New Pattern.java
  1 /*
  2  * %W% %E%
  3  *
  4  * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
  5  * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
  6  */
  7 
  8 package java.util.regex;
  9 
 10 import java.security.AccessController;
 11 import java.security.PrivilegedAction;
 12 import java.text.CharacterIterator;
 13 import java.text.Normalizer;
 14 import java.util.ArrayList;
 15 import java.util.HashMap;
 16 
 17 
 18 /**
 19  * A compiled representation of a regular expression.
 20  *
 21  * <p> A regular expression, specified as a string, must first be compiled into
 22  * an instance of this class.  The resulting pattern can then be used to create
 23  * a {@link Matcher} object that can match arbitrary {@link
 24  * java.lang.CharSequence </code>character sequences<code>} against the regular
 25  * expression.  All of the state involved in performing a match resides in the
 26  * matcher, so many matchers can share the same pattern.
 27  *
 28  * <p> A typical invocation sequence is thus
 29  *
 30  * <blockquote><pre>
 31  * Pattern p = Pattern.{@link #compile compile}("a*b");
 32  * Matcher m = p.{@link #matcher matcher}("aaaaab");
 33  * boolean b = m.{@link Matcher#matches matches}();</pre></blockquote>
 34  *
 35  * <p> A {@link #matches matches} method is defined by this class as a
 36  * convenience for when a regular expression is used just once.  This method
 37  * compiles an expression and matches an input sequence against it in a single
 38  * invocation.  The statement
 39  *
 40  * <blockquote><pre>
 41  * boolean b = Pattern.matches("a*b", "aaaaab");</pre></blockquote>
 42  *
 43  * is equivalent to the three statements above, though for repeated matches it
 44  * is less efficient since it does not allow the compiled pattern to be reused.
 45  *
 46  * <p> Instances of this class are immutable and are safe for use by multiple
 47  * concurrent threads.  Instances of the {@link Matcher} class are not safe for
 48  * such use.
 49  *
 50  *
 51  * <a name="sum">
 52  * <h4> Summary of regular-expression constructs </h4>
 53  *
 54  * <table border="0" cellpadding="1" cellspacing="0"
 55  *  summary="Regular expression constructs, and what they match">
 56  *
 57  * <tr align="left">
 58  * <th bgcolor="#CCCCFF" align="left" id="construct">Construct</th>
 59  * <th bgcolor="#CCCCFF" align="left" id="matches">Matches</th>
 60  * </tr>
 61  *
 62  * <tr><th>&nbsp;</th></tr>
 63  * <tr align="left"><th colspan="2" id="characters">Characters</th></tr>
 64  *
 65  * <tr><td valign="top" headers="construct characters"><i>x</i></td>
 66  *     <td headers="matches">The character <i>x</i></td></tr>
 67  * <tr><td valign="top" headers="construct characters"><tt>\\</tt></td>
 68  *     <td headers="matches">The backslash character</td></tr>
 69  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>n</i></td>
 70  *     <td headers="matches">The character with octal value <tt>0</tt><i>n</i>
 71  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
 72  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>nn</i></td>
 73  *     <td headers="matches">The character with octal value <tt>0</tt><i>nn</i>
 74  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
 75  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>mnn</i></td>
 76  *     <td headers="matches">The character with octal value <tt>0</tt><i>mnn</i>
 77  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>m</i>&nbsp;<tt>&lt;=</tt>&nbsp;3,
 78  *         0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
 79  * <tr><td valign="top" headers="construct characters"><tt>\x</tt><i>hh</i></td>
 80  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hh</i></td></tr>
 81  * <tr><td valign="top" headers="construct characters"><tt>&#92;u</tt><i>hhhh</i></td>
 82  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hhhh</i></td></tr>
 83  * <tr><td valign="top" headers="matches"><tt>\t</tt></td>
 84  *     <td headers="matches">The tab character (<tt>'&#92;u0009'</tt>)</td></tr>
 85  * <tr><td valign="top" headers="construct characters"><tt>\n</tt></td>
 86  *     <td headers="matches">The newline (line feed) character (<tt>'&#92;u000A'</tt>)</td></tr>
 87  * <tr><td valign="top" headers="construct characters"><tt>\r</tt></td>
 88  *     <td headers="matches">The carriage-return character (<tt>'&#92;u000D'</tt>)</td></tr>
 89  * <tr><td valign="top" headers="construct characters"><tt>\f</tt></td>
 90  *     <td headers="matches">The form-feed character (<tt>'&#92;u000C'</tt>)</td></tr>
 91  * <tr><td valign="top" headers="construct characters"><tt>\a</tt></td>
 92  *     <td headers="matches">The alert (bell) character (<tt>'&#92;u0007'</tt>)</td></tr>
 93  * <tr><td valign="top" headers="construct characters"><tt>\e</tt></td>
 94  *     <td headers="matches">The escape character (<tt>'&#92;u001B'</tt>)</td></tr>
 95  * <tr><td valign="top" headers="construct characters"><tt>\c</tt><i>x</i></td>
 96  *     <td headers="matches">The control character corresponding to <i>x</i></td></tr>
 97  *
 98  * <tr><th>&nbsp;</th></tr>
 99  * <tr align="left"><th colspan="2" id="classes">Character classes</th></tr>
100  *
101  * <tr><td valign="top" headers="construct classes"><tt>[abc]</tt></td>
102  *     <td headers="matches"><tt>a</tt>, <tt>b</tt>, or <tt>c</tt> (simple class)</td></tr>
103  * <tr><td valign="top" headers="construct classes"><tt>[^abc]</tt></td>
104  *     <td headers="matches">Any character except <tt>a</tt>, <tt>b</tt>, or <tt>c</tt> (negation)</td></tr>
105  * <tr><td valign="top" headers="construct classes"><tt>[a-zA-Z]</tt></td>
106  *     <td headers="matches"><tt>a</tt> through <tt>z</tt>
107  *         or <tt>A</tt> through <tt>Z</tt>, inclusive (range)</td></tr>
108  * <tr><td valign="top" headers="construct classes"><tt>[a-d[m-p]]</tt></td>
109  *     <td headers="matches"><tt>a</tt> through <tt>d</tt>,
110  *      or <tt>m</tt> through <tt>p</tt>: <tt>[a-dm-p]</tt> (union)</td></tr>
111  * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[def]]</tt></td>
112  *     <td headers="matches"><tt>d</tt>, <tt>e</tt>, or <tt>f</tt> (intersection)</tr>
113  * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[^bc]]</tt></td>
114  *     <td headers="matches"><tt>a</tt> through <tt>z</tt>,
115  *         except for <tt>b</tt> and <tt>c</tt>: <tt>[ad-z]</tt> (subtraction)</td></tr>
116  * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[^m-p]]</tt></td>
117  *     <td headers="matches"><tt>a</tt> through <tt>z</tt>,
118  *          and not <tt>m</tt> through <tt>p</tt>: <tt>[a-lq-z]</tt>(subtraction)</td></tr>
119  * <tr><th>&nbsp;</th></tr>
120  *
121  * <tr align="left"><th colspan="2" id="predef">Predefined character classes</th></tr>
122  *
123  * <tr><td valign="top" headers="construct predef"><tt>.</tt></td>
124  *     <td headers="matches">Any character (may or may not match <a href="#lt">line terminators</a>)</td></tr>
125  * <tr><td valign="top" headers="construct predef"><tt>\d</tt></td>
126  *     <td headers="matches">A digit: <tt>[0-9]</tt></td></tr>
127  * <tr><td valign="top" headers="construct predef"><tt>\D</tt></td>
128  *     <td headers="matches">A non-digit: <tt>[^0-9]</tt></td></tr>
129  * <tr><td valign="top" headers="construct predef"><tt>\s</tt></td>
130  *     <td headers="matches">A whitespace character: <tt>[ \t\n\x0B\f\r]</tt></td></tr>
131  * <tr><td valign="top" headers="construct predef"><tt>\S</tt></td>
132  *     <td headers="matches">A non-whitespace character: <tt>[^\s]</tt></td></tr>
133  * <tr><td valign="top" headers="construct predef"><tt>\w</tt></td>
134  *     <td headers="matches">A word character: <tt>[a-zA-Z_0-9]</tt></td></tr>
135  * <tr><td valign="top" headers="construct predef"><tt>\W</tt></td>
136  *     <td headers="matches">A non-word character: <tt>[^\w]</tt></td></tr>
137  *
138  * <tr><th>&nbsp;</th></tr>
139  * <tr align="left"><th colspan="2" id="posix">POSIX character classes</b> (US-ASCII only)<b></th></tr>
140  *
141  * <tr><td valign="top" headers="construct posix"><tt>\p{Lower}</tt></td>
142  *     <td headers="matches">A lower-case alphabetic character: <tt>[a-z]</tt></td></tr>
143  * <tr><td valign="top" headers="construct posix"><tt>\p{Upper}</tt></td>
144  *     <td headers="matches">An upper-case alphabetic character:<tt>[A-Z]</tt></td></tr>
145  * <tr><td valign="top" headers="construct posix"><tt>\p{ASCII}</tt></td>
146  *     <td headers="matches">All ASCII:<tt>[\x00-\x7F]</tt></td></tr>
147  * <tr><td valign="top" headers="construct posix"><tt>\p{Alpha}</tt></td>
148  *     <td headers="matches">An alphabetic character:<tt>[\p{Lower}\p{Upper}]</tt></td></tr>
149  * <tr><td valign="top" headers="construct posix"><tt>\p{Digit}</tt></td>
150  *     <td headers="matches">A decimal digit: <tt>[0-9]</tt></td></tr>
151  * <tr><td valign="top" headers="construct posix"><tt>\p{Alnum}</tt></td>
152  *     <td headers="matches">An alphanumeric character:<tt>[\p{Alpha}\p{Digit}]</tt></td></tr>
153  * <tr><td valign="top" headers="construct posix"><tt>\p{Punct}</tt></td>
154  *     <td headers="matches">Punctuation: One of <tt>!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~</tt></td></tr>
155  *     <!-- <tt>[\!"#\$%&'\(\)\*\+,\-\./:;\<=\>\?@\[\\\]\^_`\{\|\}~]</tt>
156  *          <tt>[\X21-\X2F\X31-\X40\X5B-\X60\X7B-\X7E]</tt> -->
157  * <tr><td valign="top" headers="construct posix"><tt>\p{Graph}</tt></td>
158  *     <td headers="matches">A visible character: <tt>[\p{Alnum}\p{Punct}]</tt></td></tr>
159  * <tr><td valign="top" headers="construct posix"><tt>\p{Print}</tt></td>
160  *     <td headers="matches">A printable character: <tt>[\p{Graph}\x20]</tt></td></tr>
161  * <tr><td valign="top" headers="construct posix"><tt>\p{Blank}</tt></td>
162  *     <td headers="matches">A space or a tab: <tt>[ \t]</tt></td></tr>
163  * <tr><td valign="top" headers="construct posix"><tt>\p{Cntrl}</tt></td>
164  *     <td headers="matches">A control character: <tt>[\x00-\x1F\x7F]</td></tr>
165  * <tr><td valign="top" headers="construct posix"><tt>\p{XDigit}</tt></td>
166  *     <td headers="matches">A hexadecimal digit: <tt>[0-9a-fA-F]</tt></td></tr>
167  * <tr><td valign="top" headers="construct posix"><tt>\p{Space}</tt></td>
168  *     <td headers="matches">A whitespace character: <tt>[ \t\n\x0B\f\r]</tt></td></tr>
169  *
170  * <tr><th>&nbsp;</th></tr>
171  * <tr align="left"><th colspan="2">java.lang.Character classes (simple <a href="#jcc">java character type</a>)</th></tr>
172  *
173  * <tr><td valign="top"><tt>\p{javaLowerCase}</tt></td>
174  *     <td>Equivalent to java.lang.Character.isLowerCase()</td></tr>
175  * <tr><td valign="top"><tt>\p{javaUpperCase}</tt></td>
176  *     <td>Equivalent to java.lang.Character.isUpperCase()</td></tr>
177  * <tr><td valign="top"><tt>\p{javaWhitespace}</tt></td>
178  *     <td>Equivalent to java.lang.Character.isWhitespace()</td></tr>
179  * <tr><td valign="top"><tt>\p{javaMirrored}</tt></td>
180  *     <td>Equivalent to java.lang.Character.isMirrored()</td></tr>
181  *
182  * <tr><th>&nbsp;</th></tr>
183  * <tr align="left"><th colspan="2" id="unicode">Classes for Unicode blocks and categories</th></tr>
184  *
185  * <tr><td valign="top" headers="construct unicode"><tt>\p{InGreek}</tt></td>
186  *     <td headers="matches">A character in the Greek&nbsp;block (simple <a href="#ubc">block</a>)</td></tr>
187  * <tr><td valign="top" headers="construct unicode"><tt>\p{Lu}</tt></td>
188  *     <td headers="matches">An uppercase letter (simple <a href="#ubc">category</a>)</td></tr>
189  * <tr><td valign="top" headers="construct unicode"><tt>\p{Sc}</tt></td>
190  *     <td headers="matches">A currency symbol</td></tr>
191  * <tr><td valign="top" headers="construct unicode"><tt>\P{InGreek}</tt></td>
192  *     <td headers="matches">Any character except one in the Greek block (negation)</td></tr>
193  * <tr><td valign="top" headers="construct unicode"><tt>[\p{L}&&[^\p{Lu}]]&nbsp;</tt></td>
194  *     <td headers="matches">Any letter except an uppercase letter (subtraction)</td></tr>
195  *
196  * <tr><th>&nbsp;</th></tr>
197  * <tr align="left"><th colspan="2" id="bounds">Boundary matchers</th></tr>
198  *
199  * <tr><td valign="top" headers="construct bounds"><tt>^</tt></td>
200  *     <td headers="matches">The beginning of a line</td></tr>
201  * <tr><td valign="top" headers="construct bounds"><tt>$</tt></td>
202  *     <td headers="matches">The end of a line</td></tr>
203  * <tr><td valign="top" headers="construct bounds"><tt>\b</tt></td>
204  *     <td headers="matches">A word boundary</td></tr>
205  * <tr><td valign="top" headers="construct bounds"><tt>\B</tt></td>
206  *     <td headers="matches">A non-word boundary</td></tr>
207  * <tr><td valign="top" headers="construct bounds"><tt>\A</tt></td>
208  *     <td headers="matches">The beginning of the input</td></tr>
209  * <tr><td valign="top" headers="construct bounds"><tt>\G</tt></td>
210  *     <td headers="matches">The end of the previous match</td></tr>
211  * <tr><td valign="top" headers="construct bounds"><tt>\Z</tt></td>
212  *     <td headers="matches">The end of the input but for the final
213  *         <a href="#lt">terminator</a>, if&nbsp;any</td></tr>
214  * <tr><td valign="top" headers="construct bounds"><tt>\z</tt></td>
215  *     <td headers="matches">The end of the input</td></tr>
216  *
217  * <tr><th>&nbsp;</th></tr>
218  * <tr align="left"><th colspan="2" id="greedy">Greedy quantifiers</th></tr>
219  *
220  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>?</tt></td>
221  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
222  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>*</tt></td>
223  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
224  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>+</tt></td>
225  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
226  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>}</tt></td>
227  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
228  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,}</tt></td>
229  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
230  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}</tt></td>
231  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
232  *
233  * <tr><th>&nbsp;</th></tr>
234  * <tr align="left"><th colspan="2" id="reluc">Reluctant quantifiers</th></tr>
235  *
236  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>??</tt></td>
237  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
238  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>*?</tt></td>
239  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
240  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>+?</tt></td>
241  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
242  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>}?</tt></td>
243  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
244  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,}?</tt></td>
245  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
246  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}?</tt></td>
247  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
248  *
249  * <tr><th>&nbsp;</th></tr>
250  * <tr align="left"><th colspan="2" id="poss">Possessive quantifiers</th></tr>
251  *
252  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>?+</tt></td>
253  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
254  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>*+</tt></td>
255  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
256  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>++</tt></td>
257  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
258  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>}+</tt></td>
259  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
260  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,}+</tt></td>
261  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
262  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}+</tt></td>
263  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
264  *
265  * <tr><th>&nbsp;</th></tr>
266  * <tr align="left"><th colspan="2" id="logical">Logical operators</th></tr>
267  *
268  * <tr><td valign="top" headers="construct logical"><i>XY</i></td>
269  *     <td headers="matches"><i>X</i> followed by <i>Y</i></td></tr>
270  * <tr><td valign="top" headers="construct logical"><i>X</i><tt>|</tt><i>Y</i></td>
271  *     <td headers="matches">Either <i>X</i> or <i>Y</i></td></tr>
272  * <tr><td valign="top" headers="construct logical"><tt>(</tt><i>X</i><tt>)</tt></td>
273  *     <td headers="matches">X, as a <a href="#cg">capturing group</a></td></tr>
274  *
275  * <tr><th>&nbsp;</th></tr>
276  * <tr align="left"><th colspan="2" id="backref">Back references</th></tr>
277  *
278  * <tr><td valign="bottom" headers="construct backref"><tt>\</tt><i>n</i></td>
279  *     <td valign="bottom" headers="matches">Whatever the <i>n</i><sup>th</sup>
280  *     <a href="#cg">capturing group</a> matched</td></tr>
281  *
282  * <tr><th>&nbsp;</th></tr>
283  * <tr align="left"><th colspan="2" id="quot">Quotation</th></tr>
284  *
285  * <tr><td valign="top" headers="construct quot"><tt>\</tt></td>
286  *     <td headers="matches">Nothing, but quotes the following character</tt></td></tr>
287  * <tr><td valign="top" headers="construct quot"><tt>\Q</tt></td>
288  *     <td headers="matches">Nothing, but quotes all characters until <tt>\E</tt></td></tr>
289  * <tr><td valign="top" headers="construct quot"><tt>\E</tt></td>
290  *     <td headers="matches">Nothing, but ends quoting started by <tt>\Q</tt></td></tr>
291  *     <!-- Metachars: !$()*+.<>?[\]^{|} -->
292  *
293  * <tr><th>&nbsp;</th></tr>
294  * <tr align="left"><th colspan="2" id="special">Special constructs (non-capturing)</th></tr>
295  *
296  * <tr><td valign="top" headers="construct special"><tt>(?:</tt><i>X</i><tt>)</tt></td>
297  *     <td headers="matches"><i>X</i>, as a non-capturing group</td></tr>
298  * <tr><td valign="top" headers="construct special"><tt>(?idmsux-idmsux)&nbsp;</tt></td>
299  *     <td headers="matches">Nothing, but turns match flags <a href="#CASE_INSENSITIVE">i</a>
300  * <a href="#UNIX_LINES">d</a> <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a>
301  * <a href="#UNICODE_CASE">u</a> <a href="#COMMENTS">x</a> on - off</td></tr>
302  * <tr><td valign="top" headers="construct special"><tt>(?idmsux-idmsux:</tt><i>X</i><tt>)</tt>&nbsp;&nbsp;</td>
303  *     <td headers="matches"><i>X</i>, as a <a href="#cg">non-capturing group</a> with the
304  *         given flags <a href="#CASE_INSENSITIVE">i</a> <a href="#UNIX_LINES">d</a>
305  * <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a> <a href="#UNICODE_CASE">u</a >
306  * <a href="#COMMENTS">x</a> on - off</td></tr>
307  * <tr><td valign="top" headers="construct special"><tt>(?=</tt><i>X</i><tt>)</tt></td>
308  *     <td headers="matches"><i>X</i>, via zero-width positive lookahead</td></tr>
309  * <tr><td valign="top" headers="construct special"><tt>(?!</tt><i>X</i><tt>)</tt></td>
310  *     <td headers="matches"><i>X</i>, via zero-width negative lookahead</td></tr>
311  * <tr><td valign="top" headers="construct special"><tt>(?&lt;=</tt><i>X</i><tt>)</tt></td>
312  *     <td headers="matches"><i>X</i>, via zero-width positive lookbehind</td></tr>
313  * <tr><td valign="top" headers="construct special"><tt>(?&lt;!</tt><i>X</i><tt>)</tt></td>
314  *     <td headers="matches"><i>X</i>, via zero-width negative lookbehind</td></tr>
315  * <tr><td valign="top" headers="construct special"><tt>(?&gt;</tt><i>X</i><tt>)</tt></td>
316  *     <td headers="matches"><i>X</i>, as an independent, non-capturing group</td></tr>
317  *
318  * </table>
319  *
320  * <hr>
321  *
322  *
323  * <a name="bs">
324  * <h4> Backslashes, escapes, and quoting </h4>
325  *
326  * <p> The backslash character (<tt>'\'</tt>) serves to introduce escaped
327  * constructs, as defined in the table above, as well as to quote characters
328  * that otherwise would be interpreted as unescaped constructs.  Thus the
329  * expression <tt>\\</tt> matches a single backslash and <tt>\{</tt> matches a
330  * left brace.
331  *
332  * <p> It is an error to use a backslash prior to any alphabetic character that
333  * does not denote an escaped construct; these are reserved for future
334  * extensions to the regular-expression language.  A backslash may be used
335  * prior to a non-alphabetic character regardless of whether that character is
336  * part of an unescaped construct.
337  *
338  * <p> Backslashes within string literals in Java source code are interpreted
339  * as required by the <a
340  * href="http://java.sun.com/docs/books/jls/second_edition/html/">Java Language
341  * Specification</a> as either <a
342  * href="http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#100850">Unicode
343  * escapes</a> or other <a
344  * href="http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#101089">character
345  * escapes</a>.  It is therefore necessary to double backslashes in string
346  * literals that represent regular expressions to protect them from
347  * interpretation by the Java bytecode compiler.  The string literal
348  * <tt>"&#92;b"</tt>, for example, matches a single backspace character when
349  * interpreted as a regular expression, while <tt>"&#92;&#92;b"</tt> matches a
350  * word boundary.  The string literal <tt>"&#92;(hello&#92;)"</tt> is illegal
351  * and leads to a compile-time error; in order to match the string
352  * <tt>(hello)</tt> the string literal <tt>"&#92;&#92;(hello&#92;&#92;)"</tt>
353  * must be used.
354  *
355  * <a name="cc">
356  * <h4> Character Classes </h4>
357  *
358  *    <p> Character classes may appear within other character classes, and
359  *    may be composed by the union operator (implicit) and the intersection
360  *    operator (<tt>&amp;&amp;</tt>).
361  *    The union operator denotes a class that contains every character that is
362  *    in at least one of its operand classes.  The intersection operator
363  *    denotes a class that contains every character that is in both of its
364  *    operand classes.
365  *
366  *    <p> The precedence of character-class operators is as follows, from
367  *    highest to lowest:
368  *
369  *    <blockquote><table border="0" cellpadding="1" cellspacing="0"
370  *                 summary="Precedence of character class operators.">
371  *      <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
372  *        <td>Literal escape&nbsp;&nbsp;&nbsp;&nbsp;</td>
373  *        <td><tt>\x</tt></td></tr>
374  *     <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
375  *        <td>Grouping</td>
376  *        <td><tt>[...]</tt></td></tr>
377  *     <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
378  *        <td>Range</td>
379  *        <td><tt>a-z</tt></td></tr>
380  *      <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
381  *        <td>Union</td>
382  *        <td><tt>[a-e][i-u]<tt></td></tr>
383  *      <tr><th>5&nbsp;&nbsp;&nbsp;&nbsp;</th>
384  *        <td>Intersection</td>
385  *        <td><tt>[a-z&&[aeiou]]</tt></td></tr>
386  *    </table></blockquote>
387  *
388  *    <p> Note that a different set of metacharacters are in effect inside
389  *    a character class than outside a character class. For instance, the
390  *    regular expression <tt>.</tt> loses its special meaning inside a
391  *    character class, while the expression <tt>-</tt> becomes a range
392  *    forming metacharacter.
393  *
394  * <a name="lt">
395  * <h4> Line terminators </h4>
396  *
397  * <p> A <i>line terminator</i> is a one- or two-character sequence that marks
398  * the end of a line of the input character sequence.  The following are
399  * recognized as line terminators:
400  *
401  * <ul>
402  *
403  *   <li> A newline (line feed) character&nbsp;(<tt>'\n'</tt>),
404  *
405  *   <li> A carriage-return character followed immediately by a newline
406  *   character&nbsp;(<tt>"\r\n"</tt>),
407  *
408  *   <li> A standalone carriage-return character&nbsp;(<tt>'\r'</tt>),
409  *
410  *   <li> A next-line character&nbsp;(<tt>'&#92;u0085'</tt>),
411  *
412  *   <li> A line-separator character&nbsp;(<tt>'&#92;u2028'</tt>), or
413  *
414  *   <li> A paragraph-separator character&nbsp;(<tt>'&#92;u2029</tt>).
415  *
416  * </ul>
417  * <p>If {@link #UNIX_LINES} mode is activated, then the only line terminators
418  * recognized are newline characters.
419  *
420  * <p> The regular expression <tt>.</tt> matches any character except a line
421  * terminator unless the {@link #DOTALL} flag is specified.
422  *
423  * <p> By default, the regular expressions <tt>^</tt> and <tt>$</tt> ignore
424  * line terminators and only match at the beginning and the end, respectively,
425  * of the entire input sequence. If {@link #MULTILINE} mode is activated then
426  * <tt>^</tt> matches at the beginning of input and after any line terminator
427  * except at the end of input. When in {@link #MULTILINE} mode <tt>$</tt>
428  * matches just before a line terminator or the end of the input sequence.
429  *
430  * <a name="cg">
431  * <h4> Groups and capturing </h4>
432  *
433  * <p> Capturing groups are numbered by counting their opening parentheses from
434  * left to right.  In the expression <tt>((A)(B(C)))</tt>, for example, there
435  * are four such groups: </p>
436  *
437  * <blockquote><table cellpadding=1 cellspacing=0 summary="Capturing group numberings">
438  * <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
439  *     <td><tt>((A)(B(C)))</tt></td></tr>
440  * <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
441  *     <td><tt>(A)</tt></td></tr>
442  * <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
443  *     <td><tt>(B(C))</tt></td></tr>
444  * <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
445  *     <td><tt>(C)</tt></td></tr>
446  * </table></blockquote>
447  *
448  * <p> Group zero always stands for the entire expression.
449  *
450  * <p> Capturing groups are so named because, during a match, each subsequence
451  * of the input sequence that matches such a group is saved.  The captured
452  * subsequence may be used later in the expression, via a back reference, and
453  * may also be retrieved from the matcher once the match operation is complete.
454  *
455  * <p> The captured input associated with a group is always the subsequence
456  * that the group most recently matched.  If a group is evaluated a second time
457  * because of quantification then its previously-captured value, if any, will
458  * be retained if the second evaluation fails.  Matching the string
459  * <tt>"aba"</tt> against the expression <tt>(a(b)?)+</tt>, for example, leaves
460  * group two set to <tt>"b"</tt>.  All captured input is discarded at the
461  * beginning of each match.
462  *
463  * <p> Groups beginning with <tt>(?</tt> are pure, <i>non-capturing</i> groups
464  * that do not capture text and do not count towards the group total.
465  *
466  *
467  * <h4> Unicode support </h4>
468  *
469  * <p> This class is in conformance with Level 1 of <a
470  * href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
471  * Standard #18: Unicode Regular Expression Guidelines</i></a>, plus RL2.1
472  * Canonical Equivalents.
473  *
474  * <p> Unicode escape sequences such as <tt>&#92;u2014</tt> in Java source code
475  * are processed as described in <a
476  * href="http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#100850">\u00A73.3</a>
477  * of the Java Language Specification.  Such escape sequences are also
478  * implemented directly by the regular-expression parser so that Unicode
479  * escapes can be used in expressions that are read from files or from the
480  * keyboard.  Thus the strings <tt>"&#92;u2014"</tt> and <tt>"\\u2014"</tt>,
481  * while not equal, compile into the same pattern, which matches the character
482  * with hexadecimal value <tt>0x2014</tt>.
483  *
484  * <a name="ubc"> <p>Unicode blocks and categories are written with the
485  * <tt>\p</tt> and <tt>\P</tt> constructs as in
486  * Perl. <tt>\p{</tt><i>prop</i><tt>}</tt> matches if the input has the
487  * property <i>prop</i>, while \P{</tt><i>prop</i><tt>}</tt> does not match if
488  * the input has that property.  Blocks are specified with the prefix
489  * <tt>In</tt>, as in <tt>InMongolian</tt>.  Categories may be specified with
490  * the optional prefix <tt>Is</tt>: Both <tt>\p{L}</tt> and <tt>\p{IsL}</tt>
491  * denote the category of Unicode letters.  Blocks and categories can be used
492  * both inside and outside of a character class.
493  *
494  * <p> The supported categories are those of
495  * <a href="http://www.unicode.org/unicode/standard/standard.html">
496  * <i>The Unicode Standard</i></a> in the version specified by the
497  * {@link java.lang.Character Character} class. The category names are those
498  * defined in the Standard, both normative and informative.
499  * The block names supported by <code>Pattern</code> are the valid block names
500  * accepted and defined by
501  * {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}.
502  *
503  * <a name="jcc"> <p>Categories that behave like the java.lang.Character
504  * boolean is<i>methodname</i> methods (except for the deprecated ones) are
505  * available through the same <tt>\p{</tt><i>prop</i><tt>}</tt> syntax where
506  * the specified property has the name <tt>java<i>methodname</i></tt>.
507  *
508  * <h4> Comparison to Perl 5 </h4>
509  *
510  * <p>The <code>Pattern</code> engine performs traditional NFA-based matching
511  * with ordered alternation as occurs in Perl 5.
512  *
513  * <p> Perl constructs not supported by this class: </p>
514  *
515  * <ul>
516  *
517  *    <li><p> The conditional constructs <tt>(?{</tt><i>X</i><tt>})</tt> and
518  *    <tt>(?(</tt><i>condition</i><tt>)</tt><i>X</i><tt>|</tt><i>Y</i><tt>)</tt>,
519  *    </p></li>
520  *
521  *    <li><p> The embedded code constructs <tt>(?{</tt><i>code</i><tt>})</tt>
522  *    and <tt>(??{</tt><i>code</i><tt>})</tt>,</p></li>
523  *
524  *    <li><p> The embedded comment syntax <tt>(?#comment)</tt>, and </p></li>
525  *
526  *    <li><p> The preprocessing operations <tt>\l</tt> <tt>&#92;u</tt>,
527  *    <tt>\L</tt>, and <tt>\U</tt>.  </p></li>
528  *
529  * </ul>
530  *
531  * <p> Constructs supported by this class but not by Perl: </p>
532  *
533  * <ul>
534  *
535  *    <li><p> Possessive quantifiers, which greedily match as much as they can
536  *    and do not back off, even when doing so would allow the overall match to
537  *    succeed.  </p></li>
538  *
539  *    <li><p> Character-class union and intersection as described
540  *    <a href="#cc">above</a>.</p></li>
541  *
542  * </ul>
543  *
544  * <p> Notable differences from Perl: </p>
545  *
546  * <ul>
547  *
548  *    <li><p> In Perl, <tt>\1</tt> through <tt>\9</tt> are always interpreted
549  *    as back references; a backslash-escaped number greater than <tt>9</tt> is
550  *    treated as a back reference if at least that many subexpressions exist,
551  *    otherwise it is interpreted, if possible, as an octal escape.  In this
552  *    class octal escapes must always begin with a zero. In this class,
553  *    <tt>\1</tt> through <tt>\9</tt> are always interpreted as back
554  *    references, and a larger number is accepted as a back reference if at
555  *    least that many subexpressions exist at that point in the regular
556  *    expression, otherwise the parser will drop digits until the number is
557  *    smaller or equal to the existing number of groups or it is one digit.
558  *    </p></li>
559  *
560  *    <li><p> Perl uses the <tt>g</tt> flag to request a match that resumes
561  *    where the last match left off.  This functionality is provided implicitly
562  *    by the {@link Matcher} class: Repeated invocations of the {@link
563  *    Matcher#find find} method will resume where the last match left off,
564  *    unless the matcher is reset.  </p></li>
565  *
566  *    <li><p> In Perl, embedded flags at the top level of an expression affect
567  *    the whole expression.  In this class, embedded flags always take effect
568  *    at the point at which they appear, whether they are at the top level or
569  *    within a group; in the latter case, flags are restored at the end of the
570  *    group just as in Perl.  </p></li>
571  *
572  *    <li><p> Perl is forgiving about malformed matching constructs, as in the
573  *    expression <tt>*a</tt>, as well as dangling brackets, as in the
574  *    expression <tt>abc]</tt>, and treats them as literals.  This
575  *    class also accepts dangling brackets but is strict about dangling
576  *    metacharacters like +, ? and *, and will throw a
577  *    {@link PatternSyntaxException} if it encounters them. </p></li>
578  *
579  * </ul>
580  *
581  *
582  * <p> For a more precise description of the behavior of regular expression
583  * constructs, please see <a href="http://www.oreilly.com/catalog/regex2/">
584  * <i>Mastering Regular Expressions, 2nd Edition</i>, Jeffrey E. F. Friedl,
585  * O'Reilly and Associates, 2002.</a>
586  * </p>
587  *
588  * @see java.lang.String#split(String, int)
589  * @see java.lang.String#split(String)
590  *
591  * @author      Mike McCloskey
592  * @author      Mark Reinhold
593  * @author      JSR-51 Expert Group
594  * @version     %I%, %E%
595  * @since       1.4
596  * @spec        JSR-51
597  */
598 
599 public final class Pattern
600     implements java.io.Serializable
601 {
602 
603     /**
604      * Regular expression modifier values.  Instead of being passed as
605      * arguments, they can also be passed as inline modifiers.
606      * For example, the following statements have the same effect.
607      * <pre>
608      * RegExp r1 = RegExp.compile("abc", Pattern.I|Pattern.M);
609      * RegExp r2 = RegExp.compile("(?im)abc", 0);
610      * </pre>
611      *
612      * The flags are duplicated so that the familiar Perl match flag
613      * names are available.
614      */
615 
616     /**
617      * Enables Unix lines mode.
618      *
619      * <p> In this mode, only the <tt>'\n'</tt> line terminator is recognized
620      * in the behavior of <tt>.</tt>, <tt>^</tt>, and <tt>$</tt>.
621      *
622      * <p> Unix lines mode can also be enabled via the embedded flag
623      * expression&nbsp;<tt>(?d)</tt>.
624      */
625     public static final int UNIX_LINES = 0x01;
626 
627     /**
628      * Enables case-insensitive matching.
629      *
630      * <p> By default, case-insensitive matching assumes that only characters
631      * in the US-ASCII charset are being matched.  Unicode-aware
632      * case-insensitive matching can be enabled by specifying the {@link
633      * #UNICODE_CASE} flag in conjunction with this flag.
634      *
635      * <p> Case-insensitive matching can also be enabled via the embedded flag
636      * expression&nbsp;<tt>(?i)</tt>.
637      *
638      * <p> Specifying this flag may impose a slight performance penalty.  </p>
639      */
640     public static final int CASE_INSENSITIVE = 0x02;
641 
642     /**
643      * Permits whitespace and comments in pattern.
644      *
645      * <p> In this mode, whitespace is ignored, and embedded comments starting
646      * with <tt>#</tt> are ignored until the end of a line.
647      *
648      * <p> Comments mode can also be enabled via the embedded flag
649      * expression&nbsp;<tt>(?x)</tt>.
650      */
651     public static final int COMMENTS = 0x04;
652 
653     /**
654      * Enables multiline mode.
655      *
656      * <p> In multiline mode the expressions <tt>^</tt> and <tt>$</tt> match
657      * just after or just before, respectively, a line terminator or the end of
658      * the input sequence.  By default these expressions only match at the
659      * beginning and the end of the entire input sequence.
660      *
661      * <p> Multiline mode can also be enabled via the embedded flag
662      * expression&nbsp;<tt>(?m)</tt>.  </p>
663      */
664     public static final int MULTILINE = 0x08;
665 
666     /**
667      * Enables literal parsing of the pattern.
668      *
669      * <p> When this flag is specified then the input string that specifies
670      * the pattern is treated as a sequence of literal characters.
671      * Metacharacters or escape sequences in the input sequence will be
672      * given no special meaning.
673      *
674      * <p>The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on
675      * matching when used in conjunction with this flag. The other flags
676      * become superfluous.
677      *
678      * <p> There is no embedded flag character for enabling literal parsing.
679      */
680     public static final int LITERAL = 0x10;
681 
682     /**
683      * Enables dotall mode.
684      *
685      * <p> In dotall mode, the expression <tt>.</tt> matches any character,
686      * including a line terminator.  By default this expression does not match
687      * line terminators.
688      *
689      * <p> Dotall mode can also be enabled via the embedded flag
690      * expression&nbsp;<tt>(?s)</tt>.  (The <tt>s</tt> is a mnemonic for
691      * "single-line" mode, which is what this is called in Perl.)  </p>
692      */
693     public static final int DOTALL = 0x20;
694 
695     /**
696      * Enables Unicode-aware case folding.
697      *
698      * <p> When this flag is specified then case-insensitive matching, when
699      * enabled by the {@link #CASE_INSENSITIVE} flag, is done in a manner
700      * consistent with the Unicode Standard.  By default, case-insensitive
701      * matching assumes that only characters in the US-ASCII charset are being
702      * matched.
703      *
704      * <p> Unicode-aware case folding can also be enabled via the embedded flag
705      * expression&nbsp;<tt>(?u)</tt>.
706      *
707      * <p> Specifying this flag may impose a performance penalty.  </p>
708      */
709     public static final int UNICODE_CASE = 0x40;
710 
711     /**
712      * Enables canonical equivalence.
713      *
714      * <p> When this flag is specified then two characters will be considered
715      * to match if, and only if, their full canonical decompositions match.
716      * The expression <tt>"a&#92;u030A"</tt>, for example, will match the
717      * string <tt>"&#92;u00E5"</tt> when this flag is specified.  By default,
718      * matching does not take canonical equivalence into account.
719      *
720      * <p> There is no embedded flag character for enabling canonical
721      * equivalence.
722      *
723      * <p> Specifying this flag may impose a performance penalty.  </p>
724      */
725     public static final int CANON_EQ = 0x80;
726 
727     /* Pattern has only two serialized components: The pattern string
728      * and the flags, which are all that is needed to recompile the pattern
729      * when it is deserialized.
730      */
731 
732     /** use serialVersionUID from Merlin b59 for interoperability */
733     private static final long serialVersionUID = 5073258162644648461L;
734 
735     /**
736      * The original regular-expression pattern string.
737      *
738      * @serial
739      */
740     private String pattern;
741 
742     /**
743      * The original pattern flags.
744      *
745      * @serial
746      */
747     private int flags;
748 
749     /**
750      * Boolean indicating this Pattern is compiled; this is necessary in order
751      * to lazily compile deserialized Patterns.
752      */
753     private transient volatile boolean compiled = false;
754 
755     /**
756      * The normalized pattern string.
757      */
758     private transient String normalizedPattern;
759 
760     /**
761      * The starting point of state machine for the find operation.  This allows
762      * a match to start anywhere in the input.
763      */
764     transient Node root;
765 
766     /**
767      * The root of object tree for a match operation.  The pattern is matched
768      * at the beginning.  This may include a find that uses BnM or a First
769      * node.
770      */
771     transient Node matchRoot;
772 
773     /**
774      * Temporary storage used by parsing pattern slice.
775      */
776     transient int[] buffer;
777 
778     /**
779      * Temporary storage used while parsing group references.
780      */
781     transient GroupHead[] groupNodes;
782 
783     /**
784      * Temporary null terminated char array used by pattern compiling.
785      */
786     private transient int[] temp;
787 
788     /**
789      * The number of capturing groups in this Pattern. Used by matchers to
790      * allocate storage needed to perform a match.
791      */
792     transient int capturingGroupCount;
793 
794     /**
795      * The local variable count used by parsing tree. Used by matchers to
796      * allocate storage needed to perform a match.
797      */
798     transient int localCount;
799 
800     /**
801      * Index into the pattern string that keeps track of how much has been
802      * parsed.
803      */
804     private transient int cursor;
805 
806     /**
807      * Holds the length of the pattern string.
808      */
809     private transient int patternLength;
810 
811     /**
812      * Compiles the given regular expression into a pattern.  </p>
813      *
814      * @param  regex
815      *         The expression to be compiled
816      *
817      * @throws  PatternSyntaxException
818      *          If the expression's syntax is invalid
819      */
820     public static Pattern compile(String regex) {
821         return new Pattern(regex, 0);
822     }
823 
824     /**
825      * Compiles the given regular expression into a pattern with the given
826      * flags.  </p>
827      *
828      * @param  regex
829      *         The expression to be compiled
830      *
831      * @param  flags
832      *         Match flags, a bit mask that may include
833      *         {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL},
834      *         {@link #UNICODE_CASE}, {@link #CANON_EQ}, {@link #UNIX_LINES},
835      *         {@link #LITERAL} and {@link #COMMENTS}
836      *
837      * @throws  IllegalArgumentException
838      *          If bit values other than those corresponding to the defined
839      *          match flags are set in <tt>flags</tt>
840      *
841      * @throws  PatternSyntaxException
842      *          If the expression's syntax is invalid
843      */
844     public static Pattern compile(String regex, int flags) {
845         return new Pattern(regex, flags);
846     }
847 
848     /**
849      * Returns the regular expression from which this pattern was compiled.
850      * </p>
851      *
852      * @return  The source of this pattern
853      */
854     public String pattern() {
855         return pattern;
856     }
857 
858     /**
859      * <p>Returns the string representation of this pattern. This
860      * is the regular expression from which this pattern was
861      * compiled.</p>
862      *
863      * @return  The string representation of this pattern
864      * @since 1.5
865      */
866     public String toString() {
867         return pattern;
868     }
869 
870     /**
871      * Creates a matcher that will match the given input against this pattern.
872      * </p>
873      *
874      * @param  input
875      *         The character sequence to be matched
876      *
877      * @return  A new matcher for this pattern
878      */
879     public Matcher matcher(CharSequence input) {
880         synchronized(this) {
881             if (!compiled)
882                 compile();
883         }
884         Matcher m = new Matcher(this, input);
885         return m;
886     }
887 
888     /**
889      * Returns this pattern's match flags.  </p>
890      *
891      * @return  The match flags specified when this pattern was compiled
892      */
893     public int flags() {
894         return flags;
895     }
896 
897     /**
898      * Compiles the given regular expression and attempts to match the given
899      * input against it.
900      *
901      * <p> An invocation of this convenience method of the form
902      *
903      * <blockquote><pre>
904      * Pattern.matches(regex, input);</pre></blockquote>
905      *
906      * behaves in exactly the same way as the expression
907      *
908      * <blockquote><pre>
909      * Pattern.compile(regex).matcher(input).matches()</pre></blockquote>
910      *
911      * <p> If a pattern is to be used multiple times, compiling it once and reusing
912      * it will be more efficient than invoking this method each time.  </p>
913      *
914      * @param  regex
915      *         The expression to be compiled
916      *
917      * @param  input
918      *         The character sequence to be matched
919      *
920      * @throws  PatternSyntaxException
921      *          If the expression's syntax is invalid
922      */
923     public static boolean matches(String regex, CharSequence input) {
924         Pattern p = Pattern.compile(regex);
925         Matcher m = p.matcher(input);
926         return m.matches();
927     }
928 
929     /**
930      * Splits the given input sequence around matches of this pattern.
931      *
932      * <p> The array returned by this method contains each substring of the
933      * input sequence that is terminated by another subsequence that matches
934      * this pattern or is terminated by the end of the input sequence.  The
935      * substrings in the array are in the order in which they occur in the
936      * input.  If this pattern does not match any subsequence of the input then
937      * the resulting array has just one element, namely the input sequence in
938      * string form.
939      *
940      * <p> The <tt>limit</tt> parameter controls the number of times the
941      * pattern is applied and therefore affects the length of the resulting
942      * array.  If the limit <i>n</i> is greater than zero then the pattern
943      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
944      * length will be no greater than <i>n</i>, and the array's last entry
945      * will contain all input beyond the last matched delimiter.  If <i>n</i>
946      * is non-positive then the pattern will be applied as many times as
947      * possible and the array can have any length.  If <i>n</i> is zero then
948      * the pattern will be applied as many times as possible, the array can
949      * have any length, and trailing empty strings will be discarded.
950      *
951      * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
952      * results with these parameters:
953      *
954      * <blockquote><table cellpadding=1 cellspacing=0
955      *              summary="Split examples showing regex, limit, and result">
956      * <tr><th><P align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
957      *     <th><P align="left"><i>Limit&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
958      *     <th><P align="left"><i>Result&nbsp;&nbsp;&nbsp;&nbsp;</i></th></tr>
959      * <tr><td align=center>:</td>
960      *     <td align=center>2</td>
961      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
962      * <tr><td align=center>:</td>
963      *     <td align=center>5</td>
964      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
965      * <tr><td align=center>:</td>
966      *     <td align=center>-2</td>
967      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
968      * <tr><td align=center>o</td>
969      *     <td align=center>5</td>
970      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
971      * <tr><td align=center>o</td>
972      *     <td align=center>-2</td>
973      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
974      * <tr><td align=center>o</td>
975      *     <td align=center>0</td>
976      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
977      * </table></blockquote>
978      *
979      *
980      * @param  input
981      *         The character sequence to be split
982      *
983      * @param  limit
984      *         The result threshold, as described above
985      *
986      * @return  The array of strings computed by splitting the input
987      *          around matches of this pattern
988      */
989     public String[] split(CharSequence input, int limit) {
990         int index = 0;
991         boolean matchLimited = limit > 0;
992         ArrayList matchList = new ArrayList();
993         Matcher m = matcher(input);
994 
995         // Add segments before each match found
996         while(m.find()) {
997             if (!matchLimited || matchList.size() < limit - 1) {
998                 String match = input.subSequence(index, m.start()).toString();
999                 matchList.add(match);
1000                 index = m.end();
1001             } else if (matchList.size() == limit - 1) { // last one
1002                 String match = input.subSequence(index,
1003                                                  input.length()).toString();
1004                 matchList.add(match);
1005                 index = m.end();
1006             }
1007         }
1008 
1009         // If no match was found, return this
1010         if (index == 0)
1011             return new String[] {input.toString()};
1012 
1013         // Add remaining segment
1014         if (!matchLimited || matchList.size() < limit)
1015             matchList.add(input.subSequence(index, input.length()).toString());
1016 
1017         // Construct result
1018         int resultSize = matchList.size();
1019         if (limit == 0)
1020             while (resultSize > 0 && matchList.get(resultSize-1).equals(""))
1021                 resultSize--;
1022         String[] result = new String[resultSize];
1023         return (String[])matchList.subList(0, resultSize).toArray(result);
1024     }
1025 
1026     /**
1027      * Splits the given input sequence around matches of this pattern.
1028      *
1029      * <p> This method works as if by invoking the two-argument {@link
1030      * #split(java.lang.CharSequence, int) split} method with the given input
1031      * sequence and a limit argument of zero.  Trailing empty strings are
1032      * therefore not included in the resulting array. </p>
1033      *
1034      * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
1035      * results with these expressions:
1036      *
1037      * <blockquote><table cellpadding=1 cellspacing=0
1038      *              summary="Split examples showing regex and result">
1039      * <tr><th><P align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1040      *     <th><P align="left"><i>Result</i></th></tr>
1041      * <tr><td align=center>:</td>
1042      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
1043      * <tr><td align=center>o</td>
1044      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
1045      * </table></blockquote>
1046      *
1047      *
1048      * @param  input
1049      *         The character sequence to be split
1050      *
1051      * @return  The array of strings computed by splitting the input
1052      *          around matches of this pattern
1053      */
1054     public String[] split(CharSequence input) {
1055         return split(input, 0);
1056     }
1057 
1058     /**
1059      * Returns a literal pattern <code>String</code> for the specified
1060      * <code>String</code>.
1061      *
1062      * <p>This method produces a <code>String</code> that can be used to
1063      * create a <code>Pattern</code> that would match the string
1064      * <code>s</code> as if it were a literal pattern.</p> Metacharacters
1065      * or escape sequences in the input sequence will be given no special
1066      * meaning.
1067      *
1068      * @param  s The string to be literalized
1069      * @return  A literal string replacement
1070      * @since 1.5
1071      */
1072     public static String quote(String s) {
1073         int slashEIndex = s.indexOf("\\E");
1074         if (slashEIndex == -1)
1075             return "\\Q" + s + "\\E";
1076 
1077         StringBuilder sb = new StringBuilder(s.length() * 2);
1078         sb.append("\\Q");
1079         slashEIndex = 0;
1080         int current = 0;
1081         while ((slashEIndex = s.indexOf("\\E", current)) != -1) {
1082             sb.append(s.substring(current, slashEIndex));
1083             current = slashEIndex + 2;
1084             sb.append("\\E\\\\E\\Q");
1085         }
1086         sb.append(s.substring(current, s.length()));
1087         sb.append("\\E");
1088         return sb.toString();
1089     }
1090 
1091     /**
1092      * Recompile the Pattern instance from a stream.  The original pattern
1093      * string is read in and the object tree is recompiled from it.
1094      */
1095     private void readObject(java.io.ObjectInputStream s)
1096         throws java.io.IOException, ClassNotFoundException {
1097 
1098         // Read in all fields
1099         s.defaultReadObject();
1100 
1101         // Initialize counts
1102         capturingGroupCount = 1;
1103         localCount = 0;
1104 
1105         // if length > 0, the Pattern is lazily compiled
1106         compiled = false;
1107         if (pattern.length() == 0) {
1108             root = new Start(lastAccept);
1109             matchRoot = lastAccept;
1110             compiled = true;
1111         }
1112     }
1113 
1114     /**
1115      * This private constructor is used to create all Patterns. The pattern
1116      * string and match flags are all that is needed to completely describe
1117      * a Pattern. An empty pattern string results in an object tree with
1118      * only a Start node and a LastNode node.
1119      */
1120     private Pattern(String p, int f) {
1121         pattern = p;
1122         flags = f;
1123 
1124         // Reset group index count
1125         capturingGroupCount = 1;
1126         localCount = 0;
1127 
1128         if (pattern.length() > 0) {
1129             compile();
1130         } else {
1131             root = new Start(lastAccept);
1132             matchRoot = lastAccept;
1133         }
1134     }
1135 
1136     /**
1137      * The pattern is converted to normalizedD form and then a pure group
1138      * is constructed to match canonical equivalences of the characters.
1139      */
1140     private void normalize() {
1141         boolean inCharClass = false;
1142         int lastCodePoint = -1;
1143 
1144         // Convert pattern into normalizedD form
1145         normalizedPattern = Normalizer.normalize(pattern, Normalizer.Form.NFD);
1146         patternLength = normalizedPattern.length();
1147 
1148         // Modify pattern to match canonical equivalences
1149         StringBuilder newPattern = new StringBuilder(patternLength);
1150         for(int i=0; i<patternLength; ) {
1151             int c = normalizedPattern.codePointAt(i);
1152             StringBuilder sequenceBuffer;
1153             if ((Character.getType(c) == Character.NON_SPACING_MARK)
1154                 && (lastCodePoint != -1)) {
1155                 sequenceBuffer = new StringBuilder();
1156                 sequenceBuffer.appendCodePoint(lastCodePoint);
1157                 sequenceBuffer.appendCodePoint(c);
1158                 while(Character.getType(c) == Character.NON_SPACING_MARK) {
1159                     i += Character.charCount(c);
1160                     if (i >= patternLength)
1161                         break;
1162                     c = normalizedPattern.codePointAt(i);
1163                     sequenceBuffer.appendCodePoint(c);
1164                 }
1165                 String ea = produceEquivalentAlternation(
1166                                                sequenceBuffer.toString());
1167                 newPattern.setLength(newPattern.length()-Character.charCount(lastCodePoint));
1168                 newPattern.append("(?:").append(ea).append(")");
1169             } else if (c == '[' && lastCodePoint != '\\') {
1170                 i = normalizeCharClass(newPattern, i);
1171             } else {
1172                 newPattern.appendCodePoint(c);
1173             }
1174             lastCodePoint = c;
1175             i += Character.charCount(c);
1176         }
1177         normalizedPattern = newPattern.toString();
1178     }
1179 
1180     /**
1181      * Complete the character class being parsed and add a set
1182      * of alternations to it that will match the canonical equivalences
1183      * of the characters within the class.
1184      */
1185     private int normalizeCharClass(StringBuilder newPattern, int i) {
1186         StringBuilder charClass = new StringBuilder();
1187         StringBuilder eq = null;
1188         int lastCodePoint = -1;
1189         String result;
1190 
1191         i++;
1192         charClass.append("[");
1193         while(true) {
1194             int c = normalizedPattern.codePointAt(i);
1195             StringBuilder sequenceBuffer;
1196 
1197             if (c == ']' && lastCodePoint != '\\') {
1198                 charClass.append((char)c);
1199                 break;
1200             } else if (Character.getType(c) == Character.NON_SPACING_MARK) {
1201                 sequenceBuffer = new StringBuilder();
1202                 sequenceBuffer.appendCodePoint(lastCodePoint);
1203                 while(Character.getType(c) == Character.NON_SPACING_MARK) {
1204                     sequenceBuffer.appendCodePoint(c);
1205                     i += Character.charCount(c);
1206                     if (i >= normalizedPattern.length())
1207                         break;
1208                     c = normalizedPattern.codePointAt(i);
1209                 }
1210                 String ea = produceEquivalentAlternation(
1211                                                   sequenceBuffer.toString());
1212 
1213                 charClass.setLength(charClass.length()-Character.charCount(lastCodePoint));
1214                 if (eq == null)
1215                     eq = new StringBuilder();
1216                 eq.append('|');
1217                 eq.append(ea);
1218             } else {
1219                 charClass.appendCodePoint(c);
1220                 i++;
1221             }
1222             if (i == normalizedPattern.length())
1223                 throw error("Unclosed character class");
1224             lastCodePoint = c;
1225         }
1226 
1227         if (eq != null) {
1228             result = "(?:"+charClass.toString()+eq.toString()+")";
1229         } else {
1230             result = charClass.toString();
1231         }
1232 
1233         newPattern.append(result);
1234         return i;
1235     }
1236 
1237     /**
1238      * Given a specific sequence composed of a regular character and
1239      * combining marks that follow it, produce the alternation that will
1240      * match all canonical equivalences of that sequence.
1241      */
1242     private String produceEquivalentAlternation(String source) {
1243         int len = countChars(source, 0, 1);
1244         if (source.length() == len)
1245             // source has one character.
1246             return source;
1247 
1248         String base = source.substring(0,len);
1249         String combiningMarks = source.substring(len);
1250 
1251         String[] perms = producePermutations(combiningMarks);
1252         StringBuilder result = new StringBuilder(source);
1253 
1254         // Add combined permutations
1255         for(int x=0; x<perms.length; x++) {
1256             String next = base + perms[x];
1257             if (x>0)
1258                 result.append("|"+next);
1259             next = composeOneStep(next);
1260             if (next != null)
1261                 result.append("|"+produceEquivalentAlternation(next));
1262         }
1263         return result.toString();
1264     }
1265 
1266     /**
1267      * Returns an array of strings that have all the possible
1268      * permutations of the characters in the input string.
1269      * This is used to get a list of all possible orderings
1270      * of a set of combining marks. Note that some of the permutations
1271      * are invalid because of combining class collisions, and these
1272      * possibilities must be removed because they are not canonically
1273      * equivalent.
1274      */
1275     private String[] producePermutations(String input) {
1276         if (input.length() == countChars(input, 0, 1))
1277             return new String[] {input};
1278 
1279         if (input.length() == countChars(input, 0, 2)) {
1280             int c0 = Character.codePointAt(input, 0);
1281             int c1 = Character.codePointAt(input, Character.charCount(c0));
1282             if (getClass(c1) == getClass(c0)) {
1283                 return new String[] {input};
1284             }
1285             String[] result = new String[2];
1286             result[0] = input;
1287             StringBuilder sb = new StringBuilder(2);
1288             sb.appendCodePoint(c1);
1289             sb.appendCodePoint(c0);
1290             result[1] = sb.toString();
1291             return result;
1292         }
1293 
1294         int length = 1;
1295         int nCodePoints = countCodePoints(input);
1296         for(int x=1; x<nCodePoints; x++)
1297             length = length * (x+1);
1298 
1299         String[] temp = new String[length];
1300 
1301         int combClass[] = new int[nCodePoints];
1302         for(int x=0, i=0; x<nCodePoints; x++) {
1303             int c = Character.codePointAt(input, i);
1304             combClass[x] = getClass(c);
1305             i +=  Character.charCount(c);
1306         }
1307 
1308         // For each char, take it out and add the permutations
1309         // of the remaining chars
1310         int index = 0;
1311         int len;
1312         // offset maintains the index in code units.
1313 loop:   for(int x=0, offset=0; x<nCodePoints; x++, offset+=len) {
1314             len = countChars(input, offset, 1);
1315             boolean skip = false;
1316             for(int y=x-1; y>=0; y--) {
1317                 if (combClass[y] == combClass[x]) {
1318                     continue loop;
1319                 }
1320             }
1321             StringBuilder sb = new StringBuilder(input);
1322             String otherChars = sb.delete(offset, offset+len).toString();
1323             String[] subResult = producePermutations(otherChars);
1324 
1325             String prefix = input.substring(offset, offset+len);
1326             for(int y=0; y<subResult.length; y++)
1327                 temp[index++] =  prefix + subResult[y];
1328         }
1329         String[] result = new String[index];
1330         for (int x=0; x<index; x++)
1331             result[x] = temp[x];
1332         return result;
1333     }
1334 
1335     private int getClass(int c) {
1336         return sun.text.Normalizer.getCombiningClass(c);
1337     }
1338 
1339     /**
1340      * Attempts to compose input by combining the first character
1341      * with the first combining mark following it. Returns a String
1342      * that is the composition of the leading character with its first
1343      * combining mark followed by the remaining combining marks. Returns
1344      * null if the first two characters cannot be further composed.
1345      */
1346     private String composeOneStep(String input) {
1347         int len = countChars(input, 0, 2);
1348         String firstTwoCharacters = input.substring(0, len);
1349         String result = Normalizer.normalize(firstTwoCharacters, Normalizer.Form.NFC);
1350 
1351         if (result.equals(firstTwoCharacters))
1352             return null;
1353         else {
1354             String remainder = input.substring(len);
1355             return result + remainder;
1356         }
1357     }
1358 
1359     /**
1360      * Preprocess any /Q.../E sequences in `temp', meta-quoting them.
1361      * See the description of `quotemeta' in perlfunc(1).
1362      */
1363     private void RemoveQEQuoting() {
1364         for (int i = 0; i < patternLength-1; i++)
1365             if (temp[i] == '\\' && temp[i+1] == 'Q') {
1366                 int j = i;
1367                 int[] newtemp = new int[j + 2*(temp.length-j) - 6];
1368                 System.arraycopy(temp, 0, newtemp, 0, j);
1369                 i+=2;
1370                 boolean inQuote = true;
1371                 while (i < patternLength) {
1372                     int c = temp[i++];
1373                     if (! ASCII.isAscii(c) || ASCII.isAlnum(c)) {
1374                         newtemp[j++] = c;
1375                     } else if (c != '\\') {
1376                         if (inQuote) newtemp[j++] = '\\';
1377                         newtemp[j++] = c;
1378                     } else if (inQuote) {
1379                         if (temp[i] == 'E') {
1380                             i++;
1381                             inQuote = false;
1382                         } else {
1383                             newtemp[j++] = '\\';
1384                             newtemp[j++] = '\\';
1385                         }
1386                     } else {
1387                         if (temp[i] == 'Q') {
1388                             i++;
1389                             inQuote = true;
1390                         } else {
1391                             newtemp[j++] = c;
1392                         }
1393                     }
1394                 }
1395                 patternLength = j;
1396                 int[] newtemp2 = new int[patternLength+2];
1397                 System.arraycopy(newtemp, 0, newtemp2, 0, patternLength);
1398                 temp = newtemp2;
1399                 return;
1400             }
1401     }
1402 
1403     /**
1404      * Copies regular expression to an int array and invokes the parsing
1405      * of the expression which will create the object tree.
1406      */
1407     private void compile() {
1408         // Handle canonical equivalences
1409         if (has(CANON_EQ) && !has(LITERAL)) {
1410             normalize();
1411         } else {
1412             normalizedPattern = pattern;
1413         }
1414         patternLength = normalizedPattern.length();
1415 
1416         // Copy pattern to int array for convenience
1417         // Use double zero to terminate pattern
1418         temp = new int[patternLength + 2];
1419 
1420         boolean hasSupplementary = false;
1421         int c, count = 0;
1422         // Convert all chars into code points
1423         for (int x = 0; x < patternLength; x += Character.charCount(c)) {
1424             c = normalizedPattern.codePointAt(x);
1425             if (isSupplementary(c)) {
1426                 hasSupplementary = true;
1427             }
1428             temp[count++] = c;
1429         }
1430 
1431         patternLength = count;   // patternLength now in code points
1432 
1433         if (! has(LITERAL))
1434             RemoveQEQuoting();
1435 
1436         // Allocate all temporary objects here.
1437         buffer = new int[32];
1438         groupNodes = new GroupHead[10];
1439 
1440         if (has(LITERAL)) {
1441             // Literal pattern handling
1442             matchRoot = newSlice(temp, patternLength, hasSupplementary);
1443             matchRoot.next = lastAccept;
1444         } else {
1445             // Start recursive descent parsing
1446             matchRoot = expr(lastAccept);
1447             // Check extra pattern characters
1448             if (patternLength != cursor) {
1449                 if (peek() == ')') {
1450                     throw error("Unmatched closing ')'");
1451                 } else {
1452                     throw error("Unexpected internal error");
1453                 }
1454             }
1455         }
1456 
1457         // Peephole optimization
1458         if (matchRoot instanceof Slice) {
1459             root = BnM.optimize(matchRoot);
1460             if (root == matchRoot) {
1461                 root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1462             }
1463         } else if (matchRoot instanceof Begin || matchRoot instanceof First) {
1464             root = matchRoot;
1465         } else {
1466             root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1467         }
1468 
1469         // Release temporary storage
1470         temp = null;
1471         buffer = null;
1472         groupNodes = null;
1473         patternLength = 0;
1474         compiled = true;
1475     }
1476 
1477     /**
1478      * Used to print out a subtree of the Pattern to help with debugging.
1479      */
1480     private static void printObjectTree(Node node) {
1481         while(node != null) {
1482             if (node instanceof Prolog) {
1483                 System.out.println(node);
1484                 printObjectTree(((Prolog)node).loop);
1485                 System.out.println("**** end contents prolog loop");
1486             } else if (node instanceof Loop) {
1487                 System.out.println(node);
1488                 printObjectTree(((Loop)node).body);
1489                 System.out.println("**** end contents Loop body");
1490             } else if (node instanceof Curly) {
1491                 System.out.println(node);
1492                 printObjectTree(((Curly)node).atom);
1493                 System.out.println("**** end contents Curly body");
1494             } else if (node instanceof GroupCurly) {
1495                 System.out.println(node);
1496                 printObjectTree(((GroupCurly)node).atom);
1497                 System.out.println("**** end contents GroupCurly body");
1498             } else if (node instanceof GroupTail) {
1499                 System.out.println(node);
1500                 System.out.println("Tail next is "+node.next);
1501                 return;
1502             } else {
1503                 System.out.println(node);
1504             }
1505             node = node.next;
1506             if (node != null)
1507                 System.out.println("->next:");
1508             if (node == Pattern.accept) {
1509                 System.out.println("Accept Node");
1510                 node = null;
1511             }
1512        }
1513     }
1514 
1515     /**
1516      * Used to accumulate information about a subtree of the object graph
1517      * so that optimizations can be applied to the subtree.
1518      */
1519     static final class TreeInfo {
1520         int minLength;
1521         int maxLength;
1522         boolean maxValid;
1523         boolean deterministic;
1524 
1525         TreeInfo() {
1526             reset();
1527         }
1528         void reset() {
1529             minLength = 0;
1530             maxLength = 0;
1531             maxValid = true;
1532             deterministic = true;
1533         }
1534     }
1535 
1536     /*
1537      * The following private methods are mainly used to improve the
1538      * readability of the code. In order to let the Java compiler easily
1539      * inline them, we should not put many assertions or error checks in them.
1540      */
1541 
1542     /**
1543      * Indicates whether a particular flag is set or not.
1544      */
1545     private boolean has(int f) {
1546         return (flags & f) != 0;
1547     }
1548 
1549     /**
1550      * Match next character, signal error if failed.
1551      */
1552     private void accept(int ch, String s) {
1553         int testChar = temp[cursor++];
1554         if (has(COMMENTS))
1555             testChar = parsePastWhitespace(testChar);
1556         if (ch != testChar) {
1557             throw error(s);
1558         }
1559     }
1560 
1561     /**
1562      * Mark the end of pattern with a specific character.
1563      */
1564     private void mark(int c) {
1565         temp[patternLength] = c;
1566     }
1567 
1568     /**
1569      * Peek the next character, and do not advance the cursor.
1570      */
1571     private int peek() {
1572         int ch = temp[cursor];
1573         if (has(COMMENTS))
1574             ch = peekPastWhitespace(ch);
1575         return ch;
1576     }
1577 
1578     /**
1579      * Read the next character, and advance the cursor by one.
1580      */
1581     private int read() {
1582         int ch = temp[cursor++];
1583         if (has(COMMENTS))
1584             ch = parsePastWhitespace(ch);
1585         return ch;
1586     }
1587 
1588     /**
1589      * Read the next character, and advance the cursor by one,
1590      * ignoring the COMMENTS setting
1591      */
1592     private int readEscaped() {
1593         int ch = temp[cursor++];
1594         return ch;
1595     }
1596 
1597     /**
1598      * Advance the cursor by one, and peek the next character.
1599      */
1600     private int next() {
1601         int ch = temp[++cursor];
1602         if (has(COMMENTS))
1603             ch = peekPastWhitespace(ch);
1604         return ch;
1605     }
1606 
1607     /**
1608      * Advance the cursor by one, and peek the next character,
1609      * ignoring the COMMENTS setting
1610      */
1611     private int nextEscaped() {
1612         int ch = temp[++cursor];
1613         return ch;
1614     }
1615 
1616     /**
1617      * If in xmode peek past whitespace and comments.
1618      */
1619     private int peekPastWhitespace(int ch) {
1620         while (ASCII.isSpace(ch) || ch == '#') {
1621             while (ASCII.isSpace(ch))
1622                 ch = temp[++cursor];
1623             if (ch == '#') {
1624                 ch = peekPastLine();
1625             }
1626         }
1627         return ch;
1628     }
1629 
1630     /**
1631      * If in xmode parse past whitespace and comments.
1632      */
1633     private int parsePastWhitespace(int ch) {
1634         while (ASCII.isSpace(ch) || ch == '#') {
1635             while (ASCII.isSpace(ch))
1636                 ch = temp[cursor++];
1637             if (ch == '#')
1638                 ch = parsePastLine();
1639         }
1640         return ch;
1641     }
1642 
1643     /**
1644      * xmode parse past comment to end of line.
1645      */
1646     private int parsePastLine() {
1647         int ch = temp[cursor++];
1648         while (ch != 0 && !isLineSeparator(ch))
1649             ch = temp[cursor++];
1650         return ch;
1651     }
1652 
1653     /**
1654      * xmode peek past comment to end of line.
1655      */
1656     private int peekPastLine() {
1657         int ch = temp[++cursor];
1658         while (ch != 0 && !isLineSeparator(ch))
1659             ch = temp[++cursor];
1660         return ch;
1661     }
1662 
1663     /**
1664      * Determines if character is a line separator in the current mode
1665      */
1666     private boolean isLineSeparator(int ch) {
1667         if (has(UNIX_LINES)) {
1668             return ch == '\n';
1669         } else {
1670             return (ch == '\n' ||
1671                     ch == '\r' ||
1672                     (ch|1) == '\u2029' ||
1673                     ch == '\u0085');
1674         }
1675     }
1676 
1677     /**
1678      * Read the character after the next one, and advance the cursor by two.
1679      */
1680     private int skip() {
1681         int i = cursor;
1682         int ch = temp[i+1];
1683         cursor = i + 2;
1684         return ch;
1685     }
1686 
1687     /**
1688      * Unread one next character, and retreat cursor by one.
1689      */
1690     private void unread() {
1691         cursor--;
1692     }
1693 
1694     /**
1695      * Internal method used for handling all syntax errors. The pattern is
1696      * displayed with a pointer to aid in locating the syntax error.
1697      */
1698     private PatternSyntaxException error(String s) {
1699         return new PatternSyntaxException(s, normalizedPattern,  cursor - 1);
1700     }
1701 
1702     /**
1703      * Determines if there is any supplementary character or unpaired
1704      * surrogate in the specified range.
1705      */
1706     private boolean findSupplementary(int start, int end) {
1707         for (int i = start; i < end; i++) {
1708             if (isSupplementary(temp[i]))
1709                 return true;
1710         }
1711         return false;
1712     }
1713 
1714     /**
1715      * Determines if the specified code point is a supplementary
1716      * character or unpaired surrogate.
1717      */
1718     private static final boolean isSupplementary(int ch) {
1719         return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT || isSurrogate(ch);
1720     }
1721 
1722     /**
1723      *  The following methods handle the main parsing. They are sorted
1724      *  according to their precedence order, the lowest one first.
1725      */
1726 
1727     /**
1728      * The expression is parsed with branch nodes added for alternations.
1729      * This may be called recursively to parse sub expressions that may
1730      * contain alternations.
1731      */
1732     private Node expr(Node end) {
1733         Node prev = null;
1734         Node firstTail = null;
1735         Node branchConn = null;
1736 
1737         for (;;) {
1738             Node node = sequence(end);
1739             Node nodeTail = root;      //double return
1740             if (prev == null) {
1741                 prev = node;
1742                 firstTail = nodeTail;
1743             } else {
1744                 // Branch
1745                 if (branchConn == null) {
1746                     branchConn = new BranchConn();
1747                     branchConn.next = end;
1748                 }  
1749                 if (node == end) {
1750                     // if the node returned from sequence() is "end"
1751                     // we have an empty expr, set a null atom into
1752                     // the branch to indicate to go "next" directly.
1753                     node = null;
1754                 } else {
1755                     // the "tail.next" of each atom goes to branchConn
1756                     nodeTail.next = branchConn;
1757                 }
1758                 if (prev instanceof Branch) {
1759                     ((Branch)prev).add(node);
1760                 } else {
1761                     if (prev == end) {
1762                         prev = null;
1763                     } else {
1764                         // replace the "end" with "branchConn" at its tail.next
1765                         // when put the "prev" into the branch as the first atom.
1766                         firstTail.next = branchConn;
1767                     }
1768                     prev = new Branch(prev, node, branchConn);
1769                 }
1770             }
1771             if (peek() != '|') {
1772                 return prev;
1773             }
1774             next();
1775         }
1776     }
1777 
1778     /**
1779      * Parsing of sequences between alternations.
1780      */
1781     private Node sequence(Node end) {
1782         Node head = null;
1783         Node tail = null;
1784         Node node = null;
1785     LOOP:
1786         for (;;) {
1787             int ch = peek();
1788             switch (ch) {
1789             case '(':
1790                 // Because group handles its own closure,
1791                 // we need to treat it differently
1792                 node = group0();
1793                 // Check for comment or flag group
1794                 if (node == null)
1795                     continue;
1796                 if (head == null)
1797                     head = node;
1798                 else
1799                     tail.next = node;
1800                 // Double return: Tail was returned in root
1801                 tail = root;
1802                 continue;
1803             case '[':
1804                 node = clazz(true);
1805                 break;
1806             case '\\':
1807                 ch = nextEscaped();
1808                 if (ch == 'p' || ch == 'P') {
1809                     boolean oneLetter = true;
1810                     boolean comp = (ch == 'P');
1811                     ch = next(); // Consume { if present
1812                     if (ch != '{') {
1813                         unread();
1814                     } else {
1815                         oneLetter = false;
1816                     }
1817                     node = family(oneLetter).maybeComplement(comp);
1818                 } else {
1819                     unread();
1820                     node = atom();
1821                 }
1822                 break;
1823             case '^':
1824                 next();
1825                 if (has(MULTILINE)) {
1826                     if (has(UNIX_LINES))
1827                         node = new UnixCaret();
1828                     else
1829                         node = new Caret();
1830                 } else {
1831                     node = new Begin();
1832                 }
1833                 break;
1834             case '$':
1835                 next();
1836                 if (has(UNIX_LINES))
1837                     node = new UnixDollar(has(MULTILINE));
1838                 else
1839                     node = new Dollar(has(MULTILINE));
1840                 break;
1841             case '.':
1842                 next();
1843                 if (has(DOTALL)) {
1844                     node = new All();
1845                 } else {
1846                     if (has(UNIX_LINES))
1847                         node = new UnixDot();
1848                     else {
1849                         node = new Dot();
1850                     }
1851                 }
1852                 break;
1853             case '|':
1854             case ')':
1855                 break LOOP;
1856             case ']': // Now interpreting dangling ] and } as literals
1857             case '}':
1858                 node = atom();
1859                 break;
1860             case '?':
1861             case '*':
1862             case '+':
1863                 next();
1864                 throw error("Dangling meta character '" + ((char)ch) + "'");
1865             case 0:
1866                 if (cursor >= patternLength) {
1867                     break LOOP;
1868                 }
1869                 // Fall through
1870             default:
1871                 node = atom();
1872                 break;
1873             }
1874 
1875             node = closure(node);
1876 
1877             if (head == null) {
1878                 head = tail = node;
1879             } else {
1880                 tail.next = node;
1881                 tail = node;
1882             }
1883         }
1884         if (head == null) {
1885             return end;
1886         }
1887         tail.next = end;
1888         root = tail;      //double return
1889         return head;
1890     }
1891 
1892     /**
1893      * Parse and add a new Single or Slice.
1894      */
1895     private Node atom() {
1896         int first = 0;
1897         int prev = -1;
1898         boolean hasSupplementary = false;
1899         int ch = peek();
1900         for (;;) {
1901             switch (ch) {
1902             case '*':
1903             case '+':
1904             case '?':
1905             case '{':
1906                 if (first > 1) {
1907                     cursor = prev;    // Unwind one character
1908                     first--;
1909                 }
1910                 break;
1911             case '$':
1912             case '.':
1913             case '^':
1914             case '(':
1915             case '[':
1916             case '|':
1917             case ')':
1918                 break;
1919             case '\\':
1920                 ch = nextEscaped();
1921                 if (ch == 'p' || ch == 'P') { // Property
1922                     if (first > 0) { // Slice is waiting; handle it first
1923                         unread();
1924                         break;
1925                     } else { // No slice; just return the family node
1926                         boolean comp = (ch == 'P');
1927                         boolean oneLetter = true;
1928                         ch = next(); // Consume { if present
1929                         if (ch != '{')
1930                             unread();
1931                         else
1932                             oneLetter = false;
1933                         return family(oneLetter).maybeComplement(comp);
1934                     }
1935                 }
1936                 unread();
1937                 prev = cursor;
1938                 ch = escape(false, first == 0);
1939                 if (ch >= 0) {
1940                     append(ch, first);
1941                     first++;
1942                     if (isSupplementary(ch)) {
1943                         hasSupplementary = true;
1944                     }
1945                     ch = peek();
1946                     continue;
1947                 } else if (first == 0) {
1948                     return root;
1949                 }
1950                 // Unwind meta escape sequence
1951                 cursor = prev;
1952                 break;
1953             case 0:
1954                 if (cursor >= patternLength) {
1955                     break;
1956                 }
1957                 // Fall through
1958             default:
1959                 prev = cursor;
1960                 append(ch, first);
1961                 first++;
1962                 if (isSupplementary(ch)) {
1963                     hasSupplementary = true;
1964                 }
1965                 ch = next();
1966                 continue;
1967             }
1968             break;
1969         }
1970         if (first == 1) {
1971             return newSingle(buffer[0]);
1972         } else {
1973             return newSlice(buffer, first, hasSupplementary);
1974         }
1975     }
1976 
1977     private void append(int ch, int len) {
1978         if (len >= buffer.length) {
1979             int[] tmp = new int[len+len];
1980             System.arraycopy(buffer, 0, tmp, 0, len);
1981             buffer = tmp;
1982         }
1983         buffer[len] = ch;
1984     }
1985 
1986     /**
1987      * Parses a backref greedily, taking as many numbers as it
1988      * can. The first digit is always treated as a backref, but
1989      * multi digit numbers are only treated as a backref if at
1990      * least that many backrefs exist at this point in the regex.
1991      */
1992     private Node ref(int refNum) {
1993         boolean done = false;
1994         while(!done) {
1995             int ch = peek();
1996             switch(ch) {
1997             case '0':
1998             case '1':
1999             case '2':
2000             case '3':
2001             case '4':
2002             case '5':
2003             case '6':
2004             case '7':
2005             case '8':
2006             case '9':
2007                 int newRefNum = (refNum * 10) + (ch - '0');
2008                 // Add another number if it doesn't make a group
2009                 // that doesn't exist
2010                 if (capturingGroupCount - 1 < newRefNum) {
2011                     done = true;
2012                     break;
2013                 }
2014                 refNum = newRefNum;
2015                 read();
2016                 break;
2017             default:
2018                 done = true;
2019                 break;
2020             }
2021         }
2022         if (has(CASE_INSENSITIVE) || has(UNICODE_CASE))
2023             return new CIBackRef(refNum);
2024         else
2025             return new BackRef(refNum);
2026     }
2027 
2028     /**
2029      * Parses an escape sequence to determine the actual value that needs
2030      * to be matched.
2031      * If -1 is returned and create was true a new object was added to the tree
2032      * to handle the escape sequence.
2033      * If the returned value is greater than zero, it is the value that
2034      * matches the escape sequence.
2035      */
2036     private int escape(boolean inclass, boolean create) {
2037         int ch = skip();
2038         switch (ch) {
2039         case '0':
2040             return o();
2041         case '1':
2042         case '2':
2043         case '3':
2044         case '4':
2045         case '5':
2046         case '6':
2047         case '7':
2048         case '8':
2049         case '9':
2050             if (inclass) break;
2051             if (capturingGroupCount < (ch - '0'))
2052                 throw error("No such group yet exists at this point in the pattern");
2053             if (create) {
2054                 root = ref((ch - '0'));
2055             }
2056             return -1;
2057         case 'A':
2058             if (inclass) break;
2059             if (create) root = new Begin();
2060             return -1;
2061         case 'B':
2062             if (inclass) break;
2063             if (create) root = new Bound(Bound.NONE);
2064             return -1;
2065         case 'C':
2066             break;
2067         case 'D':
2068             if (create) root = new Ctype(ASCII.DIGIT).complement();
2069             return -1;
2070         case 'E':
2071         case 'F':
2072             break;
2073         case 'G':
2074             if (inclass) break;
2075             if (create) root = new LastMatch();
2076             return -1;
2077         case 'H':
2078         case 'I':
2079         case 'J':
2080         case 'K':
2081         case 'L':
2082         case 'M':
2083         case 'N':
2084         case 'O':
2085         case 'P':
2086         case 'Q':
2087         case 'R':
2088             break;
2089         case 'S':
2090             if (create) root = new Ctype(ASCII.SPACE).complement();
2091             return -1;
2092         case 'T':
2093         case 'U':
2094         case 'V':
2095             break;
2096         case 'W':
2097             if (create) root = new Ctype(ASCII.WORD).complement();
2098             return -1;
2099         case 'X':
2100         case 'Y':
2101             break;
2102         case 'Z':
2103             if (inclass) break;
2104             if (create) {
2105                 if (has(UNIX_LINES))
2106                     root = new UnixDollar(false);
2107                 else
2108                     root = new Dollar(false);
2109             }
2110             return -1;
2111         case 'a':
2112             return '\007';
2113         case 'b':
2114             if (inclass) break;
2115             if (create) root = new Bound(Bound.BOTH);
2116             return -1;
2117         case 'c':
2118             return c();
2119         case 'd':
2120             if (create) root = new Ctype(ASCII.DIGIT);
2121             return -1;
2122         case 'e':
2123             return '\033';
2124         case 'f':
2125             return '\f';
2126         case 'g':
2127         case 'h':
2128         case 'i':
2129         case 'j':
2130         case 'k':
2131         case 'l':
2132         case 'm':
2133             break;
2134         case 'n':
2135             return '\n';
2136         case 'o':
2137         case 'p':
2138         case 'q':
2139             break;
2140         case 'r':
2141             return '\r';
2142         case 's':
2143             if (create) root = new Ctype(ASCII.SPACE);
2144             return -1;
2145         case 't':
2146             return '\t';
2147         case 'u':
2148             return u();
2149         case 'v':
2150             return '\013';
2151         case 'w':
2152             if (create) root = new Ctype(ASCII.WORD);
2153             return -1;
2154         case 'x':
2155             return x();
2156         case 'y':
2157             break;
2158         case 'z':
2159             if (inclass) break;
2160             if (create) root = new End();
2161             return -1;
2162         default:
2163             return ch;
2164         }
2165         throw error("Illegal/unsupported escape squence");
2166     }
2167 
2168     /**
2169      * Parse a character class, and return the node that matches it.
2170      *
2171      * Consumes a ] on the way out if consume is true. Usually consume
2172      * is true except for the case of [abc&&def] where def is a separate
2173      * right hand node with "understood" brackets.
2174      */
2175     private CharProperty clazz(boolean consume) {
2176         CharProperty prev = null;
2177         CharProperty node = null;
2178         BitClass bits = new BitClass();
2179         boolean include = true;
2180         boolean firstInClass = true;
2181         int ch = next();
2182         for (;;) {
2183             switch (ch) {
2184                 case '^':
2185                     // Negates if first char in a class, otherwise literal
2186                     if (firstInClass) {
2187                         if (temp[cursor-1] != '[')
2188                             break;
2189                         ch = next();
2190                         include = !include;
2191                         continue;
2192                     } else {
2193                         // ^ not first in class, treat as literal
2194                         break;
2195                     }
2196                 case '[':
2197                     firstInClass = false;
2198                     node = clazz(true);
2199                     if (prev == null)
2200                         prev = node;
2201                     else
2202                         prev = union(prev, node);
2203                     ch = peek();
2204                     continue;
2205                 case '&':
2206                     firstInClass = false;
2207                     ch = next();
2208                     if (ch == '&') {
2209                         ch = next();
2210                         CharProperty rightNode = null;
2211                         while (ch != ']' && ch != '&') {
2212                             if (ch == '[') {
2213                                 if (rightNode == null)
2214                                     rightNode = clazz(true);
2215                                 else
2216                                     rightNode = union(rightNode, clazz(true));
2217                             } else { // abc&&def
2218                                 unread();
2219                                 rightNode = clazz(false);
2220                             }
2221                             ch = peek();
2222                         }
2223                         if (rightNode != null)
2224                             node = rightNode;
2225                         if (prev == null) {
2226                             if (rightNode == null)
2227                                 throw error("Bad class syntax");
2228                             else
2229                                 prev = rightNode;
2230                         } else {
2231                             prev = intersection(prev, node);
2232                         }
2233                     } else {
2234                         // treat as a literal &
2235                         unread();
2236                         break;
2237                     }
2238                     continue;
2239                 case 0:
2240                     firstInClass = false;
2241                     if (cursor >= patternLength)
2242                         throw error("Unclosed character class");
2243                     break;
2244                 case ']':
2245                     firstInClass = false;
2246                     if (prev != null) {
2247                         if (consume)
2248                             next();
2249                         return prev;
2250                     }
2251                     break;
2252                 default:
2253                     firstInClass = false;
2254                     break;
2255             }
2256             node = range(bits);
2257             if (include) {
2258                 if (prev == null) {
2259                     prev = node;
2260                 } else {
2261                     if (prev != node)
2262                         prev = union(prev, node);
2263                 }
2264             } else {
2265                 if (prev == null) {
2266                     prev = node.complement();
2267                 } else {
2268                     if (prev != node)
2269                         prev = setDifference(prev, node);
2270                 }
2271             }
2272             ch = peek();
2273         }
2274     }
2275 
2276     /**
2277      * Parse a single character or a character range in a character class
2278      * and return its representative node.
2279      */
2280     private CharProperty range(BitClass bits) {
2281         int ch = peek();
2282         if (ch == '\\') {
2283             ch = nextEscaped();
2284             if (ch == 'p' || ch == 'P') { // A property
2285                 boolean comp = (ch == 'P');
2286                 boolean oneLetter = true;
2287                 // Consume { if present
2288                 ch = next();
2289                 if (ch != '{')
2290                     unread();
2291                 else
2292                     oneLetter = false;
2293                 return family(oneLetter).maybeComplement(comp);
2294             } else { // ordinary escape
2295                 unread();
2296                 ch = escape(true, true);
2297                 if (ch == -1)
2298                     return (CharProperty) root;
2299             }
2300         } else {
2301             ch = single();
2302         }
2303         if (ch >= 0) {
2304             if (peek() == '-') {
2305                 int endRange = temp[cursor+1];
2306                 if (endRange == '[') {
2307                     if (ch < 256)
2308                         return bits.add(ch, flags());
2309                     return newSingle(ch);
2310                 }
2311                 if (endRange != ']') {
2312                     next();
2313                     int m = single();
2314                     if (m < ch)
2315                         throw error("Illegal character range");
2316                     if (has(CASE_INSENSITIVE) || has(UNICODE_CASE))
2317                         return caseInsensitiveRangeFor(ch, m);
2318                     else
2319                         return rangeFor(ch, m);
2320                 }
2321             }
2322             if (ch < 256)
2323                 return bits.add(ch, flags());
2324             return newSingle(ch);
2325         }
2326         throw error("Unexpected character '"+((char)ch)+"'");
2327     }
2328 
2329     private int single() {
2330         int ch = peek();
2331         switch (ch) {
2332         case '\\':
2333             return escape(true, false);
2334         default:
2335             next();
2336             return ch;
2337         }
2338     }
2339 
2340     /**
2341      * Parses a Unicode character family and returns its representative node.
2342      */
2343     private CharProperty family(boolean singleLetter) {
2344         next();
2345         String name;
2346 
2347         if (singleLetter) {
2348             int c = temp[cursor];
2349             if (!Character.isSupplementaryCodePoint(c)) {
2350                 name = String.valueOf((char)c);
2351             } else {
2352                 name = new String(temp, cursor, 1);
2353             }
2354             read();
2355         } else {
2356             int i = cursor;
2357             mark('}');
2358             while(read() != '}') {
2359             }
2360             mark('\000');
2361             int j = cursor;
2362             if (j > patternLength)
2363                 throw error("Unclosed character family");
2364             if (i + 1 >= j)
2365                 throw error("Empty character family");
2366             name = new String(temp, i, j-i-1);
2367         }
2368 
2369         if (name.startsWith("In")) {
2370             return unicodeBlockPropertyFor(name.substring(2));
2371         } else {
2372             if (name.startsWith("Is"))
2373                 name = name.substring(2);
2374             return charPropertyNodeFor(name);
2375         }
2376     }
2377 
2378     /**
2379      * Returns a CharProperty matching all characters in a UnicodeBlock.
2380      */
2381     private CharProperty unicodeBlockPropertyFor(String name) {
2382         final Character.UnicodeBlock block;
2383         try {
2384             block = Character.UnicodeBlock.forName(name);
2385         } catch (IllegalArgumentException iae) {
2386             throw error("Unknown character block name {" + name + "}");
2387         }
2388         return new CharProperty() {
2389                 boolean isSatisfiedBy(int ch) {
2390                     return block == Character.UnicodeBlock.of(ch);}};
2391     }
2392 
2393     /**
2394      * Returns a CharProperty matching all characters in a named property.
2395      */
2396     private CharProperty charPropertyNodeFor(String name) {
2397         CharProperty p = CharPropertyNames.charPropertyFor(name);
2398         if (p == null)
2399             throw error("Unknown character property name {" + name + "}");
2400         return p;
2401     }
2402 
2403     /**
2404      * Parses a group and returns the head node of a set of nodes that process
2405      * the group. Sometimes a double return system is used where the tail is
2406      * returned in root.
2407      */
2408     private Node group0() {
2409         boolean capturingGroup = false;
2410         Node head = null;
2411         Node tail = null;
2412         int save = flags;
2413         root = null;
2414         int ch = next();
2415         if (ch == '?') {
2416             ch = skip();
2417             switch (ch) {
2418             case ':':   //  (?:xxx) pure group
2419                 head = createGroup(true);
2420                 tail = root;
2421                 head.next = expr(tail);
2422                 break;
2423             case '=':   // (?=xxx) and (?!xxx) lookahead
2424             case '!':
2425                 head = createGroup(true);
2426                 tail = root;
2427                 head.next = expr(tail);
2428                 if (ch == '=') {
2429                     head = tail = new Pos(head);
2430                 } else {
2431                     head = tail = new Neg(head);
2432                 }
2433                 break;
2434             case '>':   // (?>xxx)  independent group
2435                 head = createGroup(true);
2436                 tail = root;
2437                 head.next = expr(tail);
2438                 head = tail = new Ques(head, INDEPENDENT);
2439                 break;
2440             case '<':   // (?<xxx)  look behind
2441                 ch = read();
2442                 int start = cursor;
2443                 head = createGroup(true);
2444                 tail = root;
2445                 head.next = expr(tail);
2446                 TreeInfo info = new TreeInfo();
2447                 head.study(info);
2448                 if (info.maxValid == false) {
2449                     throw error("Look-behind group does not have "
2450                                 + "an obvious maximum length");
2451                 }
2452                 boolean hasSupplementary = findSupplementary(start, patternLength);
2453                 if (ch == '=') {
2454                     head = tail = (hasSupplementary ?
2455                                    new BehindS(head, info.maxLength,
2456                                                info.minLength) :
2457                                    new Behind(head, info.maxLength,
2458                                               info.minLength));
2459                 } else if (ch == '!') {
2460                     head = tail = (hasSupplementary ?
2461                                    new NotBehindS(head, info.maxLength,
2462                                                   info.minLength) :
2463                                    new NotBehind(head, info.maxLength,
2464                                                  info.minLength));
2465                 } else {
2466                     throw error("Unknown look-behind group");
2467                 }
2468                 break;
2469             case '$':
2470             case '@':
2471                 throw error("Unknown group type");
2472             default:    // (?xxx:) inlined match flags
2473                 unread();
2474                 addFlag();
2475                 ch = read();
2476                 if (ch == ')') {
2477                     return null;    // Inline modifier only
2478                 }
2479                 if (ch != ':') {
2480                     throw error("Unknown inline modifier");
2481                 }
2482                 head = createGroup(true);
2483                 tail = root;
2484                 head.next = expr(tail);
2485                 break;
2486             }
2487         } else { // (xxx) a regular group
2488             capturingGroup = true;
2489             head = createGroup(false);
2490             tail = root;
2491             head.next = expr(tail);
2492         }
2493 
2494         accept(')', "Unclosed group");
2495         flags = save;
2496 
2497         // Check for quantifiers
2498         Node node = closure(head);
2499         if (node == head) { // No closure
2500             root = tail;
2501             return node;    // Dual return
2502         }
2503         if (head == tail) { // Zero length assertion
2504             root = node;
2505             return node;    // Dual return
2506         }
2507 
2508         if (node instanceof Ques) {
2509             Ques ques = (Ques) node;
2510             if (ques.type == POSSESSIVE) {
2511                 root = node;
2512                 return node;
2513             }
2514             tail.next = new BranchConn();
2515             tail = tail.next;
2516             if (ques.type == GREEDY) {
2517                 head = new Branch(head, null, tail);
2518             } else { // Reluctant quantifier
2519                 head = new Branch(null, head, tail);
2520             }
2521             root = tail;
2522             return head;
2523         } else if (node instanceof Curly) {
2524             Curly curly = (Curly) node;
2525             if (curly.type == POSSESSIVE) {
2526                 root = node;
2527                 return node;
2528             }
2529             // Discover if the group is deterministic
2530             TreeInfo info = new TreeInfo();
2531             if (head.study(info)) { // Deterministic
2532                 GroupTail temp = (GroupTail) tail;
2533                 head = root = new GroupCurly(head.next, curly.cmin,
2534                                    curly.cmax, curly.type,
2535                                    ((GroupTail)tail).localIndex,
2536                                    ((GroupTail)tail).groupIndex,
2537                                              capturingGroup);
2538                 return head;
2539             } else { // Non-deterministic
2540                 int temp = ((GroupHead) head).localIndex;
2541                 Loop loop;
2542                 if (curly.type == GREEDY)
2543                     loop = new Loop(this.localCount, temp);
2544                 else  // Reluctant Curly
2545                     loop = new LazyLoop(this.localCount, temp);
2546                 Prolog prolog = new Prolog(loop);
2547                 this.localCount += 1;
2548                 loop.cmin = curly.cmin;
2549                 loop.cmax = curly.cmax;
2550                 loop.body = head;
2551                 tail.next = loop;
2552                 root = loop;
2553                 return prolog; // Dual return
2554             }
2555         }
2556         throw error("Internal logic error");
2557     }
2558 
2559     /**
2560      * Create group head and tail nodes using double return. If the group is
2561      * created with anonymous true then it is a pure group and should not
2562      * affect group counting.
2563      */
2564     private Node createGroup(boolean anonymous) {
2565         int localIndex = localCount++;
2566         int groupIndex = 0;
2567         if (!anonymous)
2568             groupIndex = capturingGroupCount++;
2569         GroupHead head = new GroupHead(localIndex);
2570         root = new GroupTail(localIndex, groupIndex);
2571         if (!anonymous && groupIndex < 10)
2572             groupNodes[groupIndex] = head;
2573         return head;
2574     }
2575 
2576     /**
2577      * Parses inlined match flags and set them appropriately.
2578      */
2579     private void addFlag() {
2580         int ch = peek();
2581         for (;;) {
2582             switch (ch) {
2583             case 'i':
2584                 flags |= CASE_INSENSITIVE;
2585                 break;
2586             case 'm':
2587                 flags |= MULTILINE;
2588                 break;
2589             case 's':
2590                 flags |= DOTALL;
2591                 break;
2592             case 'd':
2593                 flags |= UNIX_LINES;
2594                 break;
2595             case 'u':
2596                 flags |= UNICODE_CASE;
2597                 break;
2598             case 'c':
2599                 flags |= CANON_EQ;
2600                 break;
2601             case 'x':
2602                 flags |= COMMENTS;
2603                 break;
2604             case '-': // subFlag then fall through
2605                 ch = next();
2606                 subFlag();
2607             default:
2608                 return;
2609             }
2610             ch = next();
2611         }
2612     }
2613 
2614     /**
2615      * Parses the second part of inlined match flags and turns off
2616      * flags appropriately.
2617      */
2618     private void subFlag() {
2619         int ch = peek();
2620         for (;;) {
2621             switch (ch) {
2622             case 'i':
2623                 flags &= ~CASE_INSENSITIVE;
2624                 break;
2625             case 'm':
2626                 flags &= ~MULTILINE;
2627                 break;
2628             case 's':
2629                 flags &= ~DOTALL;
2630                 break;
2631             case 'd':
2632                 flags &= ~UNIX_LINES;
2633                 break;
2634             case 'u':
2635                 flags &= ~UNICODE_CASE;
2636                 break;
2637             case 'c':
2638                 flags &= ~CANON_EQ;
2639                 break;
2640             case 'x':
2641                 flags &= ~COMMENTS;
2642                 break;
2643             default:
2644                 return;
2645             }
2646             ch = next();
2647         }
2648     }
2649 
2650     static final int MAX_REPS   = 0x7FFFFFFF;
2651 
2652     static final int GREEDY     = 0;
2653 
2654     static final int LAZY       = 1;
2655 
2656     static final int POSSESSIVE = 2;
2657 
2658     static final int INDEPENDENT = 3;
2659 
2660     /**
2661      * Processes repetition. If the next character peeked is a quantifier
2662      * then new nodes must be appended to handle the repetition.
2663      * Prev could be a single or a group, so it could be a chain of nodes.
2664      */
2665     private Node closure(Node prev) {
2666         Node atom;
2667         int ch = peek();
2668         switch (ch) {
2669         case '?':
2670             ch = next();
2671             if (ch == '?') {
2672                 next();
2673                 return new Ques(prev, LAZY);
2674             } else if (ch == '+') {
2675                 next();
2676                 return new Ques(prev, POSSESSIVE);
2677             }
2678             return new Ques(prev, GREEDY);
2679         case '*':
2680             ch = next();
2681             if (ch == '?') {
2682                 next();
2683                 return new Curly(prev, 0, MAX_REPS, LAZY);
2684             } else if (ch == '+') {
2685                 next();
2686                 return new Curly(prev, 0, MAX_REPS, POSSESSIVE);
2687             }
2688             return new Curly(prev, 0, MAX_REPS, GREEDY);
2689         case '+':
2690             ch = next();
2691             if (ch == '?') {
2692                 next();
2693                 return new Curly(prev, 1, MAX_REPS, LAZY);
2694             } else if (ch == '+') {
2695                 next();
2696                 return new Curly(prev, 1, MAX_REPS, POSSESSIVE);
2697             }
2698             return new Curly(prev, 1, MAX_REPS, GREEDY);
2699         case '{':
2700             ch = temp[cursor+1];
2701             if (ASCII.isDigit(ch)) {
2702                 skip();
2703                 int cmin = 0;
2704                 do {
2705                     cmin = cmin * 10 + (ch - '0');
2706                 } while (ASCII.isDigit(ch = read()));
2707                 int cmax = cmin;
2708                 if (ch == ',') {
2709                     ch = read();
2710                     cmax = MAX_REPS;
2711                     if (ch != '}') {
2712                         cmax = 0;
2713                         while (ASCII.isDigit(ch)) {
2714                             cmax = cmax * 10 + (ch - '0');
2715                             ch = read();
2716                         }
2717                     }
2718                 }
2719                 if (ch != '}')
2720                     throw error("Unclosed counted closure");
2721                 if (((cmin) | (cmax) | (cmax - cmin)) < 0)
2722                     throw error("Illegal repetition range");
2723                 Curly curly;
2724                 ch = peek();
2725                 if (ch == '?') {
2726                     next();
2727                     curly = new Curly(prev, cmin, cmax, LAZY);
2728                 } else if (ch == '+') {
2729                     next();
2730                     curly = new Curly(prev, cmin, cmax, POSSESSIVE);
2731                 } else {
2732                     curly = new Curly(prev, cmin, cmax, GREEDY);
2733                 }
2734                 return curly;
2735             } else {
2736                 throw error("Illegal repetition");
2737             }
2738         default:
2739             return prev;
2740         }
2741     }
2742 
2743     /**
2744      *  Utility method for parsing control escape sequences.
2745      */
2746     private int c() {
2747         if (cursor < patternLength) {
2748             return read() ^ 64;
2749         }
2750         throw error("Illegal control escape sequence");
2751     }
2752 
2753     /**
2754      *  Utility method for parsing octal escape sequences.
2755      */
2756     private int o() {
2757         int n = read();
2758         if (((n-'0')|('7'-n)) >= 0) {
2759             int m = read();
2760             if (((m-'0')|('7'-m)) >= 0) {
2761                 int o = read();
2762                 if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) {
2763                     return (n - '0') * 64 + (m - '0') * 8 + (o - '0');
2764                 }
2765                 unread();
2766                 return (n - '0') * 8 + (m - '0');
2767             }
2768             unread();
2769             return (n - '0');
2770         }
2771         throw error("Illegal octal escape sequence");
2772     }
2773 
2774     /**
2775      *  Utility method for parsing hexadecimal escape sequences.
2776      */
2777     private int x() {
2778         int n = read();
2779         if (ASCII.isHexDigit(n)) {
2780             int m = read();
2781             if (ASCII.isHexDigit(m)) {
2782                 return ASCII.toDigit(n) * 16 + ASCII.toDigit(m);
2783             }
2784         }
2785         throw error("Illegal hexadecimal escape sequence");
2786     }
2787 
2788     /**
2789      *  Utility method for parsing unicode escape sequences.
2790      */
2791     private int u() {
2792         int n = 0;
2793         for (int i = 0; i < 4; i++) {
2794             int ch = read();
2795             if (!ASCII.isHexDigit(ch)) {
2796                 throw error("Illegal Unicode escape sequence");
2797             }
2798             n = n * 16 + ASCII.toDigit(ch);
2799         }
2800         return n;
2801     }
2802 
2803     //
2804     // Utility methods for code point support
2805     //
2806 
2807     /**
2808      * Tests a surrogate value.
2809      */
2810     private static final boolean isSurrogate(int c) {
2811         return c >= Character.MIN_HIGH_SURROGATE && c <= Character.MAX_LOW_SURROGATE;
2812     }
2813 
2814     private static final int countChars(CharSequence seq, int index,
2815                                         int lengthInCodePoints) {
2816         // optimization
2817         if (lengthInCodePoints == 1 && !Character.isHighSurrogate(seq.charAt(index))) {
2818             assert (index >= 0 && index < seq.length());
2819             return 1;
2820         }
2821         int length = seq.length();
2822         int x = index;
2823         if (lengthInCodePoints >= 0) {
2824             assert (index >= 0 && index < length);
2825             for (int i = 0; x < length && i < lengthInCodePoints; i++) {
2826                 if (Character.isHighSurrogate(seq.charAt(x++))) {
2827                     if (x < length && Character.isLowSurrogate(seq.charAt(x))) {
2828                         x++;
2829                     }
2830                 }
2831             }
2832             return x - index;
2833         }
2834 
2835         assert (index >= 0 && index <= length);
2836         if (index == 0) {
2837             return 0;
2838         }
2839         int len = -lengthInCodePoints;
2840         for (int i = 0; x > 0 && i < len; i++) {
2841             if (Character.isLowSurrogate(seq.charAt(--x))) {
2842                 if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) {
2843                     x--;
2844                 }
2845             }
2846         }
2847         return index - x;
2848     }
2849 
2850     private static final int countCodePoints(CharSequence seq) {
2851         int length = seq.length();
2852         int n = 0;
2853         for (int i = 0; i < length; ) {
2854             n++;
2855             if (Character.isHighSurrogate(seq.charAt(i++))) {
2856                 if (i < length && Character.isLowSurrogate(seq.charAt(i))) {
2857                     i++;
2858                 }
2859             }
2860         }
2861         return n;
2862     }
2863 
2864     /**
2865      *  Creates a bit vector for matching Latin-1 values. A normal BitClass
2866      *  never matches values above Latin-1, and a complemented BitClass always
2867      *  matches values above Latin-1.
2868      */
2869     private static final class BitClass extends BmpCharProperty {
2870         final boolean[] bits;
2871         BitClass() { bits = new boolean[256]; }
2872         private BitClass(boolean[] bits) { this.bits = bits; }
2873         BitClass add(int c, int f) {
2874             assert c >= 0 && c <= 255;
2875             if ((f & CASE_INSENSITIVE) == 0) {
2876                 bits[c] = true;
2877             } else if (ASCII.isAscii(c)) {
2878                 bits[ASCII.toUpper(c)] = true;
2879                 bits[ASCII.toLower(c)] = true;
2880             } else {
2881                 bits[Character.toLowerCase((char)c)] = true;
2882                 bits[Character.toUpperCase((char)c)] = true;
2883             }
2884             return this;
2885         }
2886         boolean isSatisfiedBy(int ch) {
2887             return ch > 255 ? false : bits[ch];
2888         }
2889     }
2890 
2891     /**
2892      *  Returns a suitably optimized, single character matcher.
2893      */
2894     private CharProperty newSingle(final int ch) {
2895         if (has(UNICODE_CASE)) {
2896             // Case independent unicode
2897             final int d = Character.toLowerCase(Character.toUpperCase(ch));
2898             return new CharProperty() {
2899                     boolean isSatisfiedBy(int c) {
2900                         return c == d ||
2901                             Character.toLowerCase(
2902                                 Character.toUpperCase(c)) == d; }};
2903         } else if (has(CASE_INSENSITIVE) && ASCII.isAscii(ch)) {
2904             // Case independent ASCII characters
2905             final int d = ASCII.toLower(ch);
2906             return new BmpCharProperty() {
2907                     boolean isSatisfiedBy(int c) {
2908                         return c == d || ASCII.toLower(c) == d; }};
2909         } else if (isSupplementary(ch)) {
2910             // Match a given Unicode character
2911             return new CharProperty() {
2912                     boolean isSatisfiedBy(int c) { return ch == c; }};
2913         } else {
2914             // Optimization -- match a given BMP character
2915             return new BmpCharProperty() {
2916                     boolean isSatisfiedBy(int c) { return ch == c; }};
2917         }
2918     }
2919 
2920     /**
2921      *  Utility method for creating a string slice matcher.
2922      */
2923     private Node newSlice(int[] buf, int count, boolean hasSupplementary) {
2924         int[] tmp = new int[count];
2925         int i = flags;
2926         if ((i & (CASE_INSENSITIVE|UNICODE_CASE)) == 0) {
2927             for (i = 0; i < count; i++) {
2928                 tmp[i] = buf[i];
2929             }
2930             return hasSupplementary ? new SliceS(tmp) : new Slice(tmp);
2931         } else if ((i & UNICODE_CASE) == 0) {
2932             for (i = 0; i < count; i++) {
2933                 tmp[i] = (char)ASCII.toLower(buf[i]);
2934             }
2935             return new SliceA(tmp);
2936         } else {
2937             for (i = 0; i < count; i++) {
2938                 int c = buf[i];
2939                 c = Character.toUpperCase(c);
2940                 c = Character.toLowerCase(c);
2941                 tmp[i] = c;
2942             }
2943             return new SliceU(tmp);
2944         }
2945     }
2946 
2947     /**
2948      * The following classes are the building components of the object
2949      * tree that represents a compiled regular expression. The object tree
2950      * is made of individual elements that handle constructs in the Pattern.
2951      * Each type of object knows how to match its equivalent construct with
2952      * the match() method.
2953      */
2954 
2955     /**
2956      * Base class for all node classes. Subclasses should override the match()
2957      * method as appropriate. This class is an accepting node, so its match()
2958      * always returns true.
2959      */
2960     static class Node extends Object {
2961         Node next;
2962         Node() {
2963             next = Pattern.accept;
2964         }
2965         /**
2966          * This method implements the classic accept node.
2967          */
2968         boolean match(Matcher matcher, int i, CharSequence seq) {
2969             matcher.last = i;
2970             matcher.groups[0] = matcher.first;
2971             matcher.groups[1] = matcher.last;
2972             return true;
2973         }
2974         /**
2975          * This method is good for all zero length assertions.
2976          */
2977         boolean study(TreeInfo info) {
2978             if (next != null) {
2979                 return next.study(info);
2980             } else {
2981                 return info.deterministic;
2982             }
2983         }
2984     }
2985 
2986     static class LastNode extends Node {
2987         /**
2988          * This method implements the classic accept node with
2989          * the addition of a check to see if the match occurred
2990          * using all of the input.
2991          */
2992         boolean match(Matcher matcher, int i, CharSequence seq) {
2993             if (matcher.acceptMode == Matcher.ENDANCHOR && i != matcher.to)
2994                 return false;
2995             matcher.last = i;
2996             matcher.groups[0] = matcher.first;
2997             matcher.groups[1] = matcher.last;
2998             return true;
2999         }
3000     }
3001 
3002     /**
3003      * Used for REs that can start anywhere within the input string.
3004      * This basically tries to match repeatedly at each spot in the
3005      * input string, moving forward after each try. An anchored search
3006      * or a BnM will bypass this node completely.
3007      */
3008     static class Start extends Node {
3009         int minLength;
3010         Start(Node node) {
3011             this.next = node;
3012             TreeInfo info = new TreeInfo();
3013             next.study(info);
3014             minLength = info.minLength;
3015         }
3016         boolean match(Matcher matcher, int i, CharSequence seq) {
3017             if (i > matcher.to - minLength) {
3018                 matcher.hitEnd = true;
3019                 return false;
3020             }
3021             boolean ret = false;
3022             int guard = matcher.to - minLength;
3023             for (; i <= guard; i++) {
3024                 if (ret = next.match(matcher, i, seq))
3025                     break;
3026                 if (i == guard)
3027                     matcher.hitEnd = true;
3028             }
3029             if (ret) {
3030                 matcher.first = i;
3031                 matcher.groups[0] = matcher.first;
3032                 matcher.groups[1] = matcher.last;
3033             }
3034             return ret;
3035         }
3036         boolean study(TreeInfo info) {
3037             next.study(info);
3038             info.maxValid = false;
3039             info.deterministic = false;
3040             return false;
3041         }
3042     }
3043 
3044     /*
3045      * StartS supports supplementary characters, including unpaired surrogates.
3046      */
3047     static final class StartS extends Start {
3048         StartS(Node node) {
3049             super(node);
3050         }
3051         boolean match(Matcher matcher, int i, CharSequence seq) {
3052             if (i > matcher.to - minLength) {
3053                 matcher.hitEnd = true;
3054                 return false;
3055             }
3056             boolean ret = false;
3057             int guard = matcher.to - minLength;
3058             while (i <= guard) {
3059                 if ((ret = next.match(matcher, i, seq)) || i == guard)
3060                     break;
3061                 // Optimization to move to the next character. This is
3062                 // faster than countChars(seq, i, 1).
3063                 if (Character.isHighSurrogate(seq.charAt(i++))) {
3064                     if (i < seq.length() && Character.isLowSurrogate(seq.charAt(i))) {
3065                         i++;
3066                     }
3067                 }
3068                 if (i == guard)
3069                     matcher.hitEnd = true;
3070             }
3071             if (ret) {
3072                 matcher.first = i;
3073                 matcher.groups[0] = matcher.first;
3074                 matcher.groups[1] = matcher.last;
3075             }
3076             return ret;
3077         }
3078     }
3079 
3080     /**
3081      * Node to anchor at the beginning of input. This object implements the
3082      * match for a \A sequence, and the caret anchor will use this if not in
3083      * multiline mode.
3084      */
3085     static final class Begin extends Node {
3086         boolean match(Matcher matcher, int i, CharSequence seq) {
3087             int fromIndex = (matcher.anchoringBounds) ?
3088                 matcher.from : 0;
3089             if (i == fromIndex && next.match(matcher, i, seq)) {
3090                 matcher.first = i;
3091                 matcher.groups[0] = i;
3092                 matcher.groups[1] = matcher.last;
3093                 return true;
3094             } else {
3095                 return false;
3096             }
3097         }
3098     }
3099 
3100     /**
3101      * Node to anchor at the end of input. This is the absolute end, so this
3102      * should not match at the last newline before the end as $ will.
3103      */
3104     static final class End extends Node {
3105         boolean match(Matcher matcher, int i, CharSequence seq) {
3106             int endIndex = (matcher.anchoringBounds) ?
3107                 matcher.to : matcher.getTextLength();
3108             if (i == endIndex) {
3109                 matcher.hitEnd = true;
3110                 return next.match(matcher, i, seq);
3111             }
3112             return false;
3113         }
3114     }
3115 
3116     /**
3117      * Node to anchor at the beginning of a line. This is essentially the
3118      * object to match for the multiline ^.
3119      */
3120     static final class Caret extends Node {
3121         boolean match(Matcher matcher, int i, CharSequence seq) {
3122             int startIndex = matcher.from;
3123             int endIndex = matcher.to;
3124             if (!matcher.anchoringBounds) {
3125                 startIndex = 0;
3126                 endIndex = matcher.getTextLength();
3127             }
3128             // Perl does not match ^ at end of input even after newline
3129             if (i == endIndex) {
3130                 matcher.hitEnd = true;
3131                 return false;
3132             }
3133             if (i > startIndex) {
3134                 char ch = seq.charAt(i-1);
3135                 if (ch != '\n' && ch != '\r'
3136                     && (ch|1) != '\u2029'
3137                     && ch != '\u0085' ) {
3138                     return false;
3139                 }
3140                 // Should treat /r/n as one newline
3141                 if (ch == '\r' && seq.charAt(i) == '\n')
3142                     return false;
3143             }
3144             return next.match(matcher, i, seq);
3145         }
3146     }
3147 
3148     /**
3149      * Node to anchor at the beginning of a line when in unixdot mode.
3150      */
3151     static final class UnixCaret extends Node {
3152         boolean match(Matcher matcher, int i, CharSequence seq) {
3153             int startIndex = matcher.from;
3154             int endIndex = matcher.to;
3155             if (!matcher.anchoringBounds) {
3156                 startIndex = 0;
3157                 endIndex = matcher.getTextLength();
3158             }
3159             // Perl does not match ^ at end of input even after newline
3160             if (i == endIndex) {
3161                 matcher.hitEnd = true;
3162                 return false;
3163             }
3164             if (i > startIndex) {
3165                 char ch = seq.charAt(i-1);
3166                 if (ch != '\n') {
3167                     return false;
3168                 }
3169             }
3170             return next.match(matcher, i, seq);
3171         }
3172     }
3173 
3174     /**
3175      * Node to match the location where the last match ended.
3176      * This is used for the \G construct.
3177      */
3178     static final class LastMatch extends Node {
3179         boolean match(Matcher matcher, int i, CharSequence seq) {
3180             if (i != matcher.oldLast)
3181                 return false;
3182             return next.match(matcher, i, seq);
3183         }
3184     }
3185 
3186     /**
3187      * Node to anchor at the end of a line or the end of input based on the
3188      * multiline mode.
3189      *
3190      * When not in multiline mode, the $ can only match at the very end
3191      * of the input, unless the input ends in a line terminator in which
3192      * it matches right before the last line terminator.
3193      *
3194      * Note that \r\n is considered an atomic line terminator.
3195      *
3196      * Like ^ the $ operator matches at a position, it does not match the
3197      * line terminators themselves.
3198      */
3199     static final class Dollar extends Node {
3200         boolean multiline;
3201         Dollar(boolean mul) {
3202             multiline = mul;
3203         }
3204         boolean match(Matcher matcher, int i, CharSequence seq) {
3205             int endIndex = (matcher.anchoringBounds) ?
3206                 matcher.to : matcher.getTextLength();
3207             if (!multiline) {
3208                 if (i < endIndex - 2)
3209                     return false;
3210                 if (i == endIndex - 2) {
3211                     char ch = seq.charAt(i);
3212                     if (ch != '\r')
3213                         return false;
3214                     ch = seq.charAt(i + 1);
3215                     if (ch != '\n')
3216                         return false;
3217                 }
3218             }
3219             // Matches before any line terminator; also matches at the
3220             // end of input
3221             // Before line terminator:
3222             // If multiline, we match here no matter what
3223             // If not multiline, fall through so that the end
3224             // is marked as hit; this must be a /r/n or a /n
3225             // at the very end so the end was hit; more input
3226             // could make this not match here
3227             if (i < endIndex) {
3228                 char ch = seq.charAt(i);
3229                  if (ch == '\n') {
3230                      // No match between \r\n
3231                      if (i > 0 && seq.charAt(i-1) == '\r')
3232                          return false;
3233                      if (multiline)
3234                          return next.match(matcher, i, seq);
3235                  } else if (ch == '\r' || ch == '\u0085' ||
3236                             (ch|1) == '\u2029') {
3237                      if (multiline)
3238                          return next.match(matcher, i, seq);
3239                  } else { // No line terminator, no match
3240                      return false;
3241                  }
3242             }
3243             // Matched at current end so hit end
3244             matcher.hitEnd = true;
3245             // If a $ matches because of end of input, then more input
3246             // could cause it to fail!
3247             matcher.requireEnd = true;
3248             return next.match(matcher, i, seq);
3249         }
3250         boolean study(TreeInfo info) {
3251             next.study(info);
3252             return info.deterministic;
3253         }
3254     }
3255 
3256     /**
3257      * Node to anchor at the end of a line or the end of input based on the
3258      * multiline mode when in unix lines mode.
3259      */
3260     static final class UnixDollar extends Node {
3261         boolean multiline;
3262         UnixDollar(boolean mul) {
3263             multiline = mul;
3264         }
3265         boolean match(Matcher matcher, int i, CharSequence seq) {
3266             int endIndex = (matcher.anchoringBounds) ?
3267                 matcher.to : matcher.getTextLength();
3268             if (i < endIndex) {
3269                 char ch = seq.charAt(i);
3270                 if (ch == '\n') {
3271                     // If not multiline, then only possible to
3272                     // match at very end or one before end
3273                     if (multiline == false && i != endIndex - 1)
3274                         return false;
3275                     // If multiline return next.match without setting
3276                     // matcher.hitEnd
3277                     if (multiline)
3278                         return next.match(matcher, i, seq);
3279                 } else {
3280                     return false;
3281                 }
3282             }
3283             // Matching because at the end or 1 before the end;
3284             // more input could change this so set hitEnd
3285             matcher.hitEnd = true;
3286             // If a $ matches because of end of input, then more input
3287             // could cause it to fail!
3288             matcher.requireEnd = true;
3289             return next.match(matcher, i, seq);
3290         }
3291         boolean study(TreeInfo info) {
3292             next.study(info);
3293             return info.deterministic;
3294         }
3295     }
3296 
3297     /**
3298      * Abstract node class to match one character satisfying some
3299      * boolean property.
3300      */
3301     private static abstract class CharProperty extends Node {
3302         abstract boolean isSatisfiedBy(int ch);
3303         CharProperty complement() {
3304             return new CharProperty() {
3305                     boolean isSatisfiedBy(int ch) {
3306                         return ! CharProperty.this.isSatisfiedBy(ch);}};
3307         }
3308         CharProperty maybeComplement(boolean complement) {
3309             return complement ? complement() : this;
3310         }
3311         boolean match(Matcher matcher, int i, CharSequence seq) {
3312             if (i < matcher.to) {
3313                 int ch = Character.codePointAt(seq, i);
3314                 return isSatisfiedBy(ch)
3315                     && next.match(matcher, i+Character.charCount(ch), seq);
3316             } else {
3317                 matcher.hitEnd = true;
3318                 return false;
3319             }
3320         }
3321         boolean study(TreeInfo info) {
3322             info.minLength++;
3323             info.maxLength++;
3324             return next.study(info);
3325         }
3326     }
3327 
3328     /**
3329      * Optimized version of CharProperty that works only for
3330      * properties never satisfied by Supplementary characters.
3331      */
3332     private static abstract class BmpCharProperty extends CharProperty {
3333         boolean match(Matcher matcher, int i, CharSequence seq) {
3334             if (i < matcher.to) {
3335                 return isSatisfiedBy(seq.charAt(i))
3336                     && next.match(matcher, i+1, seq);
3337             } else {
3338                 matcher.hitEnd = true;
3339                 return false;
3340             }
3341         }
3342     }
3343 
3344     /**
3345      * Node class that matches a Unicode category.
3346      */
3347     static final class Category extends CharProperty {
3348         final int typeMask;
3349         Category(int typeMask) { this.typeMask = typeMask; }
3350         boolean isSatisfiedBy(int ch) {
3351             return (typeMask & (1 << Character.getType(ch))) != 0;
3352         }
3353     }
3354 
3355     /**
3356      * Node class that matches a POSIX type.
3357      */
3358     static final class Ctype extends BmpCharProperty {
3359         final int ctype;
3360         Ctype(int ctype) { this.ctype = ctype; }
3361         boolean isSatisfiedBy(int ch) {
3362             return ch < 128 && ASCII.isType(ch, ctype);
3363         }
3364     }
3365 
3366     /**
3367      * Node class for a case sensitive sequence of literal characters.
3368      */
3369     static class Slice extends Node {
3370         int[] buffer;
3371         Slice(int[] buf) {
3372             buffer = buf;
3373         }
3374         boolean match(Matcher matcher, int i, CharSequence seq) {
3375             int[] buf = buffer;
3376             int len = buf.length;
3377 
3378             // Unfortunately we must now void this opto
3379             // in order to properly report hitEnd...
3380             //if (i + len > matcher.to) {
3381             //    matcher.hitEnd = true;
3382             //    return false;
3383             //}
3384 
3385             for (int j=0; j<len; j++) {
3386                 if ((i+j) >= matcher.to) {
3387                     matcher.hitEnd = true;
3388                     return false;
3389                 }
3390                 if (buf[j] != seq.charAt(i+j))
3391                     return false;
3392             }
3393 
3394             return next.match(matcher, i+len, seq);
3395         }
3396         boolean study(TreeInfo info) {
3397             info.minLength += buffer.length;
3398             info.maxLength += buffer.length;
3399             return next.study(info);
3400         }
3401     }
3402 
3403     /**
3404      * Node class for a case insensitive sequence of literal characters.
3405      */
3406     static final class SliceA extends Node {
3407         int[] buffer;
3408         SliceA(int[] buf) {
3409             buffer = buf;
3410         }
3411         boolean match(Matcher matcher, int i, CharSequence seq) {
3412             int[] buf = buffer;
3413             int len = buf.length;
3414             for (int j=0; j<len; j++) {
3415                 if ((i+j) >= matcher.to) {
3416                     matcher.hitEnd = true;
3417                     return false;
3418                 }
3419                 int c = ASCII.toLower(seq.charAt(i+j));
3420                 if (buf[j] != c)
3421                     return false;
3422             }
3423             return next.match(matcher, i+len, seq);
3424         }
3425         boolean study(TreeInfo info) {
3426             info.minLength += buffer.length;
3427             info.maxLength += buffer.length;
3428             return next.study(info);
3429         }
3430     }
3431 
3432     /**
3433      * Node class for a case insensitive sequence of literal characters.
3434      * Uses unicode case folding.
3435      */
3436     static final class SliceU extends Node {
3437         int[] buffer;
3438         SliceU(int[] buf) {
3439             buffer = buf;
3440         }
3441         boolean match(Matcher matcher, int i, CharSequence seq) {
3442             int[] buf = buffer;
3443             int x = i;
3444             for (int j = 0; j < buf.length; j++) {
3445                 if (x >= matcher.to) {
3446                     matcher.hitEnd = true;
3447                     return false;
3448                 }
3449                 int c = Character.codePointAt(seq, x);
3450                 int cc = Character.toUpperCase(c);
3451                 cc = Character.toLowerCase(cc);
3452                 if (buf[j] != cc) {
3453                     return false;
3454                 }
3455                 x += Character.charCount(c);
3456                 if (x > matcher.to) {
3457                     matcher.hitEnd = true;
3458                     return false;
3459                 }
3460             }
3461             return next.match(matcher, x, seq);
3462         }
3463         boolean study(TreeInfo info) {
3464             info.minLength += buffer.length;
3465             info.maxLength += buffer.length;
3466             return next.study(info);
3467         }
3468     }
3469 
3470     /**
3471      * Node class for a case sensitive sequence of literal characters
3472      * including supplementary characters.
3473      */
3474     static final class SliceS extends Slice {
3475         SliceS(int[] buf) {
3476             super(buf);
3477         }
3478         boolean match(Matcher matcher, int i, CharSequence seq) {
3479             int[] buf = buffer;
3480             int x = i;
3481             for (int j = 0; j < buf.length; j++) {
3482                 if (x >= matcher.to) {
3483                     matcher.hitEnd = true;
3484                     return false;
3485                 }
3486                 int c = Character.codePointAt(seq, x);
3487                 if (buf[j] != c)
3488                     return false;
3489                 x += Character.charCount(c);
3490                 if (x > matcher.to) {
3491                     matcher.hitEnd = true;
3492                     return false;
3493                 }
3494             }
3495 
3496             return next.match(matcher, x, seq);
3497         }
3498     }
3499 
3500     private static boolean inRange(int lower, int ch, int upper) {
3501         return lower <= ch && ch <= upper;
3502     }
3503 
3504     /**
3505      * Node class for matching characters within an explicit value range.
3506      */
3507 
3508     /**
3509      * Returns node for matching characters within an explicit value range.
3510      */
3511     private static CharProperty rangeFor(final int lower,
3512                                          final int upper) {
3513         return new CharProperty() {
3514                 boolean isSatisfiedBy(int ch) {
3515                     return inRange(lower, ch, upper);}};
3516     }
3517 
3518     /**
3519      * Returns node for matching characters within an explicit value
3520      * range in a case insensitive manner.
3521      */
3522     private static CharProperty caseInsensitiveRangeFor(final int lower,
3523                                                         final int upper) {
3524         return new CharProperty() {
3525             boolean isSatisfiedBy(int ch) {
3526                 return inRange(lower, ch, upper) ||
3527                 inRange(lower, Character.toUpperCase(ch), upper) ||
3528                 inRange(lower, Character.toLowerCase(ch), upper);}};
3529     }
3530 
3531     /**
3532      * Implements the Unicode category ALL and the dot metacharacter when
3533      * in dotall mode.
3534      */
3535     static final class All extends CharProperty {
3536         boolean isSatisfiedBy(int ch) {
3537             return true;
3538         }
3539     }
3540 
3541     /**
3542      * Node class for the dot metacharacter when dotall is not enabled.
3543      */
3544     static final class Dot extends CharProperty {
3545         boolean isSatisfiedBy(int ch) {
3546             return (ch != '\n' && ch != '\r'
3547                     && (ch|1) != '\u2029'
3548                     && ch != '\u0085');
3549         }
3550     }
3551 
3552     /**
3553      * Node class for the dot metacharacter when dotall is not enabled
3554      * but UNIX_LINES is enabled.
3555      */
3556     static final class UnixDot extends CharProperty {
3557         boolean isSatisfiedBy(int ch) {
3558             return ch != '\n';
3559         }
3560     }
3561 
3562     /**
3563      * The 0 or 1 quantifier. This one class implements all three types.
3564      */
3565     static final class Ques extends Node {
3566         Node atom;
3567         int type;
3568         Ques(Node node, int type) {
3569             this.atom = node;
3570             this.type = type;
3571         }
3572         boolean match(Matcher matcher, int i, CharSequence seq) {
3573             switch (type) {
3574             case GREEDY:
3575                 return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq))
3576                     || next.match(matcher, i, seq);
3577             case LAZY:
3578                 return next.match(matcher, i, seq)
3579                     || (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq));
3580             case POSSESSIVE:
3581                 if (atom.match(matcher, i, seq)) i = matcher.last;
3582                 return next.match(matcher, i, seq);
3583             default:
3584                 return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq);
3585             }
3586         }
3587         boolean study(TreeInfo info) {
3588             if (type != INDEPENDENT) {
3589                 int minL = info.minLength;
3590                 atom.study(info);
3591                 info.minLength = minL;
3592                 info.deterministic = false;
3593                 return next.study(info);
3594             } else {
3595                 atom.study(info);
3596                 return next.study(info);
3597             }
3598         }
3599     }
3600 
3601     /**
3602      * Handles the curly-brace style repetition with a specified minimum and
3603      * maximum occurrences. The * quantifier is handled as a special case.
3604      * This class handles the three types.
3605      */
3606     static final class Curly extends Node {
3607         Node atom;
3608         int type;
3609         int cmin;
3610         int cmax;
3611 
3612         Curly(Node node, int cmin, int cmax, int type) {
3613             this.atom = node;
3614             this.type = type;
3615             this.cmin = cmin;
3616             this.cmax = cmax;
3617         }
3618         boolean match(Matcher matcher, int i, CharSequence seq) {
3619             int j;
3620             for (j = 0; j < cmin; j++) {
3621                 if (atom.match(matcher, i, seq)) {
3622                     i = matcher.last;
3623                     continue;
3624                 }
3625                 return false;
3626             }
3627             if (type == GREEDY)
3628                 return match0(matcher, i, j, seq);
3629             else if (type == LAZY)
3630                 return match1(matcher, i, j, seq);
3631             else
3632                 return match2(matcher, i, j, seq);
3633         }
3634         // Greedy match.
3635         // i is the index to start matching at
3636         // j is the number of atoms that have matched
3637         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
3638             if (j >= cmax) {
3639                 // We have matched the maximum... continue with the rest of
3640                 // the regular expression
3641                 return next.match(matcher, i, seq);
3642             }
3643             int backLimit = j;
3644             while (atom.match(matcher, i, seq)) {
3645                 // k is the length of this match
3646                 int k = matcher.last - i;
3647                 if (k == 0) // Zero length match
3648                     break;
3649                 // Move up index and number matched
3650                 i = matcher.last;
3651                 j++;
3652                 // We are greedy so match as many as we can
3653                 while (j < cmax) {
3654                     if (!atom.match(matcher, i, seq))
3655                         break;
3656                     if (i + k != matcher.last) {
3657                         if (match0(matcher, matcher.last, j+1, seq))
3658                             return true;
3659                         break;
3660                     }
3661                     i += k;
3662                     j++;
3663                 }
3664                 // Handle backing off if match fails
3665                 while (j >= backLimit) {
3666                    if (next.match(matcher, i, seq))
3667                         return true;
3668                     i -= k;
3669                     j--;
3670                 }
3671                 return false;
3672             }
3673             return next.match(matcher, i, seq);
3674         }
3675         // Reluctant match. At this point, the minimum has been satisfied.
3676         // i is the index to start matching at
3677         // j is the number of atoms that have matched
3678         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
3679             for (;;) {
3680                 // Try finishing match without consuming any more
3681                 if (next.match(matcher, i, seq))
3682                     return true;
3683                 // At the maximum, no match found
3684                 if (j >= cmax)
3685                     return false;
3686                 // Okay, must try one more atom
3687                 if (!atom.match(matcher, i, seq))
3688                     return false;
3689                 // If we haven't moved forward then must break out
3690                 if (i == matcher.last)
3691                     return false;
3692                 // Move up index and number matched
3693                 i = matcher.last;
3694                 j++;
3695             }
3696         }
3697         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
3698             for (; j < cmax; j++) {
3699                 if (!atom.match(matcher, i, seq))
3700                     break;
3701                 if (i == matcher.last)
3702                     break;
3703                 i = matcher.last;
3704             }
3705             return next.match(matcher, i, seq);
3706         }
3707         boolean study(TreeInfo info) {
3708             // Save original info
3709             int minL = info.minLength;
3710             int maxL = info.maxLength;
3711             boolean maxV = info.maxValid;
3712             boolean detm = info.deterministic;
3713             info.reset();
3714 
3715             atom.study(info);
3716 
3717             int temp = info.minLength * cmin + minL;
3718             if (temp < minL) {
3719                 temp = 0xFFFFFFF; // arbitrary large number
3720             }
3721             info.minLength = temp;
3722 
3723             if (maxV & info.maxValid) {
3724                 temp = info.maxLength * cmax + maxL;
3725                 info.maxLength = temp;
3726                 if (temp < maxL) {
3727                     info.maxValid = false;
3728                 }
3729             } else {
3730                 info.maxValid = false;
3731             }
3732 
3733             if (info.deterministic && cmin == cmax)
3734                 info.deterministic = detm;
3735             else
3736                 info.deterministic = false;
3737 
3738             return next.study(info);
3739         }
3740     }
3741 
3742     /**
3743      * Handles the curly-brace style repetition with a specified minimum and
3744      * maximum occurrences in deterministic cases. This is an iterative
3745      * optimization over the Prolog and Loop system which would handle this
3746      * in a recursive way. The * quantifier is handled as a special case.
3747      * If capture is true then this class saves group settings and ensures
3748      * that groups are unset when backing off of a group match.
3749      */
3750     static final class GroupCurly extends Node {
3751         Node atom;
3752         int type;
3753         int cmin;
3754         int cmax;
3755         int localIndex;
3756         int groupIndex;
3757         boolean capture;
3758 
3759         GroupCurly(Node node, int cmin, int cmax, int type, int local,
3760                    int group, boolean capture) {
3761             this.atom = node;
3762             this.type = type;
3763             this.cmin = cmin;
3764             this.cmax = cmax;
3765             this.localIndex = local;
3766             this.groupIndex = group;
3767             this.capture = capture;
3768         }
3769         boolean match(Matcher matcher, int i, CharSequence seq) {
3770             int[] groups = matcher.groups;
3771             int[] locals = matcher.locals;
3772             int save0 = locals[localIndex];
3773             int save1 = 0;
3774             int save2 = 0;
3775 
3776             if (capture) {
3777                 save1 = groups[groupIndex];
3778                 save2 = groups[groupIndex+1];
3779             }
3780 
3781             // Notify GroupTail there is no need to setup group info
3782             // because it will be set here
3783             locals[localIndex] = -1;
3784 
3785             boolean ret = true;
3786             for (int j = 0; j < cmin; j++) {
3787                 if (atom.match(matcher, i, seq)) {
3788                     if (capture) {
3789                         groups[groupIndex] = i;
3790                         groups[groupIndex+1] = matcher.last;
3791                     }
3792                     i = matcher.last;
3793                 } else {
3794                     ret = false;
3795                     break;
3796                 }
3797             }
3798             if (!ret) {
3799                 locals[localIndex] = save0;
3800                 if (capture) {
3801                     groups[groupIndex] = save1;
3802                     groups[groupIndex+1] = save2;
3803                 }
3804             } else if (type == GREEDY) {
3805                 ret = match0(matcher, i, cmin, seq);
3806             } else if (type == LAZY) {
3807                 ret = match1(matcher, i, cmin, seq);
3808             } else {
3809                 ret = match2(matcher, i, cmin, seq);
3810             }
3811             return ret;
3812         }
3813         // Aggressive group match
3814         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
3815             int[] groups = matcher.groups;
3816             int save0 = 0;
3817             int save1 = 0;
3818             if (capture) {
3819                 save0 = groups[groupIndex];
3820                 save1 = groups[groupIndex+1];
3821             }
3822             for (;;) {
3823                 if (j >= cmax)
3824                     break;
3825                 if (!atom.match(matcher, i, seq))
3826                     break;
3827                 int k = matcher.last - i;
3828                 if (k <= 0) {
3829                     if (capture) {
3830                         groups[groupIndex] = i;
3831                         groups[groupIndex+1] = i + k;
3832                     }
3833                     i = i + k;
3834                     break;
3835                 }
3836                 for (;;) {
3837                     if (capture) {
3838                         groups[groupIndex] = i;
3839                         groups[groupIndex+1] = i + k;
3840                     }
3841                     i = i + k;
3842                     if (++j >= cmax)
3843                         break;
3844                     if (!atom.match(matcher, i, seq))
3845                         break;
3846                     if (i + k != matcher.last) {
3847                         if (match0(matcher, i, j, seq))
3848                             return true;
3849                         break;
3850                     }
3851                 }
3852                 while (j > cmin) {
3853                     if (next.match(matcher, i, seq)) {
3854                         if (capture) {
3855                             groups[groupIndex+1] = i;
3856                             groups[groupIndex] = i - k;
3857                         }
3858                         i = i - k;
3859                         return true;
3860                     }
3861                     // backing off
3862                     if (capture) {
3863                         groups[groupIndex+1] = i;
3864                         groups[groupIndex] = i - k;
3865                     }
3866                     i = i - k;
3867                     j--;
3868                 }
3869                 break;
3870             }
3871             if (capture) {
3872                 groups[groupIndex] = save0;
3873                 groups[groupIndex+1] = save1;
3874             }
3875             return next.match(matcher, i, seq);
3876         }
3877         // Reluctant matching
3878         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
3879             for (;;) {
3880                 if (next.match(matcher, i, seq))
3881                     return true;
3882                 if (j >= cmax)
3883                     return false;
3884                 if (!atom.match(matcher, i, seq))
3885                     return false;
3886                 if (i == matcher.last)
3887                     return false;
3888                 if (capture) {
3889                     matcher.groups[groupIndex] = i;
3890                     matcher.groups[groupIndex+1] = matcher.last;
3891                 }
3892                 i = matcher.last;
3893                 j++;
3894             }
3895         }
3896         // Possessive matching
3897         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
3898             for (; j < cmax; j++) {
3899                 if (!atom.match(matcher, i, seq)) {
3900                     break;
3901                 }
3902                 if (capture) {
3903                     matcher.groups[groupIndex] = i;
3904                     matcher.groups[groupIndex+1] = matcher.last;
3905                 }
3906                 if (i == matcher.last) {
3907                     break;
3908                 }
3909                 i = matcher.last;
3910             }
3911             return next.match(matcher, i, seq);
3912         }
3913         boolean study(TreeInfo info) {
3914             // Save original info
3915             int minL = info.minLength;
3916             int maxL = info.maxLength;
3917             boolean maxV = info.maxValid;
3918             boolean detm = info.deterministic;
3919             info.reset();
3920 
3921             atom.study(info);
3922 
3923             int temp = info.minLength * cmin + minL;
3924             if (temp < minL) {
3925                 temp = 0xFFFFFFF; // Arbitrary large number
3926             }
3927             info.minLength = temp;
3928 
3929             if (maxV & info.maxValid) {
3930                 temp = info.maxLength * cmax + maxL;
3931                 info.maxLength = temp;
3932                 if (temp < maxL) {
3933                     info.maxValid = false;
3934                 }
3935             } else {
3936                 info.maxValid = false;
3937             }
3938 
3939             if (info.deterministic && cmin == cmax) {
3940                 info.deterministic = detm;
3941             } else {
3942                 info.deterministic = false;
3943             }
3944 
3945             return next.study(info);
3946         }
3947     }
3948 
3949     /**
3950      * A Guard node at the end of each atom node in a Branch. It
3951      * serves the purpose of chaining the "match" operation to
3952      * "next" but not the "study", so we can collect the TreeInfo
3953      * of each atom node without including the TreeInfo of the
3954      * "next".
3955      */
3956     static final class BranchConn extends Node {
3957         BranchConn() {};
3958         boolean match(Matcher matcher, int i, CharSequence seq) {
3959             return next.match(matcher, i, seq);
3960         }
3961         boolean study(TreeInfo info) {
3962             return info.deterministic;
3963         }
3964     }
3965 
3966     /**
3967      * Handles the branching of alternations. Note this is also used for
3968      * the ? quantifier to branch between the case where it matches once
3969      * and where it does not occur.
3970      */
3971     static final class Branch extends Node {
3972         Node[] atoms = new Node[2];
3973         int size = 2;
3974         Node conn;
3975         Branch(Node first, Node second, Node branchConn) {
3976             conn = branchConn;
3977             atoms[0] = first;            
3978             atoms[1] = second;
3979         }
3980 
3981         void add(Node node) {
3982             if (size >= atoms.length) {
3983                 Node[] tmp = new Node[atoms.length*2];
3984                 System.arraycopy(atoms, 0, tmp, 0, atoms.length);
3985                 atoms = tmp;
3986             }
3987             atoms[size++] = node;
3988         }
3989 
3990         boolean match(Matcher matcher, int i, CharSequence seq) {
3991             for (int n = 0; n < size; n++) {
3992                 if (atoms[n] == null) {
3993                     if (conn.next.match(matcher, i, seq))
3994                         return true;
3995                 } else if (atoms[n].match(matcher, i, seq)) {
3996                     return true;
3997                 }
3998             }
3999             return false;
4000         }
4001 
4002         boolean study(TreeInfo info) {
4003             int minL = info.minLength;
4004             int maxL = info.maxLength;
4005             boolean maxV = info.maxValid;
4006 
4007             int minL2 = Integer.MAX_VALUE; //arbitrary large enough num
4008             int maxL2 = -1;
4009             for (int n = 0; n < size; n++) {
4010                 info.reset();
4011                 if (atoms[n] != null)
4012                     atoms[n].study(info);
4013                 minL2 = Math.min(minL2, info.minLength);
4014                 maxL2 = Math.max(maxL2, info.maxLength);
4015                 maxV = (maxV & info.maxValid);
4016             }
4017 
4018             minL += minL2;
4019             maxL += maxL2;
4020 
4021             info.reset();
4022             conn.next.study(info);
4023 
4024             info.minLength += minL;
4025             info.maxLength += maxL;
4026             info.maxValid &= maxV;
4027             info.deterministic = false;
4028             return false;
4029         }
4030     }
4031 
4032     /**
4033      * The GroupHead saves the location where the group begins in the locals
4034      * and restores them when the match is done.
4035      *
4036      * The matchRef is used when a reference to this group is accessed later
4037      * in the expression. The locals will have a negative value in them to
4038      * indicate that we do not want to unset the group if the reference
4039      * doesn't match.
4040      */
4041     static final class GroupHead extends Node {
4042         int localIndex;
4043         GroupHead(int localCount) {
4044             localIndex = localCount;
4045         }
4046         boolean match(Matcher matcher, int i, CharSequence seq) {
4047             int save = matcher.locals[localIndex];
4048             matcher.locals[localIndex] = i;
4049             boolean ret = next.match(matcher, i, seq);
4050             matcher.locals[localIndex] = save;
4051             return ret;
4052         }
4053         boolean matchRef(Matcher matcher, int i, CharSequence seq) {
4054             int save = matcher.locals[localIndex];
4055             matcher.locals[localIndex] = ~i; // HACK
4056             boolean ret = next.match(matcher, i, seq);
4057             matcher.locals[localIndex] = save;
4058             return ret;
4059         }
4060     }
4061 
4062     /**
4063      * Recursive reference to a group in the regular expression. It calls
4064      * matchRef because if the reference fails to match we would not unset
4065      * the group.
4066      */
4067     static final class GroupRef extends Node {
4068         GroupHead head;
4069         GroupRef(GroupHead head) {
4070             this.head = head;
4071         }
4072         boolean match(Matcher matcher, int i, CharSequence seq) {
4073             return head.matchRef(matcher, i, seq)
4074                 && next.match(matcher, matcher.last, seq);
4075         }
4076         boolean study(TreeInfo info) {
4077             info.maxValid = false;
4078             info.deterministic = false;
4079             return next.study(info);
4080         }
4081     }
4082 
4083     /**
4084      * The GroupTail handles the setting of group beginning and ending
4085      * locations when groups are successfully matched. It must also be able to
4086      * unset groups that have to be backed off of.
4087      *
4088      * The GroupTail node is also used when a previous group is referenced,
4089      * and in that case no group information needs to be set.
4090      */
4091     static final class GroupTail extends Node {
4092         int localIndex;
4093         int groupIndex;
4094         GroupTail(int localCount, int groupCount) {
4095             localIndex = localCount;
4096             groupIndex = groupCount + groupCount;
4097         }
4098         boolean match(Matcher matcher, int i, CharSequence seq) {
4099             int tmp = matcher.locals[localIndex];
4100             if (tmp >= 0) { // This is the normal group case.
4101                 // Save the group so we can unset it if it
4102                 // backs off of a match.
4103                 int groupStart = matcher.groups[groupIndex];
4104                 int groupEnd = matcher.groups[groupIndex+1];
4105 
4106                 matcher.groups[groupIndex] = tmp;
4107                 matcher.groups[groupIndex+1] = i;
4108                 if (next.match(matcher, i, seq)) {
4109                     return true;
4110                 }
4111                 matcher.groups[groupIndex] = groupStart;
4112                 matcher.groups[groupIndex+1] = groupEnd;
4113                 return false;
4114             } else {
4115                 // This is a group reference case. We don't need to save any
4116                 // group info because it isn't really a group.
4117                 matcher.last = i;
4118                 return true;
4119             }
4120         }
4121     }
4122 
4123     /**
4124      * This sets up a loop to handle a recursive quantifier structure.
4125      */
4126     static final class Prolog extends Node {
4127         Loop loop;
4128         Prolog(Loop loop) {
4129             this.loop = loop;
4130         }
4131         boolean match(Matcher matcher, int i, CharSequence seq) {
4132             return loop.matchInit(matcher, i, seq);
4133         }
4134         boolean study(TreeInfo info) {
4135             return loop.study(info);
4136         }
4137     }
4138 
4139     /**
4140      * Handles the repetition count for a greedy Curly. The matchInit
4141      * is called from the Prolog to save the index of where the group
4142      * beginning is stored. A zero length group check occurs in the
4143      * normal match but is skipped in the matchInit.
4144      */
4145     static class Loop extends Node {
4146         Node body;
4147         int countIndex; // local count index in matcher locals
4148         int beginIndex; // group beginning index
4149         int cmin, cmax;
4150         Loop(int countIndex, int beginIndex) {
4151             this.countIndex = countIndex;
4152             this.beginIndex = beginIndex;
4153         }
4154         boolean match(Matcher matcher, int i, CharSequence seq) {
4155             // Avoid infinite loop in zero-length case.
4156             if (i > matcher.locals[beginIndex]) {
4157                 int count = matcher.locals[countIndex];
4158 
4159                 // This block is for before we reach the minimum
4160                 // iterations required for the loop to match
4161                 if (count < cmin) {
4162                     matcher.locals[countIndex] = count + 1;
4163                     boolean b = body.match(matcher, i, seq);
4164                     // If match failed we must backtrack, so
4165                     // the loop count should NOT be incremented
4166                     if (!b)
4167                         matcher.locals[countIndex] = count;
4168                     // Return success or failure since we are under
4169                     // minimum
4170                     return b;
4171                 }
4172                 // This block is for after we have the minimum
4173                 // iterations required for the loop to match
4174                 if (count < cmax) {
4175                     matcher.locals[countIndex] = count + 1;
4176                     boolean b = body.match(matcher, i, seq);
4177                     // If match failed we must backtrack, so
4178                     // the loop count should NOT be incremented
4179                     if (!b)
4180                         matcher.locals[countIndex] = count;
4181                     else
4182                         return true;
4183                 }
4184             }
4185             return next.match(matcher, i, seq);
4186         }
4187         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4188             int save = matcher.locals[countIndex];
4189             boolean ret = false;
4190             if (0 < cmin) {
4191                 matcher.locals[countIndex] = 1;
4192                 ret = body.match(matcher, i, seq);
4193             } else if (0 < cmax) {
4194                 matcher.locals[countIndex] = 1;
4195                 ret = body.match(matcher, i, seq);
4196                 if (ret == false)
4197                     ret = next.match(matcher, i, seq);
4198             } else {
4199                 ret = next.match(matcher, i, seq);
4200             }
4201             matcher.locals[countIndex] = save;
4202             return ret;
4203         }
4204         boolean study(TreeInfo info) {
4205             info.maxValid = false;
4206             info.deterministic = false;
4207             return false;
4208         }
4209     }
4210 
4211     /**
4212      * Handles the repetition count for a reluctant Curly. The matchInit
4213      * is called from the Prolog to save the index of where the group
4214      * beginning is stored. A zero length group check occurs in the
4215      * normal match but is skipped in the matchInit.
4216      */
4217     static final class LazyLoop extends Loop {
4218         LazyLoop(int countIndex, int beginIndex) {
4219             super(countIndex, beginIndex);
4220         }
4221         boolean match(Matcher matcher, int i, CharSequence seq) {
4222             // Check for zero length group
4223             if (i > matcher.locals[beginIndex]) {
4224                 int count = matcher.locals[countIndex];
4225                 if (count < cmin) {
4226                     matcher.locals[countIndex] = count + 1;
4227                     boolean result = body.match(matcher, i, seq);
4228                     // If match failed we must backtrack, so
4229                     // the loop count should NOT be incremented
4230                     if (!result)
4231                         matcher.locals[countIndex] = count;
4232                     return result;
4233                 }
4234                 if (next.match(matcher, i, seq))
4235                     return true;
4236                 if (count < cmax) {
4237                     matcher.locals[countIndex] = count + 1;
4238                     boolean result = body.match(matcher, i, seq);
4239                     // If match failed we must backtrack, so
4240                     // the loop count should NOT be incremented
4241                     if (!result)
4242                         matcher.locals[countIndex] = count;
4243                     return result;
4244                 }
4245                 return false;
4246             }
4247             return next.match(matcher, i, seq);
4248         }
4249         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4250             int save = matcher.locals[countIndex];
4251             boolean ret = false;
4252             if (0 < cmin) {
4253                 matcher.locals[countIndex] = 1;
4254                 ret = body.match(matcher, i, seq);
4255             } else if (next.match(matcher, i, seq)) {
4256                 ret = true;
4257             } else if (0 < cmax) {
4258                 matcher.locals[countIndex] = 1;
4259                 ret = body.match(matcher, i, seq);
4260             }
4261             matcher.locals[countIndex] = save;
4262             return ret;
4263         }
4264         boolean study(TreeInfo info) {
4265             info.maxValid = false;
4266             info.deterministic = false;
4267             return false;
4268         }
4269     }
4270 
4271     /**
4272      * Refers to a group in the regular expression. Attempts to match
4273      * whatever the group referred to last matched.
4274      */
4275     static class BackRef extends Node {
4276         int groupIndex;
4277         BackRef(int groupCount) {
4278             super();
4279             groupIndex = groupCount + groupCount;
4280         }
4281         boolean match(Matcher matcher, int i, CharSequence seq) {
4282             int j = matcher.groups[groupIndex];
4283             int k = matcher.groups[groupIndex+1];
4284 
4285             int groupSize = k - j;
4286 
4287             // If the referenced group didn't match, neither can this
4288             if (j < 0)
4289                 return false;
4290 
4291             // If there isn't enough input left no match
4292             if (i + groupSize > matcher.to) {
4293                 matcher.hitEnd = true;
4294                 return false;
4295             }
4296 
4297             // Check each new char to make sure it matches what the group
4298             // referenced matched last time around
4299             for (int index=0; index<groupSize; index++)
4300                 if (seq.charAt(i+index) != seq.charAt(j+index))
4301                     return false;
4302 
4303             return next.match(matcher, i+groupSize, seq);
4304         }
4305         boolean study(TreeInfo info) {
4306             info.maxValid = false;
4307             return next.study(info);
4308         }
4309     }
4310 
4311     static class CIBackRef extends Node {
4312         int groupIndex;
4313         CIBackRef(int groupCount) {
4314             super();
4315             groupIndex = groupCount + groupCount;
4316         }
4317         boolean match(Matcher matcher, int i, CharSequence seq) {
4318             int j = matcher.groups[groupIndex];
4319             int k = matcher.groups[groupIndex+1];
4320 
4321             int groupSize = k - j;
4322 
4323             // If the referenced group didn't match, neither can this
4324             if (j < 0)
4325                 return false;
4326 
4327             // If there isn't enough input left no match
4328             if (i + groupSize > matcher.to) {
4329                 matcher.hitEnd = true;
4330                 return false;
4331             }
4332 
4333             // Check each new char to make sure it matches what the group
4334             // referenced matched last time around
4335             int x = i;
4336             for (int index=0; index<groupSize; index++) {
4337                 int c1 = Character.codePointAt(seq, x);
4338                 int c2 = Character.codePointAt(seq, j);
4339                 if (c1 != c2) {
4340                     int cc1 = Character.toUpperCase(c1);
4341                     int cc2 = Character.toUpperCase(c2);
4342                     if (cc1 != cc2) {
4343                         cc1 = Character.toLowerCase(cc1);
4344                         cc2 = Character.toLowerCase(cc2);
4345                         if (cc1 != cc2)
4346                             return false;
4347                     }
4348                 }
4349                 x += Character.charCount(c1);
4350                 j += Character.charCount(c2);
4351             }
4352 
4353             return next.match(matcher, i+groupSize, seq);
4354         }
4355         boolean study(TreeInfo info) {
4356             info.maxValid = false;
4357             return next.study(info);
4358         }
4359     }
4360 
4361     /**
4362      * Searches until the next instance of its atom. This is useful for
4363      * finding the atom efficiently without passing an instance of it
4364      * (greedy problem) and without a lot of wasted search time (reluctant
4365      * problem).
4366      */
4367     static final class First extends Node {
4368         Node atom;
4369         First(Node node) {
4370             this.atom = BnM.optimize(node);
4371         }
4372         boolean match(Matcher matcher, int i, CharSequence seq) {
4373             if (atom instanceof BnM) {
4374                 return atom.match(matcher, i, seq)
4375                     && next.match(matcher, matcher.last, seq);
4376             }
4377             for (;;) {
4378                 if (i > matcher.to) {
4379                     matcher.hitEnd = true;
4380                     return false;
4381                 }
4382                 if (atom.match(matcher, i, seq)) {
4383                     return next.match(matcher, matcher.last, seq);
4384                 }
4385                 i += countChars(seq, i, 1);
4386                 matcher.first++;
4387             }
4388         }
4389         boolean study(TreeInfo info) {
4390             atom.study(info);
4391             info.maxValid = false;
4392             info.deterministic = false;
4393             return next.study(info);
4394         }
4395     }
4396 
4397     static final class Conditional extends Node {
4398         Node cond, yes, not;
4399         Conditional(Node cond, Node yes, Node not) {
4400             this.cond = cond;
4401             this.yes = yes;
4402             this.not = not;
4403         }
4404         boolean match(Matcher matcher, int i, CharSequence seq) {
4405             if (cond.match(matcher, i, seq)) {
4406                 return yes.match(matcher, i, seq);
4407             } else {
4408                 return not.match(matcher, i, seq);
4409             }
4410         }
4411         boolean study(TreeInfo info) {
4412             int minL = info.minLength;
4413             int maxL = info.maxLength;
4414             boolean maxV = info.maxValid;
4415             info.reset();
4416             yes.study(info);
4417 
4418             int minL2 = info.minLength;
4419             int maxL2 = info.maxLength;
4420             boolean maxV2 = info.maxValid;
4421             info.reset();
4422             not.study(info);
4423 
4424             info.minLength = minL + Math.min(minL2, info.minLength);
4425             info.maxLength = maxL + Math.max(maxL2, info.maxLength);
4426             info.maxValid = (maxV & maxV2 & info.maxValid);
4427             info.deterministic = false;
4428             return next.study(info);
4429         }
4430     }
4431 
4432     /**
4433      * Zero width positive lookahead.
4434      */
4435     static final class Pos extends Node {
4436         Node cond;
4437         Pos(Node cond) {
4438             this.cond = cond;
4439         }
4440         boolean match(Matcher matcher, int i, CharSequence seq) {
4441             int savedTo = matcher.to;
4442             boolean conditionMatched = false;
4443 
4444             // Relax transparent region boundaries for lookahead
4445             if (matcher.transparentBounds)
4446                 matcher.to = matcher.getTextLength();
4447             try {
4448                 conditionMatched = cond.match(matcher, i, seq);
4449             } finally {
4450                 // Reinstate region boundaries
4451                 matcher.to = savedTo;
4452             }
4453             return conditionMatched && next.match(matcher, i, seq);
4454         }
4455     }
4456 
4457     /**
4458      * Zero width negative lookahead.
4459      */
4460     static final class Neg extends Node {
4461         Node cond;
4462         Neg(Node cond) {
4463             this.cond = cond;
4464         }
4465         boolean match(Matcher matcher, int i, CharSequence seq) {
4466             int savedTo = matcher.to;
4467             boolean conditionMatched = false;
4468 
4469             // Relax transparent region boundaries for lookahead
4470             if (matcher.transparentBounds)
4471                 matcher.to = matcher.getTextLength();
4472             try {
4473                 if (i < matcher.to) {
4474                     conditionMatched = !cond.match(matcher, i, seq);
4475                 } else {
4476                     // If a negative lookahead succeeds then more input
4477                     // could cause it to fail!
4478                     matcher.requireEnd = true;
4479                     conditionMatched = !cond.match(matcher, i, seq);
4480                 }
4481             } finally {
4482                 // Reinstate region boundaries
4483                 matcher.to = savedTo;
4484             }
4485             return conditionMatched && next.match(matcher, i, seq);
4486         }
4487     }
4488 
4489     /**
4490      * Zero width positive lookbehind.
4491      */
4492     static class Behind extends Node {
4493         Node cond;
4494         int rmax, rmin;
4495         Behind(Node cond, int rmax, int rmin) {
4496             this.cond = cond;
4497             this.rmax = rmax;
4498             this.rmin = rmin;
4499         }
4500         boolean match(Matcher matcher, int i, CharSequence seq) {
4501             int savedFrom = matcher.from;
4502             boolean conditionMatched = false;
4503             int startIndex = (!matcher.transparentBounds) ?
4504                              matcher.from : 0;
4505             int from = Math.max(i - rmax, startIndex);
4506             for (int j = i - rmin; j >= from; j--) {
4507 
4508                 // Relax transparent region boundaries for lookbehind
4509                 if (matcher.transparentBounds)
4510                     matcher.from = 0;
4511                 try {
4512                     conditionMatched =
4513                         (cond.match(matcher, j, seq) && matcher.last == i);
4514                 } finally { // Reinstate region boundaries
4515                     matcher.from = savedFrom;
4516                 }
4517 
4518                 if (conditionMatched)
4519                     return next.match(matcher, i, seq);
4520             }
4521             return false;
4522         }
4523     }
4524 
4525     /**
4526      * Zero width positive lookbehind, including supplementary
4527      * characters or unpaired surrogates.
4528      */
4529     static final class BehindS extends Behind {
4530         BehindS(Node cond, int rmax, int rmin) {
4531             super(cond, rmax, rmin);
4532         }
4533         boolean match(Matcher matcher, int i, CharSequence seq) {
4534             int rmaxChars = countChars(seq, i, -rmax);
4535             int rminChars = countChars(seq, i, -rmin);
4536             int savedFrom = matcher.from;
4537             int startIndex = (!matcher.transparentBounds) ?
4538                              matcher.from : 0;
4539             boolean conditionMatched = false;
4540             int from = Math.max(i - rmaxChars, startIndex);
4541             for (int j = i - rminChars;
4542                  j >= from;
4543                  j -= j>from ? countChars(seq, j, -1) : 1) {
4544                 // Relax transparent region boundaries for lookbehind
4545                 if (matcher.transparentBounds)
4546                     matcher.from = 0;
4547                 try {
4548                     conditionMatched =
4549                         (cond.match(matcher, j, seq) && matcher.last == i);
4550                 } finally { // Reinstate region boundaries
4551                     matcher.from = savedFrom;
4552                 }
4553                 if (conditionMatched)
4554                     return next.match(matcher, i, seq);
4555             }
4556             return false;
4557         }
4558     }
4559 
4560     /**
4561      * Zero width negative lookbehind.
4562      */
4563     static class NotBehind extends Node {
4564         Node cond;
4565         int rmax, rmin;
4566         NotBehind(Node cond, int rmax, int rmin) {
4567             this.cond = cond;
4568             this.rmax = rmax;
4569             this.rmin = rmin;
4570         }
4571         boolean match(Matcher matcher, int i, CharSequence seq) {
4572             int savedFrom = matcher.from;
4573             boolean conditionMatched = false;
4574             int startIndex = (!matcher.transparentBounds) ?
4575                              matcher.from : 0;
4576             int from = Math.max(i - rmax, startIndex);
4577             for (int j = i - rmin; j >= from; j--) {
4578 
4579                 // Relax transparent region boundaries for lookbehind
4580                 if (matcher.transparentBounds)
4581                     matcher.from = 0;
4582                 try {
4583                     conditionMatched =
4584                         (cond.match(matcher, j, seq) && matcher.last == i);
4585                 } finally { // Reinstate region boundaries
4586                     matcher.from = savedFrom;
4587                 }
4588                 if (conditionMatched)
4589                     return false;
4590             }
4591             return next.match(matcher, i, seq);
4592         }
4593     }
4594 
4595     /**
4596      * Zero width negative lookbehind, including supplementary
4597      * characters or unpaired surrogates.
4598      */
4599     static final class NotBehindS extends NotBehind {
4600         NotBehindS(Node cond, int rmax, int rmin) {
4601             super(cond, rmax, rmin);
4602         }
4603         boolean match(Matcher matcher, int i, CharSequence seq) {
4604             int rmaxChars = countChars(seq, i, -rmax);
4605             int rminChars = countChars(seq, i, -rmin);
4606             int savedFrom = matcher.from;
4607             boolean conditionMatched = false;
4608             int startIndex = (!matcher.transparentBounds) ?
4609                              matcher.from : 0;
4610             int from = Math.max(i - rmaxChars, startIndex);
4611             for (int j = i - rminChars;
4612                  j >= from;
4613                  j -= j>from ? countChars(seq, j, -1) : 1) {
4614                 // Relax transparent region boundaries for lookbehind
4615                 if (matcher.transparentBounds)
4616                     matcher.from = 0;
4617                 try {
4618                     conditionMatched =
4619                         (cond.match(matcher, j, seq) && matcher.last == i);
4620                 } finally { // Reinstate region boundaries
4621                     matcher.from = savedFrom;
4622                 }
4623                 if (conditionMatched)
4624                     return false;
4625             }
4626             return next.match(matcher, i, seq);
4627         }
4628     }
4629 
4630     /**
4631      * Returns the set union of two CharProperty nodes.
4632      */
4633     private static CharProperty union(final CharProperty lhs,
4634                                       final CharProperty rhs) {
4635         return new CharProperty() {
4636                 boolean isSatisfiedBy(int ch) {
4637                     return lhs.isSatisfiedBy(ch) || rhs.isSatisfiedBy(ch);}};
4638     }
4639 
4640     /**
4641      * Returns the set intersection of two CharProperty nodes.
4642      */
4643     private static CharProperty intersection(final CharProperty lhs,
4644                                              final CharProperty rhs) {
4645         return new CharProperty() {
4646                 boolean isSatisfiedBy(int ch) {
4647                     return lhs.isSatisfiedBy(ch) && rhs.isSatisfiedBy(ch);}};
4648     }
4649 
4650     /**
4651      * Returns the set difference of two CharProperty nodes.
4652      */
4653     private static CharProperty setDifference(final CharProperty lhs,
4654                                               final CharProperty rhs) {
4655         return new CharProperty() {
4656                 boolean isSatisfiedBy(int ch) {
4657                     return ! rhs.isSatisfiedBy(ch) && lhs.isSatisfiedBy(ch);}};
4658     }
4659 
4660     /**
4661      * Handles word boundaries. Includes a field to allow this one class to
4662      * deal with the different types of word boundaries we can match. The word
4663      * characters include underscores, letters, and digits. Non spacing marks
4664      * can are also part of a word if they have a base character, otherwise
4665      * they are ignored for purposes of finding word boundaries.
4666      */
4667     static final class Bound extends Node {
4668         static int LEFT = 0x1;
4669         static int RIGHT= 0x2;
4670         static int BOTH = 0x3;
4671         static int NONE = 0x4;
4672         int type;
4673         Bound(int n) {
4674             type = n;
4675         }
4676         int check(Matcher matcher, int i, CharSequence seq) {
4677             int ch;
4678             boolean left = false;
4679             int startIndex = matcher.from;
4680             int endIndex = matcher.to;
4681             if (matcher.transparentBounds) {
4682                 startIndex = 0;
4683                 endIndex = matcher.getTextLength();
4684             }
4685             if (i > startIndex) {
4686                 ch = Character.codePointBefore(seq, i);
4687                 left = (ch == '_' || Character.isLetterOrDigit(ch) ||
4688                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
4689                      && hasBaseCharacter(matcher, i-1, seq)));
4690             }
4691             boolean right = false;
4692             if (i < endIndex) {
4693                 ch = Character.codePointAt(seq, i);
4694                 right = (ch == '_' || Character.isLetterOrDigit(ch) ||
4695                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
4696                      && hasBaseCharacter(matcher, i, seq)));
4697             } else {
4698                 // Tried to access char past the end
4699                 matcher.hitEnd = true;
4700                 // The addition of another char could wreck a boundary
4701                 matcher.requireEnd = true;
4702             }
4703             return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE);
4704         }
4705         boolean match(Matcher matcher, int i, CharSequence seq) {
4706             return (check(matcher, i, seq) & type) > 0
4707                 && next.match(matcher, i, seq);
4708         }
4709     }
4710 
4711     /**
4712      * Non spacing marks only count as word characters in bounds calculations
4713      * if they have a base character.
4714      */
4715     private static boolean hasBaseCharacter(Matcher matcher, int i,
4716                                             CharSequence seq)
4717     {
4718         int start = (!matcher.transparentBounds) ?
4719             matcher.from : 0;
4720         for (int x=i; x >= start; x--) {
4721             int ch = Character.codePointAt(seq, x);
4722             if (Character.isLetterOrDigit(ch))
4723                 return true;
4724             if (Character.getType(ch) == Character.NON_SPACING_MARK)
4725                 continue;
4726             return false;
4727         }
4728         return false;
4729     }
4730 
4731     /**
4732      * Attempts to match a slice in the input using the Boyer-Moore string
4733      * matching algorithm. The algorithm is based on the idea that the
4734      * pattern can be shifted farther ahead in the search text if it is
4735      * matched right to left.
4736      * <p>
4737      * The pattern is compared to the input one character at a time, from
4738      * the rightmost character in the pattern to the left. If the characters
4739      * all match the pattern has been found. If a character does not match,
4740      * the pattern is shifted right a distance that is the maximum of two
4741      * functions, the bad character shift and the good suffix shift. This
4742      * shift moves the attempted match position through the input more
4743      * quickly than a naive one position at a time check.
4744      * <p>
4745      * The bad character shift is based on the character from the text that
4746      * did not match. If the character does not appear in the pattern, the
4747      * pattern can be shifted completely beyond the bad character. If the
4748      * character does occur in the pattern, the pattern can be shifted to
4749      * line the pattern up with the next occurrence of that character.
4750      * <p>
4751      * The good suffix shift is based on the idea that some subset on the right
4752      * side of the pattern has matched. When a bad character is found, the
4753      * pattern can be shifted right by the pattern length if the subset does
4754      * not occur again in pattern, or by the amount of distance to the
4755      * next occurrence of the subset in the pattern.
4756      *
4757      * Boyer-Moore search methods adapted from code by Amy Yu.
4758      */
4759     static class BnM extends Node {
4760         int[] buffer;
4761         int[] lastOcc;
4762         int[] optoSft;
4763 
4764         /**
4765          * Pre calculates arrays needed to generate the bad character
4766          * shift and the good suffix shift. Only the last seven bits
4767          * are used to see if chars match; This keeps the tables small
4768          * and covers the heavily used ASCII range, but occasionally
4769          * results in an aliased match for the bad character shift.
4770          */
4771         static Node optimize(Node node) {
4772             if (!(node instanceof Slice)) {
4773                 return node;
4774             }
4775 
4776             int[] src = ((Slice) node).buffer;
4777             int patternLength = src.length;
4778             // The BM algorithm requires a bit of overhead;
4779             // If the pattern is short don't use it, since
4780             // a shift larger than the pattern length cannot
4781             // be used anyway.
4782             if (patternLength < 4) {
4783                 return node;
4784             }
4785             int i, j, k;
4786             int[] lastOcc = new int[128];
4787             int[] optoSft = new int[patternLength];
4788             // Precalculate part of the bad character shift
4789             // It is a table for where in the pattern each
4790             // lower 7-bit value occurs
4791             for (i = 0; i < patternLength; i++) {
4792                 lastOcc[src[i]&0x7F] = i + 1;
4793             }
4794             // Precalculate the good suffix shift
4795             // i is the shift amount being considered
4796 NEXT:       for (i = patternLength; i > 0; i--) {
4797                 // j is the beginning index of suffix being considered
4798                 for (j = patternLength - 1; j >= i; j--) {
4799                     // Testing for good suffix
4800                     if (src[j] == src[j-i]) {
4801                         // src[j..len] is a good suffix
4802                         optoSft[j-1] = i;
4803                     } else {
4804                         // No match. The array has already been
4805                         // filled up with correct values before.
4806                         continue NEXT;
4807                     }
4808                 }
4809                 // This fills up the remaining of optoSft
4810                 // any suffix can not have larger shift amount
4811                 // then its sub-suffix. Why???
4812                 while (j > 0) {
4813                     optoSft[--j] = i;
4814                 }
4815             }
4816             // Set the guard value because of unicode compression
4817             optoSft[patternLength-1] = 1;
4818             if (node instanceof SliceS)
4819                 return new BnMS(src, lastOcc, optoSft, node.next);
4820             return new BnM(src, lastOcc, optoSft, node.next);
4821         }
4822         BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) {
4823             this.buffer = src;
4824             this.lastOcc = lastOcc;
4825             this.optoSft = optoSft;
4826             this.next = next;
4827         }
4828         boolean match(Matcher matcher, int i, CharSequence seq) {
4829             int[] src = buffer;
4830             int patternLength = src.length;
4831             int last = matcher.to - patternLength;
4832 
4833             // Loop over all possible match positions in text
4834 NEXT:       while (i <= last) {
4835                 // Loop over pattern from right to left
4836                 for (int j = patternLength - 1; j >= 0; j--) {
4837                     int ch = seq.charAt(i+j);
4838                     if (ch != src[j]) {
4839                         // Shift search to the right by the maximum of the
4840                         // bad character shift and the good suffix shift
4841                         i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]);
4842                         continue NEXT;
4843                     }
4844                 }
4845                 // Entire pattern matched starting at i
4846                 matcher.first = i;
4847                 boolean ret = next.match(matcher, i + patternLength, seq);
4848                 if (ret) {
4849                     matcher.first = i;
4850                     matcher.groups[0] = matcher.first;
4851                     matcher.groups[1] = matcher.last;
4852                     return true;
4853                 }
4854                 i++;
4855             }
4856             // BnM is only used as the leading node in the unanchored case,
4857             // and it replaced its Start() which always searches to the end
4858             // if it doesn't find what it's looking for, so hitEnd is true.
4859             matcher.hitEnd = true;
4860             return false;
4861         }
4862         boolean study(TreeInfo info) {
4863             info.minLength += buffer.length;
4864             info.maxValid = false;
4865             return next.study(info);
4866         }
4867     }
4868 
4869     /**
4870      * Supplementary support version of BnM(). Unpaired surrogates are
4871      * also handled by this class.
4872      */
4873     static final class BnMS extends BnM {
4874         int lengthInChars;
4875 
4876         BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) {
4877             super(src, lastOcc, optoSft, next);
4878             for (int x = 0; x < buffer.length; x++) {
4879                 lengthInChars += Character.charCount(buffer[x]);
4880             }
4881         }
4882         boolean match(Matcher matcher, int i, CharSequence seq) {
4883             int[] src = buffer;
4884             int patternLength = src.length;
4885             int last = matcher.to - lengthInChars;
4886 
4887             // Loop over all possible match positions in text
4888 NEXT:       while (i <= last) {
4889                 // Loop over pattern from right to left
4890                 int ch;
4891                 for (int j = countChars(seq, i, patternLength), x = patternLength - 1;
4892                      j > 0; j -= Character.charCount(ch), x--) {
4893                     ch = Character.codePointBefore(seq, i+j);
4894                     if (ch != src[x]) {
4895                         // Shift search to the right by the maximum of the
4896                         // bad character shift and the good suffix shift
4897                         int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]);
4898                         i += countChars(seq, i, n);
4899                         continue NEXT;
4900                     }
4901                 }
4902                 // Entire pattern matched starting at i
4903                 matcher.first = i;
4904                 boolean ret = next.match(matcher, i + lengthInChars, seq);
4905                 if (ret) {
4906                     matcher.first = i;
4907                     matcher.groups[0] = matcher.first;
4908                     matcher.groups[1] = matcher.last;
4909                     return true;
4910                 }
4911                 i += countChars(seq, i, 1);
4912             }
4913             matcher.hitEnd = true;
4914             return false;
4915         }
4916     }
4917 
4918 ///////////////////////////////////////////////////////////////////////////////
4919 ///////////////////////////////////////////////////////////////////////////////
4920 
4921     /**
4922      *  This must be the very first initializer.
4923      */
4924     static Node accept = new Node();
4925 
4926     static Node lastAccept = new LastNode();
4927 
4928     private static class CharPropertyNames {
4929 
4930         static CharProperty charPropertyFor(String name) {
4931             CharPropertyFactory m = map.get(name);
4932             return m == null ? null : m.make();
4933         }
4934 
4935         private static abstract class CharPropertyFactory {
4936             abstract CharProperty make();
4937         }
4938 
4939         private static void defCategory(String name,
4940                                         final int typeMask) {
4941             map.put(name, new CharPropertyFactory() {
4942                     CharProperty make() { return new Category(typeMask);}});
4943         }
4944 
4945         private static void defRange(String name,
4946                                      final int lower, final int upper) {
4947             map.put(name, new CharPropertyFactory() {
4948                     CharProperty make() { return rangeFor(lower, upper);}});
4949         }
4950 
4951         private static void defCtype(String name,
4952                                      final int ctype) {
4953             map.put(name, new CharPropertyFactory() {
4954                     CharProperty make() { return new Ctype(ctype);}});
4955         }
4956 
4957         private static abstract class CloneableProperty
4958             extends CharProperty implements Cloneable
4959         {
4960             public CloneableProperty clone() {
4961                 try {
4962                     return (CloneableProperty) super.clone();
4963                 } catch (CloneNotSupportedException e) {
4964                     throw new AssertionError(e);
4965                 }
4966             }
4967         }
4968 
4969         private static void defClone(String name,
4970                                      final CloneableProperty p) {
4971             map.put(name, new CharPropertyFactory() {
4972                     CharProperty make() { return p.clone();}});
4973         }
4974 
4975         private static final HashMap<String, CharPropertyFactory> map
4976             = new HashMap<String, CharPropertyFactory>();
4977 
4978         static {
4979             // Unicode character property aliases, defined in
4980             // http://www.unicode.org/Public/UNIDATA/PropertyValueAliases.txt
4981             defCategory("Cn", 1<<Character.UNASSIGNED);
4982             defCategory("Lu", 1<<Character.UPPERCASE_LETTER);
4983             defCategory("Ll", 1<<Character.LOWERCASE_LETTER);
4984             defCategory("Lt", 1<<Character.TITLECASE_LETTER);
4985             defCategory("Lm", 1<<Character.MODIFIER_LETTER);
4986             defCategory("Lo", 1<<Character.OTHER_LETTER);
4987             defCategory("Mn", 1<<Character.NON_SPACING_MARK);
4988             defCategory("Me", 1<<Character.ENCLOSING_MARK);
4989             defCategory("Mc", 1<<Character.COMBINING_SPACING_MARK);
4990             defCategory("Nd", 1<<Character.DECIMAL_DIGIT_NUMBER);
4991             defCategory("Nl", 1<<Character.LETTER_NUMBER);
4992             defCategory("No", 1<<Character.OTHER_NUMBER);
4993             defCategory("Zs", 1<<Character.SPACE_SEPARATOR);
4994             defCategory("Zl", 1<<Character.LINE_SEPARATOR);
4995             defCategory("Zp", 1<<Character.PARAGRAPH_SEPARATOR);
4996             defCategory("Cc", 1<<Character.CONTROL);
4997             defCategory("Cf", 1<<Character.FORMAT);
4998             defCategory("Co", 1<<Character.PRIVATE_USE);
4999             defCategory("Cs", 1<<Character.SURROGATE);
5000             defCategory("Pd", 1<<Character.DASH_PUNCTUATION);
5001             defCategory("Ps", 1<<Character.START_PUNCTUATION);
5002             defCategory("Pe", 1<<Character.END_PUNCTUATION);
5003             defCategory("Pc", 1<<Character.CONNECTOR_PUNCTUATION);
5004             defCategory("Po", 1<<Character.OTHER_PUNCTUATION);
5005             defCategory("Sm", 1<<Character.MATH_SYMBOL);
5006             defCategory("Sc", 1<<Character.CURRENCY_SYMBOL);
5007             defCategory("Sk", 1<<Character.MODIFIER_SYMBOL);
5008             defCategory("So", 1<<Character.OTHER_SYMBOL);
5009             defCategory("Pi", 1<<Character.INITIAL_QUOTE_PUNCTUATION);
5010             defCategory("Pf", 1<<Character.FINAL_QUOTE_PUNCTUATION);
5011             defCategory("L", ((1<<Character.UPPERCASE_LETTER) |
5012                               (1<<Character.LOWERCASE_LETTER) |
5013                               (1<<Character.TITLECASE_LETTER) |
5014                               (1<<Character.MODIFIER_LETTER)  |
5015                               (1<<Character.OTHER_LETTER)));
5016             defCategory("M", ((1<<Character.NON_SPACING_MARK) |
5017                               (1<<Character.ENCLOSING_MARK)   |
5018                               (1<<Character.COMBINING_SPACING_MARK)));
5019             defCategory("N", ((1<<Character.DECIMAL_DIGIT_NUMBER) |
5020                               (1<<Character.LETTER_NUMBER)        |
5021                               (1<<Character.OTHER_NUMBER)));
5022             defCategory("Z", ((1<<Character.SPACE_SEPARATOR) |
5023                               (1<<Character.LINE_SEPARATOR)  |
5024                               (1<<Character.PARAGRAPH_SEPARATOR)));
5025             defCategory("C", ((1<<Character.CONTROL)     |
5026                               (1<<Character.FORMAT)      |
5027                               (1<<Character.PRIVATE_USE) |
5028                               (1<<Character.SURROGATE))); // Other
5029             defCategory("P", ((1<<Character.DASH_PUNCTUATION)      |
5030                               (1<<Character.START_PUNCTUATION)     |
5031                               (1<<Character.END_PUNCTUATION)       |
5032                               (1<<Character.CONNECTOR_PUNCTUATION) |
5033                               (1<<Character.OTHER_PUNCTUATION)     |
5034                               (1<<Character.INITIAL_QUOTE_PUNCTUATION) |
5035                               (1<<Character.FINAL_QUOTE_PUNCTUATION)));
5036             defCategory("S", ((1<<Character.MATH_SYMBOL)     |
5037                               (1<<Character.CURRENCY_SYMBOL) |
5038                               (1<<Character.MODIFIER_SYMBOL) |
5039                               (1<<Character.OTHER_SYMBOL)));
5040             defCategory("LC", ((1<<Character.UPPERCASE_LETTER) |
5041                                (1<<Character.LOWERCASE_LETTER) |
5042                                (1<<Character.TITLECASE_LETTER)));
5043             defCategory("LD", ((1<<Character.UPPERCASE_LETTER) |
5044                                (1<<Character.LOWERCASE_LETTER) |
5045                                (1<<Character.TITLECASE_LETTER) |
5046                                (1<<Character.MODIFIER_LETTER)  |
5047                                (1<<Character.OTHER_LETTER)     |
5048                                (1<<Character.DECIMAL_DIGIT_NUMBER)));
5049             defRange("L1", 0x00, 0xFF); // Latin-1
5050             map.put("all", new CharPropertyFactory() {
5051                     CharProperty make() { return new All(); }});
5052 
5053             // Posix regular expression character classes, defined in
5054             // http://www.unix.org/onlinepubs/009695399/basedefs/xbd_chap09.html
5055             defRange("ASCII", 0x00, 0x7F);   // ASCII
5056             defCtype("Alnum", ASCII.ALNUM);  // Alphanumeric characters
5057             defCtype("Alpha", ASCII.ALPHA);  // Alphabetic characters
5058             defCtype("Blank", ASCII.BLANK);  // Space and tab characters
5059             defCtype("Cntrl", ASCII.CNTRL);  // Control characters
5060             defRange("Digit", '0', '9');     // Numeric characters
5061             defCtype("Graph", ASCII.GRAPH);  // printable and visible
5062             defRange("Lower", 'a', 'z');     // Lower-case alphabetic
5063             defRange("Print", 0x20, 0x7E);   // Printable characters
5064             defCtype("Punct", ASCII.PUNCT);  // Punctuation characters
5065             defCtype("Space", ASCII.SPACE);  // Space characters
5066             defRange("Upper", 'A', 'Z');     // Upper-case alphabetic
5067             defCtype("XDigit",ASCII.XDIGIT); // hexadecimal digits
5068 
5069             // Java character properties, defined by methods in Character.java
5070             defClone("javaLowerCase", new CloneableProperty() {
5071                 boolean isSatisfiedBy(int ch) {
5072                     return Character.isLowerCase(ch);}});
5073             defClone("javaUpperCase", new CloneableProperty() {
5074                 boolean isSatisfiedBy(int ch) {
5075                     return Character.isUpperCase(ch);}});
5076             defClone("javaTitleCase", new CloneableProperty() {
5077                 boolean isSatisfiedBy(int ch) {
5078                     return Character.isTitleCase(ch);}});
5079             defClone("javaDigit", new CloneableProperty() {
5080                 boolean isSatisfiedBy(int ch) {
5081                     return Character.isDigit(ch);}});
5082             defClone("javaDefined", new CloneableProperty() {
5083                 boolean isSatisfiedBy(int ch) {
5084                     return Character.isDefined(ch);}});
5085             defClone("javaLetter", new CloneableProperty() {
5086                 boolean isSatisfiedBy(int ch) {
5087                     return Character.isLetter(ch);}});
5088             defClone("javaLetterOrDigit", new CloneableProperty() {
5089                 boolean isSatisfiedBy(int ch) {
5090                     return Character.isLetterOrDigit(ch);}});
5091             defClone("javaJavaIdentifierStart", new CloneableProperty() {
5092                 boolean isSatisfiedBy(int ch) {
5093                     return Character.isJavaIdentifierStart(ch);}});
5094             defClone("javaJavaIdentifierPart", new CloneableProperty() {
5095                 boolean isSatisfiedBy(int ch) {
5096                     return Character.isJavaIdentifierPart(ch);}});
5097             defClone("javaUnicodeIdentifierStart", new CloneableProperty() {
5098                 boolean isSatisfiedBy(int ch) {
5099                     return Character.isUnicodeIdentifierStart(ch);}});
5100             defClone("javaUnicodeIdentifierPart", new CloneableProperty() {
5101                 boolean isSatisfiedBy(int ch) {
5102                     return Character.isUnicodeIdentifierPart(ch);}});
5103             defClone("javaIdentifierIgnorable", new CloneableProperty() {
5104                 boolean isSatisfiedBy(int ch) {
5105                     return Character.isIdentifierIgnorable(ch);}});
5106             defClone("javaSpaceChar", new CloneableProperty() {
5107                 boolean isSatisfiedBy(int ch) {
5108                     return Character.isSpaceChar(ch);}});
5109             defClone("javaWhitespace", new CloneableProperty() {
5110                 boolean isSatisfiedBy(int ch) {
5111                     return Character.isWhitespace(ch);}});
5112             defClone("javaISOControl", new CloneableProperty() {
5113                 boolean isSatisfiedBy(int ch) {
5114                     return Character.isISOControl(ch);}});
5115             defClone("javaMirrored", new CloneableProperty() {
5116                 boolean isSatisfiedBy(int ch) {
5117                     return Character.isMirrored(ch);}});
5118         }
5119     }
5120 }