1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
  27 #include "gc_implementation/parNew/parNewGeneration.hpp"
  28 #include "gc_implementation/parNew/parOopClosures.inline.hpp"
  29 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  30 #include "gc_implementation/shared/ageTable.hpp"
  31 #include "gc_implementation/shared/copyFailedInfo.hpp"
  32 #include "gc_implementation/shared/gcHeapSummary.hpp"
  33 #include "gc_implementation/shared/gcTimer.hpp"
  34 #include "gc_implementation/shared/gcTrace.hpp"
  35 #include "gc_implementation/shared/gcTraceTime.hpp"
  36 #include "gc_implementation/shared/parGCAllocBuffer.inline.hpp"
  37 #include "gc_implementation/shared/spaceDecorator.hpp"
  38 #include "memory/defNewGeneration.inline.hpp"
  39 #include "memory/genCollectedHeap.hpp"
  40 #include "memory/genOopClosures.inline.hpp"
  41 #include "memory/generation.hpp"
  42 #include "memory/referencePolicy.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/sharedHeap.hpp"
  45 #include "memory/space.hpp"
  46 #include "oops/objArrayOop.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "oops/oop.pcgc.inline.hpp"
  49 #include "runtime/atomic.inline.hpp"
  50 #include "runtime/handles.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/thread.inline.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/globalDefinitions.hpp"
  56 #include "utilities/workgroup.hpp"
  57 
  58 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  59 
  60 ParScanThreadState::ParScanThreadState(Space* to_space_,
  61                                        ParNewGeneration* gen_,
  62                                        Generation* old_gen_,
  63                                        int thread_num_,
  64                                        ObjToScanQueueSet* work_queue_set_,
  65                                        Stack<oop, mtGC>* overflow_stacks_,
  66                                        size_t desired_plab_sz_,
  67                                        ParallelTaskTerminator& term_) :
  68   _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
  69   _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
  70   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
  71   _ageTable(false), // false ==> not the global age table, no perf data.
  72   _to_space_alloc_buffer(desired_plab_sz_),
  73   _is_alive_closure(gen_),
  74   _keep_alive_closure(&_scan_weak_ref_closure),
  75   _strong_roots_time(0.0), _term_time(0.0)
  76 {
  77   _to_space_closure = ParScanWithoutBarrierClosure(gen_, this);
  78   _old_gen_closure = ParScanWithBarrierClosure(gen_, this);
  79   _to_space_root_closure = ParRootScanWithoutBarrierClosure(gen_, this);
  80   _old_gen_root_closure = ParRootScanWithBarrierTwoGensClosure(gen_, this);
  81   _older_gen_closure = ParRootScanWithBarrierTwoGensClosure(gen_, this);
  82   _scan_weak_ref_closure = ParScanWeakRefClosure(gen_, this);
  83 
  84   _evacuate_followers = ParEvacuateFollowersClosure(this,
  85                                                     &_to_space_closure,
  86                                                     &_old_gen_closure,
  87                                                     &_to_space_root_closure,
  88                                                     gen_,
  89                                                     &_old_gen_root_closure,
  90                                                     work_queue_set_,
  91                                                     &term_);
  92 
  93 
  94   #if TASKQUEUE_STATS
  95   _term_attempts = 0;
  96   _overflow_refills = 0;
  97   _overflow_refill_objs = 0;
  98   #endif // TASKQUEUE_STATS
  99 
 100   _survivor_chunk_array =
 101     (ChunkArray*) old_gen()->get_data_recorder(thread_num());
 102   _hash_seed = 17;  // Might want to take time-based random value.
 103   _start = os::elapsedTime();
 104   _old_gen_closure.set_generation(old_gen_);
 105   _old_gen_root_closure.set_generation(old_gen_);
 106 }
 107 
 108 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
 109                                               size_t plab_word_size) {
 110   ChunkArray* sca = survivor_chunk_array();
 111   if (sca != NULL) {
 112     // A non-null SCA implies that we want the PLAB data recorded.
 113     sca->record_sample(plab_start, plab_word_size);
 114   }
 115 }
 116 
 117 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
 118   return new_obj->is_objArray() &&
 119          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
 120          new_obj != old_obj;
 121 }
 122 
 123 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
 124   assert(old->is_objArray(), "must be obj array");
 125   assert(old->is_forwarded(), "must be forwarded");
 126   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
 127   assert(!old_gen()->is_in(old), "must be in young generation.");
 128 
 129   objArrayOop obj = objArrayOop(old->forwardee());
 130   // Process ParGCArrayScanChunk elements now
 131   // and push the remainder back onto queue
 132   int start     = arrayOop(old)->length();
 133   int end       = obj->length();
 134   int remainder = end - start;
 135   assert(start <= end, "just checking");
 136   if (remainder > 2 * ParGCArrayScanChunk) {
 137     // Test above combines last partial chunk with a full chunk
 138     end = start + ParGCArrayScanChunk;
 139     arrayOop(old)->set_length(end);
 140     // Push remainder.
 141     bool ok = work_queue()->push(old);
 142     assert(ok, "just popped, push must be okay");
 143   } else {
 144     // Restore length so that it can be used if there
 145     // is a promotion failure and forwarding pointers
 146     // must be removed.
 147     arrayOop(old)->set_length(end);
 148   }
 149 
 150   // process our set of indices (include header in first chunk)
 151   // should make sure end is even (aligned to HeapWord in case of compressed oops)
 152   if ((HeapWord *)obj < young_old_boundary()) {
 153     // object is in to_space
 154     obj->oop_iterate_range(&_to_space_closure, start, end);
 155   } else {
 156     // object is in old generation
 157     obj->oop_iterate_range(&_old_gen_closure, start, end);
 158   }
 159 }
 160 
 161 
 162 void ParScanThreadState::trim_queues(int max_size) {
 163   ObjToScanQueue* queue = work_queue();
 164   do {
 165     while (queue->size() > (juint)max_size) {
 166       oop obj_to_scan;
 167       if (queue->pop_local(obj_to_scan)) {
 168         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
 169           if (obj_to_scan->is_objArray() &&
 170               obj_to_scan->is_forwarded() &&
 171               obj_to_scan->forwardee() != obj_to_scan) {
 172             scan_partial_array_and_push_remainder(obj_to_scan);
 173           } else {
 174             // object is in to_space
 175             obj_to_scan->oop_iterate(&_to_space_closure);
 176           }
 177         } else {
 178           // object is in old generation
 179           obj_to_scan->oop_iterate(&_old_gen_closure);
 180         }
 181       }
 182     }
 183     // For the  case of compressed oops, we have a private, non-shared
 184     // overflow stack, so we eagerly drain it so as to more evenly
 185     // distribute load early. Note: this may be good to do in
 186     // general rather than delay for the final stealing phase.
 187     // If applicable, we'll transfer a set of objects over to our
 188     // work queue, allowing them to be stolen and draining our
 189     // private overflow stack.
 190   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
 191 }
 192 
 193 bool ParScanThreadState::take_from_overflow_stack() {
 194   assert(ParGCUseLocalOverflow, "Else should not call");
 195   assert(young_gen()->overflow_list() == NULL, "Error");
 196   ObjToScanQueue* queue = work_queue();
 197   Stack<oop, mtGC>* const of_stack = overflow_stack();
 198   const size_t num_overflow_elems = of_stack->size();
 199   const size_t space_available = queue->max_elems() - queue->size();
 200   const size_t num_take_elems = MIN3(space_available / 4,
 201                                      ParGCDesiredObjsFromOverflowList,
 202                                      num_overflow_elems);
 203   // Transfer the most recent num_take_elems from the overflow
 204   // stack to our work queue.
 205   for (size_t i = 0; i != num_take_elems; i++) {
 206     oop cur = of_stack->pop();
 207     oop obj_to_push = cur->forwardee();
 208     assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
 209     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
 210     assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
 211     if (should_be_partially_scanned(obj_to_push, cur)) {
 212       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
 213       obj_to_push = cur;
 214     }
 215     bool ok = queue->push(obj_to_push);
 216     assert(ok, "Should have succeeded");
 217   }
 218   assert(young_gen()->overflow_list() == NULL, "Error");
 219   return num_take_elems > 0;  // was something transferred?
 220 }
 221 
 222 void ParScanThreadState::push_on_overflow_stack(oop p) {
 223   assert(ParGCUseLocalOverflow, "Else should not call");
 224   overflow_stack()->push(p);
 225   assert(young_gen()->overflow_list() == NULL, "Error");
 226 }
 227 
 228 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
 229 
 230   // Otherwise, if the object is small enough, try to reallocate the
 231   // buffer.
 232   HeapWord* obj = NULL;
 233   if (!_to_space_full) {
 234     ParGCAllocBuffer* const plab = to_space_alloc_buffer();
 235     Space*            const sp   = to_space();
 236     if (word_sz * 100 <
 237         ParallelGCBufferWastePct * plab->word_sz()) {
 238       // Is small enough; abandon this buffer and start a new one.
 239       plab->retire(false, false);
 240       size_t buf_size = plab->word_sz();
 241       HeapWord* buf_space = sp->par_allocate(buf_size);
 242       if (buf_space == NULL) {
 243         const size_t min_bytes =
 244           ParGCAllocBuffer::min_size() << LogHeapWordSize;
 245         size_t free_bytes = sp->free();
 246         while(buf_space == NULL && free_bytes >= min_bytes) {
 247           buf_size = free_bytes >> LogHeapWordSize;
 248           assert(buf_size == (size_t)align_object_size(buf_size),
 249                  "Invariant");
 250           buf_space  = sp->par_allocate(buf_size);
 251           free_bytes = sp->free();
 252         }
 253       }
 254       if (buf_space != NULL) {
 255         plab->set_word_size(buf_size);
 256         plab->set_buf(buf_space);
 257         record_survivor_plab(buf_space, buf_size);
 258         obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
 259         // Note that we cannot compare buf_size < word_sz below
 260         // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
 261         assert(obj != NULL || plab->words_remaining() < word_sz,
 262                "Else should have been able to allocate");
 263         // It's conceivable that we may be able to use the
 264         // buffer we just grabbed for subsequent small requests
 265         // even if not for this one.
 266       } else {
 267         // We're used up.
 268         _to_space_full = true;
 269       }
 270 
 271     } else {
 272       // Too large; allocate the object individually.
 273       obj = sp->par_allocate(word_sz);
 274     }
 275   }
 276   return obj;
 277 }
 278 
 279 
 280 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
 281                                                 size_t word_sz) {
 282   // Is the alloc in the current alloc buffer?
 283   if (to_space_alloc_buffer()->contains(obj)) {
 284     assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
 285            "Should contain whole object.");
 286     to_space_alloc_buffer()->undo_allocation(obj, word_sz);
 287   } else {
 288     CollectedHeap::fill_with_object(obj, word_sz);
 289   }
 290 }
 291 
 292 void ParScanThreadState::print_promotion_failure_size() {
 293   if (_promotion_failed_info.has_failed() && PrintPromotionFailure) {
 294     gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
 295                         _thread_num, _promotion_failed_info.first_size());
 296   }
 297 }
 298 
 299 class ParScanThreadStateSet: private ResourceArray {
 300 public:
 301   // Initializes states for the specified number of threads;
 302   ParScanThreadStateSet(int                     num_threads,
 303                         Space&                  to_space,
 304                         ParNewGeneration&       gen,
 305                         Generation&             old_gen,
 306                         ObjToScanQueueSet&      queue_set,
 307                         Stack<oop, mtGC>*       overflow_stacks_,
 308                         size_t                  desired_plab_sz,
 309                         ParallelTaskTerminator& term);
 310 
 311   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
 312 
 313   inline ParScanThreadState& thread_state(int i);
 314 
 315   void trace_promotion_failed(YoungGCTracer& gc_tracer);
 316   void reset(int active_workers, bool promotion_failed);
 317   void flush();
 318 
 319   #if TASKQUEUE_STATS
 320   static void
 321     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
 322   void print_termination_stats(outputStream* const st = gclog_or_tty);
 323   static void
 324     print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 325   void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
 326   void reset_stats();
 327   #endif // TASKQUEUE_STATS
 328 
 329 private:
 330   ParallelTaskTerminator& _term;
 331   ParNewGeneration&       _gen;
 332   Generation&             _next_gen;
 333  public:
 334   bool is_valid(int id) const { return id < length(); }
 335   ParallelTaskTerminator* terminator() { return &_term; }
 336 };
 337 
 338 
 339 ParScanThreadStateSet::ParScanThreadStateSet(
 340   int num_threads, Space& to_space, ParNewGeneration& gen,
 341   Generation& old_gen, ObjToScanQueueSet& queue_set,
 342   Stack<oop, mtGC>* overflow_stacks,
 343   size_t desired_plab_sz, ParallelTaskTerminator& term)
 344   : ResourceArray(sizeof(ParScanThreadState), num_threads),
 345     _gen(gen), _next_gen(old_gen), _term(term)
 346 {
 347   assert(num_threads > 0, "sanity check!");
 348   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
 349          "overflow_stack allocation mismatch");
 350   // Initialize states.
 351   for (int i = 0; i < num_threads; ++i) {
 352     new ((ParScanThreadState*)_data + i)
 353         ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
 354                            overflow_stacks, desired_plab_sz, term);
 355   }
 356 }
 357 
 358 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
 359 {
 360   assert(i >= 0 && i < length(), "sanity check!");
 361   return ((ParScanThreadState*)_data)[i];
 362 }
 363 
 364 void ParScanThreadStateSet::trace_promotion_failed(YoungGCTracer& gc_tracer) {
 365   for (int i = 0; i < length(); ++i) {
 366     if (thread_state(i).promotion_failed()) {
 367       gc_tracer.report_promotion_failed(thread_state(i).promotion_failed_info());
 368       thread_state(i).promotion_failed_info().reset();
 369     }
 370   }
 371 }
 372 
 373 void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
 374 {
 375   _term.reset_for_reuse(active_threads);
 376   if (promotion_failed) {
 377     for (int i = 0; i < length(); ++i) {
 378       thread_state(i).print_promotion_failure_size();
 379     }
 380   }
 381 }
 382 
 383 #if TASKQUEUE_STATS
 384 void
 385 ParScanThreadState::reset_stats()
 386 {
 387   taskqueue_stats().reset();
 388   _term_attempts = 0;
 389   _overflow_refills = 0;
 390   _overflow_refill_objs = 0;
 391 }
 392 
 393 void ParScanThreadStateSet::reset_stats()
 394 {
 395   for (int i = 0; i < length(); ++i) {
 396     thread_state(i).reset_stats();
 397   }
 398 }
 399 
 400 void
 401 ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
 402 {
 403   st->print_raw_cr("GC Termination Stats");
 404   st->print_raw_cr("     elapsed  --strong roots-- "
 405                    "-------termination-------");
 406   st->print_raw_cr("thr     ms        ms       %   "
 407                    "    ms       %   attempts");
 408   st->print_raw_cr("--- --------- --------- ------ "
 409                    "--------- ------ --------");
 410 }
 411 
 412 void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
 413 {
 414   print_termination_stats_hdr(st);
 415 
 416   for (int i = 0; i < length(); ++i) {
 417     const ParScanThreadState & pss = thread_state(i);
 418     const double elapsed_ms = pss.elapsed_time() * 1000.0;
 419     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
 420     const double term_ms = pss.term_time() * 1000.0;
 421     st->print_cr("%3d %9.2f %9.2f %6.2f "
 422                  "%9.2f %6.2f " SIZE_FORMAT_W(8),
 423                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 424                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
 425   }
 426 }
 427 
 428 // Print stats related to work queue activity.
 429 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
 430 {
 431   st->print_raw_cr("GC Task Stats");
 432   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
 433   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
 434 }
 435 
 436 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
 437 {
 438   print_taskqueue_stats_hdr(st);
 439 
 440   TaskQueueStats totals;
 441   for (int i = 0; i < length(); ++i) {
 442     const ParScanThreadState & pss = thread_state(i);
 443     const TaskQueueStats & stats = pss.taskqueue_stats();
 444     st->print("%3d ", i); stats.print(st); st->cr();
 445     totals += stats;
 446 
 447     if (pss.overflow_refills() > 0) {
 448       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
 449                    SIZE_FORMAT_W(10) " overflow objects",
 450                    pss.overflow_refills(), pss.overflow_refill_objs());
 451     }
 452   }
 453   st->print("tot "); totals.print(st); st->cr();
 454 
 455   DEBUG_ONLY(totals.verify());
 456 }
 457 #endif // TASKQUEUE_STATS
 458 
 459 void ParScanThreadStateSet::flush()
 460 {
 461   // Work in this loop should be kept as lightweight as
 462   // possible since this might otherwise become a bottleneck
 463   // to scaling. Should we add heavy-weight work into this
 464   // loop, consider parallelizing the loop into the worker threads.
 465   for (int i = 0; i < length(); ++i) {
 466     ParScanThreadState& par_scan_state = thread_state(i);
 467 
 468     // Flush stats related to To-space PLAB activity and
 469     // retire the last buffer.
 470     par_scan_state.to_space_alloc_buffer()->
 471       flush_stats_and_retire(_gen.plab_stats(),
 472                              true /* end_of_gc */,
 473                              false /* retain */);
 474 
 475     // Every thread has its own age table.  We need to merge
 476     // them all into one.
 477     ageTable *local_table = par_scan_state.age_table();
 478     _gen.age_table()->merge(local_table);
 479 
 480     // Inform old gen that we're done.
 481     _next_gen.par_promote_alloc_done(i);
 482     _next_gen.par_oop_since_save_marks_iterate_done(i);
 483   }
 484 
 485   if (UseConcMarkSweepGC) {
 486     // We need to call this even when ResizeOldPLAB is disabled
 487     // so as to avoid breaking some asserts. While we may be able
 488     // to avoid this by reorganizing the code a bit, I am loathe
 489     // to do that unless we find cases where ergo leads to bad
 490     // performance.
 491     CFLS_LAB::compute_desired_plab_size();
 492   }
 493 }
 494 
 495 ParScanClosure::ParScanClosure(ParNewGeneration* g,
 496                                ParScanThreadState* par_scan_state) :
 497   OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g)
 498 {
 499   assert(_g->level() == 0, "Optimized for youngest generation");
 500   _boundary = _g->reserved().end();
 501 }
 502 
 503 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
 504 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
 505 
 506 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
 507 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
 508 
 509 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
 510 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
 511 
 512 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
 513 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
 514 
 515 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
 516                                              ParScanThreadState* par_scan_state)
 517   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
 518 {}
 519 
 520 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
 521 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
 522 
 523 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
 524     ParScanThreadState* par_scan_state_,
 525     ParScanWithoutBarrierClosure* to_space_closure_,
 526     ParScanWithBarrierClosure* old_gen_closure_,
 527     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
 528     ParNewGeneration* par_gen_,
 529     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
 530     ObjToScanQueueSet* task_queues_,
 531     ParallelTaskTerminator* terminator_) :
 532 
 533     _par_scan_state(par_scan_state_),
 534     _to_space_closure(to_space_closure_),
 535     _old_gen_closure(old_gen_closure_),
 536     _to_space_root_closure(to_space_root_closure_),
 537     _old_gen_root_closure(old_gen_root_closure_),
 538     _par_gen(par_gen_),
 539     _task_queues(task_queues_),
 540     _terminator(terminator_)
 541 {}
 542 
 543 void ParEvacuateFollowersClosure::do_void() {
 544   ObjToScanQueue* work_q = par_scan_state()->work_queue();
 545 
 546   while (true) {
 547 
 548     // Scan to-space and old-gen objs until we run out of both.
 549     oop obj_to_scan;
 550     par_scan_state()->trim_queues(0);
 551 
 552     // We have no local work, attempt to steal from other threads.
 553 
 554     // attempt to steal work from promoted.
 555     if (task_queues()->steal(par_scan_state()->thread_num(),
 556                              par_scan_state()->hash_seed(),
 557                              obj_to_scan)) {
 558       bool res = work_q->push(obj_to_scan);
 559       assert(res, "Empty queue should have room for a push.");
 560 
 561       //   if successful, goto Start.
 562       continue;
 563 
 564       // try global overflow list.
 565     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
 566       continue;
 567     }
 568 
 569     // Otherwise, offer termination.
 570     par_scan_state()->start_term_time();
 571     if (terminator()->offer_termination()) break;
 572     par_scan_state()->end_term_time();
 573   }
 574   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
 575          "Broken overflow list?");
 576   // Finish the last termination pause.
 577   par_scan_state()->end_term_time();
 578 }
 579 
 580 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
 581                 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
 582     AbstractGangTask("ParNewGeneration collection"),
 583     _gen(gen), _next_gen(next_gen),
 584     _young_old_boundary(young_old_boundary),
 585     _state_set(state_set)
 586   {}
 587 
 588 // Reset the terminator for the given number of
 589 // active threads.
 590 void ParNewGenTask::set_for_termination(int active_workers) {
 591   _state_set->reset(active_workers, _gen->promotion_failed());
 592   // Should the heap be passed in?  There's only 1 for now so
 593   // grab it instead.
 594   GenCollectedHeap* gch = GenCollectedHeap::heap();
 595   gch->set_n_termination(active_workers);
 596 }
 597 
 598 void ParNewGenTask::work(uint worker_id) {
 599   GenCollectedHeap* gch = GenCollectedHeap::heap();
 600   // Since this is being done in a separate thread, need new resource
 601   // and handle marks.
 602   ResourceMark rm;
 603   HandleMark hm;
 604   // We would need multiple old-gen queues otherwise.
 605   assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
 606 
 607   Generation* old_gen = gch->next_gen(_gen);
 608 
 609   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
 610   assert(_state_set->is_valid(worker_id), "Should not have been called");
 611 
 612   par_scan_state.set_young_old_boundary(_young_old_boundary);
 613 
 614   KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
 615                                       gch->rem_set()->klass_rem_set());
 616   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 617                                            &par_scan_state.to_space_root_closure(),
 618                                            false);
 619 
 620   par_scan_state.start_strong_roots();
 621   gch->gen_process_roots(_gen->level(),
 622                          true,  // Process younger gens, if any,
 623                                 // as strong roots.
 624                          false, // no scope; this is parallel code
 625                          SharedHeap::SO_ScavengeCodeCache,
 626                          GenCollectedHeap::StrongAndWeakRoots,
 627                          &par_scan_state.to_space_root_closure(),
 628                          &par_scan_state.older_gen_closure(),
 629                          &cld_scan_closure);
 630 
 631   par_scan_state.end_strong_roots();
 632 
 633   // "evacuate followers".
 634   par_scan_state.evacuate_followers_closure().do_void();
 635 }
 636 
 637 ParNewGeneration::
 638 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
 639   : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
 640   _overflow_list(NULL),
 641   _plab_stats(YoungPLABSize, PLABWeight)
 642 {
 643   _is_alive_closure = DefNewGeneration::IsAliveClosure(this);
 644   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
 645   NOT_PRODUCT(_num_par_pushes = 0;)
 646   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
 647   guarantee(_task_queues != NULL, "task_queues allocation failure.");
 648 
 649   for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
 650     ObjToScanQueue *q = new ObjToScanQueue();
 651     guarantee(q != NULL, "work_queue Allocation failure.");
 652     _task_queues->register_queue(i1, q);
 653   }
 654 
 655   for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
 656     _task_queues->queue(i2)->initialize();
 657 
 658   _overflow_stacks = NULL;
 659   if (ParGCUseLocalOverflow) {
 660 
 661     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
 662     // with ','
 663     typedef Stack<oop, mtGC> GCOopStack;
 664 
 665     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
 666     for (size_t i = 0; i < ParallelGCThreads; ++i) {
 667       new (_overflow_stacks + i) Stack<oop, mtGC>();
 668     }
 669   }
 670 
 671   if (UsePerfData) {
 672     EXCEPTION_MARK;
 673     ResourceMark rm;
 674 
 675     const char* cname =
 676          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
 677     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
 678                                      ParallelGCThreads, CHECK);
 679   }
 680 }
 681 
 682 // ParNewGeneration::
 683 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
 684   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
 685 
 686 template <class T>
 687 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
 688 #ifdef ASSERT
 689   {
 690     assert(!oopDesc::is_null(*p), "expected non-null ref");
 691     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 692     // We never expect to see a null reference being processed
 693     // as a weak reference.
 694     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 695   }
 696 #endif // ASSERT
 697 
 698   _par_cl->do_oop_nv(p);
 699 
 700   if (Universe::heap()->is_in_reserved(p)) {
 701     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 702     _rs->write_ref_field_gc_par(p, obj);
 703   }
 704 }
 705 
 706 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
 707 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
 708 
 709 // ParNewGeneration::
 710 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
 711   DefNewGeneration::KeepAliveClosure(cl) {}
 712 
 713 template <class T>
 714 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
 715 #ifdef ASSERT
 716   {
 717     assert(!oopDesc::is_null(*p), "expected non-null ref");
 718     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 719     // We never expect to see a null reference being processed
 720     // as a weak reference.
 721     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 722   }
 723 #endif // ASSERT
 724 
 725   _cl->do_oop_nv(p);
 726 
 727   if (Universe::heap()->is_in_reserved(p)) {
 728     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 729     _rs->write_ref_field_gc_par(p, obj);
 730   }
 731 }
 732 
 733 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
 734 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
 735 
 736 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
 737   T heap_oop = oopDesc::load_heap_oop(p);
 738   if (!oopDesc::is_null(heap_oop)) {
 739     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 740     if ((HeapWord*)obj < _boundary) {
 741       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
 742       oop new_obj = obj->is_forwarded()
 743                       ? obj->forwardee()
 744                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
 745       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
 746     }
 747     if (_gc_barrier) {
 748       // If p points to a younger generation, mark the card.
 749       if ((HeapWord*)obj < _gen_boundary) {
 750         _rs->write_ref_field_gc_par(p, obj);
 751       }
 752     }
 753   }
 754 }
 755 
 756 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
 757 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
 758 
 759 class ParNewRefProcTaskProxy: public AbstractGangTask {
 760   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 761 public:
 762   ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
 763                          Generation& next_gen,
 764                          HeapWord* young_old_boundary,
 765                          ParScanThreadStateSet& state_set);
 766 
 767 private:
 768   virtual void work(uint worker_id);
 769   virtual void set_for_termination(int active_workers) {
 770     _state_set.terminator()->reset_for_reuse(active_workers);
 771   }
 772 private:
 773   ParNewGeneration&      _gen;
 774   ProcessTask&           _task;
 775   Generation&            _next_gen;
 776   HeapWord*              _young_old_boundary;
 777   ParScanThreadStateSet& _state_set;
 778 };
 779 
 780 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
 781     ProcessTask& task, ParNewGeneration& gen,
 782     Generation& next_gen,
 783     HeapWord* young_old_boundary,
 784     ParScanThreadStateSet& state_set)
 785   : AbstractGangTask("ParNewGeneration parallel reference processing"),
 786     _gen(gen),
 787     _task(task),
 788     _next_gen(next_gen),
 789     _young_old_boundary(young_old_boundary),
 790     _state_set(state_set)
 791 {
 792 }
 793 
 794 void ParNewRefProcTaskProxy::work(uint worker_id)
 795 {
 796   ResourceMark rm;
 797   HandleMark hm;
 798   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
 799   par_scan_state.set_young_old_boundary(_young_old_boundary);
 800   _task.work(worker_id, par_scan_state.is_alive_closure(),
 801              par_scan_state.keep_alive_closure(),
 802              par_scan_state.evacuate_followers_closure());
 803 }
 804 
 805 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
 806   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 807   EnqueueTask& _task;
 808 
 809 public:
 810   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
 811     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
 812       _task(task)
 813   { }
 814 
 815   virtual void work(uint worker_id)
 816   {
 817     _task.work(worker_id);
 818   }
 819 };
 820 
 821 
 822 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
 823 {
 824   GenCollectedHeap* gch = GenCollectedHeap::heap();
 825   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 826          "not a generational heap");
 827   FlexibleWorkGang* workers = gch->workers();
 828   assert(workers != NULL, "Need parallel worker threads.");
 829   _state_set.reset(workers->active_workers(), _generation.promotion_failed());
 830   ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
 831                                  _generation.reserved().end(), _state_set);
 832   workers->run_task(&rp_task);
 833   _state_set.reset(0 /* bad value in debug if not reset */,
 834                    _generation.promotion_failed());
 835 }
 836 
 837 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
 838 {
 839   GenCollectedHeap* gch = GenCollectedHeap::heap();
 840   FlexibleWorkGang* workers = gch->workers();
 841   assert(workers != NULL, "Need parallel worker threads.");
 842   ParNewRefEnqueueTaskProxy enq_task(task);
 843   workers->run_task(&enq_task);
 844 }
 845 
 846 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
 847 {
 848   _state_set.flush();
 849   GenCollectedHeap* gch = GenCollectedHeap::heap();
 850   gch->set_par_threads(0);  // 0 ==> non-parallel.
 851   gch->save_marks();
 852 }
 853 
 854 ScanClosureWithParBarrier::
 855 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
 856   ScanClosure(g, gc_barrier) {}
 857 
 858 EvacuateFollowersClosureGeneral::
 859 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
 860                                 OopsInGenClosure* cur,
 861                                 OopsInGenClosure* older) :
 862   _gch(gch), _level(level),
 863   _scan_cur_or_nonheap(cur), _scan_older(older)
 864 {}
 865 
 866 void EvacuateFollowersClosureGeneral::do_void() {
 867   do {
 868     // Beware: this call will lead to closure applications via virtual
 869     // calls.
 870     _gch->oop_since_save_marks_iterate(_level,
 871                                        _scan_cur_or_nonheap,
 872                                        _scan_older);
 873   } while (!_gch->no_allocs_since_save_marks(_level));
 874 }
 875 
 876 
 877 // A Generation that does parallel young-gen collection.
 878 
 879 void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set, ParNewTracer& gc_tracer) {
 880   assert(_promo_failure_scan_stack.is_empty(), "post condition");
 881   _promo_failure_scan_stack.clear(true); // Clear cached segments.
 882 
 883   remove_forwarding_pointers();
 884   if (PrintGCDetails) {
 885     gclog_or_tty->print(" (promotion failed)");
 886   }
 887   // All the spaces are in play for mark-sweep.
 888   swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
 889   from()->set_next_compaction_space(to());
 890   gch->set_incremental_collection_failed();
 891   // Inform the next generation that a promotion failure occurred.
 892   _next_gen->promotion_failure_occurred();
 893 
 894   // Trace promotion failure in the parallel GC threads
 895   thread_state_set.trace_promotion_failed(gc_tracer);
 896   // Single threaded code may have reported promotion failure to the global state
 897   if (_promotion_failed_info.has_failed()) {
 898     gc_tracer.report_promotion_failed(_promotion_failed_info);
 899   }
 900   // Reset the PromotionFailureALot counters.
 901   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 902 }
 903 
 904 void ParNewGeneration::collect(bool   full,
 905                                bool   clear_all_soft_refs,
 906                                size_t size,
 907                                bool   is_tlab) {
 908   assert(full || size > 0, "otherwise we don't want to collect");
 909 
 910   GenCollectedHeap* gch = GenCollectedHeap::heap();
 911 
 912   _gc_timer->register_gc_start();
 913 
 914   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 915     "not a CMS generational heap");
 916   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 917   FlexibleWorkGang* workers = gch->workers();
 918   assert(workers != NULL, "Need workgang for parallel work");
 919   int active_workers =
 920       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
 921                                    workers->active_workers(),
 922                                    Threads::number_of_non_daemon_threads());
 923   workers->set_active_workers(active_workers);
 924   assert(gch->n_gens() == 2,
 925          "Par collection currently only works with single older gen.");
 926   _next_gen = gch->next_gen(this);
 927 
 928   // If the next generation is too full to accommodate worst-case promotion
 929   // from this generation, pass on collection; let the next generation
 930   // do it.
 931   if (!collection_attempt_is_safe()) {
 932     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
 933     return;
 934   }
 935   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 936 
 937   ParNewTracer gc_tracer;
 938   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 939   gch->trace_heap_before_gc(&gc_tracer);
 940 
 941   init_assuming_no_promotion_failure();
 942 
 943   if (UseAdaptiveSizePolicy) {
 944     set_survivor_overflow(false);
 945     size_policy->minor_collection_begin();
 946   }
 947 
 948   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
 949   // Capture heap used before collection (for printing).
 950   size_t gch_prev_used = gch->used();
 951 
 952   SpecializationStats::clear();
 953 
 954   age_table()->clear();
 955   to()->clear(SpaceDecorator::Mangle);
 956 
 957   gch->save_marks();
 958   assert(workers != NULL, "Need parallel worker threads.");
 959   int n_workers = active_workers;
 960 
 961   // Set the correct parallelism (number of queues) in the reference processor
 962   ref_processor()->set_active_mt_degree(n_workers);
 963 
 964   // Always set the terminator for the active number of workers
 965   // because only those workers go through the termination protocol.
 966   ParallelTaskTerminator _term(n_workers, task_queues());
 967   ParScanThreadStateSet thread_state_set(workers->active_workers(),
 968                                          *to(), *this, *_next_gen, *task_queues(),
 969                                          _overflow_stacks, desired_plab_sz(), _term);
 970 
 971   ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
 972   gch->set_par_threads(n_workers);
 973   gch->rem_set()->prepare_for_younger_refs_iterate(true);
 974   // It turns out that even when we're using 1 thread, doing the work in a
 975   // separate thread causes wide variance in run times.  We can't help this
 976   // in the multi-threaded case, but we special-case n=1 here to get
 977   // repeatable measurements of the 1-thread overhead of the parallel code.
 978   if (n_workers > 1) {
 979     GenCollectedHeap::StrongRootsScope srs(gch);
 980     workers->run_task(&tsk);
 981   } else {
 982     GenCollectedHeap::StrongRootsScope srs(gch);
 983     tsk.work(0);
 984   }
 985   thread_state_set.reset(0 /* Bad value in debug if not reset */,
 986                          promotion_failed());
 987 
 988   // Trace and reset failed promotion info.
 989   if (promotion_failed()) {
 990     thread_state_set.trace_promotion_failed(gc_tracer);
 991   }
 992 
 993   // Process (weak) reference objects found during scavenge.
 994   ReferenceProcessor* rp = ref_processor();
 995   IsAliveClosure is_alive(this);
 996   ScanWeakRefClosure scan_weak_ref(this);
 997   KeepAliveClosure keep_alive(&scan_weak_ref);
 998   ScanClosure               scan_without_gc_barrier(this, false);
 999   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
1000   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
1001   EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
1002     &scan_without_gc_barrier, &scan_with_gc_barrier);
1003   rp->setup_policy(clear_all_soft_refs);
1004   // Can  the mt_degree be set later (at run_task() time would be best)?
1005   rp->set_active_mt_degree(active_workers);
1006   ReferenceProcessorStats stats;
1007   if (rp->processing_is_mt()) {
1008     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1009     stats = rp->process_discovered_references(&is_alive, &keep_alive,
1010                                               &evacuate_followers, &task_executor,
1011                                               _gc_timer, gc_tracer.gc_id());
1012   } else {
1013     thread_state_set.flush();
1014     gch->set_par_threads(0);  // 0 ==> non-parallel.
1015     gch->save_marks();
1016     stats = rp->process_discovered_references(&is_alive, &keep_alive,
1017                                               &evacuate_followers, NULL,
1018                                               _gc_timer, gc_tracer.gc_id());
1019   }
1020   gc_tracer.report_gc_reference_stats(stats);
1021   if (!promotion_failed()) {
1022     // Swap the survivor spaces.
1023     eden()->clear(SpaceDecorator::Mangle);
1024     from()->clear(SpaceDecorator::Mangle);
1025     if (ZapUnusedHeapArea) {
1026       // This is now done here because of the piece-meal mangling which
1027       // can check for valid mangling at intermediate points in the
1028       // collection(s).  When a minor collection fails to collect
1029       // sufficient space resizing of the young generation can occur
1030       // an redistribute the spaces in the young generation.  Mangle
1031       // here so that unzapped regions don't get distributed to
1032       // other spaces.
1033       to()->mangle_unused_area();
1034     }
1035     swap_spaces();
1036 
1037     // A successful scavenge should restart the GC time limit count which is
1038     // for full GC's.
1039     size_policy->reset_gc_overhead_limit_count();
1040 
1041     assert(to()->is_empty(), "to space should be empty now");
1042 
1043     adjust_desired_tenuring_threshold();
1044   } else {
1045     handle_promotion_failed(gch, thread_state_set, gc_tracer);
1046   }
1047   // set new iteration safe limit for the survivor spaces
1048   from()->set_concurrent_iteration_safe_limit(from()->top());
1049   to()->set_concurrent_iteration_safe_limit(to()->top());
1050 
1051   if (ResizePLAB) {
1052     plab_stats()->adjust_desired_plab_sz(n_workers);
1053   }
1054 
1055   if (PrintGC && !PrintGCDetails) {
1056     gch->print_heap_change(gch_prev_used);
1057   }
1058 
1059   TASKQUEUE_STATS_ONLY(if (PrintTerminationStats) thread_state_set.print_termination_stats());
1060   TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) thread_state_set.print_taskqueue_stats());
1061 
1062   if (UseAdaptiveSizePolicy) {
1063     size_policy->minor_collection_end(gch->gc_cause());
1064     size_policy->avg_survived()->sample(from()->used());
1065   }
1066 
1067   // We need to use a monotonically non-decreasing time in ms
1068   // or we will see time-warp warnings and os::javaTimeMillis()
1069   // does not guarantee monotonicity.
1070   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1071   update_time_of_last_gc(now);
1072 
1073   SpecializationStats::print();
1074 
1075   rp->set_enqueuing_is_done(true);
1076   if (rp->processing_is_mt()) {
1077     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1078     rp->enqueue_discovered_references(&task_executor);
1079   } else {
1080     rp->enqueue_discovered_references(NULL);
1081   }
1082   rp->verify_no_references_recorded();
1083 
1084   gch->trace_heap_after_gc(&gc_tracer);
1085   gc_tracer.report_tenuring_threshold(tenuring_threshold());
1086 
1087   _gc_timer->register_gc_end();
1088 
1089   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1090 }
1091 
1092 static int sum;
1093 void ParNewGeneration::waste_some_time() {
1094   for (int i = 0; i < 100; i++) {
1095     sum += i;
1096   }
1097 }
1098 
1099 static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1100 
1101 // Because of concurrency, there are times where an object for which
1102 // "is_forwarded()" is true contains an "interim" forwarding pointer
1103 // value.  Such a value will soon be overwritten with a real value.
1104 // This method requires "obj" to have a forwarding pointer, and waits, if
1105 // necessary for a real one to be inserted, and returns it.
1106 
1107 oop ParNewGeneration::real_forwardee(oop obj) {
1108   oop forward_ptr = obj->forwardee();
1109   if (forward_ptr != ClaimedForwardPtr) {
1110     return forward_ptr;
1111   } else {
1112     return real_forwardee_slow(obj);
1113   }
1114 }
1115 
1116 oop ParNewGeneration::real_forwardee_slow(oop obj) {
1117   // Spin-read if it is claimed but not yet written by another thread.
1118   oop forward_ptr = obj->forwardee();
1119   while (forward_ptr == ClaimedForwardPtr) {
1120     waste_some_time();
1121     assert(obj->is_forwarded(), "precondition");
1122     forward_ptr = obj->forwardee();
1123   }
1124   return forward_ptr;
1125 }
1126 
1127 #ifdef ASSERT
1128 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
1129   return
1130     (p == ClaimedForwardPtr)
1131     || Universe::heap()->is_in_reserved(p);
1132 }
1133 #endif
1134 
1135 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
1136   if (m->must_be_preserved_for_promotion_failure(obj)) {
1137     // We should really have separate per-worker stacks, rather
1138     // than use locking of a common pair of stacks.
1139     MutexLocker ml(ParGCRareEvent_lock);
1140     preserve_mark(obj, m);
1141   }
1142 }
1143 
1144 // Multiple GC threads may try to promote an object.  If the object
1145 // is successfully promoted, a forwarding pointer will be installed in
1146 // the object in the young generation.  This method claims the right
1147 // to install the forwarding pointer before it copies the object,
1148 // thus avoiding the need to undo the copy as in
1149 // copy_to_survivor_space_avoiding_with_undo.
1150 
1151 oop ParNewGeneration::copy_to_survivor_space(
1152         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1153   // In the sequential version, this assert also says that the object is
1154   // not forwarded.  That might not be the case here.  It is the case that
1155   // the caller observed it to be not forwarded at some time in the past.
1156   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1157 
1158   // The sequential code read "old->age()" below.  That doesn't work here,
1159   // since the age is in the mark word, and that might be overwritten with
1160   // a forwarding pointer by a parallel thread.  So we must save the mark
1161   // word in a local and then analyze it.
1162   oopDesc dummyOld;
1163   dummyOld.set_mark(m);
1164   assert(!dummyOld.is_forwarded(),
1165          "should not be called with forwarding pointer mark word.");
1166 
1167   oop new_obj = NULL;
1168   oop forward_ptr;
1169 
1170   // Try allocating obj in to-space (unless too old)
1171   if (dummyOld.age() < tenuring_threshold()) {
1172     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1173     if (new_obj == NULL) {
1174       set_survivor_overflow(true);
1175     }
1176   }
1177 
1178   if (new_obj == NULL) {
1179     // Either to-space is full or we decided to promote
1180     // try allocating obj tenured
1181 
1182     // Attempt to install a null forwarding pointer (atomically),
1183     // to claim the right to install the real forwarding pointer.
1184     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1185     if (forward_ptr != NULL) {
1186       // someone else beat us to it.
1187         return real_forwardee(old);
1188     }
1189 
1190     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
1191                                        old, m, sz);
1192 
1193     if (new_obj == NULL) {
1194       // promotion failed, forward to self
1195       _promotion_failed = true;
1196       new_obj = old;
1197 
1198       preserve_mark_if_necessary(old, m);
1199       par_scan_state->register_promotion_failure(sz);
1200     }
1201 
1202     old->forward_to(new_obj);
1203     forward_ptr = NULL;
1204   } else {
1205     // Is in to-space; do copying ourselves.
1206     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1207     forward_ptr = old->forward_to_atomic(new_obj);
1208     // Restore the mark word copied above.
1209     new_obj->set_mark(m);
1210     // Increment age if obj still in new generation
1211     new_obj->incr_age();
1212     par_scan_state->age_table()->add(new_obj, sz);
1213   }
1214   assert(new_obj != NULL, "just checking");
1215 
1216 #ifndef PRODUCT
1217   // This code must come after the CAS test, or it will print incorrect
1218   // information.
1219   if (TraceScavenge) {
1220     gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1221        is_in_reserved(new_obj) ? "copying" : "tenuring",
1222        new_obj->klass()->internal_name(), (void *)old, (void *)new_obj, new_obj->size());
1223   }
1224 #endif
1225 
1226   if (forward_ptr == NULL) {
1227     oop obj_to_push = new_obj;
1228     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1229       // Length field used as index of next element to be scanned.
1230       // Real length can be obtained from real_forwardee()
1231       arrayOop(old)->set_length(0);
1232       obj_to_push = old;
1233       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1234              "push forwarded object");
1235     }
1236     // Push it on one of the queues of to-be-scanned objects.
1237     bool simulate_overflow = false;
1238     NOT_PRODUCT(
1239       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1240         // simulate a stack overflow
1241         simulate_overflow = true;
1242       }
1243     )
1244     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1245       // Add stats for overflow pushes.
1246       if (Verbose && PrintGCDetails) {
1247         gclog_or_tty->print("queue overflow!\n");
1248       }
1249       push_on_overflow_list(old, par_scan_state);
1250       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1251     }
1252 
1253     return new_obj;
1254   }
1255 
1256   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1257   // allocate it?
1258   if (is_in_reserved(new_obj)) {
1259     // Must be in to_space.
1260     assert(to()->is_in_reserved(new_obj), "Checking");
1261     if (forward_ptr == ClaimedForwardPtr) {
1262       // Wait to get the real forwarding pointer value.
1263       forward_ptr = real_forwardee(old);
1264     }
1265     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1266   }
1267 
1268   return forward_ptr;
1269 }
1270 
1271 #ifndef PRODUCT
1272 // It's OK to call this multi-threaded;  the worst thing
1273 // that can happen is that we'll get a bunch of closely
1274 // spaced simulated overflows, but that's OK, in fact
1275 // probably good as it would exercise the overflow code
1276 // under contention.
1277 bool ParNewGeneration::should_simulate_overflow() {
1278   if (_overflow_counter-- <= 0) { // just being defensive
1279     _overflow_counter = ParGCWorkQueueOverflowInterval;
1280     return true;
1281   } else {
1282     return false;
1283   }
1284 }
1285 #endif
1286 
1287 // In case we are using compressed oops, we need to be careful.
1288 // If the object being pushed is an object array, then its length
1289 // field keeps track of the "grey boundary" at which the next
1290 // incremental scan will be done (see ParGCArrayScanChunk).
1291 // When using compressed oops, this length field is kept in the
1292 // lower 32 bits of the erstwhile klass word and cannot be used
1293 // for the overflow chaining pointer (OCP below). As such the OCP
1294 // would itself need to be compressed into the top 32-bits in this
1295 // case. Unfortunately, see below, in the event that we have a
1296 // promotion failure, the node to be pushed on the list can be
1297 // outside of the Java heap, so the heap-based pointer compression
1298 // would not work (we would have potential aliasing between C-heap
1299 // and Java-heap pointers). For this reason, when using compressed
1300 // oops, we simply use a worker-thread-local, non-shared overflow
1301 // list in the form of a growable array, with a slightly different
1302 // overflow stack draining strategy. If/when we start using fat
1303 // stacks here, we can go back to using (fat) pointer chains
1304 // (although some performance comparisons would be useful since
1305 // single global lists have their own performance disadvantages
1306 // as we were made painfully aware not long ago, see 6786503).
1307 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1308 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1309   assert(is_in_reserved(from_space_obj), "Should be from this generation");
1310   if (ParGCUseLocalOverflow) {
1311     // In the case of compressed oops, we use a private, not-shared
1312     // overflow stack.
1313     par_scan_state->push_on_overflow_stack(from_space_obj);
1314   } else {
1315     assert(!UseCompressedOops, "Error");
1316     // if the object has been forwarded to itself, then we cannot
1317     // use the klass pointer for the linked list.  Instead we have
1318     // to allocate an oopDesc in the C-Heap and use that for the linked list.
1319     // XXX This is horribly inefficient when a promotion failure occurs
1320     // and should be fixed. XXX FIX ME !!!
1321 #ifndef PRODUCT
1322     Atomic::inc_ptr(&_num_par_pushes);
1323     assert(_num_par_pushes > 0, "Tautology");
1324 #endif
1325     if (from_space_obj->forwardee() == from_space_obj) {
1326       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1327       listhead->forward_to(from_space_obj);
1328       from_space_obj = listhead;
1329     }
1330     oop observed_overflow_list = _overflow_list;
1331     oop cur_overflow_list;
1332     do {
1333       cur_overflow_list = observed_overflow_list;
1334       if (cur_overflow_list != BUSY) {
1335         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1336       } else {
1337         from_space_obj->set_klass_to_list_ptr(NULL);
1338       }
1339       observed_overflow_list =
1340         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1341     } while (cur_overflow_list != observed_overflow_list);
1342   }
1343 }
1344 
1345 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1346   bool res;
1347 
1348   if (ParGCUseLocalOverflow) {
1349     res = par_scan_state->take_from_overflow_stack();
1350   } else {
1351     assert(!UseCompressedOops, "Error");
1352     res = take_from_overflow_list_work(par_scan_state);
1353   }
1354   return res;
1355 }
1356 
1357 
1358 // *NOTE*: The overflow list manipulation code here and
1359 // in CMSCollector:: are very similar in shape,
1360 // except that in the CMS case we thread the objects
1361 // directly into the list via their mark word, and do
1362 // not need to deal with special cases below related
1363 // to chunking of object arrays and promotion failure
1364 // handling.
1365 // CR 6797058 has been filed to attempt consolidation of
1366 // the common code.
1367 // Because of the common code, if you make any changes in
1368 // the code below, please check the CMS version to see if
1369 // similar changes might be needed.
1370 // See CMSCollector::par_take_from_overflow_list() for
1371 // more extensive documentation comments.
1372 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1373   ObjToScanQueue* work_q = par_scan_state->work_queue();
1374   // How many to take?
1375   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1376                                  (size_t)ParGCDesiredObjsFromOverflowList);
1377 
1378   assert(!UseCompressedOops, "Error");
1379   assert(par_scan_state->overflow_stack() == NULL, "Error");
1380   if (_overflow_list == NULL) return false;
1381 
1382   // Otherwise, there was something there; try claiming the list.
1383   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1384   // Trim off a prefix of at most objsFromOverflow items
1385   Thread* tid = Thread::current();
1386   size_t spin_count = (size_t)ParallelGCThreads;
1387   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1388   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1389     // someone grabbed it before we did ...
1390     // ... we spin for a short while...
1391     os::sleep(tid, sleep_time_millis, false);
1392     if (_overflow_list == NULL) {
1393       // nothing left to take
1394       return false;
1395     } else if (_overflow_list != BUSY) {
1396      // try and grab the prefix
1397      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1398     }
1399   }
1400   if (prefix == NULL || prefix == BUSY) {
1401      // Nothing to take or waited long enough
1402      if (prefix == NULL) {
1403        // Write back the NULL in case we overwrote it with BUSY above
1404        // and it is still the same value.
1405        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1406      }
1407      return false;
1408   }
1409   assert(prefix != NULL && prefix != BUSY, "Error");
1410   size_t i = 1;
1411   oop cur = prefix;
1412   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1413     i++; cur = cur->list_ptr_from_klass();
1414   }
1415 
1416   // Reattach remaining (suffix) to overflow list
1417   if (cur->klass_or_null() == NULL) {
1418     // Write back the NULL in lieu of the BUSY we wrote
1419     // above and it is still the same value.
1420     if (_overflow_list == BUSY) {
1421       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1422     }
1423   } else {
1424     assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
1425     oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
1426     cur->set_klass_to_list_ptr(NULL);     // break off suffix
1427     // It's possible that the list is still in the empty(busy) state
1428     // we left it in a short while ago; in that case we may be
1429     // able to place back the suffix.
1430     oop observed_overflow_list = _overflow_list;
1431     oop cur_overflow_list = observed_overflow_list;
1432     bool attached = false;
1433     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1434       observed_overflow_list =
1435         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1436       if (cur_overflow_list == observed_overflow_list) {
1437         attached = true;
1438         break;
1439       } else cur_overflow_list = observed_overflow_list;
1440     }
1441     if (!attached) {
1442       // Too bad, someone else got in in between; we'll need to do a splice.
1443       // Find the last item of suffix list
1444       oop last = suffix;
1445       while (last->klass_or_null() != NULL) {
1446         last = last->list_ptr_from_klass();
1447       }
1448       // Atomically prepend suffix to current overflow list
1449       observed_overflow_list = _overflow_list;
1450       do {
1451         cur_overflow_list = observed_overflow_list;
1452         if (cur_overflow_list != BUSY) {
1453           // Do the splice ...
1454           last->set_klass_to_list_ptr(cur_overflow_list);
1455         } else { // cur_overflow_list == BUSY
1456           last->set_klass_to_list_ptr(NULL);
1457         }
1458         observed_overflow_list =
1459           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1460       } while (cur_overflow_list != observed_overflow_list);
1461     }
1462   }
1463 
1464   // Push objects on prefix list onto this thread's work queue
1465   assert(prefix != NULL && prefix != BUSY, "program logic");
1466   cur = prefix;
1467   ssize_t n = 0;
1468   while (cur != NULL) {
1469     oop obj_to_push = cur->forwardee();
1470     oop next        = cur->list_ptr_from_klass();
1471     cur->set_klass(obj_to_push->klass());
1472     // This may be an array object that is self-forwarded. In that case, the list pointer
1473     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1474     if (!is_in_reserved(cur)) {
1475       // This can become a scaling bottleneck when there is work queue overflow coincident
1476       // with promotion failure.
1477       oopDesc* f = cur;
1478       FREE_C_HEAP_ARRAY(oopDesc, f);
1479     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1480       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1481       obj_to_push = cur;
1482     }
1483     bool ok = work_q->push(obj_to_push);
1484     assert(ok, "Should have succeeded");
1485     cur = next;
1486     n++;
1487   }
1488   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1489 #ifndef PRODUCT
1490   assert(_num_par_pushes >= n, "Too many pops?");
1491   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1492 #endif
1493   return true;
1494 }
1495 #undef BUSY
1496 
1497 void ParNewGeneration::ref_processor_init() {
1498   if (_ref_processor == NULL) {
1499     // Allocate and initialize a reference processor
1500     _ref_processor =
1501       new ReferenceProcessor(_reserved,                  // span
1502                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1503                              (int) ParallelGCThreads,    // mt processing degree
1504                              refs_discovery_is_mt(),     // mt discovery
1505                              (int) ParallelGCThreads,    // mt discovery degree
1506                              refs_discovery_is_atomic(), // atomic_discovery
1507                              NULL);                      // is_alive_non_header
1508   }
1509 }
1510 
1511 const char* ParNewGeneration::name() const {
1512   return "par new generation";
1513 }