/* * Copyright (c) 1996, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util.zip; import java.lang.ref.Cleaner.Cleanable; import java.lang.ref.Reference; import java.nio.ByteBuffer; import java.nio.ReadOnlyBufferException; import java.util.Objects; import jdk.internal.ref.CleanerFactory; import sun.nio.ch.DirectBuffer; /** * This class provides support for general purpose decompression using the * popular ZLIB compression library. The ZLIB compression library was * initially developed as part of the PNG graphics standard and is not * protected by patents. It is fully described in the specifications at * the java.util.zip * package description. *

* This class inflates sequences of ZLIB compressed bytes. The input byte * sequence is provided in either byte array or byte buffer, via one of the * {@code setInput()} methods. The output byte sequence is written to the * output byte array or byte buffer passed to the {@code deflate()} methods. *

* The following code fragment demonstrates a trivial compression * and decompression of a string using {@code Deflater} and * {@code Inflater}. * *

 * try {
 *     // Encode a String into bytes
 *     String inputString = "blahblahblah\u20AC\u20AC";
 *     byte[] input = inputString.getBytes("UTF-8");
 *
 *     // Compress the bytes
 *     byte[] output = new byte[100];
 *     Deflater compresser = new Deflater();
 *     compresser.setInput(input);
 *     compresser.finish();
 *     int compressedDataLength = compresser.deflate(output);
 *
 *     // Decompress the bytes
 *     Inflater decompresser = new Inflater();
 *     decompresser.setInput(output, 0, compressedDataLength);
 *     byte[] result = new byte[100];
 *     int resultLength = decompresser.inflate(result);
 *     decompresser.end();
 *
 *     // Decode the bytes into a String
 *     String outputString = new String(result, 0, resultLength, "UTF-8");
 * } catch(java.io.UnsupportedEncodingException ex) {
 *     // handle
 * } catch (java.util.zip.DataFormatException ex) {
 *     // handle
 * }
 * 
* * @apiNote * To release resources used by this {@code Inflater}, the {@link #end()} method * should be called explicitly. Subclasses are responsible for the cleanup of resources * acquired by the subclass. Subclasses that override {@link #finalize()} in order * to perform cleanup should be modified to use alternative cleanup mechanisms such * as {@link java.lang.ref.Cleaner} and remove the overriding {@code finalize} method. * * @implSpec * If this {@code Inflater} has been subclassed and the {@code end} method has been * overridden, the {@code end} method will be called by the finalization when the * inflater is unreachable. But the subclasses should not depend on this specific * implementation; the finalization is not reliable and the {@code finalize} method * is deprecated to be removed. * * @see Deflater * @author David Connelly * @since 1.1 * */ public class Inflater { private final InflaterZStreamRef zsRef; private ByteBuffer input = ZipUtils.defaultBuf; private byte[] inputArray; private int inputPos, inputLim; private boolean finished; private boolean needDict; private long bytesRead; private long bytesWritten; /* * These fields are used as an "out" parameter from JNI when a * DataFormatException is thrown during the inflate operation. */ private int inputConsumed; private int outputConsumed; static { ZipUtils.loadLibrary(); initIDs(); } /** * Creates a new decompressor. If the parameter 'nowrap' is true then * the ZLIB header and checksum fields will not be used. This provides * compatibility with the compression format used by both GZIP and PKZIP. *

* Note: When using the 'nowrap' option it is also necessary to provide * an extra "dummy" byte as input. This is required by the ZLIB native * library in order to support certain optimizations. * * @param nowrap if true then support GZIP compatible compression */ public Inflater(boolean nowrap) { this.zsRef = InflaterZStreamRef.get(this, init(nowrap)); } /** * Creates a new decompressor. */ public Inflater() { this(false); } /** * Sets input data for decompression. *

* One of the {@code setInput()} methods should be called whenever * {@code needsInput()} returns true indicating that more input data * is required. * * @param input the input data bytes * @param off the start offset of the input data * @param len the length of the input data * @see Inflater#needsInput */ public void setInput(byte[] input, int off, int len) { if (off < 0 || len < 0 || off > input.length - len) { throw new ArrayIndexOutOfBoundsException(); } synchronized (zsRef) { this.input = null; this.inputArray = input; this.inputPos = off; this.inputLim = off + len; } } /** * Sets input data for decompression. *

* One of the {@code setInput()} methods should be called whenever * {@code needsInput()} returns true indicating that more input data * is required. * * @param input the input data bytes * @see Inflater#needsInput */ public void setInput(byte[] input) { setInput(input, 0, input.length); } /** * Sets input data for decompression. *

* One of the {@code setInput()} methods should be called whenever * {@code needsInput()} returns true indicating that more input data * is required. *

* The given buffer's position will be advanced as inflate * operations are performed, up to the buffer's limit. * The input buffer may be modified (refilled) between inflate * operations; doing so is equivalent to creating a new buffer * and setting it with this method. *

* Modifying the input buffer's contents, position, or limit * concurrently with an inflate operation will result in * undefined behavior, which may include incorrect operation * results or operation failure. * * @param input the input data bytes * @see Inflater#needsInput * @since 11 */ public void setInput(ByteBuffer input) { Objects.requireNonNull(input); synchronized (zsRef) { this.input = input; this.inputArray = null; } } /** * Sets the preset dictionary to the given array of bytes. Should be * called when inflate() returns 0 and needsDictionary() returns true * indicating that a preset dictionary is required. The method getAdler() * can be used to get the Adler-32 value of the dictionary needed. * @param dictionary the dictionary data bytes * @param off the start offset of the data * @param len the length of the data * @see Inflater#needsDictionary * @see Inflater#getAdler */ public void setDictionary(byte[] dictionary, int off, int len) { if (off < 0 || len < 0 || off > dictionary.length - len) { throw new ArrayIndexOutOfBoundsException(); } synchronized (zsRef) { ensureOpen(); setDictionary(zsRef.address(), dictionary, off, len); needDict = false; } } /** * Sets the preset dictionary to the given array of bytes. Should be * called when inflate() returns 0 and needsDictionary() returns true * indicating that a preset dictionary is required. The method getAdler() * can be used to get the Adler-32 value of the dictionary needed. * @param dictionary the dictionary data bytes * @see Inflater#needsDictionary * @see Inflater#getAdler */ public void setDictionary(byte[] dictionary) { setDictionary(dictionary, 0, dictionary.length); } /** * Sets the preset dictionary to the bytes in the given buffer. Should be * called when inflate() returns 0 and needsDictionary() returns true * indicating that a preset dictionary is required. The method getAdler() * can be used to get the Adler-32 value of the dictionary needed. *

* The bytes in given byte buffer will be fully consumed by this method. On * return, its position will equal its limit. * * @param dictionary the dictionary data bytes * @see Inflater#needsDictionary * @see Inflater#getAdler * @since 11 */ public void setDictionary(ByteBuffer dictionary) { synchronized (zsRef) { int position = dictionary.position(); int remaining = Math.max(dictionary.limit() - position, 0); ensureOpen(); if (dictionary.isDirect()) { long address = ((DirectBuffer) dictionary).address(); try { setDictionaryBuffer(zsRef.address(), address + position, remaining); } finally { Reference.reachabilityFence(dictionary); } } else { byte[] array = ZipUtils.getBufferArray(dictionary); int offset = ZipUtils.getBufferOffset(dictionary); setDictionary(zsRef.address(), array, offset + position, remaining); } dictionary.position(position + remaining); needDict = false; } } /** * Returns the total number of bytes remaining in the input buffer. * This can be used to find out what bytes still remain in the input * buffer after decompression has finished. * @return the total number of bytes remaining in the input buffer */ public int getRemaining() { synchronized (zsRef) { ByteBuffer input = this.input; return input == null ? inputLim - inputPos : input.remaining(); } } /** * Returns true if no data remains in the input buffer. This can * be used to determine if one of the {@code setInput()} methods should be * called in order to provide more input. * * @return true if no data remains in the input buffer */ public boolean needsInput() { synchronized (zsRef) { ByteBuffer input = this.input; return input == null ? inputLim == inputPos : ! input.hasRemaining(); } } /** * Returns true if a preset dictionary is needed for decompression. * @return true if a preset dictionary is needed for decompression * @see Inflater#setDictionary */ public boolean needsDictionary() { synchronized (zsRef) { return needDict; } } /** * Returns true if the end of the compressed data stream has been * reached. * @return true if the end of the compressed data stream has been * reached */ public boolean finished() { synchronized (zsRef) { return finished; } } /** * Uncompresses bytes into specified buffer. Returns actual number * of bytes uncompressed. A return value of 0 indicates that * needsInput() or needsDictionary() should be called in order to * determine if more input data or a preset dictionary is required. * In the latter case, getAdler() can be used to get the Adler-32 * value of the dictionary required. *

* If the {@link #setInput(ByteBuffer)} method was called to provide a buffer * for input, the input buffer's position will be advanced by the number of bytes * consumed by this operation, even in the event that a {@link DataFormatException} * is thrown. *

* The {@linkplain #getRemaining() remaining byte count} will be reduced by * the number of consumed input bytes. If the {@link #setInput(ByteBuffer)} * method was called to provide a buffer for input, the input buffer's position * will be advanced the number of consumed bytes. *

* These byte totals, as well as * the {@linkplain #getBytesRead() total bytes read} * and the {@linkplain #getBytesWritten() total bytes written} * values, will be updated even in the event that a {@link DataFormatException} * is thrown to reflect the amount of data consumed and produced before the * exception occurred. * * @param output the buffer for the uncompressed data * @param off the start offset of the data * @param len the maximum number of uncompressed bytes * @return the actual number of uncompressed bytes * @throws DataFormatException if the compressed data format is invalid * @see Inflater#needsInput * @see Inflater#needsDictionary */ public int inflate(byte[] output, int off, int len) throws DataFormatException { if (off < 0 || len < 0 || off > output.length - len) { throw new ArrayIndexOutOfBoundsException(); } synchronized (zsRef) { ensureOpen(); ByteBuffer input = this.input; long result; int inputPos; try { if (input == null) { inputPos = this.inputPos; try { result = inflateBytesBytes(zsRef.address(), inputArray, inputPos, inputLim - inputPos, output, off, len); } catch (DataFormatException e) { this.inputPos = inputPos + inputConsumed; throw e; } } else { inputPos = input.position(); try { int inputRem = Math.max(input.limit() - inputPos, 0); if (input.isDirect()) { try { long inputAddress = ((DirectBuffer) input).address(); result = inflateBufferBytes(zsRef.address(), inputAddress + inputPos, inputRem, output, off, len); } finally { Reference.reachabilityFence(input); } } else { byte[] inputArray = ZipUtils.getBufferArray(input); int inputOffset = ZipUtils.getBufferOffset(input); result = inflateBytesBytes(zsRef.address(), inputArray, inputOffset + inputPos, inputRem, output, off, len); } } catch (DataFormatException e) { input.position(inputPos + inputConsumed); throw e; } } } catch (DataFormatException e) { bytesRead += inputConsumed; inputConsumed = 0; int written = outputConsumed; bytesWritten += written; outputConsumed = 0; throw e; } int read = (int) (result & 0x7fff_ffffL); int written = (int) (result >>> 31 & 0x7fff_ffffL); if ((result >>> 62 & 1) != 0) { finished = true; } if ((result >>> 63 & 1) != 0) { needDict = true; } if (input != null) { input.position(inputPos + read); } else { this.inputPos = inputPos + read; } bytesWritten += written; bytesRead += read; return written; } } /** * Uncompresses bytes into specified buffer. Returns actual number * of bytes uncompressed. A return value of 0 indicates that * needsInput() or needsDictionary() should be called in order to * determine if more input data or a preset dictionary is required. * In the latter case, getAdler() can be used to get the Adler-32 * value of the dictionary required. *

* The {@linkplain #getRemaining() remaining byte count} will be reduced by * the number of consumed input bytes. If the {@link #setInput(ByteBuffer)} * method was called to provide a buffer for input, the input buffer's position * will be advanced the number of consumed bytes. *

* These byte totals, as well as * the {@linkplain #getBytesRead() total bytes read} * and the {@linkplain #getBytesWritten() total bytes written} * values, will be updated even in the event that a {@link DataFormatException} * is thrown to reflect the amount of data consumed and produced before the * exception occurred. * * @param output the buffer for the uncompressed data * @return the actual number of uncompressed bytes * @throws DataFormatException if the compressed data format is invalid * @see Inflater#needsInput * @see Inflater#needsDictionary */ public int inflate(byte[] output) throws DataFormatException { return inflate(output, 0, output.length); } /** * Uncompresses bytes into specified buffer. Returns actual number * of bytes uncompressed. A return value of 0 indicates that * needsInput() or needsDictionary() should be called in order to * determine if more input data or a preset dictionary is required. * In the latter case, getAdler() can be used to get the Adler-32 * value of the dictionary required. *

* On success, the position of the given {@code output} byte buffer will be * advanced by as many bytes as were produced by the operation, which is equal * to the number returned by this method. Note that the position of the * {@code output} buffer will be advanced even in the event that a * {@link DataFormatException} is thrown. *

* The {@linkplain #getRemaining() remaining byte count} will be reduced by * the number of consumed input bytes. If the {@link #setInput(ByteBuffer)} * method was called to provide a buffer for input, the input buffer's position * will be advanced the number of consumed bytes. *

* These byte totals, as well as * the {@linkplain #getBytesRead() total bytes read} * and the {@linkplain #getBytesWritten() total bytes written} * values, will be updated even in the event that a {@link DataFormatException} * is thrown to reflect the amount of data consumed and produced before the * exception occurred. * * @param output the buffer for the uncompressed data * @return the actual number of uncompressed bytes * @throws DataFormatException if the compressed data format is invalid * @throws ReadOnlyBufferException if the given output buffer is read-only * @see Inflater#needsInput * @see Inflater#needsDictionary * @since 11 */ public int inflate(ByteBuffer output) throws DataFormatException { if (output.isReadOnly()) { throw new ReadOnlyBufferException(); } synchronized (zsRef) { ensureOpen(); ByteBuffer input = this.input; long result; int inputPos; int outputPos = output.position(); int outputRem = Math.max(output.limit() - outputPos, 0); try { if (input == null) { inputPos = this.inputPos; try { if (output.isDirect()) { long outputAddress = ((DirectBuffer) output).address(); try { result = inflateBytesBuffer(zsRef.address(), inputArray, inputPos, inputLim - inputPos, outputAddress + outputPos, outputRem); } finally { Reference.reachabilityFence(output); } } else { byte[] outputArray = ZipUtils.getBufferArray(output); int outputOffset = ZipUtils.getBufferOffset(output); result = inflateBytesBytes(zsRef.address(), inputArray, inputPos, inputLim - inputPos, outputArray, outputOffset + outputPos, outputRem); } } catch (DataFormatException e) { this.inputPos = inputPos + inputConsumed; throw e; } } else { inputPos = input.position(); int inputRem = Math.max(input.limit() - inputPos, 0); try { if (input.isDirect()) { long inputAddress = ((DirectBuffer) input).address(); try { if (output.isDirect()) { long outputAddress = ((DirectBuffer) output).address(); try { result = inflateBufferBuffer(zsRef.address(), inputAddress + inputPos, inputRem, outputAddress + outputPos, outputRem); } finally { Reference.reachabilityFence(output); } } else { byte[] outputArray = ZipUtils.getBufferArray(output); int outputOffset = ZipUtils.getBufferOffset(output); result = inflateBufferBytes(zsRef.address(), inputAddress + inputPos, inputRem, outputArray, outputOffset + outputPos, outputRem); } } finally { Reference.reachabilityFence(input); } } else { byte[] inputArray = ZipUtils.getBufferArray(input); int inputOffset = ZipUtils.getBufferOffset(input); if (output.isDirect()) { long outputAddress = ((DirectBuffer) output).address(); try { result = inflateBytesBuffer(zsRef.address(), inputArray, inputOffset + inputPos, inputRem, outputAddress + outputPos, outputRem); } finally { Reference.reachabilityFence(output); } } else { byte[] outputArray = ZipUtils.getBufferArray(output); int outputOffset = ZipUtils.getBufferOffset(output); result = inflateBytesBytes(zsRef.address(), inputArray, inputOffset + inputPos, inputRem, outputArray, outputOffset + outputPos, outputRem); } } } catch (DataFormatException e) { input.position(inputPos + inputConsumed); throw e; } } } catch (DataFormatException e) { bytesRead += inputConsumed; inputConsumed = 0; int written = outputConsumed; output.position(outputPos + written); bytesWritten += written; outputConsumed = 0; throw e; } int read = (int) (result & 0x7fff_ffffL); int written = (int) (result >>> 31 & 0x7fff_ffffL); if ((result >>> 62 & 1) != 0) { finished = true; } if ((result >>> 63 & 1) != 0) { needDict = true; } if (input != null) { input.position(inputPos + read); } else { this.inputPos = inputPos + read; } // Note: this method call also serves to keep the byteBuffer ref alive output.position(outputPos + written); bytesWritten += written; bytesRead += read; return written; } } /** * Returns the ADLER-32 value of the uncompressed data. * @return the ADLER-32 value of the uncompressed data */ public int getAdler() { synchronized (zsRef) { ensureOpen(); return getAdler(zsRef.address()); } } /** * Returns the total number of compressed bytes input so far. * *

Since the number of bytes may be greater than * Integer.MAX_VALUE, the {@link #getBytesRead()} method is now * the preferred means of obtaining this information.

* * @return the total number of compressed bytes input so far */ public int getTotalIn() { return (int) getBytesRead(); } /** * Returns the total number of compressed bytes input so far. * * @return the total (non-negative) number of compressed bytes input so far * @since 1.5 */ public long getBytesRead() { synchronized (zsRef) { ensureOpen(); return bytesRead; } } /** * Returns the total number of uncompressed bytes output so far. * *

Since the number of bytes may be greater than * Integer.MAX_VALUE, the {@link #getBytesWritten()} method is now * the preferred means of obtaining this information.

* * @return the total number of uncompressed bytes output so far */ public int getTotalOut() { return (int) getBytesWritten(); } /** * Returns the total number of uncompressed bytes output so far. * * @return the total (non-negative) number of uncompressed bytes output so far * @since 1.5 */ public long getBytesWritten() { synchronized (zsRef) { ensureOpen(); return bytesWritten; } } /** * Resets inflater so that a new set of input data can be processed. */ public void reset() { synchronized (zsRef) { ensureOpen(); reset(zsRef.address()); input = ZipUtils.defaultBuf; inputArray = null; finished = false; needDict = false; bytesRead = bytesWritten = 0; } } /** * Closes the decompressor and discards any unprocessed input. * * This method should be called when the decompressor is no longer * being used. Once this method is called, the behavior of the * Inflater object is undefined. */ public void end() { synchronized (zsRef) { zsRef.clean(); input = ZipUtils.defaultBuf; inputArray = null; } } /** * Closes the decompressor when garbage is collected. * * @implSpec * If this {@code Inflater} has been subclassed and the {@code end} method * has been overridden, the {@code end} method will be called when the * inflater is unreachable. * * @deprecated The {@code finalize} method has been deprecated and will be * removed. It is implemented as a no-op. Subclasses that override * {@code finalize} in order to perform cleanup should be modified to use * alternative cleanup mechanisms and remove the overriding {@code finalize} * method. The recommended cleanup for compressor is to explicitly call * {@code end} method when it is no longer in use. If the {@code end} is * not invoked explicitly the resource of the compressor will be released * when the instance becomes unreachable, */ @Deprecated(since="9", forRemoval=true) protected void finalize() {} private void ensureOpen () { assert Thread.holdsLock(zsRef); if (zsRef.address() == 0) throw new NullPointerException("Inflater has been closed"); } private static native void initIDs(); private static native long init(boolean nowrap); private static native void setDictionary(long addr, byte[] b, int off, int len); private static native void setDictionaryBuffer(long addr, long bufAddress, int len); private native long inflateBytesBytes(long addr, byte[] inputArray, int inputOff, int inputLen, byte[] outputArray, int outputOff, int outputLen) throws DataFormatException; private native long inflateBytesBuffer(long addr, byte[] inputArray, int inputOff, int inputLen, long outputAddress, int outputLen) throws DataFormatException; private native long inflateBufferBytes(long addr, long inputAddress, int inputLen, byte[] outputArray, int outputOff, int outputLen) throws DataFormatException; private native long inflateBufferBuffer(long addr, long inputAddress, int inputLen, long outputAddress, int outputLen) throws DataFormatException; private static native int getAdler(long addr); private static native void reset(long addr); private static native void end(long addr); /** * A reference to the native zlib's z_stream structure. It also * serves as the "cleaner" to clean up the native resource when * the Inflater is ended, closed or cleaned. */ static class InflaterZStreamRef implements Runnable { private long address; private final Cleanable cleanable; private InflaterZStreamRef(Inflater owner, long addr) { this.cleanable = (owner != null) ? CleanerFactory.cleaner().register(owner, this) : null; this.address = addr; } long address() { return address; } void clean() { cleanable.clean(); } public synchronized void run() { long addr = address; address = 0; if (addr != 0) { end(addr); } } /* * If {@code Inflater} has been subclassed and the {@code end} method is * overridden, uses {@code finalizer} mechanism for resource cleanup. So * {@code end} method can be called when the {@code Inflater} is unreachable. * This mechanism will be removed when the {@code finalize} method is * removed from {@code Inflater}. */ static InflaterZStreamRef get(Inflater owner, long addr) { Class clz = owner.getClass(); while (clz != Inflater.class) { try { clz.getDeclaredMethod("end"); return new FinalizableZStreamRef(owner, addr); } catch (NoSuchMethodException nsme) {} clz = clz.getSuperclass(); } return new InflaterZStreamRef(owner, addr); } private static class FinalizableZStreamRef extends InflaterZStreamRef { final Inflater owner; FinalizableZStreamRef(Inflater owner, long addr) { super(null, addr); this.owner = owner; } @Override void clean() { run(); } @Override @SuppressWarnings("deprecation") protected void finalize() { owner.end(); } } } }