/* * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. * Copyright 2012, 2014 SAP AG. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/assembler.inline.hpp" #include "asm/macroAssembler.inline.hpp" #include "compiler/disassembler.hpp" #include "memory/resourceArea.hpp" #include "runtime/java.hpp" #include "runtime/stubCodeGenerator.hpp" #include "utilities/defaultStream.hpp" #include "vm_version_ppc.hpp" #ifdef TARGET_OS_FAMILY_aix # include "os_aix.inline.hpp" #endif #ifdef TARGET_OS_FAMILY_linux # include "os_linux.inline.hpp" #endif # include int VM_Version::_features = VM_Version::unknown_m; int VM_Version::_measured_cache_line_size = 128; // default value const char* VM_Version::_features_str = ""; bool VM_Version::_is_determine_features_test_running = false; #define MSG(flag) \ if (flag && !FLAG_IS_DEFAULT(flag)) \ jio_fprintf(defaultStream::error_stream(), \ "warning: -XX:+" #flag " requires -XX:+UseSIGTRAP\n" \ " -XX:+" #flag " will be disabled!\n"); void VM_Version::initialize() { // Test which instructions are supported and measure cache line size. determine_features(); // If PowerArchitecturePPC64 hasn't been specified explicitly determine from features. if (FLAG_IS_DEFAULT(PowerArchitecturePPC64)) { if (VM_Version::has_popcntw()) { FLAG_SET_ERGO(uintx, PowerArchitecturePPC64, 7); } else if (VM_Version::has_cmpb()) { FLAG_SET_ERGO(uintx, PowerArchitecturePPC64, 6); } else if (VM_Version::has_popcntb()) { FLAG_SET_ERGO(uintx, PowerArchitecturePPC64, 5); } else { FLAG_SET_ERGO(uintx, PowerArchitecturePPC64, 0); } } guarantee(PowerArchitecturePPC64 == 0 || PowerArchitecturePPC64 == 5 || PowerArchitecturePPC64 == 6 || PowerArchitecturePPC64 == 7, "PowerArchitecturePPC64 should be 0, 5, 6 or 7"); if (!UseSIGTRAP) { MSG(TrapBasedICMissChecks); MSG(TrapBasedNotEntrantChecks); MSG(TrapBasedNullChecks); FLAG_SET_ERGO(bool, TrapBasedNotEntrantChecks, false); FLAG_SET_ERGO(bool, TrapBasedNullChecks, false); FLAG_SET_ERGO(bool, TrapBasedICMissChecks, false); } #ifdef COMPILER2 if (!UseSIGTRAP) { MSG(TrapBasedRangeChecks); FLAG_SET_ERGO(bool, TrapBasedRangeChecks, false); } // On Power6 test for section size. if (PowerArchitecturePPC64 == 6) { determine_section_size(); // TODO: PPC port } else { // TODO: PPC port PdScheduling::power6SectorSize = 0x20; } MaxVectorSize = 8; #endif // Create and print feature-string. char buf[(num_features+1) * 16]; // Max 16 chars per feature. jio_snprintf(buf, sizeof(buf), "ppc64%s%s%s%s%s%s%s%s%s", (has_fsqrt() ? " fsqrt" : ""), (has_isel() ? " isel" : ""), (has_lxarxeh() ? " lxarxeh" : ""), (has_cmpb() ? " cmpb" : ""), //(has_mftgpr()? " mftgpr" : ""), (has_popcntb() ? " popcntb" : ""), (has_popcntw() ? " popcntw" : ""), (has_fcfids() ? " fcfids" : ""), (has_vand() ? " vand" : ""), (has_vcipher() ? " aes" : "") // Make sure number of %s matches num_features! ); _features_str = strdup(buf); NOT_PRODUCT(if (Verbose) print_features();); // PPC64 supports 8-byte compare-exchange operations (see // Atomic::cmpxchg and StubGenerator::generate_atomic_cmpxchg_ptr) // and 'atomic long memory ops' (see Unsafe_GetLongVolatile). _supports_cx8 = true; UseSSE = 0; // Only on x86 and x64 intx cache_line_size = _measured_cache_line_size; if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) AllocatePrefetchStyle = 1; if (AllocatePrefetchStyle == 4) { AllocatePrefetchStepSize = cache_line_size; // Need exact value. if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) AllocatePrefetchLines = 12; // Use larger blocks by default. if (AllocatePrefetchDistance < 0) AllocatePrefetchDistance = 2*cache_line_size; // Default is not defined? } else { if (cache_line_size > AllocatePrefetchStepSize) AllocatePrefetchStepSize = cache_line_size; if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) AllocatePrefetchLines = 3; // Optimistic value. if (AllocatePrefetchDistance < 0) AllocatePrefetchDistance = 3*cache_line_size; // Default is not defined? } assert(AllocatePrefetchLines > 0, "invalid value"); if (AllocatePrefetchLines < 1) { // Set valid value in product VM. AllocatePrefetchLines = 1; // Conservative value. } if (AllocatePrefetchStyle == 3 && AllocatePrefetchDistance < cache_line_size) { AllocatePrefetchStyle = 1; // Fall back if inappropriate. } assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive"); if (UseCRC32Intrinsics) { if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics)) warning("CRC32 intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseCRC32Intrinsics, false); } // The AES intrinsic stubs require AES instruction support. #if defined(VM_LITTLE_ENDIAN) if (has_vcipher()) { if (FLAG_IS_DEFAULT(UseAES)) { UseAES = true; } } else if (UseAES) { if (!FLAG_IS_DEFAULT(UseAES)) warning("AES instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseAES, false); } if (UseAES && has_vcipher()) { if (FLAG_IS_DEFAULT(UseAESIntrinsics)) { UseAESIntrinsics = true; } } else if (UseAESIntrinsics) { if (!FLAG_IS_DEFAULT(UseAESIntrinsics)) warning("AES intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseAESIntrinsics, false); } #else if (UseAES) { warning("AES instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseAES, false); } if (UseAESIntrinsics) { if (!FLAG_IS_DEFAULT(UseAESIntrinsics)) warning("AES intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseAESIntrinsics, false); } #endif if (UseSHA) { warning("SHA instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseSHA, false); } if (UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics) { warning("SHA intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseSHA1Intrinsics, false); FLAG_SET_DEFAULT(UseSHA256Intrinsics, false); FLAG_SET_DEFAULT(UseSHA512Intrinsics, false); } } void VM_Version::print_features() { tty->print_cr("Version: %s cache_line_size = %d", cpu_features(), (int) get_cache_line_size()); } #ifdef COMPILER2 // Determine section size on power6: If section size is 8 instructions, // there should be a difference between the two testloops of ~15 %. If // no difference is detected the section is assumed to be 32 instructions. void VM_Version::determine_section_size() { int unroll = 80; const int code_size = (2* unroll * 32 + 100)*BytesPerInstWord; // Allocate space for the code. ResourceMark rm; CodeBuffer cb("detect_section_size", code_size, 0); MacroAssembler* a = new MacroAssembler(&cb); uint32_t *code = (uint32_t *)a->pc(); // Emit code. void (*test1)() = (void(*)())(void *)a->function_entry(); Label l1; a->li(R4, 1); a->sldi(R4, R4, 28); a->b(l1); a->align(CodeEntryAlignment); a->bind(l1); for (int i = 0; i < unroll; i++) { // Schleife 1 // ------- sector 0 ------------ // ;; 0 a->nop(); // 1 a->fpnop0(); // 2 a->fpnop1(); // 3 a->addi(R4,R4, -1); // 4 // ;; 1 a->nop(); // 5 a->fmr(F6, F6); // 6 a->fmr(F7, F7); // 7 a->endgroup(); // 8 // ------- sector 8 ------------ // ;; 2 a->nop(); // 9 a->nop(); // 10 a->fmr(F8, F8); // 11 a->fmr(F9, F9); // 12 // ;; 3 a->nop(); // 13 a->fmr(F10, F10); // 14 a->fmr(F11, F11); // 15 a->endgroup(); // 16 // -------- sector 16 ------------- // ;; 4 a->nop(); // 17 a->nop(); // 18 a->fmr(F15, F15); // 19 a->fmr(F16, F16); // 20 // ;; 5 a->nop(); // 21 a->fmr(F17, F17); // 22 a->fmr(F18, F18); // 23 a->endgroup(); // 24 // ------- sector 24 ------------ // ;; 6 a->nop(); // 25 a->nop(); // 26 a->fmr(F19, F19); // 27 a->fmr(F20, F20); // 28 // ;; 7 a->nop(); // 29 a->fmr(F21, F21); // 30 a->fmr(F22, F22); // 31 a->brnop0(); // 32 // ------- sector 32 ------------ } // ;; 8 a->cmpdi(CCR0, R4, unroll); // 33 a->bge(CCR0, l1); // 34 a->blr(); // Emit code. void (*test2)() = (void(*)())(void *)a->function_entry(); // uint32_t *code = (uint32_t *)a->pc(); Label l2; a->li(R4, 1); a->sldi(R4, R4, 28); a->b(l2); a->align(CodeEntryAlignment); a->bind(l2); for (int i = 0; i < unroll; i++) { // Schleife 2 // ------- sector 0 ------------ // ;; 0 a->brnop0(); // 1 a->nop(); // 2 //a->cmpdi(CCR0, R4, unroll); a->fpnop0(); // 3 a->fpnop1(); // 4 a->addi(R4,R4, -1); // 5 // ;; 1 a->nop(); // 6 a->fmr(F6, F6); // 7 a->fmr(F7, F7); // 8 // ------- sector 8 --------------- // ;; 2 a->endgroup(); // 9 // ;; 3 a->nop(); // 10 a->nop(); // 11 a->fmr(F8, F8); // 12 // ;; 4 a->fmr(F9, F9); // 13 a->nop(); // 14 a->fmr(F10, F10); // 15 // ;; 5 a->fmr(F11, F11); // 16 // -------- sector 16 ------------- // ;; 6 a->endgroup(); // 17 // ;; 7 a->nop(); // 18 a->nop(); // 19 a->fmr(F15, F15); // 20 // ;; 8 a->fmr(F16, F16); // 21 a->nop(); // 22 a->fmr(F17, F17); // 23 // ;; 9 a->fmr(F18, F18); // 24 // -------- sector 24 ------------- // ;; 10 a->endgroup(); // 25 // ;; 11 a->nop(); // 26 a->nop(); // 27 a->fmr(F19, F19); // 28 // ;; 12 a->fmr(F20, F20); // 29 a->nop(); // 30 a->fmr(F21, F21); // 31 // ;; 13 a->fmr(F22, F22); // 32 } // -------- sector 32 ------------- // ;; 14 a->cmpdi(CCR0, R4, unroll); // 33 a->bge(CCR0, l2); // 34 a->blr(); uint32_t *code_end = (uint32_t *)a->pc(); a->flush(); double loop1_seconds,loop2_seconds, rel_diff; uint64_t start1, stop1; start1 = os::current_thread_cpu_time(false); (*test1)(); stop1 = os::current_thread_cpu_time(false); loop1_seconds = (stop1- start1) / (1000 *1000 *1000.0); start1 = os::current_thread_cpu_time(false); (*test2)(); stop1 = os::current_thread_cpu_time(false); loop2_seconds = (stop1 - start1) / (1000 *1000 *1000.0); rel_diff = (loop2_seconds - loop1_seconds) / loop1_seconds *100; if (PrintAssembly) { ttyLocker ttyl; tty->print_cr("Decoding section size detection stub at " INTPTR_FORMAT " before execution:", p2i(code)); Disassembler::decode((u_char*)code, (u_char*)code_end, tty); tty->print_cr("Time loop1 :%f", loop1_seconds); tty->print_cr("Time loop2 :%f", loop2_seconds); tty->print_cr("(time2 - time1) / time1 = %f %%", rel_diff); if (rel_diff > 12.0) { tty->print_cr("Section Size 8 Instructions"); } else{ tty->print_cr("Section Size 32 Instructions or Power5"); } } #if 0 // TODO: PPC port // Set sector size (if not set explicitly). if (FLAG_IS_DEFAULT(Power6SectorSize128PPC64)) { if (rel_diff > 12.0) { PdScheduling::power6SectorSize = 0x20; } else { PdScheduling::power6SectorSize = 0x80; } } else if (Power6SectorSize128PPC64) { PdScheduling::power6SectorSize = 0x80; } else { PdScheduling::power6SectorSize = 0x20; } #endif if (UsePower6SchedulerPPC64) Unimplemented(); } #endif // COMPILER2 void VM_Version::determine_features() { #if defined(ABI_ELFv2) const int code_size = (num_features+1+2*7)*BytesPerInstWord; // TODO(asmundak): calculation is incorrect. #else // 7 InstWords for each call (function descriptor + blr instruction). const int code_size = (num_features+1+2*7)*BytesPerInstWord; #endif int features = 0; // create test area enum { BUFFER_SIZE = 2*4*K }; // Needs to be >=2* max cache line size (cache line size can't exceed min page size). char test_area[BUFFER_SIZE]; char *mid_of_test_area = &test_area[BUFFER_SIZE>>1]; // Allocate space for the code. ResourceMark rm; CodeBuffer cb("detect_cpu_features", code_size, 0); MacroAssembler* a = new MacroAssembler(&cb); // Must be set to true so we can generate the test code. _features = VM_Version::all_features_m; // Emit code. void (*test)(address addr, uint64_t offset)=(void(*)(address addr, uint64_t offset))(void *)a->function_entry(); uint32_t *code = (uint32_t *)a->pc(); // Don't use R0 in ldarx. // Keep R3_ARG1 unmodified, it contains &field (see below). // Keep R4_ARG2 unmodified, it contains offset = 0 (see below). a->fsqrt(F3, F4); // code[0] -> fsqrt_m a->fsqrts(F3, F4); // code[1] -> fsqrts_m a->isel(R7, R5, R6, 0); // code[2] -> isel_m a->ldarx_unchecked(R7, R3_ARG1, R4_ARG2, 1); // code[3] -> lxarx_m a->cmpb(R7, R5, R6); // code[4] -> bcmp //a->mftgpr(R7, F3); // code[5] -> mftgpr a->popcntb(R7, R5); // code[6] -> popcntb a->popcntw(R7, R5); // code[7] -> popcntw a->fcfids(F3, F4); // code[8] -> fcfids a->vand(VR0, VR0, VR0); // code[9] -> vand a->vcipher(VR0, VR1, VR2); // code[10] -> vcipher a->blr(); // Emit function to set one cache line to zero. Emit function descriptor and get pointer to it. void (*zero_cacheline_func_ptr)(char*) = (void(*)(char*))(void *)a->function_entry(); a->dcbz(R3_ARG1); // R3_ARG1 = addr a->blr(); uint32_t *code_end = (uint32_t *)a->pc(); a->flush(); _features = VM_Version::unknown_m; // Print the detection code. if (PrintAssembly) { ttyLocker ttyl; tty->print_cr("Decoding cpu-feature detection stub at " INTPTR_FORMAT " before execution:", p2i(code)); Disassembler::decode((u_char*)code, (u_char*)code_end, tty); } // Measure cache line size. memset(test_area, 0xFF, BUFFER_SIZE); // Fill test area with 0xFF. (*zero_cacheline_func_ptr)(mid_of_test_area); // Call function which executes dcbz to the middle. int count = 0; // count zeroed bytes for (int i = 0; i < BUFFER_SIZE; i++) if (test_area[i] == 0) count++; guarantee(is_power_of_2(count), "cache line size needs to be a power of 2"); _measured_cache_line_size = count; // Execute code. Illegal instructions will be replaced by 0 in the signal handler. VM_Version::_is_determine_features_test_running = true; (*test)((address)mid_of_test_area, (uint64_t)0); VM_Version::_is_determine_features_test_running = false; // determine which instructions are legal. int feature_cntr = 0; if (code[feature_cntr++]) features |= fsqrt_m; if (code[feature_cntr++]) features |= fsqrts_m; if (code[feature_cntr++]) features |= isel_m; if (code[feature_cntr++]) features |= lxarxeh_m; if (code[feature_cntr++]) features |= cmpb_m; //if(code[feature_cntr++])features |= mftgpr_m; if (code[feature_cntr++]) features |= popcntb_m; if (code[feature_cntr++]) features |= popcntw_m; if (code[feature_cntr++]) features |= fcfids_m; if (code[feature_cntr++]) features |= vand_m; if (code[feature_cntr++]) features |= vcipher_m; // Print the detection code. if (PrintAssembly) { ttyLocker ttyl; tty->print_cr("Decoding cpu-feature detection stub at " INTPTR_FORMAT " after execution:", p2i(code)); Disassembler::decode((u_char*)code, (u_char*)code_end, tty); } _features = features; } static int saved_features = 0; void VM_Version::allow_all() { saved_features = _features; _features = all_features_m; } void VM_Version::revert() { _features = saved_features; }