1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  33 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  34 #include "gc_implementation/g1/g1Log.hpp"
  35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  36 #include "gc_implementation/g1/g1RemSet.hpp"
  37 #include "gc_implementation/g1/heapRegion.inline.hpp"
  38 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  39 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  40 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  41 #include "gc_implementation/shared/vmGCOperations.hpp"
  42 #include "gc_implementation/shared/gcTimer.hpp"
  43 #include "gc_implementation/shared/gcTrace.hpp"
  44 #include "gc_implementation/shared/gcTraceTime.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/genOopClosures.inline.hpp"
  47 #include "memory/referencePolicy.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/atomic.inline.hpp"
  53 #include "runtime/prefetch.inline.hpp"
  54 #include "services/memTracker.hpp"
  55 
  56 // Concurrent marking bit map wrapper
  57 
  58 CMBitMapRO::CMBitMapRO(int shifter) :
  59   _bm(),
  60   _shifter(shifter) {
  61   _bmStartWord = 0;
  62   _bmWordSize = 0;
  63 }
  64 
  65 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  66                                                const HeapWord* limit) const {
  67   // First we must round addr *up* to a possible object boundary.
  68   addr = (HeapWord*)align_size_up((intptr_t)addr,
  69                                   HeapWordSize << _shifter);
  70   size_t addrOffset = heapWordToOffset(addr);
  71   if (limit == NULL) {
  72     limit = _bmStartWord + _bmWordSize;
  73   }
  74   size_t limitOffset = heapWordToOffset(limit);
  75   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  76   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  77   assert(nextAddr >= addr, "get_next_one postcondition");
  78   assert(nextAddr == limit || isMarked(nextAddr),
  79          "get_next_one postcondition");
  80   return nextAddr;
  81 }
  82 
  83 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  84                                                  const HeapWord* limit) const {
  85   size_t addrOffset = heapWordToOffset(addr);
  86   if (limit == NULL) {
  87     limit = _bmStartWord + _bmWordSize;
  88   }
  89   size_t limitOffset = heapWordToOffset(limit);
  90   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  91   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  92   assert(nextAddr >= addr, "get_next_one postcondition");
  93   assert(nextAddr == limit || !isMarked(nextAddr),
  94          "get_next_one postcondition");
  95   return nextAddr;
  96 }
  97 
  98 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  99   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
 100   return (int) (diff >> _shifter);
 101 }
 102 
 103 #ifndef PRODUCT
 104 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 105   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 106   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 107          "size inconsistency");
 108   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 109          _bmWordSize  == heap_rs.word_size();
 110 }
 111 #endif
 112 
 113 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 114   _bm.print_on_error(st, prefix);
 115 }
 116 
 117 size_t CMBitMap::compute_size(size_t heap_size) {
 118   return heap_size / mark_distance();
 119 }
 120 
 121 size_t CMBitMap::mark_distance() {
 122   return MinObjAlignmentInBytes * BitsPerByte;
 123 }
 124 
 125 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 126   _bmStartWord = heap.start();
 127   _bmWordSize = heap.word_size();
 128 
 129   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 130   _bm.set_size(_bmWordSize >> _shifter);
 131 
 132   storage->set_mapping_changed_listener(&_listener);
 133 }
 134 
 135 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 136   if (zero_filled) {
 137     return;
 138   }
 139   // We need to clear the bitmap on commit, removing any existing information.
 140   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 141   _bm->clearRange(mr);
 142 }
 143 
 144 // Closure used for clearing the given mark bitmap.
 145 class ClearBitmapHRClosure : public HeapRegionClosure {
 146  private:
 147   ConcurrentMark* _cm;
 148   CMBitMap* _bitmap;
 149   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 150  public:
 151   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 152     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 153   }
 154 
 155   virtual bool doHeapRegion(HeapRegion* r) {
 156     size_t const chunk_size_in_words = M / HeapWordSize;
 157 
 158     HeapWord* cur = r->bottom();
 159     HeapWord* const end = r->end();
 160 
 161     while (cur < end) {
 162       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 163       _bitmap->clearRange(mr);
 164 
 165       cur += chunk_size_in_words;
 166 
 167       // Abort iteration if after yielding the marking has been aborted.
 168       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 169         return true;
 170       }
 171       // Repeat the asserts from before the start of the closure. We will do them
 172       // as asserts here to minimize their overhead on the product. However, we
 173       // will have them as guarantees at the beginning / end of the bitmap
 174       // clearing to get some checking in the product.
 175       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 176       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
 177     }
 178 
 179     return false;
 180   }
 181 };
 182 
 183 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 184   ClearBitmapHRClosure* _cl;
 185   HeapRegionClaimer     _hrclaimer;
 186   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 187 
 188 public:
 189   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 190       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 191 
 192   void work(uint worker_id) {
 193     if (_suspendible) {
 194       SuspendibleThreadSet::join();
 195     }
 196     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 197     if (_suspendible) {
 198       SuspendibleThreadSet::leave();
 199     }
 200   }
 201 };
 202 
 203 void CMBitMap::clearAll() {
 204   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 205   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 206   uint n_workers = g1h->workers()->active_workers();
 207   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 208   g1h->workers()->run_task(&task);
 209   guarantee(cl.complete(), "Must have completed iteration.");
 210   return;
 211 }
 212 
 213 void CMBitMap::markRange(MemRegion mr) {
 214   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 215   assert(!mr.is_empty(), "unexpected empty region");
 216   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 217           ((HeapWord *) mr.end())),
 218          "markRange memory region end is not card aligned");
 219   // convert address range into offset range
 220   _bm.at_put_range(heapWordToOffset(mr.start()),
 221                    heapWordToOffset(mr.end()), true);
 222 }
 223 
 224 void CMBitMap::clearRange(MemRegion mr) {
 225   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 226   assert(!mr.is_empty(), "unexpected empty region");
 227   // convert address range into offset range
 228   _bm.at_put_range(heapWordToOffset(mr.start()),
 229                    heapWordToOffset(mr.end()), false);
 230 }
 231 
 232 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 233                                             HeapWord* end_addr) {
 234   HeapWord* start = getNextMarkedWordAddress(addr);
 235   start = MIN2(start, end_addr);
 236   HeapWord* end   = getNextUnmarkedWordAddress(start);
 237   end = MIN2(end, end_addr);
 238   assert(start <= end, "Consistency check");
 239   MemRegion mr(start, end);
 240   if (!mr.is_empty()) {
 241     clearRange(mr);
 242   }
 243   return mr;
 244 }
 245 
 246 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 247   _base(NULL), _cm(cm)
 248 #ifdef ASSERT
 249   , _drain_in_progress(false)
 250   , _drain_in_progress_yields(false)
 251 #endif
 252 {}
 253 
 254 bool CMMarkStack::allocate(size_t capacity) {
 255   // allocate a stack of the requisite depth
 256   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 257   if (!rs.is_reserved()) {
 258     warning("ConcurrentMark MarkStack allocation failure");
 259     return false;
 260   }
 261   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 262   if (!_virtual_space.initialize(rs, rs.size())) {
 263     warning("ConcurrentMark MarkStack backing store failure");
 264     // Release the virtual memory reserved for the marking stack
 265     rs.release();
 266     return false;
 267   }
 268   assert(_virtual_space.committed_size() == rs.size(),
 269          "Didn't reserve backing store for all of ConcurrentMark stack?");
 270   _base = (oop*) _virtual_space.low();
 271   setEmpty();
 272   _capacity = (jint) capacity;
 273   _saved_index = -1;
 274   _should_expand = false;
 275   NOT_PRODUCT(_max_depth = 0);
 276   return true;
 277 }
 278 
 279 void CMMarkStack::expand() {
 280   // Called, during remark, if we've overflown the marking stack during marking.
 281   assert(isEmpty(), "stack should been emptied while handling overflow");
 282   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 283   // Clear expansion flag
 284   _should_expand = false;
 285   if (_capacity == (jint) MarkStackSizeMax) {
 286     if (PrintGCDetails && Verbose) {
 287       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 288     }
 289     return;
 290   }
 291   // Double capacity if possible
 292   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 293   // Do not give up existing stack until we have managed to
 294   // get the double capacity that we desired.
 295   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 296                                                            sizeof(oop)));
 297   if (rs.is_reserved()) {
 298     // Release the backing store associated with old stack
 299     _virtual_space.release();
 300     // Reinitialize virtual space for new stack
 301     if (!_virtual_space.initialize(rs, rs.size())) {
 302       fatal("Not enough swap for expanded marking stack capacity");
 303     }
 304     _base = (oop*)(_virtual_space.low());
 305     _index = 0;
 306     _capacity = new_capacity;
 307   } else {
 308     if (PrintGCDetails && Verbose) {
 309       // Failed to double capacity, continue;
 310       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 311                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 312                           _capacity / K, new_capacity / K);
 313     }
 314   }
 315 }
 316 
 317 void CMMarkStack::set_should_expand() {
 318   // If we're resetting the marking state because of an
 319   // marking stack overflow, record that we should, if
 320   // possible, expand the stack.
 321   _should_expand = _cm->has_overflown();
 322 }
 323 
 324 CMMarkStack::~CMMarkStack() {
 325   if (_base != NULL) {
 326     _base = NULL;
 327     _virtual_space.release();
 328   }
 329 }
 330 
 331 void CMMarkStack::par_push(oop ptr) {
 332   while (true) {
 333     if (isFull()) {
 334       _overflow = true;
 335       return;
 336     }
 337     // Otherwise...
 338     jint index = _index;
 339     jint next_index = index+1;
 340     jint res = Atomic::cmpxchg(next_index, &_index, index);
 341     if (res == index) {
 342       _base[index] = ptr;
 343       // Note that we don't maintain this atomically.  We could, but it
 344       // doesn't seem necessary.
 345       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 346       return;
 347     }
 348     // Otherwise, we need to try again.
 349   }
 350 }
 351 
 352 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 353   while (true) {
 354     if (isFull()) {
 355       _overflow = true;
 356       return;
 357     }
 358     // Otherwise...
 359     jint index = _index;
 360     jint next_index = index + n;
 361     if (next_index > _capacity) {
 362       _overflow = true;
 363       return;
 364     }
 365     jint res = Atomic::cmpxchg(next_index, &_index, index);
 366     if (res == index) {
 367       for (int i = 0; i < n; i++) {
 368         int  ind = index + i;
 369         assert(ind < _capacity, "By overflow test above.");
 370         _base[ind] = ptr_arr[i];
 371       }
 372       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 373       return;
 374     }
 375     // Otherwise, we need to try again.
 376   }
 377 }
 378 
 379 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 380   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 381   jint start = _index;
 382   jint next_index = start + n;
 383   if (next_index > _capacity) {
 384     _overflow = true;
 385     return;
 386   }
 387   // Otherwise.
 388   _index = next_index;
 389   for (int i = 0; i < n; i++) {
 390     int ind = start + i;
 391     assert(ind < _capacity, "By overflow test above.");
 392     _base[ind] = ptr_arr[i];
 393   }
 394   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 395 }
 396 
 397 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 398   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 399   jint index = _index;
 400   if (index == 0) {
 401     *n = 0;
 402     return false;
 403   } else {
 404     int k = MIN2(max, index);
 405     jint  new_ind = index - k;
 406     for (int j = 0; j < k; j++) {
 407       ptr_arr[j] = _base[new_ind + j];
 408     }
 409     _index = new_ind;
 410     *n = k;
 411     return true;
 412   }
 413 }
 414 
 415 template<class OopClosureClass>
 416 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 417   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 418          || SafepointSynchronize::is_at_safepoint(),
 419          "Drain recursion must be yield-safe.");
 420   bool res = true;
 421   debug_only(_drain_in_progress = true);
 422   debug_only(_drain_in_progress_yields = yield_after);
 423   while (!isEmpty()) {
 424     oop newOop = pop();
 425     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 426     assert(newOop->is_oop(), "Expected an oop");
 427     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 428            "only grey objects on this stack");
 429     newOop->oop_iterate(cl);
 430     if (yield_after && _cm->do_yield_check()) {
 431       res = false;
 432       break;
 433     }
 434   }
 435   debug_only(_drain_in_progress = false);
 436   return res;
 437 }
 438 
 439 void CMMarkStack::note_start_of_gc() {
 440   assert(_saved_index == -1,
 441          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 442   _saved_index = _index;
 443 }
 444 
 445 void CMMarkStack::note_end_of_gc() {
 446   // This is intentionally a guarantee, instead of an assert. If we
 447   // accidentally add something to the mark stack during GC, it
 448   // will be a correctness issue so it's better if we crash. we'll
 449   // only check this once per GC anyway, so it won't be a performance
 450   // issue in any way.
 451   guarantee(_saved_index == _index,
 452             err_msg("saved index: %d index: %d", _saved_index, _index));
 453   _saved_index = -1;
 454 }
 455 
 456 void CMMarkStack::oops_do(OopClosure* f) {
 457   assert(_saved_index == _index,
 458          err_msg("saved index: %d index: %d", _saved_index, _index));
 459   for (int i = 0; i < _index; i += 1) {
 460     f->do_oop(&_base[i]);
 461   }
 462 }
 463 
 464 CMRootRegions::CMRootRegions() :
 465   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 466   _should_abort(false),  _next_survivor(NULL) { }
 467 
 468 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 469   _young_list = g1h->young_list();
 470   _cm = cm;
 471 }
 472 
 473 void CMRootRegions::prepare_for_scan() {
 474   assert(!scan_in_progress(), "pre-condition");
 475 
 476   // Currently, only survivors can be root regions.
 477   assert(_next_survivor == NULL, "pre-condition");
 478   _next_survivor = _young_list->first_survivor_region();
 479   _scan_in_progress = (_next_survivor != NULL);
 480   _should_abort = false;
 481 }
 482 
 483 HeapRegion* CMRootRegions::claim_next() {
 484   if (_should_abort) {
 485     // If someone has set the should_abort flag, we return NULL to
 486     // force the caller to bail out of their loop.
 487     return NULL;
 488   }
 489 
 490   // Currently, only survivors can be root regions.
 491   HeapRegion* res = _next_survivor;
 492   if (res != NULL) {
 493     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 494     // Read it again in case it changed while we were waiting for the lock.
 495     res = _next_survivor;
 496     if (res != NULL) {
 497       if (res == _young_list->last_survivor_region()) {
 498         // We just claimed the last survivor so store NULL to indicate
 499         // that we're done.
 500         _next_survivor = NULL;
 501       } else {
 502         _next_survivor = res->get_next_young_region();
 503       }
 504     } else {
 505       // Someone else claimed the last survivor while we were trying
 506       // to take the lock so nothing else to do.
 507     }
 508   }
 509   assert(res == NULL || res->is_survivor(), "post-condition");
 510 
 511   return res;
 512 }
 513 
 514 void CMRootRegions::scan_finished() {
 515   assert(scan_in_progress(), "pre-condition");
 516 
 517   // Currently, only survivors can be root regions.
 518   if (!_should_abort) {
 519     assert(_next_survivor == NULL, "we should have claimed all survivors");
 520   }
 521   _next_survivor = NULL;
 522 
 523   {
 524     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 525     _scan_in_progress = false;
 526     RootRegionScan_lock->notify_all();
 527   }
 528 }
 529 
 530 bool CMRootRegions::wait_until_scan_finished() {
 531   if (!scan_in_progress()) return false;
 532 
 533   {
 534     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 535     while (scan_in_progress()) {
 536       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 537     }
 538   }
 539   return true;
 540 }
 541 
 542 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 543   return MAX2((n_par_threads + 2) / 4, 1U);
 544 }
 545 
 546 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 547   _g1h(g1h),
 548   _markBitMap1(),
 549   _markBitMap2(),
 550   _parallel_marking_threads(0),
 551   _max_parallel_marking_threads(0),
 552   _sleep_factor(0.0),
 553   _marking_task_overhead(1.0),
 554   _cleanup_sleep_factor(0.0),
 555   _cleanup_task_overhead(1.0),
 556   _cleanup_list("Cleanup List"),
 557   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 558   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 559             CardTableModRefBS::card_shift,
 560             false /* in_resource_area*/),
 561 
 562   _prevMarkBitMap(&_markBitMap1),
 563   _nextMarkBitMap(&_markBitMap2),
 564 
 565   // _finger set in set_non_marking_state
 566 
 567   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 568   // _active_tasks set in set_non_marking_state
 569   // _tasks set inside the constructor
 570   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 571   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 572 
 573   _has_overflown(false),
 574   _concurrent(false),
 575   _has_aborted(false),
 576   _aborted_gc_id(GCId::undefined()),
 577   _restart_for_overflow(false),
 578   _concurrent_marking_in_progress(false),
 579 
 580   // _verbose_level set below
 581 
 582   _init_times(),
 583   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 584   _cleanup_times(),
 585   _total_counting_time(0.0),
 586   _total_rs_scrub_time(0.0),
 587 
 588   _parallel_workers(NULL),
 589 
 590   _count_card_bitmaps(NULL),
 591   _count_marked_bytes(NULL),
 592   _completed_initialization(false) {
 593 
 594   _markStack = CMMarkStack(this);
 595 
 596   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 597   if (verbose_level < no_verbose) {
 598     verbose_level = no_verbose;
 599   }
 600   if (verbose_level > high_verbose) {
 601     verbose_level = high_verbose;
 602   }
 603   _verbose_level = verbose_level;
 604 
 605   if (verbose_low()) {
 606     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 607                            "heap end = " PTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 608   }
 609 
 610   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 611   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 612 
 613   // Create & start a ConcurrentMark thread.
 614   _cmThread = new ConcurrentMarkThread(this);
 615   assert(cmThread() != NULL, "CM Thread should have been created");
 616   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 617   if (_cmThread->osthread() == NULL) {
 618       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 619   }
 620 
 621   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 622   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 623   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 624 
 625   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 626   satb_qs.set_buffer_size(G1SATBBufferSize);
 627 
 628   _root_regions.init(_g1h, this);
 629 
 630   if (ConcGCThreads > ParallelGCThreads) {
 631     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 632             "than ParallelGCThreads (" UINTX_FORMAT ").",
 633             ConcGCThreads, ParallelGCThreads);
 634     return;
 635   }
 636   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 637     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 638     // if both are set
 639     _sleep_factor             = 0.0;
 640     _marking_task_overhead    = 1.0;
 641   } else if (G1MarkingOverheadPercent > 0) {
 642     // We will calculate the number of parallel marking threads based
 643     // on a target overhead with respect to the soft real-time goal
 644     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 645     double overall_cm_overhead =
 646       (double) MaxGCPauseMillis * marking_overhead /
 647       (double) GCPauseIntervalMillis;
 648     double cpu_ratio = 1.0 / (double) os::processor_count();
 649     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 650     double marking_task_overhead =
 651       overall_cm_overhead / marking_thread_num *
 652                                               (double) os::processor_count();
 653     double sleep_factor =
 654                        (1.0 - marking_task_overhead) / marking_task_overhead;
 655 
 656     FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 657     _sleep_factor             = sleep_factor;
 658     _marking_task_overhead    = marking_task_overhead;
 659   } else {
 660     // Calculate the number of parallel marking threads by scaling
 661     // the number of parallel GC threads.
 662     uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 663     FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 664     _sleep_factor             = 0.0;
 665     _marking_task_overhead    = 1.0;
 666   }
 667 
 668   assert(ConcGCThreads > 0, "Should have been set");
 669   _parallel_marking_threads = (uint) ConcGCThreads;
 670   _max_parallel_marking_threads = _parallel_marking_threads;
 671 
 672   if (parallel_marking_threads() > 1) {
 673     _cleanup_task_overhead = 1.0;
 674   } else {
 675     _cleanup_task_overhead = marking_task_overhead();
 676   }
 677   _cleanup_sleep_factor =
 678                    (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 679 
 680 #if 0
 681   gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 682   gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 683   gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 684   gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 685   gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 686 #endif
 687 
 688   _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 689        _max_parallel_marking_threads, false, true);
 690   if (_parallel_workers == NULL) {
 691     vm_exit_during_initialization("Failed necessary allocation.");
 692   } else {
 693     _parallel_workers->initialize_workers();
 694   }
 695 
 696   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 697     uintx mark_stack_size =
 698       MIN2(MarkStackSizeMax,
 699           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 700     // Verify that the calculated value for MarkStackSize is in range.
 701     // It would be nice to use the private utility routine from Arguments.
 702     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 703       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 704               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 705               mark_stack_size, (uintx) 1, MarkStackSizeMax);
 706       return;
 707     }
 708     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 709   } else {
 710     // Verify MarkStackSize is in range.
 711     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 712       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 713         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 714           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 715                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 716                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
 717           return;
 718         }
 719       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 720         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 721           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 722                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 723                   MarkStackSize, MarkStackSizeMax);
 724           return;
 725         }
 726       }
 727     }
 728   }
 729 
 730   if (!_markStack.allocate(MarkStackSize)) {
 731     warning("Failed to allocate CM marking stack");
 732     return;
 733   }
 734 
 735   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 736   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 737 
 738   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 739   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 740 
 741   BitMap::idx_t card_bm_size = _card_bm.size();
 742 
 743   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 744   _active_tasks = _max_worker_id;
 745 
 746   size_t max_regions = (size_t) _g1h->max_regions();
 747   for (uint i = 0; i < _max_worker_id; ++i) {
 748     CMTaskQueue* task_queue = new CMTaskQueue();
 749     task_queue->initialize();
 750     _task_queues->register_queue(i, task_queue);
 751 
 752     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 753     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 754 
 755     _tasks[i] = new CMTask(i, this,
 756                            _count_marked_bytes[i],
 757                            &_count_card_bitmaps[i],
 758                            task_queue, _task_queues);
 759 
 760     _accum_task_vtime[i] = 0.0;
 761   }
 762 
 763   // Calculate the card number for the bottom of the heap. Used
 764   // in biasing indexes into the accounting card bitmaps.
 765   _heap_bottom_card_num =
 766     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 767                                 CardTableModRefBS::card_shift);
 768 
 769   // Clear all the liveness counting data
 770   clear_all_count_data();
 771 
 772   // so that the call below can read a sensible value
 773   _heap_start = g1h->reserved_region().start();
 774   set_non_marking_state();
 775   _completed_initialization = true;
 776 }
 777 
 778 void ConcurrentMark::reset() {
 779   // Starting values for these two. This should be called in a STW
 780   // phase.
 781   MemRegion reserved = _g1h->g1_reserved();
 782   _heap_start = reserved.start();
 783   _heap_end   = reserved.end();
 784 
 785   // Separated the asserts so that we know which one fires.
 786   assert(_heap_start != NULL, "heap bounds should look ok");
 787   assert(_heap_end != NULL, "heap bounds should look ok");
 788   assert(_heap_start < _heap_end, "heap bounds should look ok");
 789 
 790   // Reset all the marking data structures and any necessary flags
 791   reset_marking_state();
 792 
 793   if (verbose_low()) {
 794     gclog_or_tty->print_cr("[global] resetting");
 795   }
 796 
 797   // We do reset all of them, since different phases will use
 798   // different number of active threads. So, it's easiest to have all
 799   // of them ready.
 800   for (uint i = 0; i < _max_worker_id; ++i) {
 801     _tasks[i]->reset(_nextMarkBitMap);
 802   }
 803 
 804   // we need this to make sure that the flag is on during the evac
 805   // pause with initial mark piggy-backed
 806   set_concurrent_marking_in_progress();
 807 }
 808 
 809 
 810 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 811   _markStack.set_should_expand();
 812   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 813   if (clear_overflow) {
 814     clear_has_overflown();
 815   } else {
 816     assert(has_overflown(), "pre-condition");
 817   }
 818   _finger = _heap_start;
 819 
 820   for (uint i = 0; i < _max_worker_id; ++i) {
 821     CMTaskQueue* queue = _task_queues->queue(i);
 822     queue->set_empty();
 823   }
 824 }
 825 
 826 void ConcurrentMark::set_concurrency(uint active_tasks) {
 827   assert(active_tasks <= _max_worker_id, "we should not have more");
 828 
 829   _active_tasks = active_tasks;
 830   // Need to update the three data structures below according to the
 831   // number of active threads for this phase.
 832   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 833   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 834   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 835 }
 836 
 837 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 838   set_concurrency(active_tasks);
 839 
 840   _concurrent = concurrent;
 841   // We propagate this to all tasks, not just the active ones.
 842   for (uint i = 0; i < _max_worker_id; ++i)
 843     _tasks[i]->set_concurrent(concurrent);
 844 
 845   if (concurrent) {
 846     set_concurrent_marking_in_progress();
 847   } else {
 848     // We currently assume that the concurrent flag has been set to
 849     // false before we start remark. At this point we should also be
 850     // in a STW phase.
 851     assert(!concurrent_marking_in_progress(), "invariant");
 852     assert(out_of_regions(),
 853            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 854                    p2i(_finger), p2i(_heap_end)));
 855   }
 856 }
 857 
 858 void ConcurrentMark::set_non_marking_state() {
 859   // We set the global marking state to some default values when we're
 860   // not doing marking.
 861   reset_marking_state();
 862   _active_tasks = 0;
 863   clear_concurrent_marking_in_progress();
 864 }
 865 
 866 ConcurrentMark::~ConcurrentMark() {
 867   // The ConcurrentMark instance is never freed.
 868   ShouldNotReachHere();
 869 }
 870 
 871 void ConcurrentMark::clearNextBitmap() {
 872   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 873 
 874   // Make sure that the concurrent mark thread looks to still be in
 875   // the current cycle.
 876   guarantee(cmThread()->during_cycle(), "invariant");
 877 
 878   // We are finishing up the current cycle by clearing the next
 879   // marking bitmap and getting it ready for the next cycle. During
 880   // this time no other cycle can start. So, let's make sure that this
 881   // is the case.
 882   guarantee(!g1h->mark_in_progress(), "invariant");
 883 
 884   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 885   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 886   _parallel_workers->run_task(&task);
 887 
 888   // Clear the liveness counting data. If the marking has been aborted, the abort()
 889   // call already did that.
 890   if (cl.complete()) {
 891     clear_all_count_data();
 892   }
 893 
 894   // Repeat the asserts from above.
 895   guarantee(cmThread()->during_cycle(), "invariant");
 896   guarantee(!g1h->mark_in_progress(), "invariant");
 897 }
 898 
 899 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 900   CMBitMap* _bitmap;
 901   bool _error;
 902  public:
 903   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 904   }
 905 
 906   virtual bool doHeapRegion(HeapRegion* r) {
 907     // This closure can be called concurrently to the mutator, so we must make sure
 908     // that the result of the getNextMarkedWordAddress() call is compared to the
 909     // value passed to it as limit to detect any found bits.
 910     // We can use the region's orig_end() for the limit and the comparison value
 911     // as it always contains the "real" end of the region that never changes and
 912     // has no side effects.
 913     // Due to the latter, there can also be no problem with the compiler generating
 914     // reloads of the orig_end() call.
 915     HeapWord* end = r->orig_end();
 916     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 917   }
 918 };
 919 
 920 bool ConcurrentMark::nextMarkBitmapIsClear() {
 921   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 922   _g1h->heap_region_iterate(&cl);
 923   return cl.complete();
 924 }
 925 
 926 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 927 public:
 928   bool doHeapRegion(HeapRegion* r) {
 929     if (!r->is_continues_humongous()) {
 930       r->note_start_of_marking();
 931     }
 932     return false;
 933   }
 934 };
 935 
 936 void ConcurrentMark::checkpointRootsInitialPre() {
 937   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 938   G1CollectorPolicy* g1p = g1h->g1_policy();
 939 
 940   _has_aborted = false;
 941 
 942 #ifndef PRODUCT
 943   if (G1PrintReachableAtInitialMark) {
 944     print_reachable("at-cycle-start",
 945                     VerifyOption_G1UsePrevMarking, true /* all */);
 946   }
 947 #endif
 948 
 949   // Initialize marking structures. This has to be done in a STW phase.
 950   reset();
 951 
 952   // For each region note start of marking.
 953   NoteStartOfMarkHRClosure startcl;
 954   g1h->heap_region_iterate(&startcl);
 955 }
 956 
 957 
 958 void ConcurrentMark::checkpointRootsInitialPost() {
 959   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 960 
 961   // If we force an overflow during remark, the remark operation will
 962   // actually abort and we'll restart concurrent marking. If we always
 963   // force an overflow during remark we'll never actually complete the
 964   // marking phase. So, we initialize this here, at the start of the
 965   // cycle, so that at the remaining overflow number will decrease at
 966   // every remark and we'll eventually not need to cause one.
 967   force_overflow_stw()->init();
 968 
 969   // Start Concurrent Marking weak-reference discovery.
 970   ReferenceProcessor* rp = g1h->ref_processor_cm();
 971   // enable ("weak") refs discovery
 972   rp->enable_discovery();
 973   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 974 
 975   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 976   // This is the start of  the marking cycle, we're expected all
 977   // threads to have SATB queues with active set to false.
 978   satb_mq_set.set_active_all_threads(true, /* new active value */
 979                                      false /* expected_active */);
 980 
 981   _root_regions.prepare_for_scan();
 982 
 983   // update_g1_committed() will be called at the end of an evac pause
 984   // when marking is on. So, it's also called at the end of the
 985   // initial-mark pause to update the heap end, if the heap expands
 986   // during it. No need to call it here.
 987 }
 988 
 989 /*
 990  * Notice that in the next two methods, we actually leave the STS
 991  * during the barrier sync and join it immediately afterwards. If we
 992  * do not do this, the following deadlock can occur: one thread could
 993  * be in the barrier sync code, waiting for the other thread to also
 994  * sync up, whereas another one could be trying to yield, while also
 995  * waiting for the other threads to sync up too.
 996  *
 997  * Note, however, that this code is also used during remark and in
 998  * this case we should not attempt to leave / enter the STS, otherwise
 999  * we'll either hit an assert (debug / fastdebug) or deadlock
1000  * (product). So we should only leave / enter the STS if we are
1001  * operating concurrently.
1002  *
1003  * Because the thread that does the sync barrier has left the STS, it
1004  * is possible to be suspended for a Full GC or an evacuation pause
1005  * could occur. This is actually safe, since the entering the sync
1006  * barrier is one of the last things do_marking_step() does, and it
1007  * doesn't manipulate any data structures afterwards.
1008  */
1009 
1010 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
1011   if (verbose_low()) {
1012     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
1013   }
1014 
1015   if (concurrent()) {
1016     SuspendibleThreadSet::leave();
1017   }
1018 
1019   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
1020 
1021   if (concurrent()) {
1022     SuspendibleThreadSet::join();
1023   }
1024   // at this point everyone should have synced up and not be doing any
1025   // more work
1026 
1027   if (verbose_low()) {
1028     if (barrier_aborted) {
1029       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
1030     } else {
1031       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1032     }
1033   }
1034 
1035   if (barrier_aborted) {
1036     // If the barrier aborted we ignore the overflow condition and
1037     // just abort the whole marking phase as quickly as possible.
1038     return;
1039   }
1040 
1041   // If we're executing the concurrent phase of marking, reset the marking
1042   // state; otherwise the marking state is reset after reference processing,
1043   // during the remark pause.
1044   // If we reset here as a result of an overflow during the remark we will
1045   // see assertion failures from any subsequent set_concurrency_and_phase()
1046   // calls.
1047   if (concurrent()) {
1048     // let the task associated with with worker 0 do this
1049     if (worker_id == 0) {
1050       // task 0 is responsible for clearing the global data structures
1051       // We should be here because of an overflow. During STW we should
1052       // not clear the overflow flag since we rely on it being true when
1053       // we exit this method to abort the pause and restart concurrent
1054       // marking.
1055       reset_marking_state(true /* clear_overflow */);
1056       force_overflow()->update();
1057 
1058       if (G1Log::fine()) {
1059         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1060         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1061       }
1062     }
1063   }
1064 
1065   // after this, each task should reset its own data structures then
1066   // then go into the second barrier
1067 }
1068 
1069 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1070   if (verbose_low()) {
1071     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1072   }
1073 
1074   if (concurrent()) {
1075     SuspendibleThreadSet::leave();
1076   }
1077 
1078   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1079 
1080   if (concurrent()) {
1081     SuspendibleThreadSet::join();
1082   }
1083   // at this point everything should be re-initialized and ready to go
1084 
1085   if (verbose_low()) {
1086     if (barrier_aborted) {
1087       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1088     } else {
1089       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1090     }
1091   }
1092 }
1093 
1094 #ifndef PRODUCT
1095 void ForceOverflowSettings::init() {
1096   _num_remaining = G1ConcMarkForceOverflow;
1097   _force = false;
1098   update();
1099 }
1100 
1101 void ForceOverflowSettings::update() {
1102   if (_num_remaining > 0) {
1103     _num_remaining -= 1;
1104     _force = true;
1105   } else {
1106     _force = false;
1107   }
1108 }
1109 
1110 bool ForceOverflowSettings::should_force() {
1111   if (_force) {
1112     _force = false;
1113     return true;
1114   } else {
1115     return false;
1116   }
1117 }
1118 #endif // !PRODUCT
1119 
1120 class CMConcurrentMarkingTask: public AbstractGangTask {
1121 private:
1122   ConcurrentMark*       _cm;
1123   ConcurrentMarkThread* _cmt;
1124 
1125 public:
1126   void work(uint worker_id) {
1127     assert(Thread::current()->is_ConcurrentGC_thread(),
1128            "this should only be done by a conc GC thread");
1129     ResourceMark rm;
1130 
1131     double start_vtime = os::elapsedVTime();
1132 
1133     SuspendibleThreadSet::join();
1134 
1135     assert(worker_id < _cm->active_tasks(), "invariant");
1136     CMTask* the_task = _cm->task(worker_id);
1137     the_task->record_start_time();
1138     if (!_cm->has_aborted()) {
1139       do {
1140         double start_vtime_sec = os::elapsedVTime();
1141         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1142 
1143         the_task->do_marking_step(mark_step_duration_ms,
1144                                   true  /* do_termination */,
1145                                   false /* is_serial*/);
1146 
1147         double end_vtime_sec = os::elapsedVTime();
1148         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1149         _cm->clear_has_overflown();
1150 
1151         _cm->do_yield_check(worker_id);
1152 
1153         jlong sleep_time_ms;
1154         if (!_cm->has_aborted() && the_task->has_aborted()) {
1155           sleep_time_ms =
1156             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1157           SuspendibleThreadSet::leave();
1158           os::sleep(Thread::current(), sleep_time_ms, false);
1159           SuspendibleThreadSet::join();
1160         }
1161       } while (!_cm->has_aborted() && the_task->has_aborted());
1162     }
1163     the_task->record_end_time();
1164     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1165 
1166     SuspendibleThreadSet::leave();
1167 
1168     double end_vtime = os::elapsedVTime();
1169     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1170   }
1171 
1172   CMConcurrentMarkingTask(ConcurrentMark* cm,
1173                           ConcurrentMarkThread* cmt) :
1174       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1175 
1176   ~CMConcurrentMarkingTask() { }
1177 };
1178 
1179 // Calculates the number of active workers for a concurrent
1180 // phase.
1181 uint ConcurrentMark::calc_parallel_marking_threads() {
1182   uint n_conc_workers = 0;
1183   if (!UseDynamicNumberOfGCThreads ||
1184       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1185        !ForceDynamicNumberOfGCThreads)) {
1186     n_conc_workers = max_parallel_marking_threads();
1187   } else {
1188     n_conc_workers =
1189       AdaptiveSizePolicy::calc_default_active_workers(
1190                                    max_parallel_marking_threads(),
1191                                    1, /* Minimum workers */
1192                                    parallel_marking_threads(),
1193                                    Threads::number_of_non_daemon_threads());
1194     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1195     // that scaling has already gone into "_max_parallel_marking_threads".
1196   }
1197   assert(n_conc_workers > 0, "Always need at least 1");
1198   return n_conc_workers;
1199 }
1200 
1201 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1202   // Currently, only survivors can be root regions.
1203   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1204   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1205 
1206   const uintx interval = PrefetchScanIntervalInBytes;
1207   HeapWord* curr = hr->bottom();
1208   const HeapWord* end = hr->top();
1209   while (curr < end) {
1210     Prefetch::read(curr, interval);
1211     oop obj = oop(curr);
1212     int size = obj->oop_iterate(&cl);
1213     assert(size == obj->size(), "sanity");
1214     curr += size;
1215   }
1216 }
1217 
1218 class CMRootRegionScanTask : public AbstractGangTask {
1219 private:
1220   ConcurrentMark* _cm;
1221 
1222 public:
1223   CMRootRegionScanTask(ConcurrentMark* cm) :
1224     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1225 
1226   void work(uint worker_id) {
1227     assert(Thread::current()->is_ConcurrentGC_thread(),
1228            "this should only be done by a conc GC thread");
1229 
1230     CMRootRegions* root_regions = _cm->root_regions();
1231     HeapRegion* hr = root_regions->claim_next();
1232     while (hr != NULL) {
1233       _cm->scanRootRegion(hr, worker_id);
1234       hr = root_regions->claim_next();
1235     }
1236   }
1237 };
1238 
1239 void ConcurrentMark::scanRootRegions() {
1240   // Start of concurrent marking.
1241   ClassLoaderDataGraph::clear_claimed_marks();
1242 
1243   // scan_in_progress() will have been set to true only if there was
1244   // at least one root region to scan. So, if it's false, we
1245   // should not attempt to do any further work.
1246   if (root_regions()->scan_in_progress()) {
1247     _parallel_marking_threads = calc_parallel_marking_threads();
1248     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1249            "Maximum number of marking threads exceeded");
1250     uint active_workers = MAX2(1U, parallel_marking_threads());
1251 
1252     CMRootRegionScanTask task(this);
1253     _parallel_workers->set_active_workers(active_workers);
1254     _parallel_workers->run_task(&task);
1255 
1256     // It's possible that has_aborted() is true here without actually
1257     // aborting the survivor scan earlier. This is OK as it's
1258     // mainly used for sanity checking.
1259     root_regions()->scan_finished();
1260   }
1261 }
1262 
1263 void ConcurrentMark::markFromRoots() {
1264   // we might be tempted to assert that:
1265   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1266   //        "inconsistent argument?");
1267   // However that wouldn't be right, because it's possible that
1268   // a safepoint is indeed in progress as a younger generation
1269   // stop-the-world GC happens even as we mark in this generation.
1270 
1271   _restart_for_overflow = false;
1272   force_overflow_conc()->init();
1273 
1274   // _g1h has _n_par_threads
1275   _parallel_marking_threads = calc_parallel_marking_threads();
1276   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1277     "Maximum number of marking threads exceeded");
1278 
1279   uint active_workers = MAX2(1U, parallel_marking_threads());
1280 
1281   // Parallel task terminator is set in "set_concurrency_and_phase()"
1282   set_concurrency_and_phase(active_workers, true /* concurrent */);
1283 
1284   CMConcurrentMarkingTask markingTask(this, cmThread());
1285   _parallel_workers->set_active_workers(active_workers);
1286   // Don't set _n_par_threads because it affects MT in process_roots()
1287   // and the decisions on that MT processing is made elsewhere.
1288   assert(_parallel_workers->active_workers() > 0, "Should have been set");
1289   _parallel_workers->run_task(&markingTask);
1290   print_stats();
1291 }
1292 
1293 // Helper class to get rid of some boilerplate code.
1294 class G1CMTraceTime : public GCTraceTime {
1295   static bool doit_and_prepend(bool doit) {
1296     if (doit) {
1297       gclog_or_tty->put(' ');
1298     }
1299     return doit;
1300   }
1301 
1302  public:
1303   G1CMTraceTime(const char* title, bool doit)
1304     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
1305         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
1306   }
1307 };
1308 
1309 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1310   // world is stopped at this checkpoint
1311   assert(SafepointSynchronize::is_at_safepoint(),
1312          "world should be stopped");
1313 
1314   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1315 
1316   // If a full collection has happened, we shouldn't do this.
1317   if (has_aborted()) {
1318     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1319     return;
1320   }
1321 
1322   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1323 
1324   if (VerifyDuringGC) {
1325     HandleMark hm;  // handle scope
1326     Universe::heap()->prepare_for_verify();
1327     Universe::verify(VerifyOption_G1UsePrevMarking,
1328                      " VerifyDuringGC:(before)");
1329   }
1330   g1h->check_bitmaps("Remark Start");
1331 
1332   G1CollectorPolicy* g1p = g1h->g1_policy();
1333   g1p->record_concurrent_mark_remark_start();
1334 
1335   double start = os::elapsedTime();
1336 
1337   checkpointRootsFinalWork();
1338 
1339   double mark_work_end = os::elapsedTime();
1340 
1341   weakRefsWork(clear_all_soft_refs);
1342 
1343   if (has_overflown()) {
1344     // Oops.  We overflowed.  Restart concurrent marking.
1345     _restart_for_overflow = true;
1346     if (G1TraceMarkStackOverflow) {
1347       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1348     }
1349 
1350     // Verify the heap w.r.t. the previous marking bitmap.
1351     if (VerifyDuringGC) {
1352       HandleMark hm;  // handle scope
1353       Universe::heap()->prepare_for_verify();
1354       Universe::verify(VerifyOption_G1UsePrevMarking,
1355                        " VerifyDuringGC:(overflow)");
1356     }
1357 
1358     // Clear the marking state because we will be restarting
1359     // marking due to overflowing the global mark stack.
1360     reset_marking_state();
1361   } else {
1362     {
1363       G1CMTraceTime trace("GC aggregate-data", G1Log::finer());
1364 
1365       // Aggregate the per-task counting data that we have accumulated
1366       // while marking.
1367       aggregate_count_data();
1368     }
1369 
1370     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1371     // We're done with marking.
1372     // This is the end of  the marking cycle, we're expected all
1373     // threads to have SATB queues with active set to true.
1374     satb_mq_set.set_active_all_threads(false, /* new active value */
1375                                        true /* expected_active */);
1376 
1377     if (VerifyDuringGC) {
1378       HandleMark hm;  // handle scope
1379       Universe::heap()->prepare_for_verify();
1380       Universe::verify(VerifyOption_G1UseNextMarking,
1381                        " VerifyDuringGC:(after)");
1382     }
1383     g1h->check_bitmaps("Remark End");
1384     assert(!restart_for_overflow(), "sanity");
1385     // Completely reset the marking state since marking completed
1386     set_non_marking_state();
1387   }
1388 
1389   // Expand the marking stack, if we have to and if we can.
1390   if (_markStack.should_expand()) {
1391     _markStack.expand();
1392   }
1393 
1394   // Statistics
1395   double now = os::elapsedTime();
1396   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1397   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1398   _remark_times.add((now - start) * 1000.0);
1399 
1400   g1p->record_concurrent_mark_remark_end();
1401 
1402   G1CMIsAliveClosure is_alive(g1h);
1403   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1404 }
1405 
1406 // Base class of the closures that finalize and verify the
1407 // liveness counting data.
1408 class CMCountDataClosureBase: public HeapRegionClosure {
1409 protected:
1410   G1CollectedHeap* _g1h;
1411   ConcurrentMark* _cm;
1412   CardTableModRefBS* _ct_bs;
1413 
1414   BitMap* _region_bm;
1415   BitMap* _card_bm;
1416 
1417   // Takes a region that's not empty (i.e., it has at least one
1418   // live object in it and sets its corresponding bit on the region
1419   // bitmap to 1. If the region is "starts humongous" it will also set
1420   // to 1 the bits on the region bitmap that correspond to its
1421   // associated "continues humongous" regions.
1422   void set_bit_for_region(HeapRegion* hr) {
1423     assert(!hr->is_continues_humongous(), "should have filtered those out");
1424 
1425     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1426     if (!hr->is_starts_humongous()) {
1427       // Normal (non-humongous) case: just set the bit.
1428       _region_bm->par_at_put(index, true);
1429     } else {
1430       // Starts humongous case: calculate how many regions are part of
1431       // this humongous region and then set the bit range.
1432       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1433       _region_bm->par_at_put_range(index, end_index, true);
1434     }
1435   }
1436 
1437 public:
1438   CMCountDataClosureBase(G1CollectedHeap* g1h,
1439                          BitMap* region_bm, BitMap* card_bm):
1440     _g1h(g1h), _cm(g1h->concurrent_mark()),
1441     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1442     _region_bm(region_bm), _card_bm(card_bm) { }
1443 };
1444 
1445 // Closure that calculates the # live objects per region. Used
1446 // for verification purposes during the cleanup pause.
1447 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1448   CMBitMapRO* _bm;
1449   size_t _region_marked_bytes;
1450 
1451 public:
1452   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1453                          BitMap* region_bm, BitMap* card_bm) :
1454     CMCountDataClosureBase(g1h, region_bm, card_bm),
1455     _bm(bm), _region_marked_bytes(0) { }
1456 
1457   bool doHeapRegion(HeapRegion* hr) {
1458 
1459     if (hr->is_continues_humongous()) {
1460       // We will ignore these here and process them when their
1461       // associated "starts humongous" region is processed (see
1462       // set_bit_for_heap_region()). Note that we cannot rely on their
1463       // associated "starts humongous" region to have their bit set to
1464       // 1 since, due to the region chunking in the parallel region
1465       // iteration, a "continues humongous" region might be visited
1466       // before its associated "starts humongous".
1467       return false;
1468     }
1469 
1470     HeapWord* ntams = hr->next_top_at_mark_start();
1471     HeapWord* start = hr->bottom();
1472 
1473     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1474            err_msg("Preconditions not met - "
1475                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1476                    p2i(start), p2i(ntams), p2i(hr->end())));
1477 
1478     // Find the first marked object at or after "start".
1479     start = _bm->getNextMarkedWordAddress(start, ntams);
1480 
1481     size_t marked_bytes = 0;
1482 
1483     while (start < ntams) {
1484       oop obj = oop(start);
1485       int obj_sz = obj->size();
1486       HeapWord* obj_end = start + obj_sz;
1487 
1488       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1489       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1490 
1491       // Note: if we're looking at the last region in heap - obj_end
1492       // could be actually just beyond the end of the heap; end_idx
1493       // will then correspond to a (non-existent) card that is also
1494       // just beyond the heap.
1495       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1496         // end of object is not card aligned - increment to cover
1497         // all the cards spanned by the object
1498         end_idx += 1;
1499       }
1500 
1501       // Set the bits in the card BM for the cards spanned by this object.
1502       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1503 
1504       // Add the size of this object to the number of marked bytes.
1505       marked_bytes += (size_t)obj_sz * HeapWordSize;
1506 
1507       // Find the next marked object after this one.
1508       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1509     }
1510 
1511     // Mark the allocated-since-marking portion...
1512     HeapWord* top = hr->top();
1513     if (ntams < top) {
1514       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1515       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1516 
1517       // Note: if we're looking at the last region in heap - top
1518       // could be actually just beyond the end of the heap; end_idx
1519       // will then correspond to a (non-existent) card that is also
1520       // just beyond the heap.
1521       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1522         // end of object is not card aligned - increment to cover
1523         // all the cards spanned by the object
1524         end_idx += 1;
1525       }
1526       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1527 
1528       // This definitely means the region has live objects.
1529       set_bit_for_region(hr);
1530     }
1531 
1532     // Update the live region bitmap.
1533     if (marked_bytes > 0) {
1534       set_bit_for_region(hr);
1535     }
1536 
1537     // Set the marked bytes for the current region so that
1538     // it can be queried by a calling verification routine
1539     _region_marked_bytes = marked_bytes;
1540 
1541     return false;
1542   }
1543 
1544   size_t region_marked_bytes() const { return _region_marked_bytes; }
1545 };
1546 
1547 // Heap region closure used for verifying the counting data
1548 // that was accumulated concurrently and aggregated during
1549 // the remark pause. This closure is applied to the heap
1550 // regions during the STW cleanup pause.
1551 
1552 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1553   G1CollectedHeap* _g1h;
1554   ConcurrentMark* _cm;
1555   CalcLiveObjectsClosure _calc_cl;
1556   BitMap* _region_bm;   // Region BM to be verified
1557   BitMap* _card_bm;     // Card BM to be verified
1558   bool _verbose;        // verbose output?
1559 
1560   BitMap* _exp_region_bm; // Expected Region BM values
1561   BitMap* _exp_card_bm;   // Expected card BM values
1562 
1563   int _failures;
1564 
1565 public:
1566   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1567                                 BitMap* region_bm,
1568                                 BitMap* card_bm,
1569                                 BitMap* exp_region_bm,
1570                                 BitMap* exp_card_bm,
1571                                 bool verbose) :
1572     _g1h(g1h), _cm(g1h->concurrent_mark()),
1573     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1574     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1575     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1576     _failures(0) { }
1577 
1578   int failures() const { return _failures; }
1579 
1580   bool doHeapRegion(HeapRegion* hr) {
1581     if (hr->is_continues_humongous()) {
1582       // We will ignore these here and process them when their
1583       // associated "starts humongous" region is processed (see
1584       // set_bit_for_heap_region()). Note that we cannot rely on their
1585       // associated "starts humongous" region to have their bit set to
1586       // 1 since, due to the region chunking in the parallel region
1587       // iteration, a "continues humongous" region might be visited
1588       // before its associated "starts humongous".
1589       return false;
1590     }
1591 
1592     int failures = 0;
1593 
1594     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1595     // this region and set the corresponding bits in the expected region
1596     // and card bitmaps.
1597     bool res = _calc_cl.doHeapRegion(hr);
1598     assert(res == false, "should be continuing");
1599 
1600     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1601                     Mutex::_no_safepoint_check_flag);
1602 
1603     // Verify the marked bytes for this region.
1604     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1605     size_t act_marked_bytes = hr->next_marked_bytes();
1606 
1607     // We're not OK if expected marked bytes > actual marked bytes. It means
1608     // we have missed accounting some objects during the actual marking.
1609     if (exp_marked_bytes > act_marked_bytes) {
1610       if (_verbose) {
1611         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1612                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1613                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1614       }
1615       failures += 1;
1616     }
1617 
1618     // Verify the bit, for this region, in the actual and expected
1619     // (which was just calculated) region bit maps.
1620     // We're not OK if the bit in the calculated expected region
1621     // bitmap is set and the bit in the actual region bitmap is not.
1622     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1623 
1624     bool expected = _exp_region_bm->at(index);
1625     bool actual = _region_bm->at(index);
1626     if (expected && !actual) {
1627       if (_verbose) {
1628         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1629                                "expected: %s, actual: %s",
1630                                hr->hrm_index(),
1631                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1632       }
1633       failures += 1;
1634     }
1635 
1636     // Verify that the card bit maps for the cards spanned by the current
1637     // region match. We have an error if we have a set bit in the expected
1638     // bit map and the corresponding bit in the actual bitmap is not set.
1639 
1640     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1641     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1642 
1643     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1644       expected = _exp_card_bm->at(i);
1645       actual = _card_bm->at(i);
1646 
1647       if (expected && !actual) {
1648         if (_verbose) {
1649           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1650                                  "expected: %s, actual: %s",
1651                                  hr->hrm_index(), i,
1652                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1653         }
1654         failures += 1;
1655       }
1656     }
1657 
1658     if (failures > 0 && _verbose)  {
1659       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1660                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1661                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1662                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1663     }
1664 
1665     _failures += failures;
1666 
1667     // We could stop iteration over the heap when we
1668     // find the first violating region by returning true.
1669     return false;
1670   }
1671 };
1672 
1673 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1674 protected:
1675   G1CollectedHeap* _g1h;
1676   ConcurrentMark* _cm;
1677   BitMap* _actual_region_bm;
1678   BitMap* _actual_card_bm;
1679 
1680   uint    _n_workers;
1681 
1682   BitMap* _expected_region_bm;
1683   BitMap* _expected_card_bm;
1684 
1685   int  _failures;
1686   bool _verbose;
1687 
1688   HeapRegionClaimer _hrclaimer;
1689 
1690 public:
1691   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1692                             BitMap* region_bm, BitMap* card_bm,
1693                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1694     : AbstractGangTask("G1 verify final counting"),
1695       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1696       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1697       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1698       _failures(0), _verbose(false),
1699       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1700     assert(VerifyDuringGC, "don't call this otherwise");
1701     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1702     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1703 
1704     _verbose = _cm->verbose_medium();
1705   }
1706 
1707   void work(uint worker_id) {
1708     assert(worker_id < _n_workers, "invariant");
1709 
1710     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1711                                             _actual_region_bm, _actual_card_bm,
1712                                             _expected_region_bm,
1713                                             _expected_card_bm,
1714                                             _verbose);
1715 
1716     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1717 
1718     Atomic::add(verify_cl.failures(), &_failures);
1719   }
1720 
1721   int failures() const { return _failures; }
1722 };
1723 
1724 // Closure that finalizes the liveness counting data.
1725 // Used during the cleanup pause.
1726 // Sets the bits corresponding to the interval [NTAMS, top]
1727 // (which contains the implicitly live objects) in the
1728 // card liveness bitmap. Also sets the bit for each region,
1729 // containing live data, in the region liveness bitmap.
1730 
1731 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1732  public:
1733   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1734                               BitMap* region_bm,
1735                               BitMap* card_bm) :
1736     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1737 
1738   bool doHeapRegion(HeapRegion* hr) {
1739 
1740     if (hr->is_continues_humongous()) {
1741       // We will ignore these here and process them when their
1742       // associated "starts humongous" region is processed (see
1743       // set_bit_for_heap_region()). Note that we cannot rely on their
1744       // associated "starts humongous" region to have their bit set to
1745       // 1 since, due to the region chunking in the parallel region
1746       // iteration, a "continues humongous" region might be visited
1747       // before its associated "starts humongous".
1748       return false;
1749     }
1750 
1751     HeapWord* ntams = hr->next_top_at_mark_start();
1752     HeapWord* top   = hr->top();
1753 
1754     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1755 
1756     // Mark the allocated-since-marking portion...
1757     if (ntams < top) {
1758       // This definitely means the region has live objects.
1759       set_bit_for_region(hr);
1760 
1761       // Now set the bits in the card bitmap for [ntams, top)
1762       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1763       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1764 
1765       // Note: if we're looking at the last region in heap - top
1766       // could be actually just beyond the end of the heap; end_idx
1767       // will then correspond to a (non-existent) card that is also
1768       // just beyond the heap.
1769       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1770         // end of object is not card aligned - increment to cover
1771         // all the cards spanned by the object
1772         end_idx += 1;
1773       }
1774 
1775       assert(end_idx <= _card_bm->size(),
1776              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1777                      end_idx, _card_bm->size()));
1778       assert(start_idx < _card_bm->size(),
1779              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1780                      start_idx, _card_bm->size()));
1781 
1782       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1783     }
1784 
1785     // Set the bit for the region if it contains live data
1786     if (hr->next_marked_bytes() > 0) {
1787       set_bit_for_region(hr);
1788     }
1789 
1790     return false;
1791   }
1792 };
1793 
1794 class G1ParFinalCountTask: public AbstractGangTask {
1795 protected:
1796   G1CollectedHeap* _g1h;
1797   ConcurrentMark* _cm;
1798   BitMap* _actual_region_bm;
1799   BitMap* _actual_card_bm;
1800 
1801   uint    _n_workers;
1802   HeapRegionClaimer _hrclaimer;
1803 
1804 public:
1805   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1806     : AbstractGangTask("G1 final counting"),
1807       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1808       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1809       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1810   }
1811 
1812   void work(uint worker_id) {
1813     assert(worker_id < _n_workers, "invariant");
1814 
1815     FinalCountDataUpdateClosure final_update_cl(_g1h,
1816                                                 _actual_region_bm,
1817                                                 _actual_card_bm);
1818 
1819     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1820   }
1821 };
1822 
1823 class G1ParNoteEndTask;
1824 
1825 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1826   G1CollectedHeap* _g1;
1827   size_t _max_live_bytes;
1828   uint _regions_claimed;
1829   size_t _freed_bytes;
1830   FreeRegionList* _local_cleanup_list;
1831   HeapRegionSetCount _old_regions_removed;
1832   HeapRegionSetCount _humongous_regions_removed;
1833   HRRSCleanupTask* _hrrs_cleanup_task;
1834   double _claimed_region_time;
1835   double _max_region_time;
1836 
1837 public:
1838   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1839                              FreeRegionList* local_cleanup_list,
1840                              HRRSCleanupTask* hrrs_cleanup_task) :
1841     _g1(g1),
1842     _max_live_bytes(0), _regions_claimed(0),
1843     _freed_bytes(0),
1844     _claimed_region_time(0.0), _max_region_time(0.0),
1845     _local_cleanup_list(local_cleanup_list),
1846     _old_regions_removed(),
1847     _humongous_regions_removed(),
1848     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1849 
1850   size_t freed_bytes() { return _freed_bytes; }
1851   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1852   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1853 
1854   bool doHeapRegion(HeapRegion *hr) {
1855     if (hr->is_continues_humongous()) {
1856       return false;
1857     }
1858     // We use a claim value of zero here because all regions
1859     // were claimed with value 1 in the FinalCount task.
1860     _g1->reset_gc_time_stamps(hr);
1861     double start = os::elapsedTime();
1862     _regions_claimed++;
1863     hr->note_end_of_marking();
1864     _max_live_bytes += hr->max_live_bytes();
1865 
1866     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1867       _freed_bytes += hr->used();
1868       hr->set_containing_set(NULL);
1869       if (hr->is_humongous()) {
1870         assert(hr->is_starts_humongous(), "we should only see starts humongous");
1871         _humongous_regions_removed.increment(1u, hr->capacity());
1872         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1873       } else {
1874         _old_regions_removed.increment(1u, hr->capacity());
1875         _g1->free_region(hr, _local_cleanup_list, true);
1876       }
1877     } else {
1878       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1879     }
1880 
1881     double region_time = (os::elapsedTime() - start);
1882     _claimed_region_time += region_time;
1883     if (region_time > _max_region_time) {
1884       _max_region_time = region_time;
1885     }
1886     return false;
1887   }
1888 
1889   size_t max_live_bytes() { return _max_live_bytes; }
1890   uint regions_claimed() { return _regions_claimed; }
1891   double claimed_region_time_sec() { return _claimed_region_time; }
1892   double max_region_time_sec() { return _max_region_time; }
1893 };
1894 
1895 class G1ParNoteEndTask: public AbstractGangTask {
1896   friend class G1NoteEndOfConcMarkClosure;
1897 
1898 protected:
1899   G1CollectedHeap* _g1h;
1900   size_t _max_live_bytes;
1901   size_t _freed_bytes;
1902   FreeRegionList* _cleanup_list;
1903   HeapRegionClaimer _hrclaimer;
1904 
1905 public:
1906   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1907       AbstractGangTask("G1 note end"), _g1h(g1h), _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1908   }
1909 
1910   void work(uint worker_id) {
1911     FreeRegionList local_cleanup_list("Local Cleanup List");
1912     HRRSCleanupTask hrrs_cleanup_task;
1913     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1914                                            &hrrs_cleanup_task);
1915     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1916     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1917 
1918     // Now update the lists
1919     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1920     {
1921       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1922       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1923       _max_live_bytes += g1_note_end.max_live_bytes();
1924       _freed_bytes += g1_note_end.freed_bytes();
1925 
1926       // If we iterate over the global cleanup list at the end of
1927       // cleanup to do this printing we will not guarantee to only
1928       // generate output for the newly-reclaimed regions (the list
1929       // might not be empty at the beginning of cleanup; we might
1930       // still be working on its previous contents). So we do the
1931       // printing here, before we append the new regions to the global
1932       // cleanup list.
1933 
1934       G1HRPrinter* hr_printer = _g1h->hr_printer();
1935       if (hr_printer->is_active()) {
1936         FreeRegionListIterator iter(&local_cleanup_list);
1937         while (iter.more_available()) {
1938           HeapRegion* hr = iter.get_next();
1939           hr_printer->cleanup(hr);
1940         }
1941       }
1942 
1943       _cleanup_list->add_ordered(&local_cleanup_list);
1944       assert(local_cleanup_list.is_empty(), "post-condition");
1945 
1946       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1947     }
1948   }
1949   size_t max_live_bytes() { return _max_live_bytes; }
1950   size_t freed_bytes() { return _freed_bytes; }
1951 };
1952 
1953 class G1ParScrubRemSetTask: public AbstractGangTask {
1954 protected:
1955   G1RemSet* _g1rs;
1956   BitMap* _region_bm;
1957   BitMap* _card_bm;
1958   HeapRegionClaimer _hrclaimer;
1959 
1960 public:
1961   G1ParScrubRemSetTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1962       AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()), _region_bm(region_bm), _card_bm(card_bm), _hrclaimer(n_workers) {
1963   }
1964 
1965   void work(uint worker_id) {
1966     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
1967   }
1968 
1969 };
1970 
1971 void ConcurrentMark::cleanup() {
1972   // world is stopped at this checkpoint
1973   assert(SafepointSynchronize::is_at_safepoint(),
1974          "world should be stopped");
1975   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1976 
1977   // If a full collection has happened, we shouldn't do this.
1978   if (has_aborted()) {
1979     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1980     return;
1981   }
1982 
1983   g1h->verify_region_sets_optional();
1984 
1985   if (VerifyDuringGC) {
1986     HandleMark hm;  // handle scope
1987     Universe::heap()->prepare_for_verify();
1988     Universe::verify(VerifyOption_G1UsePrevMarking,
1989                      " VerifyDuringGC:(before)");
1990   }
1991   g1h->check_bitmaps("Cleanup Start");
1992 
1993   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
1994   g1p->record_concurrent_mark_cleanup_start();
1995 
1996   double start = os::elapsedTime();
1997 
1998   HeapRegionRemSet::reset_for_cleanup_tasks();
1999 
2000   uint n_workers;
2001 
2002   // Do counting once more with the world stopped for good measure.
2003   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2004 
2005   g1h->set_par_threads();
2006   n_workers = g1h->n_par_threads();
2007   assert(g1h->n_par_threads() == n_workers,
2008          "Should not have been reset");
2009   g1h->workers()->run_task(&g1_par_count_task);
2010   // Done with the parallel phase so reset to 0.
2011   g1h->set_par_threads(0);
2012 
2013   if (VerifyDuringGC) {
2014     // Verify that the counting data accumulated during marking matches
2015     // that calculated by walking the marking bitmap.
2016 
2017     // Bitmaps to hold expected values
2018     BitMap expected_region_bm(_region_bm.size(), true);
2019     BitMap expected_card_bm(_card_bm.size(), true);
2020 
2021     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2022                                                  &_region_bm,
2023                                                  &_card_bm,
2024                                                  &expected_region_bm,
2025                                                  &expected_card_bm);
2026 
2027     g1h->set_par_threads((int)n_workers);
2028     g1h->workers()->run_task(&g1_par_verify_task);
2029     // Done with the parallel phase so reset to 0.
2030     g1h->set_par_threads(0);
2031 
2032     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2033   }
2034 
2035   size_t start_used_bytes = g1h->used();
2036   g1h->set_marking_complete();
2037 
2038   double count_end = os::elapsedTime();
2039   double this_final_counting_time = (count_end - start);
2040   _total_counting_time += this_final_counting_time;
2041 
2042   if (G1PrintRegionLivenessInfo) {
2043     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2044     _g1h->heap_region_iterate(&cl);
2045   }
2046 
2047   // Install newly created mark bitMap as "prev".
2048   swapMarkBitMaps();
2049 
2050   g1h->reset_gc_time_stamp();
2051 
2052   // Note end of marking in all heap regions.
2053   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
2054   g1h->set_par_threads((int)n_workers);
2055   g1h->workers()->run_task(&g1_par_note_end_task);
2056   g1h->set_par_threads(0);
2057   g1h->check_gc_time_stamps();
2058 
2059   if (!cleanup_list_is_empty()) {
2060     // The cleanup list is not empty, so we'll have to process it
2061     // concurrently. Notify anyone else that might be wanting free
2062     // regions that there will be more free regions coming soon.
2063     g1h->set_free_regions_coming();
2064   }
2065 
2066   // call below, since it affects the metric by which we sort the heap
2067   // regions.
2068   if (G1ScrubRemSets) {
2069     double rs_scrub_start = os::elapsedTime();
2070     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm, n_workers);
2071     g1h->set_par_threads((int)n_workers);
2072     g1h->workers()->run_task(&g1_par_scrub_rs_task);
2073     g1h->set_par_threads(0);
2074 
2075     double rs_scrub_end = os::elapsedTime();
2076     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2077     _total_rs_scrub_time += this_rs_scrub_time;
2078   }
2079 
2080   // this will also free any regions totally full of garbage objects,
2081   // and sort the regions.
2082   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2083 
2084   // Statistics.
2085   double end = os::elapsedTime();
2086   _cleanup_times.add((end - start) * 1000.0);
2087 
2088   if (G1Log::fine()) {
2089     g1h->print_size_transition(gclog_or_tty,
2090                                start_used_bytes,
2091                                g1h->used(),
2092                                g1h->capacity());
2093   }
2094 
2095   // Clean up will have freed any regions completely full of garbage.
2096   // Update the soft reference policy with the new heap occupancy.
2097   Universe::update_heap_info_at_gc();
2098 
2099   if (VerifyDuringGC) {
2100     HandleMark hm;  // handle scope
2101     Universe::heap()->prepare_for_verify();
2102     Universe::verify(VerifyOption_G1UsePrevMarking,
2103                      " VerifyDuringGC:(after)");
2104   }
2105 
2106   g1h->check_bitmaps("Cleanup End");
2107 
2108   g1h->verify_region_sets_optional();
2109 
2110   // We need to make this be a "collection" so any collection pause that
2111   // races with it goes around and waits for completeCleanup to finish.
2112   g1h->increment_total_collections();
2113 
2114   // Clean out dead classes and update Metaspace sizes.
2115   if (ClassUnloadingWithConcurrentMark) {
2116     ClassLoaderDataGraph::purge();
2117   }
2118   MetaspaceGC::compute_new_size();
2119 
2120   // We reclaimed old regions so we should calculate the sizes to make
2121   // sure we update the old gen/space data.
2122   g1h->g1mm()->update_sizes();
2123   g1h->allocation_context_stats().update_after_mark();
2124 
2125   g1h->trace_heap_after_concurrent_cycle();
2126 }
2127 
2128 void ConcurrentMark::completeCleanup() {
2129   if (has_aborted()) return;
2130 
2131   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2132 
2133   _cleanup_list.verify_optional();
2134   FreeRegionList tmp_free_list("Tmp Free List");
2135 
2136   if (G1ConcRegionFreeingVerbose) {
2137     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2138                            "cleanup list has %u entries",
2139                            _cleanup_list.length());
2140   }
2141 
2142   // No one else should be accessing the _cleanup_list at this point,
2143   // so it is not necessary to take any locks
2144   while (!_cleanup_list.is_empty()) {
2145     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2146     assert(hr != NULL, "Got NULL from a non-empty list");
2147     hr->par_clear();
2148     tmp_free_list.add_ordered(hr);
2149 
2150     // Instead of adding one region at a time to the secondary_free_list,
2151     // we accumulate them in the local list and move them a few at a
2152     // time. This also cuts down on the number of notify_all() calls
2153     // we do during this process. We'll also append the local list when
2154     // _cleanup_list is empty (which means we just removed the last
2155     // region from the _cleanup_list).
2156     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2157         _cleanup_list.is_empty()) {
2158       if (G1ConcRegionFreeingVerbose) {
2159         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2160                                "appending %u entries to the secondary_free_list, "
2161                                "cleanup list still has %u entries",
2162                                tmp_free_list.length(),
2163                                _cleanup_list.length());
2164       }
2165 
2166       {
2167         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2168         g1h->secondary_free_list_add(&tmp_free_list);
2169         SecondaryFreeList_lock->notify_all();
2170       }
2171 
2172       if (G1StressConcRegionFreeing) {
2173         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2174           os::sleep(Thread::current(), (jlong) 1, false);
2175         }
2176       }
2177     }
2178   }
2179   assert(tmp_free_list.is_empty(), "post-condition");
2180 }
2181 
2182 // Supporting Object and Oop closures for reference discovery
2183 // and processing in during marking
2184 
2185 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2186   HeapWord* addr = (HeapWord*)obj;
2187   return addr != NULL &&
2188          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2189 }
2190 
2191 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2192 // Uses the CMTask associated with a worker thread (for serial reference
2193 // processing the CMTask for worker 0 is used) to preserve (mark) and
2194 // trace referent objects.
2195 //
2196 // Using the CMTask and embedded local queues avoids having the worker
2197 // threads operating on the global mark stack. This reduces the risk
2198 // of overflowing the stack - which we would rather avoid at this late
2199 // state. Also using the tasks' local queues removes the potential
2200 // of the workers interfering with each other that could occur if
2201 // operating on the global stack.
2202 
2203 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2204   ConcurrentMark* _cm;
2205   CMTask*         _task;
2206   int             _ref_counter_limit;
2207   int             _ref_counter;
2208   bool            _is_serial;
2209  public:
2210   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2211     _cm(cm), _task(task), _is_serial(is_serial),
2212     _ref_counter_limit(G1RefProcDrainInterval) {
2213     assert(_ref_counter_limit > 0, "sanity");
2214     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2215     _ref_counter = _ref_counter_limit;
2216   }
2217 
2218   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2219   virtual void do_oop(      oop* p) { do_oop_work(p); }
2220 
2221   template <class T> void do_oop_work(T* p) {
2222     if (!_cm->has_overflown()) {
2223       oop obj = oopDesc::load_decode_heap_oop(p);
2224       if (_cm->verbose_high()) {
2225         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2226                                "*"PTR_FORMAT" = "PTR_FORMAT,
2227                                _task->worker_id(), p2i(p), p2i((void*) obj));
2228       }
2229 
2230       _task->deal_with_reference(obj);
2231       _ref_counter--;
2232 
2233       if (_ref_counter == 0) {
2234         // We have dealt with _ref_counter_limit references, pushing them
2235         // and objects reachable from them on to the local stack (and
2236         // possibly the global stack). Call CMTask::do_marking_step() to
2237         // process these entries.
2238         //
2239         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2240         // there's nothing more to do (i.e. we're done with the entries that
2241         // were pushed as a result of the CMTask::deal_with_reference() calls
2242         // above) or we overflow.
2243         //
2244         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2245         // flag while there may still be some work to do. (See the comment at
2246         // the beginning of CMTask::do_marking_step() for those conditions -
2247         // one of which is reaching the specified time target.) It is only
2248         // when CMTask::do_marking_step() returns without setting the
2249         // has_aborted() flag that the marking step has completed.
2250         do {
2251           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2252           _task->do_marking_step(mark_step_duration_ms,
2253                                  false      /* do_termination */,
2254                                  _is_serial);
2255         } while (_task->has_aborted() && !_cm->has_overflown());
2256         _ref_counter = _ref_counter_limit;
2257       }
2258     } else {
2259       if (_cm->verbose_high()) {
2260          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2261       }
2262     }
2263   }
2264 };
2265 
2266 // 'Drain' oop closure used by both serial and parallel reference processing.
2267 // Uses the CMTask associated with a given worker thread (for serial
2268 // reference processing the CMtask for worker 0 is used). Calls the
2269 // do_marking_step routine, with an unbelievably large timeout value,
2270 // to drain the marking data structures of the remaining entries
2271 // added by the 'keep alive' oop closure above.
2272 
2273 class G1CMDrainMarkingStackClosure: public VoidClosure {
2274   ConcurrentMark* _cm;
2275   CMTask*         _task;
2276   bool            _is_serial;
2277  public:
2278   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2279     _cm(cm), _task(task), _is_serial(is_serial) {
2280     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2281   }
2282 
2283   void do_void() {
2284     do {
2285       if (_cm->verbose_high()) {
2286         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2287                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2288       }
2289 
2290       // We call CMTask::do_marking_step() to completely drain the local
2291       // and global marking stacks of entries pushed by the 'keep alive'
2292       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2293       //
2294       // CMTask::do_marking_step() is called in a loop, which we'll exit
2295       // if there's nothing more to do (i.e. we've completely drained the
2296       // entries that were pushed as a a result of applying the 'keep alive'
2297       // closure to the entries on the discovered ref lists) or we overflow
2298       // the global marking stack.
2299       //
2300       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2301       // flag while there may still be some work to do. (See the comment at
2302       // the beginning of CMTask::do_marking_step() for those conditions -
2303       // one of which is reaching the specified time target.) It is only
2304       // when CMTask::do_marking_step() returns without setting the
2305       // has_aborted() flag that the marking step has completed.
2306 
2307       _task->do_marking_step(1000000000.0 /* something very large */,
2308                              true         /* do_termination */,
2309                              _is_serial);
2310     } while (_task->has_aborted() && !_cm->has_overflown());
2311   }
2312 };
2313 
2314 // Implementation of AbstractRefProcTaskExecutor for parallel
2315 // reference processing at the end of G1 concurrent marking
2316 
2317 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2318 private:
2319   G1CollectedHeap* _g1h;
2320   ConcurrentMark*  _cm;
2321   WorkGang*        _workers;
2322   int              _active_workers;
2323 
2324 public:
2325   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2326                         ConcurrentMark* cm,
2327                         WorkGang* workers,
2328                         int n_workers) :
2329     _g1h(g1h), _cm(cm),
2330     _workers(workers), _active_workers(n_workers) { }
2331 
2332   // Executes the given task using concurrent marking worker threads.
2333   virtual void execute(ProcessTask& task);
2334   virtual void execute(EnqueueTask& task);
2335 };
2336 
2337 class G1CMRefProcTaskProxy: public AbstractGangTask {
2338   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2339   ProcessTask&     _proc_task;
2340   G1CollectedHeap* _g1h;
2341   ConcurrentMark*  _cm;
2342 
2343 public:
2344   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2345                      G1CollectedHeap* g1h,
2346                      ConcurrentMark* cm) :
2347     AbstractGangTask("Process reference objects in parallel"),
2348     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2349     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2350     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2351   }
2352 
2353   virtual void work(uint worker_id) {
2354     ResourceMark rm;
2355     HandleMark hm;
2356     CMTask* task = _cm->task(worker_id);
2357     G1CMIsAliveClosure g1_is_alive(_g1h);
2358     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2359     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2360 
2361     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2362   }
2363 };
2364 
2365 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2366   assert(_workers != NULL, "Need parallel worker threads.");
2367   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2368 
2369   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2370 
2371   // We need to reset the concurrency level before each
2372   // proxy task execution, so that the termination protocol
2373   // and overflow handling in CMTask::do_marking_step() knows
2374   // how many workers to wait for.
2375   _cm->set_concurrency(_active_workers);
2376   _g1h->set_par_threads(_active_workers);
2377   _workers->run_task(&proc_task_proxy);
2378   _g1h->set_par_threads(0);
2379 }
2380 
2381 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2382   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2383   EnqueueTask& _enq_task;
2384 
2385 public:
2386   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2387     AbstractGangTask("Enqueue reference objects in parallel"),
2388     _enq_task(enq_task) { }
2389 
2390   virtual void work(uint worker_id) {
2391     _enq_task.work(worker_id);
2392   }
2393 };
2394 
2395 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2396   assert(_workers != NULL, "Need parallel worker threads.");
2397   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2398 
2399   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2400 
2401   // Not strictly necessary but...
2402   //
2403   // We need to reset the concurrency level before each
2404   // proxy task execution, so that the termination protocol
2405   // and overflow handling in CMTask::do_marking_step() knows
2406   // how many workers to wait for.
2407   _cm->set_concurrency(_active_workers);
2408   _g1h->set_par_threads(_active_workers);
2409   _workers->run_task(&enq_task_proxy);
2410   _g1h->set_par_threads(0);
2411 }
2412 
2413 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2414   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2415 }
2416 
2417 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2418   if (has_overflown()) {
2419     // Skip processing the discovered references if we have
2420     // overflown the global marking stack. Reference objects
2421     // only get discovered once so it is OK to not
2422     // de-populate the discovered reference lists. We could have,
2423     // but the only benefit would be that, when marking restarts,
2424     // less reference objects are discovered.
2425     return;
2426   }
2427 
2428   ResourceMark rm;
2429   HandleMark   hm;
2430 
2431   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2432 
2433   // Is alive closure.
2434   G1CMIsAliveClosure g1_is_alive(g1h);
2435 
2436   // Inner scope to exclude the cleaning of the string and symbol
2437   // tables from the displayed time.
2438   {
2439     G1CMTraceTime t("GC ref-proc", G1Log::finer());
2440 
2441     ReferenceProcessor* rp = g1h->ref_processor_cm();
2442 
2443     // See the comment in G1CollectedHeap::ref_processing_init()
2444     // about how reference processing currently works in G1.
2445 
2446     // Set the soft reference policy
2447     rp->setup_policy(clear_all_soft_refs);
2448     assert(_markStack.isEmpty(), "mark stack should be empty");
2449 
2450     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2451     // in serial reference processing. Note these closures are also
2452     // used for serially processing (by the the current thread) the
2453     // JNI references during parallel reference processing.
2454     //
2455     // These closures do not need to synchronize with the worker
2456     // threads involved in parallel reference processing as these
2457     // instances are executed serially by the current thread (e.g.
2458     // reference processing is not multi-threaded and is thus
2459     // performed by the current thread instead of a gang worker).
2460     //
2461     // The gang tasks involved in parallel reference processing create
2462     // their own instances of these closures, which do their own
2463     // synchronization among themselves.
2464     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2465     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2466 
2467     // We need at least one active thread. If reference processing
2468     // is not multi-threaded we use the current (VMThread) thread,
2469     // otherwise we use the work gang from the G1CollectedHeap and
2470     // we utilize all the worker threads we can.
2471     bool processing_is_mt = rp->processing_is_mt();
2472     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2473     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2474 
2475     // Parallel processing task executor.
2476     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2477                                               g1h->workers(), active_workers);
2478     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2479 
2480     // Set the concurrency level. The phase was already set prior to
2481     // executing the remark task.
2482     set_concurrency(active_workers);
2483 
2484     // Set the degree of MT processing here.  If the discovery was done MT,
2485     // the number of threads involved during discovery could differ from
2486     // the number of active workers.  This is OK as long as the discovered
2487     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2488     rp->set_active_mt_degree(active_workers);
2489 
2490     // Process the weak references.
2491     const ReferenceProcessorStats& stats =
2492         rp->process_discovered_references(&g1_is_alive,
2493                                           &g1_keep_alive,
2494                                           &g1_drain_mark_stack,
2495                                           executor,
2496                                           g1h->gc_timer_cm(),
2497                                           concurrent_gc_id());
2498     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2499 
2500     // The do_oop work routines of the keep_alive and drain_marking_stack
2501     // oop closures will set the has_overflown flag if we overflow the
2502     // global marking stack.
2503 
2504     assert(_markStack.overflow() || _markStack.isEmpty(),
2505             "mark stack should be empty (unless it overflowed)");
2506 
2507     if (_markStack.overflow()) {
2508       // This should have been done already when we tried to push an
2509       // entry on to the global mark stack. But let's do it again.
2510       set_has_overflown();
2511     }
2512 
2513     assert(rp->num_q() == active_workers, "why not");
2514 
2515     rp->enqueue_discovered_references(executor);
2516 
2517     rp->verify_no_references_recorded();
2518     assert(!rp->discovery_enabled(), "Post condition");
2519   }
2520 
2521   if (has_overflown()) {
2522     // We can not trust g1_is_alive if the marking stack overflowed
2523     return;
2524   }
2525 
2526   assert(_markStack.isEmpty(), "Marking should have completed");
2527 
2528   // Unload Klasses, String, Symbols, Code Cache, etc.
2529   {
2530     G1CMTraceTime trace("Unloading", G1Log::finer());
2531 
2532     if (ClassUnloadingWithConcurrentMark) {
2533       // Cleaning of klasses depends on correct information from MetadataMarkOnStack. The CodeCache::mark_on_stack
2534       // part is too slow to be done serially, so it is handled during the weakRefsWorkParallelPart phase.
2535       // Defer the cleaning until we have complete on_stack data.
2536       MetadataOnStackMark md_on_stack(false /* Don't visit the code cache at this point */);
2537 
2538       bool purged_classes;
2539 
2540       {
2541         G1CMTraceTime trace("System Dictionary Unloading", G1Log::finest());
2542         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2543       }
2544 
2545       {
2546         G1CMTraceTime trace("Parallel Unloading", G1Log::finest());
2547         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2548       }
2549 
2550       {
2551         G1CMTraceTime trace("Deallocate Metadata", G1Log::finest());
2552         ClassLoaderDataGraph::free_deallocate_lists();
2553       }
2554     }
2555 
2556     if (G1StringDedup::is_enabled()) {
2557       G1CMTraceTime trace("String Deduplication Unlink", G1Log::finest());
2558       G1StringDedup::unlink(&g1_is_alive);
2559     }
2560   }
2561 }
2562 
2563 void ConcurrentMark::swapMarkBitMaps() {
2564   CMBitMapRO* temp = _prevMarkBitMap;
2565   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2566   _nextMarkBitMap  = (CMBitMap*)  temp;
2567 }
2568 
2569 class CMObjectClosure;
2570 
2571 // Closure for iterating over objects, currently only used for
2572 // processing SATB buffers.
2573 class CMObjectClosure : public ObjectClosure {
2574 private:
2575   CMTask* _task;
2576 
2577 public:
2578   void do_object(oop obj) {
2579     _task->deal_with_reference(obj);
2580   }
2581 
2582   CMObjectClosure(CMTask* task) : _task(task) { }
2583 };
2584 
2585 class G1RemarkThreadsClosure : public ThreadClosure {
2586   CMObjectClosure _cm_obj;
2587   G1CMOopClosure _cm_cl;
2588   MarkingCodeBlobClosure _code_cl;
2589   int _thread_parity;
2590 
2591  public:
2592   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task) :
2593     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2594     _thread_parity(SharedHeap::heap()->strong_roots_parity()) {}
2595 
2596   void do_thread(Thread* thread) {
2597     if (thread->is_Java_thread()) {
2598       if (thread->claim_oops_do(true, _thread_parity)) {
2599         JavaThread* jt = (JavaThread*)thread;
2600 
2601         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2602         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2603         // * Alive if on the stack of an executing method
2604         // * Weakly reachable otherwise
2605         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2606         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2607         jt->nmethods_do(&_code_cl);
2608 
2609         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
2610       }
2611     } else if (thread->is_VM_thread()) {
2612       if (thread->claim_oops_do(true, _thread_parity)) {
2613         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
2614       }
2615     }
2616   }
2617 };
2618 
2619 class CMRemarkTask: public AbstractGangTask {
2620 private:
2621   ConcurrentMark* _cm;
2622 public:
2623   void work(uint worker_id) {
2624     // Since all available tasks are actually started, we should
2625     // only proceed if we're supposed to be active.
2626     if (worker_id < _cm->active_tasks()) {
2627       CMTask* task = _cm->task(worker_id);
2628       task->record_start_time();
2629       {
2630         ResourceMark rm;
2631         HandleMark hm;
2632 
2633         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2634         Threads::threads_do(&threads_f);
2635       }
2636 
2637       do {
2638         task->do_marking_step(1000000000.0 /* something very large */,
2639                               true         /* do_termination       */,
2640                               false        /* is_serial            */);
2641       } while (task->has_aborted() && !_cm->has_overflown());
2642       // If we overflow, then we do not want to restart. We instead
2643       // want to abort remark and do concurrent marking again.
2644       task->record_end_time();
2645     }
2646   }
2647 
2648   CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2649     AbstractGangTask("Par Remark"), _cm(cm) {
2650     _cm->terminator()->reset_for_reuse(active_workers);
2651   }
2652 };
2653 
2654 void ConcurrentMark::checkpointRootsFinalWork() {
2655   ResourceMark rm;
2656   HandleMark   hm;
2657   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2658 
2659   G1CMTraceTime trace("Finalize Marking", G1Log::finer());
2660 
2661   g1h->ensure_parsability(false);
2662 
2663   G1CollectedHeap::StrongRootsScope srs(g1h);
2664   // this is remark, so we'll use up all active threads
2665   uint active_workers = g1h->workers()->active_workers();
2666   if (active_workers == 0) {
2667     assert(active_workers > 0, "Should have been set earlier");
2668     active_workers = (uint) ParallelGCThreads;
2669     g1h->workers()->set_active_workers(active_workers);
2670   }
2671   set_concurrency_and_phase(active_workers, false /* concurrent */);
2672   // Leave _parallel_marking_threads at it's
2673   // value originally calculated in the ConcurrentMark
2674   // constructor and pass values of the active workers
2675   // through the gang in the task.
2676 
2677   CMRemarkTask remarkTask(this, active_workers);
2678   // We will start all available threads, even if we decide that the
2679   // active_workers will be fewer. The extra ones will just bail out
2680   // immediately.
2681   g1h->set_par_threads(active_workers);
2682   g1h->workers()->run_task(&remarkTask);
2683   g1h->set_par_threads(0);
2684 
2685   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2686   guarantee(has_overflown() ||
2687             satb_mq_set.completed_buffers_num() == 0,
2688             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2689                     BOOL_TO_STR(has_overflown()),
2690                     satb_mq_set.completed_buffers_num()));
2691 
2692   print_stats();
2693 }
2694 
2695 #ifndef PRODUCT
2696 
2697 class PrintReachableOopClosure: public OopClosure {
2698 private:
2699   G1CollectedHeap* _g1h;
2700   outputStream*    _out;
2701   VerifyOption     _vo;
2702   bool             _all;
2703 
2704 public:
2705   PrintReachableOopClosure(outputStream* out,
2706                            VerifyOption  vo,
2707                            bool          all) :
2708     _g1h(G1CollectedHeap::heap()),
2709     _out(out), _vo(vo), _all(all) { }
2710 
2711   void do_oop(narrowOop* p) { do_oop_work(p); }
2712   void do_oop(      oop* p) { do_oop_work(p); }
2713 
2714   template <class T> void do_oop_work(T* p) {
2715     oop         obj = oopDesc::load_decode_heap_oop(p);
2716     const char* str = NULL;
2717     const char* str2 = "";
2718 
2719     if (obj == NULL) {
2720       str = "";
2721     } else if (!_g1h->is_in_g1_reserved(obj)) {
2722       str = " O";
2723     } else {
2724       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2725       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2726       bool marked = _g1h->is_marked(obj, _vo);
2727 
2728       if (over_tams) {
2729         str = " >";
2730         if (marked) {
2731           str2 = " AND MARKED";
2732         }
2733       } else if (marked) {
2734         str = " M";
2735       } else {
2736         str = " NOT";
2737       }
2738     }
2739 
2740     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2741                    p2i(p), p2i((void*) obj), str, str2);
2742   }
2743 };
2744 
2745 class PrintReachableObjectClosure : public ObjectClosure {
2746 private:
2747   G1CollectedHeap* _g1h;
2748   outputStream*    _out;
2749   VerifyOption     _vo;
2750   bool             _all;
2751   HeapRegion*      _hr;
2752 
2753 public:
2754   PrintReachableObjectClosure(outputStream* out,
2755                               VerifyOption  vo,
2756                               bool          all,
2757                               HeapRegion*   hr) :
2758     _g1h(G1CollectedHeap::heap()),
2759     _out(out), _vo(vo), _all(all), _hr(hr) { }
2760 
2761   void do_object(oop o) {
2762     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2763     bool marked = _g1h->is_marked(o, _vo);
2764     bool print_it = _all || over_tams || marked;
2765 
2766     if (print_it) {
2767       _out->print_cr(" "PTR_FORMAT"%s",
2768                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2769       PrintReachableOopClosure oopCl(_out, _vo, _all);
2770       o->oop_iterate_no_header(&oopCl);
2771     }
2772   }
2773 };
2774 
2775 class PrintReachableRegionClosure : public HeapRegionClosure {
2776 private:
2777   G1CollectedHeap* _g1h;
2778   outputStream*    _out;
2779   VerifyOption     _vo;
2780   bool             _all;
2781 
2782 public:
2783   bool doHeapRegion(HeapRegion* hr) {
2784     HeapWord* b = hr->bottom();
2785     HeapWord* e = hr->end();
2786     HeapWord* t = hr->top();
2787     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2788     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2789                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2790     _out->cr();
2791 
2792     HeapWord* from = b;
2793     HeapWord* to   = t;
2794 
2795     if (to > from) {
2796       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2797       _out->cr();
2798       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2799       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2800       _out->cr();
2801     }
2802 
2803     return false;
2804   }
2805 
2806   PrintReachableRegionClosure(outputStream* out,
2807                               VerifyOption  vo,
2808                               bool          all) :
2809     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2810 };
2811 
2812 void ConcurrentMark::print_reachable(const char* str,
2813                                      VerifyOption vo,
2814                                      bool all) {
2815   gclog_or_tty->cr();
2816   gclog_or_tty->print_cr("== Doing heap dump... ");
2817 
2818   if (G1PrintReachableBaseFile == NULL) {
2819     gclog_or_tty->print_cr("  #### error: no base file defined");
2820     return;
2821   }
2822 
2823   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2824       (JVM_MAXPATHLEN - 1)) {
2825     gclog_or_tty->print_cr("  #### error: file name too long");
2826     return;
2827   }
2828 
2829   char file_name[JVM_MAXPATHLEN];
2830   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2831   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2832 
2833   fileStream fout(file_name);
2834   if (!fout.is_open()) {
2835     gclog_or_tty->print_cr("  #### error: could not open file");
2836     return;
2837   }
2838 
2839   outputStream* out = &fout;
2840   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2841   out->cr();
2842 
2843   out->print_cr("--- ITERATING OVER REGIONS");
2844   out->cr();
2845   PrintReachableRegionClosure rcl(out, vo, all);
2846   _g1h->heap_region_iterate(&rcl);
2847   out->cr();
2848 
2849   gclog_or_tty->print_cr("  done");
2850   gclog_or_tty->flush();
2851 }
2852 
2853 #endif // PRODUCT
2854 
2855 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2856   // Note we are overriding the read-only view of the prev map here, via
2857   // the cast.
2858   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2859 }
2860 
2861 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2862   _nextMarkBitMap->clearRange(mr);
2863 }
2864 
2865 HeapRegion*
2866 ConcurrentMark::claim_region(uint worker_id) {
2867   // "checkpoint" the finger
2868   HeapWord* finger = _finger;
2869 
2870   // _heap_end will not change underneath our feet; it only changes at
2871   // yield points.
2872   while (finger < _heap_end) {
2873     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2874 
2875     // Note on how this code handles humongous regions. In the
2876     // normal case the finger will reach the start of a "starts
2877     // humongous" (SH) region. Its end will either be the end of the
2878     // last "continues humongous" (CH) region in the sequence, or the
2879     // standard end of the SH region (if the SH is the only region in
2880     // the sequence). That way claim_region() will skip over the CH
2881     // regions. However, there is a subtle race between a CM thread
2882     // executing this method and a mutator thread doing a humongous
2883     // object allocation. The two are not mutually exclusive as the CM
2884     // thread does not need to hold the Heap_lock when it gets
2885     // here. So there is a chance that claim_region() will come across
2886     // a free region that's in the progress of becoming a SH or a CH
2887     // region. In the former case, it will either
2888     //   a) Miss the update to the region's end, in which case it will
2889     //      visit every subsequent CH region, will find their bitmaps
2890     //      empty, and do nothing, or
2891     //   b) Will observe the update of the region's end (in which case
2892     //      it will skip the subsequent CH regions).
2893     // If it comes across a region that suddenly becomes CH, the
2894     // scenario will be similar to b). So, the race between
2895     // claim_region() and a humongous object allocation might force us
2896     // to do a bit of unnecessary work (due to some unnecessary bitmap
2897     // iterations) but it should not introduce and correctness issues.
2898     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
2899 
2900     // Above heap_region_containing_raw may return NULL as we always scan claim
2901     // until the end of the heap. In this case, just jump to the next region.
2902     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2903 
2904     // Is the gap between reading the finger and doing the CAS too long?
2905     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2906     if (res == finger && curr_region != NULL) {
2907       // we succeeded
2908       HeapWord*   bottom        = curr_region->bottom();
2909       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2910 
2911       if (verbose_low()) {
2912         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2913                                "["PTR_FORMAT", "PTR_FORMAT"), "
2914                                "limit = "PTR_FORMAT,
2915                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2916       }
2917 
2918       // notice that _finger == end cannot be guaranteed here since,
2919       // someone else might have moved the finger even further
2920       assert(_finger >= end, "the finger should have moved forward");
2921 
2922       if (verbose_low()) {
2923         gclog_or_tty->print_cr("[%u] we were successful with region = "
2924                                PTR_FORMAT, worker_id, p2i(curr_region));
2925       }
2926 
2927       if (limit > bottom) {
2928         if (verbose_low()) {
2929           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2930                                  "returning it ", worker_id, p2i(curr_region));
2931         }
2932         return curr_region;
2933       } else {
2934         assert(limit == bottom,
2935                "the region limit should be at bottom");
2936         if (verbose_low()) {
2937           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
2938                                  "returning NULL", worker_id, p2i(curr_region));
2939         }
2940         // we return NULL and the caller should try calling
2941         // claim_region() again.
2942         return NULL;
2943       }
2944     } else {
2945       assert(_finger > finger, "the finger should have moved forward");
2946       if (verbose_low()) {
2947         if (curr_region == NULL) {
2948           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
2949                                  "global finger = "PTR_FORMAT", "
2950                                  "our finger = "PTR_FORMAT,
2951                                  worker_id, p2i(_finger), p2i(finger));
2952         } else {
2953           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2954                                  "global finger = "PTR_FORMAT", "
2955                                  "our finger = "PTR_FORMAT,
2956                                  worker_id, p2i(_finger), p2i(finger));
2957         }
2958       }
2959 
2960       // read it again
2961       finger = _finger;
2962     }
2963   }
2964 
2965   return NULL;
2966 }
2967 
2968 #ifndef PRODUCT
2969 enum VerifyNoCSetOopsPhase {
2970   VerifyNoCSetOopsStack,
2971   VerifyNoCSetOopsQueues,
2972   VerifyNoCSetOopsSATBCompleted,
2973   VerifyNoCSetOopsSATBThread
2974 };
2975 
2976 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
2977 private:
2978   G1CollectedHeap* _g1h;
2979   VerifyNoCSetOopsPhase _phase;
2980   int _info;
2981 
2982   const char* phase_str() {
2983     switch (_phase) {
2984     case VerifyNoCSetOopsStack:         return "Stack";
2985     case VerifyNoCSetOopsQueues:        return "Queue";
2986     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
2987     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
2988     default:                            ShouldNotReachHere();
2989     }
2990     return NULL;
2991   }
2992 
2993   void do_object_work(oop obj) {
2994     guarantee(!_g1h->obj_in_cs(obj),
2995               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
2996                       p2i((void*) obj), phase_str(), _info));
2997   }
2998 
2999 public:
3000   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
3001 
3002   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
3003     _phase = phase;
3004     _info = info;
3005   }
3006 
3007   virtual void do_oop(oop* p) {
3008     oop obj = oopDesc::load_decode_heap_oop(p);
3009     do_object_work(obj);
3010   }
3011 
3012   virtual void do_oop(narrowOop* p) {
3013     // We should not come across narrow oops while scanning marking
3014     // stacks and SATB buffers.
3015     ShouldNotReachHere();
3016   }
3017 
3018   virtual void do_object(oop obj) {
3019     do_object_work(obj);
3020   }
3021 };
3022 
3023 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
3024                                          bool verify_enqueued_buffers,
3025                                          bool verify_thread_buffers,
3026                                          bool verify_fingers) {
3027   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
3028   if (!G1CollectedHeap::heap()->mark_in_progress()) {
3029     return;
3030   }
3031 
3032   VerifyNoCSetOopsClosure cl;
3033 
3034   if (verify_stacks) {
3035     // Verify entries on the global mark stack
3036     cl.set_phase(VerifyNoCSetOopsStack);
3037     _markStack.oops_do(&cl);
3038 
3039     // Verify entries on the task queues
3040     for (uint i = 0; i < _max_worker_id; i += 1) {
3041       cl.set_phase(VerifyNoCSetOopsQueues, i);
3042       CMTaskQueue* queue = _task_queues->queue(i);
3043       queue->oops_do(&cl);
3044     }
3045   }
3046 
3047   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
3048 
3049   // Verify entries on the enqueued SATB buffers
3050   if (verify_enqueued_buffers) {
3051     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
3052     satb_qs.iterate_completed_buffers_read_only(&cl);
3053   }
3054 
3055   // Verify entries on the per-thread SATB buffers
3056   if (verify_thread_buffers) {
3057     cl.set_phase(VerifyNoCSetOopsSATBThread);
3058     satb_qs.iterate_thread_buffers_read_only(&cl);
3059   }
3060 
3061   if (verify_fingers) {
3062     // Verify the global finger
3063     HeapWord* global_finger = finger();
3064     if (global_finger != NULL && global_finger < _heap_end) {
3065       // The global finger always points to a heap region boundary. We
3066       // use heap_region_containing_raw() to get the containing region
3067       // given that the global finger could be pointing to a free region
3068       // which subsequently becomes continues humongous. If that
3069       // happens, heap_region_containing() will return the bottom of the
3070       // corresponding starts humongous region and the check below will
3071       // not hold any more.
3072       // Since we always iterate over all regions, we might get a NULL HeapRegion
3073       // here.
3074       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3075       guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
3076                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3077                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3078     }
3079 
3080     // Verify the task fingers
3081     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3082     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3083       CMTask* task = _tasks[i];
3084       HeapWord* task_finger = task->finger();
3085       if (task_finger != NULL && task_finger < _heap_end) {
3086         // See above note on the global finger verification.
3087         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3088         guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
3089                   !task_hr->in_collection_set(),
3090                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3091                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3092       }
3093     }
3094   }
3095 }
3096 #endif // PRODUCT
3097 
3098 // Aggregate the counting data that was constructed concurrently
3099 // with marking.
3100 class AggregateCountDataHRClosure: public HeapRegionClosure {
3101   G1CollectedHeap* _g1h;
3102   ConcurrentMark* _cm;
3103   CardTableModRefBS* _ct_bs;
3104   BitMap* _cm_card_bm;
3105   uint _max_worker_id;
3106 
3107  public:
3108   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3109                               BitMap* cm_card_bm,
3110                               uint max_worker_id) :
3111     _g1h(g1h), _cm(g1h->concurrent_mark()),
3112     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3113     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3114 
3115   bool doHeapRegion(HeapRegion* hr) {
3116     if (hr->is_continues_humongous()) {
3117       // We will ignore these here and process them when their
3118       // associated "starts humongous" region is processed.
3119       // Note that we cannot rely on their associated
3120       // "starts humongous" region to have their bit set to 1
3121       // since, due to the region chunking in the parallel region
3122       // iteration, a "continues humongous" region might be visited
3123       // before its associated "starts humongous".
3124       return false;
3125     }
3126 
3127     HeapWord* start = hr->bottom();
3128     HeapWord* limit = hr->next_top_at_mark_start();
3129     HeapWord* end = hr->end();
3130 
3131     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3132            err_msg("Preconditions not met - "
3133                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3134                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3135                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3136 
3137     assert(hr->next_marked_bytes() == 0, "Precondition");
3138 
3139     if (start == limit) {
3140       // NTAMS of this region has not been set so nothing to do.
3141       return false;
3142     }
3143 
3144     // 'start' should be in the heap.
3145     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3146     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
3147     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3148 
3149     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3150     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3151     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3152 
3153     // If ntams is not card aligned then we bump card bitmap index
3154     // for limit so that we get the all the cards spanned by
3155     // the object ending at ntams.
3156     // Note: if this is the last region in the heap then ntams
3157     // could be actually just beyond the end of the the heap;
3158     // limit_idx will then  correspond to a (non-existent) card
3159     // that is also outside the heap.
3160     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3161       limit_idx += 1;
3162     }
3163 
3164     assert(limit_idx <= end_idx, "or else use atomics");
3165 
3166     // Aggregate the "stripe" in the count data associated with hr.
3167     uint hrm_index = hr->hrm_index();
3168     size_t marked_bytes = 0;
3169 
3170     for (uint i = 0; i < _max_worker_id; i += 1) {
3171       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3172       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3173 
3174       // Fetch the marked_bytes in this region for task i and
3175       // add it to the running total for this region.
3176       marked_bytes += marked_bytes_array[hrm_index];
3177 
3178       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3179       // into the global card bitmap.
3180       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3181 
3182       while (scan_idx < limit_idx) {
3183         assert(task_card_bm->at(scan_idx) == true, "should be");
3184         _cm_card_bm->set_bit(scan_idx);
3185         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3186 
3187         // BitMap::get_next_one_offset() can handle the case when
3188         // its left_offset parameter is greater than its right_offset
3189         // parameter. It does, however, have an early exit if
3190         // left_offset == right_offset. So let's limit the value
3191         // passed in for left offset here.
3192         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3193         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3194       }
3195     }
3196 
3197     // Update the marked bytes for this region.
3198     hr->add_to_marked_bytes(marked_bytes);
3199 
3200     // Next heap region
3201     return false;
3202   }
3203 };
3204 
3205 class G1AggregateCountDataTask: public AbstractGangTask {
3206 protected:
3207   G1CollectedHeap* _g1h;
3208   ConcurrentMark* _cm;
3209   BitMap* _cm_card_bm;
3210   uint _max_worker_id;
3211   int _active_workers;
3212   HeapRegionClaimer _hrclaimer;
3213 
3214 public:
3215   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3216                            ConcurrentMark* cm,
3217                            BitMap* cm_card_bm,
3218                            uint max_worker_id,
3219                            int n_workers) :
3220       AbstractGangTask("Count Aggregation"),
3221       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3222       _max_worker_id(max_worker_id),
3223       _active_workers(n_workers),
3224       _hrclaimer(_active_workers) {
3225   }
3226 
3227   void work(uint worker_id) {
3228     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3229 
3230     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
3231   }
3232 };
3233 
3234 
3235 void ConcurrentMark::aggregate_count_data() {
3236   int n_workers = _g1h->workers()->active_workers();
3237 
3238   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3239                                            _max_worker_id, n_workers);
3240 
3241   _g1h->set_par_threads(n_workers);
3242   _g1h->workers()->run_task(&g1_par_agg_task);
3243   _g1h->set_par_threads(0);
3244 }
3245 
3246 // Clear the per-worker arrays used to store the per-region counting data
3247 void ConcurrentMark::clear_all_count_data() {
3248   // Clear the global card bitmap - it will be filled during
3249   // liveness count aggregation (during remark) and the
3250   // final counting task.
3251   _card_bm.clear();
3252 
3253   // Clear the global region bitmap - it will be filled as part
3254   // of the final counting task.
3255   _region_bm.clear();
3256 
3257   uint max_regions = _g1h->max_regions();
3258   assert(_max_worker_id > 0, "uninitialized");
3259 
3260   for (uint i = 0; i < _max_worker_id; i += 1) {
3261     BitMap* task_card_bm = count_card_bitmap_for(i);
3262     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3263 
3264     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3265     assert(marked_bytes_array != NULL, "uninitialized");
3266 
3267     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3268     task_card_bm->clear();
3269   }
3270 }
3271 
3272 void ConcurrentMark::print_stats() {
3273   if (verbose_stats()) {
3274     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3275     for (size_t i = 0; i < _active_tasks; ++i) {
3276       _tasks[i]->print_stats();
3277       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3278     }
3279   }
3280 }
3281 
3282 // abandon current marking iteration due to a Full GC
3283 void ConcurrentMark::abort() {
3284   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3285   // concurrent bitmap clearing.
3286   _nextMarkBitMap->clearAll();
3287 
3288   // Note we cannot clear the previous marking bitmap here
3289   // since VerifyDuringGC verifies the objects marked during
3290   // a full GC against the previous bitmap.
3291 
3292   // Clear the liveness counting data
3293   clear_all_count_data();
3294   // Empty mark stack
3295   reset_marking_state();
3296   for (uint i = 0; i < _max_worker_id; ++i) {
3297     _tasks[i]->clear_region_fields();
3298   }
3299   _first_overflow_barrier_sync.abort();
3300   _second_overflow_barrier_sync.abort();
3301   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3302   if (!gc_id.is_undefined()) {
3303     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3304     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3305     _aborted_gc_id = gc_id;
3306    }
3307   _has_aborted = true;
3308 
3309   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3310   satb_mq_set.abandon_partial_marking();
3311   // This can be called either during or outside marking, we'll read
3312   // the expected_active value from the SATB queue set.
3313   satb_mq_set.set_active_all_threads(
3314                                  false, /* new active value */
3315                                  satb_mq_set.is_active() /* expected_active */);
3316 
3317   _g1h->trace_heap_after_concurrent_cycle();
3318   _g1h->register_concurrent_cycle_end();
3319 }
3320 
3321 const GCId& ConcurrentMark::concurrent_gc_id() {
3322   if (has_aborted()) {
3323     return _aborted_gc_id;
3324   }
3325   return _g1h->gc_tracer_cm()->gc_id();
3326 }
3327 
3328 static void print_ms_time_info(const char* prefix, const char* name,
3329                                NumberSeq& ns) {
3330   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3331                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3332   if (ns.num() > 0) {
3333     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3334                            prefix, ns.sd(), ns.maximum());
3335   }
3336 }
3337 
3338 void ConcurrentMark::print_summary_info() {
3339   gclog_or_tty->print_cr(" Concurrent marking:");
3340   print_ms_time_info("  ", "init marks", _init_times);
3341   print_ms_time_info("  ", "remarks", _remark_times);
3342   {
3343     print_ms_time_info("     ", "final marks", _remark_mark_times);
3344     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3345 
3346   }
3347   print_ms_time_info("  ", "cleanups", _cleanup_times);
3348   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3349                          _total_counting_time,
3350                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3351                           (double)_cleanup_times.num()
3352                          : 0.0));
3353   if (G1ScrubRemSets) {
3354     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3355                            _total_rs_scrub_time,
3356                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3357                             (double)_cleanup_times.num()
3358                            : 0.0));
3359   }
3360   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3361                          (_init_times.sum() + _remark_times.sum() +
3362                           _cleanup_times.sum())/1000.0);
3363   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3364                 "(%8.2f s marking).",
3365                 cmThread()->vtime_accum(),
3366                 cmThread()->vtime_mark_accum());
3367 }
3368 
3369 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3370   _parallel_workers->print_worker_threads_on(st);
3371 }
3372 
3373 void ConcurrentMark::print_on_error(outputStream* st) const {
3374   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3375       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3376   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3377   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3378 }
3379 
3380 // We take a break if someone is trying to stop the world.
3381 bool ConcurrentMark::do_yield_check(uint worker_id) {
3382   if (SuspendibleThreadSet::should_yield()) {
3383     if (worker_id == 0) {
3384       _g1h->g1_policy()->record_concurrent_pause();
3385     }
3386     SuspendibleThreadSet::yield();
3387     return true;
3388   } else {
3389     return false;
3390   }
3391 }
3392 
3393 #ifndef PRODUCT
3394 // for debugging purposes
3395 void ConcurrentMark::print_finger() {
3396   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3397                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3398   for (uint i = 0; i < _max_worker_id; ++i) {
3399     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3400   }
3401   gclog_or_tty->cr();
3402 }
3403 #endif
3404 
3405 void CMTask::scan_object(oop obj) {
3406   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3407 
3408   if (_cm->verbose_high()) {
3409     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3410                            _worker_id, p2i((void*) obj));
3411   }
3412 
3413   size_t obj_size = obj->size();
3414   _words_scanned += obj_size;
3415 
3416   obj->oop_iterate(_cm_oop_closure);
3417   statsOnly( ++_objs_scanned );
3418   check_limits();
3419 }
3420 
3421 // Closure for iteration over bitmaps
3422 class CMBitMapClosure : public BitMapClosure {
3423 private:
3424   // the bitmap that is being iterated over
3425   CMBitMap*                   _nextMarkBitMap;
3426   ConcurrentMark*             _cm;
3427   CMTask*                     _task;
3428 
3429 public:
3430   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3431     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3432 
3433   bool do_bit(size_t offset) {
3434     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3435     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3436     assert( addr < _cm->finger(), "invariant");
3437 
3438     statsOnly( _task->increase_objs_found_on_bitmap() );
3439     assert(addr >= _task->finger(), "invariant");
3440 
3441     // We move that task's local finger along.
3442     _task->move_finger_to(addr);
3443 
3444     _task->scan_object(oop(addr));
3445     // we only partially drain the local queue and global stack
3446     _task->drain_local_queue(true);
3447     _task->drain_global_stack(true);
3448 
3449     // if the has_aborted flag has been raised, we need to bail out of
3450     // the iteration
3451     return !_task->has_aborted();
3452   }
3453 };
3454 
3455 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3456                                ConcurrentMark* cm,
3457                                CMTask* task)
3458   : _g1h(g1h), _cm(cm), _task(task) {
3459   assert(_ref_processor == NULL, "should be initialized to NULL");
3460 
3461   if (G1UseConcMarkReferenceProcessing) {
3462     _ref_processor = g1h->ref_processor_cm();
3463     assert(_ref_processor != NULL, "should not be NULL");
3464   }
3465 }
3466 
3467 void CMTask::setup_for_region(HeapRegion* hr) {
3468   assert(hr != NULL,
3469         "claim_region() should have filtered out NULL regions");
3470   assert(!hr->is_continues_humongous(),
3471         "claim_region() should have filtered out continues humongous regions");
3472 
3473   if (_cm->verbose_low()) {
3474     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3475                            _worker_id, p2i(hr));
3476   }
3477 
3478   _curr_region  = hr;
3479   _finger       = hr->bottom();
3480   update_region_limit();
3481 }
3482 
3483 void CMTask::update_region_limit() {
3484   HeapRegion* hr            = _curr_region;
3485   HeapWord* bottom          = hr->bottom();
3486   HeapWord* limit           = hr->next_top_at_mark_start();
3487 
3488   if (limit == bottom) {
3489     if (_cm->verbose_low()) {
3490       gclog_or_tty->print_cr("[%u] found an empty region "
3491                              "["PTR_FORMAT", "PTR_FORMAT")",
3492                              _worker_id, p2i(bottom), p2i(limit));
3493     }
3494     // The region was collected underneath our feet.
3495     // We set the finger to bottom to ensure that the bitmap
3496     // iteration that will follow this will not do anything.
3497     // (this is not a condition that holds when we set the region up,
3498     // as the region is not supposed to be empty in the first place)
3499     _finger = bottom;
3500   } else if (limit >= _region_limit) {
3501     assert(limit >= _finger, "peace of mind");
3502   } else {
3503     assert(limit < _region_limit, "only way to get here");
3504     // This can happen under some pretty unusual circumstances.  An
3505     // evacuation pause empties the region underneath our feet (NTAMS
3506     // at bottom). We then do some allocation in the region (NTAMS
3507     // stays at bottom), followed by the region being used as a GC
3508     // alloc region (NTAMS will move to top() and the objects
3509     // originally below it will be grayed). All objects now marked in
3510     // the region are explicitly grayed, if below the global finger,
3511     // and we do not need in fact to scan anything else. So, we simply
3512     // set _finger to be limit to ensure that the bitmap iteration
3513     // doesn't do anything.
3514     _finger = limit;
3515   }
3516 
3517   _region_limit = limit;
3518 }
3519 
3520 void CMTask::giveup_current_region() {
3521   assert(_curr_region != NULL, "invariant");
3522   if (_cm->verbose_low()) {
3523     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3524                            _worker_id, p2i(_curr_region));
3525   }
3526   clear_region_fields();
3527 }
3528 
3529 void CMTask::clear_region_fields() {
3530   // Values for these three fields that indicate that we're not
3531   // holding on to a region.
3532   _curr_region   = NULL;
3533   _finger        = NULL;
3534   _region_limit  = NULL;
3535 }
3536 
3537 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3538   if (cm_oop_closure == NULL) {
3539     assert(_cm_oop_closure != NULL, "invariant");
3540   } else {
3541     assert(_cm_oop_closure == NULL, "invariant");
3542   }
3543   _cm_oop_closure = cm_oop_closure;
3544 }
3545 
3546 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3547   guarantee(nextMarkBitMap != NULL, "invariant");
3548 
3549   if (_cm->verbose_low()) {
3550     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3551   }
3552 
3553   _nextMarkBitMap                = nextMarkBitMap;
3554   clear_region_fields();
3555 
3556   _calls                         = 0;
3557   _elapsed_time_ms               = 0.0;
3558   _termination_time_ms           = 0.0;
3559   _termination_start_time_ms     = 0.0;
3560 
3561 #if _MARKING_STATS_
3562   _local_pushes                  = 0;
3563   _local_pops                    = 0;
3564   _local_max_size                = 0;
3565   _objs_scanned                  = 0;
3566   _global_pushes                 = 0;
3567   _global_pops                   = 0;
3568   _global_max_size               = 0;
3569   _global_transfers_to           = 0;
3570   _global_transfers_from         = 0;
3571   _regions_claimed               = 0;
3572   _objs_found_on_bitmap          = 0;
3573   _satb_buffers_processed        = 0;
3574   _steal_attempts                = 0;
3575   _steals                        = 0;
3576   _aborted                       = 0;
3577   _aborted_overflow              = 0;
3578   _aborted_cm_aborted            = 0;
3579   _aborted_yield                 = 0;
3580   _aborted_timed_out             = 0;
3581   _aborted_satb                  = 0;
3582   _aborted_termination           = 0;
3583 #endif // _MARKING_STATS_
3584 }
3585 
3586 bool CMTask::should_exit_termination() {
3587   regular_clock_call();
3588   // This is called when we are in the termination protocol. We should
3589   // quit if, for some reason, this task wants to abort or the global
3590   // stack is not empty (this means that we can get work from it).
3591   return !_cm->mark_stack_empty() || has_aborted();
3592 }
3593 
3594 void CMTask::reached_limit() {
3595   assert(_words_scanned >= _words_scanned_limit ||
3596          _refs_reached >= _refs_reached_limit ,
3597          "shouldn't have been called otherwise");
3598   regular_clock_call();
3599 }
3600 
3601 void CMTask::regular_clock_call() {
3602   if (has_aborted()) return;
3603 
3604   // First, we need to recalculate the words scanned and refs reached
3605   // limits for the next clock call.
3606   recalculate_limits();
3607 
3608   // During the regular clock call we do the following
3609 
3610   // (1) If an overflow has been flagged, then we abort.
3611   if (_cm->has_overflown()) {
3612     set_has_aborted();
3613     return;
3614   }
3615 
3616   // If we are not concurrent (i.e. we're doing remark) we don't need
3617   // to check anything else. The other steps are only needed during
3618   // the concurrent marking phase.
3619   if (!concurrent()) return;
3620 
3621   // (2) If marking has been aborted for Full GC, then we also abort.
3622   if (_cm->has_aborted()) {
3623     set_has_aborted();
3624     statsOnly( ++_aborted_cm_aborted );
3625     return;
3626   }
3627 
3628   double curr_time_ms = os::elapsedVTime() * 1000.0;
3629 
3630   // (3) If marking stats are enabled, then we update the step history.
3631 #if _MARKING_STATS_
3632   if (_words_scanned >= _words_scanned_limit) {
3633     ++_clock_due_to_scanning;
3634   }
3635   if (_refs_reached >= _refs_reached_limit) {
3636     ++_clock_due_to_marking;
3637   }
3638 
3639   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3640   _interval_start_time_ms = curr_time_ms;
3641   _all_clock_intervals_ms.add(last_interval_ms);
3642 
3643   if (_cm->verbose_medium()) {
3644       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3645                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
3646                         _worker_id, last_interval_ms,
3647                         _words_scanned,
3648                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3649                         _refs_reached,
3650                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3651   }
3652 #endif // _MARKING_STATS_
3653 
3654   // (4) We check whether we should yield. If we have to, then we abort.
3655   if (SuspendibleThreadSet::should_yield()) {
3656     // We should yield. To do this we abort the task. The caller is
3657     // responsible for yielding.
3658     set_has_aborted();
3659     statsOnly( ++_aborted_yield );
3660     return;
3661   }
3662 
3663   // (5) We check whether we've reached our time quota. If we have,
3664   // then we abort.
3665   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3666   if (elapsed_time_ms > _time_target_ms) {
3667     set_has_aborted();
3668     _has_timed_out = true;
3669     statsOnly( ++_aborted_timed_out );
3670     return;
3671   }
3672 
3673   // (6) Finally, we check whether there are enough completed STAB
3674   // buffers available for processing. If there are, we abort.
3675   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3676   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3677     if (_cm->verbose_low()) {
3678       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3679                              _worker_id);
3680     }
3681     // we do need to process SATB buffers, we'll abort and restart
3682     // the marking task to do so
3683     set_has_aborted();
3684     statsOnly( ++_aborted_satb );
3685     return;
3686   }
3687 }
3688 
3689 void CMTask::recalculate_limits() {
3690   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3691   _words_scanned_limit      = _real_words_scanned_limit;
3692 
3693   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3694   _refs_reached_limit       = _real_refs_reached_limit;
3695 }
3696 
3697 void CMTask::decrease_limits() {
3698   // This is called when we believe that we're going to do an infrequent
3699   // operation which will increase the per byte scanned cost (i.e. move
3700   // entries to/from the global stack). It basically tries to decrease the
3701   // scanning limit so that the clock is called earlier.
3702 
3703   if (_cm->verbose_medium()) {
3704     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3705   }
3706 
3707   _words_scanned_limit = _real_words_scanned_limit -
3708     3 * words_scanned_period / 4;
3709   _refs_reached_limit  = _real_refs_reached_limit -
3710     3 * refs_reached_period / 4;
3711 }
3712 
3713 void CMTask::move_entries_to_global_stack() {
3714   // local array where we'll store the entries that will be popped
3715   // from the local queue
3716   oop buffer[global_stack_transfer_size];
3717 
3718   int n = 0;
3719   oop obj;
3720   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3721     buffer[n] = obj;
3722     ++n;
3723   }
3724 
3725   if (n > 0) {
3726     // we popped at least one entry from the local queue
3727 
3728     statsOnly( ++_global_transfers_to; _local_pops += n );
3729 
3730     if (!_cm->mark_stack_push(buffer, n)) {
3731       if (_cm->verbose_low()) {
3732         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3733                                _worker_id);
3734       }
3735       set_has_aborted();
3736     } else {
3737       // the transfer was successful
3738 
3739       if (_cm->verbose_medium()) {
3740         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3741                                _worker_id, n);
3742       }
3743       statsOnly( int tmp_size = _cm->mark_stack_size();
3744                  if (tmp_size > _global_max_size) {
3745                    _global_max_size = tmp_size;
3746                  }
3747                  _global_pushes += n );
3748     }
3749   }
3750 
3751   // this operation was quite expensive, so decrease the limits
3752   decrease_limits();
3753 }
3754 
3755 void CMTask::get_entries_from_global_stack() {
3756   // local array where we'll store the entries that will be popped
3757   // from the global stack.
3758   oop buffer[global_stack_transfer_size];
3759   int n;
3760   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3761   assert(n <= global_stack_transfer_size,
3762          "we should not pop more than the given limit");
3763   if (n > 0) {
3764     // yes, we did actually pop at least one entry
3765 
3766     statsOnly( ++_global_transfers_from; _global_pops += n );
3767     if (_cm->verbose_medium()) {
3768       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3769                              _worker_id, n);
3770     }
3771     for (int i = 0; i < n; ++i) {
3772       bool success = _task_queue->push(buffer[i]);
3773       // We only call this when the local queue is empty or under a
3774       // given target limit. So, we do not expect this push to fail.
3775       assert(success, "invariant");
3776     }
3777 
3778     statsOnly( int tmp_size = _task_queue->size();
3779                if (tmp_size > _local_max_size) {
3780                  _local_max_size = tmp_size;
3781                }
3782                _local_pushes += n );
3783   }
3784 
3785   // this operation was quite expensive, so decrease the limits
3786   decrease_limits();
3787 }
3788 
3789 void CMTask::drain_local_queue(bool partially) {
3790   if (has_aborted()) return;
3791 
3792   // Decide what the target size is, depending whether we're going to
3793   // drain it partially (so that other tasks can steal if they run out
3794   // of things to do) or totally (at the very end).
3795   size_t target_size;
3796   if (partially) {
3797     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3798   } else {
3799     target_size = 0;
3800   }
3801 
3802   if (_task_queue->size() > target_size) {
3803     if (_cm->verbose_high()) {
3804       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3805                              _worker_id, target_size);
3806     }
3807 
3808     oop obj;
3809     bool ret = _task_queue->pop_local(obj);
3810     while (ret) {
3811       statsOnly( ++_local_pops );
3812 
3813       if (_cm->verbose_high()) {
3814         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3815                                p2i((void*) obj));
3816       }
3817 
3818       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3819       assert(!_g1h->is_on_master_free_list(
3820                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3821 
3822       scan_object(obj);
3823 
3824       if (_task_queue->size() <= target_size || has_aborted()) {
3825         ret = false;
3826       } else {
3827         ret = _task_queue->pop_local(obj);
3828       }
3829     }
3830 
3831     if (_cm->verbose_high()) {
3832       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3833                              _worker_id, _task_queue->size());
3834     }
3835   }
3836 }
3837 
3838 void CMTask::drain_global_stack(bool partially) {
3839   if (has_aborted()) return;
3840 
3841   // We have a policy to drain the local queue before we attempt to
3842   // drain the global stack.
3843   assert(partially || _task_queue->size() == 0, "invariant");
3844 
3845   // Decide what the target size is, depending whether we're going to
3846   // drain it partially (so that other tasks can steal if they run out
3847   // of things to do) or totally (at the very end).  Notice that,
3848   // because we move entries from the global stack in chunks or
3849   // because another task might be doing the same, we might in fact
3850   // drop below the target. But, this is not a problem.
3851   size_t target_size;
3852   if (partially) {
3853     target_size = _cm->partial_mark_stack_size_target();
3854   } else {
3855     target_size = 0;
3856   }
3857 
3858   if (_cm->mark_stack_size() > target_size) {
3859     if (_cm->verbose_low()) {
3860       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3861                              _worker_id, target_size);
3862     }
3863 
3864     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3865       get_entries_from_global_stack();
3866       drain_local_queue(partially);
3867     }
3868 
3869     if (_cm->verbose_low()) {
3870       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3871                              _worker_id, _cm->mark_stack_size());
3872     }
3873   }
3874 }
3875 
3876 // SATB Queue has several assumptions on whether to call the par or
3877 // non-par versions of the methods. this is why some of the code is
3878 // replicated. We should really get rid of the single-threaded version
3879 // of the code to simplify things.
3880 void CMTask::drain_satb_buffers() {
3881   if (has_aborted()) return;
3882 
3883   // We set this so that the regular clock knows that we're in the
3884   // middle of draining buffers and doesn't set the abort flag when it
3885   // notices that SATB buffers are available for draining. It'd be
3886   // very counter productive if it did that. :-)
3887   _draining_satb_buffers = true;
3888 
3889   CMObjectClosure oc(this);
3890   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3891   satb_mq_set.set_closure(_worker_id, &oc);
3892 
3893   // This keeps claiming and applying the closure to completed buffers
3894   // until we run out of buffers or we need to abort.
3895   while (!has_aborted() &&
3896          satb_mq_set.apply_closure_to_completed_buffer(_worker_id)) {
3897     if (_cm->verbose_medium()) {
3898       gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3899     }
3900     statsOnly( ++_satb_buffers_processed );
3901     regular_clock_call();
3902   }
3903 
3904   _draining_satb_buffers = false;
3905 
3906   assert(has_aborted() ||
3907          concurrent() ||
3908          satb_mq_set.completed_buffers_num() == 0, "invariant");
3909 
3910   satb_mq_set.set_closure(_worker_id, NULL);
3911 
3912   // again, this was a potentially expensive operation, decrease the
3913   // limits to get the regular clock call early
3914   decrease_limits();
3915 }
3916 
3917 void CMTask::print_stats() {
3918   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3919                          _worker_id, _calls);
3920   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3921                          _elapsed_time_ms, _termination_time_ms);
3922   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3923                          _step_times_ms.num(), _step_times_ms.avg(),
3924                          _step_times_ms.sd());
3925   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3926                          _step_times_ms.maximum(), _step_times_ms.sum());
3927 
3928 #if _MARKING_STATS_
3929   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3930                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3931                          _all_clock_intervals_ms.sd());
3932   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3933                          _all_clock_intervals_ms.maximum(),
3934                          _all_clock_intervals_ms.sum());
3935   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
3936                          _clock_due_to_scanning, _clock_due_to_marking);
3937   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
3938                          _objs_scanned, _objs_found_on_bitmap);
3939   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
3940                          _local_pushes, _local_pops, _local_max_size);
3941   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
3942                          _global_pushes, _global_pops, _global_max_size);
3943   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
3944                          _global_transfers_to,_global_transfers_from);
3945   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3946   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
3947   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
3948                          _steal_attempts, _steals);
3949   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
3950   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
3951                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3952   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
3953                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3954 #endif // _MARKING_STATS_
3955 }
3956 
3957 /*****************************************************************************
3958 
3959     The do_marking_step(time_target_ms, ...) method is the building
3960     block of the parallel marking framework. It can be called in parallel
3961     with other invocations of do_marking_step() on different tasks
3962     (but only one per task, obviously) and concurrently with the
3963     mutator threads, or during remark, hence it eliminates the need
3964     for two versions of the code. When called during remark, it will
3965     pick up from where the task left off during the concurrent marking
3966     phase. Interestingly, tasks are also claimable during evacuation
3967     pauses too, since do_marking_step() ensures that it aborts before
3968     it needs to yield.
3969 
3970     The data structures that it uses to do marking work are the
3971     following:
3972 
3973       (1) Marking Bitmap. If there are gray objects that appear only
3974       on the bitmap (this happens either when dealing with an overflow
3975       or when the initial marking phase has simply marked the roots
3976       and didn't push them on the stack), then tasks claim heap
3977       regions whose bitmap they then scan to find gray objects. A
3978       global finger indicates where the end of the last claimed region
3979       is. A local finger indicates how far into the region a task has
3980       scanned. The two fingers are used to determine how to gray an
3981       object (i.e. whether simply marking it is OK, as it will be
3982       visited by a task in the future, or whether it needs to be also
3983       pushed on a stack).
3984 
3985       (2) Local Queue. The local queue of the task which is accessed
3986       reasonably efficiently by the task. Other tasks can steal from
3987       it when they run out of work. Throughout the marking phase, a
3988       task attempts to keep its local queue short but not totally
3989       empty, so that entries are available for stealing by other
3990       tasks. Only when there is no more work, a task will totally
3991       drain its local queue.
3992 
3993       (3) Global Mark Stack. This handles local queue overflow. During
3994       marking only sets of entries are moved between it and the local
3995       queues, as access to it requires a mutex and more fine-grain
3996       interaction with it which might cause contention. If it
3997       overflows, then the marking phase should restart and iterate
3998       over the bitmap to identify gray objects. Throughout the marking
3999       phase, tasks attempt to keep the global mark stack at a small
4000       length but not totally empty, so that entries are available for
4001       popping by other tasks. Only when there is no more work, tasks
4002       will totally drain the global mark stack.
4003 
4004       (4) SATB Buffer Queue. This is where completed SATB buffers are
4005       made available. Buffers are regularly removed from this queue
4006       and scanned for roots, so that the queue doesn't get too
4007       long. During remark, all completed buffers are processed, as
4008       well as the filled in parts of any uncompleted buffers.
4009 
4010     The do_marking_step() method tries to abort when the time target
4011     has been reached. There are a few other cases when the
4012     do_marking_step() method also aborts:
4013 
4014       (1) When the marking phase has been aborted (after a Full GC).
4015 
4016       (2) When a global overflow (on the global stack) has been
4017       triggered. Before the task aborts, it will actually sync up with
4018       the other tasks to ensure that all the marking data structures
4019       (local queues, stacks, fingers etc.)  are re-initialized so that
4020       when do_marking_step() completes, the marking phase can
4021       immediately restart.
4022 
4023       (3) When enough completed SATB buffers are available. The
4024       do_marking_step() method only tries to drain SATB buffers right
4025       at the beginning. So, if enough buffers are available, the
4026       marking step aborts and the SATB buffers are processed at
4027       the beginning of the next invocation.
4028 
4029       (4) To yield. when we have to yield then we abort and yield
4030       right at the end of do_marking_step(). This saves us from a lot
4031       of hassle as, by yielding we might allow a Full GC. If this
4032       happens then objects will be compacted underneath our feet, the
4033       heap might shrink, etc. We save checking for this by just
4034       aborting and doing the yield right at the end.
4035 
4036     From the above it follows that the do_marking_step() method should
4037     be called in a loop (or, otherwise, regularly) until it completes.
4038 
4039     If a marking step completes without its has_aborted() flag being
4040     true, it means it has completed the current marking phase (and
4041     also all other marking tasks have done so and have all synced up).
4042 
4043     A method called regular_clock_call() is invoked "regularly" (in
4044     sub ms intervals) throughout marking. It is this clock method that
4045     checks all the abort conditions which were mentioned above and
4046     decides when the task should abort. A work-based scheme is used to
4047     trigger this clock method: when the number of object words the
4048     marking phase has scanned or the number of references the marking
4049     phase has visited reach a given limit. Additional invocations to
4050     the method clock have been planted in a few other strategic places
4051     too. The initial reason for the clock method was to avoid calling
4052     vtime too regularly, as it is quite expensive. So, once it was in
4053     place, it was natural to piggy-back all the other conditions on it
4054     too and not constantly check them throughout the code.
4055 
4056     If do_termination is true then do_marking_step will enter its
4057     termination protocol.
4058 
4059     The value of is_serial must be true when do_marking_step is being
4060     called serially (i.e. by the VMThread) and do_marking_step should
4061     skip any synchronization in the termination and overflow code.
4062     Examples include the serial remark code and the serial reference
4063     processing closures.
4064 
4065     The value of is_serial must be false when do_marking_step is
4066     being called by any of the worker threads in a work gang.
4067     Examples include the concurrent marking code (CMMarkingTask),
4068     the MT remark code, and the MT reference processing closures.
4069 
4070  *****************************************************************************/
4071 
4072 void CMTask::do_marking_step(double time_target_ms,
4073                              bool do_termination,
4074                              bool is_serial) {
4075   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4076   assert(concurrent() == _cm->concurrent(), "they should be the same");
4077 
4078   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4079   assert(_task_queues != NULL, "invariant");
4080   assert(_task_queue != NULL, "invariant");
4081   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4082 
4083   assert(!_claimed,
4084          "only one thread should claim this task at any one time");
4085 
4086   // OK, this doesn't safeguard again all possible scenarios, as it is
4087   // possible for two threads to set the _claimed flag at the same
4088   // time. But it is only for debugging purposes anyway and it will
4089   // catch most problems.
4090   _claimed = true;
4091 
4092   _start_time_ms = os::elapsedVTime() * 1000.0;
4093   statsOnly( _interval_start_time_ms = _start_time_ms );
4094 
4095   // If do_stealing is true then do_marking_step will attempt to
4096   // steal work from the other CMTasks. It only makes sense to
4097   // enable stealing when the termination protocol is enabled
4098   // and do_marking_step() is not being called serially.
4099   bool do_stealing = do_termination && !is_serial;
4100 
4101   double diff_prediction_ms =
4102     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4103   _time_target_ms = time_target_ms - diff_prediction_ms;
4104 
4105   // set up the variables that are used in the work-based scheme to
4106   // call the regular clock method
4107   _words_scanned = 0;
4108   _refs_reached  = 0;
4109   recalculate_limits();
4110 
4111   // clear all flags
4112   clear_has_aborted();
4113   _has_timed_out = false;
4114   _draining_satb_buffers = false;
4115 
4116   ++_calls;
4117 
4118   if (_cm->verbose_low()) {
4119     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4120                            "target = %1.2lfms >>>>>>>>>>",
4121                            _worker_id, _calls, _time_target_ms);
4122   }
4123 
4124   // Set up the bitmap and oop closures. Anything that uses them is
4125   // eventually called from this method, so it is OK to allocate these
4126   // statically.
4127   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4128   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4129   set_cm_oop_closure(&cm_oop_closure);
4130 
4131   if (_cm->has_overflown()) {
4132     // This can happen if the mark stack overflows during a GC pause
4133     // and this task, after a yield point, restarts. We have to abort
4134     // as we need to get into the overflow protocol which happens
4135     // right at the end of this task.
4136     set_has_aborted();
4137   }
4138 
4139   // First drain any available SATB buffers. After this, we will not
4140   // look at SATB buffers before the next invocation of this method.
4141   // If enough completed SATB buffers are queued up, the regular clock
4142   // will abort this task so that it restarts.
4143   drain_satb_buffers();
4144   // ...then partially drain the local queue and the global stack
4145   drain_local_queue(true);
4146   drain_global_stack(true);
4147 
4148   do {
4149     if (!has_aborted() && _curr_region != NULL) {
4150       // This means that we're already holding on to a region.
4151       assert(_finger != NULL, "if region is not NULL, then the finger "
4152              "should not be NULL either");
4153 
4154       // We might have restarted this task after an evacuation pause
4155       // which might have evacuated the region we're holding on to
4156       // underneath our feet. Let's read its limit again to make sure
4157       // that we do not iterate over a region of the heap that
4158       // contains garbage (update_region_limit() will also move
4159       // _finger to the start of the region if it is found empty).
4160       update_region_limit();
4161       // We will start from _finger not from the start of the region,
4162       // as we might be restarting this task after aborting half-way
4163       // through scanning this region. In this case, _finger points to
4164       // the address where we last found a marked object. If this is a
4165       // fresh region, _finger points to start().
4166       MemRegion mr = MemRegion(_finger, _region_limit);
4167 
4168       if (_cm->verbose_low()) {
4169         gclog_or_tty->print_cr("[%u] we're scanning part "
4170                                "["PTR_FORMAT", "PTR_FORMAT") "
4171                                "of region "HR_FORMAT,
4172                                _worker_id, p2i(_finger), p2i(_region_limit),
4173                                HR_FORMAT_PARAMS(_curr_region));
4174       }
4175 
4176       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
4177              "humongous regions should go around loop once only");
4178 
4179       // Some special cases:
4180       // If the memory region is empty, we can just give up the region.
4181       // If the current region is humongous then we only need to check
4182       // the bitmap for the bit associated with the start of the object,
4183       // scan the object if it's live, and give up the region.
4184       // Otherwise, let's iterate over the bitmap of the part of the region
4185       // that is left.
4186       // If the iteration is successful, give up the region.
4187       if (mr.is_empty()) {
4188         giveup_current_region();
4189         regular_clock_call();
4190       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
4191         if (_nextMarkBitMap->isMarked(mr.start())) {
4192           // The object is marked - apply the closure
4193           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4194           bitmap_closure.do_bit(offset);
4195         }
4196         // Even if this task aborted while scanning the humongous object
4197         // we can (and should) give up the current region.
4198         giveup_current_region();
4199         regular_clock_call();
4200       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4201         giveup_current_region();
4202         regular_clock_call();
4203       } else {
4204         assert(has_aborted(), "currently the only way to do so");
4205         // The only way to abort the bitmap iteration is to return
4206         // false from the do_bit() method. However, inside the
4207         // do_bit() method we move the _finger to point to the
4208         // object currently being looked at. So, if we bail out, we
4209         // have definitely set _finger to something non-null.
4210         assert(_finger != NULL, "invariant");
4211 
4212         // Region iteration was actually aborted. So now _finger
4213         // points to the address of the object we last scanned. If we
4214         // leave it there, when we restart this task, we will rescan
4215         // the object. It is easy to avoid this. We move the finger by
4216         // enough to point to the next possible object header (the
4217         // bitmap knows by how much we need to move it as it knows its
4218         // granularity).
4219         assert(_finger < _region_limit, "invariant");
4220         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4221         // Check if bitmap iteration was aborted while scanning the last object
4222         if (new_finger >= _region_limit) {
4223           giveup_current_region();
4224         } else {
4225           move_finger_to(new_finger);
4226         }
4227       }
4228     }
4229     // At this point we have either completed iterating over the
4230     // region we were holding on to, or we have aborted.
4231 
4232     // We then partially drain the local queue and the global stack.
4233     // (Do we really need this?)
4234     drain_local_queue(true);
4235     drain_global_stack(true);
4236 
4237     // Read the note on the claim_region() method on why it might
4238     // return NULL with potentially more regions available for
4239     // claiming and why we have to check out_of_regions() to determine
4240     // whether we're done or not.
4241     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4242       // We are going to try to claim a new region. We should have
4243       // given up on the previous one.
4244       // Separated the asserts so that we know which one fires.
4245       assert(_curr_region  == NULL, "invariant");
4246       assert(_finger       == NULL, "invariant");
4247       assert(_region_limit == NULL, "invariant");
4248       if (_cm->verbose_low()) {
4249         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4250       }
4251       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4252       if (claimed_region != NULL) {
4253         // Yes, we managed to claim one
4254         statsOnly( ++_regions_claimed );
4255 
4256         if (_cm->verbose_low()) {
4257           gclog_or_tty->print_cr("[%u] we successfully claimed "
4258                                  "region "PTR_FORMAT,
4259                                  _worker_id, p2i(claimed_region));
4260         }
4261 
4262         setup_for_region(claimed_region);
4263         assert(_curr_region == claimed_region, "invariant");
4264       }
4265       // It is important to call the regular clock here. It might take
4266       // a while to claim a region if, for example, we hit a large
4267       // block of empty regions. So we need to call the regular clock
4268       // method once round the loop to make sure it's called
4269       // frequently enough.
4270       regular_clock_call();
4271     }
4272 
4273     if (!has_aborted() && _curr_region == NULL) {
4274       assert(_cm->out_of_regions(),
4275              "at this point we should be out of regions");
4276     }
4277   } while ( _curr_region != NULL && !has_aborted());
4278 
4279   if (!has_aborted()) {
4280     // We cannot check whether the global stack is empty, since other
4281     // tasks might be pushing objects to it concurrently.
4282     assert(_cm->out_of_regions(),
4283            "at this point we should be out of regions");
4284 
4285     if (_cm->verbose_low()) {
4286       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4287     }
4288 
4289     // Try to reduce the number of available SATB buffers so that
4290     // remark has less work to do.
4291     drain_satb_buffers();
4292   }
4293 
4294   // Since we've done everything else, we can now totally drain the
4295   // local queue and global stack.
4296   drain_local_queue(false);
4297   drain_global_stack(false);
4298 
4299   // Attempt at work stealing from other task's queues.
4300   if (do_stealing && !has_aborted()) {
4301     // We have not aborted. This means that we have finished all that
4302     // we could. Let's try to do some stealing...
4303 
4304     // We cannot check whether the global stack is empty, since other
4305     // tasks might be pushing objects to it concurrently.
4306     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4307            "only way to reach here");
4308 
4309     if (_cm->verbose_low()) {
4310       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4311     }
4312 
4313     while (!has_aborted()) {
4314       oop obj;
4315       statsOnly( ++_steal_attempts );
4316 
4317       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4318         if (_cm->verbose_medium()) {
4319           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4320                                  _worker_id, p2i((void*) obj));
4321         }
4322 
4323         statsOnly( ++_steals );
4324 
4325         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4326                "any stolen object should be marked");
4327         scan_object(obj);
4328 
4329         // And since we're towards the end, let's totally drain the
4330         // local queue and global stack.
4331         drain_local_queue(false);
4332         drain_global_stack(false);
4333       } else {
4334         break;
4335       }
4336     }
4337   }
4338 
4339   // If we are about to wrap up and go into termination, check if we
4340   // should raise the overflow flag.
4341   if (do_termination && !has_aborted()) {
4342     if (_cm->force_overflow()->should_force()) {
4343       _cm->set_has_overflown();
4344       regular_clock_call();
4345     }
4346   }
4347 
4348   // We still haven't aborted. Now, let's try to get into the
4349   // termination protocol.
4350   if (do_termination && !has_aborted()) {
4351     // We cannot check whether the global stack is empty, since other
4352     // tasks might be concurrently pushing objects on it.
4353     // Separated the asserts so that we know which one fires.
4354     assert(_cm->out_of_regions(), "only way to reach here");
4355     assert(_task_queue->size() == 0, "only way to reach here");
4356 
4357     if (_cm->verbose_low()) {
4358       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4359     }
4360 
4361     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4362 
4363     // The CMTask class also extends the TerminatorTerminator class,
4364     // hence its should_exit_termination() method will also decide
4365     // whether to exit the termination protocol or not.
4366     bool finished = (is_serial ||
4367                      _cm->terminator()->offer_termination(this));
4368     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4369     _termination_time_ms +=
4370       termination_end_time_ms - _termination_start_time_ms;
4371 
4372     if (finished) {
4373       // We're all done.
4374 
4375       if (_worker_id == 0) {
4376         // let's allow task 0 to do this
4377         if (concurrent()) {
4378           assert(_cm->concurrent_marking_in_progress(), "invariant");
4379           // we need to set this to false before the next
4380           // safepoint. This way we ensure that the marking phase
4381           // doesn't observe any more heap expansions.
4382           _cm->clear_concurrent_marking_in_progress();
4383         }
4384       }
4385 
4386       // We can now guarantee that the global stack is empty, since
4387       // all other tasks have finished. We separated the guarantees so
4388       // that, if a condition is false, we can immediately find out
4389       // which one.
4390       guarantee(_cm->out_of_regions(), "only way to reach here");
4391       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4392       guarantee(_task_queue->size() == 0, "only way to reach here");
4393       guarantee(!_cm->has_overflown(), "only way to reach here");
4394       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4395 
4396       if (_cm->verbose_low()) {
4397         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4398       }
4399     } else {
4400       // Apparently there's more work to do. Let's abort this task. It
4401       // will restart it and we can hopefully find more things to do.
4402 
4403       if (_cm->verbose_low()) {
4404         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4405                                _worker_id);
4406       }
4407 
4408       set_has_aborted();
4409       statsOnly( ++_aborted_termination );
4410     }
4411   }
4412 
4413   // Mainly for debugging purposes to make sure that a pointer to the
4414   // closure which was statically allocated in this frame doesn't
4415   // escape it by accident.
4416   set_cm_oop_closure(NULL);
4417   double end_time_ms = os::elapsedVTime() * 1000.0;
4418   double elapsed_time_ms = end_time_ms - _start_time_ms;
4419   // Update the step history.
4420   _step_times_ms.add(elapsed_time_ms);
4421 
4422   if (has_aborted()) {
4423     // The task was aborted for some reason.
4424 
4425     statsOnly( ++_aborted );
4426 
4427     if (_has_timed_out) {
4428       double diff_ms = elapsed_time_ms - _time_target_ms;
4429       // Keep statistics of how well we did with respect to hitting
4430       // our target only if we actually timed out (if we aborted for
4431       // other reasons, then the results might get skewed).
4432       _marking_step_diffs_ms.add(diff_ms);
4433     }
4434 
4435     if (_cm->has_overflown()) {
4436       // This is the interesting one. We aborted because a global
4437       // overflow was raised. This means we have to restart the
4438       // marking phase and start iterating over regions. However, in
4439       // order to do this we have to make sure that all tasks stop
4440       // what they are doing and re-initialize in a safe manner. We
4441       // will achieve this with the use of two barrier sync points.
4442 
4443       if (_cm->verbose_low()) {
4444         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4445       }
4446 
4447       if (!is_serial) {
4448         // We only need to enter the sync barrier if being called
4449         // from a parallel context
4450         _cm->enter_first_sync_barrier(_worker_id);
4451 
4452         // When we exit this sync barrier we know that all tasks have
4453         // stopped doing marking work. So, it's now safe to
4454         // re-initialize our data structures. At the end of this method,
4455         // task 0 will clear the global data structures.
4456       }
4457 
4458       statsOnly( ++_aborted_overflow );
4459 
4460       // We clear the local state of this task...
4461       clear_region_fields();
4462 
4463       if (!is_serial) {
4464         // ...and enter the second barrier.
4465         _cm->enter_second_sync_barrier(_worker_id);
4466       }
4467       // At this point, if we're during the concurrent phase of
4468       // marking, everything has been re-initialized and we're
4469       // ready to restart.
4470     }
4471 
4472     if (_cm->verbose_low()) {
4473       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4474                              "elapsed = %1.2lfms <<<<<<<<<<",
4475                              _worker_id, _time_target_ms, elapsed_time_ms);
4476       if (_cm->has_aborted()) {
4477         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4478                                _worker_id);
4479       }
4480     }
4481   } else {
4482     if (_cm->verbose_low()) {
4483       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4484                              "elapsed = %1.2lfms <<<<<<<<<<",
4485                              _worker_id, _time_target_ms, elapsed_time_ms);
4486     }
4487   }
4488 
4489   _claimed = false;
4490 }
4491 
4492 CMTask::CMTask(uint worker_id,
4493                ConcurrentMark* cm,
4494                size_t* marked_bytes,
4495                BitMap* card_bm,
4496                CMTaskQueue* task_queue,
4497                CMTaskQueueSet* task_queues)
4498   : _g1h(G1CollectedHeap::heap()),
4499     _worker_id(worker_id), _cm(cm),
4500     _claimed(false),
4501     _nextMarkBitMap(NULL), _hash_seed(17),
4502     _task_queue(task_queue),
4503     _task_queues(task_queues),
4504     _cm_oop_closure(NULL),
4505     _marked_bytes_array(marked_bytes),
4506     _card_bm(card_bm) {
4507   guarantee(task_queue != NULL, "invariant");
4508   guarantee(task_queues != NULL, "invariant");
4509 
4510   statsOnly( _clock_due_to_scanning = 0;
4511              _clock_due_to_marking  = 0 );
4512 
4513   _marking_step_diffs_ms.add(0.5);
4514 }
4515 
4516 // These are formatting macros that are used below to ensure
4517 // consistent formatting. The *_H_* versions are used to format the
4518 // header for a particular value and they should be kept consistent
4519 // with the corresponding macro. Also note that most of the macros add
4520 // the necessary white space (as a prefix) which makes them a bit
4521 // easier to compose.
4522 
4523 // All the output lines are prefixed with this string to be able to
4524 // identify them easily in a large log file.
4525 #define G1PPRL_LINE_PREFIX            "###"
4526 
4527 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4528 #ifdef _LP64
4529 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4530 #else // _LP64
4531 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4532 #endif // _LP64
4533 
4534 // For per-region info
4535 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4536 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4537 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4538 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4539 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4540 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4541 
4542 // For summary info
4543 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4544 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4545 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4546 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4547 
4548 G1PrintRegionLivenessInfoClosure::
4549 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4550   : _out(out),
4551     _total_used_bytes(0), _total_capacity_bytes(0),
4552     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4553     _hum_used_bytes(0), _hum_capacity_bytes(0),
4554     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4555     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4556   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4557   MemRegion g1_reserved = g1h->g1_reserved();
4558   double now = os::elapsedTime();
4559 
4560   // Print the header of the output.
4561   _out->cr();
4562   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4563   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4564                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4565                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4566                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4567                  HeapRegion::GrainBytes);
4568   _out->print_cr(G1PPRL_LINE_PREFIX);
4569   _out->print_cr(G1PPRL_LINE_PREFIX
4570                 G1PPRL_TYPE_H_FORMAT
4571                 G1PPRL_ADDR_BASE_H_FORMAT
4572                 G1PPRL_BYTE_H_FORMAT
4573                 G1PPRL_BYTE_H_FORMAT
4574                 G1PPRL_BYTE_H_FORMAT
4575                 G1PPRL_DOUBLE_H_FORMAT
4576                 G1PPRL_BYTE_H_FORMAT
4577                 G1PPRL_BYTE_H_FORMAT,
4578                 "type", "address-range",
4579                 "used", "prev-live", "next-live", "gc-eff",
4580                 "remset", "code-roots");
4581   _out->print_cr(G1PPRL_LINE_PREFIX
4582                 G1PPRL_TYPE_H_FORMAT
4583                 G1PPRL_ADDR_BASE_H_FORMAT
4584                 G1PPRL_BYTE_H_FORMAT
4585                 G1PPRL_BYTE_H_FORMAT
4586                 G1PPRL_BYTE_H_FORMAT
4587                 G1PPRL_DOUBLE_H_FORMAT
4588                 G1PPRL_BYTE_H_FORMAT
4589                 G1PPRL_BYTE_H_FORMAT,
4590                 "", "",
4591                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4592                 "(bytes)", "(bytes)");
4593 }
4594 
4595 // It takes as a parameter a reference to one of the _hum_* fields, it
4596 // deduces the corresponding value for a region in a humongous region
4597 // series (either the region size, or what's left if the _hum_* field
4598 // is < the region size), and updates the _hum_* field accordingly.
4599 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4600   size_t bytes = 0;
4601   // The > 0 check is to deal with the prev and next live bytes which
4602   // could be 0.
4603   if (*hum_bytes > 0) {
4604     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4605     *hum_bytes -= bytes;
4606   }
4607   return bytes;
4608 }
4609 
4610 // It deduces the values for a region in a humongous region series
4611 // from the _hum_* fields and updates those accordingly. It assumes
4612 // that that _hum_* fields have already been set up from the "starts
4613 // humongous" region and we visit the regions in address order.
4614 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4615                                                      size_t* capacity_bytes,
4616                                                      size_t* prev_live_bytes,
4617                                                      size_t* next_live_bytes) {
4618   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4619   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4620   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4621   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4622   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4623 }
4624 
4625 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4626   const char* type       = r->get_type_str();
4627   HeapWord* bottom       = r->bottom();
4628   HeapWord* end          = r->end();
4629   size_t capacity_bytes  = r->capacity();
4630   size_t used_bytes      = r->used();
4631   size_t prev_live_bytes = r->live_bytes();
4632   size_t next_live_bytes = r->next_live_bytes();
4633   double gc_eff          = r->gc_efficiency();
4634   size_t remset_bytes    = r->rem_set()->mem_size();
4635   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4636 
4637   if (r->is_starts_humongous()) {
4638     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4639            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4640            "they should have been zeroed after the last time we used them");
4641     // Set up the _hum_* fields.
4642     _hum_capacity_bytes  = capacity_bytes;
4643     _hum_used_bytes      = used_bytes;
4644     _hum_prev_live_bytes = prev_live_bytes;
4645     _hum_next_live_bytes = next_live_bytes;
4646     get_hum_bytes(&used_bytes, &capacity_bytes,
4647                   &prev_live_bytes, &next_live_bytes);
4648     end = bottom + HeapRegion::GrainWords;
4649   } else if (r->is_continues_humongous()) {
4650     get_hum_bytes(&used_bytes, &capacity_bytes,
4651                   &prev_live_bytes, &next_live_bytes);
4652     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4653   }
4654 
4655   _total_used_bytes      += used_bytes;
4656   _total_capacity_bytes  += capacity_bytes;
4657   _total_prev_live_bytes += prev_live_bytes;
4658   _total_next_live_bytes += next_live_bytes;
4659   _total_remset_bytes    += remset_bytes;
4660   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4661 
4662   // Print a line for this particular region.
4663   _out->print_cr(G1PPRL_LINE_PREFIX
4664                  G1PPRL_TYPE_FORMAT
4665                  G1PPRL_ADDR_BASE_FORMAT
4666                  G1PPRL_BYTE_FORMAT
4667                  G1PPRL_BYTE_FORMAT
4668                  G1PPRL_BYTE_FORMAT
4669                  G1PPRL_DOUBLE_FORMAT
4670                  G1PPRL_BYTE_FORMAT
4671                  G1PPRL_BYTE_FORMAT,
4672                  type, p2i(bottom), p2i(end),
4673                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4674                  remset_bytes, strong_code_roots_bytes);
4675 
4676   return false;
4677 }
4678 
4679 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4680   // add static memory usages to remembered set sizes
4681   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4682   // Print the footer of the output.
4683   _out->print_cr(G1PPRL_LINE_PREFIX);
4684   _out->print_cr(G1PPRL_LINE_PREFIX
4685                  " SUMMARY"
4686                  G1PPRL_SUM_MB_FORMAT("capacity")
4687                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4688                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4689                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4690                  G1PPRL_SUM_MB_FORMAT("remset")
4691                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4692                  bytes_to_mb(_total_capacity_bytes),
4693                  bytes_to_mb(_total_used_bytes),
4694                  perc(_total_used_bytes, _total_capacity_bytes),
4695                  bytes_to_mb(_total_prev_live_bytes),
4696                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4697                  bytes_to_mb(_total_next_live_bytes),
4698                  perc(_total_next_live_bytes, _total_capacity_bytes),
4699                  bytes_to_mb(_total_remset_bytes),
4700                  bytes_to_mb(_total_strong_code_roots_bytes));
4701   _out->cr();
4702 }