1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2012, 2014 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 
  27 #include "precompiled.hpp"
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "interp_masm_ppc_64.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "prims/jvmtiThreadState.hpp"
  32 
  33 #ifdef PRODUCT
  34 #define BLOCK_COMMENT(str) // nothing
  35 #else
  36 #define BLOCK_COMMENT(str) block_comment(str)
  37 #endif
  38 
  39 void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) {
  40 #ifdef CC_INTERP
  41   address exception_entry = StubRoutines::throw_NullPointerException_at_call_entry();
  42 #else
  43   address exception_entry = Interpreter::throw_NullPointerException_entry();
  44 #endif
  45   MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry);
  46 }
  47 
  48 void InterpreterMacroAssembler::branch_to_entry(address entry, Register Rscratch) {
  49   assert(entry, "Entry must have been generated by now");
  50   if (is_within_range_of_b(entry, pc())) {
  51     b(entry);
  52   } else {
  53     load_const_optimized(Rscratch, entry, R0);
  54     mtctr(Rscratch);
  55     bctr();
  56   }
  57 }
  58 
  59 #ifndef CC_INTERP
  60 
  61 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
  62   Register bytecode = R12_scratch2;
  63   if (bcp_incr != 0) {
  64     lbzu(bytecode, bcp_incr, R14_bcp);
  65   } else {
  66     lbz(bytecode, 0, R14_bcp);
  67   }
  68 
  69   dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state));
  70 }
  71 
  72 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
  73   // Load current bytecode.
  74   Register bytecode = R12_scratch2;
  75   lbz(bytecode, 0, R14_bcp);
  76   dispatch_Lbyte_code(state, bytecode, table);
  77 }
  78 
  79 // Dispatch code executed in the prolog of a bytecode which does not do it's
  80 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr.
  81 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  82   Register bytecode = R12_scratch2;
  83   lbz(bytecode, bcp_incr, R14_bcp);
  84 
  85   load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state));
  86 
  87   sldi(bytecode, bytecode, LogBytesPerWord);
  88   ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode);
  89 }
  90 
  91 // Dispatch code executed in the epilog of a bytecode which does not do it's
  92 // own dispatch. The dispatch address in R24_dispatch_addr is used for the
  93 // dispatch.
  94 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
  95   mtctr(R24_dispatch_addr);
  96   addi(R14_bcp, R14_bcp, bcp_incr);
  97   bctr();
  98 }
  99 
 100 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 101   assert(scratch_reg != R0, "can't use R0 as scratch_reg here");
 102   if (JvmtiExport::can_pop_frame()) {
 103     Label L;
 104 
 105     // Check the "pending popframe condition" flag in the current thread.
 106     lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
 107 
 108     // Initiate popframe handling only if it is not already being
 109     // processed. If the flag has the popframe_processing bit set, it
 110     // means that this code is called *during* popframe handling - we
 111     // don't want to reenter.
 112     andi_(R0, scratch_reg, JavaThread::popframe_pending_bit);
 113     beq(CCR0, L);
 114 
 115     andi_(R0, scratch_reg, JavaThread::popframe_processing_bit);
 116     bne(CCR0, L);
 117 
 118     // Call the Interpreter::remove_activation_preserving_args_entry()
 119     // func to get the address of the same-named entrypoint in the
 120     // generated interpreter code.
 121 #if defined(ABI_ELFv2)
 122     call_c(CAST_FROM_FN_PTR(address,
 123                             Interpreter::remove_activation_preserving_args_entry),
 124            relocInfo::none);
 125 #else
 126     call_c(CAST_FROM_FN_PTR(FunctionDescriptor*,
 127                             Interpreter::remove_activation_preserving_args_entry),
 128            relocInfo::none);
 129 #endif
 130 
 131     // Jump to Interpreter::_remove_activation_preserving_args_entry.
 132     mtctr(R3_RET);
 133     bctr();
 134 
 135     align(32, 12);
 136     bind(L);
 137   }
 138 }
 139 
 140 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 141   const Register Rthr_state_addr = scratch_reg;
 142   if (JvmtiExport::can_force_early_return()) {
 143     Label Lno_early_ret;
 144     ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
 145     cmpdi(CCR0, Rthr_state_addr, 0);
 146     beq(CCR0, Lno_early_ret);
 147 
 148     lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr);
 149     cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending);
 150     bne(CCR0, Lno_early_ret);
 151 
 152     // Jump to Interpreter::_earlyret_entry.
 153     lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr);
 154     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry));
 155     mtlr(R3_RET);
 156     blr();
 157 
 158     align(32, 12);
 159     bind(Lno_early_ret);
 160   }
 161 }
 162 
 163 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) {
 164   const Register RjvmtiState = Rscratch1;
 165   const Register Rscratch2   = R0;
 166 
 167   ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
 168   li(Rscratch2, 0);
 169 
 170   switch (state) {
 171     case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
 172                std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
 173                break;
 174     case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 175                break;
 176     case btos: // fall through
 177     case ztos: // fall through
 178     case ctos: // fall through
 179     case stos: // fall through
 180     case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 181                break;
 182     case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 183                break;
 184     case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 185                break;
 186     case vtos: break;
 187     default  : ShouldNotReachHere();
 188   }
 189 
 190   // Clean up tos value in the jvmti thread state.
 191   std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 192   // Set tos state field to illegal value.
 193   li(Rscratch2, ilgl);
 194   stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState);
 195 }
 196 
 197 // Common code to dispatch and dispatch_only.
 198 // Dispatch value in Lbyte_code and increment Lbcp.
 199 
 200 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) {
 201   address table_base = (address)Interpreter::dispatch_table((TosState)0);
 202   intptr_t table_offs = (intptr_t)table - (intptr_t)table_base;
 203   if (is_simm16(table_offs)) {
 204     addi(dst, R25_templateTableBase, (int)table_offs);
 205   } else {
 206     load_const_optimized(dst, table, R0);
 207   }
 208 }
 209 
 210 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, address* table, bool verify) {
 211   if (verify) {
 212     unimplemented("dispatch_Lbyte_code: verify"); // See Sparc Implementation to implement this
 213   }
 214 
 215 #ifdef FAST_DISPATCH
 216   unimplemented("dispatch_Lbyte_code FAST_DISPATCH");
 217 #else
 218   assert_different_registers(bytecode, R11_scratch1);
 219 
 220   // Calc dispatch table address.
 221   load_dispatch_table(R11_scratch1, table);
 222 
 223   sldi(R12_scratch2, bytecode, LogBytesPerWord);
 224   ldx(R11_scratch1, R11_scratch1, R12_scratch2);
 225 
 226   // Jump off!
 227   mtctr(R11_scratch1);
 228   bctr();
 229 #endif
 230 }
 231 
 232 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) {
 233   sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize);
 234   ldx(Rrecv_dst, Rrecv_dst, R15_esp);
 235 }
 236 
 237 // helpers for expression stack
 238 
 239 void InterpreterMacroAssembler::pop_i(Register r) {
 240   lwzu(r, Interpreter::stackElementSize, R15_esp);
 241 }
 242 
 243 void InterpreterMacroAssembler::pop_ptr(Register r) {
 244   ldu(r, Interpreter::stackElementSize, R15_esp);
 245 }
 246 
 247 void InterpreterMacroAssembler::pop_l(Register r) {
 248   ld(r, Interpreter::stackElementSize, R15_esp);
 249   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
 250 }
 251 
 252 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
 253   lfsu(f, Interpreter::stackElementSize, R15_esp);
 254 }
 255 
 256 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
 257   lfd(f, Interpreter::stackElementSize, R15_esp);
 258   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
 259 }
 260 
 261 void InterpreterMacroAssembler::push_i(Register r) {
 262   stw(r, 0, R15_esp);
 263   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
 264 }
 265 
 266 void InterpreterMacroAssembler::push_ptr(Register r) {
 267   std(r, 0, R15_esp);
 268   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
 269 }
 270 
 271 void InterpreterMacroAssembler::push_l(Register r) {
 272   std(r, - Interpreter::stackElementSize, R15_esp);
 273   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
 274 }
 275 
 276 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 277   stfs(f, 0, R15_esp);
 278   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
 279 }
 280 
 281 void InterpreterMacroAssembler::push_d(FloatRegister f)   {
 282   stfd(f, - Interpreter::stackElementSize, R15_esp);
 283   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
 284 }
 285 
 286 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) {
 287   std(first, 0, R15_esp);
 288   std(second, -Interpreter::stackElementSize, R15_esp);
 289   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
 290 }
 291 
 292 void InterpreterMacroAssembler::push_l_pop_d(Register l, FloatRegister d) {
 293   std(l, 0, R15_esp);
 294   lfd(d, 0, R15_esp);
 295 }
 296 
 297 void InterpreterMacroAssembler::push_d_pop_l(FloatRegister d, Register l) {
 298   stfd(d, 0, R15_esp);
 299   ld(l, 0, R15_esp);
 300 }
 301 
 302 void InterpreterMacroAssembler::push(TosState state) {
 303   switch (state) {
 304     case atos: push_ptr();                break;
 305     case btos:
 306     case ztos:
 307     case ctos:
 308     case stos:
 309     case itos: push_i();                  break;
 310     case ltos: push_l();                  break;
 311     case ftos: push_f();                  break;
 312     case dtos: push_d();                  break;
 313     case vtos: /* nothing to do */        break;
 314     default  : ShouldNotReachHere();
 315   }
 316 }
 317 
 318 void InterpreterMacroAssembler::pop(TosState state) {
 319   switch (state) {
 320     case atos: pop_ptr();            break;
 321     case btos:
 322     case ztos:
 323     case ctos:
 324     case stos:
 325     case itos: pop_i();              break;
 326     case ltos: pop_l();              break;
 327     case ftos: pop_f();              break;
 328     case dtos: pop_d();              break;
 329     case vtos: /* nothing to do */   break;
 330     default  : ShouldNotReachHere();
 331   }
 332   verify_oop(R17_tos, state);
 333 }
 334 
 335 void InterpreterMacroAssembler::empty_expression_stack() {
 336   addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
 337 }
 338 
 339 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int         bcp_offset,
 340                                                           Register    Rdst,
 341                                                           signedOrNot is_signed) {
 342 #if defined(VM_LITTLE_ENDIAN)
 343   if (bcp_offset) {
 344     load_const_optimized(Rdst, bcp_offset);
 345     lhbrx(Rdst, R14_bcp, Rdst);
 346   } else {
 347     lhbrx(Rdst, R14_bcp);
 348   }
 349   if (is_signed == Signed) {
 350     extsh(Rdst, Rdst);
 351   }
 352 #else
 353   // Read Java big endian format.
 354   if (is_signed == Signed) {
 355     lha(Rdst, bcp_offset, R14_bcp);
 356   } else {
 357     lhz(Rdst, bcp_offset, R14_bcp);
 358   }
 359 #endif
 360 }
 361 
 362 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int         bcp_offset,
 363                                                           Register    Rdst,
 364                                                           signedOrNot is_signed) {
 365 #if defined(VM_LITTLE_ENDIAN)
 366   if (bcp_offset) {
 367     load_const_optimized(Rdst, bcp_offset);
 368     lwbrx(Rdst, R14_bcp, Rdst);
 369   } else {
 370     lwbrx(Rdst, R14_bcp);
 371   }
 372   if (is_signed == Signed) {
 373     extsw(Rdst, Rdst);
 374   }
 375 #else
 376   // Read Java big endian format.
 377   if (bcp_offset & 3) { // Offset unaligned?
 378     load_const_optimized(Rdst, bcp_offset);
 379     if (is_signed == Signed) {
 380       lwax(Rdst, R14_bcp, Rdst);
 381     } else {
 382       lwzx(Rdst, R14_bcp, Rdst);
 383     }
 384   } else {
 385     if (is_signed == Signed) {
 386       lwa(Rdst, bcp_offset, R14_bcp);
 387     } else {
 388       lwz(Rdst, bcp_offset, R14_bcp);
 389     }
 390   }
 391 #endif
 392 }
 393 
 394 
 395 // Load the constant pool cache index from the bytecode stream.
 396 //
 397 // Kills / writes:
 398 //   - Rdst, Rscratch
 399 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, size_t index_size) {
 400   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 401   // Cache index is always in the native format, courtesy of Rewriter.
 402   if (index_size == sizeof(u2)) {
 403     lhz(Rdst, bcp_offset, R14_bcp);
 404   } else if (index_size == sizeof(u4)) {
 405     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 406     if (bcp_offset & 3) {
 407       load_const_optimized(Rdst, bcp_offset);
 408       lwax(Rdst, R14_bcp, Rdst);
 409     } else {
 410       lwa(Rdst, bcp_offset, R14_bcp);
 411     }
 412     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 413     nand(Rdst, Rdst, Rdst); // convert to plain index
 414   } else if (index_size == sizeof(u1)) {
 415     lbz(Rdst, bcp_offset, R14_bcp);
 416   } else {
 417     ShouldNotReachHere();
 418   }
 419   // Rdst now contains cp cache index.
 420 }
 421 
 422 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset, size_t index_size) {
 423   get_cache_index_at_bcp(cache, bcp_offset, index_size);
 424   sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
 425   add(cache, R27_constPoolCache, cache);
 426 }
 427 
 428 // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format)
 429 // from (Rsrc)+offset.
 430 void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset,
 431                                        signedOrNot is_signed) {
 432 #if defined(VM_LITTLE_ENDIAN)
 433   if (offset) {
 434     load_const_optimized(Rdst, offset);
 435     lwbrx(Rdst, Rdst, Rsrc);
 436   } else {
 437     lwbrx(Rdst, Rsrc);
 438   }
 439   if (is_signed == Signed) {
 440     extsw(Rdst, Rdst);
 441   }
 442 #else
 443   if (is_signed == Signed) {
 444     lwa(Rdst, offset, Rsrc);
 445   } else {
 446     lwz(Rdst, offset, Rsrc);
 447   }
 448 #endif
 449 }
 450 
 451 // Load object from cpool->resolved_references(index).
 452 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
 453   assert_different_registers(result, index);
 454   get_constant_pool(result);
 455 
 456   // Convert from field index to resolved_references() index and from
 457   // word index to byte offset. Since this is a java object, it can be compressed.
 458   Register tmp = index;  // reuse
 459   sldi(tmp, index, LogBytesPerHeapOop);
 460   // Load pointer for resolved_references[] objArray.
 461   ld(result, ConstantPool::resolved_references_offset_in_bytes(), result);
 462   // JNIHandles::resolve(result)
 463   ld(result, 0, result);
 464 #ifdef ASSERT
 465   Label index_ok;
 466   lwa(R0, arrayOopDesc::length_offset_in_bytes(), result);
 467   sldi(R0, R0, LogBytesPerHeapOop);
 468   cmpd(CCR0, tmp, R0);
 469   blt(CCR0, index_ok);
 470   stop("resolved reference index out of bounds", 0x09256);
 471   bind(index_ok);
 472 #endif
 473   // Add in the index.
 474   add(result, tmp, result);
 475   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
 476 }
 477 
 478 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 479 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
 480 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1,
 481                                                   Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) {
 482   // Profile the not-null value's klass.
 483   profile_typecheck(Rsub_klass, Rtmp1, Rtmp2);
 484   check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
 485   profile_typecheck_failed(Rtmp1, Rtmp2);
 486 }
 487 
 488 void InterpreterMacroAssembler::generate_stack_overflow_check_with_compare_and_throw(Register Rmem_frame_size, Register Rscratch1) {
 489   Label done;
 490   sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
 491   ld(Rscratch1, thread_(stack_overflow_limit));
 492   cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
 493   bgt(CCR0/*is_stack_overflow*/, done);
 494 
 495   // Load target address of the runtime stub.
 496   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
 497   load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
 498   mtctr(Rscratch1);
 499   // Restore caller_sp.
 500 #ifdef ASSERT
 501   ld(Rscratch1, 0, R1_SP);
 502   ld(R0, 0, R21_sender_SP);
 503   cmpd(CCR0, R0, Rscratch1);
 504   asm_assert_eq("backlink", 0x547);
 505 #endif // ASSERT
 506   mr(R1_SP, R21_sender_SP);
 507   bctr();
 508 
 509   align(32, 12);
 510   bind(done);
 511 }
 512 
 513 // Separate these two to allow for delay slot in middle.
 514 // These are used to do a test and full jump to exception-throwing code.
 515 
 516 // Check that index is in range for array, then shift index by index_shift,
 517 // and put arrayOop + shifted_index into res.
 518 // Note: res is still shy of address by array offset into object.
 519 
 520 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, int index_shift, Register Rtmp, Register Rres) {
 521   // Check that index is in range for array, then shift index by index_shift,
 522   // and put arrayOop + shifted_index into res.
 523   // Note: res is still shy of address by array offset into object.
 524   // Kills:
 525   //   - Rindex
 526   // Writes:
 527   //   - Rres: Address that corresponds to the array index if check was successful.
 528   verify_oop(Rarray);
 529   const Register Rlength   = R0;
 530   const Register RsxtIndex = Rtmp;
 531   Label LisNull, LnotOOR;
 532 
 533   // Array nullcheck
 534   if (!ImplicitNullChecks) {
 535     cmpdi(CCR0, Rarray, 0);
 536     beq(CCR0, LisNull);
 537   } else {
 538     null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex);
 539   }
 540 
 541   // Rindex might contain garbage in upper bits (remember that we don't sign extend
 542   // during integer arithmetic operations). So kill them and put value into same register
 543   // where ArrayIndexOutOfBounds would expect the index in.
 544   rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit
 545 
 546   // Index check
 547   lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray);
 548   cmplw(CCR0, Rindex, Rlength);
 549   sldi(RsxtIndex, RsxtIndex, index_shift);
 550   blt(CCR0, LnotOOR);
 551   // Index should be in R17_tos, array should be in R4_ARG2.
 552   mr(R17_tos, Rindex);
 553   mr(R4_ARG2, Rarray);
 554   load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 555   mtctr(Rtmp);
 556   bctr();
 557 
 558   if (!ImplicitNullChecks) {
 559     bind(LisNull);
 560     load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry);
 561     mtctr(Rtmp);
 562     bctr();
 563   }
 564 
 565   align(32, 16);
 566   bind(LnotOOR);
 567 
 568   // Calc address
 569   add(Rres, RsxtIndex, Rarray);
 570 }
 571 
 572 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
 573   // pop array
 574   pop_ptr(array);
 575 
 576   // check array
 577   index_check_without_pop(array, index, index_shift, tmp, res);
 578 }
 579 
 580 void InterpreterMacroAssembler::get_const(Register Rdst) {
 581   ld(Rdst, in_bytes(Method::const_offset()), R19_method);
 582 }
 583 
 584 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 585   get_const(Rdst);
 586   ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
 587 }
 588 
 589 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 590   get_constant_pool(Rdst);
 591   ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
 592 }
 593 
 594 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 595   get_constant_pool(Rcpool);
 596   ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool);
 597 }
 598 
 599 // Unlock if synchronized method.
 600 //
 601 // Unlock the receiver if this is a synchronized method.
 602 // Unlock any Java monitors from synchronized blocks.
 603 //
 604 // If there are locked Java monitors
 605 //   If throw_monitor_exception
 606 //     throws IllegalMonitorStateException
 607 //   Else if install_monitor_exception
 608 //     installs IllegalMonitorStateException
 609 //   Else
 610 //     no error processing
 611 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 612                                                               bool throw_monitor_exception,
 613                                                               bool install_monitor_exception) {
 614   Label Lunlocked, Lno_unlock;
 615   {
 616     Register Rdo_not_unlock_flag = R11_scratch1;
 617     Register Raccess_flags       = R12_scratch2;
 618 
 619     // Check if synchronized method or unlocking prevented by
 620     // JavaThread::do_not_unlock_if_synchronized flag.
 621     lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
 622     lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method);
 623     li(R0, 0);
 624     stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag
 625 
 626     push(state);
 627 
 628     // Skip if we don't have to unlock.
 629     rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0.
 630     beq(CCR0, Lunlocked);
 631 
 632     cmpwi(CCR0, Rdo_not_unlock_flag, 0);
 633     bne(CCR0, Lno_unlock);
 634   }
 635 
 636   // Unlock
 637   {
 638     Register Rmonitor_base = R11_scratch1;
 639 
 640     Label Lunlock;
 641     // If it's still locked, everything is ok, unlock it.
 642     ld(Rmonitor_base, 0, R1_SP);
 643     addi(Rmonitor_base, Rmonitor_base, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
 644 
 645     ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base);
 646     cmpdi(CCR0, R0, 0);
 647     bne(CCR0, Lunlock);
 648 
 649     // If it's already unlocked, throw exception.
 650     if (throw_monitor_exception) {
 651       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 652       should_not_reach_here();
 653     } else {
 654       if (install_monitor_exception) {
 655         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 656         b(Lunlocked);
 657       }
 658     }
 659 
 660     bind(Lunlock);
 661     unlock_object(Rmonitor_base);
 662   }
 663 
 664   // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not.
 665   bind(Lunlocked);
 666   {
 667     Label Lexception, Lrestart;
 668     Register Rcurrent_obj_addr = R11_scratch1;
 669     const int delta = frame::interpreter_frame_monitor_size_in_bytes();
 670     assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords");
 671 
 672     bind(Lrestart);
 673     // Set up search loop: Calc num of iterations.
 674     {
 675       Register Riterations = R12_scratch2;
 676       Register Rmonitor_base = Rcurrent_obj_addr;
 677       ld(Rmonitor_base, 0, R1_SP);
 678       addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size);  // Monitor base
 679 
 680       subf_(Riterations, R26_monitor, Rmonitor_base);
 681       ble(CCR0, Lno_unlock);
 682 
 683       addi(Rcurrent_obj_addr, Rmonitor_base, BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes());
 684       // Check if any monitor is on stack, bail out if not
 685       srdi(Riterations, Riterations, exact_log2(delta));
 686       mtctr(Riterations);
 687     }
 688 
 689     // The search loop: Look for locked monitors.
 690     {
 691       const Register Rcurrent_obj = R0;
 692       Label Lloop;
 693 
 694       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
 695       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
 696       bind(Lloop);
 697 
 698       // Check if current entry is used.
 699       cmpdi(CCR0, Rcurrent_obj, 0);
 700       bne(CCR0, Lexception);
 701       // Preload next iteration's compare value.
 702       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
 703       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
 704       bdnz(Lloop);
 705     }
 706     // Fell through: Everything's unlocked => finish.
 707     b(Lno_unlock);
 708 
 709     // An object is still locked => need to throw exception.
 710     bind(Lexception);
 711     if (throw_monitor_exception) {
 712       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 713       should_not_reach_here();
 714     } else {
 715       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
 716       // Unlock does not block, so don't have to worry about the frame.
 717       Register Rmonitor_addr = R11_scratch1;
 718       addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta);
 719       unlock_object(Rmonitor_addr);
 720       if (install_monitor_exception) {
 721         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 722       }
 723       b(Lrestart);
 724     }
 725   }
 726 
 727   align(32, 12);
 728   bind(Lno_unlock);
 729   pop(state);
 730 }
 731 
 732 // Support function for remove_activation & Co.
 733 void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc, Register Rscratch1, Register Rscratch2) {
 734   // Pop interpreter frame.
 735   ld(Rscratch1, 0, R1_SP); // *SP
 736   ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp
 737   ld(Rscratch2, 0, Rscratch1); // **SP
 738 #ifdef ASSERT
 739   {
 740     Label Lok;
 741     ld(R0, _ijava_state_neg(ijava_reserved), Rscratch1);
 742     cmpdi(CCR0, R0, 0x5afe);
 743     beq(CCR0, Lok);
 744     stop("frame corrupted (remove activation)", 0x5afe);
 745     bind(Lok);
 746   }
 747 #endif
 748   if (return_pc!=noreg) {
 749     ld(return_pc, _abi(lr), Rscratch1); // LR
 750   }
 751 
 752   // Merge top frames.
 753   subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP
 754   stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP
 755 }
 756 
 757 void InterpreterMacroAssembler::narrow(Register result) {
 758   Register ret_type = R11_scratch1;
 759   ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
 760   lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1);
 761 
 762   Label notBool, notByte, notChar, done;
 763 
 764   // common case first
 765   cmpwi(CCR0, ret_type, T_INT);
 766   beq(CCR0, done);
 767 
 768   cmpwi(CCR0, ret_type, T_BOOLEAN);
 769   bne(CCR0, notBool);
 770   andi(result, result, 0x1);
 771   b(done);
 772 
 773   bind(notBool);
 774   cmpwi(CCR0, ret_type, T_BYTE);
 775   bne(CCR0, notByte);
 776   extsb(result, result);
 777   b(done);
 778 
 779   bind(notByte);
 780   cmpwi(CCR0, ret_type, T_CHAR);
 781   bne(CCR0, notChar);
 782   andi(result, result, 0xffff);
 783   b(done);
 784 
 785   bind(notChar);
 786   // cmpwi(CCR0, ret_type, T_SHORT);  // all that's left
 787   // bne(CCR0, done);
 788   extsh(result, result);
 789 
 790   // Nothing to do for T_INT
 791   bind(done);
 792 }
 793 
 794 // Remove activation.
 795 //
 796 // Unlock the receiver if this is a synchronized method.
 797 // Unlock any Java monitors from synchronized blocks.
 798 // Remove the activation from the stack.
 799 //
 800 // If there are locked Java monitors
 801 //    If throw_monitor_exception
 802 //       throws IllegalMonitorStateException
 803 //    Else if install_monitor_exception
 804 //       installs IllegalMonitorStateException
 805 //    Else
 806 //       no error processing
 807 void InterpreterMacroAssembler::remove_activation(TosState state,
 808                                                   bool throw_monitor_exception,
 809                                                   bool install_monitor_exception) {
 810   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
 811 
 812   // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
 813   notify_method_exit(false, state, NotifyJVMTI, true);
 814 
 815   verify_oop(R17_tos, state);
 816   verify_thread();
 817 
 818   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
 819   mtlr(R0);
 820 }
 821 
 822 #endif // !CC_INTERP
 823 
 824 // Lock object
 825 //
 826 // Registers alive
 827 //   monitor - Address of the BasicObjectLock to be used for locking,
 828 //             which must be initialized with the object to lock.
 829 //   object  - Address of the object to be locked.
 830 //
 831 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
 832   if (UseHeavyMonitors) {
 833     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 834             monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false));
 835   } else {
 836     // template code:
 837     //
 838     // markOop displaced_header = obj->mark().set_unlocked();
 839     // monitor->lock()->set_displaced_header(displaced_header);
 840     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
 841     //   // We stored the monitor address into the object's mark word.
 842     // } else if (THREAD->is_lock_owned((address)displaced_header))
 843     //   // Simple recursive case.
 844     //   monitor->lock()->set_displaced_header(NULL);
 845     // } else {
 846     //   // Slow path.
 847     //   InterpreterRuntime::monitorenter(THREAD, monitor);
 848     // }
 849 
 850     const Register displaced_header = R7_ARG5;
 851     const Register object_mark_addr = R8_ARG6;
 852     const Register current_header   = R9_ARG7;
 853     const Register tmp              = R10_ARG8;
 854 
 855     Label done;
 856     Label cas_failed, slow_case;
 857 
 858     assert_different_registers(displaced_header, object_mark_addr, current_header, tmp);
 859 
 860     // markOop displaced_header = obj->mark().set_unlocked();
 861 
 862     // Load markOop from object into displaced_header.
 863     ld(displaced_header, oopDesc::mark_offset_in_bytes(), object);
 864 
 865     if (UseBiasedLocking) {
 866       biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case);
 867     }
 868 
 869     // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
 870     ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
 871 
 872     // monitor->lock()->set_displaced_header(displaced_header);
 873 
 874     // Initialize the box (Must happen before we update the object mark!).
 875     std(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
 876         BasicLock::displaced_header_offset_in_bytes(), monitor);
 877 
 878     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
 879 
 880     // Store stack address of the BasicObjectLock (this is monitor) into object.
 881     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
 882 
 883     // Must fence, otherwise, preceding store(s) may float below cmpxchg.
 884     // CmpxchgX sets CCR0 to cmpX(current, displaced).
 885     fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
 886     cmpxchgd(/*flag=*/CCR0,
 887              /*current_value=*/current_header,
 888              /*compare_value=*/displaced_header, /*exchange_value=*/monitor,
 889              /*where=*/object_mark_addr,
 890              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
 891              MacroAssembler::cmpxchgx_hint_acquire_lock(),
 892              noreg,
 893              &cas_failed);
 894 
 895     // If the compare-and-exchange succeeded, then we found an unlocked
 896     // object and we have now locked it.
 897     b(done);
 898     bind(cas_failed);
 899 
 900     // } else if (THREAD->is_lock_owned((address)displaced_header))
 901     //   // Simple recursive case.
 902     //   monitor->lock()->set_displaced_header(NULL);
 903 
 904     // We did not see an unlocked object so try the fast recursive case.
 905 
 906     // Check if owner is self by comparing the value in the markOop of object
 907     // (current_header) with the stack pointer.
 908     sub(current_header, current_header, R1_SP);
 909 
 910     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
 911     load_const_optimized(tmp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place);
 912 
 913     and_(R0/*==0?*/, current_header, tmp);
 914     // If condition is true we are done and hence we can store 0 in the displaced
 915     // header indicating it is a recursive lock.
 916     bne(CCR0, slow_case);
 917     release();
 918     std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
 919         BasicLock::displaced_header_offset_in_bytes(), monitor);
 920     b(done);
 921 
 922     // } else {
 923     //   // Slow path.
 924     //   InterpreterRuntime::monitorenter(THREAD, monitor);
 925 
 926     // None of the above fast optimizations worked so we have to get into the
 927     // slow case of monitor enter.
 928     bind(slow_case);
 929     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 930             monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false));
 931     // }
 932     align(32, 12);
 933     bind(done);
 934   }
 935 }
 936 
 937 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
 938 //
 939 // Registers alive
 940 //   monitor - Address of the BasicObjectLock to be used for locking,
 941 //             which must be initialized with the object to lock.
 942 //
 943 // Throw IllegalMonitorException if object is not locked by current thread.
 944 void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) {
 945   if (UseHeavyMonitors) {
 946     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 947             monitor, check_for_exceptions CC_INTERP_ONLY(&& false));
 948   } else {
 949 
 950     // template code:
 951     //
 952     // if ((displaced_header = monitor->displaced_header()) == NULL) {
 953     //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
 954     //   monitor->set_obj(NULL);
 955     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
 956     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
 957     //   monitor->set_obj(NULL);
 958     // } else {
 959     //   // Slow path.
 960     //   InterpreterRuntime::monitorexit(THREAD, monitor);
 961     // }
 962 
 963     const Register object           = R7_ARG5;
 964     const Register displaced_header = R8_ARG6;
 965     const Register object_mark_addr = R9_ARG7;
 966     const Register current_header   = R10_ARG8;
 967 
 968     Label free_slot;
 969     Label slow_case;
 970 
 971     assert_different_registers(object, displaced_header, object_mark_addr, current_header);
 972 
 973     if (UseBiasedLocking) {
 974       // The object address from the monitor is in object.
 975       ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor);
 976       assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
 977       biased_locking_exit(CCR0, object, displaced_header, free_slot);
 978     }
 979 
 980     // Test first if we are in the fast recursive case.
 981     ld(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
 982            BasicLock::displaced_header_offset_in_bytes(), monitor);
 983 
 984     // If the displaced header is zero, we have a recursive unlock.
 985     cmpdi(CCR0, displaced_header, 0);
 986     beq(CCR0, free_slot); // recursive unlock
 987 
 988     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
 989     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
 990     //   monitor->set_obj(NULL);
 991 
 992     // If we still have a lightweight lock, unlock the object and be done.
 993 
 994     // The object address from the monitor is in object.
 995     if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); }
 996     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
 997 
 998     // We have the displaced header in displaced_header. If the lock is still
 999     // lightweight, it will contain the monitor address and we'll store the
1000     // displaced header back into the object's mark word.
1001     // CmpxchgX sets CCR0 to cmpX(current, monitor).
1002     cmpxchgd(/*flag=*/CCR0,
1003              /*current_value=*/current_header,
1004              /*compare_value=*/monitor, /*exchange_value=*/displaced_header,
1005              /*where=*/object_mark_addr,
1006              MacroAssembler::MemBarRel,
1007              MacroAssembler::cmpxchgx_hint_release_lock(),
1008              noreg,
1009              &slow_case);
1010     b(free_slot);
1011 
1012     // } else {
1013     //   // Slow path.
1014     //   InterpreterRuntime::monitorexit(THREAD, monitor);
1015 
1016     // The lock has been converted into a heavy lock and hence
1017     // we need to get into the slow case.
1018     bind(slow_case);
1019     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1020             monitor, check_for_exceptions CC_INTERP_ONLY(&& false));
1021     // }
1022 
1023     Label done;
1024     b(done); // Monitor register may be overwritten! Runtime has already freed the slot.
1025 
1026     // Exchange worked, do monitor->set_obj(NULL);
1027     align(32, 12);
1028     bind(free_slot);
1029     li(R0, 0);
1030     std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor);
1031     bind(done);
1032   }
1033 }
1034 
1035 #ifndef CC_INTERP
1036 
1037 // Load compiled (i2c) or interpreter entry when calling from interpreted and
1038 // do the call. Centralized so that all interpreter calls will do the same actions.
1039 // If jvmti single stepping is on for a thread we must not call compiled code.
1040 //
1041 // Input:
1042 //   - Rtarget_method: method to call
1043 //   - Rret_addr:      return address
1044 //   - 2 scratch regs
1045 //
1046 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, Register Rscratch1, Register Rscratch2) {
1047   assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr);
1048   // Assume we want to go compiled if available.
1049   const Register Rtarget_addr = Rscratch1;
1050   const Register Rinterp_only = Rscratch2;
1051 
1052   ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method);
1053 
1054   if (JvmtiExport::can_post_interpreter_events()) {
1055     lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
1056 
1057     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
1058     // compiled code in threads for which the event is enabled. Check here for
1059     // interp_only_mode if these events CAN be enabled.
1060     Label done;
1061     verify_thread();
1062     cmpwi(CCR0, Rinterp_only, 0);
1063     beq(CCR0, done);
1064     ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method);
1065     align(32, 12);
1066     bind(done);
1067   }
1068 
1069 #ifdef ASSERT
1070   {
1071     Label Lok;
1072     cmpdi(CCR0, Rtarget_addr, 0);
1073     bne(CCR0, Lok);
1074     stop("null entry point");
1075     bind(Lok);
1076   }
1077 #endif // ASSERT
1078 
1079   mr(R21_sender_SP, R1_SP);
1080 
1081   // Calc a precise SP for the call. The SP value we calculated in
1082   // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space
1083   // if esp is not max. Also, the i2c adapter extends the stack space without restoring
1084   // our pre-calced value, so repeating calls via i2c would result in stack overflow.
1085   // Since esp already points to an empty slot, we just have to sub 1 additional slot
1086   // to meet the abi scratch requirements.
1087   // The max_stack pointer will get restored by means of the GR_Lmax_stack local in
1088   // the return entry of the interpreter.
1089   addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size);
1090   clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address
1091   resize_frame_absolute(Rscratch2, Rscratch2, R0);
1092 
1093   mr_if_needed(R19_method, Rtarget_method);
1094   mtctr(Rtarget_addr);
1095   mtlr(Rret_addr);
1096 
1097   save_interpreter_state(Rscratch2);
1098 #ifdef ASSERT
1099   ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp
1100   cmpd(CCR0, R21_sender_SP, Rscratch1);
1101   asm_assert_eq("top_frame_sp incorrect", 0x951);
1102 #endif
1103 
1104   bctr();
1105 }
1106 
1107 // Set the method data pointer for the current bcp.
1108 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1109   assert(ProfileInterpreter, "must be profiling interpreter");
1110   Label get_continue;
1111   ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method);
1112   test_method_data_pointer(get_continue);
1113   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp);
1114 
1115   addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1116   add(R28_mdx, R28_mdx, R3_RET);
1117   bind(get_continue);
1118 }
1119 
1120 // Test ImethodDataPtr. If it is null, continue at the specified label.
1121 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1122   assert(ProfileInterpreter, "must be profiling interpreter");
1123   cmpdi(CCR0, R28_mdx, 0);
1124   beq(CCR0, zero_continue);
1125 }
1126 
1127 void InterpreterMacroAssembler::verify_method_data_pointer() {
1128   assert(ProfileInterpreter, "must be profiling interpreter");
1129 #ifdef ASSERT
1130   Label verify_continue;
1131   test_method_data_pointer(verify_continue);
1132 
1133   // If the mdp is valid, it will point to a DataLayout header which is
1134   // consistent with the bcp. The converse is highly probable also.
1135   lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx);
1136   ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method);
1137   addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1138   add(R11_scratch1, R12_scratch2, R12_scratch2);
1139   cmpd(CCR0, R11_scratch1, R14_bcp);
1140   beq(CCR0, verify_continue);
1141 
1142   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx);
1143 
1144   bind(verify_continue);
1145 #endif
1146 }
1147 
1148 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1149                                                                 Register Rscratch,
1150                                                                 Label &profile_continue) {
1151   assert(ProfileInterpreter, "must be profiling interpreter");
1152   // Control will flow to "profile_continue" if the counter is less than the
1153   // limit or if we call profile_method().
1154   Label done;
1155 
1156   // If no method data exists, and the counter is high enough, make one.
1157   int ipl_offs = load_const_optimized(Rscratch, &InvocationCounter::InterpreterProfileLimit, R0, true);
1158   lwz(Rscratch, ipl_offs, Rscratch);
1159 
1160   cmpdi(CCR0, R28_mdx, 0);
1161   // Test to see if we should create a method data oop.
1162   cmpd(CCR1, Rscratch /* InterpreterProfileLimit */, invocation_count);
1163   bne(CCR0, done);
1164   bge(CCR1, profile_continue);
1165 
1166   // Build it now.
1167   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1168   set_method_data_pointer_for_bcp();
1169   b(profile_continue);
1170 
1171   align(32, 12);
1172   bind(done);
1173 }
1174 
1175 void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register branch_bcp, Register Rtmp) {
1176   assert_different_registers(backedge_count, Rtmp, branch_bcp);
1177   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
1178 
1179   Label did_not_overflow;
1180   Label overflow_with_error;
1181 
1182   int ibbl_offs = load_const_optimized(Rtmp, &InvocationCounter::InterpreterBackwardBranchLimit, R0, true);
1183   lwz(Rtmp, ibbl_offs, Rtmp);
1184   cmpw(CCR0, backedge_count, Rtmp);
1185 
1186   blt(CCR0, did_not_overflow);
1187 
1188   // When ProfileInterpreter is on, the backedge_count comes from the
1189   // methodDataOop, which value does not get reset on the call to
1190   // frequency_counter_overflow(). To avoid excessive calls to the overflow
1191   // routine while the method is being compiled, add a second test to make sure
1192   // the overflow function is called only once every overflow_frequency.
1193   if (ProfileInterpreter) {
1194     const int overflow_frequency = 1024;
1195     li(Rtmp, overflow_frequency-1);
1196     andr(Rtmp, Rtmp, backedge_count);
1197     cmpwi(CCR0, Rtmp, 0);
1198     bne(CCR0, did_not_overflow);
1199   }
1200 
1201   // Overflow in loop, pass branch bytecode.
1202   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, true);
1203 
1204   // Was an OSR adapter generated?
1205   // O0 = osr nmethod
1206   cmpdi(CCR0, R3_RET, 0);
1207   beq(CCR0, overflow_with_error);
1208 
1209   // Has the nmethod been invalidated already?
1210   lwz(Rtmp, nmethod::entry_bci_offset(), R3_RET);
1211   cmpwi(CCR0, Rtmp, InvalidOSREntryBci);
1212   beq(CCR0, overflow_with_error);
1213 
1214   // Migrate the interpreter frame off of the stack.
1215   // We can use all registers because we will not return to interpreter from this point.
1216 
1217   // Save nmethod.
1218   const Register osr_nmethod = R31;
1219   mr(osr_nmethod, R3_RET);
1220   set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1221   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1222   reset_last_Java_frame();
1223   // OSR buffer is in ARG1
1224 
1225   // Remove the interpreter frame.
1226   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1227 
1228   // Jump to the osr code.
1229   ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1230   mtlr(R0);
1231   mtctr(R11_scratch1);
1232   bctr();
1233 
1234   align(32, 12);
1235   bind(overflow_with_error);
1236   bind(did_not_overflow);
1237 }
1238 
1239 // Store a value at some constant offset from the method data pointer.
1240 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1241   assert(ProfileInterpreter, "must be profiling interpreter");
1242 
1243   std(value, constant, R28_mdx);
1244 }
1245 
1246 // Increment the value at some constant offset from the method data pointer.
1247 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1248                                                       Register counter_addr,
1249                                                       Register Rbumped_count,
1250                                                       bool decrement) {
1251   // Locate the counter at a fixed offset from the mdp:
1252   addi(counter_addr, R28_mdx, constant);
1253   increment_mdp_data_at(counter_addr, Rbumped_count, decrement);
1254 }
1255 
1256 // Increment the value at some non-fixed (reg + constant) offset from
1257 // the method data pointer.
1258 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1259                                                       int constant,
1260                                                       Register scratch,
1261                                                       Register Rbumped_count,
1262                                                       bool decrement) {
1263   // Add the constant to reg to get the offset.
1264   add(scratch, R28_mdx, reg);
1265   // Then calculate the counter address.
1266   addi(scratch, scratch, constant);
1267   increment_mdp_data_at(scratch, Rbumped_count, decrement);
1268 }
1269 
1270 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr,
1271                                                       Register Rbumped_count,
1272                                                       bool decrement) {
1273   assert(ProfileInterpreter, "must be profiling interpreter");
1274 
1275   // Load the counter.
1276   ld(Rbumped_count, 0, counter_addr);
1277 
1278   if (decrement) {
1279     // Decrement the register. Set condition codes.
1280     addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment);
1281     // Store the decremented counter, if it is still negative.
1282     std(Rbumped_count, 0, counter_addr);
1283     // Note: add/sub overflow check are not ported, since 64 bit
1284     // calculation should never overflow.
1285   } else {
1286     // Increment the register. Set carry flag.
1287     addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment);
1288     // Store the incremented counter.
1289     std(Rbumped_count, 0, counter_addr);
1290   }
1291 }
1292 
1293 // Set a flag value at the current method data pointer position.
1294 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1295                                                 Register scratch) {
1296   assert(ProfileInterpreter, "must be profiling interpreter");
1297   // Load the data header.
1298   lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1299   // Set the flag.
1300   ori(scratch, scratch, flag_constant);
1301   // Store the modified header.
1302   stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1303 }
1304 
1305 // Test the location at some offset from the method data pointer.
1306 // If it is not equal to value, branch to the not_equal_continue Label.
1307 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1308                                                  Register value,
1309                                                  Label& not_equal_continue,
1310                                                  Register test_out) {
1311   assert(ProfileInterpreter, "must be profiling interpreter");
1312 
1313   ld(test_out, offset, R28_mdx);
1314   cmpd(CCR0,  value, test_out);
1315   bne(CCR0, not_equal_continue);
1316 }
1317 
1318 // Update the method data pointer by the displacement located at some fixed
1319 // offset from the method data pointer.
1320 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1321                                                      Register scratch) {
1322   assert(ProfileInterpreter, "must be profiling interpreter");
1323 
1324   ld(scratch, offset_of_disp, R28_mdx);
1325   add(R28_mdx, scratch, R28_mdx);
1326 }
1327 
1328 // Update the method data pointer by the displacement located at the
1329 // offset (reg + offset_of_disp).
1330 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1331                                                      int offset_of_disp,
1332                                                      Register scratch) {
1333   assert(ProfileInterpreter, "must be profiling interpreter");
1334 
1335   add(scratch, reg, R28_mdx);
1336   ld(scratch, offset_of_disp, scratch);
1337   add(R28_mdx, scratch, R28_mdx);
1338 }
1339 
1340 // Update the method data pointer by a simple constant displacement.
1341 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1342   assert(ProfileInterpreter, "must be profiling interpreter");
1343   addi(R28_mdx, R28_mdx, constant);
1344 }
1345 
1346 // Update the method data pointer for a _ret bytecode whose target
1347 // was not among our cached targets.
1348 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1349                                                    Register return_bci) {
1350   assert(ProfileInterpreter, "must be profiling interpreter");
1351 
1352   push(state);
1353   assert(return_bci->is_nonvolatile(), "need to protect return_bci");
1354   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1355   pop(state);
1356 }
1357 
1358 // Increments the backedge counter.
1359 // Returns backedge counter + invocation counter in Rdst.
1360 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst,
1361                                                            const Register Rtmp1, Register Rscratch) {
1362   assert(UseCompiler, "incrementing must be useful");
1363   assert_different_registers(Rdst, Rtmp1);
1364   const Register invocation_counter = Rtmp1;
1365   const Register counter = Rdst;
1366   // TODO ppc port assert(4 == InvocationCounter::sz_counter(), "unexpected field size.");
1367 
1368   // Load backedge counter.
1369   lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1370                in_bytes(InvocationCounter::counter_offset()), Rcounters);
1371   // Load invocation counter.
1372   lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) +
1373                           in_bytes(InvocationCounter::counter_offset()), Rcounters);
1374 
1375   // Add the delta to the backedge counter.
1376   addi(counter, counter, InvocationCounter::count_increment);
1377 
1378   // Mask the invocation counter.
1379   li(Rscratch, InvocationCounter::count_mask_value);
1380   andr(invocation_counter, invocation_counter, Rscratch);
1381 
1382   // Store new counter value.
1383   stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1384                in_bytes(InvocationCounter::counter_offset()), Rcounters);
1385   // Return invocation counter + backedge counter.
1386   add(counter, counter, invocation_counter);
1387 }
1388 
1389 // Count a taken branch in the bytecodes.
1390 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1391   if (ProfileInterpreter) {
1392     Label profile_continue;
1393 
1394     // If no method data exists, go to profile_continue.
1395     test_method_data_pointer(profile_continue);
1396 
1397     // We are taking a branch. Increment the taken count.
1398     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count);
1399 
1400     // The method data pointer needs to be updated to reflect the new target.
1401     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1402     bind (profile_continue);
1403   }
1404 }
1405 
1406 // Count a not-taken branch in the bytecodes.
1407 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) {
1408   if (ProfileInterpreter) {
1409     Label profile_continue;
1410 
1411     // If no method data exists, go to profile_continue.
1412     test_method_data_pointer(profile_continue);
1413 
1414     // We are taking a branch. Increment the not taken count.
1415     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2);
1416 
1417     // The method data pointer needs to be updated to correspond to the
1418     // next bytecode.
1419     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1420     bind (profile_continue);
1421   }
1422 }
1423 
1424 // Count a non-virtual call in the bytecodes.
1425 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) {
1426   if (ProfileInterpreter) {
1427     Label profile_continue;
1428 
1429     // If no method data exists, go to profile_continue.
1430     test_method_data_pointer(profile_continue);
1431 
1432     // We are making a call. Increment the count.
1433     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1434 
1435     // The method data pointer needs to be updated to reflect the new target.
1436     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1437     bind (profile_continue);
1438   }
1439 }
1440 
1441 // Count a final call in the bytecodes.
1442 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) {
1443   if (ProfileInterpreter) {
1444     Label profile_continue;
1445 
1446     // If no method data exists, go to profile_continue.
1447     test_method_data_pointer(profile_continue);
1448 
1449     // We are making a call. Increment the count.
1450     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1451 
1452     // The method data pointer needs to be updated to reflect the new target.
1453     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1454     bind (profile_continue);
1455   }
1456 }
1457 
1458 // Count a virtual call in the bytecodes.
1459 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver,
1460                                                      Register Rscratch1,
1461                                                      Register Rscratch2,
1462                                                      bool receiver_can_be_null) {
1463   if (!ProfileInterpreter) { return; }
1464   Label profile_continue;
1465 
1466   // If no method data exists, go to profile_continue.
1467   test_method_data_pointer(profile_continue);
1468 
1469   Label skip_receiver_profile;
1470   if (receiver_can_be_null) {
1471     Label not_null;
1472     cmpdi(CCR0, Rreceiver, 0);
1473     bne(CCR0, not_null);
1474     // We are making a call. Increment the count for null receiver.
1475     increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2);
1476     b(skip_receiver_profile);
1477     bind(not_null);
1478   }
1479 
1480   // Record the receiver type.
1481   record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true);
1482   bind(skip_receiver_profile);
1483 
1484   // The method data pointer needs to be updated to reflect the new target.
1485   update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1486   bind (profile_continue);
1487 }
1488 
1489 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) {
1490   if (ProfileInterpreter) {
1491     Label profile_continue;
1492 
1493     // If no method data exists, go to profile_continue.
1494     test_method_data_pointer(profile_continue);
1495 
1496     int mdp_delta = in_bytes(BitData::bit_data_size());
1497     if (TypeProfileCasts) {
1498       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1499 
1500       // Record the object type.
1501       record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false);
1502     }
1503 
1504     // The method data pointer needs to be updated.
1505     update_mdp_by_constant(mdp_delta);
1506 
1507     bind (profile_continue);
1508   }
1509 }
1510 
1511 void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) {
1512   if (ProfileInterpreter && TypeProfileCasts) {
1513     Label profile_continue;
1514 
1515     // If no method data exists, go to profile_continue.
1516     test_method_data_pointer(profile_continue);
1517 
1518     int count_offset = in_bytes(CounterData::count_offset());
1519     // Back up the address, since we have already bumped the mdp.
1520     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1521 
1522     // *Decrement* the counter. We expect to see zero or small negatives.
1523     increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true);
1524 
1525     bind (profile_continue);
1526   }
1527 }
1528 
1529 // Count a ret in the bytecodes.
1530 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, Register scratch1, Register scratch2) {
1531   if (ProfileInterpreter) {
1532     Label profile_continue;
1533     uint row;
1534 
1535     // If no method data exists, go to profile_continue.
1536     test_method_data_pointer(profile_continue);
1537 
1538     // Update the total ret count.
1539     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 );
1540 
1541     for (row = 0; row < RetData::row_limit(); row++) {
1542       Label next_test;
1543 
1544       // See if return_bci is equal to bci[n]:
1545       test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1);
1546 
1547       // return_bci is equal to bci[n]. Increment the count.
1548       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2);
1549 
1550       // The method data pointer needs to be updated to reflect the new target.
1551       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1);
1552       b(profile_continue);
1553       bind(next_test);
1554     }
1555 
1556     update_mdp_for_ret(state, return_bci);
1557 
1558     bind (profile_continue);
1559   }
1560 }
1561 
1562 // Count the default case of a switch construct.
1563 void InterpreterMacroAssembler::profile_switch_default(Register scratch1,  Register scratch2) {
1564   if (ProfileInterpreter) {
1565     Label profile_continue;
1566 
1567     // If no method data exists, go to profile_continue.
1568     test_method_data_pointer(profile_continue);
1569 
1570     // Update the default case count
1571     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1572                           scratch1, scratch2);
1573 
1574     // The method data pointer needs to be updated.
1575     update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()),
1576                          scratch1);
1577 
1578     bind (profile_continue);
1579   }
1580 }
1581 
1582 // Count the index'th case of a switch construct.
1583 void InterpreterMacroAssembler::profile_switch_case(Register index,
1584                                                     Register scratch1,
1585                                                     Register scratch2,
1586                                                     Register scratch3) {
1587   if (ProfileInterpreter) {
1588     assert_different_registers(index, scratch1, scratch2, scratch3);
1589     Label profile_continue;
1590 
1591     // If no method data exists, go to profile_continue.
1592     test_method_data_pointer(profile_continue);
1593 
1594     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes().
1595     li(scratch3, in_bytes(MultiBranchData::case_array_offset()));
1596 
1597     assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works");
1598     sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1599     add(scratch1, scratch1, scratch3);
1600 
1601     // Update the case count.
1602     increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3);
1603 
1604     // The method data pointer needs to be updated.
1605     update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2);
1606 
1607     bind (profile_continue);
1608   }
1609 }
1610 
1611 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) {
1612   if (ProfileInterpreter) {
1613     assert_different_registers(Rscratch1, Rscratch2);
1614     Label profile_continue;
1615 
1616     // If no method data exists, go to profile_continue.
1617     test_method_data_pointer(profile_continue);
1618 
1619     set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1);
1620 
1621     // The method data pointer needs to be updated.
1622     int mdp_delta = in_bytes(BitData::bit_data_size());
1623     if (TypeProfileCasts) {
1624       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1625     }
1626     update_mdp_by_constant(mdp_delta);
1627 
1628     bind (profile_continue);
1629   }
1630 }
1631 
1632 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver,
1633                                                         Register Rscratch1, Register Rscratch2,
1634                                                         bool is_virtual_call) {
1635   assert(ProfileInterpreter, "must be profiling");
1636   assert_different_registers(Rreceiver, Rscratch1, Rscratch2);
1637 
1638   Label done;
1639   record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call);
1640   bind (done);
1641 }
1642 
1643 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1644                                         Register receiver, Register scratch1, Register scratch2,
1645                                         int start_row, Label& done, bool is_virtual_call) {
1646   if (TypeProfileWidth == 0) {
1647     if (is_virtual_call) {
1648       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1649     }
1650     return;
1651   }
1652 
1653   int last_row = VirtualCallData::row_limit() - 1;
1654   assert(start_row <= last_row, "must be work left to do");
1655   // Test this row for both the receiver and for null.
1656   // Take any of three different outcomes:
1657   //   1. found receiver => increment count and goto done
1658   //   2. found null => keep looking for case 1, maybe allocate this cell
1659   //   3. found something else => keep looking for cases 1 and 2
1660   // Case 3 is handled by a recursive call.
1661   for (int row = start_row; row <= last_row; row++) {
1662     Label next_test;
1663     bool test_for_null_also = (row == start_row);
1664 
1665     // See if the receiver is receiver[n].
1666     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1667     test_mdp_data_at(recvr_offset, receiver, next_test, scratch1);
1668     // delayed()->tst(scratch);
1669 
1670     // The receiver is receiver[n]. Increment count[n].
1671     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1672     increment_mdp_data_at(count_offset, scratch1, scratch2);
1673     b(done);
1674     bind(next_test);
1675 
1676     if (test_for_null_also) {
1677       Label found_null;
1678       // Failed the equality check on receiver[n]... Test for null.
1679       if (start_row == last_row) {
1680         // The only thing left to do is handle the null case.
1681         if (is_virtual_call) {
1682           // Scratch1 contains test_out from test_mdp_data_at.
1683           cmpdi(CCR0, scratch1, 0);
1684           beq(CCR0, found_null);
1685           // Receiver did not match any saved receiver and there is no empty row for it.
1686           // Increment total counter to indicate polymorphic case.
1687           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1688           b(done);
1689           bind(found_null);
1690         } else {
1691           cmpdi(CCR0, scratch1, 0);
1692           bne(CCR0, done);
1693         }
1694         break;
1695       }
1696       // Since null is rare, make it be the branch-taken case.
1697       cmpdi(CCR0, scratch1, 0);
1698       beq(CCR0, found_null);
1699 
1700       // Put all the "Case 3" tests here.
1701       record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call);
1702 
1703       // Found a null. Keep searching for a matching receiver,
1704       // but remember that this is an empty (unused) slot.
1705       bind(found_null);
1706     }
1707   }
1708 
1709   // In the fall-through case, we found no matching receiver, but we
1710   // observed the receiver[start_row] is NULL.
1711 
1712   // Fill in the receiver field and increment the count.
1713   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1714   set_mdp_data_at(recvr_offset, receiver);
1715   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1716   li(scratch1, DataLayout::counter_increment);
1717   set_mdp_data_at(count_offset, scratch1);
1718   if (start_row > 0) {
1719     b(done);
1720   }
1721 }
1722 
1723 // Argument and return type profilig.
1724 // kills: tmp, tmp2, R0, CR0, CR1
1725 void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base,
1726                                                  RegisterOrConstant mdo_addr_offs, Register tmp, Register tmp2) {
1727   Label do_nothing, do_update;
1728 
1729   // tmp2 = obj is allowed
1730   assert_different_registers(obj, mdo_addr_base, tmp, R0);
1731   assert_different_registers(tmp2, mdo_addr_base, tmp, R0);
1732   const Register klass = tmp2;
1733 
1734   verify_oop(obj);
1735 
1736   ld(tmp, mdo_addr_offs, mdo_addr_base);
1737 
1738   // Set null_seen if obj is 0.
1739   cmpdi(CCR0, obj, 0);
1740   ori(R0, tmp, TypeEntries::null_seen);
1741   beq(CCR0, do_update);
1742 
1743   load_klass(klass, obj);
1744 
1745   clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
1746   // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
1747   cmpd(CCR1, R0, klass);
1748   // Klass seen before, nothing to do (regardless of unknown bit).
1749   //beq(CCR1, do_nothing);
1750 
1751   andi_(R0, klass, TypeEntries::type_unknown);
1752   // Already unknown. Nothing to do anymore.
1753   //bne(CCR0, do_nothing);
1754   crorc(/*CCR0 eq*/2, /*CCR1 eq*/4+2, /*CCR0 eq*/2); // cr0 eq = cr1 eq or cr0 ne
1755   beq(CCR0, do_nothing);
1756 
1757   clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
1758   orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
1759   beq(CCR0, do_update); // First time here. Set profile type.
1760 
1761   // Different than before. Cannot keep accurate profile.
1762   ori(R0, tmp, TypeEntries::type_unknown);
1763 
1764   bind(do_update);
1765   // update profile
1766   std(R0, mdo_addr_offs, mdo_addr_base);
1767 
1768   align(32, 12);
1769   bind(do_nothing);
1770 }
1771 
1772 void InterpreterMacroAssembler::profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual) {
1773   if (!ProfileInterpreter) {
1774     return;
1775   }
1776 
1777   assert_different_registers(callee, tmp1, tmp2, R28_mdx);
1778 
1779   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1780     Label profile_continue;
1781 
1782     test_method_data_pointer(profile_continue);
1783 
1784     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1785 
1786     lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx);
1787     cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1788     bne(CCR0, profile_continue);
1789 
1790     if (MethodData::profile_arguments()) {
1791       Label done;
1792       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1793       add(R28_mdx, off_to_args, R28_mdx);
1794 
1795       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1796         if (i > 0 || MethodData::profile_return()) {
1797           // If return value type is profiled we may have no argument to profile.
1798           ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
1799           cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count());
1800           addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count());
1801           blt(CCR0, done);
1802         }
1803         ld(tmp1, in_bytes(Method::const_offset()), callee);
1804         lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1);
1805         // Stack offset o (zero based) from the start of the argument
1806         // list, for n arguments translates into offset n - o - 1 from
1807         // the end of the argument list. But there's an extra slot at
1808         // the top of the stack. So the offset is n - o from Lesp.
1809         ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx);
1810         subf(tmp1, tmp2, tmp1);
1811 
1812         sldi(tmp1, tmp1, Interpreter::logStackElementSize);
1813         ldx(tmp1, tmp1, R15_esp);
1814 
1815         profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1);
1816 
1817         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1818         addi(R28_mdx, R28_mdx, to_add);
1819         off_to_args += to_add;
1820       }
1821 
1822       if (MethodData::profile_return()) {
1823         ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
1824         addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1825       }
1826 
1827       bind(done);
1828 
1829       if (MethodData::profile_return()) {
1830         // We're right after the type profile for the last
1831         // argument. tmp1 is the number of cells left in the
1832         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1833         // if there's a return to profile.
1834         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1835         sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size));
1836         add(R28_mdx, tmp1, R28_mdx);
1837       }
1838     } else {
1839       assert(MethodData::profile_return(), "either profile call args or call ret");
1840       update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
1841     }
1842 
1843     // Mdp points right after the end of the
1844     // CallTypeData/VirtualCallTypeData, right after the cells for the
1845     // return value type if there's one.
1846     align(32, 12);
1847     bind(profile_continue);
1848   }
1849 }
1850 
1851 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
1852   assert_different_registers(ret, tmp1, tmp2);
1853   if (ProfileInterpreter && MethodData::profile_return()) {
1854     Label profile_continue;
1855 
1856     test_method_data_pointer(profile_continue);
1857 
1858     if (MethodData::profile_return_jsr292_only()) {
1859       // If we don't profile all invoke bytecodes we must make sure
1860       // it's a bytecode we indeed profile. We can't go back to the
1861       // begining of the ProfileData we intend to update to check its
1862       // type because we're right after it and we don't known its
1863       // length.
1864       lbz(tmp1, 0, R14_bcp);
1865       lbz(tmp2, Method::intrinsic_id_offset_in_bytes(), R19_method);
1866       cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic);
1867       cmpwi(CCR1, tmp1, Bytecodes::_invokehandle);
1868       cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
1869       cmpwi(CCR1, tmp2, vmIntrinsics::_compiledLambdaForm);
1870       cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
1871       bne(CCR0, profile_continue);
1872     }
1873 
1874     profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2);
1875 
1876     align(32, 12);
1877     bind(profile_continue);
1878   }
1879 }
1880 
1881 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
1882   if (ProfileInterpreter && MethodData::profile_parameters()) {
1883     Label profile_continue, done;
1884 
1885     test_method_data_pointer(profile_continue);
1886 
1887     // Load the offset of the area within the MDO used for
1888     // parameters. If it's negative we're not profiling any parameters.
1889     lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx);
1890     cmpwi(CCR0, tmp1, 0);
1891     blt(CCR0, profile_continue);
1892 
1893     // Compute a pointer to the area for parameters from the offset
1894     // and move the pointer to the slot for the last
1895     // parameters. Collect profiling from last parameter down.
1896     // mdo start + parameters offset + array length - 1
1897 
1898     // Pointer to the parameter area in the MDO.
1899     const Register mdp = tmp1;
1900     add(mdp, tmp1, R28_mdx);
1901 
1902     // Pffset of the current profile entry to update.
1903     const Register entry_offset = tmp2;
1904     // entry_offset = array len in number of cells
1905     ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp);
1906 
1907     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1908     assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
1909 
1910     // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
1911     addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size));
1912     // entry_offset in bytes
1913     sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
1914 
1915     Label loop;
1916     align(32, 12);
1917     bind(loop);
1918 
1919     // Load offset on the stack from the slot for this parameter.
1920     ld(tmp3, entry_offset, mdp);
1921     sldi(tmp3, tmp3, Interpreter::logStackElementSize);
1922     neg(tmp3, tmp3);
1923     // Read the parameter from the local area.
1924     ldx(tmp3, tmp3, R18_locals);
1925 
1926     // Make entry_offset now point to the type field for this parameter.
1927     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1928     assert(type_base > off_base, "unexpected");
1929     addi(entry_offset, entry_offset, type_base - off_base);
1930 
1931     // Profile the parameter.
1932     profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3);
1933 
1934     // Go to next parameter.
1935     int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base);
1936     cmpdi(CCR0, entry_offset, off_base + delta);
1937     addi(entry_offset, entry_offset, -delta);
1938     bge(CCR0, loop);
1939 
1940     align(32, 12);
1941     bind(profile_continue);
1942   }
1943 }
1944 
1945 // Add a InterpMonitorElem to stack (see frame_sparc.hpp).
1946 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) {
1947 
1948   // Very-local scratch registers.
1949   const Register esp  = Rtemp1;
1950   const Register slot = Rtemp2;
1951 
1952   // Extracted monitor_size.
1953   int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
1954   assert(Assembler::is_aligned((unsigned int)monitor_size,
1955                                (unsigned int)frame::alignment_in_bytes),
1956          "size of a monitor must respect alignment of SP");
1957 
1958   resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor
1959   std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp
1960 
1961   // Shuffle expression stack down. Recall that stack_base points
1962   // just above the new expression stack bottom. Old_tos and new_tos
1963   // are used to scan thru the old and new expression stacks.
1964   if (!stack_is_empty) {
1965     Label copy_slot, copy_slot_finished;
1966     const Register n_slots = slot;
1967 
1968     addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack).
1969     subf(n_slots, esp, R26_monitor);
1970     srdi_(n_slots, n_slots, LogBytesPerWord);          // Compute number of slots to copy.
1971     assert(LogBytesPerWord == 3, "conflicts assembler instructions");
1972     beq(CCR0, copy_slot_finished);                     // Nothing to copy.
1973 
1974     mtctr(n_slots);
1975 
1976     // loop
1977     bind(copy_slot);
1978     ld(slot, 0, esp);              // Move expression stack down.
1979     std(slot, -monitor_size, esp); // distance = monitor_size
1980     addi(esp, esp, BytesPerWord);
1981     bdnz(copy_slot);
1982 
1983     bind(copy_slot_finished);
1984   }
1985 
1986   addi(R15_esp, R15_esp, -monitor_size);
1987   addi(R26_monitor, R26_monitor, -monitor_size);
1988 
1989   // Restart interpreter
1990 }
1991 
1992 // ============================================================================
1993 // Java locals access
1994 
1995 // Load a local variable at index in Rindex into register Rdst_value.
1996 // Also puts address of local into Rdst_address as a service.
1997 // Kills:
1998 //   - Rdst_value
1999 //   - Rdst_address
2000 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) {
2001   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2002   subf(Rdst_address, Rdst_address, R18_locals);
2003   lwz(Rdst_value, 0, Rdst_address);
2004 }
2005 
2006 // Load a local variable at index in Rindex into register Rdst_value.
2007 // Also puts address of local into Rdst_address as a service.
2008 // Kills:
2009 //   - Rdst_value
2010 //   - Rdst_address
2011 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) {
2012   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2013   subf(Rdst_address, Rdst_address, R18_locals);
2014   ld(Rdst_value, -8, Rdst_address);
2015 }
2016 
2017 // Load a local variable at index in Rindex into register Rdst_value.
2018 // Also puts address of local into Rdst_address as a service.
2019 // Input:
2020 //   - Rindex:      slot nr of local variable
2021 // Kills:
2022 //   - Rdst_value
2023 //   - Rdst_address
2024 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, Register Rdst_address, Register Rindex) {
2025   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2026   subf(Rdst_address, Rdst_address, R18_locals);
2027   ld(Rdst_value, 0, Rdst_address);
2028 }
2029 
2030 // Load a local variable at index in Rindex into register Rdst_value.
2031 // Also puts address of local into Rdst_address as a service.
2032 // Kills:
2033 //   - Rdst_value
2034 //   - Rdst_address
2035 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
2036   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2037   subf(Rdst_address, Rdst_address, R18_locals);
2038   lfs(Rdst_value, 0, Rdst_address);
2039 }
2040 
2041 // Load a local variable at index in Rindex into register Rdst_value.
2042 // Also puts address of local into Rdst_address as a service.
2043 // Kills:
2044 //   - Rdst_value
2045 //   - Rdst_address
2046 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
2047   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2048   subf(Rdst_address, Rdst_address, R18_locals);
2049   lfd(Rdst_value, -8, Rdst_address);
2050 }
2051 
2052 // Store an int value at local variable slot Rindex.
2053 // Kills:
2054 //   - Rindex
2055 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) {
2056   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2057   subf(Rindex, Rindex, R18_locals);
2058   stw(Rvalue, 0, Rindex);
2059 }
2060 
2061 // Store a long value at local variable slot Rindex.
2062 // Kills:
2063 //   - Rindex
2064 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) {
2065   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2066   subf(Rindex, Rindex, R18_locals);
2067   std(Rvalue, -8, Rindex);
2068 }
2069 
2070 // Store an oop value at local variable slot Rindex.
2071 // Kills:
2072 //   - Rindex
2073 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) {
2074   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2075   subf(Rindex, Rindex, R18_locals);
2076   std(Rvalue, 0, Rindex);
2077 }
2078 
2079 // Store an int value at local variable slot Rindex.
2080 // Kills:
2081 //   - Rindex
2082 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) {
2083   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2084   subf(Rindex, Rindex, R18_locals);
2085   stfs(Rvalue, 0, Rindex);
2086 }
2087 
2088 // Store an int value at local variable slot Rindex.
2089 // Kills:
2090 //   - Rindex
2091 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) {
2092   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2093   subf(Rindex, Rindex, R18_locals);
2094   stfd(Rvalue, -8, Rindex);
2095 }
2096 
2097 // Read pending exception from thread and jump to interpreter.
2098 // Throw exception entry if one if pending. Fall through otherwise.
2099 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) {
2100   assert_different_registers(Rscratch1, Rscratch2, R3);
2101   Register Rexception = Rscratch1;
2102   Register Rtmp       = Rscratch2;
2103   Label Ldone;
2104   // Get pending exception oop.
2105   ld(Rexception, thread_(pending_exception));
2106   cmpdi(CCR0, Rexception, 0);
2107   beq(CCR0, Ldone);
2108   li(Rtmp, 0);
2109   mr_if_needed(R3, Rexception);
2110   std(Rtmp, thread_(pending_exception)); // Clear exception in thread
2111   if (Interpreter::rethrow_exception_entry() != NULL) {
2112     // Already got entry address.
2113     load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry());
2114   } else {
2115     // Dynamically load entry address.
2116     int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true);
2117     ld(Rtmp, simm16_rest, Rtmp);
2118   }
2119   mtctr(Rtmp);
2120   save_interpreter_state(Rtmp);
2121   bctr();
2122 
2123   align(32, 12);
2124   bind(Ldone);
2125 }
2126 
2127 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
2128   save_interpreter_state(R11_scratch1);
2129 
2130   MacroAssembler::call_VM(oop_result, entry_point, false);
2131 
2132   restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2133 
2134   check_and_handle_popframe(R11_scratch1);
2135   check_and_handle_earlyret(R11_scratch1);
2136   // Now check exceptions manually.
2137   if (check_exceptions) {
2138     check_and_forward_exception(R11_scratch1, R12_scratch2);
2139   }
2140 }
2141 
2142 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
2143   // ARG1 is reserved for the thread.
2144   mr_if_needed(R4_ARG2, arg_1);
2145   call_VM(oop_result, entry_point, check_exceptions);
2146 }
2147 
2148 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
2149   // ARG1 is reserved for the thread.
2150   mr_if_needed(R4_ARG2, arg_1);
2151   assert(arg_2 != R4_ARG2, "smashed argument");
2152   mr_if_needed(R5_ARG3, arg_2);
2153   call_VM(oop_result, entry_point, check_exceptions);
2154 }
2155 
2156 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
2157   // ARG1 is reserved for the thread.
2158   mr_if_needed(R4_ARG2, arg_1);
2159   assert(arg_2 != R4_ARG2, "smashed argument");
2160   mr_if_needed(R5_ARG3, arg_2);
2161   assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument");
2162   mr_if_needed(R6_ARG4, arg_3);
2163   call_VM(oop_result, entry_point, check_exceptions);
2164 }
2165 
2166 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) {
2167   ld(scratch, 0, R1_SP);
2168   std(R15_esp, _ijava_state_neg(esp), scratch);
2169   std(R14_bcp, _ijava_state_neg(bcp), scratch);
2170   std(R26_monitor, _ijava_state_neg(monitors), scratch);
2171   if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); }
2172   // Other entries should be unchanged.
2173 }
2174 
2175 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) {
2176   ld(scratch, 0, R1_SP);
2177   ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception).
2178   if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code.
2179   if (!bcp_and_mdx_only) {
2180     // Following ones are Metadata.
2181     ld(R19_method, _ijava_state_neg(method), scratch);
2182     ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch);
2183     // Following ones are stack addresses and don't require reload.
2184     ld(R15_esp, _ijava_state_neg(esp), scratch);
2185     ld(R18_locals, _ijava_state_neg(locals), scratch);
2186     ld(R26_monitor, _ijava_state_neg(monitors), scratch);
2187   }
2188 #ifdef ASSERT
2189   {
2190     Label Lok;
2191     subf(R0, R1_SP, scratch);
2192     cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size);
2193     bge(CCR0, Lok);
2194     stop("frame too small (restore istate)", 0x5432);
2195     bind(Lok);
2196   }
2197   {
2198     Label Lok;
2199     ld(R0, _ijava_state_neg(ijava_reserved), scratch);
2200     cmpdi(CCR0, R0, 0x5afe);
2201     beq(CCR0, Lok);
2202     stop("frame corrupted (restore istate)", 0x5afe);
2203     bind(Lok);
2204   }
2205 #endif
2206 }
2207 
2208 #endif // !CC_INTERP
2209 
2210 void InterpreterMacroAssembler::get_method_counters(Register method,
2211                                                     Register Rcounters,
2212                                                     Label& skip) {
2213   BLOCK_COMMENT("Load and ev. allocate counter object {");
2214   Label has_counters;
2215   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
2216   cmpdi(CCR0, Rcounters, 0);
2217   bne(CCR0, has_counters);
2218   call_VM(noreg, CAST_FROM_FN_PTR(address,
2219                                   InterpreterRuntime::build_method_counters), method, false);
2220   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
2221   cmpdi(CCR0, Rcounters, 0);
2222   beq(CCR0, skip); // No MethodCounters, OutOfMemory.
2223   BLOCK_COMMENT("} Load and ev. allocate counter object");
2224 
2225   bind(has_counters);
2226 }
2227 
2228 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register iv_be_count, Register Rtmp_r0) {
2229   assert(UseCompiler, "incrementing must be useful");
2230   Register invocation_count = iv_be_count;
2231   Register backedge_count   = Rtmp_r0;
2232   int delta = InvocationCounter::count_increment;
2233 
2234   // Load each counter in a register.
2235   //  ld(inv_counter, Rtmp);
2236   //  ld(be_counter, Rtmp2);
2237   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() +
2238                                     InvocationCounter::counter_offset());
2239   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset() +
2240                                     InvocationCounter::counter_offset());
2241 
2242   BLOCK_COMMENT("Increment profiling counters {");
2243 
2244   // Load the backedge counter.
2245   lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int
2246   // Mask the backedge counter.
2247   Register tmp = invocation_count;
2248   li(tmp, InvocationCounter::count_mask_value);
2249   andr(backedge_count, tmp, backedge_count); // Cannot use andi, need sign extension of count_mask_value.
2250 
2251   // Load the invocation counter.
2252   lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int
2253   // Add the delta to the invocation counter and store the result.
2254   addi(invocation_count, invocation_count, delta);
2255   // Store value.
2256   stw(invocation_count, inv_counter_offset, Rcounters);
2257 
2258   // Add invocation counter + backedge counter.
2259   add(iv_be_count, backedge_count, invocation_count);
2260 
2261   // Note that this macro must leave the backedge_count + invocation_count in
2262   // register iv_be_count!
2263   BLOCK_COMMENT("} Increment profiling counters");
2264 }
2265 
2266 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
2267   if (state == atos) { MacroAssembler::verify_oop(reg); }
2268 }
2269 
2270 #ifndef CC_INTERP
2271 // Local helper function for the verify_oop_or_return_address macro.
2272 static bool verify_return_address(Method* m, int bci) {
2273 #ifndef PRODUCT
2274   address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci;
2275   // Assume it is a valid return address if it is inside m and is preceded by a jsr.
2276   if (!m->contains(pc))                                            return false;
2277   address jsr_pc;
2278   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2279   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2280   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2281   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2282 #endif // PRODUCT
2283   return false;
2284 }
2285 
2286 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2287   if (VerifyFPU) {
2288     unimplemented("verfiyFPU");
2289   }
2290 }
2291 
2292 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2293   if (!VerifyOops) return;
2294 
2295   // The VM documentation for the astore[_wide] bytecode allows
2296   // the TOS to be not only an oop but also a return address.
2297   Label test;
2298   Label skip;
2299   // See if it is an address (in the current method):
2300 
2301   const int log2_bytecode_size_limit = 16;
2302   srdi_(Rtmp, reg, log2_bytecode_size_limit);
2303   bne(CCR0, test);
2304 
2305   address fd = CAST_FROM_FN_PTR(address, verify_return_address);
2306   const int nbytes_save = 11*8; // volatile gprs except R0
2307   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
2308   save_LR_CR(Rtmp); // Save in old frame.
2309   push_frame_reg_args(nbytes_save, Rtmp);
2310 
2311   load_const_optimized(Rtmp, fd, R0);
2312   mr_if_needed(R4_ARG2, reg);
2313   mr(R3_ARG1, R19_method);
2314   call_c(Rtmp); // call C
2315 
2316   pop_frame();
2317   restore_LR_CR(Rtmp);
2318   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
2319   b(skip);
2320 
2321   // Perform a more elaborate out-of-line call.
2322   // Not an address; verify it:
2323   bind(test);
2324   verify_oop(reg);
2325   bind(skip);
2326 }
2327 #endif // !CC_INTERP
2328 
2329 // Inline assembly for:
2330 //
2331 // if (thread is in interp_only_mode) {
2332 //   InterpreterRuntime::post_method_entry();
2333 // }
2334 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) ||
2335 //     *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2)   ) {
2336 //   SharedRuntime::jvmpi_method_entry(method, receiver);
2337 // }
2338 void InterpreterMacroAssembler::notify_method_entry() {
2339   // JVMTI
2340   // Whenever JVMTI puts a thread in interp_only_mode, method
2341   // entry/exit events are sent for that thread to track stack
2342   // depth. If it is possible to enter interp_only_mode we add
2343   // the code to check if the event should be sent.
2344   if (JvmtiExport::can_post_interpreter_events()) {
2345     Label jvmti_post_done;
2346 
2347     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2348     cmpwi(CCR0, R0, 0);
2349     beq(CCR0, jvmti_post_done);
2350     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry),
2351             /*check_exceptions=*/true CC_INTERP_ONLY(&& false));
2352 
2353     bind(jvmti_post_done);
2354   }
2355 }
2356 
2357 // Inline assembly for:
2358 //
2359 // if (thread is in interp_only_mode) {
2360 //   // save result
2361 //   InterpreterRuntime::post_method_exit();
2362 //   // restore result
2363 // }
2364 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) {
2365 //   // save result
2366 //   SharedRuntime::jvmpi_method_exit();
2367 //   // restore result
2368 // }
2369 //
2370 // Native methods have their result stored in d_tmp and l_tmp.
2371 // Java methods have their result stored in the expression stack.
2372 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state,
2373                                                    NotifyMethodExitMode mode, bool check_exceptions) {
2374   // JVMTI
2375   // Whenever JVMTI puts a thread in interp_only_mode, method
2376   // entry/exit events are sent for that thread to track stack
2377   // depth. If it is possible to enter interp_only_mode we add
2378   // the code to check if the event should be sent.
2379   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2380     Label jvmti_post_done;
2381 
2382     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2383     cmpwi(CCR0, R0, 0);
2384     beq(CCR0, jvmti_post_done);
2385     CC_INTERP_ONLY(assert(is_native_method && !check_exceptions, "must not push state"));
2386     if (!is_native_method) push(state); // Expose tos to GC.
2387     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit),
2388             /*check_exceptions=*/check_exceptions);
2389     if (!is_native_method) pop(state);
2390 
2391     align(32, 12);
2392     bind(jvmti_post_done);
2393   }
2394 
2395   // Dtrace support not implemented.
2396 }
2397 
2398 #ifdef CC_INTERP
2399 // Convert the current TOP_IJAVA_FRAME into a PARENT_IJAVA_FRAME
2400 // (using parent_frame_resize) and push a new interpreter
2401 // TOP_IJAVA_FRAME (using frame_size).
2402 void InterpreterMacroAssembler::push_interpreter_frame(Register top_frame_size, Register parent_frame_resize,
2403                                                        Register tmp1, Register tmp2, Register tmp3,
2404                                                        Register tmp4, Register pc) {
2405   assert_different_registers(top_frame_size, parent_frame_resize, tmp1, tmp2, tmp3, tmp4);
2406   ld(tmp1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2407   mr(tmp2/*top_frame_sp*/, R1_SP);
2408   // Move initial_caller_sp.
2409   ld(tmp4, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2410   neg(parent_frame_resize, parent_frame_resize);
2411   resize_frame(parent_frame_resize/*-parent_frame_resize*/, tmp3);
2412 
2413   // Set LR in new parent frame.
2414   std(tmp1, _abi(lr), R1_SP);
2415   // Set top_frame_sp info for new parent frame.
2416   std(tmp2, _parent_ijava_frame_abi(top_frame_sp), R1_SP);
2417   std(tmp4, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
2418 
2419   // Push new TOP_IJAVA_FRAME.
2420   push_frame(top_frame_size, tmp2);
2421 
2422   get_PC_trash_LR(tmp3);
2423   std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2424   // Used for non-initial callers by unextended_sp().
2425   std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2426 }
2427 
2428 // Pop the topmost TOP_IJAVA_FRAME and convert the previous
2429 // PARENT_IJAVA_FRAME back into a TOP_IJAVA_FRAME.
2430 void InterpreterMacroAssembler::pop_interpreter_frame(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
2431   assert_different_registers(tmp1, tmp2, tmp3, tmp4);
2432 
2433   ld(tmp1/*caller's sp*/, _abi(callers_sp), R1_SP);
2434   ld(tmp3, _abi(lr), tmp1);
2435 
2436   ld(tmp4, _parent_ijava_frame_abi(initial_caller_sp), tmp1);
2437 
2438   ld(tmp2/*caller's caller's sp*/, _abi(callers_sp), tmp1);
2439   // Merge top frame.
2440   std(tmp2, _abi(callers_sp), R1_SP);
2441 
2442   ld(tmp2, _parent_ijava_frame_abi(top_frame_sp), tmp1);
2443 
2444   // Update C stack pointer to caller's top_abi.
2445   resize_frame_absolute(tmp2/*addr*/, tmp1/*tmp*/, tmp2/*tmp*/);
2446 
2447   // Update LR in top_frame.
2448   std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2449 
2450   std(tmp4, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2451 
2452   // Store the top-frame stack-pointer for c2i adapters.
2453   std(R1_SP, _top_ijava_frame_abi(top_frame_sp), R1_SP);
2454 }
2455 
2456 // Turn state's interpreter frame into the current TOP_IJAVA_FRAME.
2457 void InterpreterMacroAssembler::pop_interpreter_frame_to_state(Register state, Register tmp1, Register tmp2, Register tmp3) {
2458   assert_different_registers(R14_state, R15_prev_state, tmp1, tmp2, tmp3);
2459 
2460   if (state == R14_state) {
2461     ld(tmp1/*state's fp*/, state_(_last_Java_fp));
2462     ld(tmp2/*state's sp*/, state_(_last_Java_sp));
2463   } else if (state == R15_prev_state) {
2464     ld(tmp1/*state's fp*/, prev_state_(_last_Java_fp));
2465     ld(tmp2/*state's sp*/, prev_state_(_last_Java_sp));
2466   } else {
2467     ShouldNotReachHere();
2468   }
2469 
2470   // Merge top frames.
2471   std(tmp1, _abi(callers_sp), R1_SP);
2472 
2473   // Tmp2 is new SP.
2474   // Tmp1 is parent's SP.
2475   resize_frame_absolute(tmp2/*addr*/, tmp1/*tmp*/, tmp2/*tmp*/);
2476 
2477   // Update LR in top_frame.
2478   // Must be interpreter frame.
2479   get_PC_trash_LR(tmp3);
2480   std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2481   // Used for non-initial callers by unextended_sp().
2482   std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2483 }
2484 
2485 // Set SP to initial caller's sp, but before fix the back chain.
2486 void InterpreterMacroAssembler::resize_frame_to_initial_caller(Register tmp1, Register tmp2) {
2487   ld(tmp1, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
2488   ld(tmp2, _parent_ijava_frame_abi(callers_sp), R1_SP);
2489   std(tmp2, _parent_ijava_frame_abi(callers_sp), tmp1); // Fix back chain ...
2490   mr(R1_SP, tmp1); // ... and resize to initial caller.
2491 }
2492 
2493 // Pop the current interpreter state (without popping the correspoding
2494 // frame) and restore R14_state and R15_prev_state accordingly.
2495 // Use prev_state_may_be_0 to indicate whether prev_state may be 0
2496 // in order to generate an extra check before retrieving prev_state_(_prev_link).
2497 void InterpreterMacroAssembler::pop_interpreter_state(bool prev_state_may_be_0)
2498 {
2499   // Move prev_state to state and restore prev_state from state_(_prev_link).
2500   Label prev_state_is_0;
2501   mr(R14_state, R15_prev_state);
2502 
2503   // Don't retrieve /*state==*/prev_state_(_prev_link)
2504   // if /*state==*/prev_state is 0.
2505   if (prev_state_may_be_0) {
2506     cmpdi(CCR0, R15_prev_state, 0);
2507     beq(CCR0, prev_state_is_0);
2508   }
2509 
2510   ld(R15_prev_state, /*state==*/prev_state_(_prev_link));
2511   bind(prev_state_is_0);
2512 }
2513 
2514 void InterpreterMacroAssembler::restore_prev_state() {
2515   // _prev_link is private, but cInterpreter is a friend.
2516   ld(R15_prev_state, state_(_prev_link));
2517 }
2518 #endif // CC_INTERP