1 /*
   2  * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.BufferedWriter;
  29 import java.io.Closeable;
  30 import java.io.IOException;
  31 import java.io.File;
  32 import java.io.FileOutputStream;
  33 import java.io.FileNotFoundException;
  34 import java.io.Flushable;
  35 import java.io.OutputStream;
  36 import java.io.OutputStreamWriter;
  37 import java.io.PrintStream;
  38 import java.io.UnsupportedEncodingException;
  39 import java.math.BigDecimal;
  40 import java.math.BigInteger;
  41 import java.math.MathContext;
  42 import java.math.RoundingMode;
  43 import java.nio.charset.Charset;
  44 import java.nio.charset.IllegalCharsetNameException;
  45 import java.nio.charset.UnsupportedCharsetException;
  46 import java.text.DateFormatSymbols;
  47 import java.text.DecimalFormat;
  48 import java.text.DecimalFormatSymbols;
  49 import java.text.NumberFormat;
  50 import java.util.regex.Matcher;
  51 import java.util.regex.Pattern;
  52 
  53 import java.time.DateTimeException;
  54 import java.time.Instant;
  55 import java.time.ZoneId;
  56 import java.time.ZoneOffset;
  57 import java.time.temporal.ChronoField;
  58 import java.time.temporal.TemporalAccessor;
  59 import java.time.temporal.TemporalQueries;
  60 import java.time.temporal.UnsupportedTemporalTypeException;
  61 
  62 import sun.misc.DoubleConsts;
  63 import sun.misc.FormattedFloatingDecimal;
  64 
  65 /**
  66  * An interpreter for printf-style format strings.  This class provides support
  67  * for layout justification and alignment, common formats for numeric, string,
  68  * and date/time data, and locale-specific output.  Common Java types such as
  69  * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
  70  * are supported.  Limited formatting customization for arbitrary user types is
  71  * provided through the {@link Formattable} interface.
  72  *
  73  * <p> Formatters are not necessarily safe for multithreaded access.  Thread
  74  * safety is optional and is the responsibility of users of methods in this
  75  * class.
  76  *
  77  * <p> Formatted printing for the Java language is heavily inspired by C's
  78  * {@code printf}.  Although the format strings are similar to C, some
  79  * customizations have been made to accommodate the Java language and exploit
  80  * some of its features.  Also, Java formatting is more strict than C's; for
  81  * example, if a conversion is incompatible with a flag, an exception will be
  82  * thrown.  In C inapplicable flags are silently ignored.  The format strings
  83  * are thus intended to be recognizable to C programmers but not necessarily
  84  * completely compatible with those in C.
  85  *
  86  * <p> Examples of expected usage:
  87  *
  88  * <blockquote><pre>
  89  *   StringBuilder sb = new StringBuilder();
  90  *   // Send all output to the Appendable object sb
  91  *   Formatter formatter = new Formatter(sb, Locale.US);
  92  *
  93  *   // Explicit argument indices may be used to re-order output.
  94  *   formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
  95  *   // -&gt; " d  c  b  a"
  96  *
  97  *   // Optional locale as the first argument can be used to get
  98  *   // locale-specific formatting of numbers.  The precision and width can be
  99  *   // given to round and align the value.
 100  *   formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
 101  *   // -&gt; "e =    +2,7183"
 102  *
 103  *   // The '(' numeric flag may be used to format negative numbers with
 104  *   // parentheses rather than a minus sign.  Group separators are
 105  *   // automatically inserted.
 106  *   formatter.format("Amount gained or lost since last statement: $ %(,.2f",
 107  *                    balanceDelta);
 108  *   // -&gt; "Amount gained or lost since last statement: $ (6,217.58)"
 109  * </pre></blockquote>
 110  *
 111  * <p> Convenience methods for common formatting requests exist as illustrated
 112  * by the following invocations:
 113  *
 114  * <blockquote><pre>
 115  *   // Writes a formatted string to System.out.
 116  *   System.out.format("Local time: %tT", Calendar.getInstance());
 117  *   // -&gt; "Local time: 13:34:18"
 118  *
 119  *   // Writes formatted output to System.err.
 120  *   System.err.printf("Unable to open file '%1$s': %2$s",
 121  *                     fileName, exception.getMessage());
 122  *   // -&gt; "Unable to open file 'food': No such file or directory"
 123  * </pre></blockquote>
 124  *
 125  * <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static
 126  * method {@link String#format(String,Object...) String.format}:
 127  *
 128  * <blockquote><pre>
 129  *   // Format a string containing a date.
 130  *   import java.util.Calendar;
 131  *   import java.util.GregorianCalendar;
 132  *   import static java.util.Calendar.*;
 133  *
 134  *   Calendar c = new GregorianCalendar(1995, MAY, 23);
 135  *   String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
 136  *   // -&gt; s == "Duke's Birthday: May 23, 1995"
 137  * </pre></blockquote>
 138  *
 139  * <h3><a name="org">Organization</a></h3>
 140  *
 141  * <p> This specification is divided into two sections.  The first section, <a
 142  * href="#summary">Summary</a>, covers the basic formatting concepts.  This
 143  * section is intended for users who want to get started quickly and are
 144  * familiar with formatted printing in other programming languages.  The second
 145  * section, <a href="#detail">Details</a>, covers the specific implementation
 146  * details.  It is intended for users who want more precise specification of
 147  * formatting behavior.
 148  *
 149  * <h3><a name="summary">Summary</a></h3>
 150  *
 151  * <p> This section is intended to provide a brief overview of formatting
 152  * concepts.  For precise behavioral details, refer to the <a
 153  * href="#detail">Details</a> section.
 154  *
 155  * <h4><a name="syntax">Format String Syntax</a></h4>
 156  *
 157  * <p> Every method which produces formatted output requires a <i>format
 158  * string</i> and an <i>argument list</i>.  The format string is a {@link
 159  * String} which may contain fixed text and one or more embedded <i>format
 160  * specifiers</i>.  Consider the following example:
 161  *
 162  * <blockquote><pre>
 163  *   Calendar c = ...;
 164  *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 165  * </pre></blockquote>
 166  *
 167  * This format string is the first argument to the {@code format} method.  It
 168  * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and
 169  * "{@code %1$tY}" which indicate how the arguments should be processed and
 170  * where they should be inserted in the text.  The remaining portions of the
 171  * format string are fixed text including {@code "Dukes Birthday: "} and any
 172  * other spaces or punctuation.
 173  *
 174  * The argument list consists of all arguments passed to the method after the
 175  * format string.  In the above example, the argument list is of size one and
 176  * consists of the {@link java.util.Calendar Calendar} object {@code c}.
 177  *
 178  * <ul>
 179  *
 180  * <li> The format specifiers for general, character, and numeric types have
 181  * the following syntax:
 182  *
 183  * <blockquote><pre>
 184  *   %[argument_index$][flags][width][.precision]conversion
 185  * </pre></blockquote>
 186  *
 187  * <p> The optional <i>argument_index</i> is a decimal integer indicating the
 188  * position of the argument in the argument list.  The first argument is
 189  * referenced by "{@code 1$}", the second by "{@code 2$}", etc.
 190  *
 191  * <p> The optional <i>flags</i> is a set of characters that modify the output
 192  * format.  The set of valid flags depends on the conversion.
 193  *
 194  * <p> The optional <i>width</i> is a positive decimal integer indicating
 195  * the minimum number of characters to be written to the output.
 196  *
 197  * <p> The optional <i>precision</i> is a non-negative decimal integer usually
 198  * used to restrict the number of characters.  The specific behavior depends on
 199  * the conversion.
 200  *
 201  * <p> The required <i>conversion</i> is a character indicating how the
 202  * argument should be formatted.  The set of valid conversions for a given
 203  * argument depends on the argument's data type.
 204  *
 205  * <li> The format specifiers for types which are used to represents dates and
 206  * times have the following syntax:
 207  *
 208  * <blockquote><pre>
 209  *   %[argument_index$][flags][width]conversion
 210  * </pre></blockquote>
 211  *
 212  * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are
 213  * defined as above.
 214  *
 215  * <p> The required <i>conversion</i> is a two character sequence.  The first
 216  * character is {@code 't'} or {@code 'T'}.  The second character indicates
 217  * the format to be used.  These characters are similar to but not completely
 218  * identical to those defined by GNU {@code date} and POSIX
 219  * {@code strftime(3c)}.
 220  *
 221  * <li> The format specifiers which do not correspond to arguments have the
 222  * following syntax:
 223  *
 224  * <blockquote><pre>
 225  *   %[flags][width]conversion
 226  * </pre></blockquote>
 227  *
 228  * <p> The optional <i>flags</i> and <i>width</i> is defined as above.
 229  *
 230  * <p> The required <i>conversion</i> is a character indicating content to be
 231  * inserted in the output.
 232  *
 233  * </ul>
 234  *
 235  * <h4> Conversions </h4>
 236  *
 237  * <p> Conversions are divided into the following categories:
 238  *
 239  * <ol>
 240  *
 241  * <li> <b>General</b> - may be applied to any argument
 242  * type
 243  *
 244  * <li> <b>Character</b> - may be applied to basic types which represent
 245  * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link
 246  * Byte}, {@code short}, and {@link Short}. This conversion may also be
 247  * applied to the types {@code int} and {@link Integer} when {@link
 248  * Character#isValidCodePoint} returns {@code true}
 249  *
 250  * <li> <b>Numeric</b>
 251  *
 252  * <ol>
 253  *
 254  * <li> <b>Integral</b> - may be applied to Java integral types: {@code byte},
 255  * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link
 256  * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger
 257  * BigInteger} (but not {@code char} or {@link Character})
 258  *
 259  * <li><b>Floating Point</b> - may be applied to Java floating-point types:
 260  * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link
 261  * java.math.BigDecimal BigDecimal}
 262  *
 263  * </ol>
 264  *
 265  * <li> <b>Date/Time</b> - may be applied to Java types which are capable of
 266  * encoding a date or time: {@code long}, {@link Long}, {@link Calendar},
 267  * {@link Date} and {@link TemporalAccessor TemporalAccessor}
 268  *
 269  * <li> <b>Percent</b> - produces a literal {@code '%'}
 270  * (<tt>'&#92;u0025'</tt>)
 271  *
 272  * <li> <b>Line Separator</b> - produces the platform-specific line separator
 273  *
 274  * </ol>
 275  *
 276  * <p> The following table summarizes the supported conversions.  Conversions
 277  * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'},
 278  * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'},
 279  * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding
 280  * lower-case conversion characters except that the result is converted to
 281  * upper case according to the rules of the prevailing {@link java.util.Locale
 282  * Locale}.  The result is equivalent to the following invocation of {@link
 283  * String#toUpperCase()}
 284  *
 285  * <pre>
 286  *    out.toUpperCase() </pre>
 287  *
 288  * <table cellpadding=5 summary="genConv">
 289  *
 290  * <tr><th valign="bottom"> Conversion
 291  *     <th valign="bottom"> Argument Category
 292  *     <th valign="bottom"> Description
 293  *
 294  * <tr><td valign="top"> {@code 'b'}, {@code 'B'}
 295  *     <td valign="top"> general
 296  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
 297  *     "{@code false}".  If <i>arg</i> is a {@code boolean} or {@link
 298  *     Boolean}, then the result is the string returned by {@link
 299  *     String#valueOf(boolean) String.valueOf(arg)}.  Otherwise, the result is
 300  *     "true".
 301  *
 302  * <tr><td valign="top"> {@code 'h'}, {@code 'H'}
 303  *     <td valign="top"> general
 304  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
 305  *     "{@code null}".  Otherwise, the result is obtained by invoking
 306  *     {@code Integer.toHexString(arg.hashCode())}.
 307  *
 308  * <tr><td valign="top"> {@code 's'}, {@code 'S'}
 309  *     <td valign="top"> general
 310  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
 311  *     "{@code null}".  If <i>arg</i> implements {@link Formattable}, then
 312  *     {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
 313  *     result is obtained by invoking {@code arg.toString()}.
 314  *
 315  * <tr><td valign="top">{@code 'c'}, {@code 'C'}
 316  *     <td valign="top"> character
 317  *     <td> The result is a Unicode character
 318  *
 319  * <tr><td valign="top">{@code 'd'}
 320  *     <td valign="top"> integral
 321  *     <td> The result is formatted as a decimal integer
 322  *
 323  * <tr><td valign="top">{@code 'o'}
 324  *     <td valign="top"> integral
 325  *     <td> The result is formatted as an octal integer
 326  *
 327  * <tr><td valign="top">{@code 'x'}, {@code 'X'}
 328  *     <td valign="top"> integral
 329  *     <td> The result is formatted as a hexadecimal integer
 330  *
 331  * <tr><td valign="top">{@code 'e'}, {@code 'E'}
 332  *     <td valign="top"> floating point
 333  *     <td> The result is formatted as a decimal number in computerized
 334  *     scientific notation
 335  *
 336  * <tr><td valign="top">{@code 'f'}
 337  *     <td valign="top"> floating point
 338  *     <td> The result is formatted as a decimal number
 339  *
 340  * <tr><td valign="top">{@code 'g'}, {@code 'G'}
 341  *     <td valign="top"> floating point
 342  *     <td> The result is formatted using computerized scientific notation or
 343  *     decimal format, depending on the precision and the value after rounding.
 344  *
 345  * <tr><td valign="top">{@code 'a'}, {@code 'A'}
 346  *     <td valign="top"> floating point
 347  *     <td> The result is formatted as a hexadecimal floating-point number with
 348  *     a significand and an exponent. This conversion is <b>not</b> supported
 349  *     for the {@code BigDecimal} type despite the latter's being in the
 350  *     <i>floating point</i> argument category.
 351  *
 352  * <tr><td valign="top">{@code 't'}, {@code 'T'}
 353  *     <td valign="top"> date/time
 354  *     <td> Prefix for date and time conversion characters.  See <a
 355  *     href="#dt">Date/Time Conversions</a>.
 356  *
 357  * <tr><td valign="top">{@code '%'}
 358  *     <td valign="top"> percent
 359  *     <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
 360  *
 361  * <tr><td valign="top">{@code 'n'}
 362  *     <td valign="top"> line separator
 363  *     <td> The result is the platform-specific line separator
 364  *
 365  * </table>
 366  *
 367  * <p> Any characters not explicitly defined as conversions are illegal and are
 368  * reserved for future extensions.
 369  *
 370  * <h4><a name="dt">Date/Time Conversions</a></h4>
 371  *
 372  * <p> The following date and time conversion suffix characters are defined for
 373  * the {@code 't'} and {@code 'T'} conversions.  The types are similar to but
 374  * not completely identical to those defined by GNU {@code date} and POSIX
 375  * {@code strftime(3c)}.  Additional conversion types are provided to access
 376  * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the
 377  * second).
 378  *
 379  * <p> The following conversion characters are used for formatting times:
 380  *
 381  * <table cellpadding=5 summary="time">
 382  *
 383  * <tr><td valign="top"> {@code 'H'}
 384  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
 385  *     a leading zero as necessary i.e. {@code 00 - 23}.
 386  *
 387  * <tr><td valign="top">{@code 'I'}
 388  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
 389  *     zero as necessary, i.e.  {@code 01 - 12}.
 390  *
 391  * <tr><td valign="top">{@code 'k'}
 392  *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
 393  *
 394  * <tr><td valign="top">{@code 'l'}
 395  *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.
 396  *
 397  * <tr><td valign="top">{@code 'M'}
 398  *     <td> Minute within the hour formatted as two digits with a leading zero
 399  *     as necessary, i.e.  {@code 00 - 59}.
 400  *
 401  * <tr><td valign="top">{@code 'S'}
 402  *     <td> Seconds within the minute, formatted as two digits with a leading
 403  *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
 404  *     value required to support leap seconds).
 405  *
 406  * <tr><td valign="top">{@code 'L'}
 407  *     <td> Millisecond within the second formatted as three digits with
 408  *     leading zeros as necessary, i.e. {@code 000 - 999}.
 409  *
 410  * <tr><td valign="top">{@code 'N'}
 411  *     <td> Nanosecond within the second, formatted as nine digits with leading
 412  *     zeros as necessary, i.e. {@code 000000000 - 999999999}.
 413  *
 414  * <tr><td valign="top">{@code 'p'}
 415  *     <td> Locale-specific {@linkplain
 416  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
 417  *     in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion
 418  *     prefix {@code 'T'} forces this output to upper case.
 419  *
 420  * <tr><td valign="top">{@code 'z'}
 421  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
 422  *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
 423  *     value will be adjusted as necessary for Daylight Saving Time.  For
 424  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
 425  *     the {@linkplain TimeZone#getDefault() default time zone} for this
 426  *     instance of the Java virtual machine.
 427  *
 428  * <tr><td valign="top">{@code 'Z'}
 429  *     <td> A string representing the abbreviation for the time zone.  This
 430  *     value will be adjusted as necessary for Daylight Saving Time.  For
 431  *     {@code long}, {@link Long}, and {@link Date} the  time zone used is
 432  *     the {@linkplain TimeZone#getDefault() default time zone} for this
 433  *     instance of the Java virtual machine.  The Formatter's locale will
 434  *     supersede the locale of the argument (if any).
 435  *
 436  * <tr><td valign="top">{@code 's'}
 437  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
 438  *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
 439  *     {@code Long.MAX_VALUE/1000}.
 440  *
 441  * <tr><td valign="top">{@code 'Q'}
 442  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
 443  *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
 444  *     {@code Long.MAX_VALUE}.
 445  *
 446  * </table>
 447  *
 448  * <p> The following conversion characters are used for formatting dates:
 449  *
 450  * <table cellpadding=5 summary="date">
 451  *
 452  * <tr><td valign="top">{@code 'B'}
 453  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
 454  *     full month name}, e.g. {@code "January"}, {@code "February"}.
 455  *
 456  * <tr><td valign="top">{@code 'b'}
 457  *     <td> Locale-specific {@linkplain
 458  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
 459  *     e.g. {@code "Jan"}, {@code "Feb"}.
 460  *
 461  * <tr><td valign="top">{@code 'h'}
 462  *     <td> Same as {@code 'b'}.
 463  *
 464  * <tr><td valign="top">{@code 'A'}
 465  *     <td> Locale-specific full name of the {@linkplain
 466  *     java.text.DateFormatSymbols#getWeekdays day of the week},
 467  *     e.g. {@code "Sunday"}, {@code "Monday"}
 468  *
 469  * <tr><td valign="top">{@code 'a'}
 470  *     <td> Locale-specific short name of the {@linkplain
 471  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
 472  *     e.g. {@code "Sun"}, {@code "Mon"}
 473  *
 474  * <tr><td valign="top">{@code 'C'}
 475  *     <td> Four-digit year divided by {@code 100}, formatted as two digits
 476  *     with leading zero as necessary, i.e. {@code 00 - 99}
 477  *
 478  * <tr><td valign="top">{@code 'Y'}
 479  *     <td> Year, formatted as at least four digits with leading zeros as
 480  *     necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian
 481  *     calendar.
 482  *
 483  * <tr><td valign="top">{@code 'y'}
 484  *     <td> Last two digits of the year, formatted with leading zeros as
 485  *     necessary, i.e. {@code 00 - 99}.
 486  *
 487  * <tr><td valign="top">{@code 'j'}
 488  *     <td> Day of year, formatted as three digits with leading zeros as
 489  *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
 490  *
 491  * <tr><td valign="top">{@code 'm'}
 492  *     <td> Month, formatted as two digits with leading zeros as necessary,
 493  *     i.e. {@code 01 - 13}.
 494  *
 495  * <tr><td valign="top">{@code 'd'}
 496  *     <td> Day of month, formatted as two digits with leading zeros as
 497  *     necessary, i.e. {@code 01 - 31}
 498  *
 499  * <tr><td valign="top">{@code 'e'}
 500  *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}.
 501  *
 502  * </table>
 503  *
 504  * <p> The following conversion characters are used for formatting common
 505  * date/time compositions.
 506  *
 507  * <table cellpadding=5 summary="composites">
 508  *
 509  * <tr><td valign="top">{@code 'R'}
 510  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
 511  *
 512  * <tr><td valign="top">{@code 'T'}
 513  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
 514  *
 515  * <tr><td valign="top">{@code 'r'}
 516  *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}.
 517  *     The location of the morning or afternoon marker ({@code '%Tp'}) may be
 518  *     locale-dependent.
 519  *
 520  * <tr><td valign="top">{@code 'D'}
 521  *     <td> Date formatted as {@code "%tm/%td/%ty"}.
 522  *
 523  * <tr><td valign="top">{@code 'F'}
 524  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
 525  *     complete date formatted as {@code "%tY-%tm-%td"}.
 526  *
 527  * <tr><td valign="top">{@code 'c'}
 528  *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
 529  *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
 530  *
 531  * </table>
 532  *
 533  * <p> Any characters not explicitly defined as date/time conversion suffixes
 534  * are illegal and are reserved for future extensions.
 535  *
 536  * <h4> Flags </h4>
 537  *
 538  * <p> The following table summarizes the supported flags.  <i>y</i> means the
 539  * flag is supported for the indicated argument types.
 540  *
 541  * <table cellpadding=5 summary="genConv">
 542  *
 543  * <tr><th valign="bottom"> Flag <th valign="bottom"> General
 544  *     <th valign="bottom"> Character <th valign="bottom"> Integral
 545  *     <th valign="bottom"> Floating Point
 546  *     <th valign="bottom"> Date/Time
 547  *     <th valign="bottom"> Description
 548  *
 549  * <tr><td> '-' <td align="center" valign="top"> y
 550  *     <td align="center" valign="top"> y
 551  *     <td align="center" valign="top"> y
 552  *     <td align="center" valign="top"> y
 553  *     <td align="center" valign="top"> y
 554  *     <td> The result will be left-justified.
 555  *
 556  * <tr><td> '#' <td align="center" valign="top"> y<sup>1</sup>
 557  *     <td align="center" valign="top"> -
 558  *     <td align="center" valign="top"> y<sup>3</sup>
 559  *     <td align="center" valign="top"> y
 560  *     <td align="center" valign="top"> -
 561  *     <td> The result should use a conversion-dependent alternate form
 562  *
 563  * <tr><td> '+' <td align="center" valign="top"> -
 564  *     <td align="center" valign="top"> -
 565  *     <td align="center" valign="top"> y<sup>4</sup>
 566  *     <td align="center" valign="top"> y
 567  *     <td align="center" valign="top"> -
 568  *     <td> The result will always include a sign
 569  *
 570  * <tr><td> '&nbsp;&nbsp;' <td align="center" valign="top"> -
 571  *     <td align="center" valign="top"> -
 572  *     <td align="center" valign="top"> y<sup>4</sup>
 573  *     <td align="center" valign="top"> y
 574  *     <td align="center" valign="top"> -
 575  *     <td> The result will include a leading space for positive values
 576  *
 577  * <tr><td> '0' <td align="center" valign="top"> -
 578  *     <td align="center" valign="top"> -
 579  *     <td align="center" valign="top"> y
 580  *     <td align="center" valign="top"> y
 581  *     <td align="center" valign="top"> -
 582  *     <td> The result will be zero-padded
 583  *
 584  * <tr><td> ',' <td align="center" valign="top"> -
 585  *     <td align="center" valign="top"> -
 586  *     <td align="center" valign="top"> y<sup>2</sup>
 587  *     <td align="center" valign="top"> y<sup>5</sup>
 588  *     <td align="center" valign="top"> -
 589  *     <td> The result will include locale-specific {@linkplain
 590  *     java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
 591  *
 592  * <tr><td> '(' <td align="center" valign="top"> -
 593  *     <td align="center" valign="top"> -
 594  *     <td align="center" valign="top"> y<sup>4</sup>
 595  *     <td align="center" valign="top"> y<sup>5</sup>
 596  *     <td align="center"> -
 597  *     <td> The result will enclose negative numbers in parentheses
 598  *
 599  * </table>
 600  *
 601  * <p> <sup>1</sup> Depends on the definition of {@link Formattable}.
 602  *
 603  * <p> <sup>2</sup> For {@code 'd'} conversion only.
 604  *
 605  * <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'}
 606  * conversions only.
 607  *
 608  * <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and
 609  * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger}
 610  * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link
 611  * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}.
 612  *
 613  * <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'},
 614  * {@code 'g'}, and {@code 'G'} conversions only.
 615  *
 616  * <p> Any characters not explicitly defined as flags are illegal and are
 617  * reserved for future extensions.
 618  *
 619  * <h4> Width </h4>
 620  *
 621  * <p> The width is the minimum number of characters to be written to the
 622  * output.  For the line separator conversion, width is not applicable; if it
 623  * is provided, an exception will be thrown.
 624  *
 625  * <h4> Precision </h4>
 626  *
 627  * <p> For general argument types, the precision is the maximum number of
 628  * characters to be written to the output.
 629  *
 630  * <p> For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'},
 631  * {@code 'E'}, and {@code 'f'} the precision is the number of digits after the
 632  * radix point.  If the conversion is {@code 'g'} or {@code 'G'}, then the
 633  * precision is the total number of digits in the resulting magnitude after
 634  * rounding.
 635  *
 636  * <p> For character, integral, and date/time argument types and the percent
 637  * and line separator conversions, the precision is not applicable; if a
 638  * precision is provided, an exception will be thrown.
 639  *
 640  * <h4> Argument Index </h4>
 641  *
 642  * <p> The argument index is a decimal integer indicating the position of the
 643  * argument in the argument list.  The first argument is referenced by
 644  * "{@code 1$}", the second by "{@code 2$}", etc.
 645  *
 646  * <p> Another way to reference arguments by position is to use the
 647  * {@code '<'} (<tt>'&#92;u003c'</tt>) flag, which causes the argument for
 648  * the previous format specifier to be re-used.  For example, the following two
 649  * statements would produce identical strings:
 650  *
 651  * <blockquote><pre>
 652  *   Calendar c = ...;
 653  *   String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 654  *
 655  *   String s2 = String.format("Duke's Birthday: %1$tm %&lt;te,%&lt;tY", c);
 656  * </pre></blockquote>
 657  *
 658  * <hr>
 659  * <h3><a name="detail">Details</a></h3>
 660  *
 661  * <p> This section is intended to provide behavioral details for formatting,
 662  * including conditions and exceptions, supported data types, localization, and
 663  * interactions between flags, conversions, and data types.  For an overview of
 664  * formatting concepts, refer to the <a href="#summary">Summary</a>
 665  *
 666  * <p> Any characters not explicitly defined as conversions, date/time
 667  * conversion suffixes, or flags are illegal and are reserved for
 668  * future extensions.  Use of such a character in a format string will
 669  * cause an {@link UnknownFormatConversionException} or {@link
 670  * UnknownFormatFlagsException} to be thrown.
 671  *
 672  * <p> If the format specifier contains a width or precision with an invalid
 673  * value or which is otherwise unsupported, then a {@link
 674  * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
 675  * respectively will be thrown.
 676  *
 677  * <p> If a format specifier contains a conversion character that is not
 678  * applicable to the corresponding argument, then an {@link
 679  * IllegalFormatConversionException} will be thrown.
 680  *
 681  * <p> All specified exceptions may be thrown by any of the {@code format}
 682  * methods of {@code Formatter} as well as by any {@code format} convenience
 683  * methods such as {@link String#format(String,Object...) String.format} and
 684  * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
 685  *
 686  * <p> Conversions denoted by an upper-case character (i.e. {@code 'B'},
 687  * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'},
 688  * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the
 689  * corresponding lower-case conversion characters except that the result is
 690  * converted to upper case according to the rules of the prevailing {@link
 691  * java.util.Locale Locale}.  The result is equivalent to the following
 692  * invocation of {@link String#toUpperCase()}
 693  *
 694  * <pre>
 695  *    out.toUpperCase() </pre>
 696  *
 697  * <h4><a name="dgen">General</a></h4>
 698  *
 699  * <p> The following general conversions may be applied to any argument type:
 700  *
 701  * <table cellpadding=5 summary="dgConv">
 702  *
 703  * <tr><td valign="top"> {@code 'b'}
 704  *     <td valign="top"> <tt>'&#92;u0062'</tt>
 705  *     <td> Produces either "{@code true}" or "{@code false}" as returned by
 706  *     {@link Boolean#toString(boolean)}.
 707  *
 708  *     <p> If the argument is {@code null}, then the result is
 709  *     "{@code false}".  If the argument is a {@code boolean} or {@link
 710  *     Boolean}, then the result is the string returned by {@link
 711  *     String#valueOf(boolean) String.valueOf()}.  Otherwise, the result is
 712  *     "{@code true}".
 713  *
 714  *     <p> If the {@code '#'} flag is given, then a {@link
 715  *     FormatFlagsConversionMismatchException} will be thrown.
 716  *
 717  * <tr><td valign="top"> {@code 'B'}
 718  *     <td valign="top"> <tt>'&#92;u0042'</tt>
 719  *     <td> The upper-case variant of {@code 'b'}.
 720  *
 721  * <tr><td valign="top"> {@code 'h'}
 722  *     <td valign="top"> <tt>'&#92;u0068'</tt>
 723  *     <td> Produces a string representing the hash code value of the object.
 724  *
 725  *     <p> If the argument, <i>arg</i> is {@code null}, then the
 726  *     result is "{@code null}".  Otherwise, the result is obtained
 727  *     by invoking {@code Integer.toHexString(arg.hashCode())}.
 728  *
 729  *     <p> If the {@code '#'} flag is given, then a {@link
 730  *     FormatFlagsConversionMismatchException} will be thrown.
 731  *
 732  * <tr><td valign="top"> {@code 'H'}
 733  *     <td valign="top"> <tt>'&#92;u0048'</tt>
 734  *     <td> The upper-case variant of {@code 'h'}.
 735  *
 736  * <tr><td valign="top"> {@code 's'}
 737  *     <td valign="top"> <tt>'&#92;u0073'</tt>
 738  *     <td> Produces a string.
 739  *
 740  *     <p> If the argument is {@code null}, then the result is
 741  *     "{@code null}".  If the argument implements {@link Formattable}, then
 742  *     its {@link Formattable#formatTo formatTo} method is invoked.
 743  *     Otherwise, the result is obtained by invoking the argument's
 744  *     {@code toString()} method.
 745  *
 746  *     <p> If the {@code '#'} flag is given and the argument is not a {@link
 747  *     Formattable} , then a {@link FormatFlagsConversionMismatchException}
 748  *     will be thrown.
 749  *
 750  * <tr><td valign="top"> {@code 'S'}
 751  *     <td valign="top"> <tt>'&#92;u0053'</tt>
 752  *     <td> The upper-case variant of {@code 's'}.
 753  *
 754  * </table>
 755  *
 756  * <p> The following <a name="dFlags">flags</a> apply to general conversions:
 757  *
 758  * <table cellpadding=5 summary="dFlags">
 759  *
 760  * <tr><td valign="top"> {@code '-'}
 761  *     <td valign="top"> <tt>'&#92;u002d'</tt>
 762  *     <td> Left justifies the output.  Spaces (<tt>'&#92;u0020'</tt>) will be
 763  *     added at the end of the converted value as required to fill the minimum
 764  *     width of the field.  If the width is not provided, then a {@link
 765  *     MissingFormatWidthException} will be thrown.  If this flag is not given
 766  *     then the output will be right-justified.
 767  *
 768  * <tr><td valign="top"> {@code '#'}
 769  *     <td valign="top"> <tt>'&#92;u0023'</tt>
 770  *     <td> Requires the output use an alternate form.  The definition of the
 771  *     form is specified by the conversion.
 772  *
 773  * </table>
 774  *
 775  * <p> The <a name="genWidth">width</a> is the minimum number of characters to
 776  * be written to the
 777  * output.  If the length of the converted value is less than the width then
 778  * the output will be padded by <tt>'&nbsp;&nbsp;'</tt> (<tt>'&#92;u0020'</tt>)
 779  * until the total number of characters equals the width.  The padding is on
 780  * the left by default.  If the {@code '-'} flag is given, then the padding
 781  * will be on the right.  If the width is not specified then there is no
 782  * minimum.
 783  *
 784  * <p> The precision is the maximum number of characters to be written to the
 785  * output.  The precision is applied before the width, thus the output will be
 786  * truncated to {@code precision} characters even if the width is greater than
 787  * the precision.  If the precision is not specified then there is no explicit
 788  * limit on the number of characters.
 789  *
 790  * <h4><a name="dchar">Character</a></h4>
 791  *
 792  * This conversion may be applied to {@code char} and {@link Character}.  It
 793  * may also be applied to the types {@code byte}, {@link Byte},
 794  * {@code short}, and {@link Short}, {@code int} and {@link Integer} when
 795  * {@link Character#isValidCodePoint} returns {@code true}.  If it returns
 796  * {@code false} then an {@link IllegalFormatCodePointException} will be
 797  * thrown.
 798  *
 799  * <table cellpadding=5 summary="charConv">
 800  *
 801  * <tr><td valign="top"> {@code 'c'}
 802  *     <td valign="top"> <tt>'&#92;u0063'</tt>
 803  *     <td> Formats the argument as a Unicode character as described in <a
 804  *     href="../lang/Character.html#unicode">Unicode Character
 805  *     Representation</a>.  This may be more than one 16-bit {@code char} in
 806  *     the case where the argument represents a supplementary character.
 807  *
 808  *     <p> If the {@code '#'} flag is given, then a {@link
 809  *     FormatFlagsConversionMismatchException} will be thrown.
 810  *
 811  * <tr><td valign="top"> {@code 'C'}
 812  *     <td valign="top"> <tt>'&#92;u0043'</tt>
 813  *     <td> The upper-case variant of {@code 'c'}.
 814  *
 815  * </table>
 816  *
 817  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
 818  * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
 819  * FormatFlagsConversionMismatchException} will be thrown.
 820  *
 821  * <p> The width is defined as for <a href="#genWidth">General conversions</a>.
 822  *
 823  * <p> The precision is not applicable.  If the precision is specified then an
 824  * {@link IllegalFormatPrecisionException} will be thrown.
 825  *
 826  * <h4><a name="dnum">Numeric</a></h4>
 827  *
 828  * <p> Numeric conversions are divided into the following categories:
 829  *
 830  * <ol>
 831  *
 832  * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a>
 833  *
 834  * <li> <a href="#dnbint"><b>BigInteger</b></a>
 835  *
 836  * <li> <a href="#dndec"><b>Float and Double</b></a>
 837  *
 838  * <li> <a href="#dnbdec"><b>BigDecimal</b></a>
 839  *
 840  * </ol>
 841  *
 842  * <p> Numeric types will be formatted according to the following algorithm:
 843  *
 844  * <p><b><a name="L10nAlgorithm"> Number Localization Algorithm</a></b>
 845  *
 846  * <p> After digits are obtained for the integer part, fractional part, and
 847  * exponent (as appropriate for the data type), the following transformation
 848  * is applied:
 849  *
 850  * <ol>
 851  *
 852  * <li> Each digit character <i>d</i> in the string is replaced by a
 853  * locale-specific digit computed relative to the current locale's
 854  * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
 855  * <i>z</i>; that is <i>d&nbsp;-&nbsp;</i> {@code '0'}
 856  * <i>&nbsp;+&nbsp;z</i>.
 857  *
 858  * <li> If a decimal separator is present, a locale-specific {@linkplain
 859  * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
 860  * substituted.
 861  *
 862  * <li> If the {@code ','} (<tt>'&#92;u002c'</tt>)
 863  * <a name="L10nGroup">flag</a> is given, then the locale-specific {@linkplain
 864  * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
 865  * inserted by scanning the integer part of the string from least significant
 866  * to most significant digits and inserting a separator at intervals defined by
 867  * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
 868  * size}.
 869  *
 870  * <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain
 871  * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
 872  * after the sign character, if any, and before the first non-zero digit, until
 873  * the length of the string is equal to the requested field width.
 874  *
 875  * <li> If the value is negative and the {@code '('} flag is given, then a
 876  * {@code '('} (<tt>'&#92;u0028'</tt>) is prepended and a {@code ')'}
 877  * (<tt>'&#92;u0029'</tt>) is appended.
 878  *
 879  * <li> If the value is negative (or floating-point negative zero) and
 880  * {@code '('} flag is not given, then a {@code '-'} (<tt>'&#92;u002d'</tt>)
 881  * is prepended.
 882  *
 883  * <li> If the {@code '+'} flag is given and the value is positive or zero (or
 884  * floating-point positive zero), then a {@code '+'} (<tt>'&#92;u002b'</tt>)
 885  * will be prepended.
 886  *
 887  * </ol>
 888  *
 889  * <p> If the value is NaN or positive infinity the literal strings "NaN" or
 890  * "Infinity" respectively, will be output.  If the value is negative infinity,
 891  * then the output will be "(Infinity)" if the {@code '('} flag is given
 892  * otherwise the output will be "-Infinity".  These values are not localized.
 893  *
 894  * <p><a name="dnint"><b> Byte, Short, Integer, and Long </b></a>
 895  *
 896  * <p> The following conversions may be applied to {@code byte}, {@link Byte},
 897  * {@code short}, {@link Short}, {@code int} and {@link Integer},
 898  * {@code long}, and {@link Long}.
 899  *
 900  * <table cellpadding=5 summary="IntConv">
 901  *
 902  * <tr><td valign="top"> {@code 'd'}
 903  *     <td valign="top"> <tt>'&#92;u0064'</tt>
 904  *     <td> Formats the argument as a decimal integer. The <a
 905  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
 906  *
 907  *     <p> If the {@code '0'} flag is given and the value is negative, then
 908  *     the zero padding will occur after the sign.
 909  *
 910  *     <p> If the {@code '#'} flag is given then a {@link
 911  *     FormatFlagsConversionMismatchException} will be thrown.
 912  *
 913  * <tr><td valign="top"> {@code 'o'}
 914  *     <td valign="top"> <tt>'&#92;u006f'</tt>
 915  *     <td> Formats the argument as an integer in base eight.  No localization
 916  *     is applied.
 917  *
 918  *     <p> If <i>x</i> is negative then the result will be an unsigned value
 919  *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
 920  *     number of bits in the type as returned by the static {@code SIZE} field
 921  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
 922  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
 923  *     classes as appropriate.
 924  *
 925  *     <p> If the {@code '#'} flag is given then the output will always begin
 926  *     with the radix indicator {@code '0'}.
 927  *
 928  *     <p> If the {@code '0'} flag is given then the output will be padded
 929  *     with leading zeros to the field width following any indication of sign.
 930  *
 931  *     <p> If {@code '('}, {@code '+'}, '&nbsp;&nbsp;', or {@code ','} flags
 932  *     are given then a {@link FormatFlagsConversionMismatchException} will be
 933  *     thrown.
 934  *
 935  * <tr><td valign="top"> {@code 'x'}
 936  *     <td valign="top"> <tt>'&#92;u0078'</tt>
 937  *     <td> Formats the argument as an integer in base sixteen. No
 938  *     localization is applied.
 939  *
 940  *     <p> If <i>x</i> is negative then the result will be an unsigned value
 941  *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
 942  *     number of bits in the type as returned by the static {@code SIZE} field
 943  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
 944  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
 945  *     classes as appropriate.
 946  *
 947  *     <p> If the {@code '#'} flag is given then the output will always begin
 948  *     with the radix indicator {@code "0x"}.
 949  *
 950  *     <p> If the {@code '0'} flag is given then the output will be padded to
 951  *     the field width with leading zeros after the radix indicator or sign (if
 952  *     present).
 953  *
 954  *     <p> If {@code '('}, <tt>'&nbsp;&nbsp;'</tt>, {@code '+'}, or
 955  *     {@code ','} flags are given then a {@link
 956  *     FormatFlagsConversionMismatchException} will be thrown.
 957  *
 958  * <tr><td valign="top"> {@code 'X'}
 959  *     <td valign="top"> <tt>'&#92;u0058'</tt>
 960  *     <td> The upper-case variant of {@code 'x'}.  The entire string
 961  *     representing the number will be converted to {@linkplain
 962  *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
 963  *     all hexadecimal digits {@code 'a'} - {@code 'f'}
 964  *     (<tt>'&#92;u0061'</tt> -  <tt>'&#92;u0066'</tt>).
 965  *
 966  * </table>
 967  *
 968  * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
 969  * both the {@code '#'} and the {@code '0'} flags are given, then result will
 970  * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or
 971  * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
 972  * and the value.
 973  *
 974  * <p> If the {@code '-'} flag is not given, then the space padding will occur
 975  * before the sign.
 976  *
 977  * <p> The following <a name="intFlags">flags</a> apply to numeric integral
 978  * conversions:
 979  *
 980  * <table cellpadding=5 summary="intFlags">
 981  *
 982  * <tr><td valign="top"> {@code '+'}
 983  *     <td valign="top"> <tt>'&#92;u002b'</tt>
 984  *     <td> Requires the output to include a positive sign for all positive
 985  *     numbers.  If this flag is not given then only negative values will
 986  *     include a sign.
 987  *
 988  *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
 989  *     then an {@link IllegalFormatFlagsException} will be thrown.
 990  *
 991  * <tr><td valign="top"> <tt>'&nbsp;&nbsp;'</tt>
 992  *     <td valign="top"> <tt>'&#92;u0020'</tt>
 993  *     <td> Requires the output to include a single extra space
 994  *     (<tt>'&#92;u0020'</tt>) for non-negative values.
 995  *
 996  *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
 997  *     then an {@link IllegalFormatFlagsException} will be thrown.
 998  *
 999  * <tr><td valign="top"> {@code '0'}
1000  *     <td valign="top"> <tt>'&#92;u0030'</tt>
1001  *     <td> Requires the output to be padded with leading {@linkplain
1002  *     java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
1003  *     width following any sign or radix indicator except when converting NaN
1004  *     or infinity.  If the width is not provided, then a {@link
1005  *     MissingFormatWidthException} will be thrown.
1006  *
1007  *     <p> If both the {@code '-'} and {@code '0'} flags are given then an
1008  *     {@link IllegalFormatFlagsException} will be thrown.
1009  *
1010  * <tr><td valign="top"> {@code ','}
1011  *     <td valign="top"> <tt>'&#92;u002c'</tt>
1012  *     <td> Requires the output to include the locale-specific {@linkplain
1013  *     java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
1014  *     described in the <a href="#L10nGroup">"group" section</a> of the
1015  *     localization algorithm.
1016  *
1017  * <tr><td valign="top"> {@code '('}
1018  *     <td valign="top"> <tt>'&#92;u0028'</tt>
1019  *     <td> Requires the output to prepend a {@code '('}
1020  *     (<tt>'&#92;u0028'</tt>) and append a {@code ')'}
1021  *     (<tt>'&#92;u0029'</tt>) to negative values.
1022  *
1023  * </table>
1024  *
1025  * <p> If no <a name="intdFlags">flags</a> are given the default formatting is
1026  * as follows:
1027  *
1028  * <ul>
1029  *
1030  * <li> The output is right-justified within the {@code width}
1031  *
1032  * <li> Negative numbers begin with a {@code '-'} (<tt>'&#92;u002d'</tt>)
1033  *
1034  * <li> Positive numbers and zero do not include a sign or extra leading
1035  * space
1036  *
1037  * <li> No grouping separators are included
1038  *
1039  * </ul>
1040  *
1041  * <p> The <a name="intWidth">width</a> is the minimum number of characters to
1042  * be written to the output.  This includes any signs, digits, grouping
1043  * separators, radix indicator, and parentheses.  If the length of the
1044  * converted value is less than the width then the output will be padded by
1045  * spaces (<tt>'&#92;u0020'</tt>) until the total number of characters equals
1046  * width.  The padding is on the left by default.  If {@code '-'} flag is
1047  * given then the padding will be on the right.  If width is not specified then
1048  * there is no minimum.
1049  *
1050  * <p> The precision is not applicable.  If precision is specified then an
1051  * {@link IllegalFormatPrecisionException} will be thrown.
1052  *
1053  * <p><a name="dnbint"><b> BigInteger </b></a>
1054  *
1055  * <p> The following conversions may be applied to {@link
1056  * java.math.BigInteger}.
1057  *
1058  * <table cellpadding=5 summary="BIntConv">
1059  *
1060  * <tr><td valign="top"> {@code 'd'}
1061  *     <td valign="top"> <tt>'&#92;u0064'</tt>
1062  *     <td> Requires the output to be formatted as a decimal integer. The <a
1063  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1064  *
1065  *     <p> If the {@code '#'} flag is given {@link
1066  *     FormatFlagsConversionMismatchException} will be thrown.
1067  *
1068  * <tr><td valign="top"> {@code 'o'}
1069  *     <td valign="top"> <tt>'&#92;u006f'</tt>
1070  *     <td> Requires the output to be formatted as an integer in base eight.
1071  *     No localization is applied.
1072  *
1073  *     <p> If <i>x</i> is negative then the result will be a signed value
1074  *     beginning with {@code '-'} (<tt>'&#92;u002d'</tt>).  Signed output is
1075  *     allowed for this type because unlike the primitive types it is not
1076  *     possible to create an unsigned equivalent without assuming an explicit
1077  *     data-type size.
1078  *
1079  *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1080  *     then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1081  *
1082  *     <p> If the {@code '#'} flag is given then the output will always begin
1083  *     with {@code '0'} prefix.
1084  *
1085  *     <p> If the {@code '0'} flag is given then the output will be padded
1086  *     with leading zeros to the field width following any indication of sign.
1087  *
1088  *     <p> If the {@code ','} flag is given then a {@link
1089  *     FormatFlagsConversionMismatchException} will be thrown.
1090  *
1091  * <tr><td valign="top"> {@code 'x'}
1092  *     <td valign="top"> <tt>'&#92;u0078'</tt>
1093  *     <td> Requires the output to be formatted as an integer in base
1094  *     sixteen.  No localization is applied.
1095  *
1096  *     <p> If <i>x</i> is negative then the result will be a signed value
1097  *     beginning with {@code '-'} (<tt>'&#92;u002d'</tt>).  Signed output is
1098  *     allowed for this type because unlike the primitive types it is not
1099  *     possible to create an unsigned equivalent without assuming an explicit
1100  *     data-type size.
1101  *
1102  *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1103  *     then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1104  *
1105  *     <p> If the {@code '#'} flag is given then the output will always begin
1106  *     with the radix indicator {@code "0x"}.
1107  *
1108  *     <p> If the {@code '0'} flag is given then the output will be padded to
1109  *     the field width with leading zeros after the radix indicator or sign (if
1110  *     present).
1111  *
1112  *     <p> If the {@code ','} flag is given then a {@link
1113  *     FormatFlagsConversionMismatchException} will be thrown.
1114  *
1115  * <tr><td valign="top"> {@code 'X'}
1116  *     <td valign="top"> <tt>'&#92;u0058'</tt>
1117  *     <td> The upper-case variant of {@code 'x'}.  The entire string
1118  *     representing the number will be converted to {@linkplain
1119  *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
1120  *     all hexadecimal digits {@code 'a'} - {@code 'f'}
1121  *     (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1122  *
1123  * </table>
1124  *
1125  * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1126  * both the {@code '#'} and the {@code '0'} flags are given, then result will
1127  * contain the base indicator ({@code '0'} for octal and {@code "0x"} or
1128  * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1129  * and the value.
1130  *
1131  * <p> If the {@code '0'} flag is given and the value is negative, then the
1132  * zero padding will occur after the sign.
1133  *
1134  * <p> If the {@code '-'} flag is not given, then the space padding will occur
1135  * before the sign.
1136  *
1137  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1138  * Long apply.  The <a href="#intdFlags">default behavior</a> when no flags are
1139  * given is the same as for Byte, Short, Integer, and Long.
1140  *
1141  * <p> The specification of <a href="#intWidth">width</a> is the same as
1142  * defined for Byte, Short, Integer, and Long.
1143  *
1144  * <p> The precision is not applicable.  If precision is specified then an
1145  * {@link IllegalFormatPrecisionException} will be thrown.
1146  *
1147  * <p><a name="dndec"><b> Float and Double</b></a>
1148  *
1149  * <p> The following conversions may be applied to {@code float}, {@link
1150  * Float}, {@code double} and {@link Double}.
1151  *
1152  * <table cellpadding=5 summary="floatConv">
1153  *
1154  * <tr><td valign="top"> {@code 'e'}
1155  *     <td valign="top"> <tt>'&#92;u0065'</tt>
1156  *     <td> Requires the output to be formatted using <a
1157  *     name="scientific">computerized scientific notation</a>.  The <a
1158  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1159  *
1160  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1161  *
1162  *     <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or
1163  *     "Infinity", respectively, will be output.  These values are not
1164  *     localized.
1165  *
1166  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1167  *     will be {@code "+00"}.
1168  *
1169  *     <p> Otherwise, the result is a string that represents the sign and
1170  *     magnitude (absolute value) of the argument.  The formatting of the sign
1171  *     is described in the <a href="#L10nAlgorithm">localization
1172  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1173  *     value.
1174  *
1175  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1176  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1177  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1178  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1179  *     integer part of <i>a</i>, as a single decimal digit, followed by the
1180  *     decimal separator followed by decimal digits representing the fractional
1181  *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1182  *     (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
1183  *     by a representation of <i>n</i> as a decimal integer, as produced by the
1184  *     method {@link Long#toString(long, int)}, and zero-padded to include at
1185  *     least two digits.
1186  *
1187  *     <p> The number of digits in the result for the fractional part of
1188  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1189  *     specified then the default value is {@code 6}. If the precision is less
1190  *     than the number of digits which would appear after the decimal point in
1191  *     the string returned by {@link Float#toString(float)} or {@link
1192  *     Double#toString(double)} respectively, then the value will be rounded
1193  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1194  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1195  *     For a canonical representation of the value, use {@link
1196  *     Float#toString(float)} or {@link Double#toString(double)} as
1197  *     appropriate.
1198  *
1199  *     <p>If the {@code ','} flag is given, then an {@link
1200  *     FormatFlagsConversionMismatchException} will be thrown.
1201  *
1202  * <tr><td valign="top"> {@code 'E'}
1203  *     <td valign="top"> <tt>'&#92;u0045'</tt>
1204  *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1205  *     will be {@code 'E'} (<tt>'&#92;u0045'</tt>).
1206  *
1207  * <tr><td valign="top"> {@code 'g'}
1208  *     <td valign="top"> <tt>'&#92;u0067'</tt>
1209  *     <td> Requires the output to be formatted in general scientific notation
1210  *     as described below. The <a href="#L10nAlgorithm">localization
1211  *     algorithm</a> is applied.
1212  *
1213  *     <p> After rounding for the precision, the formatting of the resulting
1214  *     magnitude <i>m</i> depends on its value.
1215  *
1216  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1217  *     than 10<sup>precision</sup> then it is represented in <i><a
1218  *     href="#decimal">decimal format</a></i>.
1219  *
1220  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1221  *     10<sup>precision</sup>, then it is represented in <i><a
1222  *     href="#scientific">computerized scientific notation</a></i>.
1223  *
1224  *     <p> The total number of significant digits in <i>m</i> is equal to the
1225  *     precision.  If the precision is not specified, then the default value is
1226  *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1227  *     {@code 1}.
1228  *
1229  *     <p> If the {@code '#'} flag is given then an {@link
1230  *     FormatFlagsConversionMismatchException} will be thrown.
1231  *
1232  * <tr><td valign="top"> {@code 'G'}
1233  *     <td valign="top"> <tt>'&#92;u0047'</tt>
1234  *     <td> The upper-case variant of {@code 'g'}.
1235  *
1236  * <tr><td valign="top"> {@code 'f'}
1237  *     <td valign="top"> <tt>'&#92;u0066'</tt>
1238  *     <td> Requires the output to be formatted using <a name="decimal">decimal
1239  *     format</a>.  The <a href="#L10nAlgorithm">localization algorithm</a> is
1240  *     applied.
1241  *
1242  *     <p> The result is a string that represents the sign and magnitude
1243  *     (absolute value) of the argument.  The formatting of the sign is
1244  *     described in the <a href="#L10nAlgorithm">localization
1245  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1246  *     value.
1247  *
1248  *     <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or
1249  *     "Infinity", respectively, will be output.  These values are not
1250  *     localized.
1251  *
1252  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1253  *     leading zeroes, followed by the decimal separator followed by one or
1254  *     more decimal digits representing the fractional part of <i>m</i>.
1255  *
1256  *     <p> The number of digits in the result for the fractional part of
1257  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1258  *     specified then the default value is {@code 6}. If the precision is less
1259  *     than the number of digits which would appear after the decimal point in
1260  *     the string returned by {@link Float#toString(float)} or {@link
1261  *     Double#toString(double)} respectively, then the value will be rounded
1262  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1263  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1264  *     For a canonical representation of the value, use {@link
1265  *     Float#toString(float)} or {@link Double#toString(double)} as
1266  *     appropriate.
1267  *
1268  * <tr><td valign="top"> {@code 'a'}
1269  *     <td valign="top"> <tt>'&#92;u0061'</tt>
1270  *     <td> Requires the output to be formatted in hexadecimal exponential
1271  *     form.  No localization is applied.
1272  *
1273  *     <p> The result is a string that represents the sign and magnitude
1274  *     (absolute value) of the argument <i>x</i>.
1275  *
1276  *     <p> If <i>x</i> is negative or a negative-zero value then the result
1277  *     will begin with {@code '-'} (<tt>'&#92;u002d'</tt>).
1278  *
1279  *     <p> If <i>x</i> is positive or a positive-zero value and the
1280  *     {@code '+'} flag is given then the result will begin with {@code '+'}
1281  *     (<tt>'&#92;u002b'</tt>).
1282  *
1283  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1284  *
1285  *     <ul>
1286  *
1287  *     <li> If the value is NaN or infinite, the literal strings "NaN" or
1288  *     "Infinity", respectively, will be output.
1289  *
1290  *     <li> If <i>m</i> is zero then it is represented by the string
1291  *     {@code "0x0.0p0"}.
1292  *
1293  *     <li> If <i>m</i> is a {@code double} value with a normalized
1294  *     representation then substrings are used to represent the significand and
1295  *     exponent fields.  The significand is represented by the characters
1296  *     {@code "0x1."} followed by the hexadecimal representation of the rest
1297  *     of the significand as a fraction.  The exponent is represented by
1298  *     {@code 'p'} (<tt>'&#92;u0070'</tt>) followed by a decimal string of the
1299  *     unbiased exponent as if produced by invoking {@link
1300  *     Integer#toString(int) Integer.toString} on the exponent value.  If the
1301  *     precision is specified, the value is rounded to the given number of
1302  *     hexadecimal digits.
1303  *
1304  *     <li> If <i>m</i> is a {@code double} value with a subnormal
1305  *     representation then, unless the precision is specified to be in the range
1306  *     1 through 12, inclusive, the significand is represented by the characters
1307  *     {@code '0x0.'} followed by the hexadecimal representation of the rest of
1308  *     the significand as a fraction, and the exponent represented by
1309  *     {@code 'p-1022'}.  If the precision is in the interval
1310  *     [1,&nbsp;12], the subnormal value is normalized such that it
1311  *     begins with the characters {@code '0x1.'}, rounded to the number of
1312  *     hexadecimal digits of precision, and the exponent adjusted
1313  *     accordingly.  Note that there must be at least one nonzero digit in a
1314  *     subnormal significand.
1315  *
1316  *     </ul>
1317  *
1318  *     <p> If the {@code '('} or {@code ','} flags are given, then a {@link
1319  *     FormatFlagsConversionMismatchException} will be thrown.
1320  *
1321  * <tr><td valign="top"> {@code 'A'}
1322  *     <td valign="top"> <tt>'&#92;u0041'</tt>
1323  *     <td> The upper-case variant of {@code 'a'}.  The entire string
1324  *     representing the number will be converted to upper case including the
1325  *     {@code 'x'} (<tt>'&#92;u0078'</tt>) and {@code 'p'}
1326  *     (<tt>'&#92;u0070'</tt> and all hexadecimal digits {@code 'a'} -
1327  *     {@code 'f'} (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1328  *
1329  * </table>
1330  *
1331  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1332  * Long apply.
1333  *
1334  * <p> If the {@code '#'} flag is given, then the decimal separator will
1335  * always be present.
1336  *
1337  * <p> If no <a name="floatdFlags">flags</a> are given the default formatting
1338  * is as follows:
1339  *
1340  * <ul>
1341  *
1342  * <li> The output is right-justified within the {@code width}
1343  *
1344  * <li> Negative numbers begin with a {@code '-'}
1345  *
1346  * <li> Positive numbers and positive zero do not include a sign or extra
1347  * leading space
1348  *
1349  * <li> No grouping separators are included
1350  *
1351  * <li> The decimal separator will only appear if a digit follows it
1352  *
1353  * </ul>
1354  *
1355  * <p> The <a name="floatDWidth">width</a> is the minimum number of characters
1356  * to be written to the output.  This includes any signs, digits, grouping
1357  * separators, decimal separators, exponential symbol, radix indicator,
1358  * parentheses, and strings representing infinity and NaN as applicable.  If
1359  * the length of the converted value is less than the width then the output
1360  * will be padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1361  * characters equals width.  The padding is on the left by default.  If the
1362  * {@code '-'} flag is given then the padding will be on the right.  If width
1363  * is not specified then there is no minimum.
1364  *
1365  * <p> If the <a name="floatDPrec">conversion</a> is {@code 'e'},
1366  * {@code 'E'} or {@code 'f'}, then the precision is the number of digits
1367  * after the decimal separator.  If the precision is not specified, then it is
1368  * assumed to be {@code 6}.
1369  *
1370  * <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is
1371  * the total number of significant digits in the resulting magnitude after
1372  * rounding.  If the precision is not specified, then the default value is
1373  * {@code 6}.  If the precision is {@code 0}, then it is taken to be
1374  * {@code 1}.
1375  *
1376  * <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision
1377  * is the number of hexadecimal digits after the radix point.  If the
1378  * precision is not provided, then all of the digits as returned by {@link
1379  * Double#toHexString(double)} will be output.
1380  *
1381  * <p><a name="dnbdec"><b> BigDecimal </b></a>
1382  *
1383  * <p> The following conversions may be applied {@link java.math.BigDecimal
1384  * BigDecimal}.
1385  *
1386  * <table cellpadding=5 summary="floatConv">
1387  *
1388  * <tr><td valign="top"> {@code 'e'}
1389  *     <td valign="top"> <tt>'&#92;u0065'</tt>
1390  *     <td> Requires the output to be formatted using <a
1391  *     name="bscientific">computerized scientific notation</a>.  The <a
1392  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1393  *
1394  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1395  *
1396  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1397  *     will be {@code "+00"}.
1398  *
1399  *     <p> Otherwise, the result is a string that represents the sign and
1400  *     magnitude (absolute value) of the argument.  The formatting of the sign
1401  *     is described in the <a href="#L10nAlgorithm">localization
1402  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1403  *     value.
1404  *
1405  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1406  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1407  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1408  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1409  *     integer part of <i>a</i>, as a single decimal digit, followed by the
1410  *     decimal separator followed by decimal digits representing the fractional
1411  *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1412  *     (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
1413  *     by a representation of <i>n</i> as a decimal integer, as produced by the
1414  *     method {@link Long#toString(long, int)}, and zero-padded to include at
1415  *     least two digits.
1416  *
1417  *     <p> The number of digits in the result for the fractional part of
1418  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1419  *     specified then the default value is {@code 6}.  If the precision is
1420  *     less than the number of digits to the right of the decimal point then
1421  *     the value will be rounded using the
1422  *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1423  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1424  *     For a canonical representation of the value, use {@link
1425  *     BigDecimal#toString()}.
1426  *
1427  *     <p> If the {@code ','} flag is given, then an {@link
1428  *     FormatFlagsConversionMismatchException} will be thrown.
1429  *
1430  * <tr><td valign="top"> {@code 'E'}
1431  *     <td valign="top"> <tt>'&#92;u0045'</tt>
1432  *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1433  *     will be {@code 'E'} (<tt>'&#92;u0045'</tt>).
1434  *
1435  * <tr><td valign="top"> {@code 'g'}
1436  *     <td valign="top"> <tt>'&#92;u0067'</tt>
1437  *     <td> Requires the output to be formatted in general scientific notation
1438  *     as described below. The <a href="#L10nAlgorithm">localization
1439  *     algorithm</a> is applied.
1440  *
1441  *     <p> After rounding for the precision, the formatting of the resulting
1442  *     magnitude <i>m</i> depends on its value.
1443  *
1444  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1445  *     than 10<sup>precision</sup> then it is represented in <i><a
1446  *     href="#bdecimal">decimal format</a></i>.
1447  *
1448  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1449  *     10<sup>precision</sup>, then it is represented in <i><a
1450  *     href="#bscientific">computerized scientific notation</a></i>.
1451  *
1452  *     <p> The total number of significant digits in <i>m</i> is equal to the
1453  *     precision.  If the precision is not specified, then the default value is
1454  *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1455  *     {@code 1}.
1456  *
1457  *     <p> If the {@code '#'} flag is given then an {@link
1458  *     FormatFlagsConversionMismatchException} will be thrown.
1459  *
1460  * <tr><td valign="top"> {@code 'G'}
1461  *     <td valign="top"> <tt>'&#92;u0047'</tt>
1462  *     <td> The upper-case variant of {@code 'g'}.
1463  *
1464  * <tr><td valign="top"> {@code 'f'}
1465  *     <td valign="top"> <tt>'&#92;u0066'</tt>
1466  *     <td> Requires the output to be formatted using <a name="bdecimal">decimal
1467  *     format</a>.  The <a href="#L10nAlgorithm">localization algorithm</a> is
1468  *     applied.
1469  *
1470  *     <p> The result is a string that represents the sign and magnitude
1471  *     (absolute value) of the argument.  The formatting of the sign is
1472  *     described in the <a href="#L10nAlgorithm">localization
1473  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1474  *     value.
1475  *
1476  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1477  *     leading zeroes, followed by the decimal separator followed by one or
1478  *     more decimal digits representing the fractional part of <i>m</i>.
1479  *
1480  *     <p> The number of digits in the result for the fractional part of
1481  *     <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1482  *     specified then the default value is {@code 6}.  If the precision is
1483  *     less than the number of digits to the right of the decimal point
1484  *     then the value will be rounded using the
1485  *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1486  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1487  *     For a canonical representation of the value, use {@link
1488  *     BigDecimal#toString()}.
1489  *
1490  * </table>
1491  *
1492  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1493  * Long apply.
1494  *
1495  * <p> If the {@code '#'} flag is given, then the decimal separator will
1496  * always be present.
1497  *
1498  * <p> The <a href="#floatdFlags">default behavior</a> when no flags are
1499  * given is the same as for Float and Double.
1500  *
1501  * <p> The specification of <a href="#floatDWidth">width</a> and <a
1502  * href="#floatDPrec">precision</a> is the same as defined for Float and
1503  * Double.
1504  *
1505  * <h4><a name="ddt">Date/Time</a></h4>
1506  *
1507  * <p> This conversion may be applied to {@code long}, {@link Long}, {@link
1508  * Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor}
1509  *
1510  * <table cellpadding=5 summary="DTConv">
1511  *
1512  * <tr><td valign="top"> {@code 't'}
1513  *     <td valign="top"> <tt>'&#92;u0074'</tt>
1514  *     <td> Prefix for date and time conversion characters.
1515  * <tr><td valign="top"> {@code 'T'}
1516  *     <td valign="top"> <tt>'&#92;u0054'</tt>
1517  *     <td> The upper-case variant of {@code 't'}.
1518  *
1519  * </table>
1520  *
1521  * <p> The following date and time conversion character suffixes are defined
1522  * for the {@code 't'} and {@code 'T'} conversions.  The types are similar to
1523  * but not completely identical to those defined by GNU {@code date} and
1524  * POSIX {@code strftime(3c)}.  Additional conversion types are provided to
1525  * access Java-specific functionality (e.g. {@code 'L'} for milliseconds
1526  * within the second).
1527  *
1528  * <p> The following conversion characters are used for formatting times:
1529  *
1530  * <table cellpadding=5 summary="time">
1531  *
1532  * <tr><td valign="top"> {@code 'H'}
1533  *     <td valign="top"> <tt>'&#92;u0048'</tt>
1534  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
1535  *     a leading zero as necessary i.e. {@code 00 - 23}. {@code 00}
1536  *     corresponds to midnight.
1537  *
1538  * <tr><td valign="top">{@code 'I'}
1539  *     <td valign="top"> <tt>'&#92;u0049'</tt>
1540  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
1541  *     zero as necessary, i.e.  {@code 01 - 12}.  {@code 01} corresponds to
1542  *     one o'clock (either morning or afternoon).
1543  *
1544  * <tr><td valign="top">{@code 'k'}
1545  *     <td valign="top"> <tt>'&#92;u006b'</tt>
1546  *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
1547  *     {@code 0} corresponds to midnight.
1548  *
1549  * <tr><td valign="top">{@code 'l'}
1550  *     <td valign="top"> <tt>'&#92;u006c'</tt>
1551  *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.  {@code 1}
1552  *     corresponds to one o'clock (either morning or afternoon).
1553  *
1554  * <tr><td valign="top">{@code 'M'}
1555  *     <td valign="top"> <tt>'&#92;u004d'</tt>
1556  *     <td> Minute within the hour formatted as two digits with a leading zero
1557  *     as necessary, i.e.  {@code 00 - 59}.
1558  *
1559  * <tr><td valign="top">{@code 'S'}
1560  *     <td valign="top"> <tt>'&#92;u0053'</tt>
1561  *     <td> Seconds within the minute, formatted as two digits with a leading
1562  *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
1563  *     value required to support leap seconds).
1564  *
1565  * <tr><td valign="top">{@code 'L'}
1566  *     <td valign="top"> <tt>'&#92;u004c'</tt>
1567  *     <td> Millisecond within the second formatted as three digits with
1568  *     leading zeros as necessary, i.e. {@code 000 - 999}.
1569  *
1570  * <tr><td valign="top">{@code 'N'}
1571  *     <td valign="top"> <tt>'&#92;u004e'</tt>
1572  *     <td> Nanosecond within the second, formatted as nine digits with leading
1573  *     zeros as necessary, i.e. {@code 000000000 - 999999999}.  The precision
1574  *     of this value is limited by the resolution of the underlying operating
1575  *     system or hardware.
1576  *
1577  * <tr><td valign="top">{@code 'p'}
1578  *     <td valign="top"> <tt>'&#92;u0070'</tt>
1579  *     <td> Locale-specific {@linkplain
1580  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
1581  *     in lower case, e.g."{@code am}" or "{@code pm}".  Use of the
1582  *     conversion prefix {@code 'T'} forces this output to upper case.  (Note
1583  *     that {@code 'p'} produces lower-case output.  This is different from
1584  *     GNU {@code date} and POSIX {@code strftime(3c)} which produce
1585  *     upper-case output.)
1586  *
1587  * <tr><td valign="top">{@code 'z'}
1588  *     <td valign="top"> <tt>'&#92;u007a'</tt>
1589  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
1590  *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
1591  *     value will be adjusted as necessary for Daylight Saving Time.  For
1592  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1593  *     the {@linkplain TimeZone#getDefault() default time zone} for this
1594  *     instance of the Java virtual machine.
1595  *
1596  * <tr><td valign="top">{@code 'Z'}
1597  *     <td valign="top"> <tt>'&#92;u005a'</tt>
1598  *     <td> A string representing the abbreviation for the time zone.  This
1599  *     value will be adjusted as necessary for Daylight Saving Time.  For
1600  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1601  *     the {@linkplain TimeZone#getDefault() default time zone} for this
1602  *     instance of the Java virtual machine.  The Formatter's locale will
1603  *     supersede the locale of the argument (if any).
1604  *
1605  * <tr><td valign="top">{@code 's'}
1606  *     <td valign="top"> <tt>'&#92;u0073'</tt>
1607  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
1608  *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
1609  *     {@code Long.MAX_VALUE/1000}.
1610  *
1611  * <tr><td valign="top">{@code 'Q'}
1612  *     <td valign="top"> <tt>'&#92;u004f'</tt>
1613  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
1614  *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
1615  *     {@code Long.MAX_VALUE}. The precision of this value is limited by
1616  *     the resolution of the underlying operating system or hardware.
1617  *
1618  * </table>
1619  *
1620  * <p> The following conversion characters are used for formatting dates:
1621  *
1622  * <table cellpadding=5 summary="date">
1623  *
1624  * <tr><td valign="top">{@code 'B'}
1625  *     <td valign="top"> <tt>'&#92;u0042'</tt>
1626  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
1627  *     full month name}, e.g. {@code "January"}, {@code "February"}.
1628  *
1629  * <tr><td valign="top">{@code 'b'}
1630  *     <td valign="top"> <tt>'&#92;u0062'</tt>
1631  *     <td> Locale-specific {@linkplain
1632  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
1633  *     e.g. {@code "Jan"}, {@code "Feb"}.
1634  *
1635  * <tr><td valign="top">{@code 'h'}
1636  *     <td valign="top"> <tt>'&#92;u0068'</tt>
1637  *     <td> Same as {@code 'b'}.
1638  *
1639  * <tr><td valign="top">{@code 'A'}
1640  *     <td valign="top"> <tt>'&#92;u0041'</tt>
1641  *     <td> Locale-specific full name of the {@linkplain
1642  *     java.text.DateFormatSymbols#getWeekdays day of the week},
1643  *     e.g. {@code "Sunday"}, {@code "Monday"}
1644  *
1645  * <tr><td valign="top">{@code 'a'}
1646  *     <td valign="top"> <tt>'&#92;u0061'</tt>
1647  *     <td> Locale-specific short name of the {@linkplain
1648  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
1649  *     e.g. {@code "Sun"}, {@code "Mon"}
1650  *
1651  * <tr><td valign="top">{@code 'C'}
1652  *     <td valign="top"> <tt>'&#92;u0043'</tt>
1653  *     <td> Four-digit year divided by {@code 100}, formatted as two digits
1654  *     with leading zero as necessary, i.e. {@code 00 - 99}
1655  *
1656  * <tr><td valign="top">{@code 'Y'}
1657  *     <td valign="top"> <tt>'&#92;u0059'</tt> <td> Year, formatted to at least
1658  *     four digits with leading zeros as necessary, e.g. {@code 0092} equals
1659  *     {@code 92} CE for the Gregorian calendar.
1660  *
1661  * <tr><td valign="top">{@code 'y'}
1662  *     <td valign="top"> <tt>'&#92;u0079'</tt>
1663  *     <td> Last two digits of the year, formatted with leading zeros as
1664  *     necessary, i.e. {@code 00 - 99}.
1665  *
1666  * <tr><td valign="top">{@code 'j'}
1667  *     <td valign="top"> <tt>'&#92;u006a'</tt>
1668  *     <td> Day of year, formatted as three digits with leading zeros as
1669  *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
1670  *     {@code 001} corresponds to the first day of the year.
1671  *
1672  * <tr><td valign="top">{@code 'm'}
1673  *     <td valign="top"> <tt>'&#92;u006d'</tt>
1674  *     <td> Month, formatted as two digits with leading zeros as necessary,
1675  *     i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the
1676  *     year and ("{@code 13}" is a special value required to support lunar
1677  *     calendars).
1678  *
1679  * <tr><td valign="top">{@code 'd'}
1680  *     <td valign="top"> <tt>'&#92;u0064'</tt>
1681  *     <td> Day of month, formatted as two digits with leading zeros as
1682  *     necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day
1683  *     of the month.
1684  *
1685  * <tr><td valign="top">{@code 'e'}
1686  *     <td valign="top"> <tt>'&#92;u0065'</tt>
1687  *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where
1688  *     "{@code 1}" is the first day of the month.
1689  *
1690  * </table>
1691  *
1692  * <p> The following conversion characters are used for formatting common
1693  * date/time compositions.
1694  *
1695  * <table cellpadding=5 summary="composites">
1696  *
1697  * <tr><td valign="top">{@code 'R'}
1698  *     <td valign="top"> <tt>'&#92;u0052'</tt>
1699  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
1700  *
1701  * <tr><td valign="top">{@code 'T'}
1702  *     <td valign="top"> <tt>'&#92;u0054'</tt>
1703  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
1704  *
1705  * <tr><td valign="top">{@code 'r'}
1706  *     <td valign="top"> <tt>'&#92;u0072'</tt>
1707  *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS
1708  *     %Tp"}.  The location of the morning or afternoon marker
1709  *     ({@code '%Tp'}) may be locale-dependent.
1710  *
1711  * <tr><td valign="top">{@code 'D'}
1712  *     <td valign="top"> <tt>'&#92;u0044'</tt>
1713  *     <td> Date formatted as {@code "%tm/%td/%ty"}.
1714  *
1715  * <tr><td valign="top">{@code 'F'}
1716  *     <td valign="top"> <tt>'&#92;u0046'</tt>
1717  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
1718  *     complete date formatted as {@code "%tY-%tm-%td"}.
1719  *
1720  * <tr><td valign="top">{@code 'c'}
1721  *     <td valign="top"> <tt>'&#92;u0063'</tt>
1722  *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
1723  *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
1724  *
1725  * </table>
1726  *
1727  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1728  * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
1729  * FormatFlagsConversionMismatchException} will be thrown.
1730  *
1731  * <p> The width is the minimum number of characters to
1732  * be written to the output.  If the length of the converted value is less than
1733  * the {@code width} then the output will be padded by spaces
1734  * (<tt>'&#92;u0020'</tt>) until the total number of characters equals width.
1735  * The padding is on the left by default.  If the {@code '-'} flag is given
1736  * then the padding will be on the right.  If width is not specified then there
1737  * is no minimum.
1738  *
1739  * <p> The precision is not applicable.  If the precision is specified then an
1740  * {@link IllegalFormatPrecisionException} will be thrown.
1741  *
1742  * <h4><a name="dper">Percent</a></h4>
1743  *
1744  * <p> The conversion does not correspond to any argument.
1745  *
1746  * <table cellpadding=5 summary="DTConv">
1747  *
1748  * <tr><td valign="top">{@code '%'}
1749  *     <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
1750  *
1751  * <p> The width is the minimum number of characters to
1752  * be written to the output including the {@code '%'}.  If the length of the
1753  * converted value is less than the {@code width} then the output will be
1754  * padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1755  * characters equals width.  The padding is on the left.  If width is not
1756  * specified then just the {@code '%'} is output.
1757  *
1758  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1759  * conversions</a> applies.  If any other flags are provided, then a
1760  * {@link FormatFlagsConversionMismatchException} will be thrown.
1761  *
1762  * <p> The precision is not applicable.  If the precision is specified an
1763  * {@link IllegalFormatPrecisionException} will be thrown.
1764  *
1765  * </table>
1766  *
1767  * <h4><a name="dls">Line Separator</a></h4>
1768  *
1769  * <p> The conversion does not correspond to any argument.
1770  *
1771  * <table cellpadding=5 summary="DTConv">
1772  *
1773  * <tr><td valign="top">{@code 'n'}
1774  *     <td> the platform-specific line separator as returned by {@link
1775  *     System#getProperty System.getProperty("line.separator")}.
1776  *
1777  * </table>
1778  *
1779  * <p> Flags, width, and precision are not applicable.  If any are provided an
1780  * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
1781  * and {@link IllegalFormatPrecisionException}, respectively will be thrown.
1782  *
1783  * <h4><a name="dpos">Argument Index</a></h4>
1784  *
1785  * <p> Format specifiers can reference arguments in three ways:
1786  *
1787  * <ul>
1788  *
1789  * <li> <i>Explicit indexing</i> is used when the format specifier contains an
1790  * argument index.  The argument index is a decimal integer indicating the
1791  * position of the argument in the argument list.  The first argument is
1792  * referenced by "{@code 1$}", the second by "{@code 2$}", etc.  An argument
1793  * may be referenced more than once.
1794  *
1795  * <p> For example:
1796  *
1797  * <blockquote><pre>
1798  *   formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
1799  *                    "a", "b", "c", "d")
1800  *   // -&gt; "d c b a d c b a"
1801  * </pre></blockquote>
1802  *
1803  * <li> <i>Relative indexing</i> is used when the format specifier contains a
1804  * {@code '<'} (<tt>'&#92;u003c'</tt>) flag which causes the argument for
1805  * the previous format specifier to be re-used.  If there is no previous
1806  * argument, then a {@link MissingFormatArgumentException} is thrown.
1807  *
1808  * <blockquote><pre>
1809  *    formatter.format("%s %s %&lt;s %&lt;s", "a", "b", "c", "d")
1810  *    // -&gt; "a b b b"
1811  *    // "c" and "d" are ignored because they are not referenced
1812  * </pre></blockquote>
1813  *
1814  * <li> <i>Ordinary indexing</i> is used when the format specifier contains
1815  * neither an argument index nor a {@code '<'} flag.  Each format specifier
1816  * which uses ordinary indexing is assigned a sequential implicit index into
1817  * argument list which is independent of the indices used by explicit or
1818  * relative indexing.
1819  *
1820  * <blockquote><pre>
1821  *   formatter.format("%s %s %s %s", "a", "b", "c", "d")
1822  *   // -&gt; "a b c d"
1823  * </pre></blockquote>
1824  *
1825  * </ul>
1826  *
1827  * <p> It is possible to have a format string which uses all forms of indexing,
1828  * for example:
1829  *
1830  * <blockquote><pre>
1831  *   formatter.format("%2$s %s %&lt;s %s", "a", "b", "c", "d")
1832  *   // -&gt; "b a a b"
1833  *   // "c" and "d" are ignored because they are not referenced
1834  * </pre></blockquote>
1835  *
1836  * <p> The maximum number of arguments is limited by the maximum dimension of a
1837  * Java array as defined by
1838  * <cite>The Java&trade; Virtual Machine Specification</cite>.
1839  * If the argument index does not correspond to an
1840  * available argument, then a {@link MissingFormatArgumentException} is thrown.
1841  *
1842  * <p> If there are more arguments than format specifiers, the extra arguments
1843  * are ignored.
1844  *
1845  * <p> Unless otherwise specified, passing a {@code null} argument to any
1846  * method or constructor in this class will cause a {@link
1847  * NullPointerException} to be thrown.
1848  *
1849  * @author  Iris Clark
1850  * @since 1.5
1851  */
1852 public final class Formatter implements Closeable, Flushable {
1853     private Appendable a;
1854     private final Locale l;
1855 
1856     private IOException lastException;
1857 
1858     private final char zero;
1859     private static double scaleUp;
1860 
1861     // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
1862     // + 3 (max # exp digits) + 4 (error) = 30
1863     private static final int MAX_FD_CHARS = 30;
1864 
1865     /**
1866      * Returns a charset object for the given charset name.
1867      * @throws NullPointerException          is csn is null
1868      * @throws UnsupportedEncodingException  if the charset is not supported
1869      */
1870     private static Charset toCharset(String csn)
1871         throws UnsupportedEncodingException
1872     {
1873         Objects.requireNonNull(csn, "charsetName");
1874         try {
1875             return Charset.forName(csn);
1876         } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) {
1877             // UnsupportedEncodingException should be thrown
1878             throw new UnsupportedEncodingException(csn);
1879         }
1880     }
1881 
1882     private static final Appendable nonNullAppendable(Appendable a) {
1883         if (a == null)
1884             return new StringBuilder();
1885 
1886         return a;
1887     }
1888 
1889     /* Private constructors */
1890     private Formatter(Locale l, Appendable a) {
1891         this.a = a;
1892         this.l = l;
1893         this.zero = getZero(l);
1894     }
1895 
1896     private Formatter(Charset charset, Locale l, File file)
1897         throws FileNotFoundException
1898     {
1899         this(l,
1900              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset)));
1901     }
1902 
1903     /**
1904      * Constructs a new formatter.
1905      *
1906      * <p> The destination of the formatted output is a {@link StringBuilder}
1907      * which may be retrieved by invoking {@link #out out()} and whose
1908      * current content may be converted into a string by invoking {@link
1909      * #toString toString()}.  The locale used is the {@linkplain
1910      * Locale#getDefault(Locale.Category) default locale} for
1911      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1912      * virtual machine.
1913      */
1914     public Formatter() {
1915         this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder());
1916     }
1917 
1918     /**
1919      * Constructs a new formatter with the specified destination.
1920      *
1921      * <p> The locale used is the {@linkplain
1922      * Locale#getDefault(Locale.Category) default locale} for
1923      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1924      * virtual machine.
1925      *
1926      * @param  a
1927      *         Destination for the formatted output.  If {@code a} is
1928      *         {@code null} then a {@link StringBuilder} will be created.
1929      */
1930     public Formatter(Appendable a) {
1931         this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a));
1932     }
1933 
1934     /**
1935      * Constructs a new formatter with the specified locale.
1936      *
1937      * <p> The destination of the formatted output is a {@link StringBuilder}
1938      * which may be retrieved by invoking {@link #out out()} and whose current
1939      * content may be converted into a string by invoking {@link #toString
1940      * toString()}.
1941      *
1942      * @param  l
1943      *         The {@linkplain java.util.Locale locale} to apply during
1944      *         formatting.  If {@code l} is {@code null} then no localization
1945      *         is applied.
1946      */
1947     public Formatter(Locale l) {
1948         this(l, new StringBuilder());
1949     }
1950 
1951     /**
1952      * Constructs a new formatter with the specified destination and locale.
1953      *
1954      * @param  a
1955      *         Destination for the formatted output.  If {@code a} is
1956      *         {@code null} then a {@link StringBuilder} will be created.
1957      *
1958      * @param  l
1959      *         The {@linkplain java.util.Locale locale} to apply during
1960      *         formatting.  If {@code l} is {@code null} then no localization
1961      *         is applied.
1962      */
1963     public Formatter(Appendable a, Locale l) {
1964         this(l, nonNullAppendable(a));
1965     }
1966 
1967     /**
1968      * Constructs a new formatter with the specified file name.
1969      *
1970      * <p> The charset used is the {@linkplain
1971      * java.nio.charset.Charset#defaultCharset() default charset} for this
1972      * instance of the Java virtual machine.
1973      *
1974      * <p> The locale used is the {@linkplain
1975      * Locale#getDefault(Locale.Category) default locale} for
1976      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1977      * virtual machine.
1978      *
1979      * @param  fileName
1980      *         The name of the file to use as the destination of this
1981      *         formatter.  If the file exists then it will be truncated to
1982      *         zero size; otherwise, a new file will be created.  The output
1983      *         will be written to the file and is buffered.
1984      *
1985      * @throws  SecurityException
1986      *          If a security manager is present and {@link
1987      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
1988      *          access to the file
1989      *
1990      * @throws  FileNotFoundException
1991      *          If the given file name does not denote an existing, writable
1992      *          regular file and a new regular file of that name cannot be
1993      *          created, or if some other error occurs while opening or
1994      *          creating the file
1995      */
1996     public Formatter(String fileName) throws FileNotFoundException {
1997         this(Locale.getDefault(Locale.Category.FORMAT),
1998              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))));
1999     }
2000 
2001     /**
2002      * Constructs a new formatter with the specified file name and charset.
2003      *
2004      * <p> The locale used is the {@linkplain
2005      * Locale#getDefault(Locale.Category) default locale} for
2006      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2007      * virtual machine.
2008      *
2009      * @param  fileName
2010      *         The name of the file to use as the destination of this
2011      *         formatter.  If the file exists then it will be truncated to
2012      *         zero size; otherwise, a new file will be created.  The output
2013      *         will be written to the file and is buffered.
2014      *
2015      * @param  csn
2016      *         The name of a supported {@linkplain java.nio.charset.Charset
2017      *         charset}
2018      *
2019      * @throws  FileNotFoundException
2020      *          If the given file name does not denote an existing, writable
2021      *          regular file and a new regular file of that name cannot be
2022      *          created, or if some other error occurs while opening or
2023      *          creating the file
2024      *
2025      * @throws  SecurityException
2026      *          If a security manager is present and {@link
2027      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2028      *          access to the file
2029      *
2030      * @throws  UnsupportedEncodingException
2031      *          If the named charset is not supported
2032      */
2033     public Formatter(String fileName, String csn)
2034         throws FileNotFoundException, UnsupportedEncodingException
2035     {
2036         this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT));
2037     }
2038 
2039     /**
2040      * Constructs a new formatter with the specified file name, charset, and
2041      * locale.
2042      *
2043      * @param  fileName
2044      *         The name of the file to use as the destination of this
2045      *         formatter.  If the file exists then it will be truncated to
2046      *         zero size; otherwise, a new file will be created.  The output
2047      *         will be written to the file and is buffered.
2048      *
2049      * @param  csn
2050      *         The name of a supported {@linkplain java.nio.charset.Charset
2051      *         charset}
2052      *
2053      * @param  l
2054      *         The {@linkplain java.util.Locale locale} to apply during
2055      *         formatting.  If {@code l} is {@code null} then no localization
2056      *         is applied.
2057      *
2058      * @throws  FileNotFoundException
2059      *          If the given file name does not denote an existing, writable
2060      *          regular file and a new regular file of that name cannot be
2061      *          created, or if some other error occurs while opening or
2062      *          creating the file
2063      *
2064      * @throws  SecurityException
2065      *          If a security manager is present and {@link
2066      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2067      *          access to the file
2068      *
2069      * @throws  UnsupportedEncodingException
2070      *          If the named charset is not supported
2071      */
2072     public Formatter(String fileName, String csn, Locale l)
2073         throws FileNotFoundException, UnsupportedEncodingException
2074     {
2075         this(toCharset(csn), l, new File(fileName));
2076     }
2077 
2078     /**
2079      * Constructs a new formatter with the specified file.
2080      *
2081      * <p> The charset used is the {@linkplain
2082      * java.nio.charset.Charset#defaultCharset() default charset} for this
2083      * instance of the Java virtual machine.
2084      *
2085      * <p> The locale used is the {@linkplain
2086      * Locale#getDefault(Locale.Category) default locale} for
2087      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2088      * virtual machine.
2089      *
2090      * @param  file
2091      *         The file to use as the destination of this formatter.  If the
2092      *         file exists then it will be truncated to zero size; otherwise,
2093      *         a new file will be created.  The output will be written to the
2094      *         file and is buffered.
2095      *
2096      * @throws  SecurityException
2097      *          If a security manager is present and {@link
2098      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2099      *          write access to the file
2100      *
2101      * @throws  FileNotFoundException
2102      *          If the given file object does not denote an existing, writable
2103      *          regular file and a new regular file of that name cannot be
2104      *          created, or if some other error occurs while opening or
2105      *          creating the file
2106      */
2107     public Formatter(File file) throws FileNotFoundException {
2108         this(Locale.getDefault(Locale.Category.FORMAT),
2109              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))));
2110     }
2111 
2112     /**
2113      * Constructs a new formatter with the specified file and charset.
2114      *
2115      * <p> The locale used is the {@linkplain
2116      * Locale#getDefault(Locale.Category) default locale} for
2117      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2118      * virtual machine.
2119      *
2120      * @param  file
2121      *         The file to use as the destination of this formatter.  If the
2122      *         file exists then it will be truncated to zero size; otherwise,
2123      *         a new file will be created.  The output will be written to the
2124      *         file and is buffered.
2125      *
2126      * @param  csn
2127      *         The name of a supported {@linkplain java.nio.charset.Charset
2128      *         charset}
2129      *
2130      * @throws  FileNotFoundException
2131      *          If the given file object does not denote an existing, writable
2132      *          regular file and a new regular file of that name cannot be
2133      *          created, or if some other error occurs while opening or
2134      *          creating the file
2135      *
2136      * @throws  SecurityException
2137      *          If a security manager is present and {@link
2138      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2139      *          write access to the file
2140      *
2141      * @throws  UnsupportedEncodingException
2142      *          If the named charset is not supported
2143      */
2144     public Formatter(File file, String csn)
2145         throws FileNotFoundException, UnsupportedEncodingException
2146     {
2147         this(file, csn, Locale.getDefault(Locale.Category.FORMAT));
2148     }
2149 
2150     /**
2151      * Constructs a new formatter with the specified file, charset, and
2152      * locale.
2153      *
2154      * @param  file
2155      *         The file to use as the destination of this formatter.  If the
2156      *         file exists then it will be truncated to zero size; otherwise,
2157      *         a new file will be created.  The output will be written to the
2158      *         file and is buffered.
2159      *
2160      * @param  csn
2161      *         The name of a supported {@linkplain java.nio.charset.Charset
2162      *         charset}
2163      *
2164      * @param  l
2165      *         The {@linkplain java.util.Locale locale} to apply during
2166      *         formatting.  If {@code l} is {@code null} then no localization
2167      *         is applied.
2168      *
2169      * @throws  FileNotFoundException
2170      *          If the given file object does not denote an existing, writable
2171      *          regular file and a new regular file of that name cannot be
2172      *          created, or if some other error occurs while opening or
2173      *          creating the file
2174      *
2175      * @throws  SecurityException
2176      *          If a security manager is present and {@link
2177      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2178      *          write access to the file
2179      *
2180      * @throws  UnsupportedEncodingException
2181      *          If the named charset is not supported
2182      */
2183     public Formatter(File file, String csn, Locale l)
2184         throws FileNotFoundException, UnsupportedEncodingException
2185     {
2186         this(toCharset(csn), l, file);
2187     }
2188 
2189     /**
2190      * Constructs a new formatter with the specified print stream.
2191      *
2192      * <p> The locale used is the {@linkplain
2193      * Locale#getDefault(Locale.Category) default locale} for
2194      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2195      * virtual machine.
2196      *
2197      * <p> Characters are written to the given {@link java.io.PrintStream
2198      * PrintStream} object and are therefore encoded using that object's
2199      * charset.
2200      *
2201      * @param  ps
2202      *         The stream to use as the destination of this formatter.
2203      */
2204     public Formatter(PrintStream ps) {
2205         this(Locale.getDefault(Locale.Category.FORMAT),
2206              (Appendable)Objects.requireNonNull(ps));
2207     }
2208 
2209     /**
2210      * Constructs a new formatter with the specified output stream.
2211      *
2212      * <p> The charset used is the {@linkplain
2213      * java.nio.charset.Charset#defaultCharset() default charset} for this
2214      * instance of the Java virtual machine.
2215      *
2216      * <p> The locale used is the {@linkplain
2217      * Locale#getDefault(Locale.Category) default locale} for
2218      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2219      * virtual machine.
2220      *
2221      * @param  os
2222      *         The output stream to use as the destination of this formatter.
2223      *         The output will be buffered.
2224      */
2225     public Formatter(OutputStream os) {
2226         this(Locale.getDefault(Locale.Category.FORMAT),
2227              new BufferedWriter(new OutputStreamWriter(os)));
2228     }
2229 
2230     /**
2231      * Constructs a new formatter with the specified output stream and
2232      * charset.
2233      *
2234      * <p> The locale used is the {@linkplain
2235      * Locale#getDefault(Locale.Category) default locale} for
2236      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2237      * virtual machine.
2238      *
2239      * @param  os
2240      *         The output stream to use as the destination of this formatter.
2241      *         The output will be buffered.
2242      *
2243      * @param  csn
2244      *         The name of a supported {@linkplain java.nio.charset.Charset
2245      *         charset}
2246      *
2247      * @throws  UnsupportedEncodingException
2248      *          If the named charset is not supported
2249      */
2250     public Formatter(OutputStream os, String csn)
2251         throws UnsupportedEncodingException
2252     {
2253         this(os, csn, Locale.getDefault(Locale.Category.FORMAT));
2254     }
2255 
2256     /**
2257      * Constructs a new formatter with the specified output stream, charset,
2258      * and locale.
2259      *
2260      * @param  os
2261      *         The output stream to use as the destination of this formatter.
2262      *         The output will be buffered.
2263      *
2264      * @param  csn
2265      *         The name of a supported {@linkplain java.nio.charset.Charset
2266      *         charset}
2267      *
2268      * @param  l
2269      *         The {@linkplain java.util.Locale locale} to apply during
2270      *         formatting.  If {@code l} is {@code null} then no localization
2271      *         is applied.
2272      *
2273      * @throws  UnsupportedEncodingException
2274      *          If the named charset is not supported
2275      */
2276     public Formatter(OutputStream os, String csn, Locale l)
2277         throws UnsupportedEncodingException
2278     {
2279         this(l, new BufferedWriter(new OutputStreamWriter(os, csn)));
2280     }
2281 
2282     private static char getZero(Locale l) {
2283         if ((l != null) && !l.equals(Locale.US)) {
2284             DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
2285             return dfs.getZeroDigit();
2286         } else {
2287             return '0';
2288         }
2289     }
2290 
2291     /**
2292      * Returns the locale set by the construction of this formatter.
2293      *
2294      * <p> The {@link #format(java.util.Locale,String,Object...) format} method
2295      * for this object which has a locale argument does not change this value.
2296      *
2297      * @return  {@code null} if no localization is applied, otherwise a
2298      *          locale
2299      *
2300      * @throws  FormatterClosedException
2301      *          If this formatter has been closed by invoking its {@link
2302      *          #close()} method
2303      */
2304     public Locale locale() {
2305         ensureOpen();
2306         return l;
2307     }
2308 
2309     /**
2310      * Returns the destination for the output.
2311      *
2312      * @return  The destination for the output
2313      *
2314      * @throws  FormatterClosedException
2315      *          If this formatter has been closed by invoking its {@link
2316      *          #close()} method
2317      */
2318     public Appendable out() {
2319         ensureOpen();
2320         return a;
2321     }
2322 
2323     /**
2324      * Returns the result of invoking {@code toString()} on the destination
2325      * for the output.  For example, the following code formats text into a
2326      * {@link StringBuilder} then retrieves the resultant string:
2327      *
2328      * <blockquote><pre>
2329      *   Formatter f = new Formatter();
2330      *   f.format("Last reboot at %tc", lastRebootDate);
2331      *   String s = f.toString();
2332      *   // -&gt; s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
2333      * </pre></blockquote>
2334      *
2335      * <p> An invocation of this method behaves in exactly the same way as the
2336      * invocation
2337      *
2338      * <pre>
2339      *     out().toString() </pre>
2340      *
2341      * <p> Depending on the specification of {@code toString} for the {@link
2342      * Appendable}, the returned string may or may not contain the characters
2343      * written to the destination.  For instance, buffers typically return
2344      * their contents in {@code toString()}, but streams cannot since the
2345      * data is discarded.
2346      *
2347      * @return  The result of invoking {@code toString()} on the destination
2348      *          for the output
2349      *
2350      * @throws  FormatterClosedException
2351      *          If this formatter has been closed by invoking its {@link
2352      *          #close()} method
2353      */
2354     public String toString() {
2355         ensureOpen();
2356         return a.toString();
2357     }
2358 
2359     /**
2360      * Flushes this formatter.  If the destination implements the {@link
2361      * java.io.Flushable} interface, its {@code flush} method will be invoked.
2362      *
2363      * <p> Flushing a formatter writes any buffered output in the destination
2364      * to the underlying stream.
2365      *
2366      * @throws  FormatterClosedException
2367      *          If this formatter has been closed by invoking its {@link
2368      *          #close()} method
2369      */
2370     public void flush() {
2371         ensureOpen();
2372         if (a instanceof Flushable) {
2373             try {
2374                 ((Flushable)a).flush();
2375             } catch (IOException ioe) {
2376                 lastException = ioe;
2377             }
2378         }
2379     }
2380 
2381     /**
2382      * Closes this formatter.  If the destination implements the {@link
2383      * java.io.Closeable} interface, its {@code close} method will be invoked.
2384      *
2385      * <p> Closing a formatter allows it to release resources it may be holding
2386      * (such as open files).  If the formatter is already closed, then invoking
2387      * this method has no effect.
2388      *
2389      * <p> Attempting to invoke any methods except {@link #ioException()} in
2390      * this formatter after it has been closed will result in a {@link
2391      * FormatterClosedException}.
2392      */
2393     public void close() {
2394         if (a == null)
2395             return;
2396         try {
2397             if (a instanceof Closeable)
2398                 ((Closeable)a).close();
2399         } catch (IOException ioe) {
2400             lastException = ioe;
2401         } finally {
2402             a = null;
2403         }
2404     }
2405 
2406     private void ensureOpen() {
2407         if (a == null)
2408             throw new FormatterClosedException();
2409     }
2410 
2411     /**
2412      * Returns the {@code IOException} last thrown by this formatter's {@link
2413      * Appendable}.
2414      *
2415      * <p> If the destination's {@code append()} method never throws
2416      * {@code IOException}, then this method will always return {@code null}.
2417      *
2418      * @return  The last exception thrown by the Appendable or {@code null} if
2419      *          no such exception exists.
2420      */
2421     public IOException ioException() {
2422         return lastException;
2423     }
2424 
2425     /**
2426      * Writes a formatted string to this object's destination using the
2427      * specified format string and arguments.  The locale used is the one
2428      * defined during the construction of this formatter.
2429      *
2430      * @param  format
2431      *         A format string as described in <a href="#syntax">Format string
2432      *         syntax</a>.
2433      *
2434      * @param  args
2435      *         Arguments referenced by the format specifiers in the format
2436      *         string.  If there are more arguments than format specifiers, the
2437      *         extra arguments are ignored.  The maximum number of arguments is
2438      *         limited by the maximum dimension of a Java array as defined by
2439      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2440      *
2441      * @throws  IllegalFormatException
2442      *          If a format string contains an illegal syntax, a format
2443      *          specifier that is incompatible with the given arguments,
2444      *          insufficient arguments given the format string, or other
2445      *          illegal conditions.  For specification of all possible
2446      *          formatting errors, see the <a href="#detail">Details</a>
2447      *          section of the formatter class specification.
2448      *
2449      * @throws  FormatterClosedException
2450      *          If this formatter has been closed by invoking its {@link
2451      *          #close()} method
2452      *
2453      * @return  This formatter
2454      */
2455     public Formatter format(String format, Object ... args) {
2456         return format(l, format, args);
2457     }
2458 
2459     /**
2460      * Writes a formatted string to this object's destination using the
2461      * specified locale, format string, and arguments.
2462      *
2463      * @param  l
2464      *         The {@linkplain java.util.Locale locale} to apply during
2465      *         formatting.  If {@code l} is {@code null} then no localization
2466      *         is applied.  This does not change this object's locale that was
2467      *         set during construction.
2468      *
2469      * @param  format
2470      *         A format string as described in <a href="#syntax">Format string
2471      *         syntax</a>
2472      *
2473      * @param  args
2474      *         Arguments referenced by the format specifiers in the format
2475      *         string.  If there are more arguments than format specifiers, the
2476      *         extra arguments are ignored.  The maximum number of arguments is
2477      *         limited by the maximum dimension of a Java array as defined by
2478      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2479      *
2480      * @throws  IllegalFormatException
2481      *          If a format string contains an illegal syntax, a format
2482      *          specifier that is incompatible with the given arguments,
2483      *          insufficient arguments given the format string, or other
2484      *          illegal conditions.  For specification of all possible
2485      *          formatting errors, see the <a href="#detail">Details</a>
2486      *          section of the formatter class specification.
2487      *
2488      * @throws  FormatterClosedException
2489      *          If this formatter has been closed by invoking its {@link
2490      *          #close()} method
2491      *
2492      * @return  This formatter
2493      */
2494     public Formatter format(Locale l, String format, Object ... args) {
2495         ensureOpen();
2496 
2497         // index of last argument referenced
2498         int last = -1;
2499         // last ordinary index
2500         int lasto = -1;
2501 
2502         List<FormatString> fsa = parse(format);
2503         for (FormatString fs : fsa) {
2504             int index = fs.index();
2505             try {
2506                 switch (index) {
2507                 case -2:  // fixed string, "%n", or "%%"
2508                     fs.print(null, l);
2509                     break;
2510                 case -1:  // relative index
2511                     if (last < 0 || (args != null && last > args.length - 1))
2512                         throw new MissingFormatArgumentException(fs.toString());
2513                     fs.print((args == null ? null : args[last]), l);
2514                     break;
2515                 case 0:  // ordinary index
2516                     lasto++;
2517                     last = lasto;
2518                     if (args != null && lasto > args.length - 1)
2519                         throw new MissingFormatArgumentException(fs.toString());
2520                     fs.print((args == null ? null : args[lasto]), l);
2521                     break;
2522                 default:  // explicit index
2523                     last = index - 1;
2524                     if (args != null && last > args.length - 1)
2525                         throw new MissingFormatArgumentException(fs.toString());
2526                     fs.print((args == null ? null : args[last]), l);
2527                     break;
2528                 }
2529             } catch (IOException x) {
2530                 lastException = x;
2531             }
2532         }
2533         return this;
2534     }
2535 
2536     // %[argument_index$][flags][width][.precision][t]conversion
2537     private static final String formatSpecifier
2538         = "%(\\d+\\$)?([-#+ 0,(\\<]*)?(\\d+)?(\\.\\d+)?([tT])?([a-zA-Z%])";
2539 
2540     private static Pattern fsPattern = Pattern.compile(formatSpecifier);
2541 
2542     /**
2543      * Finds format specifiers in the format string.
2544      */
2545     private List<FormatString> parse(String s) {
2546         ArrayList<FormatString> al = new ArrayList<>();
2547         Matcher m = fsPattern.matcher(s);
2548         for (int i = 0, len = s.length(); i < len; ) {
2549             if (m.find(i)) {
2550                 // Anything between the start of the string and the beginning
2551                 // of the format specifier is either fixed text or contains
2552                 // an invalid format string.
2553                 if (m.start() != i) {
2554                     // Make sure we didn't miss any invalid format specifiers
2555                     checkText(s, i, m.start());
2556                     // Assume previous characters were fixed text
2557                     al.add(new FixedString(s, i, m.start()));
2558                 }
2559 
2560                 al.add(new FormatSpecifier(s, m));
2561                 i = m.end();
2562             } else {
2563                 // No more valid format specifiers.  Check for possible invalid
2564                 // format specifiers.
2565                 checkText(s, i, len);
2566                 // The rest of the string is fixed text
2567                 al.add(new FixedString(s, i, s.length()));
2568                 break;
2569             }
2570         }
2571         return al;
2572     }
2573 
2574     private static void checkText(String s, int start, int end) {
2575         for (int i = start; i < end; i++) {
2576             // Any '%' found in the region starts an invalid format specifier.
2577             if (s.charAt(i) == '%') {
2578                 char c = (i == end - 1) ? '%' : s.charAt(i + 1);
2579                 throw new UnknownFormatConversionException(String.valueOf(c));
2580             }
2581         }
2582     }
2583 
2584     private interface FormatString {
2585         int index();
2586         void print(Object arg, Locale l) throws IOException;
2587         String toString();
2588     }
2589 
2590     private class FixedString implements FormatString {
2591         private String s;
2592         private int start;
2593         private int end;
2594         FixedString(String s, int start, int end) {
2595             this.s = s;
2596             this.start = start;
2597             this.end = end;
2598         }
2599         public int index() { return -2; }
2600         public void print(Object arg, Locale l)
2601             throws IOException { a.append(s, start, end); }
2602         public String toString() { return s.substring(start, end); }
2603     }
2604 
2605     /**
2606      * Enum for {@code BigDecimal} formatting.
2607      */
2608     public enum BigDecimalLayoutForm {
2609         /**
2610          * Format the {@code BigDecimal} in computerized scientific notation.
2611          */
2612         SCIENTIFIC,
2613 
2614         /**
2615          * Format the {@code BigDecimal} as a decimal number.
2616          */
2617         DECIMAL_FLOAT
2618     };
2619 
2620     private class FormatSpecifier implements FormatString {
2621         private int index = -1;
2622         private Flags f = Flags.NONE;
2623         private int width;
2624         private int precision;
2625         private boolean dt = false;
2626         private char c;
2627 
2628         private int index(String s, int start, int end) {
2629             if (start >= 0) {
2630                 try {
2631                     // skip the trailing '$'
2632                     index = Integer.parseInt(s, start, end - 1, 10);
2633                 } catch (NumberFormatException x) {
2634                     assert(false);
2635                 }
2636             } else {
2637                 index = 0;
2638             }
2639             return index;
2640         }
2641 
2642         public int index() {
2643             return index;
2644         }
2645 
2646         private Flags flags(String s, int start, int end) {
2647             f = Flags.parse(s, start, end);
2648             if (f.contains(Flags.PREVIOUS))
2649                 index = -1;
2650             return f;
2651         }
2652 
2653         private int width(String s, int start, int end) {
2654             width = -1;
2655             if (start >= 0) {
2656                 try {
2657                     width = Integer.parseInt(s, start, end, 10);
2658                     if (width < 0)
2659                         throw new IllegalFormatWidthException(width);
2660                 } catch (NumberFormatException x) {
2661                     assert(false);
2662                 }
2663             }
2664             return width;
2665         }
2666 
2667         private int precision(String s, int start, int end) {
2668             precision = -1;
2669             if (start >= 0) {
2670                 try {
2671                     // skip the leading '.'
2672                     precision = Integer.parseInt(s, start + 1, end, 10);
2673                     if (precision < 0)
2674                         throw new IllegalFormatPrecisionException(precision);
2675                 } catch (NumberFormatException x) {
2676                     assert(false);
2677                 }
2678             }
2679             return precision;
2680         }
2681 
2682         private char conversion(char conv) {
2683             c = conv;
2684             if (!dt) {
2685                 if (!Conversion.isValid(c)) {
2686                     throw new UnknownFormatConversionException(String.valueOf(c));
2687                 }
2688                 if (Character.isUpperCase(c)) {
2689                     f.add(Flags.UPPERCASE);
2690                     c = Character.toLowerCase(c);
2691                 }
2692                 if (Conversion.isText(c)) {
2693                     index = -2;
2694                 }
2695             }
2696             return c;
2697         }
2698 
2699         FormatSpecifier(String s, Matcher m) {
2700             index(s, m.start(1), m.end(1));
2701             flags(s, m.start(2), m.end(2));
2702             width(s, m.start(3), m.end(3));
2703             precision(s, m.start(4), m.end(4));
2704 
2705             int tTStart = m.start(5);
2706             if (tTStart >= 0) {
2707                 dt = true;
2708                 if (s.charAt(tTStart) == 'T') {
2709                     f.add(Flags.UPPERCASE);
2710                 }
2711             }
2712             conversion(s.charAt(m.start(6)));
2713 
2714             if (dt)
2715                 checkDateTime();
2716             else if (Conversion.isGeneral(c))
2717                 checkGeneral();
2718             else if (Conversion.isCharacter(c))
2719                 checkCharacter();
2720             else if (Conversion.isInteger(c))
2721                 checkInteger();
2722             else if (Conversion.isFloat(c))
2723                 checkFloat();
2724             else if (Conversion.isText(c))
2725                 checkText();
2726             else
2727                 throw new UnknownFormatConversionException(String.valueOf(c));
2728         }
2729 
2730         public void print(Object arg, Locale l) throws IOException {
2731             if (dt) {
2732                 printDateTime(arg, l);
2733                 return;
2734             }
2735             switch(c) {
2736             case Conversion.DECIMAL_INTEGER:
2737             case Conversion.OCTAL_INTEGER:
2738             case Conversion.HEXADECIMAL_INTEGER:
2739                 printInteger(arg, l);
2740                 break;
2741             case Conversion.SCIENTIFIC:
2742             case Conversion.GENERAL:
2743             case Conversion.DECIMAL_FLOAT:
2744             case Conversion.HEXADECIMAL_FLOAT:
2745                 printFloat(arg, l);
2746                 break;
2747             case Conversion.CHARACTER:
2748             case Conversion.CHARACTER_UPPER:
2749                 printCharacter(arg);
2750                 break;
2751             case Conversion.BOOLEAN:
2752                 printBoolean(arg);
2753                 break;
2754             case Conversion.STRING:
2755                 printString(arg, l);
2756                 break;
2757             case Conversion.HASHCODE:
2758                 printHashCode(arg);
2759                 break;
2760             case Conversion.LINE_SEPARATOR:
2761                 a.append(System.lineSeparator());
2762                 break;
2763             case Conversion.PERCENT_SIGN:
2764                 a.append('%');
2765                 break;
2766             default:
2767                 assert false;
2768             }
2769         }
2770 
2771         private void printInteger(Object arg, Locale l) throws IOException {
2772             if (arg == null)
2773                 print("null");
2774             else if (arg instanceof Byte)
2775                 print(((Byte)arg).byteValue(), l);
2776             else if (arg instanceof Short)
2777                 print(((Short)arg).shortValue(), l);
2778             else if (arg instanceof Integer)
2779                 print(((Integer)arg).intValue(), l);
2780             else if (arg instanceof Long)
2781                 print(((Long)arg).longValue(), l);
2782             else if (arg instanceof BigInteger)
2783                 print(((BigInteger)arg), l);
2784             else
2785                 failConversion(c, arg);
2786         }
2787 
2788         private void printFloat(Object arg, Locale l) throws IOException {
2789             if (arg == null)
2790                 print("null");
2791             else if (arg instanceof Float)
2792                 print(((Float)arg).floatValue(), l);
2793             else if (arg instanceof Double)
2794                 print(((Double)arg).doubleValue(), l);
2795             else if (arg instanceof BigDecimal)
2796                 print(((BigDecimal)arg), l);
2797             else
2798                 failConversion(c, arg);
2799         }
2800 
2801         private void printDateTime(Object arg, Locale l) throws IOException {
2802             if (arg == null) {
2803                 print("null");
2804                 return;
2805             }
2806             Calendar cal = null;
2807 
2808             // Instead of Calendar.setLenient(true), perhaps we should
2809             // wrap the IllegalArgumentException that might be thrown?
2810             if (arg instanceof Long) {
2811                 // Note that the following method uses an instance of the
2812                 // default time zone (TimeZone.getDefaultRef().
2813                 cal = Calendar.getInstance(l == null ? Locale.US : l);
2814                 cal.setTimeInMillis((Long)arg);
2815             } else if (arg instanceof Date) {
2816                 // Note that the following method uses an instance of the
2817                 // default time zone (TimeZone.getDefaultRef().
2818                 cal = Calendar.getInstance(l == null ? Locale.US : l);
2819                 cal.setTime((Date)arg);
2820             } else if (arg instanceof Calendar) {
2821                 cal = (Calendar) ((Calendar) arg).clone();
2822                 cal.setLenient(true);
2823             } else if (arg instanceof TemporalAccessor) {
2824                 print((TemporalAccessor) arg, c, l);
2825                 return;
2826             } else {
2827                 failConversion(c, arg);
2828             }
2829             // Use the provided locale so that invocations of
2830             // localizedMagnitude() use optimizations for null.
2831             print(cal, c, l);
2832         }
2833 
2834         private void printCharacter(Object arg) throws IOException {
2835             if (arg == null) {
2836                 print("null");
2837                 return;
2838             }
2839             String s = null;
2840             if (arg instanceof Character) {
2841                 s = ((Character)arg).toString();
2842             } else if (arg instanceof Byte) {
2843                 byte i = ((Byte)arg).byteValue();
2844                 if (Character.isValidCodePoint(i))
2845                     s = new String(Character.toChars(i));
2846                 else
2847                     throw new IllegalFormatCodePointException(i);
2848             } else if (arg instanceof Short) {
2849                 short i = ((Short)arg).shortValue();
2850                 if (Character.isValidCodePoint(i))
2851                     s = new String(Character.toChars(i));
2852                 else
2853                     throw new IllegalFormatCodePointException(i);
2854             } else if (arg instanceof Integer) {
2855                 int i = ((Integer)arg).intValue();
2856                 if (Character.isValidCodePoint(i))
2857                     s = new String(Character.toChars(i));
2858                 else
2859                     throw new IllegalFormatCodePointException(i);
2860             } else {
2861                 failConversion(c, arg);
2862             }
2863             print(s);
2864         }
2865 
2866         private void printString(Object arg, Locale l) throws IOException {
2867             if (arg instanceof Formattable) {
2868                 Formatter fmt = Formatter.this;
2869                 if (fmt.locale() != l)
2870                     fmt = new Formatter(fmt.out(), l);
2871                 ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
2872             } else {
2873                 if (f.contains(Flags.ALTERNATE))
2874                     failMismatch(Flags.ALTERNATE, 's');
2875                 if (arg == null)
2876                     print("null");
2877                 else
2878                     print(arg.toString());
2879             }
2880         }
2881 
2882         private void printBoolean(Object arg) throws IOException {
2883             String s;
2884             if (arg != null)
2885                 s = ((arg instanceof Boolean)
2886                      ? ((Boolean)arg).toString()
2887                      : Boolean.toString(true));
2888             else
2889                 s = Boolean.toString(false);
2890             print(s);
2891         }
2892 
2893         private void printHashCode(Object arg) throws IOException {
2894             String s = (arg == null
2895                         ? "null"
2896                         : Integer.toHexString(arg.hashCode()));
2897             print(s);
2898         }
2899 
2900         private void print(String s) throws IOException {
2901             if (precision != -1 && precision < s.length())
2902                 s = s.substring(0, precision);
2903             if (f.contains(Flags.UPPERCASE))
2904                 s = s.toUpperCase();
2905             appendJustified(a, s);
2906         }
2907 
2908         private Appendable appendJustified(Appendable a, CharSequence cs) throws IOException {
2909              if (width == -1) {
2910                  return a.append(cs);
2911              }
2912              boolean padRight = f.contains(Flags.LEFT_JUSTIFY);
2913              int sp = width - cs.length();
2914              if (padRight) {
2915                  a.append(cs);
2916              }
2917              for (int i = 0; i < sp; i++) {
2918                  a.append(' ');
2919              }
2920              if (!padRight) {
2921                  a.append(cs);
2922              }
2923              return a;
2924         }
2925 
2926         public String toString() {
2927             StringBuilder sb = new StringBuilder("%");
2928             // Flags.UPPERCASE is set internally for legal conversions.
2929             Flags dupf = f.dup().remove(Flags.UPPERCASE);
2930             sb.append(dupf.toString());
2931             if (index > 0)
2932                 sb.append(index).append('$');
2933             if (width != -1)
2934                 sb.append(width);
2935             if (precision != -1)
2936                 sb.append('.').append(precision);
2937             if (dt)
2938                 sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
2939             sb.append(f.contains(Flags.UPPERCASE)
2940                       ? Character.toUpperCase(c) : c);
2941             return sb.toString();
2942         }
2943 
2944         private void checkGeneral() {
2945             if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
2946                 && f.contains(Flags.ALTERNATE))
2947                 failMismatch(Flags.ALTERNATE, c);
2948             // '-' requires a width
2949             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2950                 throw new MissingFormatWidthException(toString());
2951             checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
2952                           Flags.GROUP, Flags.PARENTHESES);
2953         }
2954 
2955         private void checkDateTime() {
2956             if (precision != -1)
2957                 throw new IllegalFormatPrecisionException(precision);
2958             if (!DateTime.isValid(c))
2959                 throw new UnknownFormatConversionException("t" + c);
2960             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2961                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2962             // '-' requires a width
2963             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2964                 throw new MissingFormatWidthException(toString());
2965         }
2966 
2967         private void checkCharacter() {
2968             if (precision != -1)
2969                 throw new IllegalFormatPrecisionException(precision);
2970             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2971                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2972             // '-' requires a width
2973             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2974                 throw new MissingFormatWidthException(toString());
2975         }
2976 
2977         private void checkInteger() {
2978             checkNumeric();
2979             if (precision != -1)
2980                 throw new IllegalFormatPrecisionException(precision);
2981 
2982             if (c == Conversion.DECIMAL_INTEGER)
2983                 checkBadFlags(Flags.ALTERNATE);
2984             else if (c == Conversion.OCTAL_INTEGER)
2985                 checkBadFlags(Flags.GROUP);
2986             else
2987                 checkBadFlags(Flags.GROUP);
2988         }
2989 
2990         private void checkBadFlags(Flags ... badFlags) {
2991             for (Flags badFlag : badFlags)
2992                 if (f.contains(badFlag))
2993                     failMismatch(badFlag, c);
2994         }
2995 
2996         private void checkFloat() {
2997             checkNumeric();
2998             if (c == Conversion.DECIMAL_FLOAT) {
2999             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3000                 checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
3001             } else if (c == Conversion.SCIENTIFIC) {
3002                 checkBadFlags(Flags.GROUP);
3003             } else if (c == Conversion.GENERAL) {
3004                 checkBadFlags(Flags.ALTERNATE);
3005             }
3006         }
3007 
3008         private void checkNumeric() {
3009             if (width != -1 && width < 0)
3010                 throw new IllegalFormatWidthException(width);
3011 
3012             if (precision != -1 && precision < 0)
3013                 throw new IllegalFormatPrecisionException(precision);
3014 
3015             // '-' and '0' require a width
3016             if (width == -1
3017                 && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
3018                 throw new MissingFormatWidthException(toString());
3019 
3020             // bad combination
3021             if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
3022                 || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
3023                 throw new IllegalFormatFlagsException(f.toString());
3024         }
3025 
3026         private void checkText() {
3027             if (precision != -1)
3028                 throw new IllegalFormatPrecisionException(precision);
3029             switch (c) {
3030             case Conversion.PERCENT_SIGN:
3031                 if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
3032                     && f.valueOf() != Flags.NONE.valueOf())
3033                     throw new IllegalFormatFlagsException(f.toString());
3034                 // '-' requires a width
3035                 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3036                     throw new MissingFormatWidthException(toString());
3037                 break;
3038             case Conversion.LINE_SEPARATOR:
3039                 if (width != -1)
3040                     throw new IllegalFormatWidthException(width);
3041                 if (f.valueOf() != Flags.NONE.valueOf())
3042                     throw new IllegalFormatFlagsException(f.toString());
3043                 break;
3044             default:
3045                 assert false;
3046             }
3047         }
3048 
3049         private void print(byte value, Locale l) throws IOException {
3050             long v = value;
3051             if (value < 0
3052                 && (c == Conversion.OCTAL_INTEGER
3053                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3054                 v += (1L << 8);
3055                 assert v >= 0 : v;
3056             }
3057             print(v, l);
3058         }
3059 
3060         private void print(short value, Locale l) throws IOException {
3061             long v = value;
3062             if (value < 0
3063                 && (c == Conversion.OCTAL_INTEGER
3064                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3065                 v += (1L << 16);
3066                 assert v >= 0 : v;
3067             }
3068             print(v, l);
3069         }
3070 
3071         private void print(int value, Locale l) throws IOException {
3072             long v = value;
3073             if (value < 0
3074                 && (c == Conversion.OCTAL_INTEGER
3075                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3076                 v += (1L << 32);
3077                 assert v >= 0 : v;
3078             }
3079             print(v, l);
3080         }
3081 
3082         private void print(long value, Locale l) throws IOException {
3083 
3084             StringBuilder sb = new StringBuilder();
3085 
3086             if (c == Conversion.DECIMAL_INTEGER) {
3087                 boolean neg = value < 0;
3088                 String valueStr = Long.toString(value, 10);
3089 
3090                 // leading sign indicator
3091                 leadingSign(sb, neg);
3092 
3093                 // the value
3094                 localizedMagnitude(sb, valueStr, neg ? 1 : 0, f, adjustWidth(width, f, neg), l);
3095 
3096                 // trailing sign indicator
3097                 trailingSign(sb, neg);
3098             } else if (c == Conversion.OCTAL_INTEGER) {
3099                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3100                               Flags.PLUS);
3101                 String s = Long.toOctalString(value);
3102                 int len = (f.contains(Flags.ALTERNATE)
3103                            ? s.length() + 1
3104                            : s.length());
3105 
3106                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3107                 if (f.contains(Flags.ALTERNATE))
3108                     sb.append('0');
3109                 if (f.contains(Flags.ZERO_PAD)) {
3110                     trailingZeros(sb, width - len);
3111                 }
3112                 sb.append(s);
3113             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3114                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3115                               Flags.PLUS);
3116                 String s = Long.toHexString(value);
3117                 int len = (f.contains(Flags.ALTERNATE)
3118                            ? s.length() + 2
3119                            : s.length());
3120 
3121                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3122                 if (f.contains(Flags.ALTERNATE))
3123                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3124                 if (f.contains(Flags.ZERO_PAD)) {
3125                     trailingZeros(sb, width - len);
3126                 }
3127                 if (f.contains(Flags.UPPERCASE))
3128                     s = s.toUpperCase();
3129                 sb.append(s);
3130             }
3131 
3132             // justify based on width
3133             appendJustified(a, sb);
3134         }
3135 
3136         // neg := val < 0
3137         private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
3138             if (!neg) {
3139                 if (f.contains(Flags.PLUS)) {
3140                     sb.append('+');
3141                 } else if (f.contains(Flags.LEADING_SPACE)) {
3142                     sb.append(' ');
3143                 }
3144             } else {
3145                 if (f.contains(Flags.PARENTHESES))
3146                     sb.append('(');
3147                 else
3148                     sb.append('-');
3149             }
3150             return sb;
3151         }
3152 
3153         // neg := val < 0
3154         private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
3155             if (neg && f.contains(Flags.PARENTHESES))
3156                 sb.append(')');
3157             return sb;
3158         }
3159 
3160         private void print(BigInteger value, Locale l) throws IOException {
3161             StringBuilder sb = new StringBuilder();
3162             boolean neg = value.signum() == -1;
3163             BigInteger v = value.abs();
3164 
3165             // leading sign indicator
3166             leadingSign(sb, neg);
3167 
3168             // the value
3169             if (c == Conversion.DECIMAL_INTEGER) {
3170                 localizedMagnitude(sb, v.toString(), 0, f, adjustWidth(width, f, neg), l);
3171             } else if (c == Conversion.OCTAL_INTEGER) {
3172                 String s = v.toString(8);
3173 
3174                 int len = s.length() + sb.length();
3175                 if (neg && f.contains(Flags.PARENTHESES))
3176                     len++;
3177 
3178                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3179                 if (f.contains(Flags.ALTERNATE)) {
3180                     len++;
3181                     sb.append('0');
3182                 }
3183                 if (f.contains(Flags.ZERO_PAD)) {
3184                     trailingZeros(sb, width - len);
3185                 }
3186                 sb.append(s);
3187             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3188                 String s = v.toString(16);
3189 
3190                 int len = s.length() + sb.length();
3191                 if (neg && f.contains(Flags.PARENTHESES))
3192                     len++;
3193 
3194                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3195                 if (f.contains(Flags.ALTERNATE)) {
3196                     len += 2;
3197                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3198                 }
3199                 if (f.contains(Flags.ZERO_PAD)) {
3200                     trailingZeros(sb, width - len);
3201                 }
3202                 if (f.contains(Flags.UPPERCASE))
3203                     s = s.toUpperCase();
3204                 sb.append(s);
3205             }
3206 
3207             // trailing sign indicator
3208             trailingSign(sb, (value.signum() == -1));
3209 
3210             // justify based on width
3211             appendJustified(a, sb);
3212         }
3213 
3214         private void print(float value, Locale l) throws IOException {
3215             print((double) value, l);
3216         }
3217 
3218         private void print(double value, Locale l) throws IOException {
3219             StringBuilder sb = new StringBuilder();
3220             boolean neg = Double.compare(value, 0.0) == -1;
3221 
3222             if (!Double.isNaN(value)) {
3223                 double v = Math.abs(value);
3224 
3225                 // leading sign indicator
3226                 leadingSign(sb, neg);
3227 
3228                 // the value
3229                 if (!Double.isInfinite(v))
3230                     print(sb, v, l, f, c, precision, neg);
3231                 else
3232                     sb.append(f.contains(Flags.UPPERCASE)
3233                               ? "INFINITY" : "Infinity");
3234 
3235                 // trailing sign indicator
3236                 trailingSign(sb, neg);
3237             } else {
3238                 sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
3239             }
3240 
3241             // justify based on width
3242             appendJustified(a, sb);
3243         }
3244 
3245         // !Double.isInfinite(value) && !Double.isNaN(value)
3246         private void print(StringBuilder sb, double value, Locale l,
3247                            Flags f, char c, int precision, boolean neg)
3248             throws IOException
3249         {
3250             if (c == Conversion.SCIENTIFIC) {
3251                 // Create a new FormattedFloatingDecimal with the desired
3252                 // precision.
3253                 int prec = (precision == -1 ? 6 : precision);
3254 
3255                 FormattedFloatingDecimal fd
3256                         = FormattedFloatingDecimal.valueOf(value, prec,
3257                           FormattedFloatingDecimal.Form.SCIENTIFIC);
3258 
3259                 StringBuilder mant = new StringBuilder().append(fd.getMantissa());
3260                 addZeros(mant, prec);
3261 
3262                 // If the precision is zero and the '#' flag is set, add the
3263                 // requested decimal point.
3264                 if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
3265                     mant.append('.');
3266                 }
3267 
3268                 char[] exp = (value == 0.0)
3269                     ? new char[] {'+','0','0'} : fd.getExponent();
3270 
3271                 int newW = width;
3272                 if (width != -1) {
3273                     newW = adjustWidth(width - exp.length - 1, f, neg);
3274                 }
3275                 localizedMagnitude(sb, mant, 0, f, newW, l);
3276 
3277                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3278 
3279                 char sign = exp[0];
3280                 assert(sign == '+' || sign == '-');
3281                 sb.append(sign);
3282 
3283                 localizedMagnitudeExp(sb, exp, 1, l);
3284             } else if (c == Conversion.DECIMAL_FLOAT) {
3285                 // Create a new FormattedFloatingDecimal with the desired
3286                 // precision.
3287                 int prec = (precision == -1 ? 6 : precision);
3288 
3289                 FormattedFloatingDecimal fd
3290                         = FormattedFloatingDecimal.valueOf(value, prec,
3291                           FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
3292 
3293                 StringBuilder mant = new StringBuilder().append(fd.getMantissa());
3294                 addZeros(mant, prec);
3295 
3296                 // If the precision is zero and the '#' flag is set, add the
3297                 // requested decimal point.
3298                 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3299                     mant.append('.');
3300 
3301                 int newW = width;
3302                 if (width != -1)
3303                     newW = adjustWidth(width, f, neg);
3304                 localizedMagnitude(sb, mant, 0, f, newW, l);
3305             } else if (c == Conversion.GENERAL) {
3306                 int prec = precision;
3307                 if (precision == -1)
3308                     prec = 6;
3309                 else if (precision == 0)
3310                     prec = 1;
3311 
3312                 char[] exp;
3313                 StringBuilder mant = new StringBuilder();
3314                 int expRounded;
3315                 if (value == 0.0) {
3316                     exp = null;
3317                     mant.append('0');
3318                     expRounded = 0;
3319                 } else {
3320                     FormattedFloatingDecimal fd
3321                         = FormattedFloatingDecimal.valueOf(value, prec,
3322                           FormattedFloatingDecimal.Form.GENERAL);
3323                     exp = fd.getExponent();
3324                     mant.append(fd.getMantissa());
3325                     expRounded = fd.getExponentRounded();
3326                 }
3327 
3328                 if (exp != null) {
3329                     prec -= 1;
3330                 } else {
3331                     prec -= expRounded + 1;
3332                 }
3333 
3334                 addZeros(mant, prec);
3335                 // If the precision is zero and the '#' flag is set, add the
3336                 // requested decimal point.
3337                 if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
3338                     mant.append('.');
3339                 }
3340 
3341                 int newW = width;
3342                 if (width != -1) {
3343                     if (exp != null)
3344                         newW = adjustWidth(width - exp.length - 1, f, neg);
3345                     else
3346                         newW = adjustWidth(width, f, neg);
3347                 }
3348                 localizedMagnitude(sb, mant, 0, f, newW, l);
3349 
3350                 if (exp != null) {
3351                     sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3352 
3353                     char sign = exp[0];
3354                     assert(sign == '+' || sign == '-');
3355                     sb.append(sign);
3356 
3357                     localizedMagnitudeExp(sb, exp, 1, l);
3358                 }
3359             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3360                 int prec = precision;
3361                 if (precision == -1)
3362                     // assume that we want all of the digits
3363                     prec = 0;
3364                 else if (precision == 0)
3365                     prec = 1;
3366 
3367                 String s = hexDouble(value, prec);
3368 
3369                 StringBuilder va = new StringBuilder();
3370                 boolean upper = f.contains(Flags.UPPERCASE);
3371                 sb.append(upper ? "0X" : "0x");
3372 
3373                 if (f.contains(Flags.ZERO_PAD)) {
3374                     trailingZeros(sb, width - s.length() - 2);
3375                 }
3376 
3377                 int idx = s.indexOf('p');
3378                 if (upper) {
3379                     String tmp = s.substring(0, idx);
3380                     // don't localize hex
3381                     tmp = tmp.toUpperCase(Locale.US);
3382                     va.append(tmp);
3383                 } else {
3384                     va.append(s, 0, idx);
3385                 }
3386                 if (prec != 0) {
3387                     addZeros(va, prec);
3388                 }
3389                 sb.append(va);
3390                 sb.append(upper ? 'P' : 'p');
3391                 sb.append(s, idx+1, s.length());
3392             }
3393         }
3394 
3395         // Add zeros to the requested precision.
3396         private void addZeros(StringBuilder sb, int prec) {
3397             // Look for the dot.  If we don't find one, the we'll need to add
3398             // it before we add the zeros.
3399             int len = sb.length();
3400             int i;
3401             for (i = 0; i < len; i++) {
3402                 if (sb.charAt(i) == '.') {
3403                     break;
3404                 }
3405             }
3406             boolean needDot = false;
3407             if (i == len) {
3408                 needDot = true;
3409             }
3410 
3411             // Determine existing precision.
3412             int outPrec = len - i - (needDot ? 0 : 1);
3413             assert (outPrec <= prec);
3414             if (outPrec == prec) {
3415                 return;
3416             }
3417 
3418             // Add dot if previously determined to be necessary.
3419             if (needDot) {
3420                 sb.append('.');
3421             }
3422 
3423             // Add zeros.
3424             trailingZeros(sb, prec - outPrec);
3425         }
3426 
3427         // Method assumes that d > 0.
3428         private String hexDouble(double d, int prec) {
3429             // Let Double.toHexString handle simple cases
3430             if (!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13) {
3431                 // remove "0x"
3432                 return Double.toHexString(d).substring(2);
3433             } else {
3434                 assert(prec >= 1 && prec <= 12);
3435 
3436                 int exponent  = Math.getExponent(d);
3437                 boolean subnormal
3438                     = (exponent == DoubleConsts.MIN_EXPONENT - 1);
3439 
3440                 // If this is subnormal input so normalize (could be faster to
3441                 // do as integer operation).
3442                 if (subnormal) {
3443                     scaleUp = Math.scalb(1.0, 54);
3444                     d *= scaleUp;
3445                     // Calculate the exponent.  This is not just exponent + 54
3446                     // since the former is not the normalized exponent.
3447                     exponent = Math.getExponent(d);
3448                     assert exponent >= DoubleConsts.MIN_EXPONENT &&
3449                         exponent <= DoubleConsts.MAX_EXPONENT: exponent;
3450                 }
3451 
3452                 int precision = 1 + prec*4;
3453                 int shiftDistance
3454                     =  DoubleConsts.SIGNIFICAND_WIDTH - precision;
3455                 assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
3456 
3457                 long doppel = Double.doubleToLongBits(d);
3458                 // Deterime the number of bits to keep.
3459                 long newSignif
3460                     = (doppel & (DoubleConsts.EXP_BIT_MASK
3461                                  | DoubleConsts.SIGNIF_BIT_MASK))
3462                                      >> shiftDistance;
3463                 // Bits to round away.
3464                 long roundingBits = doppel & ~(~0L << shiftDistance);
3465 
3466                 // To decide how to round, look at the low-order bit of the
3467                 // working significand, the highest order discarded bit (the
3468                 // round bit) and whether any of the lower order discarded bits
3469                 // are nonzero (the sticky bit).
3470 
3471                 boolean leastZero = (newSignif & 0x1L) == 0L;
3472                 boolean round
3473                     = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
3474                 boolean sticky  = shiftDistance > 1 &&
3475                     (~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
3476                 if((leastZero && round && sticky) || (!leastZero && round)) {
3477                     newSignif++;
3478                 }
3479 
3480                 long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
3481                 newSignif = signBit | (newSignif << shiftDistance);
3482                 double result = Double.longBitsToDouble(newSignif);
3483 
3484                 if (Double.isInfinite(result) ) {
3485                     // Infinite result generated by rounding
3486                     return "1.0p1024";
3487                 } else {
3488                     String res = Double.toHexString(result).substring(2);
3489                     if (!subnormal)
3490                         return res;
3491                     else {
3492                         // Create a normalized subnormal string.
3493                         int idx = res.indexOf('p');
3494                         if (idx == -1) {
3495                             // No 'p' character in hex string.
3496                             assert false;
3497                             return null;
3498                         } else {
3499                             // Get exponent and append at the end.
3500                             String exp = res.substring(idx + 1);
3501                             int iexp = Integer.parseInt(exp) -54;
3502                             return res.substring(0, idx) + "p"
3503                                 + Integer.toString(iexp);
3504                         }
3505                     }
3506                 }
3507             }
3508         }
3509 
3510         private void print(BigDecimal value, Locale l) throws IOException {
3511             if (c == Conversion.HEXADECIMAL_FLOAT)
3512                 failConversion(c, value);
3513             StringBuilder sb = new StringBuilder();
3514             boolean neg = value.signum() == -1;
3515             BigDecimal v = value.abs();
3516             // leading sign indicator
3517             leadingSign(sb, neg);
3518 
3519             // the value
3520             print(sb, v, l, f, c, precision, neg);
3521 
3522             // trailing sign indicator
3523             trailingSign(sb, neg);
3524 
3525             // justify based on width
3526             appendJustified(a, sb);
3527         }
3528 
3529         // value > 0
3530         private void print(StringBuilder sb, BigDecimal value, Locale l,
3531                            Flags f, char c, int precision, boolean neg)
3532             throws IOException
3533         {
3534             if (c == Conversion.SCIENTIFIC) {
3535                 // Create a new BigDecimal with the desired precision.
3536                 int prec = (precision == -1 ? 6 : precision);
3537                 int scale = value.scale();
3538                 int origPrec = value.precision();
3539                 int nzeros = 0;
3540                 int compPrec;
3541 
3542                 if (prec > origPrec - 1) {
3543                     compPrec = origPrec;
3544                     nzeros = prec - (origPrec - 1);
3545                 } else {
3546                     compPrec = prec + 1;
3547                 }
3548 
3549                 MathContext mc = new MathContext(compPrec);
3550                 BigDecimal v
3551                     = new BigDecimal(value.unscaledValue(), scale, mc);
3552 
3553                 BigDecimalLayout bdl
3554                     = new BigDecimalLayout(v.unscaledValue(), v.scale(),
3555                                            BigDecimalLayoutForm.SCIENTIFIC);
3556 
3557                 StringBuilder mant = bdl.mantissa();
3558 
3559                 // Add a decimal point if necessary.  The mantissa may not
3560                 // contain a decimal point if the scale is zero (the internal
3561                 // representation has no fractional part) or the original
3562                 // precision is one. Append a decimal point if '#' is set or if
3563                 // we require zero padding to get to the requested precision.
3564                 if ((origPrec == 1 || !bdl.hasDot())
3565                         && (nzeros > 0 || (f.contains(Flags.ALTERNATE)))) {
3566                     mant.append('.');
3567                 }
3568 
3569                 // Add trailing zeros in the case precision is greater than
3570                 // the number of available digits after the decimal separator.
3571                 trailingZeros(mant, nzeros);
3572 
3573                 StringBuilder exp = bdl.exponent();
3574                 int newW = width;
3575                 if (width != -1) {
3576                     newW = adjustWidth(width - exp.length() - 1, f, neg);
3577                 }
3578                 localizedMagnitude(sb, mant, 0, f, newW, l);
3579 
3580                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3581 
3582                 Flags flags = f.dup().remove(Flags.GROUP);
3583                 char sign = exp.charAt(0);
3584                 assert(sign == '+' || sign == '-');
3585                 sb.append(sign);
3586 
3587                 sb.append(localizedMagnitude(null, exp, 1, flags, -1, l));
3588             } else if (c == Conversion.DECIMAL_FLOAT) {
3589                 // Create a new BigDecimal with the desired precision.
3590                 int prec = (precision == -1 ? 6 : precision);
3591                 int scale = value.scale();
3592 
3593                 if (scale > prec) {
3594                     // more "scale" digits than the requested "precision"
3595                     int compPrec = value.precision();
3596                     if (compPrec <= scale) {
3597                         // case of 0.xxxxxx
3598                         value = value.setScale(prec, RoundingMode.HALF_UP);
3599                     } else {
3600                         compPrec -= (scale - prec);
3601                         value = new BigDecimal(value.unscaledValue(),
3602                                                scale,
3603                                                new MathContext(compPrec));
3604                     }
3605                 }
3606                 BigDecimalLayout bdl = new BigDecimalLayout(
3607                                            value.unscaledValue(),
3608                                            value.scale(),
3609                                            BigDecimalLayoutForm.DECIMAL_FLOAT);
3610 
3611                 StringBuilder mant = bdl.mantissa();
3612                 int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
3613 
3614                 // Add a decimal point if necessary.  The mantissa may not
3615                 // contain a decimal point if the scale is zero (the internal
3616                 // representation has no fractional part).  Append a decimal
3617                 // point if '#' is set or we require zero padding to get to the
3618                 // requested precision.
3619                 if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE)
3620                         || nzeros > 0)) {
3621                     mant.append('.');
3622                 }
3623 
3624                 // Add trailing zeros if the precision is greater than the
3625                 // number of available digits after the decimal separator.
3626                 trailingZeros(mant, nzeros);
3627 
3628                 localizedMagnitude(sb, mant, 0, f, adjustWidth(width, f, neg), l);
3629             } else if (c == Conversion.GENERAL) {
3630                 int prec = precision;
3631                 if (precision == -1)
3632                     prec = 6;
3633                 else if (precision == 0)
3634                     prec = 1;
3635 
3636                 BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
3637                 BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
3638                 if ((value.equals(BigDecimal.ZERO))
3639                     || ((value.compareTo(tenToTheNegFour) != -1)
3640                         && (value.compareTo(tenToThePrec) == -1))) {
3641 
3642                     int e = - value.scale()
3643                         + (value.unscaledValue().toString().length() - 1);
3644 
3645                     // xxx.yyy
3646                     //   g precision (# sig digits) = #x + #y
3647                     //   f precision = #y
3648                     //   exponent = #x - 1
3649                     // => f precision = g precision - exponent - 1
3650                     // 0.000zzz
3651                     //   g precision (# sig digits) = #z
3652                     //   f precision = #0 (after '.') + #z
3653                     //   exponent = - #0 (after '.') - 1
3654                     // => f precision = g precision - exponent - 1
3655                     prec = prec - e - 1;
3656 
3657                     print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
3658                           neg);
3659                 } else {
3660                     print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
3661                 }
3662             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3663                 // This conversion isn't supported.  The error should be
3664                 // reported earlier.
3665                 assert false;
3666             }
3667         }
3668 
3669         private class BigDecimalLayout {
3670             private StringBuilder mant;
3671             private StringBuilder exp;
3672             private boolean dot = false;
3673             private int scale;
3674 
3675             public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3676                 layout(intVal, scale, form);
3677             }
3678 
3679             public boolean hasDot() {
3680                 return dot;
3681             }
3682 
3683             public int scale() {
3684                 return scale;
3685             }
3686 
3687             public StringBuilder mantissa() {
3688                 return mant;
3689             }
3690 
3691             // The exponent will be formatted as a sign ('+' or '-') followed
3692             // by the exponent zero-padded to include at least two digits.
3693             public StringBuilder exponent() {
3694                 return exp;
3695             }
3696 
3697             private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3698                 String coeff = intVal.toString();
3699                 this.scale = scale;
3700 
3701                 // Construct a buffer, with sufficient capacity for all cases.
3702                 // If E-notation is needed, length will be: +1 if negative, +1
3703                 // if '.' needed, +2 for "E+", + up to 10 for adjusted
3704                 // exponent.  Otherwise it could have +1 if negative, plus
3705                 // leading "0.00000"
3706                 int len = coeff.length();
3707                 mant = new StringBuilder(len + 14);
3708 
3709                 if (scale == 0) {
3710                     if (len > 1) {
3711                         mant.append(coeff.charAt(0));
3712                         if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3713                             mant.append('.');
3714                             dot = true;
3715                             mant.append(coeff, 1, len);
3716                             exp = new StringBuilder("+");
3717                             if (len < 10) {
3718                                 exp.append('0').append(len - 1);
3719                             } else {
3720                                 exp.append(len - 1);
3721                             }
3722                         } else {
3723                             mant.append(coeff, 1, len);
3724                         }
3725                     } else {
3726                         mant.append(coeff);
3727                         if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3728                             exp = new StringBuilder("+00");
3729                         }
3730                     }
3731                 } else if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
3732                     // count of padding zeros
3733 
3734                     if (scale >= len) {
3735                         // 0.xxx form
3736                         mant.append("0.");
3737                         dot = true;
3738                         trailingZeros(mant, scale - len);
3739                         mant.append(coeff);
3740                     } else {
3741                         if (scale > 0) {
3742                             // xx.xx form
3743                             int pad = len - scale;
3744                             mant.append(coeff, 0, pad);
3745                             mant.append('.');
3746                             dot = true;
3747                             mant.append(coeff, pad, len);
3748                         } else { // scale < 0
3749                             // xx form
3750                             mant.append(coeff, 0, len);
3751                             if (intVal.signum() != 0) {
3752                                 trailingZeros(mant, -scale);
3753                             }
3754                             this.scale = 0;
3755                         }
3756                     }
3757                 } else {
3758                     // x.xxx form
3759                     mant.append(coeff.charAt(0));
3760                     if (len > 1) {
3761                         mant.append('.');
3762                         dot = true;
3763                         mant.append(coeff, 1, len);
3764                     }
3765                     exp = new StringBuilder();
3766                     long adjusted = -(long) scale + (len - 1);
3767                     if (adjusted != 0) {
3768                         long abs = Math.abs(adjusted);
3769                         // require sign
3770                         exp.append(adjusted < 0 ? '-' : '+');
3771                         if (abs < 10) {
3772                             exp.append('0');
3773                         }
3774                         exp.append(abs);
3775                     } else {
3776                         exp.append("+00");
3777                     }
3778                 }
3779             }
3780         }
3781 
3782         private int adjustWidth(int width, Flags f, boolean neg) {
3783             int newW = width;
3784             if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
3785                 newW--;
3786             return newW;
3787         }
3788 
3789         // Add trailing zeros
3790         private void trailingZeros(StringBuilder sb, int nzeros) {
3791             for (int i = 0; i < nzeros; i++) {
3792                 sb.append('0');
3793             }
3794         }
3795 
3796         private void print(Calendar t, char c, Locale l)  throws IOException {
3797             StringBuilder sb = new StringBuilder();
3798             print(sb, t, c, l);
3799 
3800             // justify based on width
3801             if (f.contains(Flags.UPPERCASE)) {
3802                 appendJustified(a, sb.toString().toUpperCase());
3803             } else {
3804                 appendJustified(a, sb);
3805             }
3806         }
3807 
3808         private Appendable print(StringBuilder sb, Calendar t, char c, Locale l)
3809                 throws IOException {
3810             if (sb == null)
3811                 sb = new StringBuilder();
3812             switch (c) {
3813             case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
3814             case DateTime.HOUR_0:        // 'I' (01 - 12)
3815             case DateTime.HOUR_OF_DAY:   // 'k' (0 - 23) -- like H
3816             case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
3817                 int i = t.get(Calendar.HOUR_OF_DAY);
3818                 if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
3819                     i = (i == 0 || i == 12 ? 12 : i % 12);
3820                 Flags flags = (c == DateTime.HOUR_OF_DAY_0
3821                                || c == DateTime.HOUR_0
3822                                ? Flags.ZERO_PAD
3823                                : Flags.NONE);
3824                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3825                 break;
3826             }
3827             case DateTime.MINUTE:      { // 'M' (00 - 59)
3828                 int i = t.get(Calendar.MINUTE);
3829                 Flags flags = Flags.ZERO_PAD;
3830                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3831                 break;
3832             }
3833             case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
3834                 int i = t.get(Calendar.MILLISECOND) * 1000000;
3835                 Flags flags = Flags.ZERO_PAD;
3836                 sb.append(localizedMagnitude(null, i, flags, 9, l));
3837                 break;
3838             }
3839             case DateTime.MILLISECOND: { // 'L' (000 - 999)
3840                 int i = t.get(Calendar.MILLISECOND);
3841                 Flags flags = Flags.ZERO_PAD;
3842                 sb.append(localizedMagnitude(null, i, flags, 3, l));
3843                 break;
3844             }
3845             case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
3846                 long i = t.getTimeInMillis();
3847                 Flags flags = Flags.NONE;
3848                 sb.append(localizedMagnitude(null, i, flags, width, l));
3849                 break;
3850             }
3851             case DateTime.AM_PM:       { // 'p' (am or pm)
3852                 // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
3853                 String[] ampm = { "AM", "PM" };
3854                 if (l != null && l != Locale.US) {
3855                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
3856                     ampm = dfs.getAmPmStrings();
3857                 }
3858                 String s = ampm[t.get(Calendar.AM_PM)];
3859                 sb.append(s.toLowerCase(l != null ? l : Locale.US));
3860                 break;
3861             }
3862             case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
3863                 long i = t.getTimeInMillis() / 1000;
3864                 Flags flags = Flags.NONE;
3865                 sb.append(localizedMagnitude(null, i, flags, width, l));
3866                 break;
3867             }
3868             case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
3869                 int i = t.get(Calendar.SECOND);
3870                 Flags flags = Flags.ZERO_PAD;
3871                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3872                 break;
3873             }
3874             case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
3875                 int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
3876                 boolean neg = i < 0;
3877                 sb.append(neg ? '-' : '+');
3878                 if (neg)
3879                     i = -i;
3880                 int min = i / 60000;
3881                 // combine minute and hour into a single integer
3882                 int offset = (min / 60) * 100 + (min % 60);
3883                 Flags flags = Flags.ZERO_PAD;
3884 
3885                 sb.append(localizedMagnitude(null, offset, flags, 4, l));
3886                 break;
3887             }
3888             case DateTime.ZONE:        { // 'Z' (symbol)
3889                 TimeZone tz = t.getTimeZone();
3890                 sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
3891                                            TimeZone.SHORT,
3892                                             (l == null) ? Locale.US : l));
3893                 break;
3894             }
3895 
3896             // Date
3897             case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
3898             case DateTime.NAME_OF_DAY:          { // 'A'
3899                 int i = t.get(Calendar.DAY_OF_WEEK);
3900                 Locale lt = ((l == null) ? Locale.US : l);
3901                 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3902                 if (c == DateTime.NAME_OF_DAY)
3903                     sb.append(dfs.getWeekdays()[i]);
3904                 else
3905                     sb.append(dfs.getShortWeekdays()[i]);
3906                 break;
3907             }
3908             case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
3909             case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
3910             case DateTime.NAME_OF_MONTH:        { // 'B'
3911                 int i = t.get(Calendar.MONTH);
3912                 Locale lt = ((l == null) ? Locale.US : l);
3913                 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3914                 if (c == DateTime.NAME_OF_MONTH)
3915                     sb.append(dfs.getMonths()[i]);
3916                 else
3917                     sb.append(dfs.getShortMonths()[i]);
3918                 break;
3919             }
3920             case DateTime.CENTURY:                // 'C' (00 - 99)
3921             case DateTime.YEAR_2:                 // 'y' (00 - 99)
3922             case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
3923                 int i = t.get(Calendar.YEAR);
3924                 int size = 2;
3925                 switch (c) {
3926                 case DateTime.CENTURY:
3927                     i /= 100;
3928                     break;
3929                 case DateTime.YEAR_2:
3930                     i %= 100;
3931                     break;
3932                 case DateTime.YEAR_4:
3933                     size = 4;
3934                     break;
3935                 }
3936                 Flags flags = Flags.ZERO_PAD;
3937                 sb.append(localizedMagnitude(null, i, flags, size, l));
3938                 break;
3939             }
3940             case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
3941             case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
3942                 int i = t.get(Calendar.DATE);
3943                 Flags flags = (c == DateTime.DAY_OF_MONTH_0
3944                                ? Flags.ZERO_PAD
3945                                : Flags.NONE);
3946                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3947                 break;
3948             }
3949             case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
3950                 int i = t.get(Calendar.DAY_OF_YEAR);
3951                 Flags flags = Flags.ZERO_PAD;
3952                 sb.append(localizedMagnitude(null, i, flags, 3, l));
3953                 break;
3954             }
3955             case DateTime.MONTH:                { // 'm' (01 - 12)
3956                 int i = t.get(Calendar.MONTH) + 1;
3957                 Flags flags = Flags.ZERO_PAD;
3958                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3959                 break;
3960             }
3961 
3962             // Composites
3963             case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
3964             case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
3965                 char sep = ':';
3966                 print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
3967                 print(sb, t, DateTime.MINUTE, l);
3968                 if (c == DateTime.TIME) {
3969                     sb.append(sep);
3970                     print(sb, t, DateTime.SECOND, l);
3971                 }
3972                 break;
3973             }
3974             case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
3975                 char sep = ':';
3976                 print(sb, t, DateTime.HOUR_0, l).append(sep);
3977                 print(sb, t, DateTime.MINUTE, l).append(sep);
3978                 print(sb, t, DateTime.SECOND, l).append(' ');
3979                 // this may be in wrong place for some locales
3980                 StringBuilder tsb = new StringBuilder();
3981                 print(tsb, t, DateTime.AM_PM, l);
3982 
3983                 sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
3984                 break;
3985             }
3986             case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
3987                 char sep = ' ';
3988                 print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
3989                 print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
3990                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
3991                 print(sb, t, DateTime.TIME, l).append(sep);
3992                 print(sb, t, DateTime.ZONE, l).append(sep);
3993                 print(sb, t, DateTime.YEAR_4, l);
3994                 break;
3995             }
3996             case DateTime.DATE:            { // 'D' (mm/dd/yy)
3997                 char sep = '/';
3998                 print(sb, t, DateTime.MONTH, l).append(sep);
3999                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4000                 print(sb, t, DateTime.YEAR_2, l);
4001                 break;
4002             }
4003             case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4004                 char sep = '-';
4005                 print(sb, t, DateTime.YEAR_4, l).append(sep);
4006                 print(sb, t, DateTime.MONTH, l).append(sep);
4007                 print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4008                 break;
4009             }
4010             default:
4011                 assert false;
4012             }
4013             return sb;
4014         }
4015 
4016         private void print(TemporalAccessor t, char c, Locale l)  throws IOException {
4017             StringBuilder sb = new StringBuilder();
4018             print(sb, t, c, l);
4019             // justify based on width
4020             if (f.contains(Flags.UPPERCASE)) {
4021                 appendJustified(a, sb.toString().toUpperCase());
4022             } else {
4023                 appendJustified(a, sb);
4024             }
4025         }
4026 
4027         private Appendable print(StringBuilder sb, TemporalAccessor t, char c,
4028                                  Locale l) throws IOException {
4029             if (sb == null)
4030                 sb = new StringBuilder();
4031             try {
4032                 switch (c) {
4033                 case DateTime.HOUR_OF_DAY_0: {  // 'H' (00 - 23)
4034                     int i = t.get(ChronoField.HOUR_OF_DAY);
4035                     sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4036                     break;
4037                 }
4038                 case DateTime.HOUR_OF_DAY: {   // 'k' (0 - 23) -- like H
4039                     int i = t.get(ChronoField.HOUR_OF_DAY);
4040                     sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4041                     break;
4042                 }
4043                 case DateTime.HOUR_0:      {  // 'I' (01 - 12)
4044                     int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4045                     sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4046                     break;
4047                 }
4048                 case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
4049                     int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4050                     sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4051                     break;
4052                 }
4053                 case DateTime.MINUTE:      { // 'M' (00 - 59)
4054                     int i = t.get(ChronoField.MINUTE_OF_HOUR);
4055                     Flags flags = Flags.ZERO_PAD;
4056                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4057                     break;
4058                 }
4059                 case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
4060                     int i;
4061                     try {
4062                         i = t.get(ChronoField.NANO_OF_SECOND);
4063                     } catch (UnsupportedTemporalTypeException u) {
4064                         i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000;
4065                     }
4066                     Flags flags = Flags.ZERO_PAD;
4067                     sb.append(localizedMagnitude(null, i, flags, 9, l));
4068                     break;
4069                 }
4070                 case DateTime.MILLISECOND: { // 'L' (000 - 999)
4071                     int i = t.get(ChronoField.MILLI_OF_SECOND);
4072                     Flags flags = Flags.ZERO_PAD;
4073                     sb.append(localizedMagnitude(null, i, flags, 3, l));
4074                     break;
4075                 }
4076                 case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
4077                     long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L +
4078                              t.getLong(ChronoField.MILLI_OF_SECOND);
4079                     Flags flags = Flags.NONE;
4080                     sb.append(localizedMagnitude(null, i, flags, width, l));
4081                     break;
4082                 }
4083                 case DateTime.AM_PM:       { // 'p' (am or pm)
4084                     // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
4085                     String[] ampm = { "AM", "PM" };
4086                     if (l != null && l != Locale.US) {
4087                         DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
4088                         ampm = dfs.getAmPmStrings();
4089                     }
4090                     String s = ampm[t.get(ChronoField.AMPM_OF_DAY)];
4091                     sb.append(s.toLowerCase(l != null ? l : Locale.US));
4092                     break;
4093                 }
4094                 case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
4095                     long i = t.getLong(ChronoField.INSTANT_SECONDS);
4096                     Flags flags = Flags.NONE;
4097                     sb.append(localizedMagnitude(null, i, flags, width, l));
4098                     break;
4099                 }
4100                 case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
4101                     int i = t.get(ChronoField.SECOND_OF_MINUTE);
4102                     Flags flags = Flags.ZERO_PAD;
4103                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4104                     break;
4105                 }
4106                 case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
4107                     int i = t.get(ChronoField.OFFSET_SECONDS);
4108                     boolean neg = i < 0;
4109                     sb.append(neg ? '-' : '+');
4110                     if (neg)
4111                         i = -i;
4112                     int min = i / 60;
4113                     // combine minute and hour into a single integer
4114                     int offset = (min / 60) * 100 + (min % 60);
4115                     Flags flags = Flags.ZERO_PAD;
4116                     sb.append(localizedMagnitude(null, offset, flags, 4, l));
4117                     break;
4118                 }
4119                 case DateTime.ZONE:        { // 'Z' (symbol)
4120                     ZoneId zid = t.query(TemporalQueries.zone());
4121                     if (zid == null) {
4122                         throw new IllegalFormatConversionException(c, t.getClass());
4123                     }
4124                     if (!(zid instanceof ZoneOffset) &&
4125                         t.isSupported(ChronoField.INSTANT_SECONDS)) {
4126                         Instant instant = Instant.from(t);
4127                         sb.append(TimeZone.getTimeZone(zid.getId())
4128                                           .getDisplayName(zid.getRules().isDaylightSavings(instant),
4129                                                           TimeZone.SHORT,
4130                                                           (l == null) ? Locale.US : l));
4131                         break;
4132                     }
4133                     sb.append(zid.getId());
4134                     break;
4135                 }
4136                 // Date
4137                 case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
4138                 case DateTime.NAME_OF_DAY:          { // 'A'
4139                     int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1;
4140                     Locale lt = ((l == null) ? Locale.US : l);
4141                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4142                     if (c == DateTime.NAME_OF_DAY)
4143                         sb.append(dfs.getWeekdays()[i]);
4144                     else
4145                         sb.append(dfs.getShortWeekdays()[i]);
4146                     break;
4147                 }
4148                 case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
4149                 case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
4150                 case DateTime.NAME_OF_MONTH:        { // 'B'
4151                     int i = t.get(ChronoField.MONTH_OF_YEAR) - 1;
4152                     Locale lt = ((l == null) ? Locale.US : l);
4153                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4154                     if (c == DateTime.NAME_OF_MONTH)
4155                         sb.append(dfs.getMonths()[i]);
4156                     else
4157                         sb.append(dfs.getShortMonths()[i]);
4158                     break;
4159                 }
4160                 case DateTime.CENTURY:                // 'C' (00 - 99)
4161                 case DateTime.YEAR_2:                 // 'y' (00 - 99)
4162                 case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
4163                     int i = t.get(ChronoField.YEAR_OF_ERA);
4164                     int size = 2;
4165                     switch (c) {
4166                     case DateTime.CENTURY:
4167                         i /= 100;
4168                         break;
4169                     case DateTime.YEAR_2:
4170                         i %= 100;
4171                         break;
4172                     case DateTime.YEAR_4:
4173                         size = 4;
4174                         break;
4175                     }
4176                     Flags flags = Flags.ZERO_PAD;
4177                     sb.append(localizedMagnitude(null, i, flags, size, l));
4178                     break;
4179                 }
4180                 case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
4181                 case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
4182                     int i = t.get(ChronoField.DAY_OF_MONTH);
4183                     Flags flags = (c == DateTime.DAY_OF_MONTH_0
4184                                    ? Flags.ZERO_PAD
4185                                    : Flags.NONE);
4186                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4187                     break;
4188                 }
4189                 case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
4190                     int i = t.get(ChronoField.DAY_OF_YEAR);
4191                     Flags flags = Flags.ZERO_PAD;
4192                     sb.append(localizedMagnitude(null, i, flags, 3, l));
4193                     break;
4194                 }
4195                 case DateTime.MONTH:                { // 'm' (01 - 12)
4196                     int i = t.get(ChronoField.MONTH_OF_YEAR);
4197                     Flags flags = Flags.ZERO_PAD;
4198                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4199                     break;
4200                 }
4201 
4202                 // Composites
4203                 case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4204                 case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
4205                     char sep = ':';
4206                     print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4207                     print(sb, t, DateTime.MINUTE, l);
4208                     if (c == DateTime.TIME) {
4209                         sb.append(sep);
4210                         print(sb, t, DateTime.SECOND, l);
4211                     }
4212                     break;
4213                 }
4214                 case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
4215                     char sep = ':';
4216                     print(sb, t, DateTime.HOUR_0, l).append(sep);
4217                     print(sb, t, DateTime.MINUTE, l).append(sep);
4218                     print(sb, t, DateTime.SECOND, l).append(' ');
4219                     // this may be in wrong place for some locales
4220                     StringBuilder tsb = new StringBuilder();
4221                     print(tsb, t, DateTime.AM_PM, l);
4222                     sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
4223                     break;
4224                 }
4225                 case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4226                     char sep = ' ';
4227                     print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4228                     print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4229                     print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4230                     print(sb, t, DateTime.TIME, l).append(sep);
4231                     print(sb, t, DateTime.ZONE, l).append(sep);
4232                     print(sb, t, DateTime.YEAR_4, l);
4233                     break;
4234                 }
4235                 case DateTime.DATE:            { // 'D' (mm/dd/yy)
4236                     char sep = '/';
4237                     print(sb, t, DateTime.MONTH, l).append(sep);
4238                     print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4239                     print(sb, t, DateTime.YEAR_2, l);
4240                     break;
4241                 }
4242                 case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4243                     char sep = '-';
4244                     print(sb, t, DateTime.YEAR_4, l).append(sep);
4245                     print(sb, t, DateTime.MONTH, l).append(sep);
4246                     print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4247                     break;
4248                 }
4249                 default:
4250                     assert false;
4251                 }
4252             } catch (DateTimeException x) {
4253                 throw new IllegalFormatConversionException(c, t.getClass());
4254             }
4255             return sb;
4256         }
4257 
4258         // -- Methods to support throwing exceptions --
4259 
4260         private void failMismatch(Flags f, char c) {
4261             String fs = f.toString();
4262             throw new FormatFlagsConversionMismatchException(fs, c);
4263         }
4264 
4265         private void failConversion(char c, Object arg) {
4266             throw new IllegalFormatConversionException(c, arg.getClass());
4267         }
4268 
4269         private char getZero(Locale l) {
4270             if ((l != null) &&  !l.equals(locale())) {
4271                 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4272                 return dfs.getZeroDigit();
4273             }
4274             return zero;
4275         }
4276 
4277         private StringBuilder localizedMagnitude(StringBuilder sb,
4278                 long value, Flags f, int width, Locale l) {
4279             return localizedMagnitude(sb, Long.toString(value, 10), 0, f, width, l);
4280         }
4281 
4282         private StringBuilder localizedMagnitude(StringBuilder sb,
4283                 CharSequence value, final int offset, Flags f, int width,
4284                 Locale l) {
4285             if (sb == null) {
4286                 sb = new StringBuilder();
4287             }
4288             int begin = sb.length();
4289 
4290             char zero = getZero(l);
4291 
4292             // determine localized grouping separator and size
4293             char grpSep = '\0';
4294             int  grpSize = -1;
4295             char decSep = '\0';
4296 
4297             int len = value.length();
4298             int dot = len;
4299             for (int j = offset; j < len; j++) {
4300                 if (value.charAt(j) == '.') {
4301                     dot = j;
4302                     break;
4303                 }
4304             }
4305 
4306             if (dot < len) {
4307                 if (l == null || l.equals(Locale.US)) {
4308                     decSep  = '.';
4309                 } else {
4310                     DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4311                     decSep  = dfs.getDecimalSeparator();
4312                 }
4313             }
4314 
4315             if (f.contains(Flags.GROUP)) {
4316                 if (l == null || l.equals(Locale.US)) {
4317                     grpSep = ',';
4318                     grpSize = 3;
4319                 } else {
4320                     DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4321                     grpSep = dfs.getGroupingSeparator();
4322                     DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
4323                     grpSize = df.getGroupingSize();
4324                 }
4325             }
4326 
4327             // localize the digits inserting group separators as necessary
4328             for (int j = offset; j < len; j++) {
4329                 if (j == dot) {
4330                     sb.append(decSep);
4331                     // no more group separators after the decimal separator
4332                     grpSep = '\0';
4333                     continue;
4334                 }
4335 
4336                 char c = value.charAt(j);
4337                 sb.append((char) ((c - '0') + zero));
4338                 if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1)) {
4339                     sb.append(grpSep);
4340                 }
4341             }
4342 
4343             // apply zero padding
4344             if (width != -1 && f.contains(Flags.ZERO_PAD)) {
4345                 for (int k = sb.length(); k < width; k++) {
4346                     sb.insert(begin, zero);
4347                 }
4348             }
4349 
4350             return sb;
4351         }
4352 
4353         // Specialized localization of exponents, where the source value can only
4354         // contain characters '0' through '9', starting at index offset, and no
4355         // group separators is added for any locale.
4356         private void localizedMagnitudeExp(StringBuilder sb, char[] value,
4357                 final int offset, Locale l) {
4358             char zero = getZero(l);
4359 
4360             int len = value.length;
4361             for (int j = offset; j < len; j++) {
4362                 char c = value[j];
4363                 sb.append((char) ((c - '0') + zero));
4364             }
4365         }
4366     }
4367 
4368     private static class Flags {
4369         private int flags;
4370 
4371         static final Flags NONE          = new Flags(0);      // ''
4372 
4373         // duplicate declarations from Formattable.java
4374         static final Flags LEFT_JUSTIFY  = new Flags(1<<0);   // '-'
4375         static final Flags UPPERCASE     = new Flags(1<<1);   // '^'
4376         static final Flags ALTERNATE     = new Flags(1<<2);   // '#'
4377 
4378         // numerics
4379         static final Flags PLUS          = new Flags(1<<3);   // '+'
4380         static final Flags LEADING_SPACE = new Flags(1<<4);   // ' '
4381         static final Flags ZERO_PAD      = new Flags(1<<5);   // '0'
4382         static final Flags GROUP         = new Flags(1<<6);   // ','
4383         static final Flags PARENTHESES   = new Flags(1<<7);   // '('
4384 
4385         // indexing
4386         static final Flags PREVIOUS      = new Flags(1<<8);   // '<'
4387 
4388         private Flags(int f) {
4389             flags = f;
4390         }
4391 
4392         public int valueOf() {
4393             return flags;
4394         }
4395 
4396         public boolean contains(Flags f) {
4397             return (flags & f.valueOf()) == f.valueOf();
4398         }
4399 
4400         public Flags dup() {
4401             return new Flags(flags);
4402         }
4403 
4404         private Flags add(Flags f) {
4405             flags |= f.valueOf();
4406             return this;
4407         }
4408 
4409         public Flags remove(Flags f) {
4410             flags &= ~f.valueOf();
4411             return this;
4412         }
4413 
4414         public static Flags parse(String s, int start, int end) {
4415             Flags f = new Flags(0);
4416             for (int i = start; i < end; i++) {
4417                 char c = s.charAt(i);
4418                 Flags v = parse(c);
4419                 if (f.contains(v))
4420                     throw new DuplicateFormatFlagsException(v.toString());
4421                 f.add(v);
4422             }
4423             return f;
4424         }
4425 
4426         // parse those flags which may be provided by users
4427         private static Flags parse(char c) {
4428             switch (c) {
4429             case '-': return LEFT_JUSTIFY;
4430             case '#': return ALTERNATE;
4431             case '+': return PLUS;
4432             case ' ': return LEADING_SPACE;
4433             case '0': return ZERO_PAD;
4434             case ',': return GROUP;
4435             case '(': return PARENTHESES;
4436             case '<': return PREVIOUS;
4437             default:
4438                 throw new UnknownFormatFlagsException(String.valueOf(c));
4439             }
4440         }
4441 
4442         // Returns a string representation of the current {@code Flags}.
4443         public static String toString(Flags f) {
4444             return f.toString();
4445         }
4446 
4447         public String toString() {
4448             StringBuilder sb = new StringBuilder();
4449             if (contains(LEFT_JUSTIFY))  sb.append('-');
4450             if (contains(UPPERCASE))     sb.append('^');
4451             if (contains(ALTERNATE))     sb.append('#');
4452             if (contains(PLUS))          sb.append('+');
4453             if (contains(LEADING_SPACE)) sb.append(' ');
4454             if (contains(ZERO_PAD))      sb.append('0');
4455             if (contains(GROUP))         sb.append(',');
4456             if (contains(PARENTHESES))   sb.append('(');
4457             if (contains(PREVIOUS))      sb.append('<');
4458             return sb.toString();
4459         }
4460     }
4461 
4462     private static class Conversion {
4463         // Byte, Short, Integer, Long, BigInteger
4464         // (and associated primitives due to autoboxing)
4465         static final char DECIMAL_INTEGER     = 'd';
4466         static final char OCTAL_INTEGER       = 'o';
4467         static final char HEXADECIMAL_INTEGER = 'x';
4468         static final char HEXADECIMAL_INTEGER_UPPER = 'X';
4469 
4470         // Float, Double, BigDecimal
4471         // (and associated primitives due to autoboxing)
4472         static final char SCIENTIFIC          = 'e';
4473         static final char SCIENTIFIC_UPPER    = 'E';
4474         static final char GENERAL             = 'g';
4475         static final char GENERAL_UPPER       = 'G';
4476         static final char DECIMAL_FLOAT       = 'f';
4477         static final char HEXADECIMAL_FLOAT   = 'a';
4478         static final char HEXADECIMAL_FLOAT_UPPER = 'A';
4479 
4480         // Character, Byte, Short, Integer
4481         // (and associated primitives due to autoboxing)
4482         static final char CHARACTER           = 'c';
4483         static final char CHARACTER_UPPER     = 'C';
4484 
4485         // java.util.Date, java.util.Calendar, long
4486         static final char DATE_TIME           = 't';
4487         static final char DATE_TIME_UPPER     = 'T';
4488 
4489         // if (arg.TYPE != boolean) return boolean
4490         // if (arg != null) return true; else return false;
4491         static final char BOOLEAN             = 'b';
4492         static final char BOOLEAN_UPPER       = 'B';
4493         // if (arg instanceof Formattable) arg.formatTo()
4494         // else arg.toString();
4495         static final char STRING              = 's';
4496         static final char STRING_UPPER        = 'S';
4497         // arg.hashCode()
4498         static final char HASHCODE            = 'h';
4499         static final char HASHCODE_UPPER      = 'H';
4500 
4501         static final char LINE_SEPARATOR      = 'n';
4502         static final char PERCENT_SIGN        = '%';
4503 
4504         static boolean isValid(char c) {
4505             return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
4506                     || c == 't' || isCharacter(c));
4507         }
4508 
4509         // Returns true iff the Conversion is applicable to all objects.
4510         static boolean isGeneral(char c) {
4511             switch (c) {
4512             case BOOLEAN:
4513             case BOOLEAN_UPPER:
4514             case STRING:
4515             case STRING_UPPER:
4516             case HASHCODE:
4517             case HASHCODE_UPPER:
4518                 return true;
4519             default:
4520                 return false;
4521             }
4522         }
4523 
4524         // Returns true iff the Conversion is applicable to character.
4525         static boolean isCharacter(char c) {
4526             switch (c) {
4527             case CHARACTER:
4528             case CHARACTER_UPPER:
4529                 return true;
4530             default:
4531                 return false;
4532             }
4533         }
4534 
4535         // Returns true iff the Conversion is an integer type.
4536         static boolean isInteger(char c) {
4537             switch (c) {
4538             case DECIMAL_INTEGER:
4539             case OCTAL_INTEGER:
4540             case HEXADECIMAL_INTEGER:
4541             case HEXADECIMAL_INTEGER_UPPER:
4542                 return true;
4543             default:
4544                 return false;
4545             }
4546         }
4547 
4548         // Returns true iff the Conversion is a floating-point type.
4549         static boolean isFloat(char c) {
4550             switch (c) {
4551             case SCIENTIFIC:
4552             case SCIENTIFIC_UPPER:
4553             case GENERAL:
4554             case GENERAL_UPPER:
4555             case DECIMAL_FLOAT:
4556             case HEXADECIMAL_FLOAT:
4557             case HEXADECIMAL_FLOAT_UPPER:
4558                 return true;
4559             default:
4560                 return false;
4561             }
4562         }
4563 
4564         // Returns true iff the Conversion does not require an argument
4565         static boolean isText(char c) {
4566             switch (c) {
4567             case LINE_SEPARATOR:
4568             case PERCENT_SIGN:
4569                 return true;
4570             default:
4571                 return false;
4572             }
4573         }
4574     }
4575 
4576     private static class DateTime {
4577         static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
4578         static final char HOUR_0        = 'I'; // (01 - 12)
4579         static final char HOUR_OF_DAY   = 'k'; // (0 - 23) -- like H
4580         static final char HOUR          = 'l'; // (1 - 12) -- like I
4581         static final char MINUTE        = 'M'; // (00 - 59)
4582         static final char NANOSECOND    = 'N'; // (000000000 - 999999999)
4583         static final char MILLISECOND   = 'L'; // jdk, not in gnu (000 - 999)
4584         static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
4585         static final char AM_PM         = 'p'; // (am or pm)
4586         static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
4587         static final char SECOND        = 'S'; // (00 - 60 - leap second)
4588         static final char TIME          = 'T'; // (24 hour hh:mm:ss)
4589         static final char ZONE_NUMERIC  = 'z'; // (-1200 - +1200) - ls minus?
4590         static final char ZONE          = 'Z'; // (symbol)
4591 
4592         // Date
4593         static final char NAME_OF_DAY_ABBREV    = 'a'; // 'a'
4594         static final char NAME_OF_DAY           = 'A'; // 'A'
4595         static final char NAME_OF_MONTH_ABBREV  = 'b'; // 'b'
4596         static final char NAME_OF_MONTH         = 'B'; // 'B'
4597         static final char CENTURY               = 'C'; // (00 - 99)
4598         static final char DAY_OF_MONTH_0        = 'd'; // (01 - 31)
4599         static final char DAY_OF_MONTH          = 'e'; // (1 - 31) -- like d
4600 // *    static final char ISO_WEEK_OF_YEAR_2    = 'g'; // cross %y %V
4601 // *    static final char ISO_WEEK_OF_YEAR_4    = 'G'; // cross %Y %V
4602         static final char NAME_OF_MONTH_ABBREV_X  = 'h'; // -- same b
4603         static final char DAY_OF_YEAR           = 'j'; // (001 - 366)
4604         static final char MONTH                 = 'm'; // (01 - 12)
4605 // *    static final char DAY_OF_WEEK_1         = 'u'; // (1 - 7) Monday
4606 // *    static final char WEEK_OF_YEAR_SUNDAY   = 'U'; // (0 - 53) Sunday+
4607 // *    static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
4608 // *    static final char DAY_OF_WEEK_0         = 'w'; // (0 - 6) Sunday
4609 // *    static final char WEEK_OF_YEAR_MONDAY   = 'W'; // (00 - 53) Monday
4610         static final char YEAR_2                = 'y'; // (00 - 99)
4611         static final char YEAR_4                = 'Y'; // (0000 - 9999)
4612 
4613         // Composites
4614         static final char TIME_12_HOUR  = 'r'; // (hh:mm:ss [AP]M)
4615         static final char TIME_24_HOUR  = 'R'; // (hh:mm same as %H:%M)
4616 // *    static final char LOCALE_TIME   = 'X'; // (%H:%M:%S) - parse format?
4617         static final char DATE_TIME             = 'c';
4618                                             // (Sat Nov 04 12:02:33 EST 1999)
4619         static final char DATE                  = 'D'; // (mm/dd/yy)
4620         static final char ISO_STANDARD_DATE     = 'F'; // (%Y-%m-%d)
4621 // *    static final char LOCALE_DATE           = 'x'; // (mm/dd/yy)
4622 
4623         static boolean isValid(char c) {
4624             switch (c) {
4625             case HOUR_OF_DAY_0:
4626             case HOUR_0:
4627             case HOUR_OF_DAY:
4628             case HOUR:
4629             case MINUTE:
4630             case NANOSECOND:
4631             case MILLISECOND:
4632             case MILLISECOND_SINCE_EPOCH:
4633             case AM_PM:
4634             case SECONDS_SINCE_EPOCH:
4635             case SECOND:
4636             case TIME:
4637             case ZONE_NUMERIC:
4638             case ZONE:
4639 
4640             // Date
4641             case NAME_OF_DAY_ABBREV:
4642             case NAME_OF_DAY:
4643             case NAME_OF_MONTH_ABBREV:
4644             case NAME_OF_MONTH:
4645             case CENTURY:
4646             case DAY_OF_MONTH_0:
4647             case DAY_OF_MONTH:
4648 // *        case ISO_WEEK_OF_YEAR_2:
4649 // *        case ISO_WEEK_OF_YEAR_4:
4650             case NAME_OF_MONTH_ABBREV_X:
4651             case DAY_OF_YEAR:
4652             case MONTH:
4653 // *        case DAY_OF_WEEK_1:
4654 // *        case WEEK_OF_YEAR_SUNDAY:
4655 // *        case WEEK_OF_YEAR_MONDAY_01:
4656 // *        case DAY_OF_WEEK_0:
4657 // *        case WEEK_OF_YEAR_MONDAY:
4658             case YEAR_2:
4659             case YEAR_4:
4660 
4661             // Composites
4662             case TIME_12_HOUR:
4663             case TIME_24_HOUR:
4664 // *        case LOCALE_TIME:
4665             case DATE_TIME:
4666             case DATE:
4667             case ISO_STANDARD_DATE:
4668 // *        case LOCALE_DATE:
4669                 return true;
4670             default:
4671                 return false;
4672             }
4673         }
4674     }
4675 }