1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/debug.hpp"
  35 #include "utilities/events.hpp"
  36 #include "utilities/formatBuffer.hpp"
  37 #include "utilities/growableArray.hpp"
  38 
  39 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  40 // is an abstract class: there may be many different kinds of heaps.  This
  41 // class defines the functions that a heap must implement, and contains
  42 // infrastructure common to all heaps.
  43 
  44 class AdaptiveSizePolicy;
  45 class BarrierSet;
  46 class CollectorPolicy;
  47 class GCHeapSummary;
  48 class GCTimer;
  49 class GCTracer;
  50 class GCMemoryManager;
  51 class MemoryPool;
  52 class MetaspaceSummary;
  53 class SoftRefPolicy;
  54 class Thread;
  55 class ThreadClosure;
  56 class VirtualSpaceSummary;
  57 class WorkGang;
  58 class nmethod;
  59 
  60 class GCMessage : public FormatBuffer<1024> {
  61  public:
  62   bool is_before;
  63 
  64  public:
  65   GCMessage() {}
  66 };
  67 
  68 class CollectedHeap;
  69 
  70 class GCHeapLog : public EventLogBase<GCMessage> {
  71  private:
  72   void log_heap(CollectedHeap* heap, bool before);
  73 
  74  public:
  75   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  76 
  77   void log_heap_before(CollectedHeap* heap) {
  78     log_heap(heap, true);
  79   }
  80   void log_heap_after(CollectedHeap* heap) {
  81     log_heap(heap, false);
  82   }
  83 };
  84 
  85 //
  86 // CollectedHeap
  87 //   GenCollectedHeap
  88 //     SerialHeap
  89 //     CMSHeap
  90 //   G1CollectedHeap
  91 //   ParallelScavengeHeap
  92 //
  93 class CollectedHeap : public CHeapObj<mtInternal> {
  94   friend class VMStructs;
  95   friend class JVMCIVMStructs;
  96   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  97 
  98  private:
  99 #ifdef ASSERT
 100   static int       _fire_out_of_memory_count;
 101 #endif
 102 
 103   GCHeapLog* _gc_heap_log;
 104 
 105   MemRegion _reserved;
 106 
 107  protected:
 108   bool _is_gc_active;
 109 
 110   // Used for filler objects (static, but initialized in ctor).
 111   static size_t _filler_array_max_size;
 112 
 113   unsigned int _total_collections;          // ... started
 114   unsigned int _total_full_collections;     // ... started
 115   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 116   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 117 
 118   // Reason for current garbage collection.  Should be set to
 119   // a value reflecting no collection between collections.
 120   GCCause::Cause _gc_cause;
 121   GCCause::Cause _gc_lastcause;
 122   PerfStringVariable* _perf_gc_cause;
 123   PerfStringVariable* _perf_gc_lastcause;
 124 
 125   // Constructor
 126   CollectedHeap();
 127 
 128   // Create a new tlab. All TLAB allocations must go through this.
 129   // To allow more flexible TLAB allocations min_size specifies
 130   // the minimum size needed, while requested_size is the requested
 131   // size based on ergonomics. The actually allocated size will be
 132   // returned in actual_size.
 133   virtual HeapWord* allocate_new_tlab(size_t min_size,
 134                                       size_t requested_size,
 135                                       size_t* actual_size);
 136 
 137   // Accumulate statistics on all tlabs.
 138   virtual void accumulate_statistics_all_tlabs();
 139 
 140   // Reinitialize tlabs before resuming mutators.
 141   virtual void resize_all_tlabs();
 142 
 143   // Allocate from the current thread's TLAB, with broken-out slow path.
 144   inline static HeapWord* allocate_from_tlab(Klass* klass, size_t size, TRAPS);
 145   static HeapWord* allocate_from_tlab_slow(Klass* klass, size_t size, TRAPS);
 146 
 147   inline static HeapWord* allocate_outside_tlab(Klass* klass, size_t size,
 148                                                 bool* gc_overhead_limit_was_exceeded, TRAPS);
 149 
 150   // Raw memory allocation facilities
 151   // The obj and array allocate methods are covers for these methods.
 152   // mem_allocate() should never be
 153   // called to allocate TLABs, only individual objects.
 154   virtual HeapWord* mem_allocate(size_t size,
 155                                  bool* gc_overhead_limit_was_exceeded) = 0;
 156 
 157   // Allocate an uninitialized block of the given size, or returns NULL if
 158   // this is impossible.
 159   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
 160 
 161   // Like allocate_init, but the block returned by a successful allocation
 162   // is guaranteed initialized to zeros.
 163   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
 164 
 165   // Helper functions for (VM) allocation.
 166   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
 167   inline static void post_allocation_setup_no_klass_install(Klass* klass,
 168                                                             HeapWord* objPtr);
 169 
 170   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
 171 
 172   inline static void post_allocation_setup_array(Klass* klass,
 173                                                  HeapWord* obj, int length);
 174 
 175   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
 176 
 177   // Clears an allocated object.
 178   inline static void init_obj(HeapWord* obj, size_t size);
 179 
 180   // Filler object utilities.
 181   static inline size_t filler_array_hdr_size();
 182   static inline size_t filler_array_min_size();
 183 
 184   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 185   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 186 
 187   // Fill with a single array; caller must ensure filler_array_min_size() <=
 188   // words <= filler_array_max_size().
 189   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 190 
 191   // Fill with a single object (either an int array or a java.lang.Object).
 192   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 193 
 194   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 195 
 196   // Verification functions
 197   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 198     PRODUCT_RETURN;
 199   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 200     PRODUCT_RETURN;
 201   debug_only(static void check_for_valid_allocation_state();)
 202 
 203  public:
 204   enum Name {
 205     None,
 206     Serial,
 207     Parallel,
 208     CMS,
 209     G1,
 210     Epsilon,
 211   };
 212 
 213   static inline size_t filler_array_max_size() {
 214     return _filler_array_max_size;
 215   }
 216 
 217   virtual Name kind() const = 0;
 218 
 219   virtual const char* name() const = 0;
 220 
 221   /**
 222    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 223    * and JNI_OK on success.
 224    */
 225   virtual jint initialize() = 0;
 226 
 227   // In many heaps, there will be a need to perform some initialization activities
 228   // after the Universe is fully formed, but before general heap allocation is allowed.
 229   // This is the correct place to place such initialization methods.
 230   virtual void post_initialize();
 231 
 232   // Stop any onging concurrent work and prepare for exit.
 233   virtual void stop() {}
 234 
 235   // Stop and resume concurrent GC threads interfering with safepoint operations
 236   virtual void safepoint_synchronize_begin() {}
 237   virtual void safepoint_synchronize_end() {}
 238 
 239   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 240   MemRegion reserved_region() const { return _reserved; }
 241   address base() const { return (address)reserved_region().start(); }
 242 
 243   virtual size_t capacity() const = 0;
 244   virtual size_t used() const = 0;
 245 
 246   // Return "true" if the part of the heap that allocates Java
 247   // objects has reached the maximal committed limit that it can
 248   // reach, without a garbage collection.
 249   virtual bool is_maximal_no_gc() const = 0;
 250 
 251   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 252   // memory that the vm could make available for storing 'normal' java objects.
 253   // This is based on the reserved address space, but should not include space
 254   // that the vm uses internally for bookkeeping or temporary storage
 255   // (e.g., in the case of the young gen, one of the survivor
 256   // spaces).
 257   virtual size_t max_capacity() const = 0;
 258 
 259   // Returns "TRUE" if "p" points into the reserved area of the heap.
 260   bool is_in_reserved(const void* p) const {
 261     return _reserved.contains(p);
 262   }
 263 
 264   bool is_in_reserved_or_null(const void* p) const {
 265     return p == NULL || is_in_reserved(p);
 266   }
 267 
 268   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 269   // This method can be expensive so avoid using it in performance critical
 270   // code.
 271   virtual bool is_in(const void* p) const = 0;
 272 
 273   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 274 
 275   // Let's define some terms: a "closed" subset of a heap is one that
 276   //
 277   // 1) contains all currently-allocated objects, and
 278   //
 279   // 2) is closed under reference: no object in the closed subset
 280   //    references one outside the closed subset.
 281   //
 282   // Membership in a heap's closed subset is useful for assertions.
 283   // Clearly, the entire heap is a closed subset, so the default
 284   // implementation is to use "is_in_reserved".  But this may not be too
 285   // liberal to perform useful checking.  Also, the "is_in" predicate
 286   // defines a closed subset, but may be too expensive, since "is_in"
 287   // verifies that its argument points to an object head.  The
 288   // "closed_subset" method allows a heap to define an intermediate
 289   // predicate, allowing more precise checking than "is_in_reserved" at
 290   // lower cost than "is_in."
 291 
 292   // One important case is a heap composed of disjoint contiguous spaces,
 293   // such as the Garbage-First collector.  Such heaps have a convenient
 294   // closed subset consisting of the allocated portions of those
 295   // contiguous spaces.
 296 
 297   // Return "TRUE" iff the given pointer points into the heap's defined
 298   // closed subset (which defaults to the entire heap).
 299   virtual bool is_in_closed_subset(const void* p) const {
 300     return is_in_reserved(p);
 301   }
 302 
 303   bool is_in_closed_subset_or_null(const void* p) const {
 304     return p == NULL || is_in_closed_subset(p);
 305   }
 306 
 307   void set_gc_cause(GCCause::Cause v) {
 308      if (UsePerfData) {
 309        _gc_lastcause = _gc_cause;
 310        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 311        _perf_gc_cause->set_value(GCCause::to_string(v));
 312      }
 313     _gc_cause = v;
 314   }
 315   GCCause::Cause gc_cause() { return _gc_cause; }
 316 
 317   // General obj/array allocation facilities.
 318   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
 319   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
 320   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
 321   inline static oop class_allocate(Klass* klass, int size, TRAPS);
 322 
 323   // Raw memory allocation. This may or may not use TLAB allocations to satisfy the
 324   // allocation. A GC implementation may override this function to satisfy the allocation
 325   // in any way. But the default is to try a TLAB allocation, and otherwise perform
 326   // mem_allocate.
 327   virtual HeapWord* obj_allocate_raw(Klass* klass, size_t size,
 328                                      bool* gc_overhead_limit_was_exceeded, TRAPS);
 329 
 330   // Utilities for turning raw memory into filler objects.
 331   //
 332   // min_fill_size() is the smallest region that can be filled.
 333   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 334   // multiple objects.  fill_with_object() is for regions known to be smaller
 335   // than the largest array of integers; it uses a single object to fill the
 336   // region and has slightly less overhead.
 337   static size_t min_fill_size() {
 338     return size_t(align_object_size(oopDesc::header_size()));
 339   }
 340 
 341   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 342 
 343   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 344   static void fill_with_object(MemRegion region, bool zap = true) {
 345     fill_with_object(region.start(), region.word_size(), zap);
 346   }
 347   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 348     fill_with_object(start, pointer_delta(end, start), zap);
 349   }
 350 
 351   // Return the address "addr" aligned by "alignment_in_bytes" if such
 352   // an address is below "end".  Return NULL otherwise.
 353   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 354                                                    HeapWord* end,
 355                                                    unsigned short alignment_in_bytes);
 356 
 357   // Some heaps may offer a contiguous region for shared non-blocking
 358   // allocation, via inlined code (by exporting the address of the top and
 359   // end fields defining the extent of the contiguous allocation region.)
 360 
 361   // This function returns "true" iff the heap supports this kind of
 362   // allocation.  (Default is "no".)
 363   virtual bool supports_inline_contig_alloc() const {
 364     return false;
 365   }
 366   // These functions return the addresses of the fields that define the
 367   // boundaries of the contiguous allocation area.  (These fields should be
 368   // physically near to one another.)
 369   virtual HeapWord* volatile* top_addr() const {
 370     guarantee(false, "inline contiguous allocation not supported");
 371     return NULL;
 372   }
 373   virtual HeapWord** end_addr() const {
 374     guarantee(false, "inline contiguous allocation not supported");
 375     return NULL;
 376   }
 377 
 378   // Some heaps may be in an unparseable state at certain times between
 379   // collections. This may be necessary for efficient implementation of
 380   // certain allocation-related activities. Calling this function before
 381   // attempting to parse a heap ensures that the heap is in a parsable
 382   // state (provided other concurrent activity does not introduce
 383   // unparsability). It is normally expected, therefore, that this
 384   // method is invoked with the world stopped.
 385   // NOTE: if you override this method, make sure you call
 386   // super::ensure_parsability so that the non-generational
 387   // part of the work gets done. See implementation of
 388   // CollectedHeap::ensure_parsability and, for instance,
 389   // that of GenCollectedHeap::ensure_parsability().
 390   // The argument "retire_tlabs" controls whether existing TLABs
 391   // are merely filled or also retired, thus preventing further
 392   // allocation from them and necessitating allocation of new TLABs.
 393   virtual void ensure_parsability(bool retire_tlabs);
 394 
 395   // Section on thread-local allocation buffers (TLABs)
 396   // If the heap supports thread-local allocation buffers, it should override
 397   // the following methods:
 398   // Returns "true" iff the heap supports thread-local allocation buffers.
 399   // The default is "no".
 400   virtual bool supports_tlab_allocation() const = 0;
 401 
 402   // The amount of space available for thread-local allocation buffers.
 403   virtual size_t tlab_capacity(Thread *thr) const = 0;
 404 
 405   // The amount of used space for thread-local allocation buffers for the given thread.
 406   virtual size_t tlab_used(Thread *thr) const = 0;
 407 
 408   virtual size_t max_tlab_size() const;
 409 
 410   // An estimate of the maximum allocation that could be performed
 411   // for thread-local allocation buffers without triggering any
 412   // collection or expansion activity.
 413   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 414     guarantee(false, "thread-local allocation buffers not supported");
 415     return 0;
 416   }
 417 
 418   // Perform a collection of the heap; intended for use in implementing
 419   // "System.gc".  This probably implies as full a collection as the
 420   // "CollectedHeap" supports.
 421   virtual void collect(GCCause::Cause cause) = 0;
 422 
 423   // Perform a full collection
 424   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 425 
 426   // This interface assumes that it's being called by the
 427   // vm thread. It collects the heap assuming that the
 428   // heap lock is already held and that we are executing in
 429   // the context of the vm thread.
 430   virtual void collect_as_vm_thread(GCCause::Cause cause);
 431 
 432   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 433                                                        size_t size,
 434                                                        Metaspace::MetadataType mdtype);
 435 
 436   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 437   // that it should answer "false" for the concurrent part of a concurrent
 438   // collector -- dld).
 439   bool is_gc_active() const { return _is_gc_active; }
 440 
 441   // Total number of GC collections (started)
 442   unsigned int total_collections() const { return _total_collections; }
 443   unsigned int total_full_collections() const { return _total_full_collections;}
 444 
 445   // Increment total number of GC collections (started)
 446   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 447   void increment_total_collections(bool full = false) {
 448     _total_collections++;
 449     if (full) {
 450       increment_total_full_collections();
 451     }
 452   }
 453 
 454   void increment_total_full_collections() { _total_full_collections++; }
 455 
 456   // Return the CollectorPolicy for the heap
 457   virtual CollectorPolicy* collector_policy() const = 0;
 458 
 459   // Return the SoftRefPolicy for the heap;
 460   virtual SoftRefPolicy* soft_ref_policy() = 0;
 461 
 462   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
 463   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
 464 
 465   // Iterate over all objects, calling "cl.do_object" on each.
 466   virtual void object_iterate(ObjectClosure* cl) = 0;
 467 
 468   // Similar to object_iterate() except iterates only
 469   // over live objects.
 470   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 471 
 472   // NOTE! There is no requirement that a collector implement these
 473   // functions.
 474   //
 475   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 476   // each address in the (reserved) heap is a member of exactly
 477   // one block.  The defining characteristic of a block is that it is
 478   // possible to find its size, and thus to progress forward to the next
 479   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 480   // represent Java objects, or they might be free blocks in a
 481   // free-list-based heap (or subheap), as long as the two kinds are
 482   // distinguishable and the size of each is determinable.
 483 
 484   // Returns the address of the start of the "block" that contains the
 485   // address "addr".  We say "blocks" instead of "object" since some heaps
 486   // may not pack objects densely; a chunk may either be an object or a
 487   // non-object.
 488   virtual HeapWord* block_start(const void* addr) const = 0;
 489 
 490   // Requires "addr" to be the start of a chunk, and returns its size.
 491   // "addr + size" is required to be the start of a new chunk, or the end
 492   // of the active area of the heap.
 493   virtual size_t block_size(const HeapWord* addr) const = 0;
 494 
 495   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 496   // the block is an object.
 497   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 498 
 499   // Returns the longest time (in ms) that has elapsed since the last
 500   // time that any part of the heap was examined by a garbage collection.
 501   virtual jlong millis_since_last_gc() = 0;
 502 
 503   // Perform any cleanup actions necessary before allowing a verification.
 504   virtual void prepare_for_verify() = 0;
 505 
 506   // Generate any dumps preceding or following a full gc
 507  private:
 508   void full_gc_dump(GCTimer* timer, bool before);
 509 
 510   virtual void initialize_serviceability() = 0;
 511 
 512  public:
 513   void pre_full_gc_dump(GCTimer* timer);
 514   void post_full_gc_dump(GCTimer* timer);
 515 
 516   virtual VirtualSpaceSummary create_heap_space_summary();
 517   GCHeapSummary create_heap_summary();
 518 
 519   MetaspaceSummary create_metaspace_summary();
 520 
 521   // Print heap information on the given outputStream.
 522   virtual void print_on(outputStream* st) const = 0;
 523   // The default behavior is to call print_on() on tty.
 524   virtual void print() const {
 525     print_on(tty);
 526   }
 527   // Print more detailed heap information on the given
 528   // outputStream. The default behavior is to call print_on(). It is
 529   // up to each subclass to override it and add any additional output
 530   // it needs.
 531   virtual void print_extended_on(outputStream* st) const {
 532     print_on(st);
 533   }
 534 
 535   virtual void print_on_error(outputStream* st) const;
 536 
 537   // Print all GC threads (other than the VM thread)
 538   // used by this heap.
 539   virtual void print_gc_threads_on(outputStream* st) const = 0;
 540   // The default behavior is to call print_gc_threads_on() on tty.
 541   void print_gc_threads() {
 542     print_gc_threads_on(tty);
 543   }
 544   // Iterator for all GC threads (other than VM thread)
 545   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 546 
 547   // Print any relevant tracing info that flags imply.
 548   // Default implementation does nothing.
 549   virtual void print_tracing_info() const = 0;
 550 
 551   void print_heap_before_gc();
 552   void print_heap_after_gc();
 553 
 554   // An object is scavengable if its location may move during a scavenge.
 555   // (A scavenge is a GC which is not a full GC.)
 556   virtual bool is_scavengable(oop obj) = 0;
 557   // Registering and unregistering an nmethod (compiled code) with the heap.
 558   // Override with specific mechanism for each specialized heap type.
 559   virtual void register_nmethod(nmethod* nm) {}
 560   virtual void unregister_nmethod(nmethod* nm) {}
 561   virtual void verify_nmethod(nmethod* nmethod) {}
 562 
 563   void trace_heap_before_gc(const GCTracer* gc_tracer);
 564   void trace_heap_after_gc(const GCTracer* gc_tracer);
 565 
 566   // Heap verification
 567   virtual void verify(VerifyOption option) = 0;
 568 
 569   // Return true if concurrent phase control (via
 570   // request_concurrent_phase_control) is supported by this collector.
 571   // The default implementation returns false.
 572   virtual bool supports_concurrent_phase_control() const;
 573 
 574   // Return a NULL terminated array of concurrent phase names provided
 575   // by this collector.  Supports Whitebox testing.  These are the
 576   // names recognized by request_concurrent_phase(). The default
 577   // implementation returns an array of one NULL element.
 578   virtual const char* const* concurrent_phases() const;
 579 
 580   // Request the collector enter the indicated concurrent phase, and
 581   // wait until it does so.  Supports WhiteBox testing.  Only one
 582   // request may be active at a time.  Phases are designated by name;
 583   // the set of names and their meaning is GC-specific.  Once the
 584   // requested phase has been reached, the collector will attempt to
 585   // avoid transitioning to a new phase until a new request is made.
 586   // [Note: A collector might not be able to remain in a given phase.
 587   // For example, a full collection might cancel an in-progress
 588   // concurrent collection.]
 589   //
 590   // Returns true when the phase is reached.  Returns false for an
 591   // unknown phase.  The default implementation returns false.
 592   virtual bool request_concurrent_phase(const char* phase);
 593 
 594   // Provides a thread pool to SafepointSynchronize to use
 595   // for parallel safepoint cleanup.
 596   // GCs that use a GC worker thread pool may want to share
 597   // it for use during safepoint cleanup. This is only possible
 598   // if the GC can pause and resume concurrent work (e.g. G1
 599   // concurrent marking) for an intermittent non-GC safepoint.
 600   // If this method returns NULL, SafepointSynchronize will
 601   // perform cleanup tasks serially in the VMThread.
 602   virtual WorkGang* get_safepoint_workers() { return NULL; }
 603 
 604   // Support for object pinning. This is used by JNI Get*Critical()
 605   // and Release*Critical() family of functions. If supported, the GC
 606   // must guarantee that pinned objects never move.
 607   virtual bool supports_object_pinning() const;
 608   virtual oop pin_object(JavaThread* thread, oop obj);
 609   virtual void unpin_object(JavaThread* thread, oop obj);
 610 
 611   // Deduplicate the string, iff the GC supports string deduplication.
 612   virtual void deduplicate_string(oop str);
 613 
 614   virtual bool is_oop(oop object) const;
 615 
 616   // Non product verification and debugging.
 617 #ifndef PRODUCT
 618   // Support for PromotionFailureALot.  Return true if it's time to cause a
 619   // promotion failure.  The no-argument version uses
 620   // this->_promotion_failure_alot_count as the counter.
 621   bool promotion_should_fail(volatile size_t* count);
 622   bool promotion_should_fail();
 623 
 624   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 625   // GC in which promotion failure occurred.
 626   void reset_promotion_should_fail(volatile size_t* count);
 627   void reset_promotion_should_fail();
 628 #endif  // #ifndef PRODUCT
 629 
 630 #ifdef ASSERT
 631   static int fired_fake_oom() {
 632     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 633   }
 634 #endif
 635 };
 636 
 637 // Class to set and reset the GC cause for a CollectedHeap.
 638 
 639 class GCCauseSetter : StackObj {
 640   CollectedHeap* _heap;
 641   GCCause::Cause _previous_cause;
 642  public:
 643   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 644     _heap = heap;
 645     _previous_cause = _heap->gc_cause();
 646     _heap->set_gc_cause(cause);
 647   }
 648 
 649   ~GCCauseSetter() {
 650     _heap->set_gc_cause(_previous_cause);
 651   }
 652 };
 653 
 654 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP