1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/javaCalls.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/objectMonitor.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/perfMemory.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/statSampler.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/thread.inline.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/timer.hpp"
  59 #include "services/attachListener.hpp"
  60 #include "services/runtimeService.hpp"
  61 #include "utilities/decoder.hpp"
  62 #include "utilities/defaultStream.hpp"
  63 #include "utilities/events.hpp"
  64 #include "utilities/growableArray.hpp"
  65 #include "utilities/vmError.hpp"
  66 
  67 // put OS-includes here
  68 # include <sys/types.h>
  69 # include <sys/mman.h>
  70 # include <sys/stat.h>
  71 # include <sys/select.h>
  72 # include <pthread.h>
  73 # include <signal.h>
  74 # include <errno.h>
  75 # include <dlfcn.h>
  76 # include <stdio.h>
  77 # include <unistd.h>
  78 # include <sys/resource.h>
  79 # include <pthread.h>
  80 # include <sys/stat.h>
  81 # include <sys/time.h>
  82 # include <sys/times.h>
  83 # include <sys/utsname.h>
  84 # include <sys/socket.h>
  85 # include <sys/wait.h>
  86 # include <pwd.h>
  87 # include <poll.h>
  88 # include <semaphore.h>
  89 # include <fcntl.h>
  90 # include <string.h>
  91 # include <syscall.h>
  92 # include <sys/sysinfo.h>
  93 # include <gnu/libc-version.h>
  94 # include <sys/ipc.h>
  95 # include <sys/shm.h>
  96 # include <link.h>
  97 # include <stdint.h>
  98 # include <inttypes.h>
  99 # include <sys/ioctl.h>
 100 
 101 #define MAX_PATH    (2 * K)
 102 
 103 // for timer info max values which include all bits
 104 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 105 
 106 #define LARGEPAGES_BIT (1 << 6)
 107 ////////////////////////////////////////////////////////////////////////////////
 108 // global variables
 109 julong os::Linux::_physical_memory = 0;
 110 
 111 address   os::Linux::_initial_thread_stack_bottom = NULL;
 112 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 113 
 114 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 115 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 116 Mutex* os::Linux::_createThread_lock = NULL;
 117 pthread_t os::Linux::_main_thread;
 118 int os::Linux::_page_size = -1;
 119 bool os::Linux::_is_floating_stack = false;
 120 bool os::Linux::_is_NPTL = false;
 121 bool os::Linux::_supports_fast_thread_cpu_time = false;
 122 const char * os::Linux::_glibc_version = NULL;
 123 const char * os::Linux::_libpthread_version = NULL;
 124 
 125 static jlong initial_time_count=0;
 126 
 127 static int clock_tics_per_sec = 100;
 128 
 129 // For diagnostics to print a message once. see run_periodic_checks
 130 static sigset_t check_signal_done;
 131 static bool check_signals = true;;
 132 
 133 static pid_t _initial_pid = 0;
 134 
 135 /* Signal number used to suspend/resume a thread */
 136 
 137 /* do not use any signal number less than SIGSEGV, see 4355769 */
 138 static int SR_signum = SIGUSR2;
 139 sigset_t SR_sigset;
 140 
 141 /* Used to protect dlsym() calls */
 142 static pthread_mutex_t dl_mutex;
 143 
 144 #ifdef JAVASE_EMBEDDED
 145 class MemNotifyThread: public Thread {
 146   friend class VMStructs;
 147  public:
 148   virtual void run();
 149 
 150  private:
 151   static MemNotifyThread* _memnotify_thread;
 152   int _fd;
 153 
 154  public:
 155 
 156   // Constructor
 157   MemNotifyThread(int fd);
 158 
 159   // Tester
 160   bool is_memnotify_thread() const { return true; }
 161 
 162   // Printing
 163   char* name() const { return (char*)"Linux MemNotify Thread"; }
 164 
 165   // Returns the single instance of the MemNotifyThread
 166   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 167 
 168   // Create and start the single instance of MemNotifyThread
 169   static void start();
 170 };
 171 #endif // JAVASE_EMBEDDED
 172 
 173 // utility functions
 174 
 175 static int SR_initialize();
 176 static int SR_finalize();
 177 
 178 julong os::available_memory() {
 179   return Linux::available_memory();
 180 }
 181 
 182 julong os::Linux::available_memory() {
 183   // values in struct sysinfo are "unsigned long"
 184   struct sysinfo si;
 185   sysinfo(&si);
 186 
 187   return (julong)si.freeram * si.mem_unit;
 188 }
 189 
 190 julong os::physical_memory() {
 191   return Linux::physical_memory();
 192 }
 193 
 194 julong os::allocatable_physical_memory(julong size) {
 195 #ifdef _LP64
 196   return size;
 197 #else
 198   julong result = MIN2(size, (julong)3800*M);
 199    if (!is_allocatable(result)) {
 200      // See comments under solaris for alignment considerations
 201      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
 202      result =  MIN2(size, reasonable_size);
 203    }
 204    return result;
 205 #endif // _LP64
 206 }
 207 
 208 ////////////////////////////////////////////////////////////////////////////////
 209 // environment support
 210 
 211 bool os::getenv(const char* name, char* buf, int len) {
 212   const char* val = ::getenv(name);
 213   if (val != NULL && strlen(val) < (size_t)len) {
 214     strcpy(buf, val);
 215     return true;
 216   }
 217   if (len > 0) buf[0] = 0;  // return a null string
 218   return false;
 219 }
 220 
 221 
 222 // Return true if user is running as root.
 223 
 224 bool os::have_special_privileges() {
 225   static bool init = false;
 226   static bool privileges = false;
 227   if (!init) {
 228     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 229     init = true;
 230   }
 231   return privileges;
 232 }
 233 
 234 
 235 #ifndef SYS_gettid
 236 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 237 #ifdef __ia64__
 238 #define SYS_gettid 1105
 239 #elif __i386__
 240 #define SYS_gettid 224
 241 #elif __amd64__
 242 #define SYS_gettid 186
 243 #elif __sparc__
 244 #define SYS_gettid 143
 245 #else
 246 #error define gettid for the arch
 247 #endif
 248 #endif
 249 
 250 // Cpu architecture string
 251 #if   defined(ZERO)
 252 static char cpu_arch[] = ZERO_LIBARCH;
 253 #elif defined(IA64)
 254 static char cpu_arch[] = "ia64";
 255 #elif defined(IA32)
 256 static char cpu_arch[] = "i386";
 257 #elif defined(AMD64)
 258 static char cpu_arch[] = "amd64";
 259 #elif defined(ARM)
 260 static char cpu_arch[] = "arm";
 261 #elif defined(PPC)
 262 static char cpu_arch[] = "ppc";
 263 #elif defined(SPARC)
 264 #  ifdef _LP64
 265 static char cpu_arch[] = "sparcv9";
 266 #  else
 267 static char cpu_arch[] = "sparc";
 268 #  endif
 269 #else
 270 #error Add appropriate cpu_arch setting
 271 #endif
 272 
 273 
 274 // pid_t gettid()
 275 //
 276 // Returns the kernel thread id of the currently running thread. Kernel
 277 // thread id is used to access /proc.
 278 //
 279 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 280 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 281 //
 282 pid_t os::Linux::gettid() {
 283   int rslt = syscall(SYS_gettid);
 284   if (rslt == -1) {
 285      // old kernel, no NPTL support
 286      return getpid();
 287   } else {
 288      return (pid_t)rslt;
 289   }
 290 }
 291 
 292 // Most versions of linux have a bug where the number of processors are
 293 // determined by looking at the /proc file system.  In a chroot environment,
 294 // the system call returns 1.  This causes the VM to act as if it is
 295 // a single processor and elide locking (see is_MP() call).
 296 static bool unsafe_chroot_detected = false;
 297 static const char *unstable_chroot_error = "/proc file system not found.\n"
 298                      "Java may be unstable running multithreaded in a chroot "
 299                      "environment on Linux when /proc filesystem is not mounted.";
 300 
 301 void os::Linux::initialize_system_info() {
 302   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 303   if (processor_count() == 1) {
 304     pid_t pid = os::Linux::gettid();
 305     char fname[32];
 306     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 307     FILE *fp = fopen(fname, "r");
 308     if (fp == NULL) {
 309       unsafe_chroot_detected = true;
 310     } else {
 311       fclose(fp);
 312     }
 313   }
 314   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 315   assert(processor_count() > 0, "linux error");
 316 }
 317 
 318 void os::init_system_properties_values() {
 319 //  char arch[12];
 320 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 321 
 322   // The next steps are taken in the product version:
 323   //
 324   // Obtain the JAVA_HOME value from the location of libjvm.so.
 325   // This library should be located at:
 326   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 327   //
 328   // If "/jre/lib/" appears at the right place in the path, then we
 329   // assume libjvm.so is installed in a JDK and we use this path.
 330   //
 331   // Otherwise exit with message: "Could not create the Java virtual machine."
 332   //
 333   // The following extra steps are taken in the debugging version:
 334   //
 335   // If "/jre/lib/" does NOT appear at the right place in the path
 336   // instead of exit check for $JAVA_HOME environment variable.
 337   //
 338   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 339   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 340   // it looks like libjvm.so is installed there
 341   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 342   //
 343   // Otherwise exit.
 344   //
 345   // Important note: if the location of libjvm.so changes this
 346   // code needs to be changed accordingly.
 347 
 348   // The next few definitions allow the code to be verbatim:
 349 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 350 #define getenv(n) ::getenv(n)
 351 
 352 /*
 353  * See ld(1):
 354  *      The linker uses the following search paths to locate required
 355  *      shared libraries:
 356  *        1: ...
 357  *        ...
 358  *        7: The default directories, normally /lib and /usr/lib.
 359  */
 360 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 361 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 362 #else
 363 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 364 #endif
 365 
 366 #define EXTENSIONS_DIR  "/lib/ext"
 367 #define ENDORSED_DIR    "/lib/endorsed"
 368 #define REG_DIR         "/usr/java/packages"
 369 
 370   {
 371     /* sysclasspath, java_home, dll_dir */
 372     {
 373         char *home_path;
 374         char *dll_path;
 375         char *pslash;
 376         char buf[MAXPATHLEN];
 377         os::jvm_path(buf, sizeof(buf));
 378 
 379         // Found the full path to libjvm.so.
 380         // Now cut the path to <java_home>/jre if we can.
 381         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 382         pslash = strrchr(buf, '/');
 383         if (pslash != NULL)
 384             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 385         dll_path = malloc(strlen(buf) + 1);
 386         if (dll_path == NULL)
 387             return;
 388         strcpy(dll_path, buf);
 389         Arguments::set_dll_dir(dll_path);
 390 
 391         if (pslash != NULL) {
 392             pslash = strrchr(buf, '/');
 393             if (pslash != NULL) {
 394                 *pslash = '\0';       /* get rid of /<arch> */
 395                 pslash = strrchr(buf, '/');
 396                 if (pslash != NULL)
 397                     *pslash = '\0';   /* get rid of /lib */
 398             }
 399         }
 400 
 401         home_path = malloc(strlen(buf) + 1);
 402         if (home_path == NULL)
 403             return;
 404         strcpy(home_path, buf);
 405         Arguments::set_java_home(home_path);
 406 
 407         if (!set_boot_path('/', ':'))
 408             return;
 409     }
 410 
 411     /*
 412      * Where to look for native libraries
 413      *
 414      * Note: Due to a legacy implementation, most of the library path
 415      * is set in the launcher.  This was to accomodate linking restrictions
 416      * on legacy Linux implementations (which are no longer supported).
 417      * Eventually, all the library path setting will be done here.
 418      *
 419      * However, to prevent the proliferation of improperly built native
 420      * libraries, the new path component /usr/java/packages is added here.
 421      * Eventually, all the library path setting will be done here.
 422      */
 423     {
 424         char *ld_library_path;
 425 
 426         /*
 427          * Construct the invariant part of ld_library_path. Note that the
 428          * space for the colon and the trailing null are provided by the
 429          * nulls included by the sizeof operator (so actually we allocate
 430          * a byte more than necessary).
 431          */
 432         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 433             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 434         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 435 
 436         /*
 437          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 438          * should always exist (until the legacy problem cited above is
 439          * addressed).
 440          */
 441         char *v = getenv("LD_LIBRARY_PATH");
 442         if (v != NULL) {
 443             char *t = ld_library_path;
 444             /* That's +1 for the colon and +1 for the trailing '\0' */
 445             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 446             sprintf(ld_library_path, "%s:%s", v, t);
 447         }
 448         Arguments::set_library_path(ld_library_path);
 449     }
 450 
 451     /*
 452      * Extensions directories.
 453      *
 454      * Note that the space for the colon and the trailing null are provided
 455      * by the nulls included by the sizeof operator (so actually one byte more
 456      * than necessary is allocated).
 457      */
 458     {
 459         char *buf = malloc(strlen(Arguments::get_java_home()) +
 460             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 461         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 462             Arguments::get_java_home());
 463         Arguments::set_ext_dirs(buf);
 464     }
 465 
 466     /* Endorsed standards default directory. */
 467     {
 468         char * buf;
 469         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 470         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 471         Arguments::set_endorsed_dirs(buf);
 472     }
 473   }
 474 
 475 #undef malloc
 476 #undef getenv
 477 #undef EXTENSIONS_DIR
 478 #undef ENDORSED_DIR
 479 
 480   // Done
 481   return;
 482 }
 483 
 484 ////////////////////////////////////////////////////////////////////////////////
 485 // breakpoint support
 486 
 487 void os::breakpoint() {
 488   BREAKPOINT;
 489 }
 490 
 491 extern "C" void breakpoint() {
 492   // use debugger to set breakpoint here
 493 }
 494 
 495 ////////////////////////////////////////////////////////////////////////////////
 496 // signal support
 497 
 498 debug_only(static bool signal_sets_initialized = false);
 499 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 500 
 501 bool os::Linux::is_sig_ignored(int sig) {
 502       struct sigaction oact;
 503       sigaction(sig, (struct sigaction*)NULL, &oact);
 504       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 505                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 506       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 507            return true;
 508       else
 509            return false;
 510 }
 511 
 512 void os::Linux::signal_sets_init() {
 513   // Should also have an assertion stating we are still single-threaded.
 514   assert(!signal_sets_initialized, "Already initialized");
 515   // Fill in signals that are necessarily unblocked for all threads in
 516   // the VM. Currently, we unblock the following signals:
 517   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 518   //                         by -Xrs (=ReduceSignalUsage));
 519   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 520   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 521   // the dispositions or masks wrt these signals.
 522   // Programs embedding the VM that want to use the above signals for their
 523   // own purposes must, at this time, use the "-Xrs" option to prevent
 524   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 525   // (See bug 4345157, and other related bugs).
 526   // In reality, though, unblocking these signals is really a nop, since
 527   // these signals are not blocked by default.
 528   sigemptyset(&unblocked_sigs);
 529   sigemptyset(&allowdebug_blocked_sigs);
 530   sigaddset(&unblocked_sigs, SIGILL);
 531   sigaddset(&unblocked_sigs, SIGSEGV);
 532   sigaddset(&unblocked_sigs, SIGBUS);
 533   sigaddset(&unblocked_sigs, SIGFPE);
 534   sigaddset(&unblocked_sigs, SR_signum);
 535 
 536   if (!ReduceSignalUsage) {
 537    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 538       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 539       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 540    }
 541    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 542       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 543       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 544    }
 545    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 546       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 547       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 548    }
 549   }
 550   // Fill in signals that are blocked by all but the VM thread.
 551   sigemptyset(&vm_sigs);
 552   if (!ReduceSignalUsage)
 553     sigaddset(&vm_sigs, BREAK_SIGNAL);
 554   debug_only(signal_sets_initialized = true);
 555 
 556 }
 557 
 558 // These are signals that are unblocked while a thread is running Java.
 559 // (For some reason, they get blocked by default.)
 560 sigset_t* os::Linux::unblocked_signals() {
 561   assert(signal_sets_initialized, "Not initialized");
 562   return &unblocked_sigs;
 563 }
 564 
 565 // These are the signals that are blocked while a (non-VM) thread is
 566 // running Java. Only the VM thread handles these signals.
 567 sigset_t* os::Linux::vm_signals() {
 568   assert(signal_sets_initialized, "Not initialized");
 569   return &vm_sigs;
 570 }
 571 
 572 // These are signals that are blocked during cond_wait to allow debugger in
 573 sigset_t* os::Linux::allowdebug_blocked_signals() {
 574   assert(signal_sets_initialized, "Not initialized");
 575   return &allowdebug_blocked_sigs;
 576 }
 577 
 578 void os::Linux::hotspot_sigmask(Thread* thread) {
 579 
 580   //Save caller's signal mask before setting VM signal mask
 581   sigset_t caller_sigmask;
 582   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 583 
 584   OSThread* osthread = thread->osthread();
 585   osthread->set_caller_sigmask(caller_sigmask);
 586 
 587   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 588 
 589   if (!ReduceSignalUsage) {
 590     if (thread->is_VM_thread()) {
 591       // Only the VM thread handles BREAK_SIGNAL ...
 592       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 593     } else {
 594       // ... all other threads block BREAK_SIGNAL
 595       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 596     }
 597   }
 598 }
 599 
 600 //////////////////////////////////////////////////////////////////////////////
 601 // detecting pthread library
 602 
 603 void os::Linux::libpthread_init() {
 604   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 605   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 606   // generic name for earlier versions.
 607   // Define macros here so we can build HotSpot on old systems.
 608 # ifndef _CS_GNU_LIBC_VERSION
 609 # define _CS_GNU_LIBC_VERSION 2
 610 # endif
 611 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 612 # define _CS_GNU_LIBPTHREAD_VERSION 3
 613 # endif
 614 
 615   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 616   if (n > 0) {
 617      char *str = (char *)malloc(n, mtInternal);
 618      confstr(_CS_GNU_LIBC_VERSION, str, n);
 619      os::Linux::set_glibc_version(str);
 620   } else {
 621      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 622      static char _gnu_libc_version[32];
 623      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 624               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 625      os::Linux::set_glibc_version(_gnu_libc_version);
 626   }
 627 
 628   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 629   if (n > 0) {
 630      char *str = (char *)malloc(n, mtInternal);
 631      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 632      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 633      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 634      // is the case. LinuxThreads has a hard limit on max number of threads.
 635      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 636      // On the other hand, NPTL does not have such a limit, sysconf()
 637      // will return -1 and errno is not changed. Check if it is really NPTL.
 638      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 639          strstr(str, "NPTL") &&
 640          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 641        free(str);
 642        os::Linux::set_libpthread_version("linuxthreads");
 643      } else {
 644        os::Linux::set_libpthread_version(str);
 645      }
 646   } else {
 647     // glibc before 2.3.2 only has LinuxThreads.
 648     os::Linux::set_libpthread_version("linuxthreads");
 649   }
 650 
 651   if (strstr(libpthread_version(), "NPTL")) {
 652      os::Linux::set_is_NPTL();
 653   } else {
 654      os::Linux::set_is_LinuxThreads();
 655   }
 656 
 657   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 658   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 659   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 660      os::Linux::set_is_floating_stack();
 661   }
 662 }
 663 
 664 /////////////////////////////////////////////////////////////////////////////
 665 // thread stack
 666 
 667 // Force Linux kernel to expand current thread stack. If "bottom" is close
 668 // to the stack guard, caller should block all signals.
 669 //
 670 // MAP_GROWSDOWN:
 671 //   A special mmap() flag that is used to implement thread stacks. It tells
 672 //   kernel that the memory region should extend downwards when needed. This
 673 //   allows early versions of LinuxThreads to only mmap the first few pages
 674 //   when creating a new thread. Linux kernel will automatically expand thread
 675 //   stack as needed (on page faults).
 676 //
 677 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 678 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 679 //   region, it's hard to tell if the fault is due to a legitimate stack
 680 //   access or because of reading/writing non-exist memory (e.g. buffer
 681 //   overrun). As a rule, if the fault happens below current stack pointer,
 682 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 683 //   application (see Linux kernel fault.c).
 684 //
 685 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 686 //   stack overflow detection.
 687 //
 688 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 689 //   not use this flag. However, the stack of initial thread is not created
 690 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 691 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 692 //   and then attach the thread to JVM.
 693 //
 694 // To get around the problem and allow stack banging on Linux, we need to
 695 // manually expand thread stack after receiving the SIGSEGV.
 696 //
 697 // There are two ways to expand thread stack to address "bottom", we used
 698 // both of them in JVM before 1.5:
 699 //   1. adjust stack pointer first so that it is below "bottom", and then
 700 //      touch "bottom"
 701 //   2. mmap() the page in question
 702 //
 703 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 704 // if current sp is already near the lower end of page 101, and we need to
 705 // call mmap() to map page 100, it is possible that part of the mmap() frame
 706 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 707 // That will destroy the mmap() frame and cause VM to crash.
 708 //
 709 // The following code works by adjusting sp first, then accessing the "bottom"
 710 // page to force a page fault. Linux kernel will then automatically expand the
 711 // stack mapping.
 712 //
 713 // _expand_stack_to() assumes its frame size is less than page size, which
 714 // should always be true if the function is not inlined.
 715 
 716 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 717 #define NOINLINE
 718 #else
 719 #define NOINLINE __attribute__ ((noinline))
 720 #endif
 721 
 722 static void _expand_stack_to(address bottom) NOINLINE;
 723 
 724 static void _expand_stack_to(address bottom) {
 725   address sp;
 726   size_t size;
 727   volatile char *p;
 728 
 729   // Adjust bottom to point to the largest address within the same page, it
 730   // gives us a one-page buffer if alloca() allocates slightly more memory.
 731   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 732   bottom += os::Linux::page_size() - 1;
 733 
 734   // sp might be slightly above current stack pointer; if that's the case, we
 735   // will alloca() a little more space than necessary, which is OK. Don't use
 736   // os::current_stack_pointer(), as its result can be slightly below current
 737   // stack pointer, causing us to not alloca enough to reach "bottom".
 738   sp = (address)&sp;
 739 
 740   if (sp > bottom) {
 741     size = sp - bottom;
 742     p = (volatile char *)alloca(size);
 743     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 744     p[0] = '\0';
 745   }
 746 }
 747 
 748 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 749   assert(t!=NULL, "just checking");
 750   assert(t->osthread()->expanding_stack(), "expand should be set");
 751   assert(t->stack_base() != NULL, "stack_base was not initialized");
 752 
 753   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 754     sigset_t mask_all, old_sigset;
 755     sigfillset(&mask_all);
 756     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 757     _expand_stack_to(addr);
 758     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 759     return true;
 760   }
 761   return false;
 762 }
 763 
 764 //////////////////////////////////////////////////////////////////////////////
 765 // create new thread
 766 
 767 static address highest_vm_reserved_address();
 768 
 769 // check if it's safe to start a new thread
 770 static bool _thread_safety_check(Thread* thread) {
 771   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 772     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 773     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 774     //   allocated (MAP_FIXED) from high address space. Every thread stack
 775     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 776     //   it to other values if they rebuild LinuxThreads).
 777     //
 778     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 779     // the memory region has already been mmap'ed. That means if we have too
 780     // many threads and/or very large heap, eventually thread stack will
 781     // collide with heap.
 782     //
 783     // Here we try to prevent heap/stack collision by comparing current
 784     // stack bottom with the highest address that has been mmap'ed by JVM
 785     // plus a safety margin for memory maps created by native code.
 786     //
 787     // This feature can be disabled by setting ThreadSafetyMargin to 0
 788     //
 789     if (ThreadSafetyMargin > 0) {
 790       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 791 
 792       // not safe if our stack extends below the safety margin
 793       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 794     } else {
 795       return true;
 796     }
 797   } else {
 798     // Floating stack LinuxThreads or NPTL:
 799     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 800     //   there's not enough space left, pthread_create() will fail. If we come
 801     //   here, that means enough space has been reserved for stack.
 802     return true;
 803   }
 804 }
 805 
 806 // Thread start routine for all newly created threads
 807 static void *java_start(Thread *thread) {
 808   // Try to randomize the cache line index of hot stack frames.
 809   // This helps when threads of the same stack traces evict each other's
 810   // cache lines. The threads can be either from the same JVM instance, or
 811   // from different JVM instances. The benefit is especially true for
 812   // processors with hyperthreading technology.
 813   static int counter = 0;
 814   int pid = os::current_process_id();
 815   alloca(((pid ^ counter++) & 7) * 128);
 816 
 817   ThreadLocalStorage::set_thread(thread);
 818 
 819   OSThread* osthread = thread->osthread();
 820   Monitor* sync = osthread->startThread_lock();
 821 
 822   // non floating stack LinuxThreads needs extra check, see above
 823   if (!_thread_safety_check(thread)) {
 824     // notify parent thread
 825     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 826     osthread->set_state(ZOMBIE);
 827     sync->notify_all();
 828     return NULL;
 829   }
 830 
 831   // thread_id is kernel thread id (similar to Solaris LWP id)
 832   osthread->set_thread_id(os::Linux::gettid());
 833 
 834   if (UseNUMA) {
 835     int lgrp_id = os::numa_get_group_id();
 836     if (lgrp_id != -1) {
 837       thread->set_lgrp_id(lgrp_id);
 838     }
 839   }
 840   // initialize signal mask for this thread
 841   os::Linux::hotspot_sigmask(thread);
 842 
 843   // initialize floating point control register
 844   os::Linux::init_thread_fpu_state();
 845 
 846   // handshaking with parent thread
 847   {
 848     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 849 
 850     // notify parent thread
 851     osthread->set_state(INITIALIZED);
 852     sync->notify_all();
 853 
 854     // wait until os::start_thread()
 855     while (osthread->get_state() == INITIALIZED) {
 856       sync->wait(Mutex::_no_safepoint_check_flag);
 857     }
 858   }
 859 
 860   // call one more level start routine
 861   thread->run();
 862 
 863   return 0;
 864 }
 865 
 866 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 867   assert(thread->osthread() == NULL, "caller responsible");
 868 
 869   // Allocate the OSThread object
 870   OSThread* osthread = new OSThread(NULL, NULL);
 871   if (osthread == NULL) {
 872     return false;
 873   }
 874 
 875   // set the correct thread state
 876   osthread->set_thread_type(thr_type);
 877 
 878   // Initial state is ALLOCATED but not INITIALIZED
 879   osthread->set_state(ALLOCATED);
 880 
 881   thread->set_osthread(osthread);
 882 
 883   // init thread attributes
 884   pthread_attr_t attr;
 885   pthread_attr_init(&attr);
 886   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 887 
 888   // stack size
 889   if (os::Linux::supports_variable_stack_size()) {
 890     // calculate stack size if it's not specified by caller
 891     if (stack_size == 0) {
 892       stack_size = os::Linux::default_stack_size(thr_type);
 893 
 894       switch (thr_type) {
 895       case os::java_thread:
 896         // Java threads use ThreadStackSize which default value can be
 897         // changed with the flag -Xss
 898         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 899         stack_size = JavaThread::stack_size_at_create();
 900         break;
 901       case os::compiler_thread:
 902         if (CompilerThreadStackSize > 0) {
 903           stack_size = (size_t)(CompilerThreadStackSize * K);
 904           break;
 905         } // else fall through:
 906           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 907       case os::vm_thread:
 908       case os::pgc_thread:
 909       case os::cgc_thread:
 910       case os::watcher_thread:
 911         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 912         break;
 913       }
 914     }
 915 
 916     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 917     pthread_attr_setstacksize(&attr, stack_size);
 918   } else {
 919     // let pthread_create() pick the default value.
 920   }
 921 
 922   // glibc guard page
 923   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 924 
 925   ThreadState state;
 926 
 927   {
 928     // Serialize thread creation if we are running with fixed stack LinuxThreads
 929     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 930     if (lock) {
 931       os::Linux::createThread_lock()->lock_without_safepoint_check();
 932     }
 933 
 934     pthread_t tid;
 935     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 936 
 937     pthread_attr_destroy(&attr);
 938 
 939     if (ret != 0) {
 940       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 941         perror("pthread_create()");
 942       }
 943       // Need to clean up stuff we've allocated so far
 944       thread->set_osthread(NULL);
 945       delete osthread;
 946       if (lock) os::Linux::createThread_lock()->unlock();
 947       return false;
 948     }
 949 
 950     // Store pthread info into the OSThread
 951     osthread->set_pthread_id(tid);
 952 
 953     // Wait until child thread is either initialized or aborted
 954     {
 955       Monitor* sync_with_child = osthread->startThread_lock();
 956       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 957       while ((state = osthread->get_state()) == ALLOCATED) {
 958         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 959       }
 960     }
 961 
 962     if (lock) {
 963       os::Linux::createThread_lock()->unlock();
 964     }
 965   }
 966 
 967   // Aborted due to thread limit being reached
 968   if (state == ZOMBIE) {
 969       thread->set_osthread(NULL);
 970       delete osthread;
 971       return false;
 972   }
 973 
 974   // The thread is returned suspended (in state INITIALIZED),
 975   // and is started higher up in the call chain
 976   assert(state == INITIALIZED, "race condition");
 977   return true;
 978 }
 979 
 980 /////////////////////////////////////////////////////////////////////////////
 981 // attach existing thread
 982 
 983 // bootstrap the main thread
 984 bool os::create_main_thread(JavaThread* thread) {
 985   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 986   return create_attached_thread(thread);
 987 }
 988 
 989 bool os::create_attached_thread(JavaThread* thread) {
 990 #ifdef ASSERT
 991     thread->verify_not_published();
 992 #endif
 993 
 994   // Allocate the OSThread object
 995   OSThread* osthread = new OSThread(NULL, NULL);
 996 
 997   if (osthread == NULL) {
 998     return false;
 999   }
1000 
1001   // Store pthread info into the OSThread
1002   osthread->set_thread_id(os::Linux::gettid());
1003   osthread->set_pthread_id(::pthread_self());
1004 
1005   // initialize floating point control register
1006   os::Linux::init_thread_fpu_state();
1007 
1008   // Initial thread state is RUNNABLE
1009   osthread->set_state(RUNNABLE);
1010 
1011   thread->set_osthread(osthread);
1012 
1013   if (UseNUMA) {
1014     int lgrp_id = os::numa_get_group_id();
1015     if (lgrp_id != -1) {
1016       thread->set_lgrp_id(lgrp_id);
1017     }
1018   }
1019 
1020   if (os::Linux::is_initial_thread()) {
1021     // If current thread is initial thread, its stack is mapped on demand,
1022     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1023     // the entire stack region to avoid SEGV in stack banging.
1024     // It is also useful to get around the heap-stack-gap problem on SuSE
1025     // kernel (see 4821821 for details). We first expand stack to the top
1026     // of yellow zone, then enable stack yellow zone (order is significant,
1027     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1028     // is no gap between the last two virtual memory regions.
1029 
1030     JavaThread *jt = (JavaThread *)thread;
1031     address addr = jt->stack_yellow_zone_base();
1032     assert(addr != NULL, "initialization problem?");
1033     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1034 
1035     osthread->set_expanding_stack();
1036     os::Linux::manually_expand_stack(jt, addr);
1037     osthread->clear_expanding_stack();
1038   }
1039 
1040   // initialize signal mask for this thread
1041   // and save the caller's signal mask
1042   os::Linux::hotspot_sigmask(thread);
1043 
1044   return true;
1045 }
1046 
1047 void os::pd_start_thread(Thread* thread) {
1048   OSThread * osthread = thread->osthread();
1049   assert(osthread->get_state() != INITIALIZED, "just checking");
1050   Monitor* sync_with_child = osthread->startThread_lock();
1051   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1052   sync_with_child->notify();
1053 }
1054 
1055 // Free Linux resources related to the OSThread
1056 void os::free_thread(OSThread* osthread) {
1057   assert(osthread != NULL, "osthread not set");
1058 
1059   if (Thread::current()->osthread() == osthread) {
1060     // Restore caller's signal mask
1061     sigset_t sigmask = osthread->caller_sigmask();
1062     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1063    }
1064 
1065   delete osthread;
1066 }
1067 
1068 //////////////////////////////////////////////////////////////////////////////
1069 // thread local storage
1070 
1071 int os::allocate_thread_local_storage() {
1072   pthread_key_t key;
1073   int rslt = pthread_key_create(&key, NULL);
1074   assert(rslt == 0, "cannot allocate thread local storage");
1075   return (int)key;
1076 }
1077 
1078 // Note: This is currently not used by VM, as we don't destroy TLS key
1079 // on VM exit.
1080 void os::free_thread_local_storage(int index) {
1081   int rslt = pthread_key_delete((pthread_key_t)index);
1082   assert(rslt == 0, "invalid index");
1083 }
1084 
1085 void os::thread_local_storage_at_put(int index, void* value) {
1086   int rslt = pthread_setspecific((pthread_key_t)index, value);
1087   assert(rslt == 0, "pthread_setspecific failed");
1088 }
1089 
1090 extern "C" Thread* get_thread() {
1091   return ThreadLocalStorage::thread();
1092 }
1093 
1094 //////////////////////////////////////////////////////////////////////////////
1095 // initial thread
1096 
1097 // Check if current thread is the initial thread, similar to Solaris thr_main.
1098 bool os::Linux::is_initial_thread(void) {
1099   char dummy;
1100   // If called before init complete, thread stack bottom will be null.
1101   // Can be called if fatal error occurs before initialization.
1102   if (initial_thread_stack_bottom() == NULL) return false;
1103   assert(initial_thread_stack_bottom() != NULL &&
1104          initial_thread_stack_size()   != 0,
1105          "os::init did not locate initial thread's stack region");
1106   if ((address)&dummy >= initial_thread_stack_bottom() &&
1107       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1108        return true;
1109   else return false;
1110 }
1111 
1112 // Find the virtual memory area that contains addr
1113 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1114   FILE *fp = fopen("/proc/self/maps", "r");
1115   if (fp) {
1116     address low, high;
1117     while (!feof(fp)) {
1118       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1119         if (low <= addr && addr < high) {
1120            if (vma_low)  *vma_low  = low;
1121            if (vma_high) *vma_high = high;
1122            fclose (fp);
1123            return true;
1124         }
1125       }
1126       for (;;) {
1127         int ch = fgetc(fp);
1128         if (ch == EOF || ch == (int)'\n') break;
1129       }
1130     }
1131     fclose(fp);
1132   }
1133   return false;
1134 }
1135 
1136 // Locate initial thread stack. This special handling of initial thread stack
1137 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1138 // bogus value for initial thread.
1139 void os::Linux::capture_initial_stack(size_t max_size) {
1140   // stack size is the easy part, get it from RLIMIT_STACK
1141   size_t stack_size;
1142   struct rlimit rlim;
1143   getrlimit(RLIMIT_STACK, &rlim);
1144   stack_size = rlim.rlim_cur;
1145 
1146   // 6308388: a bug in ld.so will relocate its own .data section to the
1147   //   lower end of primordial stack; reduce ulimit -s value a little bit
1148   //   so we won't install guard page on ld.so's data section.
1149   stack_size -= 2 * page_size();
1150 
1151   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1152   //   7.1, in both cases we will get 2G in return value.
1153   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1154   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1155   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1156   //   in case other parts in glibc still assumes 2M max stack size.
1157   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1158   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1159   if (stack_size > 2 * K * K IA64_ONLY(*2))
1160       stack_size = 2 * K * K IA64_ONLY(*2);
1161   // Try to figure out where the stack base (top) is. This is harder.
1162   //
1163   // When an application is started, glibc saves the initial stack pointer in
1164   // a global variable "__libc_stack_end", which is then used by system
1165   // libraries. __libc_stack_end should be pretty close to stack top. The
1166   // variable is available since the very early days. However, because it is
1167   // a private interface, it could disappear in the future.
1168   //
1169   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1170   // to __libc_stack_end, it is very close to stack top, but isn't the real
1171   // stack top. Note that /proc may not exist if VM is running as a chroot
1172   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1173   // /proc/<pid>/stat could change in the future (though unlikely).
1174   //
1175   // We try __libc_stack_end first. If that doesn't work, look for
1176   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1177   // as a hint, which should work well in most cases.
1178 
1179   uintptr_t stack_start;
1180 
1181   // try __libc_stack_end first
1182   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1183   if (p && *p) {
1184     stack_start = *p;
1185   } else {
1186     // see if we can get the start_stack field from /proc/self/stat
1187     FILE *fp;
1188     int pid;
1189     char state;
1190     int ppid;
1191     int pgrp;
1192     int session;
1193     int nr;
1194     int tpgrp;
1195     unsigned long flags;
1196     unsigned long minflt;
1197     unsigned long cminflt;
1198     unsigned long majflt;
1199     unsigned long cmajflt;
1200     unsigned long utime;
1201     unsigned long stime;
1202     long cutime;
1203     long cstime;
1204     long prio;
1205     long nice;
1206     long junk;
1207     long it_real;
1208     uintptr_t start;
1209     uintptr_t vsize;
1210     intptr_t rss;
1211     uintptr_t rsslim;
1212     uintptr_t scodes;
1213     uintptr_t ecode;
1214     int i;
1215 
1216     // Figure what the primordial thread stack base is. Code is inspired
1217     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1218     // followed by command name surrounded by parentheses, state, etc.
1219     char stat[2048];
1220     int statlen;
1221 
1222     fp = fopen("/proc/self/stat", "r");
1223     if (fp) {
1224       statlen = fread(stat, 1, 2047, fp);
1225       stat[statlen] = '\0';
1226       fclose(fp);
1227 
1228       // Skip pid and the command string. Note that we could be dealing with
1229       // weird command names, e.g. user could decide to rename java launcher
1230       // to "java 1.4.2 :)", then the stat file would look like
1231       //                1234 (java 1.4.2 :)) R ... ...
1232       // We don't really need to know the command string, just find the last
1233       // occurrence of ")" and then start parsing from there. See bug 4726580.
1234       char * s = strrchr(stat, ')');
1235 
1236       i = 0;
1237       if (s) {
1238         // Skip blank chars
1239         do s++; while (isspace(*s));
1240 
1241 #define _UFM UINTX_FORMAT
1242 #define _DFM INTX_FORMAT
1243 
1244         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1245         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1246         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1247              &state,          /* 3  %c  */
1248              &ppid,           /* 4  %d  */
1249              &pgrp,           /* 5  %d  */
1250              &session,        /* 6  %d  */
1251              &nr,             /* 7  %d  */
1252              &tpgrp,          /* 8  %d  */
1253              &flags,          /* 9  %lu  */
1254              &minflt,         /* 10 %lu  */
1255              &cminflt,        /* 11 %lu  */
1256              &majflt,         /* 12 %lu  */
1257              &cmajflt,        /* 13 %lu  */
1258              &utime,          /* 14 %lu  */
1259              &stime,          /* 15 %lu  */
1260              &cutime,         /* 16 %ld  */
1261              &cstime,         /* 17 %ld  */
1262              &prio,           /* 18 %ld  */
1263              &nice,           /* 19 %ld  */
1264              &junk,           /* 20 %ld  */
1265              &it_real,        /* 21 %ld  */
1266              &start,          /* 22 UINTX_FORMAT */
1267              &vsize,          /* 23 UINTX_FORMAT */
1268              &rss,            /* 24 INTX_FORMAT  */
1269              &rsslim,         /* 25 UINTX_FORMAT */
1270              &scodes,         /* 26 UINTX_FORMAT */
1271              &ecode,          /* 27 UINTX_FORMAT */
1272              &stack_start);   /* 28 UINTX_FORMAT */
1273       }
1274 
1275 #undef _UFM
1276 #undef _DFM
1277 
1278       if (i != 28 - 2) {
1279          assert(false, "Bad conversion from /proc/self/stat");
1280          // product mode - assume we are the initial thread, good luck in the
1281          // embedded case.
1282          warning("Can't detect initial thread stack location - bad conversion");
1283          stack_start = (uintptr_t) &rlim;
1284       }
1285     } else {
1286       // For some reason we can't open /proc/self/stat (for example, running on
1287       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1288       // most cases, so don't abort:
1289       warning("Can't detect initial thread stack location - no /proc/self/stat");
1290       stack_start = (uintptr_t) &rlim;
1291     }
1292   }
1293 
1294   // Now we have a pointer (stack_start) very close to the stack top, the
1295   // next thing to do is to figure out the exact location of stack top. We
1296   // can find out the virtual memory area that contains stack_start by
1297   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1298   // and its upper limit is the real stack top. (again, this would fail if
1299   // running inside chroot, because /proc may not exist.)
1300 
1301   uintptr_t stack_top;
1302   address low, high;
1303   if (find_vma((address)stack_start, &low, &high)) {
1304     // success, "high" is the true stack top. (ignore "low", because initial
1305     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1306     stack_top = (uintptr_t)high;
1307   } else {
1308     // failed, likely because /proc/self/maps does not exist
1309     warning("Can't detect initial thread stack location - find_vma failed");
1310     // best effort: stack_start is normally within a few pages below the real
1311     // stack top, use it as stack top, and reduce stack size so we won't put
1312     // guard page outside stack.
1313     stack_top = stack_start;
1314     stack_size -= 16 * page_size();
1315   }
1316 
1317   // stack_top could be partially down the page so align it
1318   stack_top = align_size_up(stack_top, page_size());
1319 
1320   if (max_size && stack_size > max_size) {
1321      _initial_thread_stack_size = max_size;
1322   } else {
1323      _initial_thread_stack_size = stack_size;
1324   }
1325 
1326   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1327   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1328 }
1329 
1330 ////////////////////////////////////////////////////////////////////////////////
1331 // time support
1332 
1333 // Time since start-up in seconds to a fine granularity.
1334 // Used by VMSelfDestructTimer and the MemProfiler.
1335 double os::elapsedTime() {
1336 
1337   return (double)(os::elapsed_counter()) * 0.000001;
1338 }
1339 
1340 jlong os::elapsed_counter() {
1341   timeval time;
1342   int status = gettimeofday(&time, NULL);
1343   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1344 }
1345 
1346 jlong os::elapsed_frequency() {
1347   return (1000 * 1000);
1348 }
1349 
1350 // For now, we say that linux does not support vtime.  I have no idea
1351 // whether it can actually be made to (DLD, 9/13/05).
1352 
1353 bool os::supports_vtime() { return false; }
1354 bool os::enable_vtime()   { return false; }
1355 bool os::vtime_enabled()  { return false; }
1356 double os::elapsedVTime() {
1357   // better than nothing, but not much
1358   return elapsedTime();
1359 }
1360 
1361 jlong os::javaTimeMillis() {
1362   timeval time;
1363   int status = gettimeofday(&time, NULL);
1364   assert(status != -1, "linux error");
1365   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1366 }
1367 
1368 #ifndef CLOCK_MONOTONIC
1369 #define CLOCK_MONOTONIC (1)
1370 #endif
1371 
1372 void os::Linux::clock_init() {
1373   // we do dlopen's in this particular order due to bug in linux
1374   // dynamical loader (see 6348968) leading to crash on exit
1375   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1376   if (handle == NULL) {
1377     handle = dlopen("librt.so", RTLD_LAZY);
1378   }
1379 
1380   if (handle) {
1381     int (*clock_getres_func)(clockid_t, struct timespec*) =
1382            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1383     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1384            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1385     if (clock_getres_func && clock_gettime_func) {
1386       // See if monotonic clock is supported by the kernel. Note that some
1387       // early implementations simply return kernel jiffies (updated every
1388       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1389       // for nano time (though the monotonic property is still nice to have).
1390       // It's fixed in newer kernels, however clock_getres() still returns
1391       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1392       // resolution for now. Hopefully as people move to new kernels, this
1393       // won't be a problem.
1394       struct timespec res;
1395       struct timespec tp;
1396       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1397           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1398         // yes, monotonic clock is supported
1399         _clock_gettime = clock_gettime_func;
1400       } else {
1401         // close librt if there is no monotonic clock
1402         dlclose(handle);
1403       }
1404     }
1405   }
1406 }
1407 
1408 #ifndef SYS_clock_getres
1409 
1410 #if defined(IA32) || defined(AMD64)
1411 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1412 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1413 #else
1414 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1415 #define sys_clock_getres(x,y)  -1
1416 #endif
1417 
1418 #else
1419 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1420 #endif
1421 
1422 void os::Linux::fast_thread_clock_init() {
1423   if (!UseLinuxPosixThreadCPUClocks) {
1424     return;
1425   }
1426   clockid_t clockid;
1427   struct timespec tp;
1428   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1429       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1430 
1431   // Switch to using fast clocks for thread cpu time if
1432   // the sys_clock_getres() returns 0 error code.
1433   // Note, that some kernels may support the current thread
1434   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1435   // returned by the pthread_getcpuclockid().
1436   // If the fast Posix clocks are supported then the sys_clock_getres()
1437   // must return at least tp.tv_sec == 0 which means a resolution
1438   // better than 1 sec. This is extra check for reliability.
1439 
1440   if(pthread_getcpuclockid_func &&
1441      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1442      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1443 
1444     _supports_fast_thread_cpu_time = true;
1445     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1446   }
1447 }
1448 
1449 jlong os::javaTimeNanos() {
1450   if (Linux::supports_monotonic_clock()) {
1451     struct timespec tp;
1452     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1453     assert(status == 0, "gettime error");
1454     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1455     return result;
1456   } else {
1457     timeval time;
1458     int status = gettimeofday(&time, NULL);
1459     assert(status != -1, "linux error");
1460     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1461     return 1000 * usecs;
1462   }
1463 }
1464 
1465 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1466   if (Linux::supports_monotonic_clock()) {
1467     info_ptr->max_value = ALL_64_BITS;
1468 
1469     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1470     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1471     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1472   } else {
1473     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1474     info_ptr->max_value = ALL_64_BITS;
1475 
1476     // gettimeofday is a real time clock so it skips
1477     info_ptr->may_skip_backward = true;
1478     info_ptr->may_skip_forward = true;
1479   }
1480 
1481   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1482 }
1483 
1484 // Return the real, user, and system times in seconds from an
1485 // arbitrary fixed point in the past.
1486 bool os::getTimesSecs(double* process_real_time,
1487                       double* process_user_time,
1488                       double* process_system_time) {
1489   struct tms ticks;
1490   clock_t real_ticks = times(&ticks);
1491 
1492   if (real_ticks == (clock_t) (-1)) {
1493     return false;
1494   } else {
1495     double ticks_per_second = (double) clock_tics_per_sec;
1496     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1497     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1498     *process_real_time = ((double) real_ticks) / ticks_per_second;
1499 
1500     return true;
1501   }
1502 }
1503 
1504 
1505 char * os::local_time_string(char *buf, size_t buflen) {
1506   struct tm t;
1507   time_t long_time;
1508   time(&long_time);
1509   localtime_r(&long_time, &t);
1510   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1511                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1512                t.tm_hour, t.tm_min, t.tm_sec);
1513   return buf;
1514 }
1515 
1516 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1517   return localtime_r(clock, res);
1518 }
1519 
1520 ////////////////////////////////////////////////////////////////////////////////
1521 // runtime exit support
1522 
1523 // Note: os::shutdown() might be called very early during initialization, or
1524 // called from signal handler. Before adding something to os::shutdown(), make
1525 // sure it is async-safe and can handle partially initialized VM.
1526 void os::shutdown() {
1527 
1528   // allow PerfMemory to attempt cleanup of any persistent resources
1529   perfMemory_exit();
1530 
1531   // needs to remove object in file system
1532   AttachListener::abort();
1533 
1534   // flush buffered output, finish log files
1535   ostream_abort();
1536 
1537   // Check for abort hook
1538   abort_hook_t abort_hook = Arguments::abort_hook();
1539   if (abort_hook != NULL) {
1540     abort_hook();
1541   }
1542 
1543 }
1544 
1545 // Note: os::abort() might be called very early during initialization, or
1546 // called from signal handler. Before adding something to os::abort(), make
1547 // sure it is async-safe and can handle partially initialized VM.
1548 void os::abort(bool dump_core) {
1549   os::shutdown();
1550   if (dump_core) {
1551 #ifndef PRODUCT
1552     fdStream out(defaultStream::output_fd());
1553     out.print_raw("Current thread is ");
1554     char buf[16];
1555     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1556     out.print_raw_cr(buf);
1557     out.print_raw_cr("Dumping core ...");
1558 #endif
1559     ::abort(); // dump core
1560   }
1561 
1562   ::exit(1);
1563 }
1564 
1565 // Die immediately, no exit hook, no abort hook, no cleanup.
1566 void os::die() {
1567   // _exit() on LinuxThreads only kills current thread
1568   ::abort();
1569 }
1570 
1571 // unused on linux for now.
1572 void os::set_error_file(const char *logfile) {}
1573 
1574 
1575 // This method is a copy of JDK's sysGetLastErrorString
1576 // from src/solaris/hpi/src/system_md.c
1577 
1578 size_t os::lasterror(char *buf, size_t len) {
1579 
1580   if (errno == 0)  return 0;
1581 
1582   const char *s = ::strerror(errno);
1583   size_t n = ::strlen(s);
1584   if (n >= len) {
1585     n = len - 1;
1586   }
1587   ::strncpy(buf, s, n);
1588   buf[n] = '\0';
1589   return n;
1590 }
1591 
1592 intx os::current_thread_id() { return (intx)pthread_self(); }
1593 int os::current_process_id() {
1594 
1595   // Under the old linux thread library, linux gives each thread
1596   // its own process id. Because of this each thread will return
1597   // a different pid if this method were to return the result
1598   // of getpid(2). Linux provides no api that returns the pid
1599   // of the launcher thread for the vm. This implementation
1600   // returns a unique pid, the pid of the launcher thread
1601   // that starts the vm 'process'.
1602 
1603   // Under the NPTL, getpid() returns the same pid as the
1604   // launcher thread rather than a unique pid per thread.
1605   // Use gettid() if you want the old pre NPTL behaviour.
1606 
1607   // if you are looking for the result of a call to getpid() that
1608   // returns a unique pid for the calling thread, then look at the
1609   // OSThread::thread_id() method in osThread_linux.hpp file
1610 
1611   return (int)(_initial_pid ? _initial_pid : getpid());
1612 }
1613 
1614 // DLL functions
1615 
1616 const char* os::dll_file_extension() { return ".so"; }
1617 
1618 // This must be hard coded because it's the system's temporary
1619 // directory not the java application's temp directory, ala java.io.tmpdir.
1620 const char* os::get_temp_directory() { return "/tmp"; }
1621 
1622 static bool file_exists(const char* filename) {
1623   struct stat statbuf;
1624   if (filename == NULL || strlen(filename) == 0) {
1625     return false;
1626   }
1627   return os::stat(filename, &statbuf) == 0;
1628 }
1629 
1630 bool os::dll_build_name(char* buffer, size_t buflen,
1631                         const char* pname, const char* fname) {
1632   bool retval = false;
1633   // Copied from libhpi
1634   const size_t pnamelen = pname ? strlen(pname) : 0;
1635 
1636   // Return error on buffer overflow.
1637   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1638     return retval;
1639   }
1640 
1641   if (pnamelen == 0) {
1642     snprintf(buffer, buflen, "lib%s.so", fname);
1643     retval = true;
1644   } else if (strchr(pname, *os::path_separator()) != NULL) {
1645     int n;
1646     char** pelements = split_path(pname, &n);
1647     for (int i = 0 ; i < n ; i++) {
1648       // Really shouldn't be NULL, but check can't hurt
1649       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1650         continue; // skip the empty path values
1651       }
1652       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1653       if (file_exists(buffer)) {
1654         retval = true;
1655         break;
1656       }
1657     }
1658     // release the storage
1659     for (int i = 0 ; i < n ; i++) {
1660       if (pelements[i] != NULL) {
1661         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1662       }
1663     }
1664     if (pelements != NULL) {
1665       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1666     }
1667   } else {
1668     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1669     retval = true;
1670   }
1671   return retval;
1672 }
1673 
1674 const char* os::get_current_directory(char *buf, int buflen) {
1675   return getcwd(buf, buflen);
1676 }
1677 
1678 // check if addr is inside libjvm.so
1679 bool os::address_is_in_vm(address addr) {
1680   static address libjvm_base_addr;
1681   Dl_info dlinfo;
1682 
1683   if (libjvm_base_addr == NULL) {
1684     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1685     libjvm_base_addr = (address)dlinfo.dli_fbase;
1686     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1687   }
1688 
1689   if (dladdr((void *)addr, &dlinfo)) {
1690     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1691   }
1692 
1693   return false;
1694 }
1695 
1696 bool os::dll_address_to_function_name(address addr, char *buf,
1697                                       int buflen, int *offset) {
1698   Dl_info dlinfo;
1699 
1700   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1701     if (buf != NULL) {
1702       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1703         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1704       }
1705     }
1706     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1707     return true;
1708   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1709     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1710         buf, buflen, offset, dlinfo.dli_fname)) {
1711        return true;
1712     }
1713   }
1714 
1715   if (buf != NULL) buf[0] = '\0';
1716   if (offset != NULL) *offset = -1;
1717   return false;
1718 }
1719 
1720 struct _address_to_library_name {
1721   address addr;          // input : memory address
1722   size_t  buflen;        //         size of fname
1723   char*   fname;         // output: library name
1724   address base;          //         library base addr
1725 };
1726 
1727 static int address_to_library_name_callback(struct dl_phdr_info *info,
1728                                             size_t size, void *data) {
1729   int i;
1730   bool found = false;
1731   address libbase = NULL;
1732   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1733 
1734   // iterate through all loadable segments
1735   for (i = 0; i < info->dlpi_phnum; i++) {
1736     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1737     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1738       // base address of a library is the lowest address of its loaded
1739       // segments.
1740       if (libbase == NULL || libbase > segbase) {
1741         libbase = segbase;
1742       }
1743       // see if 'addr' is within current segment
1744       if (segbase <= d->addr &&
1745           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1746         found = true;
1747       }
1748     }
1749   }
1750 
1751   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1752   // so dll_address_to_library_name() can fall through to use dladdr() which
1753   // can figure out executable name from argv[0].
1754   if (found && info->dlpi_name && info->dlpi_name[0]) {
1755     d->base = libbase;
1756     if (d->fname) {
1757       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1758     }
1759     return 1;
1760   }
1761   return 0;
1762 }
1763 
1764 bool os::dll_address_to_library_name(address addr, char* buf,
1765                                      int buflen, int* offset) {
1766   Dl_info dlinfo;
1767   struct _address_to_library_name data;
1768 
1769   // There is a bug in old glibc dladdr() implementation that it could resolve
1770   // to wrong library name if the .so file has a base address != NULL. Here
1771   // we iterate through the program headers of all loaded libraries to find
1772   // out which library 'addr' really belongs to. This workaround can be
1773   // removed once the minimum requirement for glibc is moved to 2.3.x.
1774   data.addr = addr;
1775   data.fname = buf;
1776   data.buflen = buflen;
1777   data.base = NULL;
1778   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1779 
1780   if (rslt) {
1781      // buf already contains library name
1782      if (offset) *offset = addr - data.base;
1783      return true;
1784   } else if (dladdr((void*)addr, &dlinfo)){
1785      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1786      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1787      return true;
1788   } else {
1789      if (buf) buf[0] = '\0';
1790      if (offset) *offset = -1;
1791      return false;
1792   }
1793 }
1794 
1795   // Loads .dll/.so and
1796   // in case of error it checks if .dll/.so was built for the
1797   // same architecture as Hotspot is running on
1798 
1799 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1800 {
1801   void * result= ::dlopen(filename, RTLD_LAZY);
1802   if (result != NULL) {
1803     // Successful loading
1804     return result;
1805   }
1806 
1807   Elf32_Ehdr elf_head;
1808 
1809   // Read system error message into ebuf
1810   // It may or may not be overwritten below
1811   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1812   ebuf[ebuflen-1]='\0';
1813   int diag_msg_max_length=ebuflen-strlen(ebuf);
1814   char* diag_msg_buf=ebuf+strlen(ebuf);
1815 
1816   if (diag_msg_max_length==0) {
1817     // No more space in ebuf for additional diagnostics message
1818     return NULL;
1819   }
1820 
1821 
1822   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1823 
1824   if (file_descriptor < 0) {
1825     // Can't open library, report dlerror() message
1826     return NULL;
1827   }
1828 
1829   bool failed_to_read_elf_head=
1830     (sizeof(elf_head)!=
1831         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1832 
1833   ::close(file_descriptor);
1834   if (failed_to_read_elf_head) {
1835     // file i/o error - report dlerror() msg
1836     return NULL;
1837   }
1838 
1839   typedef struct {
1840     Elf32_Half  code;         // Actual value as defined in elf.h
1841     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1842     char        elf_class;    // 32 or 64 bit
1843     char        endianess;    // MSB or LSB
1844     char*       name;         // String representation
1845   } arch_t;
1846 
1847   #ifndef EM_486
1848   #define EM_486          6               /* Intel 80486 */
1849   #endif
1850 
1851   static const arch_t arch_array[]={
1852     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1853     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1854     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1855     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1856     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1857     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1858     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1859     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1860     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1861     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1862     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1863     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1864     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1865     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1866     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1867     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1868   };
1869 
1870   #if  (defined IA32)
1871     static  Elf32_Half running_arch_code=EM_386;
1872   #elif   (defined AMD64)
1873     static  Elf32_Half running_arch_code=EM_X86_64;
1874   #elif  (defined IA64)
1875     static  Elf32_Half running_arch_code=EM_IA_64;
1876   #elif  (defined __sparc) && (defined _LP64)
1877     static  Elf32_Half running_arch_code=EM_SPARCV9;
1878   #elif  (defined __sparc) && (!defined _LP64)
1879     static  Elf32_Half running_arch_code=EM_SPARC;
1880   #elif  (defined __powerpc64__)
1881     static  Elf32_Half running_arch_code=EM_PPC64;
1882   #elif  (defined __powerpc__)
1883     static  Elf32_Half running_arch_code=EM_PPC;
1884   #elif  (defined ARM)
1885     static  Elf32_Half running_arch_code=EM_ARM;
1886   #elif  (defined S390)
1887     static  Elf32_Half running_arch_code=EM_S390;
1888   #elif  (defined ALPHA)
1889     static  Elf32_Half running_arch_code=EM_ALPHA;
1890   #elif  (defined MIPSEL)
1891     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1892   #elif  (defined PARISC)
1893     static  Elf32_Half running_arch_code=EM_PARISC;
1894   #elif  (defined MIPS)
1895     static  Elf32_Half running_arch_code=EM_MIPS;
1896   #elif  (defined M68K)
1897     static  Elf32_Half running_arch_code=EM_68K;
1898   #else
1899     #error Method os::dll_load requires that one of following is defined:\
1900          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1901   #endif
1902 
1903   // Identify compatability class for VM's architecture and library's architecture
1904   // Obtain string descriptions for architectures
1905 
1906   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1907   int running_arch_index=-1;
1908 
1909   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1910     if (running_arch_code == arch_array[i].code) {
1911       running_arch_index    = i;
1912     }
1913     if (lib_arch.code == arch_array[i].code) {
1914       lib_arch.compat_class = arch_array[i].compat_class;
1915       lib_arch.name         = arch_array[i].name;
1916     }
1917   }
1918 
1919   assert(running_arch_index != -1,
1920     "Didn't find running architecture code (running_arch_code) in arch_array");
1921   if (running_arch_index == -1) {
1922     // Even though running architecture detection failed
1923     // we may still continue with reporting dlerror() message
1924     return NULL;
1925   }
1926 
1927   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1928     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1929     return NULL;
1930   }
1931 
1932 #ifndef S390
1933   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1934     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1935     return NULL;
1936   }
1937 #endif // !S390
1938 
1939   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1940     if ( lib_arch.name!=NULL ) {
1941       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1942         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1943         lib_arch.name, arch_array[running_arch_index].name);
1944     } else {
1945       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1946       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1947         lib_arch.code,
1948         arch_array[running_arch_index].name);
1949     }
1950   }
1951 
1952   return NULL;
1953 }
1954 
1955 /*
1956  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1957  * chances are you might want to run the generated bits against glibc-2.0
1958  * libdl.so, so always use locking for any version of glibc.
1959  */
1960 void* os::dll_lookup(void* handle, const char* name) {
1961   pthread_mutex_lock(&dl_mutex);
1962   void* res = dlsym(handle, name);
1963   pthread_mutex_unlock(&dl_mutex);
1964   return res;
1965 }
1966 
1967 
1968 static bool _print_ascii_file(const char* filename, outputStream* st) {
1969   int fd = ::open(filename, O_RDONLY);
1970   if (fd == -1) {
1971      return false;
1972   }
1973 
1974   char buf[32];
1975   int bytes;
1976   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1977     st->print_raw(buf, bytes);
1978   }
1979 
1980   ::close(fd);
1981 
1982   return true;
1983 }
1984 
1985 void os::print_dll_info(outputStream *st) {
1986    st->print_cr("Dynamic libraries:");
1987 
1988    char fname[32];
1989    pid_t pid = os::Linux::gettid();
1990 
1991    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1992 
1993    if (!_print_ascii_file(fname, st)) {
1994      st->print("Can not get library information for pid = %d\n", pid);
1995    }
1996 }
1997 
1998 void os::print_os_info_brief(outputStream* st) {
1999   os::Linux::print_distro_info(st);
2000 
2001   os::Posix::print_uname_info(st);
2002 
2003   os::Linux::print_libversion_info(st);
2004 
2005 }
2006 
2007 void os::print_os_info(outputStream* st) {
2008   st->print("OS:");
2009 
2010   os::Linux::print_distro_info(st);
2011 
2012   os::Posix::print_uname_info(st);
2013 
2014   // Print warning if unsafe chroot environment detected
2015   if (unsafe_chroot_detected) {
2016     st->print("WARNING!! ");
2017     st->print_cr(unstable_chroot_error);
2018   }
2019 
2020   os::Linux::print_libversion_info(st);
2021 
2022   os::Posix::print_rlimit_info(st);
2023 
2024   os::Posix::print_load_average(st);
2025 
2026   os::Linux::print_full_memory_info(st);
2027 }
2028 
2029 // Try to identify popular distros.
2030 // Most Linux distributions have /etc/XXX-release file, which contains
2031 // the OS version string. Some have more than one /etc/XXX-release file
2032 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2033 // so the order is important.
2034 void os::Linux::print_distro_info(outputStream* st) {
2035   if (!_print_ascii_file("/etc/mandrake-release", st) &&
2036       !_print_ascii_file("/etc/sun-release", st) &&
2037       !_print_ascii_file("/etc/redhat-release", st) &&
2038       !_print_ascii_file("/etc/SuSE-release", st) &&
2039       !_print_ascii_file("/etc/turbolinux-release", st) &&
2040       !_print_ascii_file("/etc/gentoo-release", st) &&
2041       !_print_ascii_file("/etc/debian_version", st) &&
2042       !_print_ascii_file("/etc/ltib-release", st) &&
2043       !_print_ascii_file("/etc/angstrom-version", st)) {
2044       st->print("Linux");
2045   }
2046   st->cr();
2047 }
2048 
2049 void os::Linux::print_libversion_info(outputStream* st) {
2050   // libc, pthread
2051   st->print("libc:");
2052   st->print(os::Linux::glibc_version()); st->print(" ");
2053   st->print(os::Linux::libpthread_version()); st->print(" ");
2054   if (os::Linux::is_LinuxThreads()) {
2055      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2056   }
2057   st->cr();
2058 }
2059 
2060 void os::Linux::print_full_memory_info(outputStream* st) {
2061    st->print("\n/proc/meminfo:\n");
2062    _print_ascii_file("/proc/meminfo", st);
2063    st->cr();
2064 }
2065 
2066 void os::print_memory_info(outputStream* st) {
2067 
2068   st->print("Memory:");
2069   st->print(" %dk page", os::vm_page_size()>>10);
2070 
2071   // values in struct sysinfo are "unsigned long"
2072   struct sysinfo si;
2073   sysinfo(&si);
2074 
2075   st->print(", physical " UINT64_FORMAT "k",
2076             os::physical_memory() >> 10);
2077   st->print("(" UINT64_FORMAT "k free)",
2078             os::available_memory() >> 10);
2079   st->print(", swap " UINT64_FORMAT "k",
2080             ((jlong)si.totalswap * si.mem_unit) >> 10);
2081   st->print("(" UINT64_FORMAT "k free)",
2082             ((jlong)si.freeswap * si.mem_unit) >> 10);
2083   st->cr();
2084 }
2085 
2086 void os::pd_print_cpu_info(outputStream* st) {
2087   st->print("\n/proc/cpuinfo:\n");
2088   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2089     st->print("  <Not Available>");
2090   }
2091   st->cr();
2092 }
2093 
2094 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2095 // but they're the same for all the linux arch that we support
2096 // and they're the same for solaris but there's no common place to put this.
2097 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2098                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2099                           "ILL_COPROC", "ILL_BADSTK" };
2100 
2101 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2102                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2103                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2104 
2105 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2106 
2107 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2108 
2109 void os::print_siginfo(outputStream* st, void* siginfo) {
2110   st->print("siginfo:");
2111 
2112   const int buflen = 100;
2113   char buf[buflen];
2114   siginfo_t *si = (siginfo_t*)siginfo;
2115   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2116   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2117     st->print("si_errno=%s", buf);
2118   } else {
2119     st->print("si_errno=%d", si->si_errno);
2120   }
2121   const int c = si->si_code;
2122   assert(c > 0, "unexpected si_code");
2123   switch (si->si_signo) {
2124   case SIGILL:
2125     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2126     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2127     break;
2128   case SIGFPE:
2129     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2130     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2131     break;
2132   case SIGSEGV:
2133     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2134     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2135     break;
2136   case SIGBUS:
2137     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2138     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2139     break;
2140   default:
2141     st->print(", si_code=%d", si->si_code);
2142     // no si_addr
2143   }
2144 
2145   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2146       UseSharedSpaces) {
2147     FileMapInfo* mapinfo = FileMapInfo::current_info();
2148     if (mapinfo->is_in_shared_space(si->si_addr)) {
2149       st->print("\n\nError accessing class data sharing archive."   \
2150                 " Mapped file inaccessible during execution, "      \
2151                 " possible disk/network problem.");
2152     }
2153   }
2154   st->cr();
2155 }
2156 
2157 
2158 static void print_signal_handler(outputStream* st, int sig,
2159                                  char* buf, size_t buflen);
2160 
2161 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2162   st->print_cr("Signal Handlers:");
2163   print_signal_handler(st, SIGSEGV, buf, buflen);
2164   print_signal_handler(st, SIGBUS , buf, buflen);
2165   print_signal_handler(st, SIGFPE , buf, buflen);
2166   print_signal_handler(st, SIGPIPE, buf, buflen);
2167   print_signal_handler(st, SIGXFSZ, buf, buflen);
2168   print_signal_handler(st, SIGILL , buf, buflen);
2169   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2170   print_signal_handler(st, SR_signum, buf, buflen);
2171   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2172   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2173   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2174   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2175 }
2176 
2177 static char saved_jvm_path[MAXPATHLEN] = {0};
2178 
2179 // Find the full path to the current module, libjvm.so
2180 void os::jvm_path(char *buf, jint buflen) {
2181   // Error checking.
2182   if (buflen < MAXPATHLEN) {
2183     assert(false, "must use a large-enough buffer");
2184     buf[0] = '\0';
2185     return;
2186   }
2187   // Lazy resolve the path to current module.
2188   if (saved_jvm_path[0] != 0) {
2189     strcpy(buf, saved_jvm_path);
2190     return;
2191   }
2192 
2193   char dli_fname[MAXPATHLEN];
2194   bool ret = dll_address_to_library_name(
2195                 CAST_FROM_FN_PTR(address, os::jvm_path),
2196                 dli_fname, sizeof(dli_fname), NULL);
2197   assert(ret != 0, "cannot locate libjvm");
2198   char *rp = realpath(dli_fname, buf);
2199   if (rp == NULL)
2200     return;
2201 
2202   if (Arguments::created_by_gamma_launcher()) {
2203     // Support for the gamma launcher.  Typical value for buf is
2204     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2205     // the right place in the string, then assume we are installed in a JDK and
2206     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2207     // up the path so it looks like libjvm.so is installed there (append a
2208     // fake suffix hotspot/libjvm.so).
2209     const char *p = buf + strlen(buf) - 1;
2210     for (int count = 0; p > buf && count < 5; ++count) {
2211       for (--p; p > buf && *p != '/'; --p)
2212         /* empty */ ;
2213     }
2214 
2215     if (strncmp(p, "/jre/lib/", 9) != 0) {
2216       // Look for JAVA_HOME in the environment.
2217       char* java_home_var = ::getenv("JAVA_HOME");
2218       if (java_home_var != NULL && java_home_var[0] != 0) {
2219         char* jrelib_p;
2220         int len;
2221 
2222         // Check the current module name "libjvm.so".
2223         p = strrchr(buf, '/');
2224         assert(strstr(p, "/libjvm") == p, "invalid library name");
2225 
2226         rp = realpath(java_home_var, buf);
2227         if (rp == NULL)
2228           return;
2229 
2230         // determine if this is a legacy image or modules image
2231         // modules image doesn't have "jre" subdirectory
2232         len = strlen(buf);
2233         jrelib_p = buf + len;
2234         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2235         if (0 != access(buf, F_OK)) {
2236           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2237         }
2238 
2239         if (0 == access(buf, F_OK)) {
2240           // Use current module name "libjvm.so"
2241           len = strlen(buf);
2242           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2243         } else {
2244           // Go back to path of .so
2245           rp = realpath(dli_fname, buf);
2246           if (rp == NULL)
2247             return;
2248         }
2249       }
2250     }
2251   }
2252 
2253   strcpy(saved_jvm_path, buf);
2254 }
2255 
2256 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2257   // no prefix required, not even "_"
2258 }
2259 
2260 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2261   // no suffix required
2262 }
2263 
2264 ////////////////////////////////////////////////////////////////////////////////
2265 // sun.misc.Signal support
2266 
2267 static volatile jint sigint_count = 0;
2268 
2269 static void
2270 UserHandler(int sig, void *siginfo, void *context) {
2271   // 4511530 - sem_post is serialized and handled by the manager thread. When
2272   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2273   // don't want to flood the manager thread with sem_post requests.
2274   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2275       return;
2276 
2277   // Ctrl-C is pressed during error reporting, likely because the error
2278   // handler fails to abort. Let VM die immediately.
2279   if (sig == SIGINT && is_error_reported()) {
2280      os::die();
2281   }
2282 
2283   os::signal_notify(sig);
2284 }
2285 
2286 void* os::user_handler() {
2287   return CAST_FROM_FN_PTR(void*, UserHandler);
2288 }
2289 
2290 extern "C" {
2291   typedef void (*sa_handler_t)(int);
2292   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2293 }
2294 
2295 void* os::signal(int signal_number, void* handler) {
2296   struct sigaction sigAct, oldSigAct;
2297 
2298   sigfillset(&(sigAct.sa_mask));
2299   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2300   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2301 
2302   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2303     // -1 means registration failed
2304     return (void *)-1;
2305   }
2306 
2307   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2308 }
2309 
2310 void os::signal_raise(int signal_number) {
2311   ::raise(signal_number);
2312 }
2313 
2314 /*
2315  * The following code is moved from os.cpp for making this
2316  * code platform specific, which it is by its very nature.
2317  */
2318 
2319 // Will be modified when max signal is changed to be dynamic
2320 int os::sigexitnum_pd() {
2321   return NSIG;
2322 }
2323 
2324 // a counter for each possible signal value
2325 static volatile jint pending_signals[NSIG+1] = { 0 };
2326 
2327 // Linux(POSIX) specific hand shaking semaphore.
2328 static sem_t sig_sem;
2329 
2330 void os::signal_init_pd() {
2331   // Initialize signal structures
2332   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2333 
2334   // Initialize signal semaphore
2335   ::sem_init(&sig_sem, 0, 0);
2336 }
2337 
2338 void os::signal_notify(int sig) {
2339   Atomic::inc(&pending_signals[sig]);
2340   ::sem_post(&sig_sem);
2341 }
2342 
2343 static int check_pending_signals(bool wait) {
2344   Atomic::store(0, &sigint_count);
2345   for (;;) {
2346     for (int i = 0; i < NSIG + 1; i++) {
2347       jint n = pending_signals[i];
2348       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2349         return i;
2350       }
2351     }
2352     if (!wait) {
2353       return -1;
2354     }
2355     JavaThread *thread = JavaThread::current();
2356     ThreadBlockInVM tbivm(thread);
2357 
2358     bool threadIsSuspended;
2359     do {
2360       thread->set_suspend_equivalent();
2361       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2362       ::sem_wait(&sig_sem);
2363 
2364       // were we externally suspended while we were waiting?
2365       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2366       if (threadIsSuspended) {
2367         //
2368         // The semaphore has been incremented, but while we were waiting
2369         // another thread suspended us. We don't want to continue running
2370         // while suspended because that would surprise the thread that
2371         // suspended us.
2372         //
2373         ::sem_post(&sig_sem);
2374 
2375         thread->java_suspend_self();
2376       }
2377     } while (threadIsSuspended);
2378   }
2379 }
2380 
2381 int os::signal_lookup() {
2382   return check_pending_signals(false);
2383 }
2384 
2385 int os::signal_wait() {
2386   return check_pending_signals(true);
2387 }
2388 
2389 ////////////////////////////////////////////////////////////////////////////////
2390 // Virtual Memory
2391 
2392 int os::vm_page_size() {
2393   // Seems redundant as all get out
2394   assert(os::Linux::page_size() != -1, "must call os::init");
2395   return os::Linux::page_size();
2396 }
2397 
2398 // Solaris allocates memory by pages.
2399 int os::vm_allocation_granularity() {
2400   assert(os::Linux::page_size() != -1, "must call os::init");
2401   return os::Linux::page_size();
2402 }
2403 
2404 // Rationale behind this function:
2405 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2406 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2407 //  samples for JITted code. Here we create private executable mapping over the code cache
2408 //  and then we can use standard (well, almost, as mapping can change) way to provide
2409 //  info for the reporting script by storing timestamp and location of symbol
2410 void linux_wrap_code(char* base, size_t size) {
2411   static volatile jint cnt = 0;
2412 
2413   if (!UseOprofile) {
2414     return;
2415   }
2416 
2417   char buf[PATH_MAX+1];
2418   int num = Atomic::add(1, &cnt);
2419 
2420   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2421            os::get_temp_directory(), os::current_process_id(), num);
2422   unlink(buf);
2423 
2424   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2425 
2426   if (fd != -1) {
2427     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2428     if (rv != (off_t)-1) {
2429       if (::write(fd, "", 1) == 1) {
2430         mmap(base, size,
2431              PROT_READ|PROT_WRITE|PROT_EXEC,
2432              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2433       }
2434     }
2435     ::close(fd);
2436     unlink(buf);
2437   }
2438 }
2439 
2440 // NOTE: Linux kernel does not really reserve the pages for us.
2441 //       All it does is to check if there are enough free pages
2442 //       left at the time of mmap(). This could be a potential
2443 //       problem.
2444 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2445   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2446   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2447                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2448   if (res != (uintptr_t) MAP_FAILED) {
2449     if (UseNUMAInterleaving) {
2450       numa_make_global(addr, size);
2451     }
2452     return true;
2453   }
2454   return false;
2455 }
2456 
2457 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2458 #ifndef MAP_HUGETLB
2459 #define MAP_HUGETLB 0x40000
2460 #endif
2461 
2462 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2463 #ifndef MADV_HUGEPAGE
2464 #define MADV_HUGEPAGE 14
2465 #endif
2466 
2467 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2468                        bool exec) {
2469   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2470     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2471     uintptr_t res =
2472       (uintptr_t) ::mmap(addr, size, prot,
2473                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2474                          -1, 0);
2475     if (res != (uintptr_t) MAP_FAILED) {
2476       if (UseNUMAInterleaving) {
2477         numa_make_global(addr, size);
2478       }
2479       return true;
2480     }
2481     // Fall through and try to use small pages
2482   }
2483 
2484   if (commit_memory(addr, size, exec)) {
2485     realign_memory(addr, size, alignment_hint);
2486     return true;
2487   }
2488   return false;
2489 }
2490 
2491 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2492   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2493     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2494     // be supported or the memory may already be backed by huge pages.
2495     ::madvise(addr, bytes, MADV_HUGEPAGE);
2496   }
2497 }
2498 
2499 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2500   // This method works by doing an mmap over an existing mmaping and effectively discarding
2501   // the existing pages. However it won't work for SHM-based large pages that cannot be
2502   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2503   // small pages on top of the SHM segment. This method always works for small pages, so we
2504   // allow that in any case.
2505   if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2506     commit_memory(addr, bytes, alignment_hint, false);
2507   }
2508 }
2509 
2510 void os::numa_make_global(char *addr, size_t bytes) {
2511   Linux::numa_interleave_memory(addr, bytes);
2512 }
2513 
2514 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2515   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2516 }
2517 
2518 bool os::numa_topology_changed()   { return false; }
2519 
2520 size_t os::numa_get_groups_num() {
2521   int max_node = Linux::numa_max_node();
2522   return max_node > 0 ? max_node + 1 : 1;
2523 }
2524 
2525 int os::numa_get_group_id() {
2526   int cpu_id = Linux::sched_getcpu();
2527   if (cpu_id != -1) {
2528     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2529     if (lgrp_id != -1) {
2530       return lgrp_id;
2531     }
2532   }
2533   return 0;
2534 }
2535 
2536 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2537   for (size_t i = 0; i < size; i++) {
2538     ids[i] = i;
2539   }
2540   return size;
2541 }
2542 
2543 bool os::get_page_info(char *start, page_info* info) {
2544   return false;
2545 }
2546 
2547 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2548   return end;
2549 }
2550 
2551 
2552 int os::Linux::sched_getcpu_syscall(void) {
2553   unsigned int cpu;
2554   int retval = -1;
2555 
2556 #if defined(IA32)
2557 # ifndef SYS_getcpu
2558 # define SYS_getcpu 318
2559 # endif
2560   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2561 #elif defined(AMD64)
2562 // Unfortunately we have to bring all these macros here from vsyscall.h
2563 // to be able to compile on old linuxes.
2564 # define __NR_vgetcpu 2
2565 # define VSYSCALL_START (-10UL << 20)
2566 # define VSYSCALL_SIZE 1024
2567 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2568   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2569   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2570   retval = vgetcpu(&cpu, NULL, NULL);
2571 #endif
2572 
2573   return (retval == -1) ? retval : cpu;
2574 }
2575 
2576 // Something to do with the numa-aware allocator needs these symbols
2577 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2578 extern "C" JNIEXPORT void numa_error(char *where) { }
2579 extern "C" JNIEXPORT int fork1() { return fork(); }
2580 
2581 
2582 // If we are running with libnuma version > 2, then we should
2583 // be trying to use symbols with versions 1.1
2584 // If we are running with earlier version, which did not have symbol versions,
2585 // we should use the base version.
2586 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2587   void *f = dlvsym(handle, name, "libnuma_1.1");
2588   if (f == NULL) {
2589     f = dlsym(handle, name);
2590   }
2591   return f;
2592 }
2593 
2594 bool os::Linux::libnuma_init() {
2595   // sched_getcpu() should be in libc.
2596   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2597                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2598 
2599   // If it's not, try a direct syscall.
2600   if (sched_getcpu() == -1)
2601     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2602 
2603   if (sched_getcpu() != -1) { // Does it work?
2604     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2605     if (handle != NULL) {
2606       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2607                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2608       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2609                                        libnuma_dlsym(handle, "numa_max_node")));
2610       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2611                                         libnuma_dlsym(handle, "numa_available")));
2612       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2613                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2614       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2615                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2616 
2617 
2618       if (numa_available() != -1) {
2619         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2620         // Create a cpu -> node mapping
2621         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2622         rebuild_cpu_to_node_map();
2623         return true;
2624       }
2625     }
2626   }
2627   return false;
2628 }
2629 
2630 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2631 // The table is later used in get_node_by_cpu().
2632 void os::Linux::rebuild_cpu_to_node_map() {
2633   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2634                               // in libnuma (possible values are starting from 16,
2635                               // and continuing up with every other power of 2, but less
2636                               // than the maximum number of CPUs supported by kernel), and
2637                               // is a subject to change (in libnuma version 2 the requirements
2638                               // are more reasonable) we'll just hardcode the number they use
2639                               // in the library.
2640   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2641 
2642   size_t cpu_num = os::active_processor_count();
2643   size_t cpu_map_size = NCPUS / BitsPerCLong;
2644   size_t cpu_map_valid_size =
2645     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2646 
2647   cpu_to_node()->clear();
2648   cpu_to_node()->at_grow(cpu_num - 1);
2649   size_t node_num = numa_get_groups_num();
2650 
2651   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2652   for (size_t i = 0; i < node_num; i++) {
2653     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2654       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2655         if (cpu_map[j] != 0) {
2656           for (size_t k = 0; k < BitsPerCLong; k++) {
2657             if (cpu_map[j] & (1UL << k)) {
2658               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2659             }
2660           }
2661         }
2662       }
2663     }
2664   }
2665   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2666 }
2667 
2668 int os::Linux::get_node_by_cpu(int cpu_id) {
2669   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2670     return cpu_to_node()->at(cpu_id);
2671   }
2672   return -1;
2673 }
2674 
2675 GrowableArray<int>* os::Linux::_cpu_to_node;
2676 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2677 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2678 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2679 os::Linux::numa_available_func_t os::Linux::_numa_available;
2680 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2681 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2682 unsigned long* os::Linux::_numa_all_nodes;
2683 
2684 bool os::pd_uncommit_memory(char* addr, size_t size) {
2685   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2686                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2687   return res  != (uintptr_t) MAP_FAILED;
2688 }
2689 
2690 // Linux uses a growable mapping for the stack, and if the mapping for
2691 // the stack guard pages is not removed when we detach a thread the
2692 // stack cannot grow beyond the pages where the stack guard was
2693 // mapped.  If at some point later in the process the stack expands to
2694 // that point, the Linux kernel cannot expand the stack any further
2695 // because the guard pages are in the way, and a segfault occurs.
2696 //
2697 // However, it's essential not to split the stack region by unmapping
2698 // a region (leaving a hole) that's already part of the stack mapping,
2699 // so if the stack mapping has already grown beyond the guard pages at
2700 // the time we create them, we have to truncate the stack mapping.
2701 // So, we need to know the extent of the stack mapping when
2702 // create_stack_guard_pages() is called.
2703 
2704 // Find the bounds of the stack mapping.  Return true for success.
2705 //
2706 // We only need this for stacks that are growable: at the time of
2707 // writing thread stacks don't use growable mappings (i.e. those
2708 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2709 // only applies to the main thread.
2710 
2711 static
2712 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2713 
2714   char buf[128];
2715   int fd, sz;
2716 
2717   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2718     return false;
2719   }
2720 
2721   const char kw[] = "[stack]";
2722   const int kwlen = sizeof(kw)-1;
2723 
2724   // Address part of /proc/self/maps couldn't be more than 128 bytes
2725   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2726      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2727         // Extract addresses
2728         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2729            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2730            if (sp >= *bottom && sp <= *top) {
2731               ::close(fd);
2732               return true;
2733            }
2734         }
2735      }
2736   }
2737 
2738  ::close(fd);
2739   return false;
2740 }
2741 
2742 
2743 // If the (growable) stack mapping already extends beyond the point
2744 // where we're going to put our guard pages, truncate the mapping at
2745 // that point by munmap()ping it.  This ensures that when we later
2746 // munmap() the guard pages we don't leave a hole in the stack
2747 // mapping. This only affects the main/initial thread, but guard
2748 // against future OS changes
2749 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2750   uintptr_t stack_extent, stack_base;
2751   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2752   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2753       assert(os::Linux::is_initial_thread(),
2754            "growable stack in non-initial thread");
2755     if (stack_extent < (uintptr_t)addr)
2756       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2757   }
2758 
2759   return os::commit_memory(addr, size);
2760 }
2761 
2762 // If this is a growable mapping, remove the guard pages entirely by
2763 // munmap()ping them.  If not, just call uncommit_memory(). This only
2764 // affects the main/initial thread, but guard against future OS changes
2765 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2766   uintptr_t stack_extent, stack_base;
2767   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2768   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2769       assert(os::Linux::is_initial_thread(),
2770            "growable stack in non-initial thread");
2771 
2772     return ::munmap(addr, size) == 0;
2773   }
2774 
2775   return os::uncommit_memory(addr, size);
2776 }
2777 
2778 static address _highest_vm_reserved_address = NULL;
2779 
2780 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2781 // at 'requested_addr'. If there are existing memory mappings at the same
2782 // location, however, they will be overwritten. If 'fixed' is false,
2783 // 'requested_addr' is only treated as a hint, the return value may or
2784 // may not start from the requested address. Unlike Linux mmap(), this
2785 // function returns NULL to indicate failure.
2786 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2787   char * addr;
2788   int flags;
2789 
2790   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2791   if (fixed) {
2792     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2793     flags |= MAP_FIXED;
2794   }
2795 
2796   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2797   // to PROT_EXEC if executable when we commit the page.
2798   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2799                        flags, -1, 0);
2800 
2801   if (addr != MAP_FAILED) {
2802     // anon_mmap() should only get called during VM initialization,
2803     // don't need lock (actually we can skip locking even it can be called
2804     // from multiple threads, because _highest_vm_reserved_address is just a
2805     // hint about the upper limit of non-stack memory regions.)
2806     if ((address)addr + bytes > _highest_vm_reserved_address) {
2807       _highest_vm_reserved_address = (address)addr + bytes;
2808     }
2809   }
2810 
2811   return addr == MAP_FAILED ? NULL : addr;
2812 }
2813 
2814 // Don't update _highest_vm_reserved_address, because there might be memory
2815 // regions above addr + size. If so, releasing a memory region only creates
2816 // a hole in the address space, it doesn't help prevent heap-stack collision.
2817 //
2818 static int anon_munmap(char * addr, size_t size) {
2819   return ::munmap(addr, size) == 0;
2820 }
2821 
2822 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2823                          size_t alignment_hint) {
2824   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2825 }
2826 
2827 bool os::pd_release_memory(char* addr, size_t size) {
2828   return anon_munmap(addr, size);
2829 }
2830 
2831 static address highest_vm_reserved_address() {
2832   return _highest_vm_reserved_address;
2833 }
2834 
2835 static bool linux_mprotect(char* addr, size_t size, int prot) {
2836   // Linux wants the mprotect address argument to be page aligned.
2837   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2838 
2839   // According to SUSv3, mprotect() should only be used with mappings
2840   // established by mmap(), and mmap() always maps whole pages. Unaligned
2841   // 'addr' likely indicates problem in the VM (e.g. trying to change
2842   // protection of malloc'ed or statically allocated memory). Check the
2843   // caller if you hit this assert.
2844   assert(addr == bottom, "sanity check");
2845 
2846   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2847   return ::mprotect(bottom, size, prot) == 0;
2848 }
2849 
2850 // Set protections specified
2851 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2852                         bool is_committed) {
2853   unsigned int p = 0;
2854   switch (prot) {
2855   case MEM_PROT_NONE: p = PROT_NONE; break;
2856   case MEM_PROT_READ: p = PROT_READ; break;
2857   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2858   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2859   default:
2860     ShouldNotReachHere();
2861   }
2862   // is_committed is unused.
2863   return linux_mprotect(addr, bytes, p);
2864 }
2865 
2866 bool os::guard_memory(char* addr, size_t size) {
2867   return linux_mprotect(addr, size, PROT_NONE);
2868 }
2869 
2870 bool os::unguard_memory(char* addr, size_t size) {
2871   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2872 }
2873 
2874 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2875   bool result = false;
2876   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2877                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2878                   -1, 0);
2879 
2880   if (p != (void *) -1) {
2881     // We don't know if this really is a huge page or not.
2882     FILE *fp = fopen("/proc/self/maps", "r");
2883     if (fp) {
2884       while (!feof(fp)) {
2885         char chars[257];
2886         long x = 0;
2887         if (fgets(chars, sizeof(chars), fp)) {
2888           if (sscanf(chars, "%lx-%*x", &x) == 1
2889               && x == (long)p) {
2890             if (strstr (chars, "hugepage")) {
2891               result = true;
2892               break;
2893             }
2894           }
2895         }
2896       }
2897       fclose(fp);
2898     }
2899     munmap (p, page_size);
2900     if (result)
2901       return true;
2902   }
2903 
2904   if (warn) {
2905     warning("HugeTLBFS is not supported by the operating system.");
2906   }
2907 
2908   return result;
2909 }
2910 
2911 /*
2912 * Set the coredump_filter bits to include largepages in core dump (bit 6)
2913 *
2914 * From the coredump_filter documentation:
2915 *
2916 * - (bit 0) anonymous private memory
2917 * - (bit 1) anonymous shared memory
2918 * - (bit 2) file-backed private memory
2919 * - (bit 3) file-backed shared memory
2920 * - (bit 4) ELF header pages in file-backed private memory areas (it is
2921 *           effective only if the bit 2 is cleared)
2922 * - (bit 5) hugetlb private memory
2923 * - (bit 6) hugetlb shared memory
2924 */
2925 static void set_coredump_filter(void) {
2926   FILE *f;
2927   long cdm;
2928 
2929   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2930     return;
2931   }
2932 
2933   if (fscanf(f, "%lx", &cdm) != 1) {
2934     fclose(f);
2935     return;
2936   }
2937 
2938   rewind(f);
2939 
2940   if ((cdm & LARGEPAGES_BIT) == 0) {
2941     cdm |= LARGEPAGES_BIT;
2942     fprintf(f, "%#lx", cdm);
2943   }
2944 
2945   fclose(f);
2946 }
2947 
2948 // Large page support
2949 
2950 static size_t _large_page_size = 0;
2951 
2952 void os::large_page_init() {
2953   if (!UseLargePages) {
2954     UseHugeTLBFS = false;
2955     UseSHM = false;
2956     return;
2957   }
2958 
2959   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2960     // If UseLargePages is specified on the command line try both methods,
2961     // if it's default, then try only HugeTLBFS.
2962     if (FLAG_IS_DEFAULT(UseLargePages)) {
2963       UseHugeTLBFS = true;
2964     } else {
2965       UseHugeTLBFS = UseSHM = true;
2966     }
2967   }
2968 
2969   if (LargePageSizeInBytes) {
2970     _large_page_size = LargePageSizeInBytes;
2971   } else {
2972     // large_page_size on Linux is used to round up heap size. x86 uses either
2973     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2974     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2975     // page as large as 256M.
2976     //
2977     // Here we try to figure out page size by parsing /proc/meminfo and looking
2978     // for a line with the following format:
2979     //    Hugepagesize:     2048 kB
2980     //
2981     // If we can't determine the value (e.g. /proc is not mounted, or the text
2982     // format has been changed), we'll use the largest page size supported by
2983     // the processor.
2984 
2985 #ifndef ZERO
2986     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2987                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2988 #endif // ZERO
2989 
2990     FILE *fp = fopen("/proc/meminfo", "r");
2991     if (fp) {
2992       while (!feof(fp)) {
2993         int x = 0;
2994         char buf[16];
2995         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2996           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2997             _large_page_size = x * K;
2998             break;
2999           }
3000         } else {
3001           // skip to next line
3002           for (;;) {
3003             int ch = fgetc(fp);
3004             if (ch == EOF || ch == (int)'\n') break;
3005           }
3006         }
3007       }
3008       fclose(fp);
3009     }
3010   }
3011 
3012   // print a warning if any large page related flag is specified on command line
3013   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3014 
3015   const size_t default_page_size = (size_t)Linux::page_size();
3016   if (_large_page_size > default_page_size) {
3017     _page_sizes[0] = _large_page_size;
3018     _page_sizes[1] = default_page_size;
3019     _page_sizes[2] = 0;
3020   }
3021   UseHugeTLBFS = UseHugeTLBFS &&
3022                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3023 
3024   if (UseHugeTLBFS)
3025     UseSHM = false;
3026 
3027   UseLargePages = UseHugeTLBFS || UseSHM;
3028 
3029   set_coredump_filter();
3030 }
3031 
3032 #ifndef SHM_HUGETLB
3033 #define SHM_HUGETLB 04000
3034 #endif
3035 
3036 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3037   // "exec" is passed in but not used.  Creating the shared image for
3038   // the code cache doesn't have an SHM_X executable permission to check.
3039   assert(UseLargePages && UseSHM, "only for SHM large pages");
3040 
3041   key_t key = IPC_PRIVATE;
3042   char *addr;
3043 
3044   bool warn_on_failure = UseLargePages &&
3045                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3046                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3047                         );
3048   char msg[128];
3049 
3050   // Create a large shared memory region to attach to based on size.
3051   // Currently, size is the total size of the heap
3052   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3053   if (shmid == -1) {
3054      // Possible reasons for shmget failure:
3055      // 1. shmmax is too small for Java heap.
3056      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3057      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3058      // 2. not enough large page memory.
3059      //    > check available large pages: cat /proc/meminfo
3060      //    > increase amount of large pages:
3061      //          echo new_value > /proc/sys/vm/nr_hugepages
3062      //      Note 1: different Linux may use different name for this property,
3063      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3064      //      Note 2: it's possible there's enough physical memory available but
3065      //            they are so fragmented after a long run that they can't
3066      //            coalesce into large pages. Try to reserve large pages when
3067      //            the system is still "fresh".
3068      if (warn_on_failure) {
3069        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3070        warning(msg);
3071      }
3072      return NULL;
3073   }
3074 
3075   // attach to the region
3076   addr = (char*)shmat(shmid, req_addr, 0);
3077   int err = errno;
3078 
3079   // Remove shmid. If shmat() is successful, the actual shared memory segment
3080   // will be deleted when it's detached by shmdt() or when the process
3081   // terminates. If shmat() is not successful this will remove the shared
3082   // segment immediately.
3083   shmctl(shmid, IPC_RMID, NULL);
3084 
3085   if ((intptr_t)addr == -1) {
3086      if (warn_on_failure) {
3087        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3088        warning(msg);
3089      }
3090      return NULL;
3091   }
3092 
3093   if ((addr != NULL) && UseNUMAInterleaving) {
3094     numa_make_global(addr, bytes);
3095   }
3096 
3097   return addr;
3098 }
3099 
3100 bool os::release_memory_special(char* base, size_t bytes) {
3101   // detaching the SHM segment will also delete it, see reserve_memory_special()
3102   int rslt = shmdt(base);
3103   return rslt == 0;
3104 }
3105 
3106 size_t os::large_page_size() {
3107   return _large_page_size;
3108 }
3109 
3110 // HugeTLBFS allows application to commit large page memory on demand;
3111 // with SysV SHM the entire memory region must be allocated as shared
3112 // memory.
3113 bool os::can_commit_large_page_memory() {
3114   return UseHugeTLBFS;
3115 }
3116 
3117 bool os::can_execute_large_page_memory() {
3118   return UseHugeTLBFS;
3119 }
3120 
3121 // Reserve memory at an arbitrary address, only if that area is
3122 // available (and not reserved for something else).
3123 
3124 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3125   const int max_tries = 10;
3126   char* base[max_tries];
3127   size_t size[max_tries];
3128   const size_t gap = 0x000000;
3129 
3130   // Assert only that the size is a multiple of the page size, since
3131   // that's all that mmap requires, and since that's all we really know
3132   // about at this low abstraction level.  If we need higher alignment,
3133   // we can either pass an alignment to this method or verify alignment
3134   // in one of the methods further up the call chain.  See bug 5044738.
3135   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3136 
3137   // Repeatedly allocate blocks until the block is allocated at the
3138   // right spot. Give up after max_tries. Note that reserve_memory() will
3139   // automatically update _highest_vm_reserved_address if the call is
3140   // successful. The variable tracks the highest memory address every reserved
3141   // by JVM. It is used to detect heap-stack collision if running with
3142   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3143   // space than needed, it could confuse the collision detecting code. To
3144   // solve the problem, save current _highest_vm_reserved_address and
3145   // calculate the correct value before return.
3146   address old_highest = _highest_vm_reserved_address;
3147 
3148   // Linux mmap allows caller to pass an address as hint; give it a try first,
3149   // if kernel honors the hint then we can return immediately.
3150   char * addr = anon_mmap(requested_addr, bytes, false);
3151   if (addr == requested_addr) {
3152      return requested_addr;
3153   }
3154 
3155   if (addr != NULL) {
3156      // mmap() is successful but it fails to reserve at the requested address
3157      anon_munmap(addr, bytes);
3158   }
3159 
3160   int i;
3161   for (i = 0; i < max_tries; ++i) {
3162     base[i] = reserve_memory(bytes);
3163 
3164     if (base[i] != NULL) {
3165       // Is this the block we wanted?
3166       if (base[i] == requested_addr) {
3167         size[i] = bytes;
3168         break;
3169       }
3170 
3171       // Does this overlap the block we wanted? Give back the overlapped
3172       // parts and try again.
3173 
3174       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3175       if (top_overlap >= 0 && top_overlap < bytes) {
3176         unmap_memory(base[i], top_overlap);
3177         base[i] += top_overlap;
3178         size[i] = bytes - top_overlap;
3179       } else {
3180         size_t bottom_overlap = base[i] + bytes - requested_addr;
3181         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3182           unmap_memory(requested_addr, bottom_overlap);
3183           size[i] = bytes - bottom_overlap;
3184         } else {
3185           size[i] = bytes;
3186         }
3187       }
3188     }
3189   }
3190 
3191   // Give back the unused reserved pieces.
3192 
3193   for (int j = 0; j < i; ++j) {
3194     if (base[j] != NULL) {
3195       unmap_memory(base[j], size[j]);
3196     }
3197   }
3198 
3199   if (i < max_tries) {
3200     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3201     return requested_addr;
3202   } else {
3203     _highest_vm_reserved_address = old_highest;
3204     return NULL;
3205   }
3206 }
3207 
3208 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3209   return ::read(fd, buf, nBytes);
3210 }
3211 
3212 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3213 // Solaris uses poll(), linux uses park().
3214 // Poll() is likely a better choice, assuming that Thread.interrupt()
3215 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3216 // SIGSEGV, see 4355769.
3217 
3218 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3219   assert(thread == Thread::current(),  "thread consistency check");
3220 
3221   ParkEvent * const slp = thread->_SleepEvent ;
3222   slp->reset() ;
3223   OrderAccess::fence() ;
3224 
3225   if (interruptible) {
3226     jlong prevtime = javaTimeNanos();
3227 
3228     for (;;) {
3229       if (os::is_interrupted(thread, true)) {
3230         return OS_INTRPT;
3231       }
3232 
3233       jlong newtime = javaTimeNanos();
3234 
3235       if (newtime - prevtime < 0) {
3236         // time moving backwards, should only happen if no monotonic clock
3237         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3238         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3239       } else {
3240         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3241       }
3242 
3243       if(millis <= 0) {
3244         return OS_OK;
3245       }
3246 
3247       prevtime = newtime;
3248 
3249       {
3250         assert(thread->is_Java_thread(), "sanity check");
3251         JavaThread *jt = (JavaThread *) thread;
3252         ThreadBlockInVM tbivm(jt);
3253         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3254 
3255         jt->set_suspend_equivalent();
3256         // cleared by handle_special_suspend_equivalent_condition() or
3257         // java_suspend_self() via check_and_wait_while_suspended()
3258 
3259         slp->park(millis);
3260 
3261         // were we externally suspended while we were waiting?
3262         jt->check_and_wait_while_suspended();
3263       }
3264     }
3265   } else {
3266     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3267     jlong prevtime = javaTimeNanos();
3268 
3269     for (;;) {
3270       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3271       // the 1st iteration ...
3272       jlong newtime = javaTimeNanos();
3273 
3274       if (newtime - prevtime < 0) {
3275         // time moving backwards, should only happen if no monotonic clock
3276         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3277         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3278       } else {
3279         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3280       }
3281 
3282       if(millis <= 0) break ;
3283 
3284       prevtime = newtime;
3285       slp->park(millis);
3286     }
3287     return OS_OK ;
3288   }
3289 }
3290 
3291 int os::naked_sleep() {
3292   // %% make the sleep time an integer flag. for now use 1 millisec.
3293   return os::sleep(Thread::current(), 1, false);
3294 }
3295 
3296 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3297 void os::infinite_sleep() {
3298   while (true) {    // sleep forever ...
3299     ::sleep(100);   // ... 100 seconds at a time
3300   }
3301 }
3302 
3303 // Used to convert frequent JVM_Yield() to nops
3304 bool os::dont_yield() {
3305   return DontYieldALot;
3306 }
3307 
3308 void os::yield() {
3309   sched_yield();
3310 }
3311 
3312 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3313 
3314 void os::yield_all(int attempts) {
3315   // Yields to all threads, including threads with lower priorities
3316   // Threads on Linux are all with same priority. The Solaris style
3317   // os::yield_all() with nanosleep(1ms) is not necessary.
3318   sched_yield();
3319 }
3320 
3321 // Called from the tight loops to possibly influence time-sharing heuristics
3322 void os::loop_breaker(int attempts) {
3323   os::yield_all(attempts);
3324 }
3325 
3326 ////////////////////////////////////////////////////////////////////////////////
3327 // thread priority support
3328 
3329 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3330 // only supports dynamic priority, static priority must be zero. For real-time
3331 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3332 // However, for large multi-threaded applications, SCHED_RR is not only slower
3333 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3334 // of 5 runs - Sep 2005).
3335 //
3336 // The following code actually changes the niceness of kernel-thread/LWP. It
3337 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3338 // not the entire user process, and user level threads are 1:1 mapped to kernel
3339 // threads. It has always been the case, but could change in the future. For
3340 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3341 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3342 
3343 int os::java_to_os_priority[CriticalPriority + 1] = {
3344   19,              // 0 Entry should never be used
3345 
3346    4,              // 1 MinPriority
3347    3,              // 2
3348    2,              // 3
3349 
3350    1,              // 4
3351    0,              // 5 NormPriority
3352   -1,              // 6
3353 
3354   -2,              // 7
3355   -3,              // 8
3356   -4,              // 9 NearMaxPriority
3357 
3358   -5,              // 10 MaxPriority
3359 
3360   -5               // 11 CriticalPriority
3361 };
3362 
3363 static int prio_init() {
3364   if (ThreadPriorityPolicy == 1) {
3365     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3366     // if effective uid is not root. Perhaps, a more elegant way of doing
3367     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3368     if (geteuid() != 0) {
3369       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3370         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3371       }
3372       ThreadPriorityPolicy = 0;
3373     }
3374   }
3375   if (UseCriticalJavaThreadPriority) {
3376     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3377   }
3378   return 0;
3379 }
3380 
3381 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3382   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3383 
3384   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3385   return (ret == 0) ? OS_OK : OS_ERR;
3386 }
3387 
3388 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3389   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3390     *priority_ptr = java_to_os_priority[NormPriority];
3391     return OS_OK;
3392   }
3393 
3394   errno = 0;
3395   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3396   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3397 }
3398 
3399 // Hint to the underlying OS that a task switch would not be good.
3400 // Void return because it's a hint and can fail.
3401 void os::hint_no_preempt() {}
3402 
3403 ////////////////////////////////////////////////////////////////////////////////
3404 // suspend/resume support
3405 
3406 //  the low-level signal-based suspend/resume support is a remnant from the
3407 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3408 //  within hotspot. Now there is a single use-case for this:
3409 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3410 //      that runs in the watcher thread.
3411 //  The remaining code is greatly simplified from the more general suspension
3412 //  code that used to be used.
3413 //
3414 //  The protocol is quite simple:
3415 //  - suspend:
3416 //      - sends a signal to the target thread
3417 //      - polls the suspend state of the osthread using a yield loop
3418 //      - target thread signal handler (SR_handler) sets suspend state
3419 //        and blocks in sigsuspend until continued
3420 //  - resume:
3421 //      - sets target osthread state to continue
3422 //      - sends signal to end the sigsuspend loop in the SR_handler
3423 //
3424 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3425 //
3426 
3427 static void resume_clear_context(OSThread *osthread) {
3428   osthread->set_ucontext(NULL);
3429   osthread->set_siginfo(NULL);
3430 
3431   // notify the suspend action is completed, we have now resumed
3432   osthread->sr.clear_suspended();
3433 }
3434 
3435 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3436   osthread->set_ucontext(context);
3437   osthread->set_siginfo(siginfo);
3438 }
3439 
3440 //
3441 // Handler function invoked when a thread's execution is suspended or
3442 // resumed. We have to be careful that only async-safe functions are
3443 // called here (Note: most pthread functions are not async safe and
3444 // should be avoided.)
3445 //
3446 // Note: sigwait() is a more natural fit than sigsuspend() from an
3447 // interface point of view, but sigwait() prevents the signal hander
3448 // from being run. libpthread would get very confused by not having
3449 // its signal handlers run and prevents sigwait()'s use with the
3450 // mutex granting granting signal.
3451 //
3452 // Currently only ever called on the VMThread
3453 //
3454 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3455   // Save and restore errno to avoid confusing native code with EINTR
3456   // after sigsuspend.
3457   int old_errno = errno;
3458 
3459   Thread* thread = Thread::current();
3460   OSThread* osthread = thread->osthread();
3461   assert(thread->is_VM_thread(), "Must be VMThread");
3462   // read current suspend action
3463   int action = osthread->sr.suspend_action();
3464   if (action == SR_SUSPEND) {
3465     suspend_save_context(osthread, siginfo, context);
3466 
3467     // Notify the suspend action is about to be completed. do_suspend()
3468     // waits until SR_SUSPENDED is set and then returns. We will wait
3469     // here for a resume signal and that completes the suspend-other
3470     // action. do_suspend/do_resume is always called as a pair from
3471     // the same thread - so there are no races
3472 
3473     // notify the caller
3474     osthread->sr.set_suspended();
3475 
3476     sigset_t suspend_set;  // signals for sigsuspend()
3477 
3478     // get current set of blocked signals and unblock resume signal
3479     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3480     sigdelset(&suspend_set, SR_signum);
3481 
3482     // wait here until we are resumed
3483     do {
3484       sigsuspend(&suspend_set);
3485       // ignore all returns until we get a resume signal
3486     } while (osthread->sr.suspend_action() != SR_CONTINUE);
3487 
3488     resume_clear_context(osthread);
3489 
3490   } else {
3491     assert(action == SR_CONTINUE, "unexpected sr action");
3492     // nothing special to do - just leave the handler
3493   }
3494 
3495   errno = old_errno;
3496 }
3497 
3498 
3499 static int SR_initialize() {
3500   struct sigaction act;
3501   char *s;
3502   /* Get signal number to use for suspend/resume */
3503   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3504     int sig = ::strtol(s, 0, 10);
3505     if (sig > 0 || sig < _NSIG) {
3506         SR_signum = sig;
3507     }
3508   }
3509 
3510   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3511         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3512 
3513   sigemptyset(&SR_sigset);
3514   sigaddset(&SR_sigset, SR_signum);
3515 
3516   /* Set up signal handler for suspend/resume */
3517   act.sa_flags = SA_RESTART|SA_SIGINFO;
3518   act.sa_handler = (void (*)(int)) SR_handler;
3519 
3520   // SR_signum is blocked by default.
3521   // 4528190 - We also need to block pthread restart signal (32 on all
3522   // supported Linux platforms). Note that LinuxThreads need to block
3523   // this signal for all threads to work properly. So we don't have
3524   // to use hard-coded signal number when setting up the mask.
3525   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3526 
3527   if (sigaction(SR_signum, &act, 0) == -1) {
3528     return -1;
3529   }
3530 
3531   // Save signal flag
3532   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3533   return 0;
3534 }
3535 
3536 static int SR_finalize() {
3537   return 0;
3538 }
3539 
3540 
3541 // returns true on success and false on error - really an error is fatal
3542 // but this seems the normal response to library errors
3543 static bool do_suspend(OSThread* osthread) {
3544   // mark as suspended and send signal
3545   osthread->sr.set_suspend_action(SR_SUSPEND);
3546   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3547   assert_status(status == 0, status, "pthread_kill");
3548 
3549   // check status and wait until notified of suspension
3550   if (status == 0) {
3551     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3552       os::yield_all(i);
3553     }
3554     osthread->sr.set_suspend_action(SR_NONE);
3555     return true;
3556   }
3557   else {
3558     osthread->sr.set_suspend_action(SR_NONE);
3559     return false;
3560   }
3561 }
3562 
3563 static void do_resume(OSThread* osthread) {
3564   assert(osthread->sr.is_suspended(), "thread should be suspended");
3565   osthread->sr.set_suspend_action(SR_CONTINUE);
3566 
3567   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3568   assert_status(status == 0, status, "pthread_kill");
3569   // check status and wait unit notified of resumption
3570   if (status == 0) {
3571     for (int i = 0; osthread->sr.is_suspended(); i++) {
3572       os::yield_all(i);
3573     }
3574   }
3575   osthread->sr.set_suspend_action(SR_NONE);
3576 }
3577 
3578 ////////////////////////////////////////////////////////////////////////////////
3579 // interrupt support
3580 
3581 void os::interrupt(Thread* thread) {
3582   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3583     "possibility of dangling Thread pointer");
3584 
3585   OSThread* osthread = thread->osthread();
3586 
3587   if (!osthread->interrupted()) {
3588     osthread->set_interrupted(true);
3589     // More than one thread can get here with the same value of osthread,
3590     // resulting in multiple notifications.  We do, however, want the store
3591     // to interrupted() to be visible to other threads before we execute unpark().
3592     OrderAccess::fence();
3593     ParkEvent * const slp = thread->_SleepEvent ;
3594     if (slp != NULL) slp->unpark() ;
3595   }
3596 
3597   // For JSR166. Unpark even if interrupt status already was set
3598   if (thread->is_Java_thread())
3599     ((JavaThread*)thread)->parker()->unpark();
3600 
3601   ParkEvent * ev = thread->_ParkEvent ;
3602   if (ev != NULL) ev->unpark() ;
3603 
3604 }
3605 
3606 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3607   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3608     "possibility of dangling Thread pointer");
3609 
3610   OSThread* osthread = thread->osthread();
3611 
3612   bool interrupted = osthread->interrupted();
3613 
3614   if (interrupted && clear_interrupted) {
3615     osthread->set_interrupted(false);
3616     // consider thread->_SleepEvent->reset() ... optional optimization
3617   }
3618 
3619   return interrupted;
3620 }
3621 
3622 ///////////////////////////////////////////////////////////////////////////////////
3623 // signal handling (except suspend/resume)
3624 
3625 // This routine may be used by user applications as a "hook" to catch signals.
3626 // The user-defined signal handler must pass unrecognized signals to this
3627 // routine, and if it returns true (non-zero), then the signal handler must
3628 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3629 // routine will never retun false (zero), but instead will execute a VM panic
3630 // routine kill the process.
3631 //
3632 // If this routine returns false, it is OK to call it again.  This allows
3633 // the user-defined signal handler to perform checks either before or after
3634 // the VM performs its own checks.  Naturally, the user code would be making
3635 // a serious error if it tried to handle an exception (such as a null check
3636 // or breakpoint) that the VM was generating for its own correct operation.
3637 //
3638 // This routine may recognize any of the following kinds of signals:
3639 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3640 // It should be consulted by handlers for any of those signals.
3641 //
3642 // The caller of this routine must pass in the three arguments supplied
3643 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3644 // field of the structure passed to sigaction().  This routine assumes that
3645 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3646 //
3647 // Note that the VM will print warnings if it detects conflicting signal
3648 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3649 //
3650 extern "C" JNIEXPORT int
3651 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3652                         void* ucontext, int abort_if_unrecognized);
3653 
3654 void signalHandler(int sig, siginfo_t* info, void* uc) {
3655   assert(info != NULL && uc != NULL, "it must be old kernel");
3656   int orig_errno = errno;  // Preserve errno value over signal handler.
3657   JVM_handle_linux_signal(sig, info, uc, true);
3658   errno = orig_errno;
3659 }
3660 
3661 
3662 // This boolean allows users to forward their own non-matching signals
3663 // to JVM_handle_linux_signal, harmlessly.
3664 bool os::Linux::signal_handlers_are_installed = false;
3665 
3666 // For signal-chaining
3667 struct sigaction os::Linux::sigact[MAXSIGNUM];
3668 unsigned int os::Linux::sigs = 0;
3669 bool os::Linux::libjsig_is_loaded = false;
3670 typedef struct sigaction *(*get_signal_t)(int);
3671 get_signal_t os::Linux::get_signal_action = NULL;
3672 
3673 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3674   struct sigaction *actp = NULL;
3675 
3676   if (libjsig_is_loaded) {
3677     // Retrieve the old signal handler from libjsig
3678     actp = (*get_signal_action)(sig);
3679   }
3680   if (actp == NULL) {
3681     // Retrieve the preinstalled signal handler from jvm
3682     actp = get_preinstalled_handler(sig);
3683   }
3684 
3685   return actp;
3686 }
3687 
3688 static bool call_chained_handler(struct sigaction *actp, int sig,
3689                                  siginfo_t *siginfo, void *context) {
3690   // Call the old signal handler
3691   if (actp->sa_handler == SIG_DFL) {
3692     // It's more reasonable to let jvm treat it as an unexpected exception
3693     // instead of taking the default action.
3694     return false;
3695   } else if (actp->sa_handler != SIG_IGN) {
3696     if ((actp->sa_flags & SA_NODEFER) == 0) {
3697       // automaticlly block the signal
3698       sigaddset(&(actp->sa_mask), sig);
3699     }
3700 
3701     sa_handler_t hand;
3702     sa_sigaction_t sa;
3703     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3704     // retrieve the chained handler
3705     if (siginfo_flag_set) {
3706       sa = actp->sa_sigaction;
3707     } else {
3708       hand = actp->sa_handler;
3709     }
3710 
3711     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3712       actp->sa_handler = SIG_DFL;
3713     }
3714 
3715     // try to honor the signal mask
3716     sigset_t oset;
3717     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3718 
3719     // call into the chained handler
3720     if (siginfo_flag_set) {
3721       (*sa)(sig, siginfo, context);
3722     } else {
3723       (*hand)(sig);
3724     }
3725 
3726     // restore the signal mask
3727     pthread_sigmask(SIG_SETMASK, &oset, 0);
3728   }
3729   // Tell jvm's signal handler the signal is taken care of.
3730   return true;
3731 }
3732 
3733 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3734   bool chained = false;
3735   // signal-chaining
3736   if (UseSignalChaining) {
3737     struct sigaction *actp = get_chained_signal_action(sig);
3738     if (actp != NULL) {
3739       chained = call_chained_handler(actp, sig, siginfo, context);
3740     }
3741   }
3742   return chained;
3743 }
3744 
3745 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3746   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3747     return &sigact[sig];
3748   }
3749   return NULL;
3750 }
3751 
3752 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3753   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3754   sigact[sig] = oldAct;
3755   sigs |= (unsigned int)1 << sig;
3756 }
3757 
3758 // for diagnostic
3759 int os::Linux::sigflags[MAXSIGNUM];
3760 
3761 int os::Linux::get_our_sigflags(int sig) {
3762   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3763   return sigflags[sig];
3764 }
3765 
3766 void os::Linux::set_our_sigflags(int sig, int flags) {
3767   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3768   sigflags[sig] = flags;
3769 }
3770 
3771 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3772   // Check for overwrite.
3773   struct sigaction oldAct;
3774   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3775 
3776   void* oldhand = oldAct.sa_sigaction
3777                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3778                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3779   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3780       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3781       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3782     if (AllowUserSignalHandlers || !set_installed) {
3783       // Do not overwrite; user takes responsibility to forward to us.
3784       return;
3785     } else if (UseSignalChaining) {
3786       // save the old handler in jvm
3787       save_preinstalled_handler(sig, oldAct);
3788       // libjsig also interposes the sigaction() call below and saves the
3789       // old sigaction on it own.
3790     } else {
3791       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3792                     "%#lx for signal %d.", (long)oldhand, sig));
3793     }
3794   }
3795 
3796   struct sigaction sigAct;
3797   sigfillset(&(sigAct.sa_mask));
3798   sigAct.sa_handler = SIG_DFL;
3799   if (!set_installed) {
3800     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3801   } else {
3802     sigAct.sa_sigaction = signalHandler;
3803     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3804   }
3805   // Save flags, which are set by ours
3806   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3807   sigflags[sig] = sigAct.sa_flags;
3808 
3809   int ret = sigaction(sig, &sigAct, &oldAct);
3810   assert(ret == 0, "check");
3811 
3812   void* oldhand2  = oldAct.sa_sigaction
3813                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3814                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3815   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3816 }
3817 
3818 // install signal handlers for signals that HotSpot needs to
3819 // handle in order to support Java-level exception handling.
3820 
3821 void os::Linux::install_signal_handlers() {
3822   if (!signal_handlers_are_installed) {
3823     signal_handlers_are_installed = true;
3824 
3825     // signal-chaining
3826     typedef void (*signal_setting_t)();
3827     signal_setting_t begin_signal_setting = NULL;
3828     signal_setting_t end_signal_setting = NULL;
3829     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3830                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3831     if (begin_signal_setting != NULL) {
3832       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3833                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3834       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3835                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3836       libjsig_is_loaded = true;
3837       assert(UseSignalChaining, "should enable signal-chaining");
3838     }
3839     if (libjsig_is_loaded) {
3840       // Tell libjsig jvm is setting signal handlers
3841       (*begin_signal_setting)();
3842     }
3843 
3844     set_signal_handler(SIGSEGV, true);
3845     set_signal_handler(SIGPIPE, true);
3846     set_signal_handler(SIGBUS, true);
3847     set_signal_handler(SIGILL, true);
3848     set_signal_handler(SIGFPE, true);
3849     set_signal_handler(SIGXFSZ, true);
3850 
3851     if (libjsig_is_loaded) {
3852       // Tell libjsig jvm finishes setting signal handlers
3853       (*end_signal_setting)();
3854     }
3855 
3856     // We don't activate signal checker if libjsig is in place, we trust ourselves
3857     // and if UserSignalHandler is installed all bets are off.
3858     // Log that signal checking is off only if -verbose:jni is specified.
3859     if (CheckJNICalls) {
3860       if (libjsig_is_loaded) {
3861         if (PrintJNIResolving) {
3862           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3863         }
3864         check_signals = false;
3865       }
3866       if (AllowUserSignalHandlers) {
3867         if (PrintJNIResolving) {
3868           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3869         }
3870         check_signals = false;
3871       }
3872     }
3873   }
3874 }
3875 
3876 // This is the fastest way to get thread cpu time on Linux.
3877 // Returns cpu time (user+sys) for any thread, not only for current.
3878 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3879 // It might work on 2.6.10+ with a special kernel/glibc patch.
3880 // For reference, please, see IEEE Std 1003.1-2004:
3881 //   http://www.unix.org/single_unix_specification
3882 
3883 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3884   struct timespec tp;
3885   int rc = os::Linux::clock_gettime(clockid, &tp);
3886   assert(rc == 0, "clock_gettime is expected to return 0 code");
3887 
3888   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
3889 }
3890 
3891 /////
3892 // glibc on Linux platform uses non-documented flag
3893 // to indicate, that some special sort of signal
3894 // trampoline is used.
3895 // We will never set this flag, and we should
3896 // ignore this flag in our diagnostic
3897 #ifdef SIGNIFICANT_SIGNAL_MASK
3898 #undef SIGNIFICANT_SIGNAL_MASK
3899 #endif
3900 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3901 
3902 static const char* get_signal_handler_name(address handler,
3903                                            char* buf, int buflen) {
3904   int offset;
3905   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3906   if (found) {
3907     // skip directory names
3908     const char *p1, *p2;
3909     p1 = buf;
3910     size_t len = strlen(os::file_separator());
3911     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3912     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3913   } else {
3914     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3915   }
3916   return buf;
3917 }
3918 
3919 static void print_signal_handler(outputStream* st, int sig,
3920                                  char* buf, size_t buflen) {
3921   struct sigaction sa;
3922 
3923   sigaction(sig, NULL, &sa);
3924 
3925   // See comment for SIGNIFICANT_SIGNAL_MASK define
3926   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3927 
3928   st->print("%s: ", os::exception_name(sig, buf, buflen));
3929 
3930   address handler = (sa.sa_flags & SA_SIGINFO)
3931     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3932     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3933 
3934   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3935     st->print("SIG_DFL");
3936   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3937     st->print("SIG_IGN");
3938   } else {
3939     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3940   }
3941 
3942   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3943 
3944   address rh = VMError::get_resetted_sighandler(sig);
3945   // May be, handler was resetted by VMError?
3946   if(rh != NULL) {
3947     handler = rh;
3948     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3949   }
3950 
3951   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3952 
3953   // Check: is it our handler?
3954   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3955      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3956     // It is our signal handler
3957     // check for flags, reset system-used one!
3958     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3959       st->print(
3960                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3961                 os::Linux::get_our_sigflags(sig));
3962     }
3963   }
3964   st->cr();
3965 }
3966 
3967 
3968 #define DO_SIGNAL_CHECK(sig) \
3969   if (!sigismember(&check_signal_done, sig)) \
3970     os::Linux::check_signal_handler(sig)
3971 
3972 // This method is a periodic task to check for misbehaving JNI applications
3973 // under CheckJNI, we can add any periodic checks here
3974 
3975 void os::run_periodic_checks() {
3976 
3977   if (check_signals == false) return;
3978 
3979   // SEGV and BUS if overridden could potentially prevent
3980   // generation of hs*.log in the event of a crash, debugging
3981   // such a case can be very challenging, so we absolutely
3982   // check the following for a good measure:
3983   DO_SIGNAL_CHECK(SIGSEGV);
3984   DO_SIGNAL_CHECK(SIGILL);
3985   DO_SIGNAL_CHECK(SIGFPE);
3986   DO_SIGNAL_CHECK(SIGBUS);
3987   DO_SIGNAL_CHECK(SIGPIPE);
3988   DO_SIGNAL_CHECK(SIGXFSZ);
3989 
3990 
3991   // ReduceSignalUsage allows the user to override these handlers
3992   // see comments at the very top and jvm_solaris.h
3993   if (!ReduceSignalUsage) {
3994     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3995     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3996     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3997     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3998   }
3999 
4000   DO_SIGNAL_CHECK(SR_signum);
4001   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4002 }
4003 
4004 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4005 
4006 static os_sigaction_t os_sigaction = NULL;
4007 
4008 void os::Linux::check_signal_handler(int sig) {
4009   char buf[O_BUFLEN];
4010   address jvmHandler = NULL;
4011 
4012 
4013   struct sigaction act;
4014   if (os_sigaction == NULL) {
4015     // only trust the default sigaction, in case it has been interposed
4016     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4017     if (os_sigaction == NULL) return;
4018   }
4019 
4020   os_sigaction(sig, (struct sigaction*)NULL, &act);
4021 
4022 
4023   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4024 
4025   address thisHandler = (act.sa_flags & SA_SIGINFO)
4026     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4027     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4028 
4029 
4030   switch(sig) {
4031   case SIGSEGV:
4032   case SIGBUS:
4033   case SIGFPE:
4034   case SIGPIPE:
4035   case SIGILL:
4036   case SIGXFSZ:
4037     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4038     break;
4039 
4040   case SHUTDOWN1_SIGNAL:
4041   case SHUTDOWN2_SIGNAL:
4042   case SHUTDOWN3_SIGNAL:
4043   case BREAK_SIGNAL:
4044     jvmHandler = (address)user_handler();
4045     break;
4046 
4047   case INTERRUPT_SIGNAL:
4048     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4049     break;
4050 
4051   default:
4052     if (sig == SR_signum) {
4053       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4054     } else {
4055       return;
4056     }
4057     break;
4058   }
4059 
4060   if (thisHandler != jvmHandler) {
4061     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4062     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4063     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4064     // No need to check this sig any longer
4065     sigaddset(&check_signal_done, sig);
4066   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4067     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4068     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4069     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4070     // No need to check this sig any longer
4071     sigaddset(&check_signal_done, sig);
4072   }
4073 
4074   // Dump all the signal
4075   if (sigismember(&check_signal_done, sig)) {
4076     print_signal_handlers(tty, buf, O_BUFLEN);
4077   }
4078 }
4079 
4080 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4081 
4082 extern bool signal_name(int signo, char* buf, size_t len);
4083 
4084 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4085   if (0 < exception_code && exception_code <= SIGRTMAX) {
4086     // signal
4087     if (!signal_name(exception_code, buf, size)) {
4088       jio_snprintf(buf, size, "SIG%d", exception_code);
4089     }
4090     return buf;
4091   } else {
4092     return NULL;
4093   }
4094 }
4095 
4096 // this is called _before_ the most of global arguments have been parsed
4097 void os::init(void) {
4098   char dummy;   /* used to get a guess on initial stack address */
4099 //  first_hrtime = gethrtime();
4100 
4101   // With LinuxThreads the JavaMain thread pid (primordial thread)
4102   // is different than the pid of the java launcher thread.
4103   // So, on Linux, the launcher thread pid is passed to the VM
4104   // via the sun.java.launcher.pid property.
4105   // Use this property instead of getpid() if it was correctly passed.
4106   // See bug 6351349.
4107   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4108 
4109   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4110 
4111   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4112 
4113   init_random(1234567);
4114 
4115   ThreadCritical::initialize();
4116 
4117   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4118   if (Linux::page_size() == -1) {
4119     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4120                   strerror(errno)));
4121   }
4122   init_page_sizes((size_t) Linux::page_size());
4123 
4124   Linux::initialize_system_info();
4125 
4126   // main_thread points to the aboriginal thread
4127   Linux::_main_thread = pthread_self();
4128 
4129   Linux::clock_init();
4130   initial_time_count = os::elapsed_counter();
4131   pthread_mutex_init(&dl_mutex, NULL);
4132 }
4133 
4134 // To install functions for atexit system call
4135 extern "C" {
4136   static void perfMemory_exit_helper() {
4137     perfMemory_exit();
4138   }
4139 }
4140 
4141 // this is called _after_ the global arguments have been parsed
4142 jint os::init_2(void)
4143 {
4144   Linux::fast_thread_clock_init();
4145 
4146   // Allocate a single page and mark it as readable for safepoint polling
4147   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4148   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4149 
4150   os::set_polling_page( polling_page );
4151 
4152 #ifndef PRODUCT
4153   if(Verbose && PrintMiscellaneous)
4154     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4155 #endif
4156 
4157   if (!UseMembar) {
4158     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4159     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4160     os::set_memory_serialize_page( mem_serialize_page );
4161 
4162 #ifndef PRODUCT
4163     if(Verbose && PrintMiscellaneous)
4164       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4165 #endif
4166   }
4167 
4168   os::large_page_init();
4169 
4170   // initialize suspend/resume support - must do this before signal_sets_init()
4171   if (SR_initialize() != 0) {
4172     perror("SR_initialize failed");
4173     return JNI_ERR;
4174   }
4175 
4176   Linux::signal_sets_init();
4177   Linux::install_signal_handlers();
4178 
4179   // Check minimum allowable stack size for thread creation and to initialize
4180   // the java system classes, including StackOverflowError - depends on page
4181   // size.  Add a page for compiler2 recursion in main thread.
4182   // Add in 2*BytesPerWord times page size to account for VM stack during
4183   // class initialization depending on 32 or 64 bit VM.
4184   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4185             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4186                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4187 
4188   size_t threadStackSizeInBytes = ThreadStackSize * K;
4189   if (threadStackSizeInBytes != 0 &&
4190       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4191         tty->print_cr("\nThe stack size specified is too small, "
4192                       "Specify at least %dk",
4193                       os::Linux::min_stack_allowed/ K);
4194         return JNI_ERR;
4195   }
4196 
4197   // Make the stack size a multiple of the page size so that
4198   // the yellow/red zones can be guarded.
4199   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4200         vm_page_size()));
4201 
4202   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4203 
4204   Linux::libpthread_init();
4205   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4206      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4207           Linux::glibc_version(), Linux::libpthread_version(),
4208           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4209   }
4210 
4211   if (UseNUMA) {
4212     if (!Linux::libnuma_init()) {
4213       UseNUMA = false;
4214     } else {
4215       if ((Linux::numa_max_node() < 1)) {
4216         // There's only one node(they start from 0), disable NUMA.
4217         UseNUMA = false;
4218       }
4219     }
4220     // With SHM large pages we cannot uncommit a page, so there's not way
4221     // we can make the adaptive lgrp chunk resizing work. If the user specified
4222     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4223     // disable adaptive resizing.
4224     if (UseNUMA && UseLargePages && UseSHM) {
4225       if (!FLAG_IS_DEFAULT(UseNUMA)) {
4226         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4227           UseLargePages = false;
4228         } else {
4229           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4230           UseAdaptiveSizePolicy = false;
4231           UseAdaptiveNUMAChunkSizing = false;
4232         }
4233       } else {
4234         UseNUMA = false;
4235       }
4236     }
4237     if (!UseNUMA && ForceNUMA) {
4238       UseNUMA = true;
4239     }
4240   }
4241 
4242   if (MaxFDLimit) {
4243     // set the number of file descriptors to max. print out error
4244     // if getrlimit/setrlimit fails but continue regardless.
4245     struct rlimit nbr_files;
4246     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4247     if (status != 0) {
4248       if (PrintMiscellaneous && (Verbose || WizardMode))
4249         perror("os::init_2 getrlimit failed");
4250     } else {
4251       nbr_files.rlim_cur = nbr_files.rlim_max;
4252       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4253       if (status != 0) {
4254         if (PrintMiscellaneous && (Verbose || WizardMode))
4255           perror("os::init_2 setrlimit failed");
4256       }
4257     }
4258   }
4259 
4260   // Initialize lock used to serialize thread creation (see os::create_thread)
4261   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4262 
4263   // at-exit methods are called in the reverse order of their registration.
4264   // atexit functions are called on return from main or as a result of a
4265   // call to exit(3C). There can be only 32 of these functions registered
4266   // and atexit() does not set errno.
4267 
4268   if (PerfAllowAtExitRegistration) {
4269     // only register atexit functions if PerfAllowAtExitRegistration is set.
4270     // atexit functions can be delayed until process exit time, which
4271     // can be problematic for embedded VM situations. Embedded VMs should
4272     // call DestroyJavaVM() to assure that VM resources are released.
4273 
4274     // note: perfMemory_exit_helper atexit function may be removed in
4275     // the future if the appropriate cleanup code can be added to the
4276     // VM_Exit VMOperation's doit method.
4277     if (atexit(perfMemory_exit_helper) != 0) {
4278       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4279     }
4280   }
4281 
4282   // initialize thread priority policy
4283   prio_init();
4284 
4285   return JNI_OK;
4286 }
4287 
4288 // this is called at the end of vm_initialization
4289 void os::init_3(void)
4290 {
4291 #ifdef JAVASE_EMBEDDED
4292   // Start the MemNotifyThread
4293   if (LowMemoryProtection) {
4294     MemNotifyThread::start();
4295   }
4296   return;
4297 #endif
4298 }
4299 
4300 // Mark the polling page as unreadable
4301 void os::make_polling_page_unreadable(void) {
4302   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4303     fatal("Could not disable polling page");
4304 };
4305 
4306 // Mark the polling page as readable
4307 void os::make_polling_page_readable(void) {
4308   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4309     fatal("Could not enable polling page");
4310   }
4311 };
4312 
4313 int os::active_processor_count() {
4314   // Linux doesn't yet have a (official) notion of processor sets,
4315   // so just return the number of online processors.
4316   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4317   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4318   return online_cpus;
4319 }
4320 
4321 void os::set_native_thread_name(const char *name) {
4322   // Not yet implemented.
4323   return;
4324 }
4325 
4326 bool os::distribute_processes(uint length, uint* distribution) {
4327   // Not yet implemented.
4328   return false;
4329 }
4330 
4331 bool os::bind_to_processor(uint processor_id) {
4332   // Not yet implemented.
4333   return false;
4334 }
4335 
4336 ///
4337 
4338 // Suspends the target using the signal mechanism and then grabs the PC before
4339 // resuming the target. Used by the flat-profiler only
4340 ExtendedPC os::get_thread_pc(Thread* thread) {
4341   // Make sure that it is called by the watcher for the VMThread
4342   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4343   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4344 
4345   ExtendedPC epc;
4346 
4347   OSThread* osthread = thread->osthread();
4348   if (do_suspend(osthread)) {
4349     if (osthread->ucontext() != NULL) {
4350       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4351     } else {
4352       // NULL context is unexpected, double-check this is the VMThread
4353       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4354     }
4355     do_resume(osthread);
4356   }
4357   // failure means pthread_kill failed for some reason - arguably this is
4358   // a fatal problem, but such problems are ignored elsewhere
4359 
4360   return epc;
4361 }
4362 
4363 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4364 {
4365    if (is_NPTL()) {
4366       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4367    } else {
4368       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4369       // word back to default 64bit precision if condvar is signaled. Java
4370       // wants 53bit precision.  Save and restore current value.
4371       int fpu = get_fpu_control_word();
4372       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4373       set_fpu_control_word(fpu);
4374       return status;
4375    }
4376 }
4377 
4378 ////////////////////////////////////////////////////////////////////////////////
4379 // debug support
4380 
4381 static address same_page(address x, address y) {
4382   int page_bits = -os::vm_page_size();
4383   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4384     return x;
4385   else if (x > y)
4386     return (address)(intptr_t(y) | ~page_bits) + 1;
4387   else
4388     return (address)(intptr_t(y) & page_bits);
4389 }
4390 
4391 bool os::find(address addr, outputStream* st) {
4392   Dl_info dlinfo;
4393   memset(&dlinfo, 0, sizeof(dlinfo));
4394   if (dladdr(addr, &dlinfo)) {
4395     st->print(PTR_FORMAT ": ", addr);
4396     if (dlinfo.dli_sname != NULL) {
4397       st->print("%s+%#x", dlinfo.dli_sname,
4398                  addr - (intptr_t)dlinfo.dli_saddr);
4399     } else if (dlinfo.dli_fname) {
4400       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4401     } else {
4402       st->print("<absolute address>");
4403     }
4404     if (dlinfo.dli_fname) {
4405       st->print(" in %s", dlinfo.dli_fname);
4406     }
4407     if (dlinfo.dli_fbase) {
4408       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4409     }
4410     st->cr();
4411 
4412     if (Verbose) {
4413       // decode some bytes around the PC
4414       address begin = same_page(addr-40, addr);
4415       address end   = same_page(addr+40, addr);
4416       address       lowest = (address) dlinfo.dli_sname;
4417       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4418       if (begin < lowest)  begin = lowest;
4419       Dl_info dlinfo2;
4420       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4421           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4422         end = (address) dlinfo2.dli_saddr;
4423       Disassembler::decode(begin, end, st);
4424     }
4425     return true;
4426   }
4427   return false;
4428 }
4429 
4430 ////////////////////////////////////////////////////////////////////////////////
4431 // misc
4432 
4433 // This does not do anything on Linux. This is basically a hook for being
4434 // able to use structured exception handling (thread-local exception filters)
4435 // on, e.g., Win32.
4436 void
4437 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4438                          JavaCallArguments* args, Thread* thread) {
4439   f(value, method, args, thread);
4440 }
4441 
4442 void os::print_statistics() {
4443 }
4444 
4445 int os::message_box(const char* title, const char* message) {
4446   int i;
4447   fdStream err(defaultStream::error_fd());
4448   for (i = 0; i < 78; i++) err.print_raw("=");
4449   err.cr();
4450   err.print_raw_cr(title);
4451   for (i = 0; i < 78; i++) err.print_raw("-");
4452   err.cr();
4453   err.print_raw_cr(message);
4454   for (i = 0; i < 78; i++) err.print_raw("=");
4455   err.cr();
4456 
4457   char buf[16];
4458   // Prevent process from exiting upon "read error" without consuming all CPU
4459   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4460 
4461   return buf[0] == 'y' || buf[0] == 'Y';
4462 }
4463 
4464 int os::stat(const char *path, struct stat *sbuf) {
4465   char pathbuf[MAX_PATH];
4466   if (strlen(path) > MAX_PATH - 1) {
4467     errno = ENAMETOOLONG;
4468     return -1;
4469   }
4470   os::native_path(strcpy(pathbuf, path));
4471   return ::stat(pathbuf, sbuf);
4472 }
4473 
4474 bool os::check_heap(bool force) {
4475   return true;
4476 }
4477 
4478 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4479   return ::vsnprintf(buf, count, format, args);
4480 }
4481 
4482 // Is a (classpath) directory empty?
4483 bool os::dir_is_empty(const char* path) {
4484   DIR *dir = NULL;
4485   struct dirent *ptr;
4486 
4487   dir = opendir(path);
4488   if (dir == NULL) return true;
4489 
4490   /* Scan the directory */
4491   bool result = true;
4492   char buf[sizeof(struct dirent) + MAX_PATH];
4493   while (result && (ptr = ::readdir(dir)) != NULL) {
4494     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4495       result = false;
4496     }
4497   }
4498   closedir(dir);
4499   return result;
4500 }
4501 
4502 // This code originates from JDK's sysOpen and open64_w
4503 // from src/solaris/hpi/src/system_md.c
4504 
4505 #ifndef O_DELETE
4506 #define O_DELETE 0x10000
4507 #endif
4508 
4509 // Open a file. Unlink the file immediately after open returns
4510 // if the specified oflag has the O_DELETE flag set.
4511 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4512 
4513 int os::open(const char *path, int oflag, int mode) {
4514 
4515   if (strlen(path) > MAX_PATH - 1) {
4516     errno = ENAMETOOLONG;
4517     return -1;
4518   }
4519   int fd;
4520   int o_delete = (oflag & O_DELETE);
4521   oflag = oflag & ~O_DELETE;
4522 
4523   fd = ::open64(path, oflag, mode);
4524   if (fd == -1) return -1;
4525 
4526   //If the open succeeded, the file might still be a directory
4527   {
4528     struct stat64 buf64;
4529     int ret = ::fstat64(fd, &buf64);
4530     int st_mode = buf64.st_mode;
4531 
4532     if (ret != -1) {
4533       if ((st_mode & S_IFMT) == S_IFDIR) {
4534         errno = EISDIR;
4535         ::close(fd);
4536         return -1;
4537       }
4538     } else {
4539       ::close(fd);
4540       return -1;
4541     }
4542   }
4543 
4544     /*
4545      * All file descriptors that are opened in the JVM and not
4546      * specifically destined for a subprocess should have the
4547      * close-on-exec flag set.  If we don't set it, then careless 3rd
4548      * party native code might fork and exec without closing all
4549      * appropriate file descriptors (e.g. as we do in closeDescriptors in
4550      * UNIXProcess.c), and this in turn might:
4551      *
4552      * - cause end-of-file to fail to be detected on some file
4553      *   descriptors, resulting in mysterious hangs, or
4554      *
4555      * - might cause an fopen in the subprocess to fail on a system
4556      *   suffering from bug 1085341.
4557      *
4558      * (Yes, the default setting of the close-on-exec flag is a Unix
4559      * design flaw)
4560      *
4561      * See:
4562      * 1085341: 32-bit stdio routines should support file descriptors >255
4563      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4564      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4565      */
4566 #ifdef FD_CLOEXEC
4567     {
4568         int flags = ::fcntl(fd, F_GETFD);
4569         if (flags != -1)
4570             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4571     }
4572 #endif
4573 
4574   if (o_delete != 0) {
4575     ::unlink(path);
4576   }
4577   return fd;
4578 }
4579 
4580 
4581 // create binary file, rewriting existing file if required
4582 int os::create_binary_file(const char* path, bool rewrite_existing) {
4583   int oflags = O_WRONLY | O_CREAT;
4584   if (!rewrite_existing) {
4585     oflags |= O_EXCL;
4586   }
4587   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4588 }
4589 
4590 // return current position of file pointer
4591 jlong os::current_file_offset(int fd) {
4592   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4593 }
4594 
4595 // move file pointer to the specified offset
4596 jlong os::seek_to_file_offset(int fd, jlong offset) {
4597   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4598 }
4599 
4600 // This code originates from JDK's sysAvailable
4601 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4602 
4603 int os::available(int fd, jlong *bytes) {
4604   jlong cur, end;
4605   int mode;
4606   struct stat64 buf64;
4607 
4608   if (::fstat64(fd, &buf64) >= 0) {
4609     mode = buf64.st_mode;
4610     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4611       /*
4612       * XXX: is the following call interruptible? If so, this might
4613       * need to go through the INTERRUPT_IO() wrapper as for other
4614       * blocking, interruptible calls in this file.
4615       */
4616       int n;
4617       if (::ioctl(fd, FIONREAD, &n) >= 0) {
4618         *bytes = n;
4619         return 1;
4620       }
4621     }
4622   }
4623   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4624     return 0;
4625   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4626     return 0;
4627   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4628     return 0;
4629   }
4630   *bytes = end - cur;
4631   return 1;
4632 }
4633 
4634 int os::socket_available(int fd, jint *pbytes) {
4635   // Linux doc says EINTR not returned, unlike Solaris
4636   int ret = ::ioctl(fd, FIONREAD, pbytes);
4637 
4638   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4639   // is expected to return 0 on failure and 1 on success to the jdk.
4640   return (ret < 0) ? 0 : 1;
4641 }
4642 
4643 // Map a block of memory.
4644 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4645                      char *addr, size_t bytes, bool read_only,
4646                      bool allow_exec) {
4647   int prot;
4648   int flags = MAP_PRIVATE;
4649 
4650   if (read_only) {
4651     prot = PROT_READ;
4652   } else {
4653     prot = PROT_READ | PROT_WRITE;
4654   }
4655 
4656   if (allow_exec) {
4657     prot |= PROT_EXEC;
4658   }
4659 
4660   if (addr != NULL) {
4661     flags |= MAP_FIXED;
4662   }
4663 
4664   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4665                                      fd, file_offset);
4666   if (mapped_address == MAP_FAILED) {
4667     return NULL;
4668   }
4669   return mapped_address;
4670 }
4671 
4672 
4673 // Remap a block of memory.
4674 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4675                        char *addr, size_t bytes, bool read_only,
4676                        bool allow_exec) {
4677   // same as map_memory() on this OS
4678   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4679                         allow_exec);
4680 }
4681 
4682 
4683 // Unmap a block of memory.
4684 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4685   return munmap(addr, bytes) == 0;
4686 }
4687 
4688 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4689 
4690 static clockid_t thread_cpu_clockid(Thread* thread) {
4691   pthread_t tid = thread->osthread()->pthread_id();
4692   clockid_t clockid;
4693 
4694   // Get thread clockid
4695   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4696   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4697   return clockid;
4698 }
4699 
4700 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4701 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4702 // of a thread.
4703 //
4704 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4705 // the fast estimate available on the platform.
4706 
4707 jlong os::current_thread_cpu_time() {
4708   if (os::Linux::supports_fast_thread_cpu_time()) {
4709     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4710   } else {
4711     // return user + sys since the cost is the same
4712     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4713   }
4714 }
4715 
4716 jlong os::thread_cpu_time(Thread* thread) {
4717   // consistent with what current_thread_cpu_time() returns
4718   if (os::Linux::supports_fast_thread_cpu_time()) {
4719     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4720   } else {
4721     return slow_thread_cpu_time(thread, true /* user + sys */);
4722   }
4723 }
4724 
4725 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4726   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4727     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4728   } else {
4729     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4730   }
4731 }
4732 
4733 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4734   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4735     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4736   } else {
4737     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4738   }
4739 }
4740 
4741 //
4742 //  -1 on error.
4743 //
4744 
4745 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4746   static bool proc_task_unchecked = true;
4747   static const char *proc_stat_path = "/proc/%d/stat";
4748   pid_t  tid = thread->osthread()->thread_id();
4749   char *s;
4750   char stat[2048];
4751   int statlen;
4752   char proc_name[64];
4753   int count;
4754   long sys_time, user_time;
4755   char cdummy;
4756   int idummy;
4757   long ldummy;
4758   FILE *fp;
4759 
4760   // The /proc/<tid>/stat aggregates per-process usage on
4761   // new Linux kernels 2.6+ where NPTL is supported.
4762   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4763   // See bug 6328462.
4764   // There possibly can be cases where there is no directory
4765   // /proc/self/task, so we check its availability.
4766   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4767     // This is executed only once
4768     proc_task_unchecked = false;
4769     fp = fopen("/proc/self/task", "r");
4770     if (fp != NULL) {
4771       proc_stat_path = "/proc/self/task/%d/stat";
4772       fclose(fp);
4773     }
4774   }
4775 
4776   sprintf(proc_name, proc_stat_path, tid);
4777   fp = fopen(proc_name, "r");
4778   if ( fp == NULL ) return -1;
4779   statlen = fread(stat, 1, 2047, fp);
4780   stat[statlen] = '\0';
4781   fclose(fp);
4782 
4783   // Skip pid and the command string. Note that we could be dealing with
4784   // weird command names, e.g. user could decide to rename java launcher
4785   // to "java 1.4.2 :)", then the stat file would look like
4786   //                1234 (java 1.4.2 :)) R ... ...
4787   // We don't really need to know the command string, just find the last
4788   // occurrence of ")" and then start parsing from there. See bug 4726580.
4789   s = strrchr(stat, ')');
4790   if (s == NULL ) return -1;
4791 
4792   // Skip blank chars
4793   do s++; while (isspace(*s));
4794 
4795   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4796                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4797                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4798                  &user_time, &sys_time);
4799   if ( count != 13 ) return -1;
4800   if (user_sys_cpu_time) {
4801     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4802   } else {
4803     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4804   }
4805 }
4806 
4807 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4808   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4809   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4810   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4811   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4812 }
4813 
4814 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4815   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4816   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4817   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4818   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4819 }
4820 
4821 bool os::is_thread_cpu_time_supported() {
4822   return true;
4823 }
4824 
4825 // System loadavg support.  Returns -1 if load average cannot be obtained.
4826 // Linux doesn't yet have a (official) notion of processor sets,
4827 // so just return the system wide load average.
4828 int os::loadavg(double loadavg[], int nelem) {
4829   return ::getloadavg(loadavg, nelem);
4830 }
4831 
4832 void os::pause() {
4833   char filename[MAX_PATH];
4834   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4835     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4836   } else {
4837     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4838   }
4839 
4840   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4841   if (fd != -1) {
4842     struct stat buf;
4843     ::close(fd);
4844     while (::stat(filename, &buf) == 0) {
4845       (void)::poll(NULL, 0, 100);
4846     }
4847   } else {
4848     jio_fprintf(stderr,
4849       "Could not open pause file '%s', continuing immediately.\n", filename);
4850   }
4851 }
4852 
4853 
4854 // Refer to the comments in os_solaris.cpp park-unpark.
4855 //
4856 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4857 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4858 // For specifics regarding the bug see GLIBC BUGID 261237 :
4859 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4860 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4861 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4862 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4863 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4864 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4865 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4866 // of libpthread avoids the problem, but isn't practical.
4867 //
4868 // Possible remedies:
4869 //
4870 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4871 //      This is palliative and probabilistic, however.  If the thread is preempted
4872 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4873 //      than the minimum period may have passed, and the abstime may be stale (in the
4874 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4875 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4876 //
4877 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4878 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4879 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4880 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4881 //      thread.
4882 //
4883 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4884 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4885 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4886 //      This also works well.  In fact it avoids kernel-level scalability impediments
4887 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4888 //      timers in a graceful fashion.
4889 //
4890 // 4.   When the abstime value is in the past it appears that control returns
4891 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4892 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4893 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4894 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4895 //      It may be possible to avoid reinitialization by checking the return
4896 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4897 //      condvar we must establish the invariant that cond_signal() is only called
4898 //      within critical sections protected by the adjunct mutex.  This prevents
4899 //      cond_signal() from "seeing" a condvar that's in the midst of being
4900 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4901 //      desirable signal-after-unlock optimization that avoids futile context switching.
4902 //
4903 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4904 //      structure when a condvar is used or initialized.  cond_destroy()  would
4905 //      release the helper structure.  Our reinitialize-after-timedwait fix
4906 //      put excessive stress on malloc/free and locks protecting the c-heap.
4907 //
4908 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4909 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4910 // and only enabling the work-around for vulnerable environments.
4911 
4912 // utility to compute the abstime argument to timedwait:
4913 // millis is the relative timeout time
4914 // abstime will be the absolute timeout time
4915 // TODO: replace compute_abstime() with unpackTime()
4916 
4917 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4918   if (millis < 0)  millis = 0;
4919   struct timeval now;
4920   int status = gettimeofday(&now, NULL);
4921   assert(status == 0, "gettimeofday");
4922   jlong seconds = millis / 1000;
4923   millis %= 1000;
4924   if (seconds > 50000000) { // see man cond_timedwait(3T)
4925     seconds = 50000000;
4926   }
4927   abstime->tv_sec = now.tv_sec  + seconds;
4928   long       usec = now.tv_usec + millis * 1000;
4929   if (usec >= 1000000) {
4930     abstime->tv_sec += 1;
4931     usec -= 1000000;
4932   }
4933   abstime->tv_nsec = usec * 1000;
4934   return abstime;
4935 }
4936 
4937 
4938 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4939 // Conceptually TryPark() should be equivalent to park(0).
4940 
4941 int os::PlatformEvent::TryPark() {
4942   for (;;) {
4943     const int v = _Event ;
4944     guarantee ((v == 0) || (v == 1), "invariant") ;
4945     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4946   }
4947 }
4948 
4949 void os::PlatformEvent::park() {       // AKA "down()"
4950   // Invariant: Only the thread associated with the Event/PlatformEvent
4951   // may call park().
4952   // TODO: assert that _Assoc != NULL or _Assoc == Self
4953   int v ;
4954   for (;;) {
4955       v = _Event ;
4956       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4957   }
4958   guarantee (v >= 0, "invariant") ;
4959   if (v == 0) {
4960      // Do this the hard way by blocking ...
4961      int status = pthread_mutex_lock(_mutex);
4962      assert_status(status == 0, status, "mutex_lock");
4963      guarantee (_nParked == 0, "invariant") ;
4964      ++ _nParked ;
4965      while (_Event < 0) {
4966         status = pthread_cond_wait(_cond, _mutex);
4967         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4968         // Treat this the same as if the wait was interrupted
4969         if (status == ETIME) { status = EINTR; }
4970         assert_status(status == 0 || status == EINTR, status, "cond_wait");
4971      }
4972      -- _nParked ;
4973 
4974     _Event = 0 ;
4975      status = pthread_mutex_unlock(_mutex);
4976      assert_status(status == 0, status, "mutex_unlock");
4977     // Paranoia to ensure our locked and lock-free paths interact
4978     // correctly with each other.
4979     OrderAccess::fence();
4980   }
4981   guarantee (_Event >= 0, "invariant") ;
4982 }
4983 
4984 int os::PlatformEvent::park(jlong millis) {
4985   guarantee (_nParked == 0, "invariant") ;
4986 
4987   int v ;
4988   for (;;) {
4989       v = _Event ;
4990       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4991   }
4992   guarantee (v >= 0, "invariant") ;
4993   if (v != 0) return OS_OK ;
4994 
4995   // We do this the hard way, by blocking the thread.
4996   // Consider enforcing a minimum timeout value.
4997   struct timespec abst;
4998   compute_abstime(&abst, millis);
4999 
5000   int ret = OS_TIMEOUT;
5001   int status = pthread_mutex_lock(_mutex);
5002   assert_status(status == 0, status, "mutex_lock");
5003   guarantee (_nParked == 0, "invariant") ;
5004   ++_nParked ;
5005 
5006   // Object.wait(timo) will return because of
5007   // (a) notification
5008   // (b) timeout
5009   // (c) thread.interrupt
5010   //
5011   // Thread.interrupt and object.notify{All} both call Event::set.
5012   // That is, we treat thread.interrupt as a special case of notification.
5013   // The underlying Solaris implementation, cond_timedwait, admits
5014   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5015   // JVM from making those visible to Java code.  As such, we must
5016   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5017   //
5018   // TODO: properly differentiate simultaneous notify+interrupt.
5019   // In that case, we should propagate the notify to another waiter.
5020 
5021   while (_Event < 0) {
5022     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5023     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5024       pthread_cond_destroy (_cond);
5025       pthread_cond_init (_cond, NULL) ;
5026     }
5027     assert_status(status == 0 || status == EINTR ||
5028                   status == ETIME || status == ETIMEDOUT,
5029                   status, "cond_timedwait");
5030     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5031     if (status == ETIME || status == ETIMEDOUT) break ;
5032     // We consume and ignore EINTR and spurious wakeups.
5033   }
5034   --_nParked ;
5035   if (_Event >= 0) {
5036      ret = OS_OK;
5037   }
5038   _Event = 0 ;
5039   status = pthread_mutex_unlock(_mutex);
5040   assert_status(status == 0, status, "mutex_unlock");
5041   assert (_nParked == 0, "invariant") ;
5042   // Paranoia to ensure our locked and lock-free paths interact
5043   // correctly with each other.
5044   OrderAccess::fence();
5045   return ret;
5046 }
5047 
5048 void os::PlatformEvent::unpark() {
5049   // Transitions for _Event:
5050   //    0 :=> 1
5051   //    1 :=> 1
5052   //   -1 :=> either 0 or 1; must signal target thread
5053   //          That is, we can safely transition _Event from -1 to either
5054   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5055   //          unpark() calls.
5056   // See also: "Semaphores in Plan 9" by Mullender & Cox
5057   //
5058   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5059   // that it will take two back-to-back park() calls for the owning
5060   // thread to block. This has the benefit of forcing a spurious return
5061   // from the first park() call after an unpark() call which will help
5062   // shake out uses of park() and unpark() without condition variables.
5063 
5064   if (Atomic::xchg(1, &_Event) >= 0) return;
5065 
5066   // Wait for the thread associated with the event to vacate
5067   int status = pthread_mutex_lock(_mutex);
5068   assert_status(status == 0, status, "mutex_lock");
5069   int AnyWaiters = _nParked;
5070   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5071   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5072     AnyWaiters = 0;
5073     pthread_cond_signal(_cond);
5074   }
5075   status = pthread_mutex_unlock(_mutex);
5076   assert_status(status == 0, status, "mutex_unlock");
5077   if (AnyWaiters != 0) {
5078     status = pthread_cond_signal(_cond);
5079     assert_status(status == 0, status, "cond_signal");
5080   }
5081 
5082   // Note that we signal() _after dropping the lock for "immortal" Events.
5083   // This is safe and avoids a common class of  futile wakeups.  In rare
5084   // circumstances this can cause a thread to return prematurely from
5085   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5086   // simply re-test the condition and re-park itself.
5087 }
5088 
5089 
5090 // JSR166
5091 // -------------------------------------------------------
5092 
5093 /*
5094  * The solaris and linux implementations of park/unpark are fairly
5095  * conservative for now, but can be improved. They currently use a
5096  * mutex/condvar pair, plus a a count.
5097  * Park decrements count if > 0, else does a condvar wait.  Unpark
5098  * sets count to 1 and signals condvar.  Only one thread ever waits
5099  * on the condvar. Contention seen when trying to park implies that someone
5100  * is unparking you, so don't wait. And spurious returns are fine, so there
5101  * is no need to track notifications.
5102  */
5103 
5104 #define MAX_SECS 100000000
5105 /*
5106  * This code is common to linux and solaris and will be moved to a
5107  * common place in dolphin.
5108  *
5109  * The passed in time value is either a relative time in nanoseconds
5110  * or an absolute time in milliseconds. Either way it has to be unpacked
5111  * into suitable seconds and nanoseconds components and stored in the
5112  * given timespec structure.
5113  * Given time is a 64-bit value and the time_t used in the timespec is only
5114  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5115  * overflow if times way in the future are given. Further on Solaris versions
5116  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5117  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5118  * As it will be 28 years before "now + 100000000" will overflow we can
5119  * ignore overflow and just impose a hard-limit on seconds using the value
5120  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5121  * years from "now".
5122  */
5123 
5124 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5125   assert (time > 0, "convertTime");
5126 
5127   struct timeval now;
5128   int status = gettimeofday(&now, NULL);
5129   assert(status == 0, "gettimeofday");
5130 
5131   time_t max_secs = now.tv_sec + MAX_SECS;
5132 
5133   if (isAbsolute) {
5134     jlong secs = time / 1000;
5135     if (secs > max_secs) {
5136       absTime->tv_sec = max_secs;
5137     }
5138     else {
5139       absTime->tv_sec = secs;
5140     }
5141     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5142   }
5143   else {
5144     jlong secs = time / NANOSECS_PER_SEC;
5145     if (secs >= MAX_SECS) {
5146       absTime->tv_sec = max_secs;
5147       absTime->tv_nsec = 0;
5148     }
5149     else {
5150       absTime->tv_sec = now.tv_sec + secs;
5151       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5152       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5153         absTime->tv_nsec -= NANOSECS_PER_SEC;
5154         ++absTime->tv_sec; // note: this must be <= max_secs
5155       }
5156     }
5157   }
5158   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5159   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5160   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5161   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5162 }
5163 
5164 void Parker::park(bool isAbsolute, jlong time) {
5165   // Ideally we'd do something useful while spinning, such
5166   // as calling unpackTime().
5167 
5168   // Optional fast-path check:
5169   // Return immediately if a permit is available.
5170   // We depend on Atomic::xchg() having full barrier semantics
5171   // since we are doing a lock-free update to _counter.
5172   if (Atomic::xchg(0, &_counter) > 0) return;
5173 
5174   Thread* thread = Thread::current();
5175   assert(thread->is_Java_thread(), "Must be JavaThread");
5176   JavaThread *jt = (JavaThread *)thread;
5177 
5178   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5179   // Check interrupt before trying to wait
5180   if (Thread::is_interrupted(thread, false)) {
5181     return;
5182   }
5183 
5184   // Next, demultiplex/decode time arguments
5185   timespec absTime;
5186   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5187     return;
5188   }
5189   if (time > 0) {
5190     unpackTime(&absTime, isAbsolute, time);
5191   }
5192 
5193 
5194   // Enter safepoint region
5195   // Beware of deadlocks such as 6317397.
5196   // The per-thread Parker:: mutex is a classic leaf-lock.
5197   // In particular a thread must never block on the Threads_lock while
5198   // holding the Parker:: mutex.  If safepoints are pending both the
5199   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5200   ThreadBlockInVM tbivm(jt);
5201 
5202   // Don't wait if cannot get lock since interference arises from
5203   // unblocking.  Also. check interrupt before trying wait
5204   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5205     return;
5206   }
5207 
5208   int status ;
5209   if (_counter > 0)  { // no wait needed
5210     _counter = 0;
5211     status = pthread_mutex_unlock(_mutex);
5212     assert (status == 0, "invariant") ;
5213     // Paranoia to ensure our locked and lock-free paths interact
5214     // correctly with each other and Java-level accesses.
5215     OrderAccess::fence();
5216     return;
5217   }
5218 
5219 #ifdef ASSERT
5220   // Don't catch signals while blocked; let the running threads have the signals.
5221   // (This allows a debugger to break into the running thread.)
5222   sigset_t oldsigs;
5223   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5224   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5225 #endif
5226 
5227   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5228   jt->set_suspend_equivalent();
5229   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5230 
5231   if (time == 0) {
5232     status = pthread_cond_wait (_cond, _mutex) ;
5233   } else {
5234     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5235     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5236       pthread_cond_destroy (_cond) ;
5237       pthread_cond_init    (_cond, NULL);
5238     }
5239   }
5240   assert_status(status == 0 || status == EINTR ||
5241                 status == ETIME || status == ETIMEDOUT,
5242                 status, "cond_timedwait");
5243 
5244 #ifdef ASSERT
5245   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5246 #endif
5247 
5248   _counter = 0 ;
5249   status = pthread_mutex_unlock(_mutex) ;
5250   assert_status(status == 0, status, "invariant") ;
5251   // Paranoia to ensure our locked and lock-free paths interact
5252   // correctly with each other and Java-level accesses.
5253   OrderAccess::fence();
5254 
5255   // If externally suspended while waiting, re-suspend
5256   if (jt->handle_special_suspend_equivalent_condition()) {
5257     jt->java_suspend_self();
5258   }
5259 }
5260 
5261 void Parker::unpark() {
5262   int s, status ;
5263   status = pthread_mutex_lock(_mutex);
5264   assert (status == 0, "invariant") ;
5265   s = _counter;
5266   _counter = 1;
5267   if (s < 1) {
5268      if (WorkAroundNPTLTimedWaitHang) {
5269         status = pthread_cond_signal (_cond) ;
5270         assert (status == 0, "invariant") ;
5271         status = pthread_mutex_unlock(_mutex);
5272         assert (status == 0, "invariant") ;
5273      } else {
5274         status = pthread_mutex_unlock(_mutex);
5275         assert (status == 0, "invariant") ;
5276         status = pthread_cond_signal (_cond) ;
5277         assert (status == 0, "invariant") ;
5278      }
5279   } else {
5280     pthread_mutex_unlock(_mutex);
5281     assert (status == 0, "invariant") ;
5282   }
5283 }
5284 
5285 
5286 extern char** environ;
5287 
5288 #ifndef __NR_fork
5289 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5290 #endif
5291 
5292 #ifndef __NR_execve
5293 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5294 #endif
5295 
5296 // Run the specified command in a separate process. Return its exit value,
5297 // or -1 on failure (e.g. can't fork a new process).
5298 // Unlike system(), this function can be called from signal handler. It
5299 // doesn't block SIGINT et al.
5300 int os::fork_and_exec(char* cmd) {
5301   const char * argv[4] = {"sh", "-c", cmd, NULL};
5302 
5303   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5304   // pthread_atfork handlers and reset pthread library. All we need is a
5305   // separate process to execve. Make a direct syscall to fork process.
5306   // On IA64 there's no fork syscall, we have to use fork() and hope for
5307   // the best...
5308   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5309               IA64_ONLY(fork();)
5310 
5311   if (pid < 0) {
5312     // fork failed
5313     return -1;
5314 
5315   } else if (pid == 0) {
5316     // child process
5317 
5318     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5319     // first to kill every thread on the thread list. Because this list is
5320     // not reset by fork() (see notes above), execve() will instead kill
5321     // every thread in the parent process. We know this is the only thread
5322     // in the new process, so make a system call directly.
5323     // IA64 should use normal execve() from glibc to match the glibc fork()
5324     // above.
5325     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5326     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5327 
5328     // execve failed
5329     _exit(-1);
5330 
5331   } else  {
5332     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5333     // care about the actual exit code, for now.
5334 
5335     int status;
5336 
5337     // Wait for the child process to exit.  This returns immediately if
5338     // the child has already exited. */
5339     while (waitpid(pid, &status, 0) < 0) {
5340         switch (errno) {
5341         case ECHILD: return 0;
5342         case EINTR: break;
5343         default: return -1;
5344         }
5345     }
5346 
5347     if (WIFEXITED(status)) {
5348        // The child exited normally; get its exit code.
5349        return WEXITSTATUS(status);
5350     } else if (WIFSIGNALED(status)) {
5351        // The child exited because of a signal
5352        // The best value to return is 0x80 + signal number,
5353        // because that is what all Unix shells do, and because
5354        // it allows callers to distinguish between process exit and
5355        // process death by signal.
5356        return 0x80 + WTERMSIG(status);
5357     } else {
5358        // Unknown exit code; pass it through
5359        return status;
5360     }
5361   }
5362 }
5363 
5364 // is_headless_jre()
5365 //
5366 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5367 // in order to report if we are running in a headless jre
5368 //
5369 // Since JDK8 xawt/libmawt.so was moved into the same directory
5370 // as libawt.so, and renamed libawt_xawt.so
5371 //
5372 bool os::is_headless_jre() {
5373     struct stat statbuf;
5374     char buf[MAXPATHLEN];
5375     char libmawtpath[MAXPATHLEN];
5376     const char *xawtstr  = "/xawt/libmawt.so";
5377     const char *new_xawtstr = "/libawt_xawt.so";
5378     char *p;
5379 
5380     // Get path to libjvm.so
5381     os::jvm_path(buf, sizeof(buf));
5382 
5383     // Get rid of libjvm.so
5384     p = strrchr(buf, '/');
5385     if (p == NULL) return false;
5386     else *p = '\0';
5387 
5388     // Get rid of client or server
5389     p = strrchr(buf, '/');
5390     if (p == NULL) return false;
5391     else *p = '\0';
5392 
5393     // check xawt/libmawt.so
5394     strcpy(libmawtpath, buf);
5395     strcat(libmawtpath, xawtstr);
5396     if (::stat(libmawtpath, &statbuf) == 0) return false;
5397 
5398     // check libawt_xawt.so
5399     strcpy(libmawtpath, buf);
5400     strcat(libmawtpath, new_xawtstr);
5401     if (::stat(libmawtpath, &statbuf) == 0) return false;
5402 
5403     return true;
5404 }
5405 
5406 // Get the default path to the core file
5407 // Returns the length of the string
5408 int os::get_core_path(char* buffer, size_t bufferSize) {
5409   const char* p = get_current_directory(buffer, bufferSize);
5410 
5411   if (p == NULL) {
5412     assert(p != NULL, "failed to get current directory");
5413     return 0;
5414   }
5415 
5416   return strlen(buffer);
5417 }
5418 
5419 #ifdef JAVASE_EMBEDDED
5420 //
5421 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5422 //
5423 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5424 
5425 // ctor
5426 //
5427 MemNotifyThread::MemNotifyThread(int fd): Thread() {
5428   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5429   _fd = fd;
5430 
5431   if (os::create_thread(this, os::os_thread)) {
5432     _memnotify_thread = this;
5433     os::set_priority(this, NearMaxPriority);
5434     os::start_thread(this);
5435   }
5436 }
5437 
5438 // Where all the work gets done
5439 //
5440 void MemNotifyThread::run() {
5441   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5442 
5443   // Set up the select arguments
5444   fd_set rfds;
5445   if (_fd != -1) {
5446     FD_ZERO(&rfds);
5447     FD_SET(_fd, &rfds);
5448   }
5449 
5450   // Now wait for the mem_notify device to wake up
5451   while (1) {
5452     // Wait for the mem_notify device to signal us..
5453     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5454     if (rc == -1) {
5455       perror("select!\n");
5456       break;
5457     } else if (rc) {
5458       //ssize_t free_before = os::available_memory();
5459       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5460 
5461       // The kernel is telling us there is not much memory left...
5462       // try to do something about that
5463 
5464       // If we are not already in a GC, try one.
5465       if (!Universe::heap()->is_gc_active()) {
5466         Universe::heap()->collect(GCCause::_allocation_failure);
5467 
5468         //ssize_t free_after = os::available_memory();
5469         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5470         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5471       }
5472       // We might want to do something like the following if we find the GC's are not helping...
5473       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5474     }
5475   }
5476 }
5477 
5478 //
5479 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5480 //
5481 void MemNotifyThread::start() {
5482   int    fd;
5483   fd = open ("/dev/mem_notify", O_RDONLY, 0);
5484   if (fd < 0) {
5485       return;
5486   }
5487 
5488   if (memnotify_thread() == NULL) {
5489     new MemNotifyThread(fd);
5490   }
5491 }
5492 #endif // JAVASE_EMBEDDED