, but offset is optional
1315   assert(buf != NULL, "sanity check");
1316 
1317   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1318     return true;
1319   }
1320   if (offset != NULL)  *offset  = -1;
1321   buf[0] = '\0';
1322   return false;
1323 }
1324 
1325 // save the start and end address of jvm.dll into param[0] and param[1]
1326 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1327                            address top_address, void * param) {
1328   if (!param) return -1;
1329 
1330   if (base_addr   <= (address)_locate_jvm_dll &&
1331       top_address > (address)_locate_jvm_dll) {
1332     ((address*)param)[0] = base_addr;
1333     ((address*)param)[1] = top_address;
1334     return 1;
1335   }
1336   return 0;
1337 }
1338 
1339 address vm_lib_location[2];    // start and end address of jvm.dll
1340 
1341 // check if addr is inside jvm.dll
1342 bool os::address_is_in_vm(address addr) {
1343   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1344     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1345       assert(false, "Can't find jvm module.");
1346       return false;
1347     }
1348   }
1349 
1350   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1351 }
1352 
1353 // print module info; param is outputStream*
1354 static int _print_module(const char* fname, address base_address,
1355                          address top_address, void* param) {
1356   if (!param) return -1;
1357 
1358   outputStream* st = (outputStream*)param;
1359 
1360   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1361   return 0;
1362 }
1363 
1364 // Loads .dll/.so and
1365 // in case of error it checks if .dll/.so was built for the
1366 // same architecture as Hotspot is running on
1367 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1368   log_info(os)("attempting shared library load of %s", name);
1369 
1370   void * result = LoadLibrary(name);
1371   if (result != NULL) {
1372     Events::log(NULL, "Loaded shared library %s", name);
1373     // Recalculate pdb search path if a DLL was loaded successfully.
1374     SymbolEngine::recalc_search_path();
1375     log_info(os)("shared library load of %s was successful", name);
1376     return result;
1377   }
1378   DWORD errcode = GetLastError();
1379   // Read system error message into ebuf
1380   // It may or may not be overwritten below (in the for loop and just above)
1381   lasterror(ebuf, (size_t) ebuflen);
1382   ebuf[ebuflen - 1] = '\0';
1383   Events::log(NULL, "Loading shared library %s failed, error code %lu", name, errcode);
1384   log_info(os)("shared library load of %s failed, error code %lu", name, errcode);
1385 
1386   if (errcode == ERROR_MOD_NOT_FOUND) {
1387     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1388     ebuf[ebuflen - 1] = '\0';
1389     return NULL;
1390   }
1391 
1392   // Parsing dll below
1393   // If we can read dll-info and find that dll was built
1394   // for an architecture other than Hotspot is running in
1395   // - then print to buffer "DLL was built for a different architecture"
1396   // else call os::lasterror to obtain system error message
1397   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1398   if (fd < 0) {
1399     return NULL;
1400   }
1401 
1402   uint32_t signature_offset;
1403   uint16_t lib_arch = 0;
1404   bool failed_to_get_lib_arch =
1405     ( // Go to position 3c in the dll
1406      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1407      ||
1408      // Read location of signature
1409      (sizeof(signature_offset) !=
1410      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1411      ||
1412      // Go to COFF File Header in dll
1413      // that is located after "signature" (4 bytes long)
1414      (os::seek_to_file_offset(fd,
1415      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1416      ||
1417      // Read field that contains code of architecture
1418      // that dll was built for
1419      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1420     );
1421 
1422   ::close(fd);
1423   if (failed_to_get_lib_arch) {
1424     // file i/o error - report os::lasterror(...) msg
1425     return NULL;
1426   }
1427 
1428   typedef struct {
1429     uint16_t arch_code;
1430     char* arch_name;
1431   } arch_t;
1432 
1433   static const arch_t arch_array[] = {
1434     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1435     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"}
1436   };
1437 #if (defined _M_AMD64)
1438   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1439 #elif (defined _M_IX86)
1440   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1441 #else
1442   #error Method os::dll_load requires that one of following \
1443          is defined :_M_AMD64 or _M_IX86
1444 #endif
1445 
1446 
1447   // Obtain a string for printf operation
1448   // lib_arch_str shall contain string what platform this .dll was built for
1449   // running_arch_str shall string contain what platform Hotspot was built for
1450   char *running_arch_str = NULL, *lib_arch_str = NULL;
1451   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1452     if (lib_arch == arch_array[i].arch_code) {
1453       lib_arch_str = arch_array[i].arch_name;
1454     }
1455     if (running_arch == arch_array[i].arch_code) {
1456       running_arch_str = arch_array[i].arch_name;
1457     }
1458   }
1459 
1460   assert(running_arch_str,
1461          "Didn't find running architecture code in arch_array");
1462 
1463   // If the architecture is right
1464   // but some other error took place - report os::lasterror(...) msg
1465   if (lib_arch == running_arch) {
1466     return NULL;
1467   }
1468 
1469   if (lib_arch_str != NULL) {
1470     ::_snprintf(ebuf, ebuflen - 1,
1471                 "Can't load %s-bit .dll on a %s-bit platform",
1472                 lib_arch_str, running_arch_str);
1473   } else {
1474     // don't know what architecture this dll was build for
1475     ::_snprintf(ebuf, ebuflen - 1,
1476                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1477                 lib_arch, running_arch_str);
1478   }
1479 
1480   return NULL;
1481 }
1482 
1483 void os::print_dll_info(outputStream *st) {
1484   st->print_cr("Dynamic libraries:");
1485   get_loaded_modules_info(_print_module, (void *)st);
1486 }
1487 
1488 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1489   HANDLE   hProcess;
1490 
1491 # define MAX_NUM_MODULES 128
1492   HMODULE     modules[MAX_NUM_MODULES];
1493   static char filename[MAX_PATH];
1494   int         result = 0;
1495 
1496   int pid = os::current_process_id();
1497   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1498                          FALSE, pid);
1499   if (hProcess == NULL) return 0;
1500 
1501   DWORD size_needed;
1502   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1503     CloseHandle(hProcess);
1504     return 0;
1505   }
1506 
1507   // number of modules that are currently loaded
1508   int num_modules = size_needed / sizeof(HMODULE);
1509 
1510   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1511     // Get Full pathname:
1512     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1513       filename[0] = '\0';
1514     }
1515 
1516     MODULEINFO modinfo;
1517     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1518       modinfo.lpBaseOfDll = NULL;
1519       modinfo.SizeOfImage = 0;
1520     }
1521 
1522     // Invoke callback function
1523     result = callback(filename, (address)modinfo.lpBaseOfDll,
1524                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1525     if (result) break;
1526   }
1527 
1528   CloseHandle(hProcess);
1529   return result;
1530 }
1531 
1532 bool os::get_host_name(char* buf, size_t buflen) {
1533   DWORD size = (DWORD)buflen;
1534   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1535 }
1536 
1537 void os::get_summary_os_info(char* buf, size_t buflen) {
1538   stringStream sst(buf, buflen);
1539   os::win32::print_windows_version(&sst);
1540   // chop off newline character
1541   char* nl = strchr(buf, '\n');
1542   if (nl != NULL) *nl = '\0';
1543 }
1544 
1545 int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1546 #if _MSC_VER >= 1900
1547   // Starting with Visual Studio 2015, vsnprint is C99 compliant.
1548   int result = ::vsnprintf(buf, len, fmt, args);
1549   // If an encoding error occurred (result < 0) then it's not clear
1550   // whether the buffer is NUL terminated, so ensure it is.
1551   if ((result < 0) && (len > 0)) {
1552     buf[len - 1] = '\0';
1553   }
1554   return result;
1555 #else
1556   // Before Visual Studio 2015, vsnprintf is not C99 compliant, so use
1557   // _vsnprintf, whose behavior seems to be *mostly* consistent across
1558   // versions.  However, when len == 0, avoid _vsnprintf too, and just
1559   // go straight to _vscprintf.  The output is going to be truncated in
1560   // that case, except in the unusual case of empty output.  More
1561   // importantly, the documentation for various versions of Visual Studio
1562   // are inconsistent about the behavior of _vsnprintf when len == 0,
1563   // including it possibly being an error.
1564   int result = -1;
1565   if (len > 0) {
1566     result = _vsnprintf(buf, len, fmt, args);
1567     // If output (including NUL terminator) is truncated, the buffer
1568     // won't be NUL terminated.  Add the trailing NUL specified by C99.
1569     if ((result < 0) || ((size_t)result >= len)) {
1570       buf[len - 1] = '\0';
1571     }
1572   }
1573   if (result < 0) {
1574     result = _vscprintf(fmt, args);
1575   }
1576   return result;
1577 #endif // _MSC_VER dispatch
1578 }
1579 
1580 static inline time_t get_mtime(const char* filename) {
1581   struct stat st;
1582   int ret = os::stat(filename, &st);
1583   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
1584   return st.st_mtime;
1585 }
1586 
1587 int os::compare_file_modified_times(const char* file1, const char* file2) {
1588   time_t t1 = get_mtime(file1);
1589   time_t t2 = get_mtime(file2);
1590   return t1 - t2;
1591 }
1592 
1593 void os::print_os_info_brief(outputStream* st) {
1594   os::print_os_info(st);
1595 }
1596 
1597 void os::print_os_info(outputStream* st) {
1598 #ifdef ASSERT
1599   char buffer[1024];
1600   st->print("HostName: ");
1601   if (get_host_name(buffer, sizeof(buffer))) {
1602     st->print("%s ", buffer);
1603   } else {
1604     st->print("N/A ");
1605   }
1606 #endif
1607   st->print("OS:");
1608   os::win32::print_windows_version(st);
1609 
1610 #ifdef _LP64
1611   VM_Version::print_platform_virtualization_info(st);
1612 #endif
1613 }
1614 
1615 void os::win32::print_windows_version(outputStream* st) {
1616   OSVERSIONINFOEX osvi;
1617   VS_FIXEDFILEINFO *file_info;
1618   TCHAR kernel32_path[MAX_PATH];
1619   UINT len, ret;
1620 
1621   // Use the GetVersionEx information to see if we're on a server or
1622   // workstation edition of Windows. Starting with Windows 8.1 we can't
1623   // trust the OS version information returned by this API.
1624   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1625   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1626   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1627     st->print_cr("Call to GetVersionEx failed");
1628     return;
1629   }
1630   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1631 
1632   // Get the full path to \Windows\System32\kernel32.dll and use that for
1633   // determining what version of Windows we're running on.
1634   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1635   ret = GetSystemDirectory(kernel32_path, len);
1636   if (ret == 0 || ret > len) {
1637     st->print_cr("Call to GetSystemDirectory failed");
1638     return;
1639   }
1640   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1641 
1642   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1643   if (version_size == 0) {
1644     st->print_cr("Call to GetFileVersionInfoSize failed");
1645     return;
1646   }
1647 
1648   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1649   if (version_info == NULL) {
1650     st->print_cr("Failed to allocate version_info");
1651     return;
1652   }
1653 
1654   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1655     os::free(version_info);
1656     st->print_cr("Call to GetFileVersionInfo failed");
1657     return;
1658   }
1659 
1660   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1661     os::free(version_info);
1662     st->print_cr("Call to VerQueryValue failed");
1663     return;
1664   }
1665 
1666   int major_version = HIWORD(file_info->dwProductVersionMS);
1667   int minor_version = LOWORD(file_info->dwProductVersionMS);
1668   int build_number = HIWORD(file_info->dwProductVersionLS);
1669   int build_minor = LOWORD(file_info->dwProductVersionLS);
1670   int os_vers = major_version * 1000 + minor_version;
1671   os::free(version_info);
1672 
1673   st->print(" Windows ");
1674   switch (os_vers) {
1675 
1676   case 6000:
1677     if (is_workstation) {
1678       st->print("Vista");
1679     } else {
1680       st->print("Server 2008");
1681     }
1682     break;
1683 
1684   case 6001:
1685     if (is_workstation) {
1686       st->print("7");
1687     } else {
1688       st->print("Server 2008 R2");
1689     }
1690     break;
1691 
1692   case 6002:
1693     if (is_workstation) {
1694       st->print("8");
1695     } else {
1696       st->print("Server 2012");
1697     }
1698     break;
1699 
1700   case 6003:
1701     if (is_workstation) {
1702       st->print("8.1");
1703     } else {
1704       st->print("Server 2012 R2");
1705     }
1706     break;
1707 
1708   case 10000:
1709     if (is_workstation) {
1710       st->print("10");
1711     } else {
1712       // distinguish Windows Server 2016 and 2019 by build number
1713       // Windows server 2019 GA 10/2018 build number is 17763
1714       if (build_number > 17762) {
1715         st->print("Server 2019");
1716       } else {
1717         st->print("Server 2016");
1718       }
1719     }
1720     break;
1721 
1722   default:
1723     // Unrecognized windows, print out its major and minor versions
1724     st->print("%d.%d", major_version, minor_version);
1725     break;
1726   }
1727 
1728   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1729   // find out whether we are running on 64 bit processor or not
1730   SYSTEM_INFO si;
1731   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1732   GetNativeSystemInfo(&si);
1733   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1734     st->print(" , 64 bit");
1735   }
1736 
1737   st->print(" Build %d", build_number);
1738   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1739   st->cr();
1740 }
1741 
1742 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1743   // Nothing to do for now.
1744 }
1745 
1746 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1747   HKEY key;
1748   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1749                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1750   if (status == ERROR_SUCCESS) {
1751     DWORD size = (DWORD)buflen;
1752     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1753     if (status != ERROR_SUCCESS) {
1754         strncpy(buf, "## __CPU__", buflen);
1755     }
1756     RegCloseKey(key);
1757   } else {
1758     // Put generic cpu info to return
1759     strncpy(buf, "## __CPU__", buflen);
1760   }
1761 }
1762 
1763 void os::print_memory_info(outputStream* st) {
1764   st->print("Memory:");
1765   st->print(" %dk page", os::vm_page_size()>>10);
1766 
1767   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1768   // value if total memory is larger than 4GB
1769   MEMORYSTATUSEX ms;
1770   ms.dwLength = sizeof(ms);
1771   int r1 = GlobalMemoryStatusEx(&ms);
1772 
1773   if (r1 != 0) {
1774     st->print(", system-wide physical " INT64_FORMAT "M ",
1775              (int64_t) ms.ullTotalPhys >> 20);
1776     st->print("(" INT64_FORMAT "M free)\n", (int64_t) ms.ullAvailPhys >> 20);
1777 
1778     st->print("TotalPageFile size " INT64_FORMAT "M ",
1779              (int64_t) ms.ullTotalPageFile >> 20);
1780     st->print("(AvailPageFile size " INT64_FORMAT "M)",
1781              (int64_t) ms.ullAvailPageFile >> 20);
1782 
1783     // on 32bit Total/AvailVirtual are interesting (show us how close we get to 2-4 GB per process borders)
1784 #if defined(_M_IX86)
1785     st->print(", user-mode portion of virtual address-space " INT64_FORMAT "M ",
1786              (int64_t) ms.ullTotalVirtual >> 20);
1787     st->print("(" INT64_FORMAT "M free)", (int64_t) ms.ullAvailVirtual >> 20);
1788 #endif
1789   } else {
1790     st->print(", GlobalMemoryStatusEx did not succeed so we miss some memory values.");
1791   }
1792 
1793   // extended memory statistics for a process
1794   PROCESS_MEMORY_COUNTERS_EX pmex;
1795   ZeroMemory(&pmex, sizeof(PROCESS_MEMORY_COUNTERS_EX));
1796   pmex.cb = sizeof(pmex);
1797   int r2 = GetProcessMemoryInfo(GetCurrentProcess(), (PROCESS_MEMORY_COUNTERS*) &pmex, sizeof(pmex));
1798 
1799   if (r2 != 0) {
1800     st->print("\ncurrent process WorkingSet (physical memory assigned to process): " INT64_FORMAT "M, ",
1801              (int64_t) pmex.WorkingSetSize >> 20);
1802     st->print("peak: " INT64_FORMAT "M\n", (int64_t) pmex.PeakWorkingSetSize >> 20);
1803 
1804     st->print("current process commit charge (\"private bytes\"): " INT64_FORMAT "M, ",
1805              (int64_t) pmex.PrivateUsage >> 20);
1806     st->print("peak: " INT64_FORMAT "M", (int64_t) pmex.PeakPagefileUsage >> 20);
1807   } else {
1808     st->print("\nGetProcessMemoryInfo did not succeed so we miss some memory values.");
1809   }
1810 
1811   st->cr();
1812 }
1813 
1814 bool os::signal_sent_by_kill(const void* siginfo) {
1815   // TODO: Is this possible?
1816   return false;
1817 }
1818 
1819 void os::print_siginfo(outputStream *st, const void* siginfo) {
1820   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1821   st->print("siginfo:");
1822 
1823   char tmp[64];
1824   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1825     strcpy(tmp, "EXCEPTION_??");
1826   }
1827   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1828 
1829   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1830        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1831        er->NumberParameters >= 2) {
1832     switch (er->ExceptionInformation[0]) {
1833     case 0: st->print(", reading address"); break;
1834     case 1: st->print(", writing address"); break;
1835     case 8: st->print(", data execution prevention violation at address"); break;
1836     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1837                        er->ExceptionInformation[0]);
1838     }
1839     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1840   } else {
1841     int num = er->NumberParameters;
1842     if (num > 0) {
1843       st->print(", ExceptionInformation=");
1844       for (int i = 0; i < num; i++) {
1845         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1846       }
1847     }
1848   }
1849   st->cr();
1850 }
1851 
1852 bool os::signal_thread(Thread* thread, int sig, const char* reason) {
1853   // TODO: Can we kill thread?
1854   return false;
1855 }
1856 
1857 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1858   // do nothing
1859 }
1860 
1861 static char saved_jvm_path[MAX_PATH] = {0};
1862 
1863 // Find the full path to the current module, jvm.dll
1864 void os::jvm_path(char *buf, jint buflen) {
1865   // Error checking.
1866   if (buflen < MAX_PATH) {
1867     assert(false, "must use a large-enough buffer");
1868     buf[0] = '\0';
1869     return;
1870   }
1871   // Lazy resolve the path to current module.
1872   if (saved_jvm_path[0] != 0) {
1873     strcpy(buf, saved_jvm_path);
1874     return;
1875   }
1876 
1877   buf[0] = '\0';
1878   if (Arguments::sun_java_launcher_is_altjvm()) {
1879     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1880     // for a JAVA_HOME environment variable and fix up the path so it
1881     // looks like jvm.dll is installed there (append a fake suffix
1882     // hotspot/jvm.dll).
1883     char* java_home_var = ::getenv("JAVA_HOME");
1884     if (java_home_var != NULL && java_home_var[0] != 0 &&
1885         strlen(java_home_var) < (size_t)buflen) {
1886       strncpy(buf, java_home_var, buflen);
1887 
1888       // determine if this is a legacy image or modules image
1889       // modules image doesn't have "jre" subdirectory
1890       size_t len = strlen(buf);
1891       char* jrebin_p = buf + len;
1892       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1893       if (0 != _access(buf, 0)) {
1894         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1895       }
1896       len = strlen(buf);
1897       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1898     }
1899   }
1900 
1901   if (buf[0] == '\0') {
1902     GetModuleFileName(vm_lib_handle, buf, buflen);
1903   }
1904   strncpy(saved_jvm_path, buf, MAX_PATH);
1905   saved_jvm_path[MAX_PATH - 1] = '\0';
1906 }
1907 
1908 
1909 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1910 #ifndef _WIN64
1911   st->print("_");
1912 #endif
1913 }
1914 
1915 
1916 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1917 #ifndef _WIN64
1918   st->print("@%d", args_size  * sizeof(int));
1919 #endif
1920 }
1921 
1922 // This method is a copy of JDK's sysGetLastErrorString
1923 // from src/windows/hpi/src/system_md.c
1924 
1925 size_t os::lasterror(char* buf, size_t len) {
1926   DWORD errval;
1927 
1928   if ((errval = GetLastError()) != 0) {
1929     // DOS error
1930     size_t n = (size_t)FormatMessage(
1931                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1932                                      NULL,
1933                                      errval,
1934                                      0,
1935                                      buf,
1936                                      (DWORD)len,
1937                                      NULL);
1938     if (n > 3) {
1939       // Drop final '.', CR, LF
1940       if (buf[n - 1] == '\n') n--;
1941       if (buf[n - 1] == '\r') n--;
1942       if (buf[n - 1] == '.') n--;
1943       buf[n] = '\0';
1944     }
1945     return n;
1946   }
1947 
1948   if (errno != 0) {
1949     // C runtime error that has no corresponding DOS error code
1950     const char* s = os::strerror(errno);
1951     size_t n = strlen(s);
1952     if (n >= len) n = len - 1;
1953     strncpy(buf, s, n);
1954     buf[n] = '\0';
1955     return n;
1956   }
1957 
1958   return 0;
1959 }
1960 
1961 int os::get_last_error() {
1962   DWORD error = GetLastError();
1963   if (error == 0) {
1964     error = errno;
1965   }
1966   return (int)error;
1967 }
1968 
1969 // sun.misc.Signal
1970 // NOTE that this is a workaround for an apparent kernel bug where if
1971 // a signal handler for SIGBREAK is installed then that signal handler
1972 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1973 // See bug 4416763.
1974 static void (*sigbreakHandler)(int) = NULL;
1975 
1976 static void UserHandler(int sig, void *siginfo, void *context) {
1977   os::signal_notify(sig);
1978   // We need to reinstate the signal handler each time...
1979   os::signal(sig, (void*)UserHandler);
1980 }
1981 
1982 void* os::user_handler() {
1983   return (void*) UserHandler;
1984 }
1985 
1986 void* os::signal(int signal_number, void* handler) {
1987   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1988     void (*oldHandler)(int) = sigbreakHandler;
1989     sigbreakHandler = (void (*)(int)) handler;
1990     return (void*) oldHandler;
1991   } else {
1992     return (void*)::signal(signal_number, (void (*)(int))handler);
1993   }
1994 }
1995 
1996 void os::signal_raise(int signal_number) {
1997   raise(signal_number);
1998 }
1999 
2000 // The Win32 C runtime library maps all console control events other than ^C
2001 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
2002 // logoff, and shutdown events.  We therefore install our own console handler
2003 // that raises SIGTERM for the latter cases.
2004 //
2005 static BOOL WINAPI consoleHandler(DWORD event) {
2006   switch (event) {
2007   case CTRL_C_EVENT:
2008     if (VMError::is_error_reported()) {
2009       // Ctrl-C is pressed during error reporting, likely because the error
2010       // handler fails to abort. Let VM die immediately.
2011       os::die();
2012     }
2013 
2014     os::signal_raise(SIGINT);
2015     return TRUE;
2016     break;
2017   case CTRL_BREAK_EVENT:
2018     if (sigbreakHandler != NULL) {
2019       (*sigbreakHandler)(SIGBREAK);
2020     }
2021     return TRUE;
2022     break;
2023   case CTRL_LOGOFF_EVENT: {
2024     // Don't terminate JVM if it is running in a non-interactive session,
2025     // such as a service process.
2026     USEROBJECTFLAGS flags;
2027     HANDLE handle = GetProcessWindowStation();
2028     if (handle != NULL &&
2029         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2030         sizeof(USEROBJECTFLAGS), NULL)) {
2031       // If it is a non-interactive session, let next handler to deal
2032       // with it.
2033       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2034         return FALSE;
2035       }
2036     }
2037   }
2038   case CTRL_CLOSE_EVENT:
2039   case CTRL_SHUTDOWN_EVENT:
2040     os::signal_raise(SIGTERM);
2041     return TRUE;
2042     break;
2043   default:
2044     break;
2045   }
2046   return FALSE;
2047 }
2048 
2049 // The following code is moved from os.cpp for making this
2050 // code platform specific, which it is by its very nature.
2051 
2052 // Return maximum OS signal used + 1 for internal use only
2053 // Used as exit signal for signal_thread
2054 int os::sigexitnum_pd() {
2055   return NSIG;
2056 }
2057 
2058 // a counter for each possible signal value, including signal_thread exit signal
2059 static volatile jint pending_signals[NSIG+1] = { 0 };
2060 static Semaphore* sig_sem = NULL;
2061 
2062 static void jdk_misc_signal_init() {
2063   // Initialize signal structures
2064   memset((void*)pending_signals, 0, sizeof(pending_signals));
2065 
2066   // Initialize signal semaphore
2067   sig_sem = new Semaphore();
2068 
2069   // Programs embedding the VM do not want it to attempt to receive
2070   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2071   // shutdown hooks mechanism introduced in 1.3.  For example, when
2072   // the VM is run as part of a Windows NT service (i.e., a servlet
2073   // engine in a web server), the correct behavior is for any console
2074   // control handler to return FALSE, not TRUE, because the OS's
2075   // "final" handler for such events allows the process to continue if
2076   // it is a service (while terminating it if it is not a service).
2077   // To make this behavior uniform and the mechanism simpler, we
2078   // completely disable the VM's usage of these console events if -Xrs
2079   // (=ReduceSignalUsage) is specified.  This means, for example, that
2080   // the CTRL-BREAK thread dump mechanism is also disabled in this
2081   // case.  See bugs 4323062, 4345157, and related bugs.
2082 
2083   // Add a CTRL-C handler
2084   SetConsoleCtrlHandler(consoleHandler, TRUE);
2085 }
2086 
2087 void os::signal_notify(int sig) {
2088   if (sig_sem != NULL) {
2089     Atomic::inc(&pending_signals[sig]);
2090     sig_sem->signal();
2091   } else {
2092     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2093     // initialization isn't called.
2094     assert(ReduceSignalUsage, "signal semaphore should be created");
2095   }
2096 }
2097 
2098 static int check_pending_signals() {
2099   while (true) {
2100     for (int i = 0; i < NSIG + 1; i++) {
2101       jint n = pending_signals[i];
2102       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2103         return i;
2104       }
2105     }
2106     JavaThread *thread = JavaThread::current();
2107 
2108     ThreadBlockInVM tbivm(thread);
2109 
2110     bool threadIsSuspended;
2111     do {
2112       thread->set_suspend_equivalent();
2113       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2114       sig_sem->wait();
2115 
2116       // were we externally suspended while we were waiting?
2117       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2118       if (threadIsSuspended) {
2119         // The semaphore has been incremented, but while we were waiting
2120         // another thread suspended us. We don't want to continue running
2121         // while suspended because that would surprise the thread that
2122         // suspended us.
2123         sig_sem->signal();
2124 
2125         thread->java_suspend_self();
2126       }
2127     } while (threadIsSuspended);
2128   }
2129 }
2130 
2131 int os::signal_wait() {
2132   return check_pending_signals();
2133 }
2134 
2135 // Implicit OS exception handling
2136 
2137 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2138                       address handler) {
2139   JavaThread* thread = (JavaThread*) Thread::current_or_null();
2140   // Save pc in thread
2141 #ifdef _M_AMD64
2142   // Do not blow up if no thread info available.
2143   if (thread) {
2144     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2145   }
2146   // Set pc to handler
2147   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2148 #else
2149   // Do not blow up if no thread info available.
2150   if (thread) {
2151     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2152   }
2153   // Set pc to handler
2154   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2155 #endif
2156 
2157   // Continue the execution
2158   return EXCEPTION_CONTINUE_EXECUTION;
2159 }
2160 
2161 
2162 // Used for PostMortemDump
2163 extern "C" void safepoints();
2164 extern "C" void find(int x);
2165 extern "C" void events();
2166 
2167 // According to Windows API documentation, an illegal instruction sequence should generate
2168 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2169 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2170 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2171 
2172 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2173 
2174 // From "Execution Protection in the Windows Operating System" draft 0.35
2175 // Once a system header becomes available, the "real" define should be
2176 // included or copied here.
2177 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2178 
2179 // Windows Vista/2008 heap corruption check
2180 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2181 
2182 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2183 // C++ compiler contain this error code. Because this is a compiler-generated
2184 // error, the code is not listed in the Win32 API header files.
2185 // The code is actually a cryptic mnemonic device, with the initial "E"
2186 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2187 // ASCII values of "msc".
2188 
2189 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2190 
2191 #define def_excpt(val) { #val, (val) }
2192 
2193 static const struct { const char* name; uint number; } exceptlabels[] = {
2194     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2195     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2196     def_excpt(EXCEPTION_BREAKPOINT),
2197     def_excpt(EXCEPTION_SINGLE_STEP),
2198     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2199     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2200     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2201     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2202     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2203     def_excpt(EXCEPTION_FLT_OVERFLOW),
2204     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2205     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2206     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2207     def_excpt(EXCEPTION_INT_OVERFLOW),
2208     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2209     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2210     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2211     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2212     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2213     def_excpt(EXCEPTION_STACK_OVERFLOW),
2214     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2215     def_excpt(EXCEPTION_GUARD_PAGE),
2216     def_excpt(EXCEPTION_INVALID_HANDLE),
2217     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2218     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2219 };
2220 
2221 #undef def_excpt
2222 
2223 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2224   uint code = static_cast<uint>(exception_code);
2225   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2226     if (exceptlabels[i].number == code) {
2227       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2228       return buf;
2229     }
2230   }
2231 
2232   return NULL;
2233 }
2234 
2235 //-----------------------------------------------------------------------------
2236 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2237   // handle exception caused by idiv; should only happen for -MinInt/-1
2238   // (division by zero is handled explicitly)
2239 #ifdef  _M_AMD64
2240   PCONTEXT ctx = exceptionInfo->ContextRecord;
2241   address pc = (address)ctx->Rip;
2242   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2243   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2244   if (pc[0] == 0xF7) {
2245     // set correct result values and continue after idiv instruction
2246     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2247   } else {
2248     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2249   }
2250   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2251   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2252   // idiv opcode (0xF7).
2253   ctx->Rdx = (DWORD)0;             // remainder
2254   // Continue the execution
2255 #else
2256   PCONTEXT ctx = exceptionInfo->ContextRecord;
2257   address pc = (address)ctx->Eip;
2258   assert(pc[0] == 0xF7, "not an idiv opcode");
2259   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2260   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2261   // set correct result values and continue after idiv instruction
2262   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2263   ctx->Eax = (DWORD)min_jint;      // result
2264   ctx->Edx = (DWORD)0;             // remainder
2265   // Continue the execution
2266 #endif
2267   return EXCEPTION_CONTINUE_EXECUTION;
2268 }
2269 
2270 //-----------------------------------------------------------------------------
2271 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2272   PCONTEXT ctx = exceptionInfo->ContextRecord;
2273 #ifndef  _WIN64
2274   // handle exception caused by native method modifying control word
2275   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2276 
2277   switch (exception_code) {
2278   case EXCEPTION_FLT_DENORMAL_OPERAND:
2279   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2280   case EXCEPTION_FLT_INEXACT_RESULT:
2281   case EXCEPTION_FLT_INVALID_OPERATION:
2282   case EXCEPTION_FLT_OVERFLOW:
2283   case EXCEPTION_FLT_STACK_CHECK:
2284   case EXCEPTION_FLT_UNDERFLOW:
2285     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2286     if (fp_control_word != ctx->FloatSave.ControlWord) {
2287       // Restore FPCW and mask out FLT exceptions
2288       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2289       // Mask out pending FLT exceptions
2290       ctx->FloatSave.StatusWord &=  0xffffff00;
2291       return EXCEPTION_CONTINUE_EXECUTION;
2292     }
2293   }
2294 
2295   if (prev_uef_handler != NULL) {
2296     // We didn't handle this exception so pass it to the previous
2297     // UnhandledExceptionFilter.
2298     return (prev_uef_handler)(exceptionInfo);
2299   }
2300 #else // !_WIN64
2301   // On Windows, the mxcsr control bits are non-volatile across calls
2302   // See also CR 6192333
2303   //
2304   jint MxCsr = INITIAL_MXCSR;
2305   // we can't use StubRoutines::addr_mxcsr_std()
2306   // because in Win64 mxcsr is not saved there
2307   if (MxCsr != ctx->MxCsr) {
2308     ctx->MxCsr = MxCsr;
2309     return EXCEPTION_CONTINUE_EXECUTION;
2310   }
2311 #endif // !_WIN64
2312 
2313   return EXCEPTION_CONTINUE_SEARCH;
2314 }
2315 
2316 static inline void report_error(Thread* t, DWORD exception_code,
2317                                 address addr, void* siginfo, void* context) {
2318   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2319 
2320   // If UseOsErrorReporting, this will return here and save the error file
2321   // somewhere where we can find it in the minidump.
2322 }
2323 
2324 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2325         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2326   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2327   address addr = (address) exceptionRecord->ExceptionInformation[1];
2328   if (Interpreter::contains(pc)) {
2329     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2330     if (!fr->is_first_java_frame()) {
2331       // get_frame_at_stack_banging_point() is only called when we
2332       // have well defined stacks so java_sender() calls do not need
2333       // to assert safe_for_sender() first.
2334       *fr = fr->java_sender();
2335     }
2336   } else {
2337     // more complex code with compiled code
2338     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2339     CodeBlob* cb = CodeCache::find_blob(pc);
2340     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2341       // Not sure where the pc points to, fallback to default
2342       // stack overflow handling
2343       return false;
2344     } else {
2345       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2346       // in compiled code, the stack banging is performed just after the return pc
2347       // has been pushed on the stack
2348       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2349       if (!fr->is_java_frame()) {
2350         // See java_sender() comment above.
2351         *fr = fr->java_sender();
2352       }
2353     }
2354   }
2355   assert(fr->is_java_frame(), "Safety check");
2356   return true;
2357 }
2358 
2359 #if INCLUDE_AOT
2360 LONG WINAPI topLevelVectoredExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2361   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2362   address addr = (address) exceptionRecord->ExceptionInformation[1];
2363   address pc = (address) exceptionInfo->ContextRecord->Rip;
2364 
2365   // Handle the case where we get an implicit exception in AOT generated
2366   // code.  AOT DLL's loaded are not registered for structured exceptions.
2367   // If the exception occurred in the codeCache or AOT code, pass control
2368   // to our normal exception handler.
2369   CodeBlob* cb = CodeCache::find_blob(pc);
2370   if (cb != NULL) {
2371     return topLevelExceptionFilter(exceptionInfo);
2372   }
2373 
2374   return EXCEPTION_CONTINUE_SEARCH;
2375 }
2376 #endif
2377 
2378 //-----------------------------------------------------------------------------
2379 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2380   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2381   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2382 #ifdef _M_AMD64
2383   address pc = (address) exceptionInfo->ContextRecord->Rip;
2384 #else
2385   address pc = (address) exceptionInfo->ContextRecord->Eip;
2386 #endif
2387   Thread* t = Thread::current_or_null_safe();
2388 
2389   // Handle SafeFetch32 and SafeFetchN exceptions.
2390   if (StubRoutines::is_safefetch_fault(pc)) {
2391     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2392   }
2393 
2394 #ifndef _WIN64
2395   // Execution protection violation - win32 running on AMD64 only
2396   // Handled first to avoid misdiagnosis as a "normal" access violation;
2397   // This is safe to do because we have a new/unique ExceptionInformation
2398   // code for this condition.
2399   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2400     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2401     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2402     address addr = (address) exceptionRecord->ExceptionInformation[1];
2403 
2404     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2405       int page_size = os::vm_page_size();
2406 
2407       // Make sure the pc and the faulting address are sane.
2408       //
2409       // If an instruction spans a page boundary, and the page containing
2410       // the beginning of the instruction is executable but the following
2411       // page is not, the pc and the faulting address might be slightly
2412       // different - we still want to unguard the 2nd page in this case.
2413       //
2414       // 15 bytes seems to be a (very) safe value for max instruction size.
2415       bool pc_is_near_addr =
2416         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2417       bool instr_spans_page_boundary =
2418         (align_down((intptr_t) pc ^ (intptr_t) addr,
2419                          (intptr_t) page_size) > 0);
2420 
2421       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2422         static volatile address last_addr =
2423           (address) os::non_memory_address_word();
2424 
2425         // In conservative mode, don't unguard unless the address is in the VM
2426         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2427             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2428 
2429           // Set memory to RWX and retry
2430           address page_start = align_down(addr, page_size);
2431           bool res = os::protect_memory((char*) page_start, page_size,
2432                                         os::MEM_PROT_RWX);
2433 
2434           log_debug(os)("Execution protection violation "
2435                         "at " INTPTR_FORMAT
2436                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2437                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2438 
2439           // Set last_addr so if we fault again at the same address, we don't
2440           // end up in an endless loop.
2441           //
2442           // There are two potential complications here.  Two threads trapping
2443           // at the same address at the same time could cause one of the
2444           // threads to think it already unguarded, and abort the VM.  Likely
2445           // very rare.
2446           //
2447           // The other race involves two threads alternately trapping at
2448           // different addresses and failing to unguard the page, resulting in
2449           // an endless loop.  This condition is probably even more unlikely
2450           // than the first.
2451           //
2452           // Although both cases could be avoided by using locks or thread
2453           // local last_addr, these solutions are unnecessary complication:
2454           // this handler is a best-effort safety net, not a complete solution.
2455           // It is disabled by default and should only be used as a workaround
2456           // in case we missed any no-execute-unsafe VM code.
2457 
2458           last_addr = addr;
2459 
2460           return EXCEPTION_CONTINUE_EXECUTION;
2461         }
2462       }
2463 
2464       // Last unguard failed or not unguarding
2465       tty->print_raw_cr("Execution protection violation");
2466       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2467                    exceptionInfo->ContextRecord);
2468       return EXCEPTION_CONTINUE_SEARCH;
2469     }
2470   }
2471 #endif // _WIN64
2472 
2473   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2474       VM_Version::is_cpuinfo_segv_addr(pc)) {
2475     // Verify that OS save/restore AVX registers.
2476     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2477   }
2478 
2479   if (t != NULL && t->is_Java_thread()) {
2480     JavaThread* thread = (JavaThread*) t;
2481     bool in_java = thread->thread_state() == _thread_in_Java;
2482 
2483     // Handle potential stack overflows up front.
2484     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2485       if (thread->stack_guards_enabled()) {
2486         if (in_java) {
2487           frame fr;
2488           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2489           address addr = (address) exceptionRecord->ExceptionInformation[1];
2490           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2491             assert(fr.is_java_frame(), "Must be a Java frame");
2492             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2493           }
2494         }
2495         // Yellow zone violation.  The o/s has unprotected the first yellow
2496         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2497         // update the enabled status, even if the zone contains only one page.
2498         assert(thread->thread_state() != _thread_in_vm, "Undersized StackShadowPages");
2499         thread->disable_stack_yellow_reserved_zone();
2500         // If not in java code, return and hope for the best.
2501         return in_java
2502             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2503             :  EXCEPTION_CONTINUE_EXECUTION;
2504       } else {
2505         // Fatal red zone violation.
2506         thread->disable_stack_red_zone();
2507         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2508         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2509                       exceptionInfo->ContextRecord);
2510         return EXCEPTION_CONTINUE_SEARCH;
2511       }
2512     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2513       // Either stack overflow or null pointer exception.
2514       if (in_java) {
2515         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2516         address addr = (address) exceptionRecord->ExceptionInformation[1];
2517         address stack_end = thread->stack_end();
2518         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2519           // Stack overflow.
2520           assert(!os::uses_stack_guard_pages(),
2521                  "should be caught by red zone code above.");
2522           return Handle_Exception(exceptionInfo,
2523                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2524         }
2525         // Check for safepoint polling and implicit null
2526         // We only expect null pointers in the stubs (vtable)
2527         // the rest are checked explicitly now.
2528         CodeBlob* cb = CodeCache::find_blob(pc);
2529         if (cb != NULL) {
2530           if (os::is_poll_address(addr)) {
2531             address stub = SharedRuntime::get_poll_stub(pc);
2532             return Handle_Exception(exceptionInfo, stub);
2533           }
2534         }
2535         {
2536 #ifdef _WIN64
2537           // If it's a legal stack address map the entire region in
2538           //
2539           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2540           address addr = (address) exceptionRecord->ExceptionInformation[1];
2541           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2542             addr = (address)((uintptr_t)addr &
2543                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2544             os::commit_memory((char *)addr, thread->stack_base() - addr,
2545                               !ExecMem);
2546             return EXCEPTION_CONTINUE_EXECUTION;
2547           } else
2548 #endif
2549           {
2550             // Null pointer exception.
2551             if (MacroAssembler::uses_implicit_null_check((void*)addr)) {
2552               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2553               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2554             }
2555             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2556                          exceptionInfo->ContextRecord);
2557             return EXCEPTION_CONTINUE_SEARCH;
2558           }
2559         }
2560       }
2561 
2562 #ifdef _WIN64
2563       // Special care for fast JNI field accessors.
2564       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2565       // in and the heap gets shrunk before the field access.
2566       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2567         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2568         if (addr != (address)-1) {
2569           return Handle_Exception(exceptionInfo, addr);
2570         }
2571       }
2572 #endif
2573 
2574       // Stack overflow or null pointer exception in native code.
2575       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2576                    exceptionInfo->ContextRecord);
2577       return EXCEPTION_CONTINUE_SEARCH;
2578     } // /EXCEPTION_ACCESS_VIOLATION
2579     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2580 
2581     if (exception_code == EXCEPTION_IN_PAGE_ERROR) {
2582       CompiledMethod* nm = NULL;
2583       JavaThread* thread = (JavaThread*)t;
2584       if (in_java) {
2585         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
2586         nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
2587       }
2588 
2589       bool is_unsafe_arraycopy = (thread->thread_state() == _thread_in_native || in_java) && UnsafeCopyMemory::contains_pc(pc);
2590       if (((thread->thread_state() == _thread_in_vm ||
2591            thread->thread_state() == _thread_in_native ||
2592            is_unsafe_arraycopy) &&
2593           thread->doing_unsafe_access()) ||
2594           (nm != NULL && nm->has_unsafe_access())) {
2595         address next_pc =  Assembler::locate_next_instruction(pc);
2596         if (is_unsafe_arraycopy) {
2597           next_pc = UnsafeCopyMemory::page_error_continue_pc(pc);
2598         }
2599         return Handle_Exception(exceptionInfo, SharedRuntime::handle_unsafe_access(thread, next_pc));
2600       }
2601     }
2602 
2603     if (in_java) {
2604       switch (exception_code) {
2605       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2606         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2607 
2608       case EXCEPTION_INT_OVERFLOW:
2609         return Handle_IDiv_Exception(exceptionInfo);
2610 
2611       } // switch
2612     }
2613     if (((thread->thread_state() == _thread_in_Java) ||
2614          (thread->thread_state() == _thread_in_native)) &&
2615          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2616       LONG result=Handle_FLT_Exception(exceptionInfo);
2617       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2618     }
2619   }
2620 
2621   if (exception_code != EXCEPTION_BREAKPOINT) {
2622     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2623                  exceptionInfo->ContextRecord);
2624   }
2625   return EXCEPTION_CONTINUE_SEARCH;
2626 }
2627 
2628 #ifndef _WIN64
2629 // Special care for fast JNI accessors.
2630 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2631 // the heap gets shrunk before the field access.
2632 // Need to install our own structured exception handler since native code may
2633 // install its own.
2634 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2635   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2636   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2637     address pc = (address) exceptionInfo->ContextRecord->Eip;
2638     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2639     if (addr != (address)-1) {
2640       return Handle_Exception(exceptionInfo, addr);
2641     }
2642   }
2643   return EXCEPTION_CONTINUE_SEARCH;
2644 }
2645 
2646 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2647   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2648                                                      jobject obj,           \
2649                                                      jfieldID fieldID) {    \
2650     __try {                                                                 \
2651       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2652                                                                  obj,       \
2653                                                                  fieldID);  \
2654     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2655                                               _exception_info())) {         \
2656     }                                                                       \
2657     return 0;                                                               \
2658   }
2659 
2660 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2661 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2662 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2663 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2664 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2665 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2666 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2667 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2668 
2669 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2670   switch (type) {
2671   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2672   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2673   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2674   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2675   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2676   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2677   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2678   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2679   default:        ShouldNotReachHere();
2680   }
2681   return (address)-1;
2682 }
2683 #endif
2684 
2685 // Virtual Memory
2686 
2687 int os::vm_page_size() { return os::win32::vm_page_size(); }
2688 int os::vm_allocation_granularity() {
2689   return os::win32::vm_allocation_granularity();
2690 }
2691 
2692 // Windows large page support is available on Windows 2003. In order to use
2693 // large page memory, the administrator must first assign additional privilege
2694 // to the user:
2695 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2696 //   + select Local Policies -> User Rights Assignment
2697 //   + double click "Lock pages in memory", add users and/or groups
2698 //   + reboot
2699 // Note the above steps are needed for administrator as well, as administrators
2700 // by default do not have the privilege to lock pages in memory.
2701 //
2702 // Note about Windows 2003: although the API supports committing large page
2703 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2704 // scenario, I found through experiment it only uses large page if the entire
2705 // memory region is reserved and committed in a single VirtualAlloc() call.
2706 // This makes Windows large page support more or less like Solaris ISM, in
2707 // that the entire heap must be committed upfront. This probably will change
2708 // in the future, if so the code below needs to be revisited.
2709 
2710 #ifndef MEM_LARGE_PAGES
2711   #define MEM_LARGE_PAGES 0x20000000
2712 #endif
2713 
2714 static HANDLE    _hProcess;
2715 static HANDLE    _hToken;
2716 
2717 // Container for NUMA node list info
2718 class NUMANodeListHolder {
2719  private:
2720   int *_numa_used_node_list;  // allocated below
2721   int _numa_used_node_count;
2722 
2723   void free_node_list() {
2724     FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2725   }
2726 
2727  public:
2728   NUMANodeListHolder() {
2729     _numa_used_node_count = 0;
2730     _numa_used_node_list = NULL;
2731     // do rest of initialization in build routine (after function pointers are set up)
2732   }
2733 
2734   ~NUMANodeListHolder() {
2735     free_node_list();
2736   }
2737 
2738   bool build() {
2739     DWORD_PTR proc_aff_mask;
2740     DWORD_PTR sys_aff_mask;
2741     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2742     ULONG highest_node_number;
2743     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2744     free_node_list();
2745     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2746     for (unsigned int i = 0; i <= highest_node_number; i++) {
2747       ULONGLONG proc_mask_numa_node;
2748       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2749       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2750         _numa_used_node_list[_numa_used_node_count++] = i;
2751       }
2752     }
2753     return (_numa_used_node_count > 1);
2754   }
2755 
2756   int get_count() { return _numa_used_node_count; }
2757   int get_node_list_entry(int n) {
2758     // for indexes out of range, returns -1
2759     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2760   }
2761 
2762 } numa_node_list_holder;
2763 
2764 
2765 
2766 static size_t _large_page_size = 0;
2767 
2768 static bool request_lock_memory_privilege() {
2769   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2770                           os::current_process_id());
2771 
2772   LUID luid;
2773   if (_hProcess != NULL &&
2774       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2775       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2776 
2777     TOKEN_PRIVILEGES tp;
2778     tp.PrivilegeCount = 1;
2779     tp.Privileges[0].Luid = luid;
2780     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2781 
2782     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2783     // privilege. Check GetLastError() too. See MSDN document.
2784     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2785         (GetLastError() == ERROR_SUCCESS)) {
2786       return true;
2787     }
2788   }
2789 
2790   return false;
2791 }
2792 
2793 static void cleanup_after_large_page_init() {
2794   if (_hProcess) CloseHandle(_hProcess);
2795   _hProcess = NULL;
2796   if (_hToken) CloseHandle(_hToken);
2797   _hToken = NULL;
2798 }
2799 
2800 static bool numa_interleaving_init() {
2801   bool success = false;
2802   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2803 
2804   // print a warning if UseNUMAInterleaving flag is specified on command line
2805   bool warn_on_failure = use_numa_interleaving_specified;
2806 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2807 
2808   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2809   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2810   NUMAInterleaveGranularity = align_up(NUMAInterleaveGranularity, min_interleave_granularity);
2811 
2812   if (numa_node_list_holder.build()) {
2813     if (log_is_enabled(Debug, os, cpu)) {
2814       Log(os, cpu) log;
2815       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2816       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2817         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2818       }
2819     }
2820     success = true;
2821   } else {
2822     WARN("Process does not cover multiple NUMA nodes.");
2823   }
2824   if (!success) {
2825     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2826   }
2827   return success;
2828 #undef WARN
2829 }
2830 
2831 // this routine is used whenever we need to reserve a contiguous VA range
2832 // but we need to make separate VirtualAlloc calls for each piece of the range
2833 // Reasons for doing this:
2834 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2835 //  * UseNUMAInterleaving requires a separate node for each piece
2836 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2837                                          DWORD prot,
2838                                          bool should_inject_error = false) {
2839   char * p_buf;
2840   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2841   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2842   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2843 
2844   // first reserve enough address space in advance since we want to be
2845   // able to break a single contiguous virtual address range into multiple
2846   // large page commits but WS2003 does not allow reserving large page space
2847   // so we just use 4K pages for reserve, this gives us a legal contiguous
2848   // address space. then we will deallocate that reservation, and re alloc
2849   // using large pages
2850   const size_t size_of_reserve = bytes + chunk_size;
2851   if (bytes > size_of_reserve) {
2852     // Overflowed.
2853     return NULL;
2854   }
2855   p_buf = (char *) VirtualAlloc(addr,
2856                                 size_of_reserve,  // size of Reserve
2857                                 MEM_RESERVE,
2858                                 PAGE_READWRITE);
2859   // If reservation failed, return NULL
2860   if (p_buf == NULL) return NULL;
2861   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2862   os::release_memory(p_buf, bytes + chunk_size);
2863 
2864   // we still need to round up to a page boundary (in case we are using large pages)
2865   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2866   // instead we handle this in the bytes_to_rq computation below
2867   p_buf = align_up(p_buf, page_size);
2868 
2869   // now go through and allocate one chunk at a time until all bytes are
2870   // allocated
2871   size_t  bytes_remaining = bytes;
2872   // An overflow of align_up() would have been caught above
2873   // in the calculation of size_of_reserve.
2874   char * next_alloc_addr = p_buf;
2875   HANDLE hProc = GetCurrentProcess();
2876 
2877 #ifdef ASSERT
2878   // Variable for the failure injection
2879   int ran_num = os::random();
2880   size_t fail_after = ran_num % bytes;
2881 #endif
2882 
2883   int count=0;
2884   while (bytes_remaining) {
2885     // select bytes_to_rq to get to the next chunk_size boundary
2886 
2887     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2888     // Note allocate and commit
2889     char * p_new;
2890 
2891 #ifdef ASSERT
2892     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2893 #else
2894     const bool inject_error_now = false;
2895 #endif
2896 
2897     if (inject_error_now) {
2898       p_new = NULL;
2899     } else {
2900       if (!UseNUMAInterleaving) {
2901         p_new = (char *) VirtualAlloc(next_alloc_addr,
2902                                       bytes_to_rq,
2903                                       flags,
2904                                       prot);
2905       } else {
2906         // get the next node to use from the used_node_list
2907         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2908         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2909         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
2910       }
2911     }
2912 
2913     if (p_new == NULL) {
2914       // Free any allocated pages
2915       if (next_alloc_addr > p_buf) {
2916         // Some memory was committed so release it.
2917         size_t bytes_to_release = bytes - bytes_remaining;
2918         // NMT has yet to record any individual blocks, so it
2919         // need to create a dummy 'reserve' record to match
2920         // the release.
2921         MemTracker::record_virtual_memory_reserve((address)p_buf,
2922                                                   bytes_to_release, CALLER_PC);
2923         os::release_memory(p_buf, bytes_to_release);
2924       }
2925 #ifdef ASSERT
2926       if (should_inject_error) {
2927         log_develop_debug(pagesize)("Reserving pages individually failed.");
2928       }
2929 #endif
2930       return NULL;
2931     }
2932 
2933     bytes_remaining -= bytes_to_rq;
2934     next_alloc_addr += bytes_to_rq;
2935     count++;
2936   }
2937   // Although the memory is allocated individually, it is returned as one.
2938   // NMT records it as one block.
2939   if ((flags & MEM_COMMIT) != 0) {
2940     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2941   } else {
2942     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2943   }
2944 
2945   // made it this far, success
2946   return p_buf;
2947 }
2948 
2949 
2950 
2951 void os::large_page_init() {
2952   if (!UseLargePages) return;
2953 
2954   // print a warning if any large page related flag is specified on command line
2955   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2956                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2957   bool success = false;
2958 
2959 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2960   if (request_lock_memory_privilege()) {
2961     size_t s = GetLargePageMinimum();
2962     if (s) {
2963 #if defined(IA32) || defined(AMD64)
2964       if (s > 4*M || LargePageSizeInBytes > 4*M) {
2965         WARN("JVM cannot use large pages bigger than 4mb.");
2966       } else {
2967 #endif
2968         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2969           _large_page_size = LargePageSizeInBytes;
2970         } else {
2971           _large_page_size = s;
2972         }
2973         success = true;
2974 #if defined(IA32) || defined(AMD64)
2975       }
2976 #endif
2977     } else {
2978       WARN("Large page is not supported by the processor.");
2979     }
2980   } else {
2981     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2982   }
2983 #undef WARN
2984 
2985   const size_t default_page_size = (size_t) vm_page_size();
2986   if (success && _large_page_size > default_page_size) {
2987     _page_sizes[0] = _large_page_size;
2988     _page_sizes[1] = default_page_size;
2989     _page_sizes[2] = 0;
2990   }
2991 
2992   cleanup_after_large_page_init();
2993   UseLargePages = success;
2994 }
2995 
2996 int os::create_file_for_heap(const char* dir) {
2997 
2998   const char name_template[] = "/jvmheap.XXXXXX";
2999 
3000   size_t fullname_len = strlen(dir) + strlen(name_template);
3001   char *fullname = (char*)os::malloc(fullname_len + 1, mtInternal);
3002   if (fullname == NULL) {
3003     vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)", os::strerror(errno)));
3004     return -1;
3005   }
3006   int n = snprintf(fullname, fullname_len + 1, "%s%s", dir, name_template);
3007   assert((size_t)n == fullname_len, "Unexpected number of characters in string");
3008 
3009   os::native_path(fullname);
3010 
3011   char *path = _mktemp(fullname);
3012   if (path == NULL) {
3013     warning("_mktemp could not create file name from template %s (%s)", fullname, os::strerror(errno));
3014     os::free(fullname);
3015     return -1;
3016   }
3017 
3018   int fd = _open(path, O_RDWR | O_CREAT | O_TEMPORARY | O_EXCL, S_IWRITE | S_IREAD);
3019 
3020   os::free(fullname);
3021   if (fd < 0) {
3022     warning("Problem opening file for heap (%s)", os::strerror(errno));
3023     return -1;
3024   }
3025   return fd;
3026 }
3027 
3028 // If 'base' is not NULL, function will return NULL if it cannot get 'base'
3029 char* os::map_memory_to_file(char* base, size_t size, int fd) {
3030   assert(fd != -1, "File descriptor is not valid");
3031 
3032   HANDLE fh = (HANDLE)_get_osfhandle(fd);
3033 #ifdef _LP64
3034   HANDLE fileMapping = CreateFileMapping(fh, NULL, PAGE_READWRITE,
3035     (DWORD)(size >> 32), (DWORD)(size & 0xFFFFFFFF), NULL);
3036 #else
3037   HANDLE fileMapping = CreateFileMapping(fh, NULL, PAGE_READWRITE,
3038     0, (DWORD)size, NULL);
3039 #endif
3040   if (fileMapping == NULL) {
3041     if (GetLastError() == ERROR_DISK_FULL) {
3042       vm_exit_during_initialization(err_msg("Could not allocate sufficient disk space for Java heap"));
3043     }
3044     else {
3045       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3046     }
3047 
3048     return NULL;
3049   }
3050 
3051   LPVOID addr = MapViewOfFileEx(fileMapping, FILE_MAP_WRITE, 0, 0, size, base);
3052 
3053   CloseHandle(fileMapping);
3054 
3055   return (char*)addr;
3056 }
3057 
3058 char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) {
3059   assert(fd != -1, "File descriptor is not valid");
3060   assert(base != NULL, "Base address cannot be NULL");
3061 
3062   release_memory(base, size);
3063   return map_memory_to_file(base, size, fd);
3064 }
3065 
3066 // On win32, one cannot release just a part of reserved memory, it's an
3067 // all or nothing deal.  When we split a reservation, we must break the
3068 // reservation into two reservations.
3069 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3070                                   bool realloc) {
3071   if (size > 0) {
3072     release_memory(base, size);
3073     if (realloc) {
3074       reserve_memory(split, base);
3075     }
3076     if (size != split) {
3077       reserve_memory(size - split, base + split);
3078     }
3079   }
3080 }
3081 
3082 // Multiple threads can race in this code but it's not possible to unmap small sections of
3083 // virtual space to get requested alignment, like posix-like os's.
3084 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3085 char* os::reserve_memory_aligned(size_t size, size_t alignment, int file_desc) {
3086   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3087          "Alignment must be a multiple of allocation granularity (page size)");
3088   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3089 
3090   size_t extra_size = size + alignment;
3091   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3092 
3093   char* aligned_base = NULL;
3094 
3095   do {
3096     char* extra_base = os::reserve_memory(extra_size, NULL, alignment, file_desc);
3097     if (extra_base == NULL) {
3098       return NULL;
3099     }
3100     // Do manual alignment
3101     aligned_base = align_up(extra_base, alignment);
3102 
3103     if (file_desc != -1) {
3104       os::unmap_memory(extra_base, extra_size);
3105     } else {
3106       os::release_memory(extra_base, extra_size);
3107     }
3108 
3109     aligned_base = os::reserve_memory(size, aligned_base, 0, file_desc);
3110 
3111   } while (aligned_base == NULL);
3112 
3113   return aligned_base;
3114 }
3115 
3116 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3117   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3118          "reserve alignment");
3119   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3120   char* res;
3121   // note that if UseLargePages is on, all the areas that require interleaving
3122   // will go thru reserve_memory_special rather than thru here.
3123   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3124   if (!use_individual) {
3125     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3126   } else {
3127     elapsedTimer reserveTimer;
3128     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3129     // in numa interleaving, we have to allocate pages individually
3130     // (well really chunks of NUMAInterleaveGranularity size)
3131     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3132     if (res == NULL) {
3133       warning("NUMA page allocation failed");
3134     }
3135     if (Verbose && PrintMiscellaneous) {
3136       reserveTimer.stop();
3137       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3138                     reserveTimer.milliseconds(), reserveTimer.ticks());
3139     }
3140   }
3141   assert(res == NULL || addr == NULL || addr == res,
3142          "Unexpected address from reserve.");
3143 
3144   return res;
3145 }
3146 
3147 // Reserve memory at an arbitrary address, only if that area is
3148 // available (and not reserved for something else).
3149 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3150   // Windows os::reserve_memory() fails of the requested address range is
3151   // not avilable.
3152   return reserve_memory(bytes, requested_addr);
3153 }
3154 
3155 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3156   assert(file_desc >= 0, "file_desc is not valid");
3157   return map_memory_to_file(requested_addr, bytes, file_desc);
3158 }
3159 
3160 size_t os::large_page_size() {
3161   return _large_page_size;
3162 }
3163 
3164 bool os::can_commit_large_page_memory() {
3165   // Windows only uses large page memory when the entire region is reserved
3166   // and committed in a single VirtualAlloc() call. This may change in the
3167   // future, but with Windows 2003 it's not possible to commit on demand.
3168   return false;
3169 }
3170 
3171 bool os::can_execute_large_page_memory() {
3172   return true;
3173 }
3174 
3175 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3176                                  bool exec) {
3177   assert(UseLargePages, "only for large pages");
3178 
3179   if (!is_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3180     return NULL; // Fallback to small pages.
3181   }
3182 
3183   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3184   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3185 
3186   // with large pages, there are two cases where we need to use Individual Allocation
3187   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3188   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3189   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3190     log_debug(pagesize)("Reserving large pages individually.");
3191 
3192     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3193     if (p_buf == NULL) {
3194       // give an appropriate warning message
3195       if (UseNUMAInterleaving) {
3196         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3197       }
3198       if (UseLargePagesIndividualAllocation) {
3199         warning("Individually allocated large pages failed, "
3200                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3201       }
3202       return NULL;
3203     }
3204 
3205     return p_buf;
3206 
3207   } else {
3208     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3209 
3210     // normal policy just allocate it all at once
3211     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3212     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3213     if (res != NULL) {
3214       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3215     }
3216 
3217     return res;
3218   }
3219 }
3220 
3221 bool os::release_memory_special(char* base, size_t bytes) {
3222   assert(base != NULL, "Sanity check");
3223   return release_memory(base, bytes);
3224 }
3225 
3226 void os::print_statistics() {
3227 }
3228 
3229 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3230   int err = os::get_last_error();
3231   char buf[256];
3232   size_t buf_len = os::lasterror(buf, sizeof(buf));
3233   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3234           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3235           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3236 }
3237 
3238 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3239   if (bytes == 0) {
3240     // Don't bother the OS with noops.
3241     return true;
3242   }
3243   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3244   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3245   // Don't attempt to print anything if the OS call fails. We're
3246   // probably low on resources, so the print itself may cause crashes.
3247 
3248   // unless we have NUMAInterleaving enabled, the range of a commit
3249   // is always within a reserve covered by a single VirtualAlloc
3250   // in that case we can just do a single commit for the requested size
3251   if (!UseNUMAInterleaving) {
3252     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3253       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3254       return false;
3255     }
3256     if (exec) {
3257       DWORD oldprot;
3258       // Windows doc says to use VirtualProtect to get execute permissions
3259       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3260         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3261         return false;
3262       }
3263     }
3264     return true;
3265   } else {
3266 
3267     // when NUMAInterleaving is enabled, the commit might cover a range that
3268     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3269     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3270     // returns represents the number of bytes that can be committed in one step.
3271     size_t bytes_remaining = bytes;
3272     char * next_alloc_addr = addr;
3273     while (bytes_remaining > 0) {
3274       MEMORY_BASIC_INFORMATION alloc_info;
3275       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3276       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3277       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3278                        PAGE_READWRITE) == NULL) {
3279         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3280                                             exec);)
3281         return false;
3282       }
3283       if (exec) {
3284         DWORD oldprot;
3285         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3286                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3287           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3288                                               exec);)
3289           return false;
3290         }
3291       }
3292       bytes_remaining -= bytes_to_rq;
3293       next_alloc_addr += bytes_to_rq;
3294     }
3295   }
3296   // if we made it this far, return true
3297   return true;
3298 }
3299 
3300 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3301                           bool exec) {
3302   // alignment_hint is ignored on this OS
3303   return pd_commit_memory(addr, size, exec);
3304 }
3305 
3306 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3307                                   const char* mesg) {
3308   assert(mesg != NULL, "mesg must be specified");
3309   if (!pd_commit_memory(addr, size, exec)) {
3310     warn_fail_commit_memory(addr, size, exec);
3311     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3312   }
3313 }
3314 
3315 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3316                                   size_t alignment_hint, bool exec,
3317                                   const char* mesg) {
3318   // alignment_hint is ignored on this OS
3319   pd_commit_memory_or_exit(addr, size, exec, mesg);
3320 }
3321 
3322 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3323   if (bytes == 0) {
3324     // Don't bother the OS with noops.
3325     return true;
3326   }
3327   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3328   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3329   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3330 }
3331 
3332 bool os::pd_release_memory(char* addr, size_t bytes) {
3333   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3334 }
3335 
3336 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3337   return os::commit_memory(addr, size, !ExecMem);
3338 }
3339 
3340 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3341   return os::uncommit_memory(addr, size);
3342 }
3343 
3344 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3345   uint count = 0;
3346   bool ret = false;
3347   size_t bytes_remaining = bytes;
3348   char * next_protect_addr = addr;
3349 
3350   // Use VirtualQuery() to get the chunk size.
3351   while (bytes_remaining) {
3352     MEMORY_BASIC_INFORMATION alloc_info;
3353     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3354       return false;
3355     }
3356 
3357     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3358     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3359     // but we don't distinguish here as both cases are protected by same API.
3360     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3361     warning("Failed protecting pages individually for chunk #%u", count);
3362     if (!ret) {
3363       return false;
3364     }
3365 
3366     bytes_remaining -= bytes_to_protect;
3367     next_protect_addr += bytes_to_protect;
3368     count++;
3369   }
3370   return ret;
3371 }
3372 
3373 // Set protections specified
3374 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3375                         bool is_committed) {
3376   unsigned int p = 0;
3377   switch (prot) {
3378   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3379   case MEM_PROT_READ: p = PAGE_READONLY; break;
3380   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3381   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3382   default:
3383     ShouldNotReachHere();
3384   }
3385 
3386   DWORD old_status;
3387 
3388   // Strange enough, but on Win32 one can change protection only for committed
3389   // memory, not a big deal anyway, as bytes less or equal than 64K
3390   if (!is_committed) {
3391     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3392                           "cannot commit protection page");
3393   }
3394   // One cannot use os::guard_memory() here, as on Win32 guard page
3395   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3396   //
3397   // Pages in the region become guard pages. Any attempt to access a guard page
3398   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3399   // the guard page status. Guard pages thus act as a one-time access alarm.
3400   bool ret;
3401   if (UseNUMAInterleaving) {
3402     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3403     // so we must protect the chunks individually.
3404     ret = protect_pages_individually(addr, bytes, p, &old_status);
3405   } else {
3406     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3407   }
3408 #ifdef ASSERT
3409   if (!ret) {
3410     int err = os::get_last_error();
3411     char buf[256];
3412     size_t buf_len = os::lasterror(buf, sizeof(buf));
3413     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3414           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3415           buf_len != 0 ? buf : "<no_error_string>", err);
3416   }
3417 #endif
3418   return ret;
3419 }
3420 
3421 bool os::guard_memory(char* addr, size_t bytes) {
3422   DWORD old_status;
3423   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3424 }
3425 
3426 bool os::unguard_memory(char* addr, size_t bytes) {
3427   DWORD old_status;
3428   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3429 }
3430 
3431 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3432 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3433 void os::numa_make_global(char *addr, size_t bytes)    { }
3434 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3435 bool os::numa_topology_changed()                       { return false; }
3436 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3437 int os::numa_get_group_id()                            { return 0; }
3438 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3439   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3440     // Provide an answer for UMA systems
3441     ids[0] = 0;
3442     return 1;
3443   } else {
3444     // check for size bigger than actual groups_num
3445     size = MIN2(size, numa_get_groups_num());
3446     for (int i = 0; i < (int)size; i++) {
3447       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3448     }
3449     return size;
3450   }
3451 }
3452 
3453 int os::numa_get_address_id(void* address) {
3454   return 0;
3455 }
3456 
3457 bool os::get_page_info(char *start, page_info* info) {
3458   return false;
3459 }
3460 
3461 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3462                      page_info* page_found) {
3463   return end;
3464 }
3465 
3466 char* os::non_memory_address_word() {
3467   // Must never look like an address returned by reserve_memory,
3468   // even in its subfields (as defined by the CPU immediate fields,
3469   // if the CPU splits constants across multiple instructions).
3470   return (char*)-1;
3471 }
3472 
3473 #define MAX_ERROR_COUNT 100
3474 #define SYS_THREAD_ERROR 0xffffffffUL
3475 
3476 void os::pd_start_thread(Thread* thread) {
3477   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3478   // Returns previous suspend state:
3479   // 0:  Thread was not suspended
3480   // 1:  Thread is running now
3481   // >1: Thread is still suspended.
3482   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3483 }
3484 
3485 
3486 // Short sleep, direct OS call.
3487 //
3488 // ms = 0, means allow others (if any) to run.
3489 //
3490 void os::naked_short_sleep(jlong ms) {
3491   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3492   Sleep(ms);
3493 }
3494 
3495 // Windows does not provide sleep functionality with nanosecond resolution, so we
3496 // try to approximate this with spinning combined with yielding if another thread
3497 // is ready to run on the current processor.
3498 void os::naked_short_nanosleep(jlong ns) {
3499   assert(ns > -1 && ns < NANOUNITS, "Un-interruptable sleep, short time use only");
3500 
3501   int64_t start = os::javaTimeNanos();
3502   do {
3503     if (SwitchToThread() == 0) {
3504       // Nothing else is ready to run on this cpu, spin a little
3505       SpinPause();
3506     }
3507   } while (os::javaTimeNanos() - start < ns);
3508 }
3509 
3510 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3511 void os::infinite_sleep() {
3512   while (true) {    // sleep forever ...
3513     Sleep(100000);  // ... 100 seconds at a time
3514   }
3515 }
3516 
3517 typedef BOOL (WINAPI * STTSignature)(void);
3518 
3519 void os::naked_yield() {
3520   // Consider passing back the return value from SwitchToThread().
3521   SwitchToThread();
3522 }
3523 
3524 // Win32 only gives you access to seven real priorities at a time,
3525 // so we compress Java's ten down to seven.  It would be better
3526 // if we dynamically adjusted relative priorities.
3527 
3528 int os::java_to_os_priority[CriticalPriority + 1] = {
3529   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3530   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3531   THREAD_PRIORITY_LOWEST,                       // 2
3532   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3533   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3534   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3535   THREAD_PRIORITY_NORMAL,                       // 6
3536   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3537   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3538   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3539   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3540   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3541 };
3542 
3543 int prio_policy1[CriticalPriority + 1] = {
3544   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3545   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3546   THREAD_PRIORITY_LOWEST,                       // 2
3547   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3548   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3549   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3550   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3551   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3552   THREAD_PRIORITY_HIGHEST,                      // 8
3553   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3554   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3555   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3556 };
3557 
3558 static int prio_init() {
3559   // If ThreadPriorityPolicy is 1, switch tables
3560   if (ThreadPriorityPolicy == 1) {
3561     int i;
3562     for (i = 0; i < CriticalPriority + 1; i++) {
3563       os::java_to_os_priority[i] = prio_policy1[i];
3564     }
3565   }
3566   if (UseCriticalJavaThreadPriority) {
3567     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3568   }
3569   return 0;
3570 }
3571 
3572 OSReturn os::set_native_priority(Thread* thread, int priority) {
3573   if (!UseThreadPriorities) return OS_OK;
3574   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3575   return ret ? OS_OK : OS_ERR;
3576 }
3577 
3578 OSReturn os::get_native_priority(const Thread* const thread,
3579                                  int* priority_ptr) {
3580   if (!UseThreadPriorities) {
3581     *priority_ptr = java_to_os_priority[NormPriority];
3582     return OS_OK;
3583   }
3584   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3585   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3586     assert(false, "GetThreadPriority failed");
3587     return OS_ERR;
3588   }
3589   *priority_ptr = os_prio;
3590   return OS_OK;
3591 }
3592 
3593 // GetCurrentThreadId() returns DWORD
3594 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3595 
3596 static int _initial_pid = 0;
3597 
3598 int os::current_process_id() {
3599   return (_initial_pid ? _initial_pid : _getpid());
3600 }
3601 
3602 int    os::win32::_vm_page_size              = 0;
3603 int    os::win32::_vm_allocation_granularity = 0;
3604 int    os::win32::_processor_type            = 0;
3605 // Processor level is not available on non-NT systems, use vm_version instead
3606 int    os::win32::_processor_level           = 0;
3607 julong os::win32::_physical_memory           = 0;
3608 size_t os::win32::_default_stack_size        = 0;
3609 
3610 intx          os::win32::_os_thread_limit    = 0;
3611 volatile intx os::win32::_os_thread_count    = 0;
3612 
3613 bool   os::win32::_is_windows_server         = false;
3614 
3615 // 6573254
3616 // Currently, the bug is observed across all the supported Windows releases,
3617 // including the latest one (as of this writing - Windows Server 2012 R2)
3618 bool   os::win32::_has_exit_bug              = true;
3619 
3620 void os::win32::initialize_system_info() {
3621   SYSTEM_INFO si;
3622   GetSystemInfo(&si);
3623   _vm_page_size    = si.dwPageSize;
3624   _vm_allocation_granularity = si.dwAllocationGranularity;
3625   _processor_type  = si.dwProcessorType;
3626   _processor_level = si.wProcessorLevel;
3627   set_processor_count(si.dwNumberOfProcessors);
3628 
3629   MEMORYSTATUSEX ms;
3630   ms.dwLength = sizeof(ms);
3631 
3632   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3633   // dwMemoryLoad (% of memory in use)
3634   GlobalMemoryStatusEx(&ms);
3635   _physical_memory = ms.ullTotalPhys;
3636 
3637   if (FLAG_IS_DEFAULT(MaxRAM)) {
3638     // Adjust MaxRAM according to the maximum virtual address space available.
3639     FLAG_SET_DEFAULT(MaxRAM, MIN2(MaxRAM, (uint64_t) ms.ullTotalVirtual));
3640   }
3641 
3642   OSVERSIONINFOEX oi;
3643   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3644   GetVersionEx((OSVERSIONINFO*)&oi);
3645   switch (oi.dwPlatformId) {
3646   case VER_PLATFORM_WIN32_NT:
3647     {
3648       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3649       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3650           oi.wProductType == VER_NT_SERVER) {
3651         _is_windows_server = true;
3652       }
3653     }
3654     break;
3655   default: fatal("Unknown platform");
3656   }
3657 
3658   _default_stack_size = os::current_stack_size();
3659   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3660   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3661          "stack size not a multiple of page size");
3662 
3663   initialize_performance_counter();
3664 }
3665 
3666 
3667 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3668                                       int ebuflen) {
3669   char path[MAX_PATH];
3670   DWORD size;
3671   DWORD pathLen = (DWORD)sizeof(path);
3672   HINSTANCE result = NULL;
3673 
3674   // only allow library name without path component
3675   assert(strchr(name, '\\') == NULL, "path not allowed");
3676   assert(strchr(name, ':') == NULL, "path not allowed");
3677   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3678     jio_snprintf(ebuf, ebuflen,
3679                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3680     return NULL;
3681   }
3682 
3683   // search system directory
3684   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3685     if (size >= pathLen) {
3686       return NULL; // truncated
3687     }
3688     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3689       return NULL; // truncated
3690     }
3691     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3692       return result;
3693     }
3694   }
3695 
3696   // try Windows directory
3697   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3698     if (size >= pathLen) {
3699       return NULL; // truncated
3700     }
3701     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3702       return NULL; // truncated
3703     }
3704     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3705       return result;
3706     }
3707   }
3708 
3709   jio_snprintf(ebuf, ebuflen,
3710                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3711   return NULL;
3712 }
3713 
3714 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3715 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3716 
3717 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3718   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3719   return TRUE;
3720 }
3721 
3722 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3723   // Basic approach:
3724   //  - Each exiting thread registers its intent to exit and then does so.
3725   //  - A thread trying to terminate the process must wait for all
3726   //    threads currently exiting to complete their exit.
3727 
3728   if (os::win32::has_exit_bug()) {
3729     // The array holds handles of the threads that have started exiting by calling
3730     // _endthreadex().
3731     // Should be large enough to avoid blocking the exiting thread due to lack of
3732     // a free slot.
3733     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3734     static int handle_count = 0;
3735 
3736     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3737     static CRITICAL_SECTION crit_sect;
3738     static volatile DWORD process_exiting = 0;
3739     int i, j;
3740     DWORD res;
3741     HANDLE hproc, hthr;
3742 
3743     // We only attempt to register threads until a process exiting
3744     // thread manages to set the process_exiting flag. Any threads
3745     // that come through here after the process_exiting flag is set
3746     // are unregistered and will be caught in the SuspendThread()
3747     // infinite loop below.
3748     bool registered = false;
3749 
3750     // The first thread that reached this point, initializes the critical section.
3751     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3752       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3753     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3754       if (what != EPT_THREAD) {
3755         // Atomically set process_exiting before the critical section
3756         // to increase the visibility between racing threads.
3757         Atomic::cmpxchg(GetCurrentThreadId(), &process_exiting, (DWORD)0);
3758       }
3759       EnterCriticalSection(&crit_sect);
3760 
3761       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3762         // Remove from the array those handles of the threads that have completed exiting.
3763         for (i = 0, j = 0; i < handle_count; ++i) {
3764           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3765           if (res == WAIT_TIMEOUT) {
3766             handles[j++] = handles[i];
3767           } else {
3768             if (res == WAIT_FAILED) {
3769               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3770                       GetLastError(), __FILE__, __LINE__);
3771             }
3772             // Don't keep the handle, if we failed waiting for it.
3773             CloseHandle(handles[i]);
3774           }
3775         }
3776 
3777         // If there's no free slot in the array of the kept handles, we'll have to
3778         // wait until at least one thread completes exiting.
3779         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3780           // Raise the priority of the oldest exiting thread to increase its chances
3781           // to complete sooner.
3782           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3783           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3784           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3785             i = (res - WAIT_OBJECT_0);
3786             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3787             for (; i < handle_count; ++i) {
3788               handles[i] = handles[i + 1];
3789             }
3790           } else {
3791             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3792                     (res == WAIT_FAILED ? "failed" : "timed out"),
3793                     GetLastError(), __FILE__, __LINE__);
3794             // Don't keep handles, if we failed waiting for them.
3795             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3796               CloseHandle(handles[i]);
3797             }
3798             handle_count = 0;
3799           }
3800         }
3801 
3802         // Store a duplicate of the current thread handle in the array of handles.
3803         hproc = GetCurrentProcess();
3804         hthr = GetCurrentThread();
3805         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3806                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3807           warning("DuplicateHandle failed (%u) in %s: %d\n",
3808                   GetLastError(), __FILE__, __LINE__);
3809 
3810           // We can't register this thread (no more handles) so this thread
3811           // may be racing with a thread that is calling exit(). If the thread
3812           // that is calling exit() has managed to set the process_exiting
3813           // flag, then this thread will be caught in the SuspendThread()
3814           // infinite loop below which closes that race. A small timing
3815           // window remains before the process_exiting flag is set, but it
3816           // is only exposed when we are out of handles.
3817         } else {
3818           ++handle_count;
3819           registered = true;
3820 
3821           // The current exiting thread has stored its handle in the array, and now
3822           // should leave the critical section before calling _endthreadex().
3823         }
3824 
3825       } else if (what != EPT_THREAD && handle_count > 0) {
3826         jlong start_time, finish_time, timeout_left;
3827         // Before ending the process, make sure all the threads that had called
3828         // _endthreadex() completed.
3829 
3830         // Set the priority level of the current thread to the same value as
3831         // the priority level of exiting threads.
3832         // This is to ensure it will be given a fair chance to execute if
3833         // the timeout expires.
3834         hthr = GetCurrentThread();
3835         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3836         start_time = os::javaTimeNanos();
3837         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
3838         for (i = 0; ; ) {
3839           int portion_count = handle_count - i;
3840           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
3841             portion_count = MAXIMUM_WAIT_OBJECTS;
3842           }
3843           for (j = 0; j < portion_count; ++j) {
3844             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
3845           }
3846           timeout_left = (finish_time - start_time) / 1000000L;
3847           if (timeout_left < 0) {
3848             timeout_left = 0;
3849           }
3850           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
3851           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3852             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3853                     (res == WAIT_FAILED ? "failed" : "timed out"),
3854                     GetLastError(), __FILE__, __LINE__);
3855             // Reset portion_count so we close the remaining
3856             // handles due to this error.
3857             portion_count = handle_count - i;
3858           }
3859           for (j = 0; j < portion_count; ++j) {
3860             CloseHandle(handles[i + j]);
3861           }
3862           if ((i += portion_count) >= handle_count) {
3863             break;
3864           }
3865           start_time = os::javaTimeNanos();
3866         }
3867         handle_count = 0;
3868       }
3869 
3870       LeaveCriticalSection(&crit_sect);
3871     }
3872 
3873     if (!registered &&
3874         OrderAccess::load_acquire(&process_exiting) != 0 &&
3875         process_exiting != GetCurrentThreadId()) {
3876       // Some other thread is about to call exit(), so we don't let
3877       // the current unregistered thread proceed to exit() or _endthreadex()
3878       while (true) {
3879         SuspendThread(GetCurrentThread());
3880         // Avoid busy-wait loop, if SuspendThread() failed.
3881         Sleep(EXIT_TIMEOUT);
3882       }
3883     }
3884   }
3885 
3886   // We are here if either
3887   // - there's no 'race at exit' bug on this OS release;
3888   // - initialization of the critical section failed (unlikely);
3889   // - the current thread has registered itself and left the critical section;
3890   // - the process-exiting thread has raised the flag and left the critical section.
3891   if (what == EPT_THREAD) {
3892     _endthreadex((unsigned)exit_code);
3893   } else if (what == EPT_PROCESS) {
3894     ::exit(exit_code);
3895   } else {
3896     _exit(exit_code);
3897   }
3898 
3899   // Should not reach here
3900   return exit_code;
3901 }
3902 
3903 #undef EXIT_TIMEOUT
3904 
3905 void os::win32::setmode_streams() {
3906   _setmode(_fileno(stdin), _O_BINARY);
3907   _setmode(_fileno(stdout), _O_BINARY);
3908   _setmode(_fileno(stderr), _O_BINARY);
3909 }
3910 
3911 
3912 bool os::is_debugger_attached() {
3913   return IsDebuggerPresent() ? true : false;
3914 }
3915 
3916 
3917 void os::wait_for_keypress_at_exit(void) {
3918   if (PauseAtExit) {
3919     fprintf(stderr, "Press any key to continue...\n");
3920     fgetc(stdin);
3921   }
3922 }
3923 
3924 
3925 bool os::message_box(const char* title, const char* message) {
3926   int result = MessageBox(NULL, message, title,
3927                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3928   return result == IDYES;
3929 }
3930 
3931 #ifndef PRODUCT
3932 #ifndef _WIN64
3933 // Helpers to check whether NX protection is enabled
3934 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3935   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3936       pex->ExceptionRecord->NumberParameters > 0 &&
3937       pex->ExceptionRecord->ExceptionInformation[0] ==
3938       EXCEPTION_INFO_EXEC_VIOLATION) {
3939     return EXCEPTION_EXECUTE_HANDLER;
3940   }
3941   return EXCEPTION_CONTINUE_SEARCH;
3942 }
3943 
3944 void nx_check_protection() {
3945   // If NX is enabled we'll get an exception calling into code on the stack
3946   char code[] = { (char)0xC3 }; // ret
3947   void *code_ptr = (void *)code;
3948   __try {
3949     __asm call code_ptr
3950   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3951     tty->print_raw_cr("NX protection detected.");
3952   }
3953 }
3954 #endif // _WIN64
3955 #endif // PRODUCT
3956 
3957 // This is called _before_ the global arguments have been parsed
3958 void os::init(void) {
3959   _initial_pid = _getpid();
3960 
3961   init_random(1234567);
3962 
3963   win32::initialize_system_info();
3964   win32::setmode_streams();
3965   init_page_sizes((size_t) win32::vm_page_size());
3966 
3967   // This may be overridden later when argument processing is done.
3968   FLAG_SET_ERGO(UseLargePagesIndividualAllocation, false);
3969 
3970   // Initialize main_process and main_thread
3971   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3972   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3973                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3974     fatal("DuplicateHandle failed\n");
3975   }
3976   main_thread_id = (int) GetCurrentThreadId();
3977 
3978   // initialize fast thread access - only used for 32-bit
3979   win32::initialize_thread_ptr_offset();
3980 }
3981 
3982 // To install functions for atexit processing
3983 extern "C" {
3984   static void perfMemory_exit_helper() {
3985     perfMemory_exit();
3986   }
3987 }
3988 
3989 static jint initSock();
3990 
3991 // this is called _after_ the global arguments have been parsed
3992 jint os::init_2(void) {
3993 
3994   // This could be set any time but all platforms
3995   // have to set it the same so we have to mirror Solaris.
3996   DEBUG_ONLY(os::set_mutex_init_done();)
3997 
3998   // Setup Windows Exceptions
3999 
4000 #if INCLUDE_AOT
4001   // If AOT is enabled we need to install a vectored exception handler
4002   // in order to forward implicit exceptions from code in AOT
4003   // generated DLLs.  This is necessary since these DLLs are not
4004   // registered for structured exceptions like codecache methods are.
4005   if (AOTLibrary != NULL && (UseAOT || FLAG_IS_DEFAULT(UseAOT))) {
4006     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelVectoredExceptionFilter);
4007   }
4008 #endif
4009 
4010   // for debugging float code generation bugs
4011   if (ForceFloatExceptions) {
4012 #ifndef  _WIN64
4013     static long fp_control_word = 0;
4014     __asm { fstcw fp_control_word }
4015     // see Intel PPro Manual, Vol. 2, p 7-16
4016     const long precision = 0x20;
4017     const long underflow = 0x10;
4018     const long overflow  = 0x08;
4019     const long zero_div  = 0x04;
4020     const long denorm    = 0x02;
4021     const long invalid   = 0x01;
4022     fp_control_word |= invalid;
4023     __asm { fldcw fp_control_word }
4024 #endif
4025   }
4026 
4027   // If stack_commit_size is 0, windows will reserve the default size,
4028   // but only commit a small portion of it.
4029   size_t stack_commit_size = align_up(ThreadStackSize*K, os::vm_page_size());
4030   size_t default_reserve_size = os::win32::default_stack_size();
4031   size_t actual_reserve_size = stack_commit_size;
4032   if (stack_commit_size < default_reserve_size) {
4033     // If stack_commit_size == 0, we want this too
4034     actual_reserve_size = default_reserve_size;
4035   }
4036 
4037   // Check minimum allowable stack size for thread creation and to initialize
4038   // the java system classes, including StackOverflowError - depends on page
4039   // size.  Add two 4K pages for compiler2 recursion in main thread.
4040   // Add in 4*BytesPerWord 4K pages to account for VM stack during
4041   // class initialization depending on 32 or 64 bit VM.
4042   size_t min_stack_allowed =
4043             (size_t)(JavaThread::stack_guard_zone_size() +
4044                      JavaThread::stack_shadow_zone_size() +
4045                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
4046 
4047   min_stack_allowed = align_up(min_stack_allowed, os::vm_page_size());
4048 
4049   if (actual_reserve_size < min_stack_allowed) {
4050     tty->print_cr("\nThe Java thread stack size specified is too small. "
4051                   "Specify at least %dk",
4052                   min_stack_allowed / K);
4053     return JNI_ERR;
4054   }
4055 
4056   JavaThread::set_stack_size_at_create(stack_commit_size);
4057 
4058   // Calculate theoretical max. size of Threads to guard gainst artifical
4059   // out-of-memory situations, where all available address-space has been
4060   // reserved by thread stacks.
4061   assert(actual_reserve_size != 0, "Must have a stack");
4062 
4063   // Calculate the thread limit when we should start doing Virtual Memory
4064   // banging. Currently when the threads will have used all but 200Mb of space.
4065   //
4066   // TODO: consider performing a similar calculation for commit size instead
4067   // as reserve size, since on a 64-bit platform we'll run into that more
4068   // often than running out of virtual memory space.  We can use the
4069   // lower value of the two calculations as the os_thread_limit.
4070   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4071   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4072 
4073   // at exit methods are called in the reverse order of their registration.
4074   // there is no limit to the number of functions registered. atexit does
4075   // not set errno.
4076 
4077   if (PerfAllowAtExitRegistration) {
4078     // only register atexit functions if PerfAllowAtExitRegistration is set.
4079     // atexit functions can be delayed until process exit time, which
4080     // can be problematic for embedded VM situations. Embedded VMs should
4081     // call DestroyJavaVM() to assure that VM resources are released.
4082 
4083     // note: perfMemory_exit_helper atexit function may be removed in
4084     // the future if the appropriate cleanup code can be added to the
4085     // VM_Exit VMOperation's doit method.
4086     if (atexit(perfMemory_exit_helper) != 0) {
4087       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4088     }
4089   }
4090 
4091 #ifndef _WIN64
4092   // Print something if NX is enabled (win32 on AMD64)
4093   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4094 #endif
4095 
4096   // initialize thread priority policy
4097   prio_init();
4098 
4099   if (UseNUMA && !ForceNUMA) {
4100     UseNUMA = false; // We don't fully support this yet
4101   }
4102 
4103   if (UseNUMAInterleaving) {
4104     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4105     bool success = numa_interleaving_init();
4106     if (!success) UseNUMAInterleaving = false;
4107   }
4108 
4109   if (initSock() != JNI_OK) {
4110     return JNI_ERR;
4111   }
4112 
4113   SymbolEngine::recalc_search_path();
4114 
4115   // Initialize data for jdk.internal.misc.Signal
4116   if (!ReduceSignalUsage) {
4117     jdk_misc_signal_init();
4118   }
4119 
4120   return JNI_OK;
4121 }
4122 
4123 // Mark the polling page as unreadable
4124 void os::make_polling_page_unreadable(void) {
4125   DWORD old_status;
4126   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4127                       PAGE_NOACCESS, &old_status)) {
4128     fatal("Could not disable polling page");
4129   }
4130 }
4131 
4132 // Mark the polling page as readable
4133 void os::make_polling_page_readable(void) {
4134   DWORD old_status;
4135   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4136                       PAGE_READONLY, &old_status)) {
4137     fatal("Could not enable polling page");
4138   }
4139 }
4140 
4141 // combine the high and low DWORD into a ULONGLONG
4142 static ULONGLONG make_double_word(DWORD high_word, DWORD low_word) {
4143   ULONGLONG value = high_word;
4144   value <<= sizeof(high_word) * 8;
4145   value |= low_word;
4146   return value;
4147 }
4148 
4149 // Transfers data from WIN32_FILE_ATTRIBUTE_DATA structure to struct stat
4150 static void file_attribute_data_to_stat(struct stat* sbuf, WIN32_FILE_ATTRIBUTE_DATA file_data) {
4151   ::memset((void*)sbuf, 0, sizeof(struct stat));
4152   sbuf->st_size = (_off_t)make_double_word(file_data.nFileSizeHigh, file_data.nFileSizeLow);
4153   sbuf->st_mtime = make_double_word(file_data.ftLastWriteTime.dwHighDateTime,
4154                                   file_data.ftLastWriteTime.dwLowDateTime);
4155   sbuf->st_ctime = make_double_word(file_data.ftCreationTime.dwHighDateTime,
4156                                   file_data.ftCreationTime.dwLowDateTime);
4157   sbuf->st_atime = make_double_word(file_data.ftLastAccessTime.dwHighDateTime,
4158                                   file_data.ftLastAccessTime.dwLowDateTime);
4159   if ((file_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0) {
4160     sbuf->st_mode |= S_IFDIR;
4161   } else {
4162     sbuf->st_mode |= S_IFREG;
4163   }
4164 }
4165 
4166 // The following function is adapted from java.base/windows/native/libjava/canonicalize_md.c
4167 // Creates an UNC path from a single byte path. Return buffer is
4168 // allocated in C heap and needs to be freed by the caller.
4169 // Returns NULL on error.
4170 static wchar_t* create_unc_path(const char* path, errno_t &err) {
4171   wchar_t* wpath = NULL;
4172   size_t converted_chars = 0;
4173   size_t path_len = strlen(path) + 1; // includes the terminating NULL
4174   if (path[0] == '\\' && path[1] == '\\') {
4175     if (path[2] == '?' && path[3] == '\\'){
4176       // if it already has a \\?\ don't do the prefix
4177       wpath = (wchar_t*)os::malloc(path_len * sizeof(wchar_t), mtInternal);
4178       if (wpath != NULL) {
4179         err = ::mbstowcs_s(&converted_chars, wpath, path_len, path, path_len);
4180       } else {
4181         err = ENOMEM;
4182       }
4183     } else {
4184       // only UNC pathname includes double slashes here
4185       wpath = (wchar_t*)os::malloc((path_len + 7) * sizeof(wchar_t), mtInternal);
4186       if (wpath != NULL) {
4187         ::wcscpy(wpath, L"\\\\?\\UNC\0");
4188         err = ::mbstowcs_s(&converted_chars, &wpath[7], path_len, path, path_len);
4189       } else {
4190         err = ENOMEM;
4191       }
4192     }
4193   } else {
4194     wpath = (wchar_t*)os::malloc((path_len + 4) * sizeof(wchar_t), mtInternal);
4195     if (wpath != NULL) {
4196       ::wcscpy(wpath, L"\\\\?\\\0");
4197       err = ::mbstowcs_s(&converted_chars, &wpath[4], path_len, path, path_len);
4198     } else {
4199       err = ENOMEM;
4200     }
4201   }
4202   return wpath;
4203 }
4204 
4205 static void destroy_unc_path(wchar_t* wpath) {
4206   os::free(wpath);
4207 }
4208 
4209 int os::stat(const char *path, struct stat *sbuf) {
4210   char* pathbuf = (char*)os::strdup(path, mtInternal);
4211   if (pathbuf == NULL) {
4212     errno = ENOMEM;
4213     return -1;
4214   }
4215   os::native_path(pathbuf);
4216   int ret;
4217   WIN32_FILE_ATTRIBUTE_DATA file_data;
4218   // Not using stat() to avoid the problem described in JDK-6539723
4219   if (strlen(path) < MAX_PATH) {
4220     BOOL bret = ::GetFileAttributesExA(pathbuf, GetFileExInfoStandard, &file_data);
4221     if (!bret) {
4222       errno = ::GetLastError();
4223       ret = -1;
4224     }
4225     else {
4226       file_attribute_data_to_stat(sbuf, file_data);
4227       ret = 0;
4228     }
4229   } else {
4230     errno_t err = ERROR_SUCCESS;
4231     wchar_t* wpath = create_unc_path(pathbuf, err);
4232     if (err != ERROR_SUCCESS) {
4233       if (wpath != NULL) {
4234         destroy_unc_path(wpath);
4235       }
4236       os::free(pathbuf);
4237       errno = err;
4238       return -1;
4239     }
4240     BOOL bret = ::GetFileAttributesExW(wpath, GetFileExInfoStandard, &file_data);
4241     if (!bret) {
4242       errno = ::GetLastError();
4243       ret = -1;
4244     } else {
4245       file_attribute_data_to_stat(sbuf, file_data);
4246       ret = 0;
4247     }
4248     destroy_unc_path(wpath);
4249   }
4250   os::free(pathbuf);
4251   return ret;
4252 }
4253 
4254 static HANDLE create_read_only_file_handle(const char* file) {
4255   if (file == NULL) {
4256     return INVALID_HANDLE_VALUE;
4257   }
4258 
4259   char* nativepath = (char*)os::strdup(file, mtInternal);
4260   if (nativepath == NULL) {
4261     errno = ENOMEM;
4262     return INVALID_HANDLE_VALUE;
4263   }
4264   os::native_path(nativepath);
4265 
4266   size_t len = strlen(nativepath);
4267   HANDLE handle = INVALID_HANDLE_VALUE;
4268 
4269   if (len < MAX_PATH) {
4270     handle = ::CreateFile(nativepath, 0, FILE_SHARE_READ,
4271                           NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4272   } else {
4273     errno_t err = ERROR_SUCCESS;
4274     wchar_t* wfile = create_unc_path(nativepath, err);
4275     if (err != ERROR_SUCCESS) {
4276       if (wfile != NULL) {
4277         destroy_unc_path(wfile);
4278       }
4279       os::free(nativepath);
4280       return INVALID_HANDLE_VALUE;
4281     }
4282     handle = ::CreateFileW(wfile, 0, FILE_SHARE_READ,
4283                            NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4284     destroy_unc_path(wfile);
4285   }
4286 
4287   os::free(nativepath);
4288   return handle;
4289 }
4290 
4291 bool os::same_files(const char* file1, const char* file2) {
4292 
4293   if (file1 == NULL && file2 == NULL) {
4294     return true;
4295   }
4296 
4297   if (file1 == NULL || file2 == NULL) {
4298     return false;
4299   }
4300 
4301   if (strcmp(file1, file2) == 0) {
4302     return true;
4303   }
4304 
4305   HANDLE handle1 = create_read_only_file_handle(file1);
4306   HANDLE handle2 = create_read_only_file_handle(file2);
4307   bool result = false;
4308 
4309   // if we could open both paths...
4310   if (handle1 != INVALID_HANDLE_VALUE && handle2 != INVALID_HANDLE_VALUE) {
4311     BY_HANDLE_FILE_INFORMATION fileInfo1;
4312     BY_HANDLE_FILE_INFORMATION fileInfo2;
4313     if (::GetFileInformationByHandle(handle1, &fileInfo1) &&
4314       ::GetFileInformationByHandle(handle2, &fileInfo2)) {
4315       // the paths are the same if they refer to the same file (fileindex) on the same volume (volume serial number)
4316       if (fileInfo1.dwVolumeSerialNumber == fileInfo2.dwVolumeSerialNumber &&
4317         fileInfo1.nFileIndexHigh == fileInfo2.nFileIndexHigh &&
4318         fileInfo1.nFileIndexLow == fileInfo2.nFileIndexLow) {
4319         result = true;
4320       }
4321     }
4322   }
4323 
4324   //free the handles
4325   if (handle1 != INVALID_HANDLE_VALUE) {
4326     ::CloseHandle(handle1);
4327   }
4328 
4329   if (handle2 != INVALID_HANDLE_VALUE) {
4330     ::CloseHandle(handle2);
4331   }
4332 
4333   return result;
4334 }
4335 
4336 
4337 #define FT2INT64(ft) \
4338   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4339 
4340 
4341 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4342 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4343 // of a thread.
4344 //
4345 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4346 // the fast estimate available on the platform.
4347 
4348 // current_thread_cpu_time() is not optimized for Windows yet
4349 jlong os::current_thread_cpu_time() {
4350   // return user + sys since the cost is the same
4351   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4352 }
4353 
4354 jlong os::thread_cpu_time(Thread* thread) {
4355   // consistent with what current_thread_cpu_time() returns.
4356   return os::thread_cpu_time(thread, true /* user+sys */);
4357 }
4358 
4359 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4360   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4361 }
4362 
4363 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4364   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4365   // If this function changes, os::is_thread_cpu_time_supported() should too
4366   FILETIME CreationTime;
4367   FILETIME ExitTime;
4368   FILETIME KernelTime;
4369   FILETIME UserTime;
4370 
4371   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4372                       &ExitTime, &KernelTime, &UserTime) == 0) {
4373     return -1;
4374   } else if (user_sys_cpu_time) {
4375     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4376   } else {
4377     return FT2INT64(UserTime) * 100;
4378   }
4379 }
4380 
4381 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4382   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4383   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4384   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4385   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4386 }
4387 
4388 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4389   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4390   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4391   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4392   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4393 }
4394 
4395 bool os::is_thread_cpu_time_supported() {
4396   // see os::thread_cpu_time
4397   FILETIME CreationTime;
4398   FILETIME ExitTime;
4399   FILETIME KernelTime;
4400   FILETIME UserTime;
4401 
4402   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4403                       &KernelTime, &UserTime) == 0) {
4404     return false;
4405   } else {
4406     return true;
4407   }
4408 }
4409 
4410 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4411 // It does have primitives (PDH API) to get CPU usage and run queue length.
4412 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4413 // If we wanted to implement loadavg on Windows, we have a few options:
4414 //
4415 // a) Query CPU usage and run queue length and "fake" an answer by
4416 //    returning the CPU usage if it's under 100%, and the run queue
4417 //    length otherwise.  It turns out that querying is pretty slow
4418 //    on Windows, on the order of 200 microseconds on a fast machine.
4419 //    Note that on the Windows the CPU usage value is the % usage
4420 //    since the last time the API was called (and the first call
4421 //    returns 100%), so we'd have to deal with that as well.
4422 //
4423 // b) Sample the "fake" answer using a sampling thread and store
4424 //    the answer in a global variable.  The call to loadavg would
4425 //    just return the value of the global, avoiding the slow query.
4426 //
4427 // c) Sample a better answer using exponential decay to smooth the
4428 //    value.  This is basically the algorithm used by UNIX kernels.
4429 //
4430 // Note that sampling thread starvation could affect both (b) and (c).
4431 int os::loadavg(double loadavg[], int nelem) {
4432   return -1;
4433 }
4434 
4435 
4436 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4437 bool os::dont_yield() {
4438   return DontYieldALot;
4439 }
4440 
4441 // This method is a slightly reworked copy of JDK's sysOpen
4442 // from src/windows/hpi/src/sys_api_md.c
4443 
4444 int os::open(const char *path, int oflag, int mode) {
4445   char* pathbuf = (char*)os::strdup(path, mtInternal);
4446   if (pathbuf == NULL) {
4447     errno = ENOMEM;
4448     return -1;
4449   }
4450   os::native_path(pathbuf);
4451   int ret;
4452   if (strlen(path) < MAX_PATH) {
4453     ret = ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4454   } else {
4455     errno_t err = ERROR_SUCCESS;
4456     wchar_t* wpath = create_unc_path(pathbuf, err);
4457     if (err != ERROR_SUCCESS) {
4458       if (wpath != NULL) {
4459         destroy_unc_path(wpath);
4460       }
4461       os::free(pathbuf);
4462       errno = err;
4463       return -1;
4464     }
4465     ret = ::_wopen(wpath, oflag | O_BINARY | O_NOINHERIT, mode);
4466     if (ret == -1) {
4467       errno = ::GetLastError();
4468     }
4469     destroy_unc_path(wpath);
4470   }
4471   os::free(pathbuf);
4472   return ret;
4473 }
4474 
4475 FILE* os::open(int fd, const char* mode) {
4476   return ::_fdopen(fd, mode);
4477 }
4478 
4479 // Is a (classpath) directory empty?
4480 bool os::dir_is_empty(const char* path) {
4481   char* search_path = (char*)os::malloc(strlen(path) + 3, mtInternal);
4482   if (search_path == NULL) {
4483     errno = ENOMEM;
4484     return false;
4485   }
4486   strcpy(search_path, path);
4487   os::native_path(search_path);
4488   // Append "*", or possibly "\\*", to path
4489   if (search_path[1] == ':' &&
4490        (search_path[2] == '\0' ||
4491          (search_path[2] == '\\' && search_path[3] == '\0'))) {
4492     // No '\\' needed for cases like "Z:" or "Z:\"
4493     strcat(search_path, "*");
4494   }
4495   else {
4496     strcat(search_path, "\\*");
4497   }
4498   errno_t err = ERROR_SUCCESS;
4499   wchar_t* wpath = create_unc_path(search_path, err);
4500   if (err != ERROR_SUCCESS) {
4501     if (wpath != NULL) {
4502       destroy_unc_path(wpath);
4503     }
4504     os::free(search_path);
4505     errno = err;
4506     return false;
4507   }
4508   WIN32_FIND_DATAW fd;
4509   HANDLE f = ::FindFirstFileW(wpath, &fd);
4510   destroy_unc_path(wpath);
4511   bool is_empty = true;
4512   if (f != INVALID_HANDLE_VALUE) {
4513     while (is_empty && ::FindNextFileW(f, &fd)) {
4514       // An empty directory contains only the current directory file
4515       // and the previous directory file.
4516       if ((wcscmp(fd.cFileName, L".") != 0) &&
4517           (wcscmp(fd.cFileName, L"..") != 0)) {
4518         is_empty = false;
4519       }
4520     }
4521     FindClose(f);
4522   }
4523   os::free(search_path);
4524   return is_empty;
4525 }
4526 
4527 // create binary file, rewriting existing file if required
4528 int os::create_binary_file(const char* path, bool rewrite_existing) {
4529   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4530   if (!rewrite_existing) {
4531     oflags |= _O_EXCL;
4532   }
4533   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4534 }
4535 
4536 // return current position of file pointer
4537 jlong os::current_file_offset(int fd) {
4538   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4539 }
4540 
4541 // move file pointer to the specified offset
4542 jlong os::seek_to_file_offset(int fd, jlong offset) {
4543   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4544 }
4545 
4546 
4547 jlong os::lseek(int fd, jlong offset, int whence) {
4548   return (jlong) ::_lseeki64(fd, offset, whence);
4549 }
4550 
4551 ssize_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4552   OVERLAPPED ov;
4553   DWORD nread;
4554   BOOL result;
4555 
4556   ZeroMemory(&ov, sizeof(ov));
4557   ov.Offset = (DWORD)offset;
4558   ov.OffsetHigh = (DWORD)(offset >> 32);
4559 
4560   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4561 
4562   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4563 
4564   return result ? nread : 0;
4565 }
4566 
4567 
4568 // This method is a slightly reworked copy of JDK's sysNativePath
4569 // from src/windows/hpi/src/path_md.c
4570 
4571 // Convert a pathname to native format.  On win32, this involves forcing all
4572 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4573 // sometimes rejects '/') and removing redundant separators.  The input path is
4574 // assumed to have been converted into the character encoding used by the local
4575 // system.  Because this might be a double-byte encoding, care is taken to
4576 // treat double-byte lead characters correctly.
4577 //
4578 // This procedure modifies the given path in place, as the result is never
4579 // longer than the original.  There is no error return; this operation always
4580 // succeeds.
4581 char * os::native_path(char *path) {
4582   char *src = path, *dst = path, *end = path;
4583   char *colon = NULL;  // If a drive specifier is found, this will
4584                        // point to the colon following the drive letter
4585 
4586   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4587   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4588           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4589 
4590   // Check for leading separators
4591 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4592   while (isfilesep(*src)) {
4593     src++;
4594   }
4595 
4596   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4597     // Remove leading separators if followed by drive specifier.  This
4598     // hack is necessary to support file URLs containing drive
4599     // specifiers (e.g., "file://c:/path").  As a side effect,
4600     // "/c:/path" can be used as an alternative to "c:/path".
4601     *dst++ = *src++;
4602     colon = dst;
4603     *dst++ = ':';
4604     src++;
4605   } else {
4606     src = path;
4607     if (isfilesep(src[0]) && isfilesep(src[1])) {
4608       // UNC pathname: Retain first separator; leave src pointed at
4609       // second separator so that further separators will be collapsed
4610       // into the second separator.  The result will be a pathname
4611       // beginning with "\\\\" followed (most likely) by a host name.
4612       src = dst = path + 1;
4613       path[0] = '\\';     // Force first separator to '\\'
4614     }
4615   }
4616 
4617   end = dst;
4618 
4619   // Remove redundant separators from remainder of path, forcing all
4620   // separators to be '\\' rather than '/'. Also, single byte space
4621   // characters are removed from the end of the path because those
4622   // are not legal ending characters on this operating system.
4623   //
4624   while (*src != '\0') {
4625     if (isfilesep(*src)) {
4626       *dst++ = '\\'; src++;
4627       while (isfilesep(*src)) src++;
4628       if (*src == '\0') {
4629         // Check for trailing separator
4630         end = dst;
4631         if (colon == dst - 2) break;  // "z:\\"
4632         if (dst == path + 1) break;   // "\\"
4633         if (dst == path + 2 && isfilesep(path[0])) {
4634           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4635           // beginning of a UNC pathname.  Even though it is not, by
4636           // itself, a valid UNC pathname, we leave it as is in order
4637           // to be consistent with the path canonicalizer as well
4638           // as the win32 APIs, which treat this case as an invalid
4639           // UNC pathname rather than as an alias for the root
4640           // directory of the current drive.
4641           break;
4642         }
4643         end = --dst;  // Path does not denote a root directory, so
4644                       // remove trailing separator
4645         break;
4646       }
4647       end = dst;
4648     } else {
4649       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4650         *dst++ = *src++;
4651         if (*src) *dst++ = *src++;
4652         end = dst;
4653       } else {  // Copy a single-byte character
4654         char c = *src++;
4655         *dst++ = c;
4656         // Space is not a legal ending character
4657         if (c != ' ') end = dst;
4658       }
4659     }
4660   }
4661 
4662   *end = '\0';
4663 
4664   // For "z:", add "." to work around a bug in the C runtime library
4665   if (colon == dst - 1) {
4666     path[2] = '.';
4667     path[3] = '\0';
4668   }
4669 
4670   return path;
4671 }
4672 
4673 // This code is a copy of JDK's sysSetLength
4674 // from src/windows/hpi/src/sys_api_md.c
4675 
4676 int os::ftruncate(int fd, jlong length) {
4677   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4678   long high = (long)(length >> 32);
4679   DWORD ret;
4680 
4681   if (h == (HANDLE)(-1)) {
4682     return -1;
4683   }
4684 
4685   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4686   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4687     return -1;
4688   }
4689 
4690   if (::SetEndOfFile(h) == FALSE) {
4691     return -1;
4692   }
4693 
4694   return 0;
4695 }
4696 
4697 int os::get_fileno(FILE* fp) {
4698   return _fileno(fp);
4699 }
4700 
4701 // This code is a copy of JDK's sysSync
4702 // from src/windows/hpi/src/sys_api_md.c
4703 // except for the legacy workaround for a bug in Win 98
4704 
4705 int os::fsync(int fd) {
4706   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4707 
4708   if ((!::FlushFileBuffers(handle)) &&
4709       (GetLastError() != ERROR_ACCESS_DENIED)) {
4710     // from winerror.h
4711     return -1;
4712   }
4713   return 0;
4714 }
4715 
4716 static int nonSeekAvailable(int, long *);
4717 static int stdinAvailable(int, long *);
4718 
4719 // This code is a copy of JDK's sysAvailable
4720 // from src/windows/hpi/src/sys_api_md.c
4721 
4722 int os::available(int fd, jlong *bytes) {
4723   jlong cur, end;
4724   struct _stati64 stbuf64;
4725 
4726   if (::_fstati64(fd, &stbuf64) >= 0) {
4727     int mode = stbuf64.st_mode;
4728     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4729       int ret;
4730       long lpbytes;
4731       if (fd == 0) {
4732         ret = stdinAvailable(fd, &lpbytes);
4733       } else {
4734         ret = nonSeekAvailable(fd, &lpbytes);
4735       }
4736       (*bytes) = (jlong)(lpbytes);
4737       return ret;
4738     }
4739     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4740       return FALSE;
4741     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4742       return FALSE;
4743     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4744       return FALSE;
4745     }
4746     *bytes = end - cur;
4747     return TRUE;
4748   } else {
4749     return FALSE;
4750   }
4751 }
4752 
4753 void os::flockfile(FILE* fp) {
4754   _lock_file(fp);
4755 }
4756 
4757 void os::funlockfile(FILE* fp) {
4758   _unlock_file(fp);
4759 }
4760 
4761 // This code is a copy of JDK's nonSeekAvailable
4762 // from src/windows/hpi/src/sys_api_md.c
4763 
4764 static int nonSeekAvailable(int fd, long *pbytes) {
4765   // This is used for available on non-seekable devices
4766   // (like both named and anonymous pipes, such as pipes
4767   //  connected to an exec'd process).
4768   // Standard Input is a special case.
4769   HANDLE han;
4770 
4771   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4772     return FALSE;
4773   }
4774 
4775   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4776     // PeekNamedPipe fails when at EOF.  In that case we
4777     // simply make *pbytes = 0 which is consistent with the
4778     // behavior we get on Solaris when an fd is at EOF.
4779     // The only alternative is to raise an Exception,
4780     // which isn't really warranted.
4781     //
4782     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4783       return FALSE;
4784     }
4785     *pbytes = 0;
4786   }
4787   return TRUE;
4788 }
4789 
4790 #define MAX_INPUT_EVENTS 2000
4791 
4792 // This code is a copy of JDK's stdinAvailable
4793 // from src/windows/hpi/src/sys_api_md.c
4794 
4795 static int stdinAvailable(int fd, long *pbytes) {
4796   HANDLE han;
4797   DWORD numEventsRead = 0;  // Number of events read from buffer
4798   DWORD numEvents = 0;      // Number of events in buffer
4799   DWORD i = 0;              // Loop index
4800   DWORD curLength = 0;      // Position marker
4801   DWORD actualLength = 0;   // Number of bytes readable
4802   BOOL error = FALSE;       // Error holder
4803   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4804 
4805   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4806     return FALSE;
4807   }
4808 
4809   // Construct an array of input records in the console buffer
4810   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4811   if (error == 0) {
4812     return nonSeekAvailable(fd, pbytes);
4813   }
4814 
4815   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4816   if (numEvents > MAX_INPUT_EVENTS) {
4817     numEvents = MAX_INPUT_EVENTS;
4818   }
4819 
4820   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4821   if (lpBuffer == NULL) {
4822     return FALSE;
4823   }
4824 
4825   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4826   if (error == 0) {
4827     os::free(lpBuffer);
4828     return FALSE;
4829   }
4830 
4831   // Examine input records for the number of bytes available
4832   for (i=0; i<numEvents; i++) {
4833     if (lpBuffer[i].EventType == KEY_EVENT) {
4834 
4835       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4836                                       &(lpBuffer[i].Event);
4837       if (keyRecord->bKeyDown == TRUE) {
4838         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4839         curLength++;
4840         if (*keyPressed == '\r') {
4841           actualLength = curLength;
4842         }
4843       }
4844     }
4845   }
4846 
4847   if (lpBuffer != NULL) {
4848     os::free(lpBuffer);
4849   }
4850 
4851   *pbytes = (long) actualLength;
4852   return TRUE;
4853 }
4854 
4855 // Map a block of memory.
4856 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4857                         char *addr, size_t bytes, bool read_only,
4858                         bool allow_exec) {
4859   HANDLE hFile;
4860   char* base;
4861 
4862   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4863                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4864   if (hFile == NULL) {
4865     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4866     return NULL;
4867   }
4868 
4869   if (allow_exec) {
4870     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4871     // unless it comes from a PE image (which the shared archive is not.)
4872     // Even VirtualProtect refuses to give execute access to mapped memory
4873     // that was not previously executable.
4874     //
4875     // Instead, stick the executable region in anonymous memory.  Yuck.
4876     // Penalty is that ~4 pages will not be shareable - in the future
4877     // we might consider DLLizing the shared archive with a proper PE
4878     // header so that mapping executable + sharing is possible.
4879 
4880     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4881                                 PAGE_READWRITE);
4882     if (base == NULL) {
4883       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4884       CloseHandle(hFile);
4885       return NULL;
4886     }
4887 
4888     // Record virtual memory allocation
4889     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
4890 
4891     DWORD bytes_read;
4892     OVERLAPPED overlapped;
4893     overlapped.Offset = (DWORD)file_offset;
4894     overlapped.OffsetHigh = 0;
4895     overlapped.hEvent = NULL;
4896     // ReadFile guarantees that if the return value is true, the requested
4897     // number of bytes were read before returning.
4898     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4899     if (!res) {
4900       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
4901       release_memory(base, bytes);
4902       CloseHandle(hFile);
4903       return NULL;
4904     }
4905   } else {
4906     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4907                                     NULL /* file_name */);
4908     if (hMap == NULL) {
4909       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
4910       CloseHandle(hFile);
4911       return NULL;
4912     }
4913 
4914     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4915     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4916                                   (DWORD)bytes, addr);
4917     if (base == NULL) {
4918       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
4919       CloseHandle(hMap);
4920       CloseHandle(hFile);
4921       return NULL;
4922     }
4923 
4924     if (CloseHandle(hMap) == 0) {
4925       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
4926       CloseHandle(hFile);
4927       return base;
4928     }
4929   }
4930 
4931   if (allow_exec) {
4932     DWORD old_protect;
4933     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4934     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4935 
4936     if (!res) {
4937       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
4938       // Don't consider this a hard error, on IA32 even if the
4939       // VirtualProtect fails, we should still be able to execute
4940       CloseHandle(hFile);
4941       return base;
4942     }
4943   }
4944 
4945   if (CloseHandle(hFile) == 0) {
4946     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
4947     return base;
4948   }
4949 
4950   return base;
4951 }
4952 
4953 
4954 // Remap a block of memory.
4955 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4956                           char *addr, size_t bytes, bool read_only,
4957                           bool allow_exec) {
4958   // This OS does not allow existing memory maps to be remapped so we
4959   // would have to unmap the memory before we remap it.
4960 
4961   // Because there is a small window between unmapping memory and mapping
4962   // it in again with different protections, CDS archives are mapped RW
4963   // on windows, so this function isn't called.
4964   ShouldNotReachHere();
4965   return NULL;
4966 }
4967 
4968 
4969 // Unmap a block of memory.
4970 // Returns true=success, otherwise false.
4971 
4972 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4973   MEMORY_BASIC_INFORMATION mem_info;
4974   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4975     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
4976     return false;
4977   }
4978 
4979   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4980   // Instead, executable region was allocated using VirtualAlloc(). See
4981   // pd_map_memory() above.
4982   //
4983   // The following flags should match the 'exec_access' flages used for
4984   // VirtualProtect() in pd_map_memory().
4985   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4986       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4987     return pd_release_memory(addr, bytes);
4988   }
4989 
4990   BOOL result = UnmapViewOfFile(addr);
4991   if (result == 0) {
4992     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
4993     return false;
4994   }
4995   return true;
4996 }
4997 
4998 void os::pause() {
4999   char filename[MAX_PATH];
5000   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5001     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5002   } else {
5003     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5004   }
5005 
5006   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5007   if (fd != -1) {
5008     struct stat buf;
5009     ::close(fd);
5010     while (::stat(filename, &buf) == 0) {
5011       Sleep(100);
5012     }
5013   } else {
5014     jio_fprintf(stderr,
5015                 "Could not open pause file '%s', continuing immediately.\n", filename);
5016   }
5017 }
5018 
5019 Thread* os::ThreadCrashProtection::_protected_thread = NULL;
5020 os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
5021 volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
5022 
5023 os::ThreadCrashProtection::ThreadCrashProtection() {
5024 }
5025 
5026 // See the caveats for this class in os_windows.hpp
5027 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
5028 // into this method and returns false. If no OS EXCEPTION was raised, returns
5029 // true.
5030 // The callback is supposed to provide the method that should be protected.
5031 //
5032 bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
5033 
5034   Thread::muxAcquire(&_crash_mux, "CrashProtection");
5035 
5036   _protected_thread = Thread::current_or_null();
5037   assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
5038 
5039   bool success = true;
5040   __try {
5041     _crash_protection = this;
5042     cb.call();
5043   } __except(EXCEPTION_EXECUTE_HANDLER) {
5044     // only for protection, nothing to do
5045     success = false;
5046   }
5047   _crash_protection = NULL;
5048   _protected_thread = NULL;
5049   Thread::muxRelease(&_crash_mux);
5050   return success;
5051 }
5052 
5053 
5054 class HighResolutionInterval : public CHeapObj<mtThread> {
5055   // The default timer resolution seems to be 10 milliseconds.
5056   // (Where is this written down?)
5057   // If someone wants to sleep for only a fraction of the default,
5058   // then we set the timer resolution down to 1 millisecond for
5059   // the duration of their interval.
5060   // We carefully set the resolution back, since otherwise we
5061   // seem to incur an overhead (3%?) that we don't need.
5062   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
5063   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
5064   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
5065   // timeBeginPeriod() if the relative error exceeded some threshold.
5066   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
5067   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
5068   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
5069   // resolution timers running.
5070  private:
5071   jlong resolution;
5072  public:
5073   HighResolutionInterval(jlong ms) {
5074     resolution = ms % 10L;
5075     if (resolution != 0) {
5076       MMRESULT result = timeBeginPeriod(1L);
5077     }
5078   }
5079   ~HighResolutionInterval() {
5080     if (resolution != 0) {
5081       MMRESULT result = timeEndPeriod(1L);
5082     }
5083     resolution = 0L;
5084   }
5085 };
5086 
5087 // An Event wraps a win32 "CreateEvent" kernel handle.
5088 //
5089 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
5090 //
5091 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
5092 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
5093 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
5094 //     In addition, an unpark() operation might fetch the handle field, but the
5095 //     event could recycle between the fetch and the SetEvent() operation.
5096 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
5097 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
5098 //     on an stale but recycled handle would be harmless, but in practice this might
5099 //     confuse other non-Sun code, so it's not a viable approach.
5100 //
5101 // 2:  Once a win32 event handle is associated with an Event, it remains associated
5102 //     with the Event.  The event handle is never closed.  This could be construed
5103 //     as handle leakage, but only up to the maximum # of threads that have been extant
5104 //     at any one time.  This shouldn't be an issue, as windows platforms typically
5105 //     permit a process to have hundreds of thousands of open handles.
5106 //
5107 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
5108 //     and release unused handles.
5109 //
5110 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
5111 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
5112 //
5113 // 5.  Use an RCU-like mechanism (Read-Copy Update).
5114 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5115 //
5116 // We use (2).
5117 //
5118 // TODO-FIXME:
5119 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5120 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5121 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5122 // 3.  Collapse the JSR166 parker event, and the objectmonitor ParkEvent
5123 //     into a single win32 CreateEvent() handle.
5124 //
5125 // Assumption:
5126 //    Only one parker can exist on an event, which is why we allocate
5127 //    them per-thread. Multiple unparkers can coexist.
5128 //
5129 // _Event transitions in park()
5130 //   -1 => -1 : illegal
5131 //    1 =>  0 : pass - return immediately
5132 //    0 => -1 : block; then set _Event to 0 before returning
5133 //
5134 // _Event transitions in unpark()
5135 //    0 => 1 : just return
5136 //    1 => 1 : just return
5137 //   -1 => either 0 or 1; must signal target thread
5138 //         That is, we can safely transition _Event from -1 to either
5139 //         0 or 1.
5140 //
5141 // _Event serves as a restricted-range semaphore.
5142 //   -1 : thread is blocked, i.e. there is a waiter
5143 //    0 : neutral: thread is running or ready,
5144 //        could have been signaled after a wait started
5145 //    1 : signaled - thread is running or ready
5146 //
5147 // Another possible encoding of _Event would be with
5148 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5149 //
5150 
5151 int os::PlatformEvent::park(jlong Millis) {
5152   // Transitions for _Event:
5153   //   -1 => -1 : illegal
5154   //    1 =>  0 : pass - return immediately
5155   //    0 => -1 : block; then set _Event to 0 before returning
5156 
5157   guarantee(_ParkHandle != NULL , "Invariant");
5158   guarantee(Millis > 0          , "Invariant");
5159 
5160   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5161   // the initial park() operation.
5162   // Consider: use atomic decrement instead of CAS-loop
5163 
5164   int v;
5165   for (;;) {
5166     v = _Event;
5167     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5168   }
5169   guarantee((v == 0) || (v == 1), "invariant");
5170   if (v != 0) return OS_OK;
5171 
5172   // Do this the hard way by blocking ...
5173   // TODO: consider a brief spin here, gated on the success of recent
5174   // spin attempts by this thread.
5175   //
5176   // We decompose long timeouts into series of shorter timed waits.
5177   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5178   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5179   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5180   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5181   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5182   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5183   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5184   // for the already waited time.  This policy does not admit any new outcomes.
5185   // In the future, however, we might want to track the accumulated wait time and
5186   // adjust Millis accordingly if we encounter a spurious wakeup.
5187 
5188   const int MAXTIMEOUT = 0x10000000;
5189   DWORD rv = WAIT_TIMEOUT;
5190   while (_Event < 0 && Millis > 0) {
5191     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5192     if (Millis > MAXTIMEOUT) {
5193       prd = MAXTIMEOUT;
5194     }
5195     HighResolutionInterval *phri = NULL;
5196     if (!ForceTimeHighResolution) {
5197       phri = new HighResolutionInterval(prd);
5198     }
5199     rv = ::WaitForSingleObject(_ParkHandle, prd);
5200     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5201     if (rv == WAIT_TIMEOUT) {
5202       Millis -= prd;
5203     }
5204     delete phri; // if it is NULL, harmless
5205   }
5206   v = _Event;
5207   _Event = 0;
5208   // see comment at end of os::PlatformEvent::park() below:
5209   OrderAccess::fence();
5210   // If we encounter a nearly simultanous timeout expiry and unpark()
5211   // we return OS_OK indicating we awoke via unpark().
5212   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5213   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5214 }
5215 
5216 void os::PlatformEvent::park() {
5217   // Transitions for _Event:
5218   //   -1 => -1 : illegal
5219   //    1 =>  0 : pass - return immediately
5220   //    0 => -1 : block; then set _Event to 0 before returning
5221 
5222   guarantee(_ParkHandle != NULL, "Invariant");
5223   // Invariant: Only the thread associated with the Event/PlatformEvent
5224   // may call park().
5225   // Consider: use atomic decrement instead of CAS-loop
5226   int v;
5227   for (;;) {
5228     v = _Event;
5229     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5230   }
5231   guarantee((v == 0) || (v == 1), "invariant");
5232   if (v != 0) return;
5233 
5234   // Do this the hard way by blocking ...
5235   // TODO: consider a brief spin here, gated on the success of recent
5236   // spin attempts by this thread.
5237   while (_Event < 0) {
5238     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5239     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5240   }
5241 
5242   // Usually we'll find _Event == 0 at this point, but as
5243   // an optional optimization we clear it, just in case can
5244   // multiple unpark() operations drove _Event up to 1.
5245   _Event = 0;
5246   OrderAccess::fence();
5247   guarantee(_Event >= 0, "invariant");
5248 }
5249 
5250 void os::PlatformEvent::unpark() {
5251   guarantee(_ParkHandle != NULL, "Invariant");
5252 
5253   // Transitions for _Event:
5254   //    0 => 1 : just return
5255   //    1 => 1 : just return
5256   //   -1 => either 0 or 1; must signal target thread
5257   //         That is, we can safely transition _Event from -1 to either
5258   //         0 or 1.
5259   // See also: "Semaphores in Plan 9" by Mullender & Cox
5260   //
5261   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5262   // that it will take two back-to-back park() calls for the owning
5263   // thread to block. This has the benefit of forcing a spurious return
5264   // from the first park() call after an unpark() call which will help
5265   // shake out uses of park() and unpark() without condition variables.
5266 
5267   if (Atomic::xchg(1, &_Event) >= 0) return;
5268 
5269   ::SetEvent(_ParkHandle);
5270 }
5271 
5272 
5273 // JSR166
5274 // -------------------------------------------------------
5275 
5276 // The Windows implementation of Park is very straightforward: Basic
5277 // operations on Win32 Events turn out to have the right semantics to
5278 // use them directly. We opportunistically resuse the event inherited
5279 // from Monitor.
5280 
5281 void Parker::park(bool isAbsolute, jlong time) {
5282   guarantee(_ParkEvent != NULL, "invariant");
5283   // First, demultiplex/decode time arguments
5284   if (time < 0) { // don't wait
5285     return;
5286   } else if (time == 0 && !isAbsolute) {
5287     time = INFINITE;
5288   } else if (isAbsolute) {
5289     time -= os::javaTimeMillis(); // convert to relative time
5290     if (time <= 0) {  // already elapsed
5291       return;
5292     }
5293   } else { // relative
5294     time /= 1000000;  // Must coarsen from nanos to millis
5295     if (time == 0) {  // Wait for the minimal time unit if zero
5296       time = 1;
5297     }
5298   }
5299 
5300   JavaThread* thread = JavaThread::current();
5301 
5302   // Don't wait if interrupted or already triggered
5303   if (thread->is_interrupted(false) ||
5304       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5305     ResetEvent(_ParkEvent);
5306     return;
5307   } else {
5308     ThreadBlockInVM tbivm(thread);
5309     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5310     thread->set_suspend_equivalent();
5311 
5312     WaitForSingleObject(_ParkEvent, time);
5313     ResetEvent(_ParkEvent);
5314 
5315     // If externally suspended while waiting, re-suspend
5316     if (thread->handle_special_suspend_equivalent_condition()) {
5317       thread->java_suspend_self();
5318     }
5319   }
5320 }
5321 
5322 void Parker::unpark() {
5323   guarantee(_ParkEvent != NULL, "invariant");
5324   SetEvent(_ParkEvent);
5325 }
5326 
5327 // Platform Monitor implementation
5328 
5329 // Must already be locked
5330 int os::PlatformMonitor::wait(jlong millis) {
5331   assert(millis >= 0, "negative timeout");
5332   int ret = OS_TIMEOUT;
5333   int status = SleepConditionVariableCS(&_cond, &_mutex,
5334                                         millis == 0 ? INFINITE : millis);
5335   if (status != 0) {
5336     ret = OS_OK;
5337   }
5338   #ifndef PRODUCT
5339   else {
5340     DWORD err = GetLastError();
5341     assert(err == ERROR_TIMEOUT, "SleepConditionVariableCS: %ld:", err);
5342   }
5343   #endif
5344   return ret;
5345 }
5346 
5347 // Run the specified command in a separate process. Return its exit value,
5348 // or -1 on failure (e.g. can't create a new process).
5349 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5350   STARTUPINFO si;
5351   PROCESS_INFORMATION pi;
5352   DWORD exit_code;
5353 
5354   char * cmd_string;
5355   const char * cmd_prefix = "cmd /C ";
5356   size_t len = strlen(cmd) + strlen(cmd_prefix) + 1;
5357   cmd_string = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtInternal);
5358   if (cmd_string == NULL) {
5359     return -1;
5360   }
5361   cmd_string[0] = '\0';
5362   strcat(cmd_string, cmd_prefix);
5363   strcat(cmd_string, cmd);
5364 
5365   // now replace all '\n' with '&'
5366   char * substring = cmd_string;
5367   while ((substring = strchr(substring, '\n')) != NULL) {
5368     substring[0] = '&';
5369     substring++;
5370   }
5371   memset(&si, 0, sizeof(si));
5372   si.cb = sizeof(si);
5373   memset(&pi, 0, sizeof(pi));
5374   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5375                             cmd_string,    // command line
5376                             NULL,   // process security attribute
5377                             NULL,   // thread security attribute
5378                             TRUE,   // inherits system handles
5379                             0,      // no creation flags
5380                             NULL,   // use parent's environment block
5381                             NULL,   // use parent's starting directory
5382                             &si,    // (in) startup information
5383                             &pi);   // (out) process information
5384 
5385   if (rslt) {
5386     // Wait until child process exits.
5387     WaitForSingleObject(pi.hProcess, INFINITE);
5388 
5389     GetExitCodeProcess(pi.hProcess, &exit_code);
5390 
5391     // Close process and thread handles.
5392     CloseHandle(pi.hProcess);
5393     CloseHandle(pi.hThread);
5394   } else {
5395     exit_code = -1;
5396   }
5397 
5398   FREE_C_HEAP_ARRAY(char, cmd_string);
5399   return (int)exit_code;
5400 }
5401 
5402 bool os::find(address addr, outputStream* st) {
5403   int offset = -1;
5404   bool result = false;
5405   char buf[256];
5406   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5407     st->print(PTR_FORMAT " ", addr);
5408     if (strlen(buf) < sizeof(buf) - 1) {
5409       char* p = strrchr(buf, '\\');
5410       if (p) {
5411         st->print("%s", p + 1);
5412       } else {
5413         st->print("%s", buf);
5414       }
5415     } else {
5416         // The library name is probably truncated. Let's omit the library name.
5417         // See also JDK-8147512.
5418     }
5419     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5420       st->print("::%s + 0x%x", buf, offset);
5421     }
5422     st->cr();
5423     result = true;
5424   }
5425   return result;
5426 }
5427 
5428 static jint initSock() {
5429   WSADATA wsadata;
5430 
5431   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5432     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5433                 ::GetLastError());
5434     return JNI_ERR;
5435   }
5436   return JNI_OK;
5437 }
5438 
5439 struct hostent* os::get_host_by_name(char* name) {
5440   return (struct hostent*)gethostbyname(name);
5441 }
5442 
5443 int os::socket_close(int fd) {
5444   return ::closesocket(fd);
5445 }
5446 
5447 int os::socket(int domain, int type, int protocol) {
5448   return ::socket(domain, type, protocol);
5449 }
5450 
5451 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5452   return ::connect(fd, him, len);
5453 }
5454 
5455 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5456   return ::recv(fd, buf, (int)nBytes, flags);
5457 }
5458 
5459 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5460   return ::send(fd, buf, (int)nBytes, flags);
5461 }
5462 
5463 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5464   return ::send(fd, buf, (int)nBytes, flags);
5465 }
5466 
5467 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5468 #if defined(IA32)
5469   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5470 #elif defined (AMD64)
5471   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5472 #endif
5473 
5474 // returns true if thread could be suspended,
5475 // false otherwise
5476 static bool do_suspend(HANDLE* h) {
5477   if (h != NULL) {
5478     if (SuspendThread(*h) != ~0) {
5479       return true;
5480     }
5481   }
5482   return false;
5483 }
5484 
5485 // resume the thread
5486 // calling resume on an active thread is a no-op
5487 static void do_resume(HANDLE* h) {
5488   if (h != NULL) {
5489     ResumeThread(*h);
5490   }
5491 }
5492 
5493 // retrieve a suspend/resume context capable handle
5494 // from the tid. Caller validates handle return value.
5495 void get_thread_handle_for_extended_context(HANDLE* h,
5496                                             OSThread::thread_id_t tid) {
5497   if (h != NULL) {
5498     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5499   }
5500 }
5501 
5502 // Thread sampling implementation
5503 //
5504 void os::SuspendedThreadTask::internal_do_task() {
5505   CONTEXT    ctxt;
5506   HANDLE     h = NULL;
5507 
5508   // get context capable handle for thread
5509   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5510 
5511   // sanity
5512   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5513     return;
5514   }
5515 
5516   // suspend the thread
5517   if (do_suspend(&h)) {
5518     ctxt.ContextFlags = sampling_context_flags;
5519     // get thread context
5520     GetThreadContext(h, &ctxt);
5521     SuspendedThreadTaskContext context(_thread, &ctxt);
5522     // pass context to Thread Sampling impl
5523     do_task(context);
5524     // resume thread
5525     do_resume(&h);
5526   }
5527 
5528   // close handle
5529   CloseHandle(h);
5530 }
5531 
5532 bool os::start_debugging(char *buf, int buflen) {
5533   int len = (int)strlen(buf);
5534   char *p = &buf[len];
5535 
5536   jio_snprintf(p, buflen-len,
5537              "\n\n"
5538              "Do you want to debug the problem?\n\n"
5539              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5540              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5541              "Otherwise, select 'No' to abort...",
5542              os::current_process_id(), os::current_thread_id());
5543 
5544   bool yes = os::message_box("Unexpected Error", buf);
5545 
5546   if (yes) {
5547     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5548     // exception. If VM is running inside a debugger, the debugger will
5549     // catch the exception. Otherwise, the breakpoint exception will reach
5550     // the default windows exception handler, which can spawn a debugger and
5551     // automatically attach to the dying VM.
5552     os::breakpoint();
5553     yes = false;
5554   }
5555   return yes;
5556 }
5557 
5558 void* os::get_default_process_handle() {
5559   return (void*)GetModuleHandle(NULL);
5560 }
5561 
5562 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5563 // which is used to find statically linked in agents.
5564 // Additionally for windows, takes into account __stdcall names.
5565 // Parameters:
5566 //            sym_name: Symbol in library we are looking for
5567 //            lib_name: Name of library to look in, NULL for shared libs.
5568 //            is_absolute_path == true if lib_name is absolute path to agent
5569 //                                     such as "C:/a/b/L.dll"
5570 //            == false if only the base name of the library is passed in
5571 //               such as "L"
5572 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5573                                     bool is_absolute_path) {
5574   char *agent_entry_name;
5575   size_t len;
5576   size_t name_len;
5577   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5578   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5579   const char *start;
5580 
5581   if (lib_name != NULL) {
5582     len = name_len = strlen(lib_name);
5583     if (is_absolute_path) {
5584       // Need to strip path, prefix and suffix
5585       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5586         lib_name = ++start;
5587       } else {
5588         // Need to check for drive prefix
5589         if ((start = strchr(lib_name, ':')) != NULL) {
5590           lib_name = ++start;
5591         }
5592       }
5593       if (len <= (prefix_len + suffix_len)) {
5594         return NULL;
5595       }
5596       lib_name += prefix_len;
5597       name_len = strlen(lib_name) - suffix_len;
5598     }
5599   }
5600   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5601   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5602   if (agent_entry_name == NULL) {
5603     return NULL;
5604   }
5605   if (lib_name != NULL) {
5606     const char *p = strrchr(sym_name, '@');
5607     if (p != NULL && p != sym_name) {
5608       // sym_name == _Agent_OnLoad@XX
5609       strncpy(agent_entry_name, sym_name, (p - sym_name));
5610       agent_entry_name[(p-sym_name)] = '\0';
5611       // agent_entry_name == _Agent_OnLoad
5612       strcat(agent_entry_name, "_");
5613       strncat(agent_entry_name, lib_name, name_len);
5614       strcat(agent_entry_name, p);
5615       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5616     } else {
5617       strcpy(agent_entry_name, sym_name);
5618       strcat(agent_entry_name, "_");
5619       strncat(agent_entry_name, lib_name, name_len);
5620     }
5621   } else {
5622     strcpy(agent_entry_name, sym_name);
5623   }
5624   return agent_entry_name;
5625 }
5626 
5627 #ifndef PRODUCT
5628 
5629 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5630 // contiguous memory block at a particular address.
5631 // The test first tries to find a good approximate address to allocate at by using the same
5632 // method to allocate some memory at any address. The test then tries to allocate memory in
5633 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5634 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5635 // the previously allocated memory is available for allocation. The only actual failure
5636 // that is reported is when the test tries to allocate at a particular location but gets a
5637 // different valid one. A NULL return value at this point is not considered an error but may
5638 // be legitimate.
5639 void TestReserveMemorySpecial_test() {
5640   if (!UseLargePages) {
5641     return;
5642   }
5643   // save current value of globals
5644   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5645   bool old_use_numa_interleaving = UseNUMAInterleaving;
5646 
5647   // set globals to make sure we hit the correct code path
5648   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5649 
5650   // do an allocation at an address selected by the OS to get a good one.
5651   const size_t large_allocation_size = os::large_page_size() * 4;
5652   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5653   if (result == NULL) {
5654   } else {
5655     os::release_memory_special(result, large_allocation_size);
5656 
5657     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5658     // we managed to get it once.
5659     const size_t expected_allocation_size = os::large_page_size();
5660     char* expected_location = result + os::large_page_size();
5661     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5662     if (actual_location == NULL) {
5663     } else {
5664       // release memory
5665       os::release_memory_special(actual_location, expected_allocation_size);
5666       // only now check, after releasing any memory to avoid any leaks.
5667       assert(actual_location == expected_location,
5668              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5669              expected_location, expected_allocation_size, actual_location);
5670     }
5671   }
5672 
5673   // restore globals
5674   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5675   UseNUMAInterleaving = old_use_numa_interleaving;
5676 }
5677 #endif // PRODUCT
5678 
5679 /*
5680   All the defined signal names for Windows.
5681 
5682   NOTE that not all of these names are accepted by FindSignal!
5683 
5684   For various reasons some of these may be rejected at runtime.
5685 
5686   Here are the names currently accepted by a user of sun.misc.Signal with
5687   1.4.1 (ignoring potential interaction with use of chaining, etc):
5688 
5689      (LIST TBD)
5690 
5691 */
5692 int os::get_signal_number(const char* name) {
5693   static const struct {
5694     const char* name;
5695     int         number;
5696   } siglabels [] =
5697     // derived from version 6.0 VC98/include/signal.h
5698   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5699   "FPE",        SIGFPE,         // floating point exception
5700   "SEGV",       SIGSEGV,        // segment violation
5701   "INT",        SIGINT,         // interrupt
5702   "TERM",       SIGTERM,        // software term signal from kill
5703   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5704   "ILL",        SIGILL};        // illegal instruction
5705   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5706     if (strcmp(name, siglabels[i].name) == 0) {
5707       return siglabels[i].number;
5708     }
5709   }
5710   return -1;
5711 }
5712 
5713 // Fast current thread access
5714 
5715 int os::win32::_thread_ptr_offset = 0;
5716 
5717 static void call_wrapper_dummy() {}
5718 
5719 // We need to call the os_exception_wrapper once so that it sets
5720 // up the offset from FS of the thread pointer.
5721 void os::win32::initialize_thread_ptr_offset() {
5722   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5723                            NULL, NULL, NULL, NULL);
5724 }
5725 
5726 bool os::supports_map_sync() {
5727   return false;
5728 }