1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "utilities/bitMap.inline.hpp"
  28 #include "utilities/copy.hpp"
  29 #ifdef TARGET_OS_FAMILY_linux
  30 # include "os_linux.inline.hpp"
  31 #endif
  32 #ifdef TARGET_OS_FAMILY_solaris
  33 # include "os_solaris.inline.hpp"
  34 #endif
  35 #ifdef TARGET_OS_FAMILY_windows
  36 # include "os_windows.inline.hpp"
  37 #endif
  38 #ifdef TARGET_OS_FAMILY_aix
  39 # include "os_aix.inline.hpp"
  40 #endif
  41 #ifdef TARGET_OS_FAMILY_bsd
  42 # include "os_bsd.inline.hpp"
  43 #endif
  44 
  45 
  46 BitMap::BitMap(bm_word_t* map, idx_t size_in_bits) :
  47   _map(map), _size(size_in_bits), _map_allocator(false)
  48 {
  49   assert(sizeof(bm_word_t) == BytesPerWord, "Implementation assumption.");
  50   assert(size_in_bits >= 0, "just checking");
  51 }
  52 
  53 
  54 BitMap::BitMap(idx_t size_in_bits, bool in_resource_area) :
  55   _map(NULL), _size(0), _map_allocator(false)
  56 {
  57   assert(sizeof(bm_word_t) == BytesPerWord, "Implementation assumption.");
  58   resize(size_in_bits, in_resource_area);
  59 }
  60 
  61 void BitMap::resize(idx_t size_in_bits, bool in_resource_area) {
  62   assert(size_in_bits >= 0, "just checking");
  63   idx_t old_size_in_words = size_in_words();
  64   bm_word_t* old_map = map();
  65 
  66   _size = size_in_bits;
  67   idx_t new_size_in_words = size_in_words();
  68   if (in_resource_area) {
  69     _map = NEW_RESOURCE_ARRAY(bm_word_t, new_size_in_words);
  70   } else {
  71     if (old_map != NULL) {
  72       _map_allocator.free();
  73     }
  74     _map = _map_allocator.allocate(new_size_in_words);
  75   }
  76   Copy::disjoint_words((HeapWord*)old_map, (HeapWord*) _map,
  77                        MIN2(old_size_in_words, new_size_in_words));
  78   if (new_size_in_words > old_size_in_words) {
  79     clear_range_of_words(old_size_in_words, size_in_words());
  80   }
  81 }
  82 
  83 void BitMap::set_range_within_word(idx_t beg, idx_t end) {
  84   // With a valid range (beg <= end), this test ensures that end != 0, as
  85   // required by inverted_bit_mask_for_range.  Also avoids an unnecessary write.
  86   if (beg != end) {
  87     bm_word_t mask = inverted_bit_mask_for_range(beg, end);
  88     *word_addr(beg) |= ~mask;
  89   }
  90 }
  91 
  92 void BitMap::clear_range_within_word(idx_t beg, idx_t end) {
  93   // With a valid range (beg <= end), this test ensures that end != 0, as
  94   // required by inverted_bit_mask_for_range.  Also avoids an unnecessary write.
  95   if (beg != end) {
  96     bm_word_t mask = inverted_bit_mask_for_range(beg, end);
  97     *word_addr(beg) &= mask;
  98   }
  99 }
 100 
 101 void BitMap::par_put_range_within_word(idx_t beg, idx_t end, bool value) {
 102   assert(value == 0 || value == 1, "0 for clear, 1 for set");
 103   // With a valid range (beg <= end), this test ensures that end != 0, as
 104   // required by inverted_bit_mask_for_range.  Also avoids an unnecessary write.
 105   if (beg != end) {
 106     intptr_t* pw  = (intptr_t*)word_addr(beg);
 107     intptr_t  w   = *pw;
 108     intptr_t  mr  = (intptr_t)inverted_bit_mask_for_range(beg, end);
 109     intptr_t  nw  = value ? (w | ~mr) : (w & mr);
 110     while (true) {
 111       intptr_t res = Atomic::cmpxchg_ptr(nw, pw, w);
 112       if (res == w) break;
 113       w  = res;
 114       nw = value ? (w | ~mr) : (w & mr);
 115     }
 116   }
 117 }
 118 
 119 void BitMap::set_range(idx_t beg, idx_t end) {
 120   verify_range(beg, end);
 121 
 122   idx_t beg_full_word = word_index_round_up(beg);
 123   idx_t end_full_word = word_index(end);
 124 
 125   if (beg_full_word < end_full_word) {
 126     // The range includes at least one full word.
 127     set_range_within_word(beg, bit_index(beg_full_word));
 128     set_range_of_words(beg_full_word, end_full_word);
 129     set_range_within_word(bit_index(end_full_word), end);
 130   } else {
 131     // The range spans at most 2 partial words.
 132     idx_t boundary = MIN2(bit_index(beg_full_word), end);
 133     set_range_within_word(beg, boundary);
 134     set_range_within_word(boundary, end);
 135   }
 136 }
 137 
 138 void BitMap::clear_range(idx_t beg, idx_t end) {
 139   verify_range(beg, end);
 140 
 141   idx_t beg_full_word = word_index_round_up(beg);
 142   idx_t end_full_word = word_index(end);
 143 
 144   if (beg_full_word < end_full_word) {
 145     // The range includes at least one full word.
 146     clear_range_within_word(beg, bit_index(beg_full_word));
 147     clear_range_of_words(beg_full_word, end_full_word);
 148     clear_range_within_word(bit_index(end_full_word), end);
 149   } else {
 150     // The range spans at most 2 partial words.
 151     idx_t boundary = MIN2(bit_index(beg_full_word), end);
 152     clear_range_within_word(beg, boundary);
 153     clear_range_within_word(boundary, end);
 154   }
 155 }
 156 
 157 bool BitMap::is_small_range_of_words(idx_t beg_full_word, idx_t end_full_word) {
 158   // There is little point to call large version on small ranges.
 159   // Need to check carefully, keeping potential idx_t underflow in mind.
 160   // The threshold should be at least one word.
 161   STATIC_ASSERT(small_range_words >= 1);
 162   return (beg_full_word + small_range_words >= end_full_word);
 163 }
 164 
 165 void BitMap::set_large_range(idx_t beg, idx_t end) {
 166   verify_range(beg, end);
 167 
 168   idx_t beg_full_word = word_index_round_up(beg);
 169   idx_t end_full_word = word_index(end);
 170 
 171   if (is_small_range_of_words(beg_full_word, end_full_word)) {
 172     set_range(beg, end);
 173     return;
 174   }
 175 
 176   // The range includes at least one full word.
 177   set_range_within_word(beg, bit_index(beg_full_word));
 178   set_large_range_of_words(beg_full_word, end_full_word);
 179   set_range_within_word(bit_index(end_full_word), end);
 180 }
 181 
 182 void BitMap::clear_large_range(idx_t beg, idx_t end) {
 183   verify_range(beg, end);
 184 
 185   idx_t beg_full_word = word_index_round_up(beg);
 186   idx_t end_full_word = word_index(end);
 187 
 188   if (is_small_range_of_words(beg_full_word, end_full_word)) {
 189     clear_range(beg, end);
 190     return;
 191   }
 192 
 193   // The range includes at least one full word.
 194   clear_range_within_word(beg, bit_index(beg_full_word));
 195   clear_large_range_of_words(beg_full_word, end_full_word);
 196   clear_range_within_word(bit_index(end_full_word), end);
 197 }
 198 
 199 void BitMap::at_put(idx_t offset, bool value) {
 200   if (value) {
 201     set_bit(offset);
 202   } else {
 203     clear_bit(offset);
 204   }
 205 }
 206 
 207 // Return true to indicate that this thread changed
 208 // the bit, false to indicate that someone else did.
 209 // In either case, the requested bit is in the
 210 // requested state some time during the period that
 211 // this thread is executing this call. More importantly,
 212 // if no other thread is executing an action to
 213 // change the requested bit to a state other than
 214 // the one that this thread is trying to set it to,
 215 // then the the bit is in the expected state
 216 // at exit from this method. However, rather than
 217 // make such a strong assertion here, based on
 218 // assuming such constrained use (which though true
 219 // today, could change in the future to service some
 220 // funky parallel algorithm), we encourage callers
 221 // to do such verification, as and when appropriate.
 222 bool BitMap::par_at_put(idx_t bit, bool value) {
 223   return value ? par_set_bit(bit) : par_clear_bit(bit);
 224 }
 225 
 226 void BitMap::at_put_grow(idx_t offset, bool value) {
 227   if (offset >= size()) {
 228     resize(2 * MAX2(size(), offset));
 229   }
 230   at_put(offset, value);
 231 }
 232 
 233 void BitMap::at_put_range(idx_t start_offset, idx_t end_offset, bool value) {
 234   if (value) {
 235     set_range(start_offset, end_offset);
 236   } else {
 237     clear_range(start_offset, end_offset);
 238   }
 239 }
 240 
 241 void BitMap::par_at_put_range(idx_t beg, idx_t end, bool value) {
 242   verify_range(beg, end);
 243 
 244   idx_t beg_full_word = word_index_round_up(beg);
 245   idx_t end_full_word = word_index(end);
 246 
 247   if (beg_full_word < end_full_word) {
 248     // The range includes at least one full word.
 249     par_put_range_within_word(beg, bit_index(beg_full_word), value);
 250     if (value) {
 251       set_range_of_words(beg_full_word, end_full_word);
 252     } else {
 253       clear_range_of_words(beg_full_word, end_full_word);
 254     }
 255     par_put_range_within_word(bit_index(end_full_word), end, value);
 256   } else {
 257     // The range spans at most 2 partial words.
 258     idx_t boundary = MIN2(bit_index(beg_full_word), end);
 259     par_put_range_within_word(beg, boundary, value);
 260     par_put_range_within_word(boundary, end, value);
 261   }
 262 
 263 }
 264 
 265 void BitMap::at_put_large_range(idx_t beg, idx_t end, bool value) {
 266   if (value) {
 267     set_large_range(beg, end);
 268   } else {
 269     clear_large_range(beg, end);
 270   }
 271 }
 272 
 273 void BitMap::par_at_put_large_range(idx_t beg, idx_t end, bool value) {
 274   verify_range(beg, end);
 275 
 276   idx_t beg_full_word = word_index_round_up(beg);
 277   idx_t end_full_word = word_index(end);
 278 
 279   if (is_small_range_of_words(beg_full_word, end_full_word)) {
 280     par_at_put_range(beg, end, value);
 281     return;
 282   }
 283 
 284   // The range includes at least one full word.
 285   par_put_range_within_word(beg, bit_index(beg_full_word), value);
 286   if (value) {
 287     set_large_range_of_words(beg_full_word, end_full_word);
 288   } else {
 289     clear_large_range_of_words(beg_full_word, end_full_word);
 290   }
 291   par_put_range_within_word(bit_index(end_full_word), end, value);
 292 }
 293 
 294 bool BitMap::contains(const BitMap other) const {
 295   assert(size() == other.size(), "must have same size");
 296   bm_word_t* dest_map = map();
 297   bm_word_t* other_map = other.map();
 298   idx_t size = size_in_words();
 299   for (idx_t index = 0; index < size_in_words(); index++) {
 300     bm_word_t word_union = dest_map[index] | other_map[index];
 301     // If this has more bits set than dest_map[index], then other is not a
 302     // subset.
 303     if (word_union != dest_map[index]) return false;
 304   }
 305   return true;
 306 }
 307 
 308 bool BitMap::intersects(const BitMap other) const {
 309   assert(size() == other.size(), "must have same size");
 310   bm_word_t* dest_map = map();
 311   bm_word_t* other_map = other.map();
 312   idx_t size = size_in_words();
 313   for (idx_t index = 0; index < size_in_words(); index++) {
 314     if ((dest_map[index] & other_map[index]) != 0) return true;
 315   }
 316   // Otherwise, no intersection.
 317   return false;
 318 }
 319 
 320 void BitMap::set_union(BitMap other) {
 321   assert(size() == other.size(), "must have same size");
 322   bm_word_t* dest_map = map();
 323   bm_word_t* other_map = other.map();
 324   idx_t size = size_in_words();
 325   for (idx_t index = 0; index < size_in_words(); index++) {
 326     dest_map[index] = dest_map[index] | other_map[index];
 327   }
 328 }
 329 
 330 
 331 void BitMap::set_difference(BitMap other) {
 332   assert(size() == other.size(), "must have same size");
 333   bm_word_t* dest_map = map();
 334   bm_word_t* other_map = other.map();
 335   idx_t size = size_in_words();
 336   for (idx_t index = 0; index < size_in_words(); index++) {
 337     dest_map[index] = dest_map[index] & ~(other_map[index]);
 338   }
 339 }
 340 
 341 
 342 void BitMap::set_intersection(BitMap other) {
 343   assert(size() == other.size(), "must have same size");
 344   bm_word_t* dest_map = map();
 345   bm_word_t* other_map = other.map();
 346   idx_t size = size_in_words();
 347   for (idx_t index = 0; index < size; index++) {
 348     dest_map[index]  = dest_map[index] & other_map[index];
 349   }
 350 }
 351 
 352 
 353 void BitMap::set_intersection_at_offset(BitMap other, idx_t offset) {
 354   assert(other.size() >= offset, "offset not in range");
 355   assert(other.size() - offset >= size(), "other not large enough");
 356   // XXX Ideally, we would remove this restriction.
 357   guarantee((offset % (sizeof(bm_word_t) * BitsPerByte)) == 0,
 358             "Only handle aligned cases so far.");
 359   bm_word_t* dest_map = map();
 360   bm_word_t* other_map = other.map();
 361   idx_t offset_word_ind = word_index(offset);
 362   idx_t size = size_in_words();
 363   for (idx_t index = 0; index < size; index++) {
 364     dest_map[index] = dest_map[index] & other_map[offset_word_ind + index];
 365   }
 366 }
 367 
 368 bool BitMap::set_union_with_result(BitMap other) {
 369   assert(size() == other.size(), "must have same size");
 370   bool changed = false;
 371   bm_word_t* dest_map = map();
 372   bm_word_t* other_map = other.map();
 373   idx_t size = size_in_words();
 374   for (idx_t index = 0; index < size; index++) {
 375     idx_t temp = map(index) | other_map[index];
 376     changed = changed || (temp != map(index));
 377     map()[index] = temp;
 378   }
 379   return changed;
 380 }
 381 
 382 
 383 bool BitMap::set_difference_with_result(BitMap other) {
 384   assert(size() == other.size(), "must have same size");
 385   bool changed = false;
 386   bm_word_t* dest_map = map();
 387   bm_word_t* other_map = other.map();
 388   idx_t size = size_in_words();
 389   for (idx_t index = 0; index < size; index++) {
 390     bm_word_t temp = dest_map[index] & ~(other_map[index]);
 391     changed = changed || (temp != dest_map[index]);
 392     dest_map[index] = temp;
 393   }
 394   return changed;
 395 }
 396 
 397 
 398 bool BitMap::set_intersection_with_result(BitMap other) {
 399   assert(size() == other.size(), "must have same size");
 400   bool changed = false;
 401   bm_word_t* dest_map = map();
 402   bm_word_t* other_map = other.map();
 403   idx_t size = size_in_words();
 404   for (idx_t index = 0; index < size; index++) {
 405     bm_word_t orig = dest_map[index];
 406     bm_word_t temp = orig & other_map[index];
 407     changed = changed || (temp != orig);
 408     dest_map[index]  = temp;
 409   }
 410   return changed;
 411 }
 412 
 413 
 414 void BitMap::set_from(BitMap other) {
 415   assert(size() == other.size(), "must have same size");
 416   bm_word_t* dest_map = map();
 417   bm_word_t* other_map = other.map();
 418   idx_t size = size_in_words();
 419   for (idx_t index = 0; index < size; index++) {
 420     dest_map[index] = other_map[index];
 421   }
 422 }
 423 
 424 
 425 bool BitMap::is_same(BitMap other) {
 426   assert(size() == other.size(), "must have same size");
 427   bm_word_t* dest_map = map();
 428   bm_word_t* other_map = other.map();
 429   idx_t size = size_in_words();
 430   for (idx_t index = 0; index < size; index++) {
 431     if (dest_map[index] != other_map[index]) return false;
 432   }
 433   return true;
 434 }
 435 
 436 bool BitMap::is_full() const {
 437   bm_word_t* word = map();
 438   idx_t rest = size();
 439   for (; rest >= (idx_t) BitsPerWord; rest -= BitsPerWord) {
 440     if (*word != (bm_word_t) AllBits) return false;
 441     word++;
 442   }
 443   return rest == 0 || (*word | ~right_n_bits((int)rest)) == (bm_word_t) AllBits;
 444 }
 445 
 446 
 447 bool BitMap::is_empty() const {
 448   bm_word_t* word = map();
 449   idx_t rest = size();
 450   for (; rest >= (idx_t) BitsPerWord; rest -= BitsPerWord) {
 451     if (*word != (bm_word_t) NoBits) return false;
 452     word++;
 453   }
 454   return rest == 0 || (*word & right_n_bits((int)rest)) == (bm_word_t) NoBits;
 455 }
 456 
 457 void BitMap::clear_large() {
 458   clear_large_range_of_words(0, size_in_words());
 459 }
 460 
 461 // Note that if the closure itself modifies the bitmap
 462 // then modifications in and to the left of the _bit_ being
 463 // currently sampled will not be seen. Note also that the
 464 // interval [leftOffset, rightOffset) is right open.
 465 bool BitMap::iterate(BitMapClosure* blk, idx_t leftOffset, idx_t rightOffset) {
 466   verify_range(leftOffset, rightOffset);
 467 
 468   idx_t startIndex = word_index(leftOffset);
 469   idx_t endIndex   = MIN2(word_index(rightOffset) + 1, size_in_words());
 470   for (idx_t index = startIndex, offset = leftOffset;
 471        offset < rightOffset && index < endIndex;
 472        offset = (++index) << LogBitsPerWord) {
 473     idx_t rest = map(index) >> (offset & (BitsPerWord - 1));
 474     for (; offset < rightOffset && rest != (bm_word_t)NoBits; offset++) {
 475       if (rest & 1) {
 476         if (!blk->do_bit(offset)) return false;
 477         //  resample at each closure application
 478         // (see, for instance, CMS bug 4525989)
 479         rest = map(index) >> (offset & (BitsPerWord -1));
 480       }
 481       rest = rest >> 1;
 482     }
 483   }
 484   return true;
 485 }
 486 
 487 BitMap::idx_t* BitMap::_pop_count_table = NULL;
 488 
 489 void BitMap::init_pop_count_table() {
 490   if (_pop_count_table == NULL) {
 491     BitMap::idx_t *table = NEW_C_HEAP_ARRAY(idx_t, 256, mtInternal);
 492     for (uint i = 0; i < 256; i++) {
 493       table[i] = num_set_bits(i);
 494     }
 495 
 496     intptr_t res = Atomic::cmpxchg_ptr((intptr_t)  table,
 497                                        (intptr_t*) &_pop_count_table,
 498                                        (intptr_t)  NULL_WORD);
 499     if (res != NULL_WORD) {
 500       guarantee( _pop_count_table == (void*) res, "invariant" );
 501       FREE_C_HEAP_ARRAY(bm_word_t, table, mtInternal);
 502     }
 503   }
 504 }
 505 
 506 BitMap::idx_t BitMap::num_set_bits(bm_word_t w) {
 507   idx_t bits = 0;
 508 
 509   while (w != 0) {
 510     while ((w & 1) == 0) {
 511       w >>= 1;
 512     }
 513     bits++;
 514     w >>= 1;
 515   }
 516   return bits;
 517 }
 518 
 519 BitMap::idx_t BitMap::num_set_bits_from_table(unsigned char c) {
 520   assert(_pop_count_table != NULL, "precondition");
 521   return _pop_count_table[c];
 522 }
 523 
 524 BitMap::idx_t BitMap::count_one_bits() const {
 525   init_pop_count_table(); // If necessary.
 526   idx_t sum = 0;
 527   typedef unsigned char uchar;
 528   for (idx_t i = 0; i < size_in_words(); i++) {
 529     bm_word_t w = map()[i];
 530     for (size_t j = 0; j < sizeof(bm_word_t); j++) {
 531       sum += num_set_bits_from_table(uchar(w & 255));
 532       w >>= 8;
 533     }
 534   }
 535   return sum;
 536 }
 537 
 538 void BitMap::print_on_error(outputStream* st, const char* prefix) const {
 539   st->print_cr("%s[" PTR_FORMAT ", " PTR_FORMAT ")",
 540       prefix, p2i(map()), p2i((char*)map() + (size() >> LogBitsPerByte)));
 541 }
 542 
 543 #ifndef PRODUCT
 544 
 545 void BitMap::print_on(outputStream* st) const {
 546   tty->print("Bitmap(" SIZE_FORMAT "):", size());
 547   for (idx_t index = 0; index < size(); index++) {
 548     tty->print("%c", at(index) ? '1' : '0');
 549   }
 550   tty->cr();
 551 }
 552 
 553 #endif
 554 
 555 
 556 BitMap2D::BitMap2D(bm_word_t* map, idx_t size_in_slots, idx_t bits_per_slot)
 557   : _bits_per_slot(bits_per_slot)
 558   , _map(map, size_in_slots * bits_per_slot)
 559 {
 560 }
 561 
 562 
 563 BitMap2D::BitMap2D(idx_t size_in_slots, idx_t bits_per_slot)
 564   : _bits_per_slot(bits_per_slot)
 565   , _map(size_in_slots * bits_per_slot)
 566 {
 567 }