1 /*
   2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Sun designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Sun in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  22  * CA 95054 USA or visit www.sun.com if you need additional information or
  23  * have any questions.
  24  */
  25 
  26 package java.util.regex;
  27 
  28 import java.security.AccessController;
  29 import java.security.PrivilegedAction;
  30 import java.text.CharacterIterator;
  31 import java.text.Normalizer;
  32 import java.util.Map;
  33 import java.util.ArrayList;
  34 import java.util.HashMap;
  35 import java.util.Arrays;
  36 
  37 
  38 /**
  39  * A compiled representation of a regular expression.
  40  *
  41  * <p> A regular expression, specified as a string, must first be compiled into
  42  * an instance of this class.  The resulting pattern can then be used to create
  43  * a {@link Matcher} object that can match arbitrary {@link
  44  * java.lang.CharSequence </code>character sequences<code>} against the regular
  45  * expression.  All of the state involved in performing a match resides in the
  46  * matcher, so many matchers can share the same pattern.
  47  *
  48  * <p> A typical invocation sequence is thus
  49  *
  50  * <blockquote><pre>
  51  * Pattern p = Pattern.{@link #compile compile}("a*b");
  52  * Matcher m = p.{@link #matcher matcher}("aaaaab");
  53  * boolean b = m.{@link Matcher#matches matches}();</pre></blockquote>
  54  *
  55  * <p> A {@link #matches matches} method is defined by this class as a
  56  * convenience for when a regular expression is used just once.  This method
  57  * compiles an expression and matches an input sequence against it in a single
  58  * invocation.  The statement
  59  *
  60  * <blockquote><pre>
  61  * boolean b = Pattern.matches("a*b", "aaaaab");</pre></blockquote>
  62  *
  63  * is equivalent to the three statements above, though for repeated matches it
  64  * is less efficient since it does not allow the compiled pattern to be reused.
  65  *
  66  * <p> Instances of this class are immutable and are safe for use by multiple
  67  * concurrent threads.  Instances of the {@link Matcher} class are not safe for
  68  * such use.
  69  *
  70  *
  71  * <a name="sum">
  72  * <h4> Summary of regular-expression constructs </h4>
  73  *
  74  * <table border="0" cellpadding="1" cellspacing="0"
  75  *  summary="Regular expression constructs, and what they match">
  76  *
  77  * <tr align="left">
  78  * <th bgcolor="#CCCCFF" align="left" id="construct">Construct</th>
  79  * <th bgcolor="#CCCCFF" align="left" id="matches">Matches</th>
  80  * </tr>
  81  *
  82  * <tr><th>&nbsp;</th></tr>
  83  * <tr align="left"><th colspan="2" id="characters">Characters</th></tr>
  84  *
  85  * <tr><td valign="top" headers="construct characters"><i>x</i></td>
  86  *     <td headers="matches">The character <i>x</i></td></tr>
  87  * <tr><td valign="top" headers="construct characters"><tt>\\</tt></td>
  88  *     <td headers="matches">The backslash character</td></tr>
  89  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>n</i></td>
  90  *     <td headers="matches">The character with octal value <tt>0</tt><i>n</i>
  91  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
  92  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>nn</i></td>
  93  *     <td headers="matches">The character with octal value <tt>0</tt><i>nn</i>
  94  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
  95  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>mnn</i></td>
  96  *     <td headers="matches">The character with octal value <tt>0</tt><i>mnn</i>
  97  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>m</i>&nbsp;<tt>&lt;=</tt>&nbsp;3,
  98  *         0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
  99  * <tr><td valign="top" headers="construct characters"><tt>\x</tt><i>hh</i></td>
 100  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hh</i></td></tr>
 101  * <tr><td valign="top" headers="construct characters"><tt>&#92;u</tt><i>hhhh</i></td>
 102  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hhhh</i></td></tr>
 103  * <tr><td valign="top" headers="matches"><tt>\t</tt></td>
 104  *     <td headers="matches">The tab character (<tt>'&#92;u0009'</tt>)</td></tr>
 105  * <tr><td valign="top" headers="construct characters"><tt>\n</tt></td>
 106  *     <td headers="matches">The newline (line feed) character (<tt>'&#92;u000A'</tt>)</td></tr>
 107  * <tr><td valign="top" headers="construct characters"><tt>\r</tt></td>
 108  *     <td headers="matches">The carriage-return character (<tt>'&#92;u000D'</tt>)</td></tr>
 109  * <tr><td valign="top" headers="construct characters"><tt>\f</tt></td>
 110  *     <td headers="matches">The form-feed character (<tt>'&#92;u000C'</tt>)</td></tr>
 111  * <tr><td valign="top" headers="construct characters"><tt>\a</tt></td>
 112  *     <td headers="matches">The alert (bell) character (<tt>'&#92;u0007'</tt>)</td></tr>
 113  * <tr><td valign="top" headers="construct characters"><tt>\e</tt></td>
 114  *     <td headers="matches">The escape character (<tt>'&#92;u001B'</tt>)</td></tr>
 115  * <tr><td valign="top" headers="construct characters"><tt>\c</tt><i>x</i></td>
 116  *     <td headers="matches">The control character corresponding to <i>x</i></td></tr>
 117  *
 118  * <tr><th>&nbsp;</th></tr>
 119  * <tr align="left"><th colspan="2" id="classes">Character classes</th></tr>
 120  *
 121  * <tr><td valign="top" headers="construct classes"><tt>[abc]</tt></td>
 122  *     <td headers="matches"><tt>a</tt>, <tt>b</tt>, or <tt>c</tt> (simple class)</td></tr>
 123  * <tr><td valign="top" headers="construct classes"><tt>[^abc]</tt></td>
 124  *     <td headers="matches">Any character except <tt>a</tt>, <tt>b</tt>, or <tt>c</tt> (negation)</td></tr>
 125  * <tr><td valign="top" headers="construct classes"><tt>[a-zA-Z]</tt></td>
 126  *     <td headers="matches"><tt>a</tt> through <tt>z</tt>
 127  *         or <tt>A</tt> through <tt>Z</tt>, inclusive (range)</td></tr>
 128  * <tr><td valign="top" headers="construct classes"><tt>[a-d[m-p]]</tt></td>
 129  *     <td headers="matches"><tt>a</tt> through <tt>d</tt>,
 130  *      or <tt>m</tt> through <tt>p</tt>: <tt>[a-dm-p]</tt> (union)</td></tr>
 131  * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[def]]</tt></td>
 132  *     <td headers="matches"><tt>d</tt>, <tt>e</tt>, or <tt>f</tt> (intersection)</tr>
 133  * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[^bc]]</tt></td>
 134  *     <td headers="matches"><tt>a</tt> through <tt>z</tt>,
 135  *         except for <tt>b</tt> and <tt>c</tt>: <tt>[ad-z]</tt> (subtraction)</td></tr>
 136  * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[^m-p]]</tt></td>
 137  *     <td headers="matches"><tt>a</tt> through <tt>z</tt>,
 138  *          and not <tt>m</tt> through <tt>p</tt>: <tt>[a-lq-z]</tt>(subtraction)</td></tr>
 139  * <tr><th>&nbsp;</th></tr>
 140  *
 141  * <tr align="left"><th colspan="2" id="predef">Predefined character classes</th></tr>
 142  *
 143  * <tr><td valign="top" headers="construct predef"><tt>.</tt></td>
 144  *     <td headers="matches">Any character (may or may not match <a href="#lt">line terminators</a>)</td></tr>
 145  * <tr><td valign="top" headers="construct predef"><tt>\d</tt></td>
 146  *     <td headers="matches">A digit: <tt>[0-9]</tt></td></tr>
 147  * <tr><td valign="top" headers="construct predef"><tt>\D</tt></td>
 148  *     <td headers="matches">A non-digit: <tt>[^0-9]</tt></td></tr>
 149  * <tr><td valign="top" headers="construct predef"><tt>\s</tt></td>
 150  *     <td headers="matches">A whitespace character: <tt>[ \t\n\x0B\f\r]</tt></td></tr>
 151  * <tr><td valign="top" headers="construct predef"><tt>\S</tt></td>
 152  *     <td headers="matches">A non-whitespace character: <tt>[^\s]</tt></td></tr>
 153  * <tr><td valign="top" headers="construct predef"><tt>\w</tt></td>
 154  *     <td headers="matches">A word character: <tt>[a-zA-Z_0-9]</tt></td></tr>
 155  * <tr><td valign="top" headers="construct predef"><tt>\W</tt></td>
 156  *     <td headers="matches">A non-word character: <tt>[^\w]</tt></td></tr>
 157  *
 158  * <tr><th>&nbsp;</th></tr>
 159  * <tr align="left"><th colspan="2" id="posix">POSIX character classes</b> (US-ASCII only)<b></th></tr>
 160  *
 161  * <tr><td valign="top" headers="construct posix"><tt>\p{Lower}</tt></td>
 162  *     <td headers="matches">A lower-case alphabetic character: <tt>[a-z]</tt></td></tr>
 163  * <tr><td valign="top" headers="construct posix"><tt>\p{Upper}</tt></td>
 164  *     <td headers="matches">An upper-case alphabetic character:<tt>[A-Z]</tt></td></tr>
 165  * <tr><td valign="top" headers="construct posix"><tt>\p{ASCII}</tt></td>
 166  *     <td headers="matches">All ASCII:<tt>[\x00-\x7F]</tt></td></tr>
 167  * <tr><td valign="top" headers="construct posix"><tt>\p{Alpha}</tt></td>
 168  *     <td headers="matches">An alphabetic character:<tt>[\p{Lower}\p{Upper}]</tt></td></tr>
 169  * <tr><td valign="top" headers="construct posix"><tt>\p{Digit}</tt></td>
 170  *     <td headers="matches">A decimal digit: <tt>[0-9]</tt></td></tr>
 171  * <tr><td valign="top" headers="construct posix"><tt>\p{Alnum}</tt></td>
 172  *     <td headers="matches">An alphanumeric character:<tt>[\p{Alpha}\p{Digit}]</tt></td></tr>
 173  * <tr><td valign="top" headers="construct posix"><tt>\p{Punct}</tt></td>
 174  *     <td headers="matches">Punctuation: One of <tt>!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~</tt></td></tr>
 175  *     <!-- <tt>[\!"#\$%&'\(\)\*\+,\-\./:;\<=\>\?@\[\\\]\^_`\{\|\}~]</tt>
 176  *          <tt>[\X21-\X2F\X31-\X40\X5B-\X60\X7B-\X7E]</tt> -->
 177  * <tr><td valign="top" headers="construct posix"><tt>\p{Graph}</tt></td>
 178  *     <td headers="matches">A visible character: <tt>[\p{Alnum}\p{Punct}]</tt></td></tr>
 179  * <tr><td valign="top" headers="construct posix"><tt>\p{Print}</tt></td>
 180  *     <td headers="matches">A printable character: <tt>[\p{Graph}\x20]</tt></td></tr>
 181  * <tr><td valign="top" headers="construct posix"><tt>\p{Blank}</tt></td>
 182  *     <td headers="matches">A space or a tab: <tt>[ \t]</tt></td></tr>
 183  * <tr><td valign="top" headers="construct posix"><tt>\p{Cntrl}</tt></td>
 184  *     <td headers="matches">A control character: <tt>[\x00-\x1F\x7F]</tt></td></tr>
 185  * <tr><td valign="top" headers="construct posix"><tt>\p{XDigit}</tt></td>
 186  *     <td headers="matches">A hexadecimal digit: <tt>[0-9a-fA-F]</tt></td></tr>
 187  * <tr><td valign="top" headers="construct posix"><tt>\p{Space}</tt></td>
 188  *     <td headers="matches">A whitespace character: <tt>[ \t\n\x0B\f\r]</tt></td></tr>
 189  *
 190  * <tr><th>&nbsp;</th></tr>
 191  * <tr align="left"><th colspan="2">java.lang.Character classes (simple <a href="#jcc">java character type</a>)</th></tr>
 192  *
 193  * <tr><td valign="top"><tt>\p{javaLowerCase}</tt></td>
 194  *     <td>Equivalent to java.lang.Character.isLowerCase()</td></tr>
 195  * <tr><td valign="top"><tt>\p{javaUpperCase}</tt></td>
 196  *     <td>Equivalent to java.lang.Character.isUpperCase()</td></tr>
 197  * <tr><td valign="top"><tt>\p{javaWhitespace}</tt></td>
 198  *     <td>Equivalent to java.lang.Character.isWhitespace()</td></tr>
 199  * <tr><td valign="top"><tt>\p{javaMirrored}</tt></td>
 200  *     <td>Equivalent to java.lang.Character.isMirrored()</td></tr>
 201  *
 202  * <tr><th>&nbsp;</th></tr>
 203  * <tr align="left"><th colspan="2" id="unicode">Classes for Unicode blocks and categories</th></tr>
 204  *
 205  * <tr><td valign="top" headers="construct unicode"><tt>\p{InGreek}</tt></td>
 206  *     <td headers="matches">A character in the Greek&nbsp;block (simple <a href="#ubc">block</a>)</td></tr>
 207  * <tr><td valign="top" headers="construct unicode"><tt>\p{Lu}</tt></td>
 208  *     <td headers="matches">An uppercase letter (simple <a href="#ubc">category</a>)</td></tr>
 209  * <tr><td valign="top" headers="construct unicode"><tt>\p{Sc}</tt></td>
 210  *     <td headers="matches">A currency symbol</td></tr>
 211  * <tr><td valign="top" headers="construct unicode"><tt>\P{InGreek}</tt></td>
 212  *     <td headers="matches">Any character except one in the Greek block (negation)</td></tr>
 213  * <tr><td valign="top" headers="construct unicode"><tt>[\p{L}&&[^\p{Lu}]]&nbsp;</tt></td>
 214  *     <td headers="matches">Any letter except an uppercase letter (subtraction)</td></tr>
 215  *
 216  * <tr><th>&nbsp;</th></tr>
 217  * <tr align="left"><th colspan="2" id="bounds">Boundary matchers</th></tr>
 218  *
 219  * <tr><td valign="top" headers="construct bounds"><tt>^</tt></td>
 220  *     <td headers="matches">The beginning of a line</td></tr>
 221  * <tr><td valign="top" headers="construct bounds"><tt>$</tt></td>
 222  *     <td headers="matches">The end of a line</td></tr>
 223  * <tr><td valign="top" headers="construct bounds"><tt>\b</tt></td>
 224  *     <td headers="matches">A word boundary</td></tr>
 225  * <tr><td valign="top" headers="construct bounds"><tt>\B</tt></td>
 226  *     <td headers="matches">A non-word boundary</td></tr>
 227  * <tr><td valign="top" headers="construct bounds"><tt>\A</tt></td>
 228  *     <td headers="matches">The beginning of the input</td></tr>
 229  * <tr><td valign="top" headers="construct bounds"><tt>\G</tt></td>
 230  *     <td headers="matches">The end of the previous match</td></tr>
 231  * <tr><td valign="top" headers="construct bounds"><tt>\Z</tt></td>
 232  *     <td headers="matches">The end of the input but for the final
 233  *         <a href="#lt">terminator</a>, if&nbsp;any</td></tr>
 234  * <tr><td valign="top" headers="construct bounds"><tt>\z</tt></td>
 235  *     <td headers="matches">The end of the input</td></tr>
 236  *
 237  * <tr><th>&nbsp;</th></tr>
 238  * <tr align="left"><th colspan="2" id="greedy">Greedy quantifiers</th></tr>
 239  *
 240  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>?</tt></td>
 241  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 242  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>*</tt></td>
 243  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 244  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>+</tt></td>
 245  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 246  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>}</tt></td>
 247  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 248  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,}</tt></td>
 249  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 250  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}</tt></td>
 251  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 252  *
 253  * <tr><th>&nbsp;</th></tr>
 254  * <tr align="left"><th colspan="2" id="reluc">Reluctant quantifiers</th></tr>
 255  *
 256  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>??</tt></td>
 257  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 258  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>*?</tt></td>
 259  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 260  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>+?</tt></td>
 261  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 262  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>}?</tt></td>
 263  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 264  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,}?</tt></td>
 265  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 266  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}?</tt></td>
 267  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 268  *
 269  * <tr><th>&nbsp;</th></tr>
 270  * <tr align="left"><th colspan="2" id="poss">Possessive quantifiers</th></tr>
 271  *
 272  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>?+</tt></td>
 273  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 274  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>*+</tt></td>
 275  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 276  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>++</tt></td>
 277  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 278  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>}+</tt></td>
 279  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 280  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,}+</tt></td>
 281  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 282  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}+</tt></td>
 283  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 284  *
 285  * <tr><th>&nbsp;</th></tr>
 286  * <tr align="left"><th colspan="2" id="logical">Logical operators</th></tr>
 287  *
 288  * <tr><td valign="top" headers="construct logical"><i>XY</i></td>
 289  *     <td headers="matches"><i>X</i> followed by <i>Y</i></td></tr>
 290  * <tr><td valign="top" headers="construct logical"><i>X</i><tt>|</tt><i>Y</i></td>
 291  *     <td headers="matches">Either <i>X</i> or <i>Y</i></td></tr>
 292  * <tr><td valign="top" headers="construct logical"><tt>(</tt><i>X</i><tt>)</tt></td>
 293  *     <td headers="matches">X, as a <a href="#cg">capturing group</a></td></tr>
 294  *
 295  * <tr><th>&nbsp;</th></tr>
 296  * <tr align="left"><th colspan="2" id="backref">Back references</th></tr>
 297  *
 298  * <tr><td valign="bottom" headers="construct backref"><tt>\</tt><i>n</i></td>
 299  *     <td valign="bottom" headers="matches">Whatever the <i>n</i><sup>th</sup>
 300  *     <a href="#cg">capturing group</a> matched</td></tr>
 301  *
 302  * <tr><td valign="bottom" headers="construct backref"><tt>\</tt><i>k</i>&lt;<i>name</i>&gt;</td>
 303  *     <td valign="bottom" headers="matches">Whatever the
 304  *     <a href="#groupname">named-capturing group</a> "name" matched</td></tr>
 305  *
 306  * <tr><th>&nbsp;</th></tr>
 307  * <tr align="left"><th colspan="2" id="quot">Quotation</th></tr>
 308  *
 309  * <tr><td valign="top" headers="construct quot"><tt>\</tt></td>
 310  *     <td headers="matches">Nothing, but quotes the following character</td></tr>
 311  * <tr><td valign="top" headers="construct quot"><tt>\Q</tt></td>
 312  *     <td headers="matches">Nothing, but quotes all characters until <tt>\E</tt></td></tr>
 313  * <tr><td valign="top" headers="construct quot"><tt>\E</tt></td>
 314  *     <td headers="matches">Nothing, but ends quoting started by <tt>\Q</tt></td></tr>
 315  *     <!-- Metachars: !$()*+.<>?[\]^{|} -->
 316  *
 317  * <tr><th>&nbsp;</th></tr>
 318  * <tr align="left"><th colspan="2" id="special">Special constructs (named-capturing and non-capturing)</th></tr>
 319  *
 320  * <tr><td valign="top" headers="construct special"><tt>(?&lt;<a href="#groupname">name</a>&gt;</tt><i>X</i><tt>)</tt></td>
 321  *     <td headers="matches"><i>X</i>, as a named-capturing group</td></tr>
 322  * <tr><td valign="top" headers="construct special"><tt>(?:</tt><i>X</i><tt>)</tt></td>
 323  *     <td headers="matches"><i>X</i>, as a non-capturing group</td></tr>
 324  * <tr><td valign="top" headers="construct special"><tt>(?idmsux-idmsux)&nbsp;</tt></td>
 325  *     <td headers="matches">Nothing, but turns match flags <a href="#CASE_INSENSITIVE">i</a>
 326  * <a href="#UNIX_LINES">d</a> <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a>
 327  * <a href="#UNICODE_CASE">u</a> <a href="#COMMENTS">x</a> on - off</td></tr>
 328  * <tr><td valign="top" headers="construct special"><tt>(?idmsux-idmsux:</tt><i>X</i><tt>)</tt>&nbsp;&nbsp;</td>
 329  *     <td headers="matches"><i>X</i>, as a <a href="#cg">non-capturing group</a> with the
 330  *         given flags <a href="#CASE_INSENSITIVE">i</a> <a href="#UNIX_LINES">d</a>
 331  * <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a> <a href="#UNICODE_CASE">u</a >
 332  * <a href="#COMMENTS">x</a> on - off</td></tr>
 333  * <tr><td valign="top" headers="construct special"><tt>(?=</tt><i>X</i><tt>)</tt></td>
 334  *     <td headers="matches"><i>X</i>, via zero-width positive lookahead</td></tr>
 335  * <tr><td valign="top" headers="construct special"><tt>(?!</tt><i>X</i><tt>)</tt></td>
 336  *     <td headers="matches"><i>X</i>, via zero-width negative lookahead</td></tr>
 337  * <tr><td valign="top" headers="construct special"><tt>(?&lt;=</tt><i>X</i><tt>)</tt></td>
 338  *     <td headers="matches"><i>X</i>, via zero-width positive lookbehind</td></tr>
 339  * <tr><td valign="top" headers="construct special"><tt>(?&lt;!</tt><i>X</i><tt>)</tt></td>
 340  *     <td headers="matches"><i>X</i>, via zero-width negative lookbehind</td></tr>
 341  * <tr><td valign="top" headers="construct special"><tt>(?&gt;</tt><i>X</i><tt>)</tt></td>
 342  *     <td headers="matches"><i>X</i>, as an independent, non-capturing group</td></tr>
 343  *
 344  * </table>
 345  *
 346  * <hr>
 347  *
 348  *
 349  * <a name="bs">
 350  * <h4> Backslashes, escapes, and quoting </h4>
 351  *
 352  * <p> The backslash character (<tt>'\'</tt>) serves to introduce escaped
 353  * constructs, as defined in the table above, as well as to quote characters
 354  * that otherwise would be interpreted as unescaped constructs.  Thus the
 355  * expression <tt>\\</tt> matches a single backslash and <tt>\{</tt> matches a
 356  * left brace.
 357  *
 358  * <p> It is an error to use a backslash prior to any alphabetic character that
 359  * does not denote an escaped construct; these are reserved for future
 360  * extensions to the regular-expression language.  A backslash may be used
 361  * prior to a non-alphabetic character regardless of whether that character is
 362  * part of an unescaped construct.
 363  *
 364  * <p> Backslashes within string literals in Java source code are interpreted
 365  * as required by the <a
 366  * href="http://java.sun.com/docs/books/jls">Java Language
 367  * Specification</a> as either <a
 368  * href="http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#100850">Unicode
 369  * escapes</a> or other <a
 370  * href="http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#101089">character
 371  * escapes</a>.  It is therefore necessary to double backslashes in string
 372  * literals that represent regular expressions to protect them from
 373  * interpretation by the Java bytecode compiler.  The string literal
 374  * <tt>"&#92;b"</tt>, for example, matches a single backspace character when
 375  * interpreted as a regular expression, while <tt>"&#92;&#92;b"</tt> matches a
 376  * word boundary.  The string literal <tt>"&#92;(hello&#92;)"</tt> is illegal
 377  * and leads to a compile-time error; in order to match the string
 378  * <tt>(hello)</tt> the string literal <tt>"&#92;&#92;(hello&#92;&#92;)"</tt>
 379  * must be used.
 380  *
 381  * <a name="cc">
 382  * <h4> Character Classes </h4>
 383  *
 384  *    <p> Character classes may appear within other character classes, and
 385  *    may be composed by the union operator (implicit) and the intersection
 386  *    operator (<tt>&amp;&amp;</tt>).
 387  *    The union operator denotes a class that contains every character that is
 388  *    in at least one of its operand classes.  The intersection operator
 389  *    denotes a class that contains every character that is in both of its
 390  *    operand classes.
 391  *
 392  *    <p> The precedence of character-class operators is as follows, from
 393  *    highest to lowest:
 394  *
 395  *    <blockquote><table border="0" cellpadding="1" cellspacing="0"
 396  *                 summary="Precedence of character class operators.">
 397  *      <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
 398  *        <td>Literal escape&nbsp;&nbsp;&nbsp;&nbsp;</td>
 399  *        <td><tt>\x</tt></td></tr>
 400  *     <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
 401  *        <td>Grouping</td>
 402  *        <td><tt>[...]</tt></td></tr>
 403  *     <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
 404  *        <td>Range</td>
 405  *        <td><tt>a-z</tt></td></tr>
 406  *      <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
 407  *        <td>Union</td>
 408  *        <td><tt>[a-e][i-u]</tt></td></tr>
 409  *      <tr><th>5&nbsp;&nbsp;&nbsp;&nbsp;</th>
 410  *        <td>Intersection</td>
 411  *        <td><tt>[a-z&&[aeiou]]</tt></td></tr>
 412  *    </table></blockquote>
 413  *
 414  *    <p> Note that a different set of metacharacters are in effect inside
 415  *    a character class than outside a character class. For instance, the
 416  *    regular expression <tt>.</tt> loses its special meaning inside a
 417  *    character class, while the expression <tt>-</tt> becomes a range
 418  *    forming metacharacter.
 419  *
 420  * <a name="lt">
 421  * <h4> Line terminators </h4>
 422  *
 423  * <p> A <i>line terminator</i> is a one- or two-character sequence that marks
 424  * the end of a line of the input character sequence.  The following are
 425  * recognized as line terminators:
 426  *
 427  * <ul>
 428  *
 429  *   <li> A newline (line feed) character&nbsp;(<tt>'\n'</tt>),
 430  *
 431  *   <li> A carriage-return character followed immediately by a newline
 432  *   character&nbsp;(<tt>"\r\n"</tt>),
 433  *
 434  *   <li> A standalone carriage-return character&nbsp;(<tt>'\r'</tt>),
 435  *
 436  *   <li> A next-line character&nbsp;(<tt>'&#92;u0085'</tt>),
 437  *
 438  *   <li> A line-separator character&nbsp;(<tt>'&#92;u2028'</tt>), or
 439  *
 440  *   <li> A paragraph-separator character&nbsp;(<tt>'&#92;u2029</tt>).
 441  *
 442  * </ul>
 443  * <p>If {@link #UNIX_LINES} mode is activated, then the only line terminators
 444  * recognized are newline characters.
 445  *
 446  * <p> The regular expression <tt>.</tt> matches any character except a line
 447  * terminator unless the {@link #DOTALL} flag is specified.
 448  *
 449  * <p> By default, the regular expressions <tt>^</tt> and <tt>$</tt> ignore
 450  * line terminators and only match at the beginning and the end, respectively,
 451  * of the entire input sequence. If {@link #MULTILINE} mode is activated then
 452  * <tt>^</tt> matches at the beginning of input and after any line terminator
 453  * except at the end of input. When in {@link #MULTILINE} mode <tt>$</tt>
 454  * matches just before a line terminator or the end of the input sequence.
 455  *
 456  * <a name="cg">
 457  * <h4> Groups and capturing </h4>
 458  *
 459  * <a name="gnumber">
 460  * <h5> Group number </h5>
 461  * <p> Capturing groups are numbered by counting their opening parentheses from
 462  * left to right.  In the expression <tt>((A)(B(C)))</tt>, for example, there
 463  * are four such groups: </p>
 464  *
 465  * <blockquote><table cellpadding=1 cellspacing=0 summary="Capturing group numberings">
 466  * <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
 467  *     <td><tt>((A)(B(C)))</tt></td></tr>
 468  * <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
 469  *     <td><tt>(A)</tt></td></tr>
 470  * <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
 471  *     <td><tt>(B(C))</tt></td></tr>
 472  * <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
 473  *     <td><tt>(C)</tt></td></tr>
 474  * </table></blockquote>
 475  *
 476  * <p> Group zero always stands for the entire expression.
 477  *
 478  * <p> Capturing groups are so named because, during a match, each subsequence
 479  * of the input sequence that matches such a group is saved.  The captured
 480  * subsequence may be used later in the expression, via a back reference, and
 481  * may also be retrieved from the matcher once the match operation is complete.
 482  *
 483  * <a name="groupname">
 484  * <h5> Group name </h5>
 485  * <p>A capturing group can also be assigned a "name", a <tt>named-capturing group</tt>,
 486  * and then be back-referenced later by the "name". Group names are composed of
 487  * the following characters. The first character must be a <tt>letter</tt>.
 488  *
 489  * <ul>
 490  *   <li> The uppercase letters <tt>'A'</tt> through <tt>'Z'</tt>
 491  *        (<tt>'&#92;u0041'</tt>&nbsp;through&nbsp;<tt>'&#92;u005a'</tt>),
 492  *   <li> The lowercase letters <tt>'a'</tt> through <tt>'z'</tt>
 493  *        (<tt>'&#92;u0061'</tt>&nbsp;through&nbsp;<tt>'&#92;u007a'</tt>),
 494  *   <li> The digits <tt>'0'</tt> through <tt>'9'</tt>
 495  *        (<tt>'&#92;u0030'</tt>&nbsp;through&nbsp;<tt>'&#92;u0039'</tt>),
 496  * </ul>
 497  *
 498  * <p> A <tt>named-capturing group</tt> is still numbered as described in
 499  * <a href="#gnumber">Group number</a>.
 500  *
 501  * <p> The captured input associated with a group is always the subsequence
 502  * that the group most recently matched.  If a group is evaluated a second time
 503  * because of quantification then its previously-captured value, if any, will
 504  * be retained if the second evaluation fails.  Matching the string
 505  * <tt>"aba"</tt> against the expression <tt>(a(b)?)+</tt>, for example, leaves
 506  * group two set to <tt>"b"</tt>.  All captured input is discarded at the
 507  * beginning of each match.
 508  *
 509  * <p> Groups beginning with <tt>(?</tt> are either pure, <i>non-capturing</i> groups
 510  * that do not capture text and do not count towards the group total, or
 511  * <i>named-capturing</i> group.
 512  *
 513  * <h4> Unicode support </h4>
 514  *
 515  * <p> This class is in conformance with Level 1 of <a
 516  * href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
 517  * Standard #18: Unicode Regular Expression Guidelines</i></a>, plus RL2.1
 518  * Canonical Equivalents.
 519  *
 520  * <p> Unicode escape sequences such as <tt>&#92;u2014</tt> in Java source code
 521  * are processed as described in <a
 522  * href="http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#100850">\u00A73.3</a>
 523  * of the Java Language Specification.  Such escape sequences are also
 524  * implemented directly by the regular-expression parser so that Unicode
 525  * escapes can be used in expressions that are read from files or from the
 526  * keyboard.  Thus the strings <tt>"&#92;u2014"</tt> and <tt>"\\u2014"</tt>,
 527  * while not equal, compile into the same pattern, which matches the character
 528  * with hexadecimal value <tt>0x2014</tt>.
 529  *
 530  * <a name="ubc"> <p>Unicode blocks and categories are written with the
 531  * <tt>\p</tt> and <tt>\P</tt> constructs as in
 532  * Perl. <tt>\p{</tt><i>prop</i><tt>}</tt> matches if the input has the
 533  * property <i>prop</i>, while <tt>\P{</tt><i>prop</i><tt>}</tt> does not match if
 534  * the input has that property.  Blocks are specified with the prefix
 535  * <tt>In</tt>, as in <tt>InMongolian</tt>.  Categories may be specified with
 536  * the optional prefix <tt>Is</tt>: Both <tt>\p{L}</tt> and <tt>\p{IsL}</tt>
 537  * denote the category of Unicode letters.  Blocks and categories can be used
 538  * both inside and outside of a character class.
 539  *
 540  * <p> The supported categories are those of
 541  * <a href="http://www.unicode.org/unicode/standard/standard.html">
 542  * <i>The Unicode Standard</i></a> in the version specified by the
 543  * {@link java.lang.Character Character} class. The category names are those
 544  * defined in the Standard, both normative and informative.
 545  * The block names supported by <code>Pattern</code> are the valid block names
 546  * accepted and defined by
 547  * {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}.
 548  *
 549  * <a name="jcc"> <p>Categories that behave like the java.lang.Character
 550  * boolean is<i>methodname</i> methods (except for the deprecated ones) are
 551  * available through the same <tt>\p{</tt><i>prop</i><tt>}</tt> syntax where
 552  * the specified property has the name <tt>java<i>methodname</i></tt>.
 553  *
 554  * <h4> Comparison to Perl 5 </h4>
 555  *
 556  * <p>The <code>Pattern</code> engine performs traditional NFA-based matching
 557  * with ordered alternation as occurs in Perl 5.
 558  *
 559  * <p> Perl constructs not supported by this class: </p>
 560  *
 561  * <ul>
 562  *
 563  *    <li><p> The conditional constructs <tt>(?{</tt><i>X</i><tt>})</tt> and
 564  *    <tt>(?(</tt><i>condition</i><tt>)</tt><i>X</i><tt>|</tt><i>Y</i><tt>)</tt>,
 565  *    </p></li>
 566  *
 567  *    <li><p> The embedded code constructs <tt>(?{</tt><i>code</i><tt>})</tt>
 568  *    and <tt>(??{</tt><i>code</i><tt>})</tt>,</p></li>
 569  *
 570  *    <li><p> The embedded comment syntax <tt>(?#comment)</tt>, and </p></li>
 571  *
 572  *    <li><p> The preprocessing operations <tt>\l</tt> <tt>&#92;u</tt>,
 573  *    <tt>\L</tt>, and <tt>\U</tt>.  </p></li>
 574  *
 575  * </ul>
 576  *
 577  * <p> Constructs supported by this class but not by Perl: </p>
 578  *
 579  * <ul>
 580  *
 581  *    <li><p> Possessive quantifiers, which greedily match as much as they can
 582  *    and do not back off, even when doing so would allow the overall match to
 583  *    succeed.  </p></li>
 584  *
 585  *    <li><p> Character-class union and intersection as described
 586  *    <a href="#cc">above</a>.</p></li>
 587  *
 588  * </ul>
 589  *
 590  * <p> Notable differences from Perl: </p>
 591  *
 592  * <ul>
 593  *
 594  *    <li><p> In Perl, <tt>\1</tt> through <tt>\9</tt> are always interpreted
 595  *    as back references; a backslash-escaped number greater than <tt>9</tt> is
 596  *    treated as a back reference if at least that many subexpressions exist,
 597  *    otherwise it is interpreted, if possible, as an octal escape.  In this
 598  *    class octal escapes must always begin with a zero. In this class,
 599  *    <tt>\1</tt> through <tt>\9</tt> are always interpreted as back
 600  *    references, and a larger number is accepted as a back reference if at
 601  *    least that many subexpressions exist at that point in the regular
 602  *    expression, otherwise the parser will drop digits until the number is
 603  *    smaller or equal to the existing number of groups or it is one digit.
 604  *    </p></li>
 605  *
 606  *    <li><p> Perl uses the <tt>g</tt> flag to request a match that resumes
 607  *    where the last match left off.  This functionality is provided implicitly
 608  *    by the {@link Matcher} class: Repeated invocations of the {@link
 609  *    Matcher#find find} method will resume where the last match left off,
 610  *    unless the matcher is reset.  </p></li>
 611  *
 612  *    <li><p> In Perl, embedded flags at the top level of an expression affect
 613  *    the whole expression.  In this class, embedded flags always take effect
 614  *    at the point at which they appear, whether they are at the top level or
 615  *    within a group; in the latter case, flags are restored at the end of the
 616  *    group just as in Perl.  </p></li>
 617  *
 618  *    <li><p> Perl is forgiving about malformed matching constructs, as in the
 619  *    expression <tt>*a</tt>, as well as dangling brackets, as in the
 620  *    expression <tt>abc]</tt>, and treats them as literals.  This
 621  *    class also accepts dangling brackets but is strict about dangling
 622  *    metacharacters like +, ? and *, and will throw a
 623  *    {@link PatternSyntaxException} if it encounters them. </p></li>
 624  *
 625  * </ul>
 626  *
 627  *
 628  * <p> For a more precise description of the behavior of regular expression
 629  * constructs, please see <a href="http://www.oreilly.com/catalog/regex3/">
 630  * <i>Mastering Regular Expressions, 3nd Edition</i>, Jeffrey E. F. Friedl,
 631  * O'Reilly and Associates, 2006.</a>
 632  * </p>
 633  *
 634  * @see java.lang.String#split(String, int)
 635  * @see java.lang.String#split(String)
 636  *
 637  * @author      Mike McCloskey
 638  * @author      Mark Reinhold
 639  * @author      JSR-51 Expert Group
 640  * @since       1.4
 641  * @spec        JSR-51
 642  */
 643 
 644 public final class Pattern
 645     implements java.io.Serializable
 646 {
 647 
 648     /**
 649      * Regular expression modifier values.  Instead of being passed as
 650      * arguments, they can also be passed as inline modifiers.
 651      * For example, the following statements have the same effect.
 652      * <pre>
 653      * RegExp r1 = RegExp.compile("abc", Pattern.I|Pattern.M);
 654      * RegExp r2 = RegExp.compile("(?im)abc", 0);
 655      * </pre>
 656      *
 657      * The flags are duplicated so that the familiar Perl match flag
 658      * names are available.
 659      */
 660 
 661     /**
 662      * Enables Unix lines mode.
 663      *
 664      * <p> In this mode, only the <tt>'\n'</tt> line terminator is recognized
 665      * in the behavior of <tt>.</tt>, <tt>^</tt>, and <tt>$</tt>.
 666      *
 667      * <p> Unix lines mode can also be enabled via the embedded flag
 668      * expression&nbsp;<tt>(?d)</tt>.
 669      */
 670     public static final int UNIX_LINES = 0x01;
 671 
 672     /**
 673      * Enables case-insensitive matching.
 674      *
 675      * <p> By default, case-insensitive matching assumes that only characters
 676      * in the US-ASCII charset are being matched.  Unicode-aware
 677      * case-insensitive matching can be enabled by specifying the {@link
 678      * #UNICODE_CASE} flag in conjunction with this flag.
 679      *
 680      * <p> Case-insensitive matching can also be enabled via the embedded flag
 681      * expression&nbsp;<tt>(?i)</tt>.
 682      *
 683      * <p> Specifying this flag may impose a slight performance penalty.  </p>
 684      */
 685     public static final int CASE_INSENSITIVE = 0x02;
 686 
 687     /**
 688      * Permits whitespace and comments in pattern.
 689      *
 690      * <p> In this mode, whitespace is ignored, and embedded comments starting
 691      * with <tt>#</tt> are ignored until the end of a line.
 692      *
 693      * <p> Comments mode can also be enabled via the embedded flag
 694      * expression&nbsp;<tt>(?x)</tt>.
 695      */
 696     public static final int COMMENTS = 0x04;
 697 
 698     /**
 699      * Enables multiline mode.
 700      *
 701      * <p> In multiline mode the expressions <tt>^</tt> and <tt>$</tt> match
 702      * just after or just before, respectively, a line terminator or the end of
 703      * the input sequence.  By default these expressions only match at the
 704      * beginning and the end of the entire input sequence.
 705      *
 706      * <p> Multiline mode can also be enabled via the embedded flag
 707      * expression&nbsp;<tt>(?m)</tt>.  </p>
 708      */
 709     public static final int MULTILINE = 0x08;
 710 
 711     /**
 712      * Enables literal parsing of the pattern.
 713      *
 714      * <p> When this flag is specified then the input string that specifies
 715      * the pattern is treated as a sequence of literal characters.
 716      * Metacharacters or escape sequences in the input sequence will be
 717      * given no special meaning.
 718      *
 719      * <p>The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on
 720      * matching when used in conjunction with this flag. The other flags
 721      * become superfluous.
 722      *
 723      * <p> There is no embedded flag character for enabling literal parsing.
 724      * @since 1.5
 725      */
 726     public static final int LITERAL = 0x10;
 727 
 728     /**
 729      * Enables dotall mode.
 730      *
 731      * <p> In dotall mode, the expression <tt>.</tt> matches any character,
 732      * including a line terminator.  By default this expression does not match
 733      * line terminators.
 734      *
 735      * <p> Dotall mode can also be enabled via the embedded flag
 736      * expression&nbsp;<tt>(?s)</tt>.  (The <tt>s</tt> is a mnemonic for
 737      * "single-line" mode, which is what this is called in Perl.)  </p>
 738      */
 739     public static final int DOTALL = 0x20;
 740 
 741     /**
 742      * Enables Unicode-aware case folding.
 743      *
 744      * <p> When this flag is specified then case-insensitive matching, when
 745      * enabled by the {@link #CASE_INSENSITIVE} flag, is done in a manner
 746      * consistent with the Unicode Standard.  By default, case-insensitive
 747      * matching assumes that only characters in the US-ASCII charset are being
 748      * matched.
 749      *
 750      * <p> Unicode-aware case folding can also be enabled via the embedded flag
 751      * expression&nbsp;<tt>(?u)</tt>.
 752      *
 753      * <p> Specifying this flag may impose a performance penalty.  </p>
 754      */
 755     public static final int UNICODE_CASE = 0x40;
 756 
 757     /**
 758      * Enables canonical equivalence.
 759      *
 760      * <p> When this flag is specified then two characters will be considered
 761      * to match if, and only if, their full canonical decompositions match.
 762      * The expression <tt>"a&#92;u030A"</tt>, for example, will match the
 763      * string <tt>"&#92;u00E5"</tt> when this flag is specified.  By default,
 764      * matching does not take canonical equivalence into account.
 765      *
 766      * <p> There is no embedded flag character for enabling canonical
 767      * equivalence.
 768      *
 769      * <p> Specifying this flag may impose a performance penalty.  </p>
 770      */
 771     public static final int CANON_EQ = 0x80;
 772 
 773     /* Pattern has only two serialized components: The pattern string
 774      * and the flags, which are all that is needed to recompile the pattern
 775      * when it is deserialized.
 776      */
 777 
 778     /** use serialVersionUID from Merlin b59 for interoperability */
 779     private static final long serialVersionUID = 5073258162644648461L;
 780 
 781     /**
 782      * The original regular-expression pattern string.
 783      *
 784      * @serial
 785      */
 786     private String pattern;
 787 
 788     /**
 789      * The original pattern flags.
 790      *
 791      * @serial
 792      */
 793     private int flags;
 794 
 795     /**
 796      * Boolean indicating this Pattern is compiled; this is necessary in order
 797      * to lazily compile deserialized Patterns.
 798      */
 799     private transient volatile boolean compiled = false;
 800 
 801     /**
 802      * The normalized pattern string.
 803      */
 804     private transient String normalizedPattern;
 805 
 806     /**
 807      * The starting point of state machine for the find operation.  This allows
 808      * a match to start anywhere in the input.
 809      */
 810     transient Node root;
 811 
 812     /**
 813      * The root of object tree for a match operation.  The pattern is matched
 814      * at the beginning.  This may include a find that uses BnM or a First
 815      * node.
 816      */
 817     transient Node matchRoot;
 818 
 819     /**
 820      * Temporary storage used by parsing pattern slice.
 821      */
 822     transient int[] buffer;
 823 
 824     /**
 825      * Map the "name" of the "named capturing group" to its group id
 826      * node.
 827      */
 828     transient volatile Map<String, Integer> namedGroups;
 829 
 830     /**
 831      * Temporary storage used while parsing group references.
 832      */
 833     transient GroupHead[] groupNodes;
 834 
 835     /**
 836      * Temporary null terminated code point array used by pattern compiling.
 837      */
 838     private transient int[] temp;
 839 
 840     /**
 841      * The number of capturing groups in this Pattern. Used by matchers to
 842      * allocate storage needed to perform a match.
 843      */
 844     transient int capturingGroupCount;
 845 
 846     /**
 847      * The local variable count used by parsing tree. Used by matchers to
 848      * allocate storage needed to perform a match.
 849      */
 850     transient int localCount;
 851 
 852     /**
 853      * Index into the pattern string that keeps track of how much has been
 854      * parsed.
 855      */
 856     private transient int cursor;
 857 
 858     /**
 859      * Holds the length of the pattern string.
 860      */
 861     private transient int patternLength;
 862 
 863     /**
 864      * If the Start node might possibly match supplementary characters.
 865      * It is set to true during compiling if
 866      * (1) There is supplementary char in pattern, or
 867      * (2) There is complement node of Category or Block
 868      */
 869     private transient boolean hasSupplementary;
 870 
 871     /**
 872      * Compiles the given regular expression into a pattern.  </p>
 873      *
 874      * @param  regex
 875      *         The expression to be compiled
 876      *
 877      * @throws  PatternSyntaxException
 878      *          If the expression's syntax is invalid
 879      */
 880     public static Pattern compile(String regex) {
 881         return new Pattern(regex, 0);
 882     }
 883 
 884     /**
 885      * Compiles the given regular expression into a pattern with the given
 886      * flags.  </p>
 887      *
 888      * @param  regex
 889      *         The expression to be compiled
 890      *
 891      * @param  flags
 892      *         Match flags, a bit mask that may include
 893      *         {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL},
 894      *         {@link #UNICODE_CASE}, {@link #CANON_EQ}, {@link #UNIX_LINES},
 895      *         {@link #LITERAL} and {@link #COMMENTS}
 896      *
 897      * @throws  IllegalArgumentException
 898      *          If bit values other than those corresponding to the defined
 899      *          match flags are set in <tt>flags</tt>
 900      *
 901      * @throws  PatternSyntaxException
 902      *          If the expression's syntax is invalid
 903      */
 904     public static Pattern compile(String regex, int flags) {
 905         return new Pattern(regex, flags);
 906     }
 907 
 908     /**
 909      * Returns the regular expression from which this pattern was compiled.
 910      * </p>
 911      *
 912      * @return  The source of this pattern
 913      */
 914     public String pattern() {
 915         return pattern;
 916     }
 917 
 918     /**
 919      * <p>Returns the string representation of this pattern. This
 920      * is the regular expression from which this pattern was
 921      * compiled.</p>
 922      *
 923      * @return  The string representation of this pattern
 924      * @since 1.5
 925      */
 926     public String toString() {
 927         return pattern;
 928     }
 929 
 930     /**
 931      * Creates a matcher that will match the given input against this pattern.
 932      * </p>
 933      *
 934      * @param  input
 935      *         The character sequence to be matched
 936      *
 937      * @return  A new matcher for this pattern
 938      */
 939     public Matcher matcher(CharSequence input) {
 940         if (!compiled) {
 941             synchronized(this) {
 942                 if (!compiled)
 943                     compile();
 944             }
 945         }
 946         Matcher m = new Matcher(this, input);
 947         return m;
 948     }
 949 
 950     /**
 951      * Returns this pattern's match flags.  </p>
 952      *
 953      * @return  The match flags specified when this pattern was compiled
 954      */
 955     public int flags() {
 956         return flags;
 957     }
 958 
 959     /**
 960      * Compiles the given regular expression and attempts to match the given
 961      * input against it.
 962      *
 963      * <p> An invocation of this convenience method of the form
 964      *
 965      * <blockquote><pre>
 966      * Pattern.matches(regex, input);</pre></blockquote>
 967      *
 968      * behaves in exactly the same way as the expression
 969      *
 970      * <blockquote><pre>
 971      * Pattern.compile(regex).matcher(input).matches()</pre></blockquote>
 972      *
 973      * <p> If a pattern is to be used multiple times, compiling it once and reusing
 974      * it will be more efficient than invoking this method each time.  </p>
 975      *
 976      * @param  regex
 977      *         The expression to be compiled
 978      *
 979      * @param  input
 980      *         The character sequence to be matched
 981      *
 982      * @throws  PatternSyntaxException
 983      *          If the expression's syntax is invalid
 984      */
 985     public static boolean matches(String regex, CharSequence input) {
 986         Pattern p = Pattern.compile(regex);
 987         Matcher m = p.matcher(input);
 988         return m.matches();
 989     }
 990 
 991     /**
 992      * Splits the given input sequence around matches of this pattern.
 993      *
 994      * <p> The array returned by this method contains each substring of the
 995      * input sequence that is terminated by another subsequence that matches
 996      * this pattern or is terminated by the end of the input sequence.  The
 997      * substrings in the array are in the order in which they occur in the
 998      * input.  If this pattern does not match any subsequence of the input then
 999      * the resulting array has just one element, namely the input sequence in
1000      * string form.
1001      *
1002      * <p> The <tt>limit</tt> parameter controls the number of times the
1003      * pattern is applied and therefore affects the length of the resulting
1004      * array.  If the limit <i>n</i> is greater than zero then the pattern
1005      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
1006      * length will be no greater than <i>n</i>, and the array's last entry
1007      * will contain all input beyond the last matched delimiter.  If <i>n</i>
1008      * is non-positive then the pattern will be applied as many times as
1009      * possible and the array can have any length.  If <i>n</i> is zero then
1010      * the pattern will be applied as many times as possible, the array can
1011      * have any length, and trailing empty strings will be discarded.
1012      *
1013      * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
1014      * results with these parameters:
1015      *
1016      * <blockquote><table cellpadding=1 cellspacing=0
1017      *              summary="Split examples showing regex, limit, and result">
1018      * <tr><th><P align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1019      *     <th><P align="left"><i>Limit&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1020      *     <th><P align="left"><i>Result&nbsp;&nbsp;&nbsp;&nbsp;</i></th></tr>
1021      * <tr><td align=center>:</td>
1022      *     <td align=center>2</td>
1023      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
1024      * <tr><td align=center>:</td>
1025      *     <td align=center>5</td>
1026      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
1027      * <tr><td align=center>:</td>
1028      *     <td align=center>-2</td>
1029      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
1030      * <tr><td align=center>o</td>
1031      *     <td align=center>5</td>
1032      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
1033      * <tr><td align=center>o</td>
1034      *     <td align=center>-2</td>
1035      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
1036      * <tr><td align=center>o</td>
1037      *     <td align=center>0</td>
1038      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
1039      * </table></blockquote>
1040      *
1041      *
1042      * @param  input
1043      *         The character sequence to be split
1044      *
1045      * @param  limit
1046      *         The result threshold, as described above
1047      *
1048      * @return  The array of strings computed by splitting the input
1049      *          around matches of this pattern
1050      */
1051     public String[] split(CharSequence input, int limit) {
1052         int index = 0;
1053         boolean matchLimited = limit > 0;
1054         ArrayList<String> matchList = new ArrayList<String>();
1055         Matcher m = matcher(input);
1056 
1057         // Add segments before each match found
1058         while(m.find()) {
1059             if (!matchLimited || matchList.size() < limit - 1) {
1060                 String match = input.subSequence(index, m.start()).toString();
1061                 matchList.add(match);
1062                 index = m.end();
1063             } else if (matchList.size() == limit - 1) { // last one
1064                 String match = input.subSequence(index,
1065                                                  input.length()).toString();
1066                 matchList.add(match);
1067                 index = m.end();
1068             }
1069         }
1070 
1071         // If no match was found, return this
1072         if (index == 0)
1073             return new String[] {input.toString()};
1074 
1075         // Add remaining segment
1076         if (!matchLimited || matchList.size() < limit)
1077             matchList.add(input.subSequence(index, input.length()).toString());
1078 
1079         // Construct result
1080         int resultSize = matchList.size();
1081         if (limit == 0)
1082             while (resultSize > 0 && matchList.get(resultSize-1).equals(""))
1083                 resultSize--;
1084         String[] result = new String[resultSize];
1085         return matchList.subList(0, resultSize).toArray(result);
1086     }
1087 
1088     /**
1089      * Splits the given input sequence around matches of this pattern.
1090      *
1091      * <p> This method works as if by invoking the two-argument {@link
1092      * #split(java.lang.CharSequence, int) split} method with the given input
1093      * sequence and a limit argument of zero.  Trailing empty strings are
1094      * therefore not included in the resulting array. </p>
1095      *
1096      * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
1097      * results with these expressions:
1098      *
1099      * <blockquote><table cellpadding=1 cellspacing=0
1100      *              summary="Split examples showing regex and result">
1101      * <tr><th><P align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1102      *     <th><P align="left"><i>Result</i></th></tr>
1103      * <tr><td align=center>:</td>
1104      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
1105      * <tr><td align=center>o</td>
1106      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
1107      * </table></blockquote>
1108      *
1109      *
1110      * @param  input
1111      *         The character sequence to be split
1112      *
1113      * @return  The array of strings computed by splitting the input
1114      *          around matches of this pattern
1115      */
1116     public String[] split(CharSequence input) {
1117         return split(input, 0);
1118     }
1119 
1120     /**
1121      * Returns a literal pattern <code>String</code> for the specified
1122      * <code>String</code>.
1123      *
1124      * <p>This method produces a <code>String</code> that can be used to
1125      * create a <code>Pattern</code> that would match the string
1126      * <code>s</code> as if it were a literal pattern.</p> Metacharacters
1127      * or escape sequences in the input sequence will be given no special
1128      * meaning.
1129      *
1130      * @param  s The string to be literalized
1131      * @return  A literal string replacement
1132      * @since 1.5
1133      */
1134     public static String quote(String s) {
1135         int slashEIndex = s.indexOf("\\E");
1136         if (slashEIndex == -1)
1137             return "\\Q" + s + "\\E";
1138 
1139         StringBuilder sb = new StringBuilder(s.length() * 2);
1140         sb.append("\\Q");
1141         slashEIndex = 0;
1142         int current = 0;
1143         while ((slashEIndex = s.indexOf("\\E", current)) != -1) {
1144             sb.append(s.substring(current, slashEIndex));
1145             current = slashEIndex + 2;
1146             sb.append("\\E\\\\E\\Q");
1147         }
1148         sb.append(s.substring(current, s.length()));
1149         sb.append("\\E");
1150         return sb.toString();
1151     }
1152 
1153     /**
1154      * Recompile the Pattern instance from a stream.  The original pattern
1155      * string is read in and the object tree is recompiled from it.
1156      */
1157     private void readObject(java.io.ObjectInputStream s)
1158         throws java.io.IOException, ClassNotFoundException {
1159 
1160         // Read in all fields
1161         s.defaultReadObject();
1162 
1163         // Initialize counts
1164         capturingGroupCount = 1;
1165         localCount = 0;
1166 
1167         // if length > 0, the Pattern is lazily compiled
1168         compiled = false;
1169         if (pattern.length() == 0) {
1170             root = new Start(lastAccept);
1171             matchRoot = lastAccept;
1172             compiled = true;
1173         }
1174     }
1175 
1176     /**
1177      * This private constructor is used to create all Patterns. The pattern
1178      * string and match flags are all that is needed to completely describe
1179      * a Pattern. An empty pattern string results in an object tree with
1180      * only a Start node and a LastNode node.
1181      */
1182     private Pattern(String p, int f) {
1183         pattern = p;
1184         flags = f;
1185 
1186         // Reset group index count
1187         capturingGroupCount = 1;
1188         localCount = 0;
1189 
1190         if (pattern.length() > 0) {
1191             compile();
1192         } else {
1193             root = new Start(lastAccept);
1194             matchRoot = lastAccept;
1195         }
1196     }
1197 
1198     /**
1199      * The pattern is converted to normalizedD form and then a pure group
1200      * is constructed to match canonical equivalences of the characters.
1201      */
1202     private void normalize() {
1203         boolean inCharClass = false;
1204         int lastCodePoint = -1;
1205 
1206         // Convert pattern into normalizedD form
1207         normalizedPattern = Normalizer.normalize(pattern, Normalizer.Form.NFD);
1208         patternLength = normalizedPattern.length();
1209 
1210         // Modify pattern to match canonical equivalences
1211         StringBuilder newPattern = new StringBuilder(patternLength);
1212         for(int i=0; i<patternLength; ) {
1213             int c = normalizedPattern.codePointAt(i);
1214             StringBuilder sequenceBuffer;
1215             if ((Character.getType(c) == Character.NON_SPACING_MARK)
1216                 && (lastCodePoint != -1)) {
1217                 sequenceBuffer = new StringBuilder();
1218                 sequenceBuffer.appendCodePoint(lastCodePoint);
1219                 sequenceBuffer.appendCodePoint(c);
1220                 while(Character.getType(c) == Character.NON_SPACING_MARK) {
1221                     i += Character.charCount(c);
1222                     if (i >= patternLength)
1223                         break;
1224                     c = normalizedPattern.codePointAt(i);
1225                     sequenceBuffer.appendCodePoint(c);
1226                 }
1227                 String ea = produceEquivalentAlternation(
1228                                                sequenceBuffer.toString());
1229                 newPattern.setLength(newPattern.length()-Character.charCount(lastCodePoint));
1230                 newPattern.append("(?:").append(ea).append(")");
1231             } else if (c == '[' && lastCodePoint != '\\') {
1232                 i = normalizeCharClass(newPattern, i);
1233             } else {
1234                 newPattern.appendCodePoint(c);
1235             }
1236             lastCodePoint = c;
1237             i += Character.charCount(c);
1238         }
1239         normalizedPattern = newPattern.toString();
1240     }
1241 
1242     /**
1243      * Complete the character class being parsed and add a set
1244      * of alternations to it that will match the canonical equivalences
1245      * of the characters within the class.
1246      */
1247     private int normalizeCharClass(StringBuilder newPattern, int i) {
1248         StringBuilder charClass = new StringBuilder();
1249         StringBuilder eq = null;
1250         int lastCodePoint = -1;
1251         String result;
1252 
1253         i++;
1254         charClass.append("[");
1255         while(true) {
1256             int c = normalizedPattern.codePointAt(i);
1257             StringBuilder sequenceBuffer;
1258 
1259             if (c == ']' && lastCodePoint != '\\') {
1260                 charClass.append((char)c);
1261                 break;
1262             } else if (Character.getType(c) == Character.NON_SPACING_MARK) {
1263                 sequenceBuffer = new StringBuilder();
1264                 sequenceBuffer.appendCodePoint(lastCodePoint);
1265                 while(Character.getType(c) == Character.NON_SPACING_MARK) {
1266                     sequenceBuffer.appendCodePoint(c);
1267                     i += Character.charCount(c);
1268                     if (i >= normalizedPattern.length())
1269                         break;
1270                     c = normalizedPattern.codePointAt(i);
1271                 }
1272                 String ea = produceEquivalentAlternation(
1273                                                   sequenceBuffer.toString());
1274 
1275                 charClass.setLength(charClass.length()-Character.charCount(lastCodePoint));
1276                 if (eq == null)
1277                     eq = new StringBuilder();
1278                 eq.append('|');
1279                 eq.append(ea);
1280             } else {
1281                 charClass.appendCodePoint(c);
1282                 i++;
1283             }
1284             if (i == normalizedPattern.length())
1285                 throw error("Unclosed character class");
1286             lastCodePoint = c;
1287         }
1288 
1289         if (eq != null) {
1290             result = "(?:"+charClass.toString()+eq.toString()+")";
1291         } else {
1292             result = charClass.toString();
1293         }
1294 
1295         newPattern.append(result);
1296         return i;
1297     }
1298 
1299     /**
1300      * Given a specific sequence composed of a regular character and
1301      * combining marks that follow it, produce the alternation that will
1302      * match all canonical equivalences of that sequence.
1303      */
1304     private String produceEquivalentAlternation(String source) {
1305         int len = countChars(source, 0, 1);
1306         if (source.length() == len)
1307             // source has one character.
1308             return source;
1309 
1310         String base = source.substring(0,len);
1311         String combiningMarks = source.substring(len);
1312 
1313         String[] perms = producePermutations(combiningMarks);
1314         StringBuilder result = new StringBuilder(source);
1315 
1316         // Add combined permutations
1317         for(int x=0; x<perms.length; x++) {
1318             String next = base + perms[x];
1319             if (x>0)
1320                 result.append("|"+next);
1321             next = composeOneStep(next);
1322             if (next != null)
1323                 result.append("|"+produceEquivalentAlternation(next));
1324         }
1325         return result.toString();
1326     }
1327 
1328     /**
1329      * Returns an array of strings that have all the possible
1330      * permutations of the characters in the input string.
1331      * This is used to get a list of all possible orderings
1332      * of a set of combining marks. Note that some of the permutations
1333      * are invalid because of combining class collisions, and these
1334      * possibilities must be removed because they are not canonically
1335      * equivalent.
1336      */
1337     private String[] producePermutations(String input) {
1338         if (input.length() == countChars(input, 0, 1))
1339             return new String[] {input};
1340 
1341         if (input.length() == countChars(input, 0, 2)) {
1342             int c0 = Character.codePointAt(input, 0);
1343             int c1 = Character.codePointAt(input, Character.charCount(c0));
1344             if (getClass(c1) == getClass(c0)) {
1345                 return new String[] {input};
1346             }
1347             String[] result = new String[2];
1348             result[0] = input;
1349             StringBuilder sb = new StringBuilder(2);
1350             sb.appendCodePoint(c1);
1351             sb.appendCodePoint(c0);
1352             result[1] = sb.toString();
1353             return result;
1354         }
1355 
1356         int length = 1;
1357         int nCodePoints = countCodePoints(input);
1358         for(int x=1; x<nCodePoints; x++)
1359             length = length * (x+1);
1360 
1361         String[] temp = new String[length];
1362 
1363         int combClass[] = new int[nCodePoints];
1364         for(int x=0, i=0; x<nCodePoints; x++) {
1365             int c = Character.codePointAt(input, i);
1366             combClass[x] = getClass(c);
1367             i +=  Character.charCount(c);
1368         }
1369 
1370         // For each char, take it out and add the permutations
1371         // of the remaining chars
1372         int index = 0;
1373         int len;
1374         // offset maintains the index in code units.
1375 loop:   for(int x=0, offset=0; x<nCodePoints; x++, offset+=len) {
1376             len = countChars(input, offset, 1);
1377             boolean skip = false;
1378             for(int y=x-1; y>=0; y--) {
1379                 if (combClass[y] == combClass[x]) {
1380                     continue loop;
1381                 }
1382             }
1383             StringBuilder sb = new StringBuilder(input);
1384             String otherChars = sb.delete(offset, offset+len).toString();
1385             String[] subResult = producePermutations(otherChars);
1386 
1387             String prefix = input.substring(offset, offset+len);
1388             for(int y=0; y<subResult.length; y++)
1389                 temp[index++] =  prefix + subResult[y];
1390         }
1391         String[] result = new String[index];
1392         for (int x=0; x<index; x++)
1393             result[x] = temp[x];
1394         return result;
1395     }
1396 
1397     private int getClass(int c) {
1398         return sun.text.Normalizer.getCombiningClass(c);
1399     }
1400 
1401     /**
1402      * Attempts to compose input by combining the first character
1403      * with the first combining mark following it. Returns a String
1404      * that is the composition of the leading character with its first
1405      * combining mark followed by the remaining combining marks. Returns
1406      * null if the first two characters cannot be further composed.
1407      */
1408     private String composeOneStep(String input) {
1409         int len = countChars(input, 0, 2);
1410         String firstTwoCharacters = input.substring(0, len);
1411         String result = Normalizer.normalize(firstTwoCharacters, Normalizer.Form.NFC);
1412 
1413         if (result.equals(firstTwoCharacters))
1414             return null;
1415         else {
1416             String remainder = input.substring(len);
1417             return result + remainder;
1418         }
1419     }
1420 
1421     /**
1422      * Preprocess any \Q...\E sequences in `temp', meta-quoting them.
1423      * See the description of `quotemeta' in perlfunc(1).
1424      */
1425     private void RemoveQEQuoting() {
1426         final int pLen = patternLength;
1427         int i = 0;
1428         while (i < pLen-1) {
1429             if (temp[i] != '\\')
1430                 i += 1;
1431             else if (temp[i + 1] != 'Q')
1432                 i += 2;
1433             else
1434                 break;
1435         }
1436         if (i >= pLen - 1)    // No \Q sequence found
1437             return;
1438         int j = i;
1439         i += 2;
1440         int[] newtemp = new int[j + 2*(pLen-i) + 2];
1441         System.arraycopy(temp, 0, newtemp, 0, j);
1442 
1443         boolean inQuote = true;
1444         while (i < pLen) {
1445             int c = temp[i++];
1446             if (! ASCII.isAscii(c) || ASCII.isAlnum(c)) {
1447                 newtemp[j++] = c;
1448             } else if (c != '\\') {
1449                 if (inQuote) newtemp[j++] = '\\';
1450                 newtemp[j++] = c;
1451             } else if (inQuote) {
1452                 if (temp[i] == 'E') {
1453                     i++;
1454                     inQuote = false;
1455                 } else {
1456                     newtemp[j++] = '\\';
1457                     newtemp[j++] = '\\';
1458                 }
1459             } else {
1460                 if (temp[i] == 'Q') {
1461                     i++;
1462                     inQuote = true;
1463                 } else {
1464                     newtemp[j++] = c;
1465                     if (i != pLen)
1466                         newtemp[j++] = temp[i++];
1467                 }
1468             }
1469         }
1470 
1471         patternLength = j;
1472         temp = Arrays.copyOf(newtemp, j + 2); // double zero termination
1473     }
1474 
1475     /**
1476      * Copies regular expression to an int array and invokes the parsing
1477      * of the expression which will create the object tree.
1478      */
1479     private void compile() {
1480         // Handle canonical equivalences
1481         if (has(CANON_EQ) && !has(LITERAL)) {
1482             normalize();
1483         } else {
1484             normalizedPattern = pattern;
1485         }
1486         patternLength = normalizedPattern.length();
1487 
1488         // Copy pattern to int array for convenience
1489         // Use double zero to terminate pattern
1490         temp = new int[patternLength + 2];
1491 
1492         hasSupplementary = false;
1493         int c, count = 0;
1494         // Convert all chars into code points
1495         for (int x = 0; x < patternLength; x += Character.charCount(c)) {
1496             c = normalizedPattern.codePointAt(x);
1497             if (isSupplementary(c)) {
1498                 hasSupplementary = true;
1499             }
1500             temp[count++] = c;
1501         }
1502 
1503         patternLength = count;   // patternLength now in code points
1504 
1505         if (! has(LITERAL))
1506             RemoveQEQuoting();
1507 
1508         // Allocate all temporary objects here.
1509         buffer = new int[32];
1510         groupNodes = new GroupHead[10];
1511         namedGroups = null;
1512 
1513         if (has(LITERAL)) {
1514             // Literal pattern handling
1515             matchRoot = newSlice(temp, patternLength, hasSupplementary);
1516             matchRoot.next = lastAccept;
1517         } else {
1518             // Start recursive descent parsing
1519             matchRoot = expr(lastAccept);
1520             // Check extra pattern characters
1521             if (patternLength != cursor) {
1522                 if (peek() == ')') {
1523                     throw error("Unmatched closing ')'");
1524                 } else {
1525                     throw error("Unexpected internal error");
1526                 }
1527             }
1528         }
1529 
1530         // Peephole optimization
1531         if (matchRoot instanceof Slice) {
1532             root = BnM.optimize(matchRoot);
1533             if (root == matchRoot) {
1534                 root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1535             }
1536         } else if (matchRoot instanceof Begin || matchRoot instanceof First) {
1537             root = matchRoot;
1538         } else {
1539             root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1540         }
1541 
1542         // Release temporary storage
1543         temp = null;
1544         buffer = null;
1545         groupNodes = null;
1546         patternLength = 0;
1547         compiled = true;
1548     }
1549 
1550     Map<String, Integer> namedGroups() {
1551         if (namedGroups == null)
1552             namedGroups = new HashMap<String, Integer>(2);
1553         return namedGroups;
1554     }
1555 
1556     /**
1557      * Used to print out a subtree of the Pattern to help with debugging.
1558      */
1559     private static void printObjectTree(Node node) {
1560         while(node != null) {
1561             if (node instanceof Prolog) {
1562                 System.out.println(node);
1563                 printObjectTree(((Prolog)node).loop);
1564                 System.out.println("**** end contents prolog loop");
1565             } else if (node instanceof Loop) {
1566                 System.out.println(node);
1567                 printObjectTree(((Loop)node).body);
1568                 System.out.println("**** end contents Loop body");
1569             } else if (node instanceof Curly) {
1570                 System.out.println(node);
1571                 printObjectTree(((Curly)node).atom);
1572                 System.out.println("**** end contents Curly body");
1573             } else if (node instanceof GroupCurly) {
1574                 System.out.println(node);
1575                 printObjectTree(((GroupCurly)node).atom);
1576                 System.out.println("**** end contents GroupCurly body");
1577             } else if (node instanceof GroupTail) {
1578                 System.out.println(node);
1579                 System.out.println("Tail next is "+node.next);
1580                 return;
1581             } else {
1582                 System.out.println(node);
1583             }
1584             node = node.next;
1585             if (node != null)
1586                 System.out.println("->next:");
1587             if (node == Pattern.accept) {
1588                 System.out.println("Accept Node");
1589                 node = null;
1590             }
1591        }
1592     }
1593 
1594     /**
1595      * Used to accumulate information about a subtree of the object graph
1596      * so that optimizations can be applied to the subtree.
1597      */
1598     static final class TreeInfo {
1599         int minLength;
1600         int maxLength;
1601         boolean maxValid;
1602         boolean deterministic;
1603 
1604         TreeInfo() {
1605             reset();
1606         }
1607         void reset() {
1608             minLength = 0;
1609             maxLength = 0;
1610             maxValid = true;
1611             deterministic = true;
1612         }
1613     }
1614 
1615     /*
1616      * The following private methods are mainly used to improve the
1617      * readability of the code. In order to let the Java compiler easily
1618      * inline them, we should not put many assertions or error checks in them.
1619      */
1620 
1621     /**
1622      * Indicates whether a particular flag is set or not.
1623      */
1624     private boolean has(int f) {
1625         return (flags & f) != 0;
1626     }
1627 
1628     /**
1629      * Match next character, signal error if failed.
1630      */
1631     private void accept(int ch, String s) {
1632         int testChar = temp[cursor++];
1633         if (has(COMMENTS))
1634             testChar = parsePastWhitespace(testChar);
1635         if (ch != testChar) {
1636             throw error(s);
1637         }
1638     }
1639 
1640     /**
1641      * Mark the end of pattern with a specific character.
1642      */
1643     private void mark(int c) {
1644         temp[patternLength] = c;
1645     }
1646 
1647     /**
1648      * Peek the next character, and do not advance the cursor.
1649      */
1650     private int peek() {
1651         int ch = temp[cursor];
1652         if (has(COMMENTS))
1653             ch = peekPastWhitespace(ch);
1654         return ch;
1655     }
1656 
1657     /**
1658      * Read the next character, and advance the cursor by one.
1659      */
1660     private int read() {
1661         int ch = temp[cursor++];
1662         if (has(COMMENTS))
1663             ch = parsePastWhitespace(ch);
1664         return ch;
1665     }
1666 
1667     /**
1668      * Read the next character, and advance the cursor by one,
1669      * ignoring the COMMENTS setting
1670      */
1671     private int readEscaped() {
1672         int ch = temp[cursor++];
1673         return ch;
1674     }
1675 
1676     /**
1677      * Advance the cursor by one, and peek the next character.
1678      */
1679     private int next() {
1680         int ch = temp[++cursor];
1681         if (has(COMMENTS))
1682             ch = peekPastWhitespace(ch);
1683         return ch;
1684     }
1685 
1686     /**
1687      * Advance the cursor by one, and peek the next character,
1688      * ignoring the COMMENTS setting
1689      */
1690     private int nextEscaped() {
1691         int ch = temp[++cursor];
1692         return ch;
1693     }
1694 
1695     /**
1696      * If in xmode peek past whitespace and comments.
1697      */
1698     private int peekPastWhitespace(int ch) {
1699         while (ASCII.isSpace(ch) || ch == '#') {
1700             while (ASCII.isSpace(ch))
1701                 ch = temp[++cursor];
1702             if (ch == '#') {
1703                 ch = peekPastLine();
1704             }
1705         }
1706         return ch;
1707     }
1708 
1709     /**
1710      * If in xmode parse past whitespace and comments.
1711      */
1712     private int parsePastWhitespace(int ch) {
1713         while (ASCII.isSpace(ch) || ch == '#') {
1714             while (ASCII.isSpace(ch))
1715                 ch = temp[cursor++];
1716             if (ch == '#')
1717                 ch = parsePastLine();
1718         }
1719         return ch;
1720     }
1721 
1722     /**
1723      * xmode parse past comment to end of line.
1724      */
1725     private int parsePastLine() {
1726         int ch = temp[cursor++];
1727         while (ch != 0 && !isLineSeparator(ch))
1728             ch = temp[cursor++];
1729         return ch;
1730     }
1731 
1732     /**
1733      * xmode peek past comment to end of line.
1734      */
1735     private int peekPastLine() {
1736         int ch = temp[++cursor];
1737         while (ch != 0 && !isLineSeparator(ch))
1738             ch = temp[++cursor];
1739         return ch;
1740     }
1741 
1742     /**
1743      * Determines if character is a line separator in the current mode
1744      */
1745     private boolean isLineSeparator(int ch) {
1746         if (has(UNIX_LINES)) {
1747             return ch == '\n';
1748         } else {
1749             return (ch == '\n' ||
1750                     ch == '\r' ||
1751                     (ch|1) == '\u2029' ||
1752                     ch == '\u0085');
1753         }
1754     }
1755 
1756     /**
1757      * Read the character after the next one, and advance the cursor by two.
1758      */
1759     private int skip() {
1760         int i = cursor;
1761         int ch = temp[i+1];
1762         cursor = i + 2;
1763         return ch;
1764     }
1765 
1766     /**
1767      * Unread one next character, and retreat cursor by one.
1768      */
1769     private void unread() {
1770         cursor--;
1771     }
1772 
1773     /**
1774      * Internal method used for handling all syntax errors. The pattern is
1775      * displayed with a pointer to aid in locating the syntax error.
1776      */
1777     private PatternSyntaxException error(String s) {
1778         return new PatternSyntaxException(s, normalizedPattern,  cursor - 1);
1779     }
1780 
1781     /**
1782      * Determines if there is any supplementary character or unpaired
1783      * surrogate in the specified range.
1784      */
1785     private boolean findSupplementary(int start, int end) {
1786         for (int i = start; i < end; i++) {
1787             if (isSupplementary(temp[i]))
1788                 return true;
1789         }
1790         return false;
1791     }
1792 
1793     /**
1794      * Determines if the specified code point is a supplementary
1795      * character or unpaired surrogate.
1796      */
1797     private static final boolean isSupplementary(int ch) {
1798         return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT ||
1799                Character.isSurrogate((char)ch);
1800     }
1801 
1802     /**
1803      *  The following methods handle the main parsing. They are sorted
1804      *  according to their precedence order, the lowest one first.
1805      */
1806 
1807     /**
1808      * The expression is parsed with branch nodes added for alternations.
1809      * This may be called recursively to parse sub expressions that may
1810      * contain alternations.
1811      */
1812     private Node expr(Node end) {
1813         Node prev = null;
1814         Node firstTail = null;
1815         Node branchConn = null;
1816 
1817         for (;;) {
1818             Node node = sequence(end);
1819             Node nodeTail = root;      //double return
1820             if (prev == null) {
1821                 prev = node;
1822                 firstTail = nodeTail;
1823             } else {
1824                 // Branch
1825                 if (branchConn == null) {
1826                     branchConn = new BranchConn();
1827                     branchConn.next = end;
1828                 }
1829                 if (node == end) {
1830                     // if the node returned from sequence() is "end"
1831                     // we have an empty expr, set a null atom into
1832                     // the branch to indicate to go "next" directly.
1833                     node = null;
1834                 } else {
1835                     // the "tail.next" of each atom goes to branchConn
1836                     nodeTail.next = branchConn;
1837                 }
1838                 if (prev instanceof Branch) {
1839                     ((Branch)prev).add(node);
1840                 } else {
1841                     if (prev == end) {
1842                         prev = null;
1843                     } else {
1844                         // replace the "end" with "branchConn" at its tail.next
1845                         // when put the "prev" into the branch as the first atom.
1846                         firstTail.next = branchConn;
1847                     }
1848                     prev = new Branch(prev, node, branchConn);
1849                 }
1850             }
1851             if (peek() != '|') {
1852                 return prev;
1853             }
1854             next();
1855         }
1856     }
1857 
1858     /**
1859      * Parsing of sequences between alternations.
1860      */
1861     private Node sequence(Node end) {
1862         Node head = null;
1863         Node tail = null;
1864         Node node = null;
1865     LOOP:
1866         for (;;) {
1867             int ch = peek();
1868             switch (ch) {
1869             case '(':
1870                 // Because group handles its own closure,
1871                 // we need to treat it differently
1872                 node = group0();
1873                 // Check for comment or flag group
1874                 if (node == null)
1875                     continue;
1876                 if (head == null)
1877                     head = node;
1878                 else
1879                     tail.next = node;
1880                 // Double return: Tail was returned in root
1881                 tail = root;
1882                 continue;
1883             case '[':
1884                 node = clazz(true);
1885                 break;
1886             case '\\':
1887                 ch = nextEscaped();
1888                 if (ch == 'p' || ch == 'P') {
1889                     boolean oneLetter = true;
1890                     boolean comp = (ch == 'P');
1891                     ch = next(); // Consume { if present
1892                     if (ch != '{') {
1893                         unread();
1894                     } else {
1895                         oneLetter = false;
1896                     }
1897                     node = family(oneLetter, comp);
1898                 } else {
1899                     unread();
1900                     node = atom();
1901                 }
1902                 break;
1903             case '^':
1904                 next();
1905                 if (has(MULTILINE)) {
1906                     if (has(UNIX_LINES))
1907                         node = new UnixCaret();
1908                     else
1909                         node = new Caret();
1910                 } else {
1911                     node = new Begin();
1912                 }
1913                 break;
1914             case '$':
1915                 next();
1916                 if (has(UNIX_LINES))
1917                     node = new UnixDollar(has(MULTILINE));
1918                 else
1919                     node = new Dollar(has(MULTILINE));
1920                 break;
1921             case '.':
1922                 next();
1923                 if (has(DOTALL)) {
1924                     node = new All();
1925                 } else {
1926                     if (has(UNIX_LINES))
1927                         node = new UnixDot();
1928                     else {
1929                         node = new Dot();
1930                     }
1931                 }
1932                 break;
1933             case '|':
1934             case ')':
1935                 break LOOP;
1936             case ']': // Now interpreting dangling ] and } as literals
1937             case '}':
1938                 node = atom();
1939                 break;
1940             case '?':
1941             case '*':
1942             case '+':
1943                 next();
1944                 throw error("Dangling meta character '" + ((char)ch) + "'");
1945             case 0:
1946                 if (cursor >= patternLength) {
1947                     break LOOP;
1948                 }
1949                 // Fall through
1950             default:
1951                 node = atom();
1952                 break;
1953             }
1954 
1955             node = closure(node);
1956 
1957             if (head == null) {
1958                 head = tail = node;
1959             } else {
1960                 tail.next = node;
1961                 tail = node;
1962             }
1963         }
1964         if (head == null) {
1965             return end;
1966         }
1967         tail.next = end;
1968         root = tail;      //double return
1969         return head;
1970     }
1971 
1972     /**
1973      * Parse and add a new Single or Slice.
1974      */
1975     private Node atom() {
1976         int first = 0;
1977         int prev = -1;
1978         boolean hasSupplementary = false;
1979         int ch = peek();
1980         for (;;) {
1981             switch (ch) {
1982             case '*':
1983             case '+':
1984             case '?':
1985             case '{':
1986                 if (first > 1) {
1987                     cursor = prev;    // Unwind one character
1988                     first--;
1989                 }
1990                 break;
1991             case '$':
1992             case '.':
1993             case '^':
1994             case '(':
1995             case '[':
1996             case '|':
1997             case ')':
1998                 break;
1999             case '\\':
2000                 ch = nextEscaped();
2001                 if (ch == 'p' || ch == 'P') { // Property
2002                     if (first > 0) { // Slice is waiting; handle it first
2003                         unread();
2004                         break;
2005                     } else { // No slice; just return the family node
2006                         boolean comp = (ch == 'P');
2007                         boolean oneLetter = true;
2008                         ch = next(); // Consume { if present
2009                         if (ch != '{')
2010                             unread();
2011                         else
2012                             oneLetter = false;
2013                         return family(oneLetter, comp);
2014                     }
2015                 }
2016                 unread();
2017                 prev = cursor;
2018                 ch = escape(false, first == 0);
2019                 if (ch >= 0) {
2020                     append(ch, first);
2021                     first++;
2022                     if (isSupplementary(ch)) {
2023                         hasSupplementary = true;
2024                     }
2025                     ch = peek();
2026                     continue;
2027                 } else if (first == 0) {
2028                     return root;
2029                 }
2030                 // Unwind meta escape sequence
2031                 cursor = prev;
2032                 break;
2033             case 0:
2034                 if (cursor >= patternLength) {
2035                     break;
2036                 }
2037                 // Fall through
2038             default:
2039                 prev = cursor;
2040                 append(ch, first);
2041                 first++;
2042                 if (isSupplementary(ch)) {
2043                     hasSupplementary = true;
2044                 }
2045                 ch = next();
2046                 continue;
2047             }
2048             break;
2049         }
2050         if (first == 1) {
2051             return newSingle(buffer[0]);
2052         } else {
2053             return newSlice(buffer, first, hasSupplementary);
2054         }
2055     }
2056 
2057     private void append(int ch, int len) {
2058         if (len >= buffer.length) {
2059             int[] tmp = new int[len+len];
2060             System.arraycopy(buffer, 0, tmp, 0, len);
2061             buffer = tmp;
2062         }
2063         buffer[len] = ch;
2064     }
2065 
2066     /**
2067      * Parses a backref greedily, taking as many numbers as it
2068      * can. The first digit is always treated as a backref, but
2069      * multi digit numbers are only treated as a backref if at
2070      * least that many backrefs exist at this point in the regex.
2071      */
2072     private Node ref(int refNum) {
2073         boolean done = false;
2074         while(!done) {
2075             int ch = peek();
2076             switch(ch) {
2077             case '0':
2078             case '1':
2079             case '2':
2080             case '3':
2081             case '4':
2082             case '5':
2083             case '6':
2084             case '7':
2085             case '8':
2086             case '9':
2087                 int newRefNum = (refNum * 10) + (ch - '0');
2088                 // Add another number if it doesn't make a group
2089                 // that doesn't exist
2090                 if (capturingGroupCount - 1 < newRefNum) {
2091                     done = true;
2092                     break;
2093                 }
2094                 refNum = newRefNum;
2095                 read();
2096                 break;
2097             default:
2098                 done = true;
2099                 break;
2100             }
2101         }
2102         if (has(CASE_INSENSITIVE))
2103             return new CIBackRef(refNum, has(UNICODE_CASE));
2104         else
2105             return new BackRef(refNum);
2106     }
2107 
2108     /**
2109      * Parses an escape sequence to determine the actual value that needs
2110      * to be matched.
2111      * If -1 is returned and create was true a new object was added to the tree
2112      * to handle the escape sequence.
2113      * If the returned value is greater than zero, it is the value that
2114      * matches the escape sequence.
2115      */
2116     private int escape(boolean inclass, boolean create) {
2117         int ch = skip();
2118         switch (ch) {
2119         case '0':
2120             return o();
2121         case '1':
2122         case '2':
2123         case '3':
2124         case '4':
2125         case '5':
2126         case '6':
2127         case '7':
2128         case '8':
2129         case '9':
2130             if (inclass) break;
2131             if (create) {
2132                 root = ref((ch - '0'));
2133             }
2134             return -1;
2135         case 'A':
2136             if (inclass) break;
2137             if (create) root = new Begin();
2138             return -1;
2139         case 'B':
2140             if (inclass) break;
2141             if (create) root = new Bound(Bound.NONE);
2142             return -1;
2143         case 'C':
2144             break;
2145         case 'D':
2146             if (create) root = new Ctype(ASCII.DIGIT).complement();
2147             return -1;
2148         case 'E':
2149         case 'F':
2150             break;
2151         case 'G':
2152             if (inclass) break;
2153             if (create) root = new LastMatch();
2154             return -1;
2155         case 'H':
2156         case 'I':
2157         case 'J':
2158         case 'K':
2159         case 'L':
2160         case 'M':
2161         case 'N':
2162         case 'O':
2163         case 'P':
2164         case 'Q':
2165         case 'R':
2166             break;
2167         case 'S':
2168             if (create) root = new Ctype(ASCII.SPACE).complement();
2169             return -1;
2170         case 'T':
2171         case 'U':
2172         case 'V':
2173             break;
2174         case 'W':
2175             if (create) root = new Ctype(ASCII.WORD).complement();
2176             return -1;
2177         case 'X':
2178         case 'Y':
2179             break;
2180         case 'Z':
2181             if (inclass) break;
2182             if (create) {
2183                 if (has(UNIX_LINES))
2184                     root = new UnixDollar(false);
2185                 else
2186                     root = new Dollar(false);
2187             }
2188             return -1;
2189         case 'a':
2190             return '\007';
2191         case 'b':
2192             if (inclass) break;
2193             if (create) root = new Bound(Bound.BOTH);
2194             return -1;
2195         case 'c':
2196             return c();
2197         case 'd':
2198             if (create) root = new Ctype(ASCII.DIGIT);
2199             return -1;
2200         case 'e':
2201             return '\033';
2202         case 'f':
2203             return '\f';
2204         case 'g':
2205         case 'h':
2206         case 'i':
2207         case 'j':
2208             break;
2209         case 'k':
2210             if (inclass)
2211                 break;
2212             if (read() != '<')
2213                 throw error("\\k is not followed by '<' for named capturing group");
2214             String name = groupname(read());
2215             if (!namedGroups().containsKey(name))
2216                 throw error("(named capturing group <"+ name+"> does not exit");
2217             if (create) {
2218                 if (has(CASE_INSENSITIVE))
2219                     root = new CIBackRef(namedGroups().get(name), has(UNICODE_CASE));
2220                 else
2221                     root = new BackRef(namedGroups().get(name));
2222             }
2223             return -1;
2224         case 'l':
2225         case 'm':
2226             break;
2227         case 'n':
2228             return '\n';
2229         case 'o':
2230         case 'p':
2231         case 'q':
2232             break;
2233         case 'r':
2234             return '\r';
2235         case 's':
2236             if (create) root = new Ctype(ASCII.SPACE);
2237             return -1;
2238         case 't':
2239             return '\t';
2240         case 'u':
2241             return u();
2242         case 'v':
2243             return '\013';
2244         case 'w':
2245             if (create) root = new Ctype(ASCII.WORD);
2246             return -1;
2247         case 'x':
2248             return x();
2249         case 'y':
2250             break;
2251         case 'z':
2252             if (inclass) break;
2253             if (create) root = new End();
2254             return -1;
2255         default:
2256             return ch;
2257         }
2258         throw error("Illegal/unsupported escape sequence");
2259     }
2260 
2261     /**
2262      * Parse a character class, and return the node that matches it.
2263      *
2264      * Consumes a ] on the way out if consume is true. Usually consume
2265      * is true except for the case of [abc&&def] where def is a separate
2266      * right hand node with "understood" brackets.
2267      */
2268     private CharProperty clazz(boolean consume) {
2269         CharProperty prev = null;
2270         CharProperty node = null;
2271         BitClass bits = new BitClass();
2272         boolean include = true;
2273         boolean firstInClass = true;
2274         int ch = next();
2275         for (;;) {
2276             switch (ch) {
2277                 case '^':
2278                     // Negates if first char in a class, otherwise literal
2279                     if (firstInClass) {
2280                         if (temp[cursor-1] != '[')
2281                             break;
2282                         ch = next();
2283                         include = !include;
2284                         continue;
2285                     } else {
2286                         // ^ not first in class, treat as literal
2287                         break;
2288                     }
2289                 case '[':
2290                     firstInClass = false;
2291                     node = clazz(true);
2292                     if (prev == null)
2293                         prev = node;
2294                     else
2295                         prev = union(prev, node);
2296                     ch = peek();
2297                     continue;
2298                 case '&':
2299                     firstInClass = false;
2300                     ch = next();
2301                     if (ch == '&') {
2302                         ch = next();
2303                         CharProperty rightNode = null;
2304                         while (ch != ']' && ch != '&') {
2305                             if (ch == '[') {
2306                                 if (rightNode == null)
2307                                     rightNode = clazz(true);
2308                                 else
2309                                     rightNode = union(rightNode, clazz(true));
2310                             } else { // abc&&def
2311                                 unread();
2312                                 rightNode = clazz(false);
2313                             }
2314                             ch = peek();
2315                         }
2316                         if (rightNode != null)
2317                             node = rightNode;
2318                         if (prev == null) {
2319                             if (rightNode == null)
2320                                 throw error("Bad class syntax");
2321                             else
2322                                 prev = rightNode;
2323                         } else {
2324                             prev = intersection(prev, node);
2325                         }
2326                     } else {
2327                         // treat as a literal &
2328                         unread();
2329                         break;
2330                     }
2331                     continue;
2332                 case 0:
2333                     firstInClass = false;
2334                     if (cursor >= patternLength)
2335                         throw error("Unclosed character class");
2336                     break;
2337                 case ']':
2338                     firstInClass = false;
2339                     if (prev != null) {
2340                         if (consume)
2341                             next();
2342                         return prev;
2343                     }
2344                     break;
2345                 default:
2346                     firstInClass = false;
2347                     break;
2348             }
2349             node = range(bits);
2350             if (include) {
2351                 if (prev == null) {
2352                     prev = node;
2353                 } else {
2354                     if (prev != node)
2355                         prev = union(prev, node);
2356                 }
2357             } else {
2358                 if (prev == null) {
2359                     prev = node.complement();
2360                 } else {
2361                     if (prev != node)
2362                         prev = setDifference(prev, node);
2363                 }
2364             }
2365             ch = peek();
2366         }
2367     }
2368 
2369     private CharProperty bitsOrSingle(BitClass bits, int ch) {
2370         /* Bits can only handle codepoints in [u+0000-u+00ff] range.
2371            Use "single" node instead of bits when dealing with unicode
2372            case folding for codepoints listed below.
2373            (1)Uppercase out of range: u+00ff, u+00b5
2374               toUpperCase(u+00ff) -> u+0178
2375               toUpperCase(u+00b5) -> u+039c
2376            (2)LatinSmallLetterLongS u+17f
2377               toUpperCase(u+017f) -> u+0053
2378            (3)LatinSmallLetterDotlessI u+131
2379               toUpperCase(u+0131) -> u+0049
2380            (4)LatinCapitalLetterIWithDotAbove u+0130
2381               toLowerCase(u+0130) -> u+0069
2382            (5)KelvinSign u+212a
2383               toLowerCase(u+212a) ==> u+006B
2384            (6)AngstromSign u+212b
2385               toLowerCase(u+212b) ==> u+00e5
2386         */
2387         int d;
2388         if (ch < 256 &&
2389             !(has(CASE_INSENSITIVE) && has(UNICODE_CASE) &&
2390               (ch == 0xff || ch == 0xb5 ||
2391                ch == 0x49 || ch == 0x69 ||  //I and i
2392                ch == 0x53 || ch == 0x73 ||  //S and s
2393                ch == 0x4b || ch == 0x6b ||  //K and k
2394                ch == 0xc5 || ch == 0xe5)))  //A+ring
2395             return bits.add(ch, flags());
2396         return newSingle(ch);
2397     }
2398 
2399     /**
2400      * Parse a single character or a character range in a character class
2401      * and return its representative node.
2402      */
2403     private CharProperty range(BitClass bits) {
2404         int ch = peek();
2405         if (ch == '\\') {
2406             ch = nextEscaped();
2407             if (ch == 'p' || ch == 'P') { // A property
2408                 boolean comp = (ch == 'P');
2409                 boolean oneLetter = true;
2410                 // Consume { if present
2411                 ch = next();
2412                 if (ch != '{')
2413                     unread();
2414                 else
2415                     oneLetter = false;
2416                 return family(oneLetter, comp);
2417             } else { // ordinary escape
2418                 unread();
2419                 ch = escape(true, true);
2420                 if (ch == -1)
2421                     return (CharProperty) root;
2422             }
2423         } else {
2424             ch = single();
2425         }
2426         if (ch >= 0) {
2427             if (peek() == '-') {
2428                 int endRange = temp[cursor+1];
2429                 if (endRange == '[') {
2430                     return bitsOrSingle(bits, ch);
2431                 }
2432                 if (endRange != ']') {
2433                     next();
2434                     int m = single();
2435                     if (m < ch)
2436                         throw error("Illegal character range");
2437                     if (has(CASE_INSENSITIVE))
2438                         return caseInsensitiveRangeFor(ch, m);
2439                     else
2440                         return rangeFor(ch, m);
2441                 }
2442             }
2443             return bitsOrSingle(bits, ch);
2444         }
2445         throw error("Unexpected character '"+((char)ch)+"'");
2446     }
2447 
2448     private int single() {
2449         int ch = peek();
2450         switch (ch) {
2451         case '\\':
2452             return escape(true, false);
2453         default:
2454             next();
2455             return ch;
2456         }
2457     }
2458 
2459     /**
2460      * Parses a Unicode character family and returns its representative node.
2461      */
2462     private CharProperty family(boolean singleLetter,
2463                                 boolean maybeComplement)
2464     {
2465         next();
2466         String name;
2467         CharProperty node;
2468 
2469         if (singleLetter) {
2470             int c = temp[cursor];
2471             if (!Character.isSupplementaryCodePoint(c)) {
2472                 name = String.valueOf((char)c);
2473             } else {
2474                 name = new String(temp, cursor, 1);
2475             }
2476             read();
2477         } else {
2478             int i = cursor;
2479             mark('}');
2480             while(read() != '}') {
2481             }
2482             mark('\000');
2483             int j = cursor;
2484             if (j > patternLength)
2485                 throw error("Unclosed character family");
2486             if (i + 1 >= j)
2487                 throw error("Empty character family");
2488             name = new String(temp, i, j-i-1);
2489         }
2490 
2491         if (name.startsWith("In")) {
2492             node = unicodeBlockPropertyFor(name.substring(2));
2493         } else {
2494             if (name.startsWith("Is"))
2495                 name = name.substring(2);
2496             node = charPropertyNodeFor(name);
2497         }
2498         if (maybeComplement) {
2499             if (node instanceof Category || node instanceof Block)
2500                 hasSupplementary = true;
2501             node = node.complement();
2502         }
2503         return node;
2504     }
2505 
2506     /**
2507      * Returns a CharProperty matching all characters in a UnicodeBlock.
2508      */
2509     private CharProperty unicodeBlockPropertyFor(String name) {
2510         final Character.UnicodeBlock block;
2511         try {
2512             block = Character.UnicodeBlock.forName(name);
2513         } catch (IllegalArgumentException iae) {
2514             throw error("Unknown character block name {" + name + "}");
2515         }
2516         return new Block(block);
2517     }
2518 
2519     /**
2520      * Returns a CharProperty matching all characters in a named property.
2521      */
2522     private CharProperty charPropertyNodeFor(String name) {
2523         CharProperty p = CharPropertyNames.charPropertyFor(name);
2524         if (p == null)
2525             throw error("Unknown character property name {" + name + "}");
2526         return p;
2527     }
2528 
2529     /**
2530      * Parses and returns the name of a "named capturing group", the trailing
2531      * ">" is consumed after parsing.
2532      */
2533     private String groupname(int ch) {
2534         StringBuilder sb = new StringBuilder();
2535         sb.append(Character.toChars(ch));
2536         while (ASCII.isLower(ch=read()) || ASCII.isUpper(ch) ||
2537                ASCII.isDigit(ch)) {
2538             sb.append(Character.toChars(ch));
2539         }
2540         if (sb.length() == 0)
2541             throw error("named capturing group has 0 length name");
2542         if (ch != '>')
2543             throw error("named capturing group is missing trailing '>'");
2544         return sb.toString();
2545     }
2546 
2547     /**
2548      * Parses a group and returns the head node of a set of nodes that process
2549      * the group. Sometimes a double return system is used where the tail is
2550      * returned in root.
2551      */
2552     private Node group0() {
2553         boolean capturingGroup = false;
2554         Node head = null;
2555         Node tail = null;
2556         int save = flags;
2557         root = null;
2558         int ch = next();
2559         if (ch == '?') {
2560             ch = skip();
2561             switch (ch) {
2562             case ':':   //  (?:xxx) pure group
2563                 head = createGroup(true);
2564                 tail = root;
2565                 head.next = expr(tail);
2566                 break;
2567             case '=':   // (?=xxx) and (?!xxx) lookahead
2568             case '!':
2569                 head = createGroup(true);
2570                 tail = root;
2571                 head.next = expr(tail);
2572                 if (ch == '=') {
2573                     head = tail = new Pos(head);
2574                 } else {
2575                     head = tail = new Neg(head);
2576                 }
2577                 break;
2578             case '>':   // (?>xxx)  independent group
2579                 head = createGroup(true);
2580                 tail = root;
2581                 head.next = expr(tail);
2582                 head = tail = new Ques(head, INDEPENDENT);
2583                 break;
2584             case '<':   // (?<xxx)  look behind
2585                 ch = read();
2586                 if (ASCII.isLower(ch) || ASCII.isUpper(ch)) {
2587                     // named captured group
2588                     String name = groupname(ch);
2589                     if (namedGroups().containsKey(name))
2590                         throw error("Named capturing group <" + name
2591                                     + "> is already defined");
2592                     capturingGroup = true;
2593                     head = createGroup(false);
2594                     tail = root;
2595                     namedGroups().put(name, capturingGroupCount-1);
2596                     head.next = expr(tail);
2597                     break;
2598                 }
2599                 int start = cursor;
2600                 head = createGroup(true);
2601                 tail = root;
2602                 head.next = expr(tail);
2603                 tail.next = lookbehindEnd;
2604                 TreeInfo info = new TreeInfo();
2605                 head.study(info);
2606                 if (info.maxValid == false) {
2607                     throw error("Look-behind group does not have "
2608                                 + "an obvious maximum length");
2609                 }
2610                 boolean hasSupplementary = findSupplementary(start, patternLength);
2611                 if (ch == '=') {
2612                     head = tail = (hasSupplementary ?
2613                                    new BehindS(head, info.maxLength,
2614                                                info.minLength) :
2615                                    new Behind(head, info.maxLength,
2616                                               info.minLength));
2617                 } else if (ch == '!') {
2618                     head = tail = (hasSupplementary ?
2619                                    new NotBehindS(head, info.maxLength,
2620                                                   info.minLength) :
2621                                    new NotBehind(head, info.maxLength,
2622                                                  info.minLength));
2623                 } else {
2624                     throw error("Unknown look-behind group");
2625                 }
2626                 break;
2627             case '$':
2628             case '@':
2629                 throw error("Unknown group type");
2630             default:    // (?xxx:) inlined match flags
2631                 unread();
2632                 addFlag();
2633                 ch = read();
2634                 if (ch == ')') {
2635                     return null;    // Inline modifier only
2636                 }
2637                 if (ch != ':') {
2638                     throw error("Unknown inline modifier");
2639                 }
2640                 head = createGroup(true);
2641                 tail = root;
2642                 head.next = expr(tail);
2643                 break;
2644             }
2645         } else { // (xxx) a regular group
2646             capturingGroup = true;
2647             head = createGroup(false);
2648             tail = root;
2649             head.next = expr(tail);
2650         }
2651 
2652         accept(')', "Unclosed group");
2653         flags = save;
2654 
2655         // Check for quantifiers
2656         Node node = closure(head);
2657         if (node == head) { // No closure
2658             root = tail;
2659             return node;    // Dual return
2660         }
2661         if (head == tail) { // Zero length assertion
2662             root = node;
2663             return node;    // Dual return
2664         }
2665 
2666         if (node instanceof Ques) {
2667             Ques ques = (Ques) node;
2668             if (ques.type == POSSESSIVE) {
2669                 root = node;
2670                 return node;
2671             }
2672             tail.next = new BranchConn();
2673             tail = tail.next;
2674             if (ques.type == GREEDY) {
2675                 head = new Branch(head, null, tail);
2676             } else { // Reluctant quantifier
2677                 head = new Branch(null, head, tail);
2678             }
2679             root = tail;
2680             return head;
2681         } else if (node instanceof Curly) {
2682             Curly curly = (Curly) node;
2683             if (curly.type == POSSESSIVE) {
2684                 root = node;
2685                 return node;
2686             }
2687             // Discover if the group is deterministic
2688             TreeInfo info = new TreeInfo();
2689             if (head.study(info)) { // Deterministic
2690                 GroupTail temp = (GroupTail) tail;
2691                 head = root = new GroupCurly(head.next, curly.cmin,
2692                                    curly.cmax, curly.type,
2693                                    ((GroupTail)tail).localIndex,
2694                                    ((GroupTail)tail).groupIndex,
2695                                              capturingGroup);
2696                 return head;
2697             } else { // Non-deterministic
2698                 int temp = ((GroupHead) head).localIndex;
2699                 Loop loop;
2700                 if (curly.type == GREEDY)
2701                     loop = new Loop(this.localCount, temp);
2702                 else  // Reluctant Curly
2703                     loop = new LazyLoop(this.localCount, temp);
2704                 Prolog prolog = new Prolog(loop);
2705                 this.localCount += 1;
2706                 loop.cmin = curly.cmin;
2707                 loop.cmax = curly.cmax;
2708                 loop.body = head;
2709                 tail.next = loop;
2710                 root = loop;
2711                 return prolog; // Dual return
2712             }
2713         }
2714         throw error("Internal logic error");
2715     }
2716 
2717     /**
2718      * Create group head and tail nodes using double return. If the group is
2719      * created with anonymous true then it is a pure group and should not
2720      * affect group counting.
2721      */
2722     private Node createGroup(boolean anonymous) {
2723         int localIndex = localCount++;
2724         int groupIndex = 0;
2725         if (!anonymous)
2726             groupIndex = capturingGroupCount++;
2727         GroupHead head = new GroupHead(localIndex);
2728         root = new GroupTail(localIndex, groupIndex);
2729         if (!anonymous && groupIndex < 10)
2730             groupNodes[groupIndex] = head;
2731         return head;
2732     }
2733 
2734     /**
2735      * Parses inlined match flags and set them appropriately.
2736      */
2737     private void addFlag() {
2738         int ch = peek();
2739         for (;;) {
2740             switch (ch) {
2741             case 'i':
2742                 flags |= CASE_INSENSITIVE;
2743                 break;
2744             case 'm':
2745                 flags |= MULTILINE;
2746                 break;
2747             case 's':
2748                 flags |= DOTALL;
2749                 break;
2750             case 'd':
2751                 flags |= UNIX_LINES;
2752                 break;
2753             case 'u':
2754                 flags |= UNICODE_CASE;
2755                 break;
2756             case 'c':
2757                 flags |= CANON_EQ;
2758                 break;
2759             case 'x':
2760                 flags |= COMMENTS;
2761                 break;
2762             case '-': // subFlag then fall through
2763                 ch = next();
2764                 subFlag();
2765             default:
2766                 return;
2767             }
2768             ch = next();
2769         }
2770     }
2771 
2772     /**
2773      * Parses the second part of inlined match flags and turns off
2774      * flags appropriately.
2775      */
2776     private void subFlag() {
2777         int ch = peek();
2778         for (;;) {
2779             switch (ch) {
2780             case 'i':
2781                 flags &= ~CASE_INSENSITIVE;
2782                 break;
2783             case 'm':
2784                 flags &= ~MULTILINE;
2785                 break;
2786             case 's':
2787                 flags &= ~DOTALL;
2788                 break;
2789             case 'd':
2790                 flags &= ~UNIX_LINES;
2791                 break;
2792             case 'u':
2793                 flags &= ~UNICODE_CASE;
2794                 break;
2795             case 'c':
2796                 flags &= ~CANON_EQ;
2797                 break;
2798             case 'x':
2799                 flags &= ~COMMENTS;
2800                 break;
2801             default:
2802                 return;
2803             }
2804             ch = next();
2805         }
2806     }
2807 
2808     static final int MAX_REPS   = 0x7FFFFFFF;
2809 
2810     static final int GREEDY     = 0;
2811 
2812     static final int LAZY       = 1;
2813 
2814     static final int POSSESSIVE = 2;
2815 
2816     static final int INDEPENDENT = 3;
2817 
2818     /**
2819      * Processes repetition. If the next character peeked is a quantifier
2820      * then new nodes must be appended to handle the repetition.
2821      * Prev could be a single or a group, so it could be a chain of nodes.
2822      */
2823     private Node closure(Node prev) {
2824         Node atom;
2825         int ch = peek();
2826         switch (ch) {
2827         case '?':
2828             ch = next();
2829             if (ch == '?') {
2830                 next();
2831                 return new Ques(prev, LAZY);
2832             } else if (ch == '+') {
2833                 next();
2834                 return new Ques(prev, POSSESSIVE);
2835             }
2836             return new Ques(prev, GREEDY);
2837         case '*':
2838             ch = next();
2839             if (ch == '?') {
2840                 next();
2841                 return new Curly(prev, 0, MAX_REPS, LAZY);
2842             } else if (ch == '+') {
2843                 next();
2844                 return new Curly(prev, 0, MAX_REPS, POSSESSIVE);
2845             }
2846             return new Curly(prev, 0, MAX_REPS, GREEDY);
2847         case '+':
2848             ch = next();
2849             if (ch == '?') {
2850                 next();
2851                 return new Curly(prev, 1, MAX_REPS, LAZY);
2852             } else if (ch == '+') {
2853                 next();
2854                 return new Curly(prev, 1, MAX_REPS, POSSESSIVE);
2855             }
2856             return new Curly(prev, 1, MAX_REPS, GREEDY);
2857         case '{':
2858             ch = temp[cursor+1];
2859             if (ASCII.isDigit(ch)) {
2860                 skip();
2861                 int cmin = 0;
2862                 do {
2863                     cmin = cmin * 10 + (ch - '0');
2864                 } while (ASCII.isDigit(ch = read()));
2865                 int cmax = cmin;
2866                 if (ch == ',') {
2867                     ch = read();
2868                     cmax = MAX_REPS;
2869                     if (ch != '}') {
2870                         cmax = 0;
2871                         while (ASCII.isDigit(ch)) {
2872                             cmax = cmax * 10 + (ch - '0');
2873                             ch = read();
2874                         }
2875                     }
2876                 }
2877                 if (ch != '}')
2878                     throw error("Unclosed counted closure");
2879                 if (((cmin) | (cmax) | (cmax - cmin)) < 0)
2880                     throw error("Illegal repetition range");
2881                 Curly curly;
2882                 ch = peek();
2883                 if (ch == '?') {
2884                     next();
2885                     curly = new Curly(prev, cmin, cmax, LAZY);
2886                 } else if (ch == '+') {
2887                     next();
2888                     curly = new Curly(prev, cmin, cmax, POSSESSIVE);
2889                 } else {
2890                     curly = new Curly(prev, cmin, cmax, GREEDY);
2891                 }
2892                 return curly;
2893             } else {
2894                 throw error("Illegal repetition");
2895             }
2896         default:
2897             return prev;
2898         }
2899     }
2900 
2901     /**
2902      *  Utility method for parsing control escape sequences.
2903      */
2904     private int c() {
2905         if (cursor < patternLength) {
2906             return read() ^ 64;
2907         }
2908         throw error("Illegal control escape sequence");
2909     }
2910 
2911     /**
2912      *  Utility method for parsing octal escape sequences.
2913      */
2914     private int o() {
2915         int n = read();
2916         if (((n-'0')|('7'-n)) >= 0) {
2917             int m = read();
2918             if (((m-'0')|('7'-m)) >= 0) {
2919                 int o = read();
2920                 if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) {
2921                     return (n - '0') * 64 + (m - '0') * 8 + (o - '0');
2922                 }
2923                 unread();
2924                 return (n - '0') * 8 + (m - '0');
2925             }
2926             unread();
2927             return (n - '0');
2928         }
2929         throw error("Illegal octal escape sequence");
2930     }
2931 
2932     /**
2933      *  Utility method for parsing hexadecimal escape sequences.
2934      */
2935     private int x() {
2936         int n = read();
2937         if (ASCII.isHexDigit(n)) {
2938             int m = read();
2939             if (ASCII.isHexDigit(m)) {
2940                 return ASCII.toDigit(n) * 16 + ASCII.toDigit(m);
2941             }
2942         }
2943         throw error("Illegal hexadecimal escape sequence");
2944     }
2945 
2946     /**
2947      *  Utility method for parsing unicode escape sequences.
2948      */
2949     private int cursor() {
2950         return cursor;
2951     }
2952 
2953     private void setcursor(int pos) {
2954         cursor = pos;
2955     }
2956 
2957     private int uxxxx() {
2958         int n = 0;
2959         for (int i = 0; i < 4; i++) {
2960             int ch = read();
2961             if (!ASCII.isHexDigit(ch)) {
2962                 throw error("Illegal Unicode escape sequence");
2963             }
2964             n = n * 16 + ASCII.toDigit(ch);
2965         }
2966         return n;
2967     }
2968 
2969     private int u() {
2970         int n = uxxxx();
2971         if (Character.isHighSurrogate((char)n)) {
2972             int cur = cursor();
2973             if (read() == '\\' && read() == 'u') {
2974                 int n2 = uxxxx();
2975                 if (Character.isLowSurrogate((char)n2))
2976                     return Character.toCodePoint((char)n, (char)n2);
2977             }
2978             setcursor(cur);
2979         }
2980         return n;
2981     }
2982 
2983     //
2984     // Utility methods for code point support
2985     //
2986 
2987     private static final int countChars(CharSequence seq, int index,
2988                                         int lengthInCodePoints) {
2989         // optimization
2990         if (lengthInCodePoints == 1 && !Character.isHighSurrogate(seq.charAt(index))) {
2991             assert (index >= 0 && index < seq.length());
2992             return 1;
2993         }
2994         int length = seq.length();
2995         int x = index;
2996         if (lengthInCodePoints >= 0) {
2997             assert (index >= 0 && index < length);
2998             for (int i = 0; x < length && i < lengthInCodePoints; i++) {
2999                 if (Character.isHighSurrogate(seq.charAt(x++))) {
3000                     if (x < length && Character.isLowSurrogate(seq.charAt(x))) {
3001                         x++;
3002                     }
3003                 }
3004             }
3005             return x - index;
3006         }
3007 
3008         assert (index >= 0 && index <= length);
3009         if (index == 0) {
3010             return 0;
3011         }
3012         int len = -lengthInCodePoints;
3013         for (int i = 0; x > 0 && i < len; i++) {
3014             if (Character.isLowSurrogate(seq.charAt(--x))) {
3015                 if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) {
3016                     x--;
3017                 }
3018             }
3019         }
3020         return index - x;
3021     }
3022 
3023     private static final int countCodePoints(CharSequence seq) {
3024         int length = seq.length();
3025         int n = 0;
3026         for (int i = 0; i < length; ) {
3027             n++;
3028             if (Character.isHighSurrogate(seq.charAt(i++))) {
3029                 if (i < length && Character.isLowSurrogate(seq.charAt(i))) {
3030                     i++;
3031                 }
3032             }
3033         }
3034         return n;
3035     }
3036 
3037     /**
3038      *  Creates a bit vector for matching Latin-1 values. A normal BitClass
3039      *  never matches values above Latin-1, and a complemented BitClass always
3040      *  matches values above Latin-1.
3041      */
3042     private static final class BitClass extends BmpCharProperty {
3043         final boolean[] bits;
3044         BitClass() { bits = new boolean[256]; }
3045         private BitClass(boolean[] bits) { this.bits = bits; }
3046         BitClass add(int c, int flags) {
3047             assert c >= 0 && c <= 255;
3048             if ((flags & CASE_INSENSITIVE) != 0) {
3049                 if (ASCII.isAscii(c)) {
3050                     bits[ASCII.toUpper(c)] = true;
3051                     bits[ASCII.toLower(c)] = true;
3052                 } else if ((flags & UNICODE_CASE) != 0) {
3053                     bits[Character.toLowerCase(c)] = true;
3054                     bits[Character.toUpperCase(c)] = true;
3055                 }
3056             }
3057             bits[c] = true;
3058             return this;
3059         }
3060         boolean isSatisfiedBy(int ch) {
3061             return ch < 256 && bits[ch];
3062         }
3063     }
3064 
3065     /**
3066      *  Returns a suitably optimized, single character matcher.
3067      */
3068     private CharProperty newSingle(final int ch) {
3069         if (has(CASE_INSENSITIVE)) {
3070             int lower, upper;
3071             if (has(UNICODE_CASE)) {
3072                 upper = Character.toUpperCase(ch);
3073                 lower = Character.toLowerCase(upper);
3074                 if (upper != lower)
3075                     return new SingleU(lower);
3076             } else if (ASCII.isAscii(ch)) {
3077                 lower = ASCII.toLower(ch);
3078                 upper = ASCII.toUpper(ch);
3079                 if (lower != upper)
3080                     return new SingleI(lower, upper);
3081             }
3082         }
3083         if (isSupplementary(ch))
3084             return new SingleS(ch);    // Match a given Unicode character
3085         return new Single(ch);         // Match a given BMP character
3086     }
3087 
3088     /**
3089      *  Utility method for creating a string slice matcher.
3090      */
3091     private Node newSlice(int[] buf, int count, boolean hasSupplementary) {
3092         int[] tmp = new int[count];
3093         if (has(CASE_INSENSITIVE)) {
3094             if (has(UNICODE_CASE)) {
3095                 for (int i = 0; i < count; i++) {
3096                     tmp[i] = Character.toLowerCase(
3097                                  Character.toUpperCase(buf[i]));
3098                 }
3099                 return hasSupplementary? new SliceUS(tmp) : new SliceU(tmp);
3100             }
3101             for (int i = 0; i < count; i++) {
3102                 tmp[i] = ASCII.toLower(buf[i]);
3103             }
3104             return hasSupplementary? new SliceIS(tmp) : new SliceI(tmp);
3105         }
3106         for (int i = 0; i < count; i++) {
3107             tmp[i] = buf[i];
3108         }
3109         return hasSupplementary ? new SliceS(tmp) : new Slice(tmp);
3110     }
3111 
3112     /**
3113      * The following classes are the building components of the object
3114      * tree that represents a compiled regular expression. The object tree
3115      * is made of individual elements that handle constructs in the Pattern.
3116      * Each type of object knows how to match its equivalent construct with
3117      * the match() method.
3118      */
3119 
3120     /**
3121      * Base class for all node classes. Subclasses should override the match()
3122      * method as appropriate. This class is an accepting node, so its match()
3123      * always returns true.
3124      */
3125     static class Node extends Object {
3126         Node next;
3127         Node() {
3128             next = Pattern.accept;
3129         }
3130         /**
3131          * This method implements the classic accept node.
3132          */
3133         boolean match(Matcher matcher, int i, CharSequence seq) {
3134             matcher.last = i;
3135             matcher.groups[0] = matcher.first;
3136             matcher.groups[1] = matcher.last;
3137             return true;
3138         }
3139         /**
3140          * This method is good for all zero length assertions.
3141          */
3142         boolean study(TreeInfo info) {
3143             if (next != null) {
3144                 return next.study(info);
3145             } else {
3146                 return info.deterministic;
3147             }
3148         }
3149     }
3150 
3151     static class LastNode extends Node {
3152         /**
3153          * This method implements the classic accept node with
3154          * the addition of a check to see if the match occurred
3155          * using all of the input.
3156          */
3157         boolean match(Matcher matcher, int i, CharSequence seq) {
3158             if (matcher.acceptMode == Matcher.ENDANCHOR && i != matcher.to)
3159                 return false;
3160             matcher.last = i;
3161             matcher.groups[0] = matcher.first;
3162             matcher.groups[1] = matcher.last;
3163             return true;
3164         }
3165     }
3166 
3167     /**
3168      * Used for REs that can start anywhere within the input string.
3169      * This basically tries to match repeatedly at each spot in the
3170      * input string, moving forward after each try. An anchored search
3171      * or a BnM will bypass this node completely.
3172      */
3173     static class Start extends Node {
3174         int minLength;
3175         Start(Node node) {
3176             this.next = node;
3177             TreeInfo info = new TreeInfo();
3178             next.study(info);
3179             minLength = info.minLength;
3180         }
3181         boolean match(Matcher matcher, int i, CharSequence seq) {
3182             if (i > matcher.to - minLength) {
3183                 matcher.hitEnd = true;
3184                 return false;
3185             }
3186             int guard = matcher.to - minLength;
3187             for (; i <= guard; i++) {
3188                 if (next.match(matcher, i, seq)) {
3189                     matcher.first = i;
3190                     matcher.groups[0] = matcher.first;
3191                     matcher.groups[1] = matcher.last;
3192                     return true;
3193                 }
3194             }
3195             matcher.hitEnd = true;
3196             return false;
3197         }
3198         boolean study(TreeInfo info) {
3199             next.study(info);
3200             info.maxValid = false;
3201             info.deterministic = false;
3202             return false;
3203         }
3204     }
3205 
3206     /*
3207      * StartS supports supplementary characters, including unpaired surrogates.
3208      */
3209     static final class StartS extends Start {
3210         StartS(Node node) {
3211             super(node);
3212         }
3213         boolean match(Matcher matcher, int i, CharSequence seq) {
3214             if (i > matcher.to - minLength) {
3215                 matcher.hitEnd = true;
3216                 return false;
3217             }
3218             int guard = matcher.to - minLength;
3219             while (i <= guard) {
3220                 //if ((ret = next.match(matcher, i, seq)) || i == guard)
3221                 if (next.match(matcher, i, seq)) {
3222                     matcher.first = i;
3223                     matcher.groups[0] = matcher.first;
3224                     matcher.groups[1] = matcher.last;
3225                     return true;
3226                 }
3227                 if (i == guard)
3228                     break;
3229                 // Optimization to move to the next character. This is
3230                 // faster than countChars(seq, i, 1).
3231                 if (Character.isHighSurrogate(seq.charAt(i++))) {
3232                     if (i < seq.length() &&
3233                         Character.isLowSurrogate(seq.charAt(i))) {
3234                         i++;
3235                     }
3236                 }
3237             }
3238             matcher.hitEnd = true;
3239             return false;
3240         }
3241     }
3242 
3243     /**
3244      * Node to anchor at the beginning of input. This object implements the
3245      * match for a \A sequence, and the caret anchor will use this if not in
3246      * multiline mode.
3247      */
3248     static final class Begin extends Node {
3249         boolean match(Matcher matcher, int i, CharSequence seq) {
3250             int fromIndex = (matcher.anchoringBounds) ?
3251                 matcher.from : 0;
3252             if (i == fromIndex && next.match(matcher, i, seq)) {
3253                 matcher.first = i;
3254                 matcher.groups[0] = i;
3255                 matcher.groups[1] = matcher.last;
3256                 return true;
3257             } else {
3258                 return false;
3259             }
3260         }
3261     }
3262 
3263     /**
3264      * Node to anchor at the end of input. This is the absolute end, so this
3265      * should not match at the last newline before the end as $ will.
3266      */
3267     static final class End extends Node {
3268         boolean match(Matcher matcher, int i, CharSequence seq) {
3269             int endIndex = (matcher.anchoringBounds) ?
3270                 matcher.to : matcher.getTextLength();
3271             if (i == endIndex) {
3272                 matcher.hitEnd = true;
3273                 return next.match(matcher, i, seq);
3274             }
3275             return false;
3276         }
3277     }
3278 
3279     /**
3280      * Node to anchor at the beginning of a line. This is essentially the
3281      * object to match for the multiline ^.
3282      */
3283     static final class Caret extends Node {
3284         boolean match(Matcher matcher, int i, CharSequence seq) {
3285             int startIndex = matcher.from;
3286             int endIndex = matcher.to;
3287             if (!matcher.anchoringBounds) {
3288                 startIndex = 0;
3289                 endIndex = matcher.getTextLength();
3290             }
3291             // Perl does not match ^ at end of input even after newline
3292             if (i == endIndex) {
3293                 matcher.hitEnd = true;
3294                 return false;
3295             }
3296             if (i > startIndex) {
3297                 char ch = seq.charAt(i-1);
3298                 if (ch != '\n' && ch != '\r'
3299                     && (ch|1) != '\u2029'
3300                     && ch != '\u0085' ) {
3301                     return false;
3302                 }
3303                 // Should treat /r/n as one newline
3304                 if (ch == '\r' && seq.charAt(i) == '\n')
3305                     return false;
3306             }
3307             return next.match(matcher, i, seq);
3308         }
3309     }
3310 
3311     /**
3312      * Node to anchor at the beginning of a line when in unixdot mode.
3313      */
3314     static final class UnixCaret extends Node {
3315         boolean match(Matcher matcher, int i, CharSequence seq) {
3316             int startIndex = matcher.from;
3317             int endIndex = matcher.to;
3318             if (!matcher.anchoringBounds) {
3319                 startIndex = 0;
3320                 endIndex = matcher.getTextLength();
3321             }
3322             // Perl does not match ^ at end of input even after newline
3323             if (i == endIndex) {
3324                 matcher.hitEnd = true;
3325                 return false;
3326             }
3327             if (i > startIndex) {
3328                 char ch = seq.charAt(i-1);
3329                 if (ch != '\n') {
3330                     return false;
3331                 }
3332             }
3333             return next.match(matcher, i, seq);
3334         }
3335     }
3336 
3337     /**
3338      * Node to match the location where the last match ended.
3339      * This is used for the \G construct.
3340      */
3341     static final class LastMatch extends Node {
3342         boolean match(Matcher matcher, int i, CharSequence seq) {
3343             if (i != matcher.oldLast)
3344                 return false;
3345             return next.match(matcher, i, seq);
3346         }
3347     }
3348 
3349     /**
3350      * Node to anchor at the end of a line or the end of input based on the
3351      * multiline mode.
3352      *
3353      * When not in multiline mode, the $ can only match at the very end
3354      * of the input, unless the input ends in a line terminator in which
3355      * it matches right before the last line terminator.
3356      *
3357      * Note that \r\n is considered an atomic line terminator.
3358      *
3359      * Like ^ the $ operator matches at a position, it does not match the
3360      * line terminators themselves.
3361      */
3362     static final class Dollar extends Node {
3363         boolean multiline;
3364         Dollar(boolean mul) {
3365             multiline = mul;
3366         }
3367         boolean match(Matcher matcher, int i, CharSequence seq) {
3368             int endIndex = (matcher.anchoringBounds) ?
3369                 matcher.to : matcher.getTextLength();
3370             if (!multiline) {
3371                 if (i < endIndex - 2)
3372                     return false;
3373                 if (i == endIndex - 2) {
3374                     char ch = seq.charAt(i);
3375                     if (ch != '\r')
3376                         return false;
3377                     ch = seq.charAt(i + 1);
3378                     if (ch != '\n')
3379                         return false;
3380                 }
3381             }
3382             // Matches before any line terminator; also matches at the
3383             // end of input
3384             // Before line terminator:
3385             // If multiline, we match here no matter what
3386             // If not multiline, fall through so that the end
3387             // is marked as hit; this must be a /r/n or a /n
3388             // at the very end so the end was hit; more input
3389             // could make this not match here
3390             if (i < endIndex) {
3391                 char ch = seq.charAt(i);
3392                  if (ch == '\n') {
3393                      // No match between \r\n
3394                      if (i > 0 && seq.charAt(i-1) == '\r')
3395                          return false;
3396                      if (multiline)
3397                          return next.match(matcher, i, seq);
3398                  } else if (ch == '\r' || ch == '\u0085' ||
3399                             (ch|1) == '\u2029') {
3400                      if (multiline)
3401                          return next.match(matcher, i, seq);
3402                  } else { // No line terminator, no match
3403                      return false;
3404                  }
3405             }
3406             // Matched at current end so hit end
3407             matcher.hitEnd = true;
3408             // If a $ matches because of end of input, then more input
3409             // could cause it to fail!
3410             matcher.requireEnd = true;
3411             return next.match(matcher, i, seq);
3412         }
3413         boolean study(TreeInfo info) {
3414             next.study(info);
3415             return info.deterministic;
3416         }
3417     }
3418 
3419     /**
3420      * Node to anchor at the end of a line or the end of input based on the
3421      * multiline mode when in unix lines mode.
3422      */
3423     static final class UnixDollar extends Node {
3424         boolean multiline;
3425         UnixDollar(boolean mul) {
3426             multiline = mul;
3427         }
3428         boolean match(Matcher matcher, int i, CharSequence seq) {
3429             int endIndex = (matcher.anchoringBounds) ?
3430                 matcher.to : matcher.getTextLength();
3431             if (i < endIndex) {
3432                 char ch = seq.charAt(i);
3433                 if (ch == '\n') {
3434                     // If not multiline, then only possible to
3435                     // match at very end or one before end
3436                     if (multiline == false && i != endIndex - 1)
3437                         return false;
3438                     // If multiline return next.match without setting
3439                     // matcher.hitEnd
3440                     if (multiline)
3441                         return next.match(matcher, i, seq);
3442                 } else {
3443                     return false;
3444                 }
3445             }
3446             // Matching because at the end or 1 before the end;
3447             // more input could change this so set hitEnd
3448             matcher.hitEnd = true;
3449             // If a $ matches because of end of input, then more input
3450             // could cause it to fail!
3451             matcher.requireEnd = true;
3452             return next.match(matcher, i, seq);
3453         }
3454         boolean study(TreeInfo info) {
3455             next.study(info);
3456             return info.deterministic;
3457         }
3458     }
3459 
3460     /**
3461      * Abstract node class to match one character satisfying some
3462      * boolean property.
3463      */
3464     private static abstract class CharProperty extends Node {
3465         abstract boolean isSatisfiedBy(int ch);
3466         CharProperty complement() {
3467             return new CharProperty() {
3468                     boolean isSatisfiedBy(int ch) {
3469                         return ! CharProperty.this.isSatisfiedBy(ch);}};
3470         }
3471         boolean match(Matcher matcher, int i, CharSequence seq) {
3472             if (i < matcher.to) {
3473                 int ch = Character.codePointAt(seq, i);
3474                 return isSatisfiedBy(ch)
3475                     && next.match(matcher, i+Character.charCount(ch), seq);
3476             } else {
3477                 matcher.hitEnd = true;
3478                 return false;
3479             }
3480         }
3481         boolean study(TreeInfo info) {
3482             info.minLength++;
3483             info.maxLength++;
3484             return next.study(info);
3485         }
3486     }
3487 
3488     /**
3489      * Optimized version of CharProperty that works only for
3490      * properties never satisfied by Supplementary characters.
3491      */
3492     private static abstract class BmpCharProperty extends CharProperty {
3493         boolean match(Matcher matcher, int i, CharSequence seq) {
3494             if (i < matcher.to) {
3495                 return isSatisfiedBy(seq.charAt(i))
3496                     && next.match(matcher, i+1, seq);
3497             } else {
3498                 matcher.hitEnd = true;
3499                 return false;
3500             }
3501         }
3502     }
3503 
3504     /**
3505      * Node class that matches a Supplementary Unicode character
3506      */
3507     static final class SingleS extends CharProperty {
3508         final int c;
3509         SingleS(int c) { this.c = c; }
3510         boolean isSatisfiedBy(int ch) {
3511             return ch == c;
3512         }
3513     }
3514 
3515     /**
3516      * Optimization -- matches a given BMP character
3517      */
3518     static final class Single extends BmpCharProperty {
3519         final int c;
3520         Single(int c) { this.c = c; }
3521         boolean isSatisfiedBy(int ch) {
3522             return ch == c;
3523         }
3524     }
3525 
3526     /**
3527      * Case insensitive matches a given BMP character
3528      */
3529     static final class SingleI extends BmpCharProperty {
3530         final int lower;
3531         final int upper;
3532         SingleI(int lower, int upper) {
3533             this.lower = lower;
3534             this.upper = upper;
3535         }
3536         boolean isSatisfiedBy(int ch) {
3537             return ch == lower || ch == upper;
3538         }
3539     }
3540 
3541     /**
3542      * Unicode case insensitive matches a given Unicode character
3543      */
3544     static final class SingleU extends CharProperty {
3545         final int lower;
3546         SingleU(int lower) {
3547             this.lower = lower;
3548         }
3549         boolean isSatisfiedBy(int ch) {
3550             return lower == ch ||
3551                 lower == Character.toLowerCase(Character.toUpperCase(ch));
3552         }
3553     }
3554 
3555 
3556     /**
3557      * Node class that matches a Unicode block.
3558      */
3559     static final class Block extends CharProperty {
3560         final Character.UnicodeBlock block;
3561         Block(Character.UnicodeBlock block) {
3562             this.block = block;
3563         }
3564         boolean isSatisfiedBy(int ch) {
3565             return block == Character.UnicodeBlock.of(ch);
3566         }
3567     }
3568 
3569     /**
3570      * Node class that matches a Unicode category.
3571      */
3572     static final class Category extends CharProperty {
3573         final int typeMask;
3574         Category(int typeMask) { this.typeMask = typeMask; }
3575         boolean isSatisfiedBy(int ch) {
3576             return (typeMask & (1 << Character.getType(ch))) != 0;
3577         }
3578     }
3579 
3580     /**
3581      * Node class that matches a POSIX type.
3582      */
3583     static final class Ctype extends BmpCharProperty {
3584         final int ctype;
3585         Ctype(int ctype) { this.ctype = ctype; }
3586         boolean isSatisfiedBy(int ch) {
3587             return ch < 128 && ASCII.isType(ch, ctype);
3588         }
3589     }
3590 
3591     /**
3592      * Base class for all Slice nodes
3593      */
3594     static class SliceNode extends Node {
3595         int[] buffer;
3596         SliceNode(int[] buf) {
3597             buffer = buf;
3598         }
3599         boolean study(TreeInfo info) {
3600             info.minLength += buffer.length;
3601             info.maxLength += buffer.length;
3602             return next.study(info);
3603         }
3604     }
3605 
3606     /**
3607      * Node class for a case sensitive/BMP-only sequence of literal
3608      * characters.
3609      */
3610     static final class Slice extends SliceNode {
3611         Slice(int[] buf) {
3612             super(buf);
3613         }
3614         boolean match(Matcher matcher, int i, CharSequence seq) {
3615             int[] buf = buffer;
3616             int len = buf.length;
3617             for (int j=0; j<len; j++) {
3618                 if ((i+j) >= matcher.to) {
3619                     matcher.hitEnd = true;
3620                     return false;
3621                 }
3622                 if (buf[j] != seq.charAt(i+j))
3623                     return false;
3624             }
3625             return next.match(matcher, i+len, seq);
3626         }
3627     }
3628 
3629     /**
3630      * Node class for a case_insensitive/BMP-only sequence of literal
3631      * characters.
3632      */
3633     static class SliceI extends SliceNode {
3634         SliceI(int[] buf) {
3635             super(buf);
3636         }
3637         boolean match(Matcher matcher, int i, CharSequence seq) {
3638             int[] buf = buffer;
3639             int len = buf.length;
3640             for (int j=0; j<len; j++) {
3641                 if ((i+j) >= matcher.to) {
3642                     matcher.hitEnd = true;
3643                     return false;
3644                 }
3645                 int c = seq.charAt(i+j);
3646                 if (buf[j] != c &&
3647                     buf[j] != ASCII.toLower(c))
3648                     return false;
3649             }
3650             return next.match(matcher, i+len, seq);
3651         }
3652     }
3653 
3654     /**
3655      * Node class for a unicode_case_insensitive/BMP-only sequence of
3656      * literal characters. Uses unicode case folding.
3657      */
3658     static final class SliceU extends SliceNode {
3659         SliceU(int[] buf) {
3660             super(buf);
3661         }
3662         boolean match(Matcher matcher, int i, CharSequence seq) {
3663             int[] buf = buffer;
3664             int len = buf.length;
3665             for (int j=0; j<len; j++) {
3666                 if ((i+j) >= matcher.to) {
3667                     matcher.hitEnd = true;
3668                     return false;
3669                 }
3670                 int c = seq.charAt(i+j);
3671                 if (buf[j] != c &&
3672                     buf[j] != Character.toLowerCase(Character.toUpperCase(c)))
3673                     return false;
3674             }
3675             return next.match(matcher, i+len, seq);
3676         }
3677     }
3678 
3679     /**
3680      * Node class for a case sensitive sequence of literal characters
3681      * including supplementary characters.
3682      */
3683     static final class SliceS extends SliceNode {
3684         SliceS(int[] buf) {
3685             super(buf);
3686         }
3687         boolean match(Matcher matcher, int i, CharSequence seq) {
3688             int[] buf = buffer;
3689             int x = i;
3690             for (int j = 0; j < buf.length; j++) {
3691                 if (x >= matcher.to) {
3692                     matcher.hitEnd = true;
3693                     return false;
3694                 }
3695                 int c = Character.codePointAt(seq, x);
3696                 if (buf[j] != c)
3697                     return false;
3698                 x += Character.charCount(c);
3699                 if (x > matcher.to) {
3700                     matcher.hitEnd = true;
3701                     return false;
3702                 }
3703             }
3704             return next.match(matcher, x, seq);
3705         }
3706     }
3707 
3708     /**
3709      * Node class for a case insensitive sequence of literal characters
3710      * including supplementary characters.
3711      */
3712     static class SliceIS extends SliceNode {
3713         SliceIS(int[] buf) {
3714             super(buf);
3715         }
3716         int toLower(int c) {
3717             return ASCII.toLower(c);
3718         }
3719         boolean match(Matcher matcher, int i, CharSequence seq) {
3720             int[] buf = buffer;
3721             int x = i;
3722             for (int j = 0; j < buf.length; j++) {
3723                 if (x >= matcher.to) {
3724                     matcher.hitEnd = true;
3725                     return false;
3726                 }
3727                 int c = Character.codePointAt(seq, x);
3728                 if (buf[j] != c && buf[j] != toLower(c))
3729                     return false;
3730                 x += Character.charCount(c);
3731                 if (x > matcher.to) {
3732                     matcher.hitEnd = true;
3733                     return false;
3734                 }
3735             }
3736             return next.match(matcher, x, seq);
3737         }
3738     }
3739 
3740     /**
3741      * Node class for a case insensitive sequence of literal characters.
3742      * Uses unicode case folding.
3743      */
3744     static final class SliceUS extends SliceIS {
3745         SliceUS(int[] buf) {
3746             super(buf);
3747         }
3748         int toLower(int c) {
3749             return Character.toLowerCase(Character.toUpperCase(c));
3750         }
3751     }
3752 
3753     private static boolean inRange(int lower, int ch, int upper) {
3754         return lower <= ch && ch <= upper;
3755     }
3756 
3757     /**
3758      * Returns node for matching characters within an explicit value range.
3759      */
3760     private static CharProperty rangeFor(final int lower,
3761                                          final int upper) {
3762         return new CharProperty() {
3763                 boolean isSatisfiedBy(int ch) {
3764                     return inRange(lower, ch, upper);}};
3765     }
3766 
3767     /**
3768      * Returns node for matching characters within an explicit value
3769      * range in a case insensitive manner.
3770      */
3771     private CharProperty caseInsensitiveRangeFor(final int lower,
3772                                                  final int upper) {
3773         if (has(UNICODE_CASE))
3774             return new CharProperty() {
3775                 boolean isSatisfiedBy(int ch) {
3776                     if (inRange(lower, ch, upper))
3777                         return true;
3778                     int up = Character.toUpperCase(ch);
3779                     return inRange(lower, up, upper) ||
3780                            inRange(lower, Character.toLowerCase(up), upper);}};
3781         return new CharProperty() {
3782             boolean isSatisfiedBy(int ch) {
3783                 return inRange(lower, ch, upper) ||
3784                     ASCII.isAscii(ch) &&
3785                         (inRange(lower, ASCII.toUpper(ch), upper) ||
3786                          inRange(lower, ASCII.toLower(ch), upper));
3787             }};
3788     }
3789 
3790     /**
3791      * Implements the Unicode category ALL and the dot metacharacter when
3792      * in dotall mode.
3793      */
3794     static final class All extends CharProperty {
3795         boolean isSatisfiedBy(int ch) {
3796             return true;
3797         }
3798     }
3799 
3800     /**
3801      * Node class for the dot metacharacter when dotall is not enabled.
3802      */
3803     static final class Dot extends CharProperty {
3804         boolean isSatisfiedBy(int ch) {
3805             return (ch != '\n' && ch != '\r'
3806                     && (ch|1) != '\u2029'
3807                     && ch != '\u0085');
3808         }
3809     }
3810 
3811     /**
3812      * Node class for the dot metacharacter when dotall is not enabled
3813      * but UNIX_LINES is enabled.
3814      */
3815     static final class UnixDot extends CharProperty {
3816         boolean isSatisfiedBy(int ch) {
3817             return ch != '\n';
3818         }
3819     }
3820 
3821     /**
3822      * The 0 or 1 quantifier. This one class implements all three types.
3823      */
3824     static final class Ques extends Node {
3825         Node atom;
3826         int type;
3827         Ques(Node node, int type) {
3828             this.atom = node;
3829             this.type = type;
3830         }
3831         boolean match(Matcher matcher, int i, CharSequence seq) {
3832             switch (type) {
3833             case GREEDY:
3834                 return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq))
3835                     || next.match(matcher, i, seq);
3836             case LAZY:
3837                 return next.match(matcher, i, seq)
3838                     || (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq));
3839             case POSSESSIVE:
3840                 if (atom.match(matcher, i, seq)) i = matcher.last;
3841                 return next.match(matcher, i, seq);
3842             default:
3843                 return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq);
3844             }
3845         }
3846         boolean study(TreeInfo info) {
3847             if (type != INDEPENDENT) {
3848                 int minL = info.minLength;
3849                 atom.study(info);
3850                 info.minLength = minL;
3851                 info.deterministic = false;
3852                 return next.study(info);
3853             } else {
3854                 atom.study(info);
3855                 return next.study(info);
3856             }
3857         }
3858     }
3859 
3860     /**
3861      * Handles the curly-brace style repetition with a specified minimum and
3862      * maximum occurrences. The * quantifier is handled as a special case.
3863      * This class handles the three types.
3864      */
3865     static final class Curly extends Node {
3866         Node atom;
3867         int type;
3868         int cmin;
3869         int cmax;
3870 
3871         Curly(Node node, int cmin, int cmax, int type) {
3872             this.atom = node;
3873             this.type = type;
3874             this.cmin = cmin;
3875             this.cmax = cmax;
3876         }
3877         boolean match(Matcher matcher, int i, CharSequence seq) {
3878             int j;
3879             for (j = 0; j < cmin; j++) {
3880                 if (atom.match(matcher, i, seq)) {
3881                     i = matcher.last;
3882                     continue;
3883                 }
3884                 return false;
3885             }
3886             if (type == GREEDY)
3887                 return match0(matcher, i, j, seq);
3888             else if (type == LAZY)
3889                 return match1(matcher, i, j, seq);
3890             else
3891                 return match2(matcher, i, j, seq);
3892         }
3893         // Greedy match.
3894         // i is the index to start matching at
3895         // j is the number of atoms that have matched
3896         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
3897             if (j >= cmax) {
3898                 // We have matched the maximum... continue with the rest of
3899                 // the regular expression
3900                 return next.match(matcher, i, seq);
3901             }
3902             int backLimit = j;
3903             while (atom.match(matcher, i, seq)) {
3904                 // k is the length of this match
3905                 int k = matcher.last - i;
3906                 if (k == 0) // Zero length match
3907                     break;
3908                 // Move up index and number matched
3909                 i = matcher.last;
3910                 j++;
3911                 // We are greedy so match as many as we can
3912                 while (j < cmax) {
3913                     if (!atom.match(matcher, i, seq))
3914                         break;
3915                     if (i + k != matcher.last) {
3916                         if (match0(matcher, matcher.last, j+1, seq))
3917                             return true;
3918                         break;
3919                     }
3920                     i += k;
3921                     j++;
3922                 }
3923                 // Handle backing off if match fails
3924                 while (j >= backLimit) {
3925                    if (next.match(matcher, i, seq))
3926                         return true;
3927                     i -= k;
3928                     j--;
3929                 }
3930                 return false;
3931             }
3932             return next.match(matcher, i, seq);
3933         }
3934         // Reluctant match. At this point, the minimum has been satisfied.
3935         // i is the index to start matching at
3936         // j is the number of atoms that have matched
3937         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
3938             for (;;) {
3939                 // Try finishing match without consuming any more
3940                 if (next.match(matcher, i, seq))
3941                     return true;
3942                 // At the maximum, no match found
3943                 if (j >= cmax)
3944                     return false;
3945                 // Okay, must try one more atom
3946                 if (!atom.match(matcher, i, seq))
3947                     return false;
3948                 // If we haven't moved forward then must break out
3949                 if (i == matcher.last)
3950                     return false;
3951                 // Move up index and number matched
3952                 i = matcher.last;
3953                 j++;
3954             }
3955         }
3956         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
3957             for (; j < cmax; j++) {
3958                 if (!atom.match(matcher, i, seq))
3959                     break;
3960                 if (i == matcher.last)
3961                     break;
3962                 i = matcher.last;
3963             }
3964             return next.match(matcher, i, seq);
3965         }
3966         boolean study(TreeInfo info) {
3967             // Save original info
3968             int minL = info.minLength;
3969             int maxL = info.maxLength;
3970             boolean maxV = info.maxValid;
3971             boolean detm = info.deterministic;
3972             info.reset();
3973 
3974             atom.study(info);
3975 
3976             int temp = info.minLength * cmin + minL;
3977             if (temp < minL) {
3978                 temp = 0xFFFFFFF; // arbitrary large number
3979             }
3980             info.minLength = temp;
3981 
3982             if (maxV & info.maxValid) {
3983                 temp = info.maxLength * cmax + maxL;
3984                 info.maxLength = temp;
3985                 if (temp < maxL) {
3986                     info.maxValid = false;
3987                 }
3988             } else {
3989                 info.maxValid = false;
3990             }
3991 
3992             if (info.deterministic && cmin == cmax)
3993                 info.deterministic = detm;
3994             else
3995                 info.deterministic = false;
3996 
3997             return next.study(info);
3998         }
3999     }
4000 
4001     /**
4002      * Handles the curly-brace style repetition with a specified minimum and
4003      * maximum occurrences in deterministic cases. This is an iterative
4004      * optimization over the Prolog and Loop system which would handle this
4005      * in a recursive way. The * quantifier is handled as a special case.
4006      * If capture is true then this class saves group settings and ensures
4007      * that groups are unset when backing off of a group match.
4008      */
4009     static final class GroupCurly extends Node {
4010         Node atom;
4011         int type;
4012         int cmin;
4013         int cmax;
4014         int localIndex;
4015         int groupIndex;
4016         boolean capture;
4017 
4018         GroupCurly(Node node, int cmin, int cmax, int type, int local,
4019                    int group, boolean capture) {
4020             this.atom = node;
4021             this.type = type;
4022             this.cmin = cmin;
4023             this.cmax = cmax;
4024             this.localIndex = local;
4025             this.groupIndex = group;
4026             this.capture = capture;
4027         }
4028         boolean match(Matcher matcher, int i, CharSequence seq) {
4029             int[] groups = matcher.groups;
4030             int[] locals = matcher.locals;
4031             int save0 = locals[localIndex];
4032             int save1 = 0;
4033             int save2 = 0;
4034 
4035             if (capture) {
4036                 save1 = groups[groupIndex];
4037                 save2 = groups[groupIndex+1];
4038             }
4039 
4040             // Notify GroupTail there is no need to setup group info
4041             // because it will be set here
4042             locals[localIndex] = -1;
4043 
4044             boolean ret = true;
4045             for (int j = 0; j < cmin; j++) {
4046                 if (atom.match(matcher, i, seq)) {
4047                     if (capture) {
4048                         groups[groupIndex] = i;
4049                         groups[groupIndex+1] = matcher.last;
4050                     }
4051                     i = matcher.last;
4052                 } else {
4053                     ret = false;
4054                     break;
4055                 }
4056             }
4057             if (ret) {
4058                 if (type == GREEDY) {
4059                     ret = match0(matcher, i, cmin, seq);
4060                 } else if (type == LAZY) {
4061                     ret = match1(matcher, i, cmin, seq);
4062                 } else {
4063                     ret = match2(matcher, i, cmin, seq);
4064                 }
4065             }
4066             if (!ret) {
4067                 locals[localIndex] = save0;
4068                 if (capture) {
4069                     groups[groupIndex] = save1;
4070                     groups[groupIndex+1] = save2;
4071                 }
4072             }
4073             return ret;
4074         }
4075         // Aggressive group match
4076         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4077             int[] groups = matcher.groups;
4078             int save0 = 0;
4079             int save1 = 0;
4080             if (capture) {
4081                 save0 = groups[groupIndex];
4082                 save1 = groups[groupIndex+1];
4083             }
4084             for (;;) {
4085                 if (j >= cmax)
4086                     break;
4087                 if (!atom.match(matcher, i, seq))
4088                     break;
4089                 int k = matcher.last - i;
4090                 if (k <= 0) {
4091                     if (capture) {
4092                         groups[groupIndex] = i;
4093                         groups[groupIndex+1] = i + k;
4094                     }
4095                     i = i + k;
4096                     break;
4097                 }
4098                 for (;;) {
4099                     if (capture) {
4100                         groups[groupIndex] = i;
4101                         groups[groupIndex+1] = i + k;
4102                     }
4103                     i = i + k;
4104                     if (++j >= cmax)
4105                         break;
4106                     if (!atom.match(matcher, i, seq))
4107                         break;
4108                     if (i + k != matcher.last) {
4109                         if (match0(matcher, i, j, seq))
4110                             return true;
4111                         break;
4112                     }
4113                 }
4114                 while (j > cmin) {
4115                     if (next.match(matcher, i, seq)) {
4116                         if (capture) {
4117                             groups[groupIndex+1] = i;
4118                             groups[groupIndex] = i - k;
4119                         }
4120                         i = i - k;
4121                         return true;
4122                     }
4123                     // backing off
4124                     if (capture) {
4125                         groups[groupIndex+1] = i;
4126                         groups[groupIndex] = i - k;
4127                     }
4128                     i = i - k;
4129                     j--;
4130                 }
4131                 break;
4132             }
4133             if (capture) {
4134                 groups[groupIndex] = save0;
4135                 groups[groupIndex+1] = save1;
4136             }
4137             return next.match(matcher, i, seq);
4138         }
4139         // Reluctant matching
4140         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4141             for (;;) {
4142                 if (next.match(matcher, i, seq))
4143                     return true;
4144                 if (j >= cmax)
4145                     return false;
4146                 if (!atom.match(matcher, i, seq))
4147                     return false;
4148                 if (i == matcher.last)
4149                     return false;
4150                 if (capture) {
4151                     matcher.groups[groupIndex] = i;
4152                     matcher.groups[groupIndex+1] = matcher.last;
4153                 }
4154                 i = matcher.last;
4155                 j++;
4156             }
4157         }
4158         // Possessive matching
4159         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4160             for (; j < cmax; j++) {
4161                 if (!atom.match(matcher, i, seq)) {
4162                     break;
4163                 }
4164                 if (capture) {
4165                     matcher.groups[groupIndex] = i;
4166                     matcher.groups[groupIndex+1] = matcher.last;
4167                 }
4168                 if (i == matcher.last) {
4169                     break;
4170                 }
4171                 i = matcher.last;
4172             }
4173             return next.match(matcher, i, seq);
4174         }
4175         boolean study(TreeInfo info) {
4176             // Save original info
4177             int minL = info.minLength;
4178             int maxL = info.maxLength;
4179             boolean maxV = info.maxValid;
4180             boolean detm = info.deterministic;
4181             info.reset();
4182 
4183             atom.study(info);
4184 
4185             int temp = info.minLength * cmin + minL;
4186             if (temp < minL) {
4187                 temp = 0xFFFFFFF; // Arbitrary large number
4188             }
4189             info.minLength = temp;
4190 
4191             if (maxV & info.maxValid) {
4192                 temp = info.maxLength * cmax + maxL;
4193                 info.maxLength = temp;
4194                 if (temp < maxL) {
4195                     info.maxValid = false;
4196                 }
4197             } else {
4198                 info.maxValid = false;
4199             }
4200 
4201             if (info.deterministic && cmin == cmax) {
4202                 info.deterministic = detm;
4203             } else {
4204                 info.deterministic = false;
4205             }
4206 
4207             return next.study(info);
4208         }
4209     }
4210 
4211     /**
4212      * A Guard node at the end of each atom node in a Branch. It
4213      * serves the purpose of chaining the "match" operation to
4214      * "next" but not the "study", so we can collect the TreeInfo
4215      * of each atom node without including the TreeInfo of the
4216      * "next".
4217      */
4218     static final class BranchConn extends Node {
4219         BranchConn() {};
4220         boolean match(Matcher matcher, int i, CharSequence seq) {
4221             return next.match(matcher, i, seq);
4222         }
4223         boolean study(TreeInfo info) {
4224             return info.deterministic;
4225         }
4226     }
4227 
4228     /**
4229      * Handles the branching of alternations. Note this is also used for
4230      * the ? quantifier to branch between the case where it matches once
4231      * and where it does not occur.
4232      */
4233     static final class Branch extends Node {
4234         Node[] atoms = new Node[2];
4235         int size = 2;
4236         Node conn;
4237         Branch(Node first, Node second, Node branchConn) {
4238             conn = branchConn;
4239             atoms[0] = first;
4240             atoms[1] = second;
4241         }
4242 
4243         void add(Node node) {
4244             if (size >= atoms.length) {
4245                 Node[] tmp = new Node[atoms.length*2];
4246                 System.arraycopy(atoms, 0, tmp, 0, atoms.length);
4247                 atoms = tmp;
4248             }
4249             atoms[size++] = node;
4250         }
4251 
4252         boolean match(Matcher matcher, int i, CharSequence seq) {
4253             for (int n = 0; n < size; n++) {
4254                 if (atoms[n] == null) {
4255                     if (conn.next.match(matcher, i, seq))
4256                         return true;
4257                 } else if (atoms[n].match(matcher, i, seq)) {
4258                     return true;
4259                 }
4260             }
4261             return false;
4262         }
4263 
4264         boolean study(TreeInfo info) {
4265             int minL = info.minLength;
4266             int maxL = info.maxLength;
4267             boolean maxV = info.maxValid;
4268 
4269             int minL2 = Integer.MAX_VALUE; //arbitrary large enough num
4270             int maxL2 = -1;
4271             for (int n = 0; n < size; n++) {
4272                 info.reset();
4273                 if (atoms[n] != null)
4274                     atoms[n].study(info);
4275                 minL2 = Math.min(minL2, info.minLength);
4276                 maxL2 = Math.max(maxL2, info.maxLength);
4277                 maxV = (maxV & info.maxValid);
4278             }
4279 
4280             minL += minL2;
4281             maxL += maxL2;
4282 
4283             info.reset();
4284             conn.next.study(info);
4285 
4286             info.minLength += minL;
4287             info.maxLength += maxL;
4288             info.maxValid &= maxV;
4289             info.deterministic = false;
4290             return false;
4291         }
4292     }
4293 
4294     /**
4295      * The GroupHead saves the location where the group begins in the locals
4296      * and restores them when the match is done.
4297      *
4298      * The matchRef is used when a reference to this group is accessed later
4299      * in the expression. The locals will have a negative value in them to
4300      * indicate that we do not want to unset the group if the reference
4301      * doesn't match.
4302      */
4303     static final class GroupHead extends Node {
4304         int localIndex;
4305         GroupHead(int localCount) {
4306             localIndex = localCount;
4307         }
4308         boolean match(Matcher matcher, int i, CharSequence seq) {
4309             int save = matcher.locals[localIndex];
4310             matcher.locals[localIndex] = i;
4311             boolean ret = next.match(matcher, i, seq);
4312             matcher.locals[localIndex] = save;
4313             return ret;
4314         }
4315         boolean matchRef(Matcher matcher, int i, CharSequence seq) {
4316             int save = matcher.locals[localIndex];
4317             matcher.locals[localIndex] = ~i; // HACK
4318             boolean ret = next.match(matcher, i, seq);
4319             matcher.locals[localIndex] = save;
4320             return ret;
4321         }
4322     }
4323 
4324     /**
4325      * Recursive reference to a group in the regular expression. It calls
4326      * matchRef because if the reference fails to match we would not unset
4327      * the group.
4328      */
4329     static final class GroupRef extends Node {
4330         GroupHead head;
4331         GroupRef(GroupHead head) {
4332             this.head = head;
4333         }
4334         boolean match(Matcher matcher, int i, CharSequence seq) {
4335             return head.matchRef(matcher, i, seq)
4336                 && next.match(matcher, matcher.last, seq);
4337         }
4338         boolean study(TreeInfo info) {
4339             info.maxValid = false;
4340             info.deterministic = false;
4341             return next.study(info);
4342         }
4343     }
4344 
4345     /**
4346      * The GroupTail handles the setting of group beginning and ending
4347      * locations when groups are successfully matched. It must also be able to
4348      * unset groups that have to be backed off of.
4349      *
4350      * The GroupTail node is also used when a previous group is referenced,
4351      * and in that case no group information needs to be set.
4352      */
4353     static final class GroupTail extends Node {
4354         int localIndex;
4355         int groupIndex;
4356         GroupTail(int localCount, int groupCount) {
4357             localIndex = localCount;
4358             groupIndex = groupCount + groupCount;
4359         }
4360         boolean match(Matcher matcher, int i, CharSequence seq) {
4361             int tmp = matcher.locals[localIndex];
4362             if (tmp >= 0) { // This is the normal group case.
4363                 // Save the group so we can unset it if it
4364                 // backs off of a match.
4365                 int groupStart = matcher.groups[groupIndex];
4366                 int groupEnd = matcher.groups[groupIndex+1];
4367 
4368                 matcher.groups[groupIndex] = tmp;
4369                 matcher.groups[groupIndex+1] = i;
4370                 if (next.match(matcher, i, seq)) {
4371                     return true;
4372                 }
4373                 matcher.groups[groupIndex] = groupStart;
4374                 matcher.groups[groupIndex+1] = groupEnd;
4375                 return false;
4376             } else {
4377                 // This is a group reference case. We don't need to save any
4378                 // group info because it isn't really a group.
4379                 matcher.last = i;
4380                 return true;
4381             }
4382         }
4383     }
4384 
4385     /**
4386      * This sets up a loop to handle a recursive quantifier structure.
4387      */
4388     static final class Prolog extends Node {
4389         Loop loop;
4390         Prolog(Loop loop) {
4391             this.loop = loop;
4392         }
4393         boolean match(Matcher matcher, int i, CharSequence seq) {
4394             return loop.matchInit(matcher, i, seq);
4395         }
4396         boolean study(TreeInfo info) {
4397             return loop.study(info);
4398         }
4399     }
4400 
4401     /**
4402      * Handles the repetition count for a greedy Curly. The matchInit
4403      * is called from the Prolog to save the index of where the group
4404      * beginning is stored. A zero length group check occurs in the
4405      * normal match but is skipped in the matchInit.
4406      */
4407     static class Loop extends Node {
4408         Node body;
4409         int countIndex; // local count index in matcher locals
4410         int beginIndex; // group beginning index
4411         int cmin, cmax;
4412         Loop(int countIndex, int beginIndex) {
4413             this.countIndex = countIndex;
4414             this.beginIndex = beginIndex;
4415         }
4416         boolean match(Matcher matcher, int i, CharSequence seq) {
4417             // Avoid infinite loop in zero-length case.
4418             if (i > matcher.locals[beginIndex]) {
4419                 int count = matcher.locals[countIndex];
4420 
4421                 // This block is for before we reach the minimum
4422                 // iterations required for the loop to match
4423                 if (count < cmin) {
4424                     matcher.locals[countIndex] = count + 1;
4425                     boolean b = body.match(matcher, i, seq);
4426                     // If match failed we must backtrack, so
4427                     // the loop count should NOT be incremented
4428                     if (!b)
4429                         matcher.locals[countIndex] = count;
4430                     // Return success or failure since we are under
4431                     // minimum
4432                     return b;
4433                 }
4434                 // This block is for after we have the minimum
4435                 // iterations required for the loop to match
4436                 if (count < cmax) {
4437                     matcher.locals[countIndex] = count + 1;
4438                     boolean b = body.match(matcher, i, seq);
4439                     // If match failed we must backtrack, so
4440                     // the loop count should NOT be incremented
4441                     if (!b)
4442                         matcher.locals[countIndex] = count;
4443                     else
4444                         return true;
4445                 }
4446             }
4447             return next.match(matcher, i, seq);
4448         }
4449         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4450             int save = matcher.locals[countIndex];
4451             boolean ret = false;
4452             if (0 < cmin) {
4453                 matcher.locals[countIndex] = 1;
4454                 ret = body.match(matcher, i, seq);
4455             } else if (0 < cmax) {
4456                 matcher.locals[countIndex] = 1;
4457                 ret = body.match(matcher, i, seq);
4458                 if (ret == false)
4459                     ret = next.match(matcher, i, seq);
4460             } else {
4461                 ret = next.match(matcher, i, seq);
4462             }
4463             matcher.locals[countIndex] = save;
4464             return ret;
4465         }
4466         boolean study(TreeInfo info) {
4467             info.maxValid = false;
4468             info.deterministic = false;
4469             return false;
4470         }
4471     }
4472 
4473     /**
4474      * Handles the repetition count for a reluctant Curly. The matchInit
4475      * is called from the Prolog to save the index of where the group
4476      * beginning is stored. A zero length group check occurs in the
4477      * normal match but is skipped in the matchInit.
4478      */
4479     static final class LazyLoop extends Loop {
4480         LazyLoop(int countIndex, int beginIndex) {
4481             super(countIndex, beginIndex);
4482         }
4483         boolean match(Matcher matcher, int i, CharSequence seq) {
4484             // Check for zero length group
4485             if (i > matcher.locals[beginIndex]) {
4486                 int count = matcher.locals[countIndex];
4487                 if (count < cmin) {
4488                     matcher.locals[countIndex] = count + 1;
4489                     boolean result = body.match(matcher, i, seq);
4490                     // If match failed we must backtrack, so
4491                     // the loop count should NOT be incremented
4492                     if (!result)
4493                         matcher.locals[countIndex] = count;
4494                     return result;
4495                 }
4496                 if (next.match(matcher, i, seq))
4497                     return true;
4498                 if (count < cmax) {
4499                     matcher.locals[countIndex] = count + 1;
4500                     boolean result = body.match(matcher, i, seq);
4501                     // If match failed we must backtrack, so
4502                     // the loop count should NOT be incremented
4503                     if (!result)
4504                         matcher.locals[countIndex] = count;
4505                     return result;
4506                 }
4507                 return false;
4508             }
4509             return next.match(matcher, i, seq);
4510         }
4511         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4512             int save = matcher.locals[countIndex];
4513             boolean ret = false;
4514             if (0 < cmin) {
4515                 matcher.locals[countIndex] = 1;
4516                 ret = body.match(matcher, i, seq);
4517             } else if (next.match(matcher, i, seq)) {
4518                 ret = true;
4519             } else if (0 < cmax) {
4520                 matcher.locals[countIndex] = 1;
4521                 ret = body.match(matcher, i, seq);
4522             }
4523             matcher.locals[countIndex] = save;
4524             return ret;
4525         }
4526         boolean study(TreeInfo info) {
4527             info.maxValid = false;
4528             info.deterministic = false;
4529             return false;
4530         }
4531     }
4532 
4533     /**
4534      * Refers to a group in the regular expression. Attempts to match
4535      * whatever the group referred to last matched.
4536      */
4537     static class BackRef extends Node {
4538         int groupIndex;
4539         BackRef(int groupCount) {
4540             super();
4541             groupIndex = groupCount + groupCount;
4542         }
4543         boolean match(Matcher matcher, int i, CharSequence seq) {
4544             int j = matcher.groups[groupIndex];
4545             int k = matcher.groups[groupIndex+1];
4546 
4547             int groupSize = k - j;
4548 
4549             // If the referenced group didn't match, neither can this
4550             if (j < 0)
4551                 return false;
4552 
4553             // If there isn't enough input left no match
4554             if (i + groupSize > matcher.to) {
4555                 matcher.hitEnd = true;
4556                 return false;
4557             }
4558 
4559             // Check each new char to make sure it matches what the group
4560             // referenced matched last time around
4561             for (int index=0; index<groupSize; index++)
4562                 if (seq.charAt(i+index) != seq.charAt(j+index))
4563                     return false;
4564 
4565             return next.match(matcher, i+groupSize, seq);
4566         }
4567         boolean study(TreeInfo info) {
4568             info.maxValid = false;
4569             return next.study(info);
4570         }
4571     }
4572 
4573     static class CIBackRef extends Node {
4574         int groupIndex;
4575         boolean doUnicodeCase;
4576         CIBackRef(int groupCount, boolean doUnicodeCase) {
4577             super();
4578             groupIndex = groupCount + groupCount;
4579             this.doUnicodeCase = doUnicodeCase;
4580         }
4581         boolean match(Matcher matcher, int i, CharSequence seq) {
4582             int j = matcher.groups[groupIndex];
4583             int k = matcher.groups[groupIndex+1];
4584 
4585             int groupSize = k - j;
4586 
4587             // If the referenced group didn't match, neither can this
4588             if (j < 0)
4589                 return false;
4590 
4591             // If there isn't enough input left no match
4592             if (i + groupSize > matcher.to) {
4593                 matcher.hitEnd = true;
4594                 return false;
4595             }
4596 
4597             // Check each new char to make sure it matches what the group
4598             // referenced matched last time around
4599             int x = i;
4600             for (int index=0; index<groupSize; index++) {
4601                 int c1 = Character.codePointAt(seq, x);
4602                 int c2 = Character.codePointAt(seq, j);
4603                 if (c1 != c2) {
4604                     if (doUnicodeCase) {
4605                         int cc1 = Character.toUpperCase(c1);
4606                         int cc2 = Character.toUpperCase(c2);
4607                         if (cc1 != cc2 &&
4608                             Character.toLowerCase(cc1) !=
4609                             Character.toLowerCase(cc2))
4610                             return false;
4611                     } else {
4612                         if (ASCII.toLower(c1) != ASCII.toLower(c2))
4613                             return false;
4614                     }
4615                 }
4616                 x += Character.charCount(c1);
4617                 j += Character.charCount(c2);
4618             }
4619 
4620             return next.match(matcher, i+groupSize, seq);
4621         }
4622         boolean study(TreeInfo info) {
4623             info.maxValid = false;
4624             return next.study(info);
4625         }
4626     }
4627 
4628     /**
4629      * Searches until the next instance of its atom. This is useful for
4630      * finding the atom efficiently without passing an instance of it
4631      * (greedy problem) and without a lot of wasted search time (reluctant
4632      * problem).
4633      */
4634     static final class First extends Node {
4635         Node atom;
4636         First(Node node) {
4637             this.atom = BnM.optimize(node);
4638         }
4639         boolean match(Matcher matcher, int i, CharSequence seq) {
4640             if (atom instanceof BnM) {
4641                 return atom.match(matcher, i, seq)
4642                     && next.match(matcher, matcher.last, seq);
4643             }
4644             for (;;) {
4645                 if (i > matcher.to) {
4646                     matcher.hitEnd = true;
4647                     return false;
4648                 }
4649                 if (atom.match(matcher, i, seq)) {
4650                     return next.match(matcher, matcher.last, seq);
4651                 }
4652                 i += countChars(seq, i, 1);
4653                 matcher.first++;
4654             }
4655         }
4656         boolean study(TreeInfo info) {
4657             atom.study(info);
4658             info.maxValid = false;
4659             info.deterministic = false;
4660             return next.study(info);
4661         }
4662     }
4663 
4664     static final class Conditional extends Node {
4665         Node cond, yes, not;
4666         Conditional(Node cond, Node yes, Node not) {
4667             this.cond = cond;
4668             this.yes = yes;
4669             this.not = not;
4670         }
4671         boolean match(Matcher matcher, int i, CharSequence seq) {
4672             if (cond.match(matcher, i, seq)) {
4673                 return yes.match(matcher, i, seq);
4674             } else {
4675                 return not.match(matcher, i, seq);
4676             }
4677         }
4678         boolean study(TreeInfo info) {
4679             int minL = info.minLength;
4680             int maxL = info.maxLength;
4681             boolean maxV = info.maxValid;
4682             info.reset();
4683             yes.study(info);
4684 
4685             int minL2 = info.minLength;
4686             int maxL2 = info.maxLength;
4687             boolean maxV2 = info.maxValid;
4688             info.reset();
4689             not.study(info);
4690 
4691             info.minLength = minL + Math.min(minL2, info.minLength);
4692             info.maxLength = maxL + Math.max(maxL2, info.maxLength);
4693             info.maxValid = (maxV & maxV2 & info.maxValid);
4694             info.deterministic = false;
4695             return next.study(info);
4696         }
4697     }
4698 
4699     /**
4700      * Zero width positive lookahead.
4701      */
4702     static final class Pos extends Node {
4703         Node cond;
4704         Pos(Node cond) {
4705             this.cond = cond;
4706         }
4707         boolean match(Matcher matcher, int i, CharSequence seq) {
4708             int savedTo = matcher.to;
4709             boolean conditionMatched = false;
4710 
4711             // Relax transparent region boundaries for lookahead
4712             if (matcher.transparentBounds)
4713                 matcher.to = matcher.getTextLength();
4714             try {
4715                 conditionMatched = cond.match(matcher, i, seq);
4716             } finally {
4717                 // Reinstate region boundaries
4718                 matcher.to = savedTo;
4719             }
4720             return conditionMatched && next.match(matcher, i, seq);
4721         }
4722     }
4723 
4724     /**
4725      * Zero width negative lookahead.
4726      */
4727     static final class Neg extends Node {
4728         Node cond;
4729         Neg(Node cond) {
4730             this.cond = cond;
4731         }
4732         boolean match(Matcher matcher, int i, CharSequence seq) {
4733             int savedTo = matcher.to;
4734             boolean conditionMatched = false;
4735 
4736             // Relax transparent region boundaries for lookahead
4737             if (matcher.transparentBounds)
4738                 matcher.to = matcher.getTextLength();
4739             try {
4740                 if (i < matcher.to) {
4741                     conditionMatched = !cond.match(matcher, i, seq);
4742                 } else {
4743                     // If a negative lookahead succeeds then more input
4744                     // could cause it to fail!
4745                     matcher.requireEnd = true;
4746                     conditionMatched = !cond.match(matcher, i, seq);
4747                 }
4748             } finally {
4749                 // Reinstate region boundaries
4750                 matcher.to = savedTo;
4751             }
4752             return conditionMatched && next.match(matcher, i, seq);
4753         }
4754     }
4755 
4756     /**
4757      * For use with lookbehinds; matches the position where the lookbehind
4758      * was encountered.
4759      */
4760     static Node lookbehindEnd = new Node() {
4761         boolean match(Matcher matcher, int i, CharSequence seq) {
4762             return i == matcher.lookbehindTo;
4763         }
4764     };
4765 
4766     /**
4767      * Zero width positive lookbehind.
4768      */
4769     static class Behind extends Node {
4770         Node cond;
4771         int rmax, rmin;
4772         Behind(Node cond, int rmax, int rmin) {
4773             this.cond = cond;
4774             this.rmax = rmax;
4775             this.rmin = rmin;
4776         }
4777 
4778         boolean match(Matcher matcher, int i, CharSequence seq) {
4779             int savedFrom = matcher.from;
4780             boolean conditionMatched = false;
4781             int startIndex = (!matcher.transparentBounds) ?
4782                              matcher.from : 0;
4783             int from = Math.max(i - rmax, startIndex);
4784             // Set end boundary
4785             int savedLBT = matcher.lookbehindTo;
4786             matcher.lookbehindTo = i;
4787             // Relax transparent region boundaries for lookbehind
4788             if (matcher.transparentBounds)
4789                 matcher.from = 0;
4790             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
4791                 conditionMatched = cond.match(matcher, j, seq);
4792             }
4793             matcher.from = savedFrom;
4794             matcher.lookbehindTo = savedLBT;
4795             return conditionMatched && next.match(matcher, i, seq);
4796         }
4797     }
4798 
4799     /**
4800      * Zero width positive lookbehind, including supplementary
4801      * characters or unpaired surrogates.
4802      */
4803     static final class BehindS extends Behind {
4804         BehindS(Node cond, int rmax, int rmin) {
4805             super(cond, rmax, rmin);
4806         }
4807         boolean match(Matcher matcher, int i, CharSequence seq) {
4808             int rmaxChars = countChars(seq, i, -rmax);
4809             int rminChars = countChars(seq, i, -rmin);
4810             int savedFrom = matcher.from;
4811             int startIndex = (!matcher.transparentBounds) ?
4812                              matcher.from : 0;
4813             boolean conditionMatched = false;
4814             int from = Math.max(i - rmaxChars, startIndex);
4815             // Set end boundary
4816             int savedLBT = matcher.lookbehindTo;
4817             matcher.lookbehindTo = i;
4818             // Relax transparent region boundaries for lookbehind
4819             if (matcher.transparentBounds)
4820                 matcher.from = 0;
4821 
4822             for (int j = i - rminChars;
4823                  !conditionMatched && j >= from;
4824                  j -= j>from ? countChars(seq, j, -1) : 1) {
4825                 conditionMatched = cond.match(matcher, j, seq);
4826             }
4827             matcher.from = savedFrom;
4828             matcher.lookbehindTo = savedLBT;
4829             return conditionMatched && next.match(matcher, i, seq);
4830         }
4831     }
4832 
4833     /**
4834      * Zero width negative lookbehind.
4835      */
4836     static class NotBehind extends Node {
4837         Node cond;
4838         int rmax, rmin;
4839         NotBehind(Node cond, int rmax, int rmin) {
4840             this.cond = cond;
4841             this.rmax = rmax;
4842             this.rmin = rmin;
4843         }
4844 
4845         boolean match(Matcher matcher, int i, CharSequence seq) {
4846             int savedLBT = matcher.lookbehindTo;
4847             int savedFrom = matcher.from;
4848             boolean conditionMatched = false;
4849             int startIndex = (!matcher.transparentBounds) ?
4850                              matcher.from : 0;
4851             int from = Math.max(i - rmax, startIndex);
4852             matcher.lookbehindTo = i;
4853             // Relax transparent region boundaries for lookbehind
4854             if (matcher.transparentBounds)
4855                 matcher.from = 0;
4856             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
4857                 conditionMatched = cond.match(matcher, j, seq);
4858             }
4859             // Reinstate region boundaries
4860             matcher.from = savedFrom;
4861             matcher.lookbehindTo = savedLBT;
4862             return !conditionMatched && next.match(matcher, i, seq);
4863         }
4864     }
4865 
4866     /**
4867      * Zero width negative lookbehind, including supplementary
4868      * characters or unpaired surrogates.
4869      */
4870     static final class NotBehindS extends NotBehind {
4871         NotBehindS(Node cond, int rmax, int rmin) {
4872             super(cond, rmax, rmin);
4873         }
4874         boolean match(Matcher matcher, int i, CharSequence seq) {
4875             int rmaxChars = countChars(seq, i, -rmax);
4876             int rminChars = countChars(seq, i, -rmin);
4877             int savedFrom = matcher.from;
4878             int savedLBT = matcher.lookbehindTo;
4879             boolean conditionMatched = false;
4880             int startIndex = (!matcher.transparentBounds) ?
4881                              matcher.from : 0;
4882             int from = Math.max(i - rmaxChars, startIndex);
4883             matcher.lookbehindTo = i;
4884             // Relax transparent region boundaries for lookbehind
4885             if (matcher.transparentBounds)
4886                 matcher.from = 0;
4887             for (int j = i - rminChars;
4888                  !conditionMatched && j >= from;
4889                  j -= j>from ? countChars(seq, j, -1) : 1) {
4890                 conditionMatched = cond.match(matcher, j, seq);
4891             }
4892             //Reinstate region boundaries
4893             matcher.from = savedFrom;
4894             matcher.lookbehindTo = savedLBT;
4895             return !conditionMatched && next.match(matcher, i, seq);
4896         }
4897     }
4898 
4899     /**
4900      * Returns the set union of two CharProperty nodes.
4901      */
4902     private static CharProperty union(final CharProperty lhs,
4903                                       final CharProperty rhs) {
4904         return new CharProperty() {
4905                 boolean isSatisfiedBy(int ch) {
4906                     return lhs.isSatisfiedBy(ch) || rhs.isSatisfiedBy(ch);}};
4907     }
4908 
4909     /**
4910      * Returns the set intersection of two CharProperty nodes.
4911      */
4912     private static CharProperty intersection(final CharProperty lhs,
4913                                              final CharProperty rhs) {
4914         return new CharProperty() {
4915                 boolean isSatisfiedBy(int ch) {
4916                     return lhs.isSatisfiedBy(ch) && rhs.isSatisfiedBy(ch);}};
4917     }
4918 
4919     /**
4920      * Returns the set difference of two CharProperty nodes.
4921      */
4922     private static CharProperty setDifference(final CharProperty lhs,
4923                                               final CharProperty rhs) {
4924         return new CharProperty() {
4925                 boolean isSatisfiedBy(int ch) {
4926                     return ! rhs.isSatisfiedBy(ch) && lhs.isSatisfiedBy(ch);}};
4927     }
4928 
4929     /**
4930      * Handles word boundaries. Includes a field to allow this one class to
4931      * deal with the different types of word boundaries we can match. The word
4932      * characters include underscores, letters, and digits. Non spacing marks
4933      * can are also part of a word if they have a base character, otherwise
4934      * they are ignored for purposes of finding word boundaries.
4935      */
4936     static final class Bound extends Node {
4937         static int LEFT = 0x1;
4938         static int RIGHT= 0x2;
4939         static int BOTH = 0x3;
4940         static int NONE = 0x4;
4941         int type;
4942         Bound(int n) {
4943             type = n;
4944         }
4945         int check(Matcher matcher, int i, CharSequence seq) {
4946             int ch;
4947             boolean left = false;
4948             int startIndex = matcher.from;
4949             int endIndex = matcher.to;
4950             if (matcher.transparentBounds) {
4951                 startIndex = 0;
4952                 endIndex = matcher.getTextLength();
4953             }
4954             if (i > startIndex) {
4955                 ch = Character.codePointBefore(seq, i);
4956                 left = (ch == '_' || Character.isLetterOrDigit(ch) ||
4957                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
4958                      && hasBaseCharacter(matcher, i-1, seq)));
4959             }
4960             boolean right = false;
4961             if (i < endIndex) {
4962                 ch = Character.codePointAt(seq, i);
4963                 right = (ch == '_' || Character.isLetterOrDigit(ch) ||
4964                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
4965                      && hasBaseCharacter(matcher, i, seq)));
4966             } else {
4967                 // Tried to access char past the end
4968                 matcher.hitEnd = true;
4969                 // The addition of another char could wreck a boundary
4970                 matcher.requireEnd = true;
4971             }
4972             return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE);
4973         }
4974         boolean match(Matcher matcher, int i, CharSequence seq) {
4975             return (check(matcher, i, seq) & type) > 0
4976                 && next.match(matcher, i, seq);
4977         }
4978     }
4979 
4980     /**
4981      * Non spacing marks only count as word characters in bounds calculations
4982      * if they have a base character.
4983      */
4984     private static boolean hasBaseCharacter(Matcher matcher, int i,
4985                                             CharSequence seq)
4986     {
4987         int start = (!matcher.transparentBounds) ?
4988             matcher.from : 0;
4989         for (int x=i; x >= start; x--) {
4990             int ch = Character.codePointAt(seq, x);
4991             if (Character.isLetterOrDigit(ch))
4992                 return true;
4993             if (Character.getType(ch) == Character.NON_SPACING_MARK)
4994                 continue;
4995             return false;
4996         }
4997         return false;
4998     }
4999 
5000     /**
5001      * Attempts to match a slice in the input using the Boyer-Moore string
5002      * matching algorithm. The algorithm is based on the idea that the
5003      * pattern can be shifted farther ahead in the search text if it is
5004      * matched right to left.
5005      * <p>
5006      * The pattern is compared to the input one character at a time, from
5007      * the rightmost character in the pattern to the left. If the characters
5008      * all match the pattern has been found. If a character does not match,
5009      * the pattern is shifted right a distance that is the maximum of two
5010      * functions, the bad character shift and the good suffix shift. This
5011      * shift moves the attempted match position through the input more
5012      * quickly than a naive one position at a time check.
5013      * <p>
5014      * The bad character shift is based on the character from the text that
5015      * did not match. If the character does not appear in the pattern, the
5016      * pattern can be shifted completely beyond the bad character. If the
5017      * character does occur in the pattern, the pattern can be shifted to
5018      * line the pattern up with the next occurrence of that character.
5019      * <p>
5020      * The good suffix shift is based on the idea that some subset on the right
5021      * side of the pattern has matched. When a bad character is found, the
5022      * pattern can be shifted right by the pattern length if the subset does
5023      * not occur again in pattern, or by the amount of distance to the
5024      * next occurrence of the subset in the pattern.
5025      *
5026      * Boyer-Moore search methods adapted from code by Amy Yu.
5027      */
5028     static class BnM extends Node {
5029         int[] buffer;
5030         int[] lastOcc;
5031         int[] optoSft;
5032 
5033         /**
5034          * Pre calculates arrays needed to generate the bad character
5035          * shift and the good suffix shift. Only the last seven bits
5036          * are used to see if chars match; This keeps the tables small
5037          * and covers the heavily used ASCII range, but occasionally
5038          * results in an aliased match for the bad character shift.
5039          */
5040         static Node optimize(Node node) {
5041             if (!(node instanceof Slice)) {
5042                 return node;
5043             }
5044 
5045             int[] src = ((Slice) node).buffer;
5046             int patternLength = src.length;
5047             // The BM algorithm requires a bit of overhead;
5048             // If the pattern is short don't use it, since
5049             // a shift larger than the pattern length cannot
5050             // be used anyway.
5051             if (patternLength < 4) {
5052                 return node;
5053             }
5054             int i, j, k;
5055             int[] lastOcc = new int[128];
5056             int[] optoSft = new int[patternLength];
5057             // Precalculate part of the bad character shift
5058             // It is a table for where in the pattern each
5059             // lower 7-bit value occurs
5060             for (i = 0; i < patternLength; i++) {
5061                 lastOcc[src[i]&0x7F] = i + 1;
5062             }
5063             // Precalculate the good suffix shift
5064             // i is the shift amount being considered
5065 NEXT:       for (i = patternLength; i > 0; i--) {
5066                 // j is the beginning index of suffix being considered
5067                 for (j = patternLength - 1; j >= i; j--) {
5068                     // Testing for good suffix
5069                     if (src[j] == src[j-i]) {
5070                         // src[j..len] is a good suffix
5071                         optoSft[j-1] = i;
5072                     } else {
5073                         // No match. The array has already been
5074                         // filled up with correct values before.
5075                         continue NEXT;
5076                     }
5077                 }
5078                 // This fills up the remaining of optoSft
5079                 // any suffix can not have larger shift amount
5080                 // then its sub-suffix. Why???
5081                 while (j > 0) {
5082                     optoSft[--j] = i;
5083                 }
5084             }
5085             // Set the guard value because of unicode compression
5086             optoSft[patternLength-1] = 1;
5087             if (node instanceof SliceS)
5088                 return new BnMS(src, lastOcc, optoSft, node.next);
5089             return new BnM(src, lastOcc, optoSft, node.next);
5090         }
5091         BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5092             this.buffer = src;
5093             this.lastOcc = lastOcc;
5094             this.optoSft = optoSft;
5095             this.next = next;
5096         }
5097         boolean match(Matcher matcher, int i, CharSequence seq) {
5098             int[] src = buffer;
5099             int patternLength = src.length;
5100             int last = matcher.to - patternLength;
5101 
5102             // Loop over all possible match positions in text
5103 NEXT:       while (i <= last) {
5104                 // Loop over pattern from right to left
5105                 for (int j = patternLength - 1; j >= 0; j--) {
5106                     int ch = seq.charAt(i+j);
5107                     if (ch != src[j]) {
5108                         // Shift search to the right by the maximum of the
5109                         // bad character shift and the good suffix shift
5110                         i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]);
5111                         continue NEXT;
5112                     }
5113                 }
5114                 // Entire pattern matched starting at i
5115                 matcher.first = i;
5116                 boolean ret = next.match(matcher, i + patternLength, seq);
5117                 if (ret) {
5118                     matcher.first = i;
5119                     matcher.groups[0] = matcher.first;
5120                     matcher.groups[1] = matcher.last;
5121                     return true;
5122                 }
5123                 i++;
5124             }
5125             // BnM is only used as the leading node in the unanchored case,
5126             // and it replaced its Start() which always searches to the end
5127             // if it doesn't find what it's looking for, so hitEnd is true.
5128             matcher.hitEnd = true;
5129             return false;
5130         }
5131         boolean study(TreeInfo info) {
5132             info.minLength += buffer.length;
5133             info.maxValid = false;
5134             return next.study(info);
5135         }
5136     }
5137 
5138     /**
5139      * Supplementary support version of BnM(). Unpaired surrogates are
5140      * also handled by this class.
5141      */
5142     static final class BnMS extends BnM {
5143         int lengthInChars;
5144 
5145         BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5146             super(src, lastOcc, optoSft, next);
5147             for (int x = 0; x < buffer.length; x++) {
5148                 lengthInChars += Character.charCount(buffer[x]);
5149             }
5150         }
5151         boolean match(Matcher matcher, int i, CharSequence seq) {
5152             int[] src = buffer;
5153             int patternLength = src.length;
5154             int last = matcher.to - lengthInChars;
5155 
5156             // Loop over all possible match positions in text
5157 NEXT:       while (i <= last) {
5158                 // Loop over pattern from right to left
5159                 int ch;
5160                 for (int j = countChars(seq, i, patternLength), x = patternLength - 1;
5161                      j > 0; j -= Character.charCount(ch), x--) {
5162                     ch = Character.codePointBefore(seq, i+j);
5163                     if (ch != src[x]) {
5164                         // Shift search to the right by the maximum of the
5165                         // bad character shift and the good suffix shift
5166                         int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]);
5167                         i += countChars(seq, i, n);
5168                         continue NEXT;
5169                     }
5170                 }
5171                 // Entire pattern matched starting at i
5172                 matcher.first = i;
5173                 boolean ret = next.match(matcher, i + lengthInChars, seq);
5174                 if (ret) {
5175                     matcher.first = i;
5176                     matcher.groups[0] = matcher.first;
5177                     matcher.groups[1] = matcher.last;
5178                     return true;
5179                 }
5180                 i += countChars(seq, i, 1);
5181             }
5182             matcher.hitEnd = true;
5183             return false;
5184         }
5185     }
5186 
5187 ///////////////////////////////////////////////////////////////////////////////
5188 ///////////////////////////////////////////////////////////////////////////////
5189 
5190     /**
5191      *  This must be the very first initializer.
5192      */
5193     static Node accept = new Node();
5194 
5195     static Node lastAccept = new LastNode();
5196 
5197     private static class CharPropertyNames {
5198 
5199         static CharProperty charPropertyFor(String name) {
5200             CharPropertyFactory m = map.get(name);
5201             return m == null ? null : m.make();
5202         }
5203 
5204         private static abstract class CharPropertyFactory {
5205             abstract CharProperty make();
5206         }
5207 
5208         private static void defCategory(String name,
5209                                         final int typeMask) {
5210             map.put(name, new CharPropertyFactory() {
5211                     CharProperty make() { return new Category(typeMask);}});
5212         }
5213 
5214         private static void defRange(String name,
5215                                      final int lower, final int upper) {
5216             map.put(name, new CharPropertyFactory() {
5217                     CharProperty make() { return rangeFor(lower, upper);}});
5218         }
5219 
5220         private static void defCtype(String name,
5221                                      final int ctype) {
5222             map.put(name, new CharPropertyFactory() {
5223                     CharProperty make() { return new Ctype(ctype);}});
5224         }
5225 
5226         private static abstract class CloneableProperty
5227             extends CharProperty implements Cloneable
5228         {
5229             public CloneableProperty clone() {
5230                 try {
5231                     return (CloneableProperty) super.clone();
5232                 } catch (CloneNotSupportedException e) {
5233                     throw new AssertionError(e);
5234                 }
5235             }
5236         }
5237 
5238         private static void defClone(String name,
5239                                      final CloneableProperty p) {
5240             map.put(name, new CharPropertyFactory() {
5241                     CharProperty make() { return p.clone();}});
5242         }
5243 
5244         private static final HashMap<String, CharPropertyFactory> map
5245             = new HashMap<String, CharPropertyFactory>();
5246 
5247         static {
5248             // Unicode character property aliases, defined in
5249             // http://www.unicode.org/Public/UNIDATA/PropertyValueAliases.txt
5250             defCategory("Cn", 1<<Character.UNASSIGNED);
5251             defCategory("Lu", 1<<Character.UPPERCASE_LETTER);
5252             defCategory("Ll", 1<<Character.LOWERCASE_LETTER);
5253             defCategory("Lt", 1<<Character.TITLECASE_LETTER);
5254             defCategory("Lm", 1<<Character.MODIFIER_LETTER);
5255             defCategory("Lo", 1<<Character.OTHER_LETTER);
5256             defCategory("Mn", 1<<Character.NON_SPACING_MARK);
5257             defCategory("Me", 1<<Character.ENCLOSING_MARK);
5258             defCategory("Mc", 1<<Character.COMBINING_SPACING_MARK);
5259             defCategory("Nd", 1<<Character.DECIMAL_DIGIT_NUMBER);
5260             defCategory("Nl", 1<<Character.LETTER_NUMBER);
5261             defCategory("No", 1<<Character.OTHER_NUMBER);
5262             defCategory("Zs", 1<<Character.SPACE_SEPARATOR);
5263             defCategory("Zl", 1<<Character.LINE_SEPARATOR);
5264             defCategory("Zp", 1<<Character.PARAGRAPH_SEPARATOR);
5265             defCategory("Cc", 1<<Character.CONTROL);
5266             defCategory("Cf", 1<<Character.FORMAT);
5267             defCategory("Co", 1<<Character.PRIVATE_USE);
5268             defCategory("Cs", 1<<Character.SURROGATE);
5269             defCategory("Pd", 1<<Character.DASH_PUNCTUATION);
5270             defCategory("Ps", 1<<Character.START_PUNCTUATION);
5271             defCategory("Pe", 1<<Character.END_PUNCTUATION);
5272             defCategory("Pc", 1<<Character.CONNECTOR_PUNCTUATION);
5273             defCategory("Po", 1<<Character.OTHER_PUNCTUATION);
5274             defCategory("Sm", 1<<Character.MATH_SYMBOL);
5275             defCategory("Sc", 1<<Character.CURRENCY_SYMBOL);
5276             defCategory("Sk", 1<<Character.MODIFIER_SYMBOL);
5277             defCategory("So", 1<<Character.OTHER_SYMBOL);
5278             defCategory("Pi", 1<<Character.INITIAL_QUOTE_PUNCTUATION);
5279             defCategory("Pf", 1<<Character.FINAL_QUOTE_PUNCTUATION);
5280             defCategory("L", ((1<<Character.UPPERCASE_LETTER) |
5281                               (1<<Character.LOWERCASE_LETTER) |
5282                               (1<<Character.TITLECASE_LETTER) |
5283                               (1<<Character.MODIFIER_LETTER)  |
5284                               (1<<Character.OTHER_LETTER)));
5285             defCategory("M", ((1<<Character.NON_SPACING_MARK) |
5286                               (1<<Character.ENCLOSING_MARK)   |
5287                               (1<<Character.COMBINING_SPACING_MARK)));
5288             defCategory("N", ((1<<Character.DECIMAL_DIGIT_NUMBER) |
5289                               (1<<Character.LETTER_NUMBER)        |
5290                               (1<<Character.OTHER_NUMBER)));
5291             defCategory("Z", ((1<<Character.SPACE_SEPARATOR) |
5292                               (1<<Character.LINE_SEPARATOR)  |
5293                               (1<<Character.PARAGRAPH_SEPARATOR)));
5294             defCategory("C", ((1<<Character.CONTROL)     |
5295                               (1<<Character.FORMAT)      |
5296                               (1<<Character.PRIVATE_USE) |
5297                               (1<<Character.SURROGATE))); // Other
5298             defCategory("P", ((1<<Character.DASH_PUNCTUATION)      |
5299                               (1<<Character.START_PUNCTUATION)     |
5300                               (1<<Character.END_PUNCTUATION)       |
5301                               (1<<Character.CONNECTOR_PUNCTUATION) |
5302                               (1<<Character.OTHER_PUNCTUATION)     |
5303                               (1<<Character.INITIAL_QUOTE_PUNCTUATION) |
5304                               (1<<Character.FINAL_QUOTE_PUNCTUATION)));
5305             defCategory("S", ((1<<Character.MATH_SYMBOL)     |
5306                               (1<<Character.CURRENCY_SYMBOL) |
5307                               (1<<Character.MODIFIER_SYMBOL) |
5308                               (1<<Character.OTHER_SYMBOL)));
5309             defCategory("LC", ((1<<Character.UPPERCASE_LETTER) |
5310                                (1<<Character.LOWERCASE_LETTER) |
5311                                (1<<Character.TITLECASE_LETTER)));
5312             defCategory("LD", ((1<<Character.UPPERCASE_LETTER) |
5313                                (1<<Character.LOWERCASE_LETTER) |
5314                                (1<<Character.TITLECASE_LETTER) |
5315                                (1<<Character.MODIFIER_LETTER)  |
5316                                (1<<Character.OTHER_LETTER)     |
5317                                (1<<Character.DECIMAL_DIGIT_NUMBER)));
5318             defRange("L1", 0x00, 0xFF); // Latin-1
5319             map.put("all", new CharPropertyFactory() {
5320                     CharProperty make() { return new All(); }});
5321 
5322             // Posix regular expression character classes, defined in
5323             // http://www.unix.org/onlinepubs/009695399/basedefs/xbd_chap09.html
5324             defRange("ASCII", 0x00, 0x7F);   // ASCII
5325             defCtype("Alnum", ASCII.ALNUM);  // Alphanumeric characters
5326             defCtype("Alpha", ASCII.ALPHA);  // Alphabetic characters
5327             defCtype("Blank", ASCII.BLANK);  // Space and tab characters
5328             defCtype("Cntrl", ASCII.CNTRL);  // Control characters
5329             defRange("Digit", '0', '9');     // Numeric characters
5330             defCtype("Graph", ASCII.GRAPH);  // printable and visible
5331             defRange("Lower", 'a', 'z');     // Lower-case alphabetic
5332             defRange("Print", 0x20, 0x7E);   // Printable characters
5333             defCtype("Punct", ASCII.PUNCT);  // Punctuation characters
5334             defCtype("Space", ASCII.SPACE);  // Space characters
5335             defRange("Upper", 'A', 'Z');     // Upper-case alphabetic
5336             defCtype("XDigit",ASCII.XDIGIT); // hexadecimal digits
5337 
5338             // Java character properties, defined by methods in Character.java
5339             defClone("javaLowerCase", new CloneableProperty() {
5340                 boolean isSatisfiedBy(int ch) {
5341                     return Character.isLowerCase(ch);}});
5342             defClone("javaUpperCase", new CloneableProperty() {
5343                 boolean isSatisfiedBy(int ch) {
5344                     return Character.isUpperCase(ch);}});
5345             defClone("javaTitleCase", new CloneableProperty() {
5346                 boolean isSatisfiedBy(int ch) {
5347                     return Character.isTitleCase(ch);}});
5348             defClone("javaDigit", new CloneableProperty() {
5349                 boolean isSatisfiedBy(int ch) {
5350                     return Character.isDigit(ch);}});
5351             defClone("javaDefined", new CloneableProperty() {
5352                 boolean isSatisfiedBy(int ch) {
5353                     return Character.isDefined(ch);}});
5354             defClone("javaLetter", new CloneableProperty() {
5355                 boolean isSatisfiedBy(int ch) {
5356                     return Character.isLetter(ch);}});
5357             defClone("javaLetterOrDigit", new CloneableProperty() {
5358                 boolean isSatisfiedBy(int ch) {
5359                     return Character.isLetterOrDigit(ch);}});
5360             defClone("javaJavaIdentifierStart", new CloneableProperty() {
5361                 boolean isSatisfiedBy(int ch) {
5362                     return Character.isJavaIdentifierStart(ch);}});
5363             defClone("javaJavaIdentifierPart", new CloneableProperty() {
5364                 boolean isSatisfiedBy(int ch) {
5365                     return Character.isJavaIdentifierPart(ch);}});
5366             defClone("javaUnicodeIdentifierStart", new CloneableProperty() {
5367                 boolean isSatisfiedBy(int ch) {
5368                     return Character.isUnicodeIdentifierStart(ch);}});
5369             defClone("javaUnicodeIdentifierPart", new CloneableProperty() {
5370                 boolean isSatisfiedBy(int ch) {
5371                     return Character.isUnicodeIdentifierPart(ch);}});
5372             defClone("javaIdentifierIgnorable", new CloneableProperty() {
5373                 boolean isSatisfiedBy(int ch) {
5374                     return Character.isIdentifierIgnorable(ch);}});
5375             defClone("javaSpaceChar", new CloneableProperty() {
5376                 boolean isSatisfiedBy(int ch) {
5377                     return Character.isSpaceChar(ch);}});
5378             defClone("javaWhitespace", new CloneableProperty() {
5379                 boolean isSatisfiedBy(int ch) {
5380                     return Character.isWhitespace(ch);}});
5381             defClone("javaISOControl", new CloneableProperty() {
5382                 boolean isSatisfiedBy(int ch) {
5383                     return Character.isISOControl(ch);}});
5384             defClone("javaMirrored", new CloneableProperty() {
5385                 boolean isSatisfiedBy(int ch) {
5386                     return Character.isMirrored(ch);}});
5387         }
5388     }
5389 }