1  /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCPhaseTimes.hpp"
  45 #include "gc/g1/g1HeapSizingPolicy.hpp"
  46 #include "gc/g1/g1HeapTransition.hpp"
  47 #include "gc/g1/g1HeapVerifier.hpp"
  48 #include "gc/g1/g1HotCardCache.hpp"
  49 #include "gc/g1/g1MemoryPool.hpp"
  50 #include "gc/g1/g1OopClosures.inline.hpp"
  51 #include "gc/g1/g1ParallelCleaning.hpp"
  52 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  53 #include "gc/g1/g1Policy.hpp"
  54 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  55 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  56 #include "gc/g1/g1RemSet.hpp"
  57 #include "gc/g1/g1RootClosures.hpp"
  58 #include "gc/g1/g1RootProcessor.hpp"
  59 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  60 #include "gc/g1/g1StringDedup.hpp"
  61 #include "gc/g1/g1ThreadLocalData.hpp"
  62 #include "gc/g1/g1Trace.hpp"
  63 #include "gc/g1/g1YCTypes.hpp"
  64 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  65 #include "gc/g1/g1VMOperations.hpp"
  66 #include "gc/g1/heapRegion.inline.hpp"
  67 #include "gc/g1/heapRegionRemSet.hpp"
  68 #include "gc/g1/heapRegionSet.inline.hpp"
  69 #include "gc/shared/gcBehaviours.hpp"
  70 #include "gc/shared/gcHeapSummary.hpp"
  71 #include "gc/shared/gcId.hpp"
  72 #include "gc/shared/gcLocker.hpp"
  73 #include "gc/shared/gcTimer.hpp"
  74 #include "gc/shared/gcTraceTime.inline.hpp"
  75 #include "gc/shared/generationSpec.hpp"
  76 #include "gc/shared/isGCActiveMark.hpp"
  77 #include "gc/shared/locationPrinter.inline.hpp"
  78 #include "gc/shared/oopStorageParState.hpp"
  79 #include "gc/shared/preservedMarks.inline.hpp"
  80 #include "gc/shared/suspendibleThreadSet.hpp"
  81 #include "gc/shared/referenceProcessor.inline.hpp"
  82 #include "gc/shared/taskqueue.inline.hpp"
  83 #include "gc/shared/weakProcessor.inline.hpp"
  84 #include "gc/shared/workerPolicy.hpp"
  85 #include "logging/log.hpp"
  86 #include "memory/allocation.hpp"
  87 #include "memory/iterator.hpp"
  88 #include "memory/resourceArea.hpp"
  89 #include "memory/universe.hpp"
  90 #include "oops/access.inline.hpp"
  91 #include "oops/compressedOops.inline.hpp"
  92 #include "oops/oop.inline.hpp"
  93 #include "runtime/atomic.hpp"
  94 #include "runtime/flags/flagSetting.hpp"
  95 #include "runtime/handles.inline.hpp"
  96 #include "runtime/init.hpp"
  97 #include "runtime/orderAccess.hpp"
  98 #include "runtime/threadSMR.hpp"
  99 #include "runtime/vmThread.hpp"
 100 #include "utilities/align.hpp"
 101 #include "utilities/globalDefinitions.hpp"
 102 #include "utilities/stack.inline.hpp"
 103 
 104 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 105 
 106 // INVARIANTS/NOTES
 107 //
 108 // All allocation activity covered by the G1CollectedHeap interface is
 109 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 110 // and allocate_new_tlab, which are the "entry" points to the
 111 // allocation code from the rest of the JVM.  (Note that this does not
 112 // apply to TLAB allocation, which is not part of this interface: it
 113 // is done by clients of this interface.)
 114 
 115 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 116  private:
 117   size_t _num_dirtied;
 118   G1CollectedHeap* _g1h;
 119   G1CardTable* _g1_ct;
 120 
 121   HeapRegion* region_for_card(CardValue* card_ptr) const {
 122     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 123   }
 124 
 125   bool will_become_free(HeapRegion* hr) const {
 126     // A region will be freed by free_collection_set if the region is in the
 127     // collection set and has not had an evacuation failure.
 128     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 129   }
 130 
 131  public:
 132   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 133     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 134 
 135   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 136     HeapRegion* hr = region_for_card(card_ptr);
 137 
 138     // Should only dirty cards in regions that won't be freed.
 139     if (!will_become_free(hr)) {
 140       *card_ptr = G1CardTable::dirty_card_val();
 141       _num_dirtied++;
 142     }
 143   }
 144 
 145   size_t num_dirtied()   const { return _num_dirtied; }
 146 };
 147 
 148 
 149 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 150   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 151 }
 152 
 153 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 154   // The from card cache is not the memory that is actually committed. So we cannot
 155   // take advantage of the zero_filled parameter.
 156   reset_from_card_cache(start_idx, num_regions);
 157 }
 158 
 159 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 160   Ticks start = Ticks::now();
 161   workers()->run_task(task, workers()->active_workers());
 162   return Ticks::now() - start;
 163 }
 164 
 165 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 166                                              MemRegion mr) {
 167   return new HeapRegion(hrs_index, bot(), mr);
 168 }
 169 
 170 // Private methods.
 171 
 172 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 173                                         HeapRegionType type,
 174                                         bool do_expand,
 175                                         uint node_index) {
 176   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 177          "the only time we use this to allocate a humongous region is "
 178          "when we are allocating a single humongous region");
 179 
 180   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
 181 
 182   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 183     // Currently, only attempts to allocate GC alloc regions set
 184     // do_expand to true. So, we should only reach here during a
 185     // safepoint. If this assumption changes we might have to
 186     // reconsider the use of _expand_heap_after_alloc_failure.
 187     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 188 
 189     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 190                               word_size * HeapWordSize);
 191 
 192     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 193            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 194            word_size * HeapWordSize);
 195     if (expand_single_region(node_index)) {
 196       // Given that expand_single_region() succeeded in expanding the heap, and we
 197       // always expand the heap by an amount aligned to the heap
 198       // region size, the free list should in theory not be empty.
 199       // In either case allocate_free_region() will check for NULL.
 200       res = _hrm->allocate_free_region(type, node_index);
 201     } else {
 202       _expand_heap_after_alloc_failure = false;
 203     }
 204   }
 205   return res;
 206 }
 207 
 208 HeapWord*
 209 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 210                                                            uint num_regions,
 211                                                            size_t word_size) {
 212   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 213   assert(is_humongous(word_size), "word_size should be humongous");
 214   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 215 
 216   // Index of last region in the series.
 217   uint last = first + num_regions - 1;
 218 
 219   // We need to initialize the region(s) we just discovered. This is
 220   // a bit tricky given that it can happen concurrently with
 221   // refinement threads refining cards on these regions and
 222   // potentially wanting to refine the BOT as they are scanning
 223   // those cards (this can happen shortly after a cleanup; see CR
 224   // 6991377). So we have to set up the region(s) carefully and in
 225   // a specific order.
 226 
 227   // The word size sum of all the regions we will allocate.
 228   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 229   assert(word_size <= word_size_sum, "sanity");
 230 
 231   // This will be the "starts humongous" region.
 232   HeapRegion* first_hr = region_at(first);
 233   // The header of the new object will be placed at the bottom of
 234   // the first region.
 235   HeapWord* new_obj = first_hr->bottom();
 236   // This will be the new top of the new object.
 237   HeapWord* obj_top = new_obj + word_size;
 238 
 239   // First, we need to zero the header of the space that we will be
 240   // allocating. When we update top further down, some refinement
 241   // threads might try to scan the region. By zeroing the header we
 242   // ensure that any thread that will try to scan the region will
 243   // come across the zero klass word and bail out.
 244   //
 245   // NOTE: It would not have been correct to have used
 246   // CollectedHeap::fill_with_object() and make the space look like
 247   // an int array. The thread that is doing the allocation will
 248   // later update the object header to a potentially different array
 249   // type and, for a very short period of time, the klass and length
 250   // fields will be inconsistent. This could cause a refinement
 251   // thread to calculate the object size incorrectly.
 252   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 253 
 254   // Next, pad out the unused tail of the last region with filler
 255   // objects, for improved usage accounting.
 256   // How many words we use for filler objects.
 257   size_t word_fill_size = word_size_sum - word_size;
 258 
 259   // How many words memory we "waste" which cannot hold a filler object.
 260   size_t words_not_fillable = 0;
 261 
 262   if (word_fill_size >= min_fill_size()) {
 263     fill_with_objects(obj_top, word_fill_size);
 264   } else if (word_fill_size > 0) {
 265     // We have space to fill, but we cannot fit an object there.
 266     words_not_fillable = word_fill_size;
 267     word_fill_size = 0;
 268   }
 269 
 270   // We will set up the first region as "starts humongous". This
 271   // will also update the BOT covering all the regions to reflect
 272   // that there is a single object that starts at the bottom of the
 273   // first region.
 274   first_hr->set_starts_humongous(obj_top, word_fill_size);
 275   _policy->remset_tracker()->update_at_allocate(first_hr);
 276   // Then, if there are any, we will set up the "continues
 277   // humongous" regions.
 278   HeapRegion* hr = NULL;
 279   for (uint i = first + 1; i <= last; ++i) {
 280     hr = region_at(i);
 281     hr->set_continues_humongous(first_hr);
 282     _policy->remset_tracker()->update_at_allocate(hr);
 283   }
 284 
 285   // Up to this point no concurrent thread would have been able to
 286   // do any scanning on any region in this series. All the top
 287   // fields still point to bottom, so the intersection between
 288   // [bottom,top] and [card_start,card_end] will be empty. Before we
 289   // update the top fields, we'll do a storestore to make sure that
 290   // no thread sees the update to top before the zeroing of the
 291   // object header and the BOT initialization.
 292   OrderAccess::storestore();
 293 
 294   // Now, we will update the top fields of the "continues humongous"
 295   // regions except the last one.
 296   for (uint i = first; i < last; ++i) {
 297     hr = region_at(i);
 298     hr->set_top(hr->end());
 299   }
 300 
 301   hr = region_at(last);
 302   // If we cannot fit a filler object, we must set top to the end
 303   // of the humongous object, otherwise we cannot iterate the heap
 304   // and the BOT will not be complete.
 305   hr->set_top(hr->end() - words_not_fillable);
 306 
 307   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 308          "obj_top should be in last region");
 309 
 310   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 311 
 312   assert(words_not_fillable == 0 ||
 313          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 314          "Miscalculation in humongous allocation");
 315 
 316   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 317 
 318   for (uint i = first; i <= last; ++i) {
 319     hr = region_at(i);
 320     _humongous_set.add(hr);
 321     _hr_printer.alloc(hr);
 322   }
 323 
 324   return new_obj;
 325 }
 326 
 327 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 328   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 329   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 330 }
 331 
 332 // If could fit into free regions w/o expansion, try.
 333 // Otherwise, if can expand, do so.
 334 // Otherwise, if using ex regions might help, try with ex given back.
 335 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 336   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 337 
 338   _verifier->verify_region_sets_optional();
 339 
 340   uint first = G1_NO_HRM_INDEX;
 341   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 342 
 343   if (obj_regions == 1) {
 344     // Only one region to allocate, try to use a fast path by directly allocating
 345     // from the free lists. Do not try to expand here, we will potentially do that
 346     // later.
 347     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
 348     if (hr != NULL) {
 349       first = hr->hrm_index();
 350     }
 351   } else {
 352     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 353     // are lucky enough to find some.
 354     first = _hrm->find_contiguous_only_empty(obj_regions);
 355     if (first != G1_NO_HRM_INDEX) {
 356       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 357     }
 358   }
 359 
 360   if (first == G1_NO_HRM_INDEX) {
 361     // Policy: We could not find enough regions for the humongous object in the
 362     // free list. Look through the heap to find a mix of free and uncommitted regions.
 363     // If so, try expansion.
 364     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 365     if (first != G1_NO_HRM_INDEX) {
 366       // We found something. Make sure these regions are committed, i.e. expand
 367       // the heap. Alternatively we could do a defragmentation GC.
 368       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 369                                     word_size * HeapWordSize);
 370 
 371       _hrm->expand_at(first, obj_regions, workers());
 372       policy()->record_new_heap_size(num_regions());
 373 
 374 #ifdef ASSERT
 375       for (uint i = first; i < first + obj_regions; ++i) {
 376         HeapRegion* hr = region_at(i);
 377         assert(hr->is_free(), "sanity");
 378         assert(hr->is_empty(), "sanity");
 379         assert(is_on_master_free_list(hr), "sanity");
 380       }
 381 #endif
 382       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 383     } else {
 384       // Policy: Potentially trigger a defragmentation GC.
 385     }
 386   }
 387 
 388   HeapWord* result = NULL;
 389   if (first != G1_NO_HRM_INDEX) {
 390     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 391     assert(result != NULL, "it should always return a valid result");
 392 
 393     // A successful humongous object allocation changes the used space
 394     // information of the old generation so we need to recalculate the
 395     // sizes and update the jstat counters here.
 396     g1mm()->update_sizes();
 397   }
 398 
 399   _verifier->verify_region_sets_optional();
 400 
 401   return result;
 402 }
 403 
 404 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 405                                              size_t requested_size,
 406                                              size_t* actual_size) {
 407   assert_heap_not_locked_and_not_at_safepoint();
 408   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 409 
 410   return attempt_allocation(min_size, requested_size, actual_size);
 411 }
 412 
 413 HeapWord*
 414 G1CollectedHeap::mem_allocate(size_t word_size,
 415                               bool*  gc_overhead_limit_was_exceeded) {
 416   assert_heap_not_locked_and_not_at_safepoint();
 417 
 418   if (is_humongous(word_size)) {
 419     return attempt_allocation_humongous(word_size);
 420   }
 421   size_t dummy = 0;
 422   return attempt_allocation(word_size, word_size, &dummy);
 423 }
 424 
 425 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 426   ResourceMark rm; // For retrieving the thread names in log messages.
 427 
 428   // Make sure you read the note in attempt_allocation_humongous().
 429 
 430   assert_heap_not_locked_and_not_at_safepoint();
 431   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 432          "be called for humongous allocation requests");
 433 
 434   // We should only get here after the first-level allocation attempt
 435   // (attempt_allocation()) failed to allocate.
 436 
 437   // We will loop until a) we manage to successfully perform the
 438   // allocation or b) we successfully schedule a collection which
 439   // fails to perform the allocation. b) is the only case when we'll
 440   // return NULL.
 441   HeapWord* result = NULL;
 442   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 443     bool should_try_gc;
 444     uint gc_count_before;
 445 
 446     {
 447       MutexLocker x(Heap_lock);
 448       result = _allocator->attempt_allocation_locked(word_size);
 449       if (result != NULL) {
 450         return result;
 451       }
 452 
 453       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 454       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 455       // waiting because the GCLocker is active to not wait too long.
 456       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 457         // No need for an ergo message here, can_expand_young_list() does this when
 458         // it returns true.
 459         result = _allocator->attempt_allocation_force(word_size);
 460         if (result != NULL) {
 461           return result;
 462         }
 463       }
 464       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 465       // the GCLocker initiated GC has been performed and then retry. This includes
 466       // the case when the GC Locker is not active but has not been performed.
 467       should_try_gc = !GCLocker::needs_gc();
 468       // Read the GC count while still holding the Heap_lock.
 469       gc_count_before = total_collections();
 470     }
 471 
 472     if (should_try_gc) {
 473       bool succeeded;
 474       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 475                                    GCCause::_g1_inc_collection_pause);
 476       if (result != NULL) {
 477         assert(succeeded, "only way to get back a non-NULL result");
 478         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 479                              Thread::current()->name(), p2i(result));
 480         return result;
 481       }
 482 
 483       if (succeeded) {
 484         // We successfully scheduled a collection which failed to allocate. No
 485         // point in trying to allocate further. We'll just return NULL.
 486         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 487                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 488         return NULL;
 489       }
 490       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 491                            Thread::current()->name(), word_size);
 492     } else {
 493       // Failed to schedule a collection.
 494       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 495         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 496                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 497         return NULL;
 498       }
 499       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 500       // The GCLocker is either active or the GCLocker initiated
 501       // GC has not yet been performed. Stall until it is and
 502       // then retry the allocation.
 503       GCLocker::stall_until_clear();
 504       gclocker_retry_count += 1;
 505     }
 506 
 507     // We can reach here if we were unsuccessful in scheduling a
 508     // collection (because another thread beat us to it) or if we were
 509     // stalled due to the GC locker. In either can we should retry the
 510     // allocation attempt in case another thread successfully
 511     // performed a collection and reclaimed enough space. We do the
 512     // first attempt (without holding the Heap_lock) here and the
 513     // follow-on attempt will be at the start of the next loop
 514     // iteration (after taking the Heap_lock).
 515     size_t dummy = 0;
 516     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 517     if (result != NULL) {
 518       return result;
 519     }
 520 
 521     // Give a warning if we seem to be looping forever.
 522     if ((QueuedAllocationWarningCount > 0) &&
 523         (try_count % QueuedAllocationWarningCount == 0)) {
 524       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 525                              Thread::current()->name(), try_count, word_size);
 526     }
 527   }
 528 
 529   ShouldNotReachHere();
 530   return NULL;
 531 }
 532 
 533 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 534   assert_at_safepoint_on_vm_thread();
 535   if (_archive_allocator == NULL) {
 536     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 537   }
 538 }
 539 
 540 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 541   // Allocations in archive regions cannot be of a size that would be considered
 542   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 543   // may be different at archive-restore time.
 544   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 545 }
 546 
 547 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 548   assert_at_safepoint_on_vm_thread();
 549   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 550   if (is_archive_alloc_too_large(word_size)) {
 551     return NULL;
 552   }
 553   return _archive_allocator->archive_mem_allocate(word_size);
 554 }
 555 
 556 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 557                                               size_t end_alignment_in_bytes) {
 558   assert_at_safepoint_on_vm_thread();
 559   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 560 
 561   // Call complete_archive to do the real work, filling in the MemRegion
 562   // array with the archive regions.
 563   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 564   delete _archive_allocator;
 565   _archive_allocator = NULL;
 566 }
 567 
 568 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 569   assert(ranges != NULL, "MemRegion array NULL");
 570   assert(count != 0, "No MemRegions provided");
 571   MemRegion reserved = _hrm->reserved();
 572   for (size_t i = 0; i < count; i++) {
 573     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 574       return false;
 575     }
 576   }
 577   return true;
 578 }
 579 
 580 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 581                                             size_t count,
 582                                             bool open) {
 583   assert(!is_init_completed(), "Expect to be called at JVM init time");
 584   assert(ranges != NULL, "MemRegion array NULL");
 585   assert(count != 0, "No MemRegions provided");
 586   MutexLocker x(Heap_lock);
 587 
 588   MemRegion reserved = _hrm->reserved();
 589   HeapWord* prev_last_addr = NULL;
 590   HeapRegion* prev_last_region = NULL;
 591 
 592   // Temporarily disable pretouching of heap pages. This interface is used
 593   // when mmap'ing archived heap data in, so pre-touching is wasted.
 594   FlagSetting fs(AlwaysPreTouch, false);
 595 
 596   // Enable archive object checking used by G1MarkSweep. We have to let it know
 597   // about each archive range, so that objects in those ranges aren't marked.
 598   G1ArchiveAllocator::enable_archive_object_check();
 599 
 600   // For each specified MemRegion range, allocate the corresponding G1
 601   // regions and mark them as archive regions. We expect the ranges
 602   // in ascending starting address order, without overlap.
 603   for (size_t i = 0; i < count; i++) {
 604     MemRegion curr_range = ranges[i];
 605     HeapWord* start_address = curr_range.start();
 606     size_t word_size = curr_range.word_size();
 607     HeapWord* last_address = curr_range.last();
 608     size_t commits = 0;
 609 
 610     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 611               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 612               p2i(start_address), p2i(last_address));
 613     guarantee(start_address > prev_last_addr,
 614               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 615               p2i(start_address), p2i(prev_last_addr));
 616     prev_last_addr = last_address;
 617 
 618     // Check for ranges that start in the same G1 region in which the previous
 619     // range ended, and adjust the start address so we don't try to allocate
 620     // the same region again. If the current range is entirely within that
 621     // region, skip it, just adjusting the recorded top.
 622     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 623     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 624       start_address = start_region->end();
 625       if (start_address > last_address) {
 626         increase_used(word_size * HeapWordSize);
 627         start_region->set_top(last_address + 1);
 628         continue;
 629       }
 630       start_region->set_top(start_address);
 631       curr_range = MemRegion(start_address, last_address + 1);
 632       start_region = _hrm->addr_to_region(start_address);
 633     }
 634 
 635     // Perform the actual region allocation, exiting if it fails.
 636     // Then note how much new space we have allocated.
 637     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 638       return false;
 639     }
 640     increase_used(word_size * HeapWordSize);
 641     if (commits != 0) {
 642       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 643                                 HeapRegion::GrainWords * HeapWordSize * commits);
 644 
 645     }
 646 
 647     // Mark each G1 region touched by the range as archive, add it to
 648     // the old set, and set top.
 649     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 650     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 651     prev_last_region = last_region;
 652 
 653     while (curr_region != NULL) {
 654       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 655              "Region already in use (index %u)", curr_region->hrm_index());
 656       if (open) {
 657         curr_region->set_open_archive();
 658       } else {
 659         curr_region->set_closed_archive();
 660       }
 661       _hr_printer.alloc(curr_region);
 662       _archive_set.add(curr_region);
 663       HeapWord* top;
 664       HeapRegion* next_region;
 665       if (curr_region != last_region) {
 666         top = curr_region->end();
 667         next_region = _hrm->next_region_in_heap(curr_region);
 668       } else {
 669         top = last_address + 1;
 670         next_region = NULL;
 671       }
 672       curr_region->set_top(top);
 673       curr_region = next_region;
 674     }
 675 
 676     // Notify mark-sweep of the archive
 677     G1ArchiveAllocator::set_range_archive(curr_range, open);
 678   }
 679   return true;
 680 }
 681 
 682 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 683   assert(!is_init_completed(), "Expect to be called at JVM init time");
 684   assert(ranges != NULL, "MemRegion array NULL");
 685   assert(count != 0, "No MemRegions provided");
 686   MemRegion reserved = _hrm->reserved();
 687   HeapWord *prev_last_addr = NULL;
 688   HeapRegion* prev_last_region = NULL;
 689 
 690   // For each MemRegion, create filler objects, if needed, in the G1 regions
 691   // that contain the address range. The address range actually within the
 692   // MemRegion will not be modified. That is assumed to have been initialized
 693   // elsewhere, probably via an mmap of archived heap data.
 694   MutexLocker x(Heap_lock);
 695   for (size_t i = 0; i < count; i++) {
 696     HeapWord* start_address = ranges[i].start();
 697     HeapWord* last_address = ranges[i].last();
 698 
 699     assert(reserved.contains(start_address) && reserved.contains(last_address),
 700            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 701            p2i(start_address), p2i(last_address));
 702     assert(start_address > prev_last_addr,
 703            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 704            p2i(start_address), p2i(prev_last_addr));
 705 
 706     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 707     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 708     HeapWord* bottom_address = start_region->bottom();
 709 
 710     // Check for a range beginning in the same region in which the
 711     // previous one ended.
 712     if (start_region == prev_last_region) {
 713       bottom_address = prev_last_addr + 1;
 714     }
 715 
 716     // Verify that the regions were all marked as archive regions by
 717     // alloc_archive_regions.
 718     HeapRegion* curr_region = start_region;
 719     while (curr_region != NULL) {
 720       guarantee(curr_region->is_archive(),
 721                 "Expected archive region at index %u", curr_region->hrm_index());
 722       if (curr_region != last_region) {
 723         curr_region = _hrm->next_region_in_heap(curr_region);
 724       } else {
 725         curr_region = NULL;
 726       }
 727     }
 728 
 729     prev_last_addr = last_address;
 730     prev_last_region = last_region;
 731 
 732     // Fill the memory below the allocated range with dummy object(s),
 733     // if the region bottom does not match the range start, or if the previous
 734     // range ended within the same G1 region, and there is a gap.
 735     if (start_address != bottom_address) {
 736       size_t fill_size = pointer_delta(start_address, bottom_address);
 737       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 738       increase_used(fill_size * HeapWordSize);
 739     }
 740   }
 741 }
 742 
 743 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 744                                                      size_t desired_word_size,
 745                                                      size_t* actual_word_size) {
 746   assert_heap_not_locked_and_not_at_safepoint();
 747   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 748          "be called for humongous allocation requests");
 749 
 750   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 751 
 752   if (result == NULL) {
 753     *actual_word_size = desired_word_size;
 754     result = attempt_allocation_slow(desired_word_size);
 755   }
 756 
 757   assert_heap_not_locked();
 758   if (result != NULL) {
 759     assert(*actual_word_size != 0, "Actual size must have been set here");
 760     dirty_young_block(result, *actual_word_size);
 761   } else {
 762     *actual_word_size = 0;
 763   }
 764 
 765   return result;
 766 }
 767 
 768 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count, bool is_open) {
 769   assert(!is_init_completed(), "Expect to be called at JVM init time");
 770   assert(ranges != NULL, "MemRegion array NULL");
 771   assert(count != 0, "No MemRegions provided");
 772   MemRegion reserved = _hrm->reserved();
 773   HeapWord* prev_last_addr = NULL;
 774   HeapRegion* prev_last_region = NULL;
 775   size_t size_used = 0;
 776   size_t uncommitted_regions = 0;
 777 
 778   // For each Memregion, free the G1 regions that constitute it, and
 779   // notify mark-sweep that the range is no longer to be considered 'archive.'
 780   MutexLocker x(Heap_lock);
 781   for (size_t i = 0; i < count; i++) {
 782     HeapWord* start_address = ranges[i].start();
 783     HeapWord* last_address = ranges[i].last();
 784 
 785     assert(reserved.contains(start_address) && reserved.contains(last_address),
 786            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 787            p2i(start_address), p2i(last_address));
 788     assert(start_address > prev_last_addr,
 789            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 790            p2i(start_address), p2i(prev_last_addr));
 791     size_used += ranges[i].byte_size();
 792     prev_last_addr = last_address;
 793 
 794     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 795     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 796 
 797     // Check for ranges that start in the same G1 region in which the previous
 798     // range ended, and adjust the start address so we don't try to free
 799     // the same region again. If the current range is entirely within that
 800     // region, skip it.
 801     if (start_region == prev_last_region) {
 802       start_address = start_region->end();
 803       if (start_address > last_address) {
 804         continue;
 805       }
 806       start_region = _hrm->addr_to_region(start_address);
 807     }
 808     prev_last_region = last_region;
 809 
 810     // After verifying that each region was marked as an archive region by
 811     // alloc_archive_regions, set it free and empty and uncommit it.
 812     HeapRegion* curr_region = start_region;
 813     while (curr_region != NULL) {
 814       guarantee(curr_region->is_archive(),
 815                 "Expected archive region at index %u", curr_region->hrm_index());
 816       uint curr_index = curr_region->hrm_index();
 817       _archive_set.remove(curr_region);
 818       curr_region->set_free();
 819       curr_region->set_top(curr_region->bottom());
 820       if (curr_region != last_region) {
 821         curr_region = _hrm->next_region_in_heap(curr_region);
 822       } else {
 823         curr_region = NULL;
 824       }
 825       _hrm->shrink_at(curr_index, 1);
 826       uncommitted_regions++;
 827     }
 828 
 829     // Notify mark-sweep that this is no longer an archive range.
 830     G1ArchiveAllocator::clear_range_archive(ranges[i], is_open);
 831   }
 832 
 833   if (uncommitted_regions != 0) {
 834     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 835                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 836   }
 837   decrease_used(size_used);
 838 }
 839 
 840 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 841   assert(obj != NULL, "archived obj is NULL");
 842   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 843 
 844   // Loading an archived object makes it strongly reachable. If it is
 845   // loaded during concurrent marking, it must be enqueued to the SATB
 846   // queue, shading the previously white object gray.
 847   G1BarrierSet::enqueue(obj);
 848 
 849   return obj;
 850 }
 851 
 852 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 853   ResourceMark rm; // For retrieving the thread names in log messages.
 854 
 855   // The structure of this method has a lot of similarities to
 856   // attempt_allocation_slow(). The reason these two were not merged
 857   // into a single one is that such a method would require several "if
 858   // allocation is not humongous do this, otherwise do that"
 859   // conditional paths which would obscure its flow. In fact, an early
 860   // version of this code did use a unified method which was harder to
 861   // follow and, as a result, it had subtle bugs that were hard to
 862   // track down. So keeping these two methods separate allows each to
 863   // be more readable. It will be good to keep these two in sync as
 864   // much as possible.
 865 
 866   assert_heap_not_locked_and_not_at_safepoint();
 867   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 868          "should only be called for humongous allocations");
 869 
 870   // Humongous objects can exhaust the heap quickly, so we should check if we
 871   // need to start a marking cycle at each humongous object allocation. We do
 872   // the check before we do the actual allocation. The reason for doing it
 873   // before the allocation is that we avoid having to keep track of the newly
 874   // allocated memory while we do a GC.
 875   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 876                                            word_size)) {
 877     collect(GCCause::_g1_humongous_allocation);
 878   }
 879 
 880   // We will loop until a) we manage to successfully perform the
 881   // allocation or b) we successfully schedule a collection which
 882   // fails to perform the allocation. b) is the only case when we'll
 883   // return NULL.
 884   HeapWord* result = NULL;
 885   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 886     bool should_try_gc;
 887     uint gc_count_before;
 888 
 889 
 890     {
 891       MutexLocker x(Heap_lock);
 892 
 893       // Given that humongous objects are not allocated in young
 894       // regions, we'll first try to do the allocation without doing a
 895       // collection hoping that there's enough space in the heap.
 896       result = humongous_obj_allocate(word_size);
 897       if (result != NULL) {
 898         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 899         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 900         return result;
 901       }
 902 
 903       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 904       // the GCLocker initiated GC has been performed and then retry. This includes
 905       // the case when the GC Locker is not active but has not been performed.
 906       should_try_gc = !GCLocker::needs_gc();
 907       // Read the GC count while still holding the Heap_lock.
 908       gc_count_before = total_collections();
 909     }
 910 
 911     if (should_try_gc) {
 912       bool succeeded;
 913       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 914                                    GCCause::_g1_humongous_allocation);
 915       if (result != NULL) {
 916         assert(succeeded, "only way to get back a non-NULL result");
 917         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 918                              Thread::current()->name(), p2i(result));
 919         return result;
 920       }
 921 
 922       if (succeeded) {
 923         // We successfully scheduled a collection which failed to allocate. No
 924         // point in trying to allocate further. We'll just return NULL.
 925         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 926                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 927         return NULL;
 928       }
 929       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 930                            Thread::current()->name(), word_size);
 931     } else {
 932       // Failed to schedule a collection.
 933       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 934         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 935                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 936         return NULL;
 937       }
 938       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 939       // The GCLocker is either active or the GCLocker initiated
 940       // GC has not yet been performed. Stall until it is and
 941       // then retry the allocation.
 942       GCLocker::stall_until_clear();
 943       gclocker_retry_count += 1;
 944     }
 945 
 946 
 947     // We can reach here if we were unsuccessful in scheduling a
 948     // collection (because another thread beat us to it) or if we were
 949     // stalled due to the GC locker. In either can we should retry the
 950     // allocation attempt in case another thread successfully
 951     // performed a collection and reclaimed enough space.
 952     // Humongous object allocation always needs a lock, so we wait for the retry
 953     // in the next iteration of the loop, unlike for the regular iteration case.
 954     // Give a warning if we seem to be looping forever.
 955 
 956     if ((QueuedAllocationWarningCount > 0) &&
 957         (try_count % QueuedAllocationWarningCount == 0)) {
 958       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 959                              Thread::current()->name(), try_count, word_size);
 960     }
 961   }
 962 
 963   ShouldNotReachHere();
 964   return NULL;
 965 }
 966 
 967 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 968                                                            bool expect_null_mutator_alloc_region) {
 969   assert_at_safepoint_on_vm_thread();
 970   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 971          "the current alloc region was unexpectedly found to be non-NULL");
 972 
 973   if (!is_humongous(word_size)) {
 974     return _allocator->attempt_allocation_locked(word_size);
 975   } else {
 976     HeapWord* result = humongous_obj_allocate(word_size);
 977     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 978       collector_state()->set_initiate_conc_mark_if_possible(true);
 979     }
 980     return result;
 981   }
 982 
 983   ShouldNotReachHere();
 984 }
 985 
 986 class PostCompactionPrinterClosure: public HeapRegionClosure {
 987 private:
 988   G1HRPrinter* _hr_printer;
 989 public:
 990   bool do_heap_region(HeapRegion* hr) {
 991     assert(!hr->is_young(), "not expecting to find young regions");
 992     _hr_printer->post_compaction(hr);
 993     return false;
 994   }
 995 
 996   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 997     : _hr_printer(hr_printer) { }
 998 };
 999 
1000 void G1CollectedHeap::print_hrm_post_compaction() {
1001   if (_hr_printer.is_active()) {
1002     PostCompactionPrinterClosure cl(hr_printer());
1003     heap_region_iterate(&cl);
1004   }
1005 }
1006 
1007 void G1CollectedHeap::abort_concurrent_cycle() {
1008   // If we start the compaction before the CM threads finish
1009   // scanning the root regions we might trip them over as we'll
1010   // be moving objects / updating references. So let's wait until
1011   // they are done. By telling them to abort, they should complete
1012   // early.
1013   _cm->root_regions()->abort();
1014   _cm->root_regions()->wait_until_scan_finished();
1015 
1016   // Disable discovery and empty the discovered lists
1017   // for the CM ref processor.
1018   _ref_processor_cm->disable_discovery();
1019   _ref_processor_cm->abandon_partial_discovery();
1020   _ref_processor_cm->verify_no_references_recorded();
1021 
1022   // Abandon current iterations of concurrent marking and concurrent
1023   // refinement, if any are in progress.
1024   concurrent_mark()->concurrent_cycle_abort();
1025 }
1026 
1027 void G1CollectedHeap::prepare_heap_for_full_collection() {
1028   // Make sure we'll choose a new allocation region afterwards.
1029   _allocator->release_mutator_alloc_regions();
1030   _allocator->abandon_gc_alloc_regions();
1031 
1032   // We may have added regions to the current incremental collection
1033   // set between the last GC or pause and now. We need to clear the
1034   // incremental collection set and then start rebuilding it afresh
1035   // after this full GC.
1036   abandon_collection_set(collection_set());
1037 
1038   tear_down_region_sets(false /* free_list_only */);
1039 
1040   hrm()->prepare_for_full_collection_start();
1041 }
1042 
1043 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1044   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1045   assert_used_and_recalculate_used_equal(this);
1046   _verifier->verify_region_sets_optional();
1047   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1048   _verifier->check_bitmaps("Full GC Start");
1049 }
1050 
1051 void G1CollectedHeap::prepare_heap_for_mutators() {
1052   hrm()->prepare_for_full_collection_end();
1053 
1054   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1055   ClassLoaderDataGraph::purge();
1056   MetaspaceUtils::verify_metrics();
1057 
1058   // Prepare heap for normal collections.
1059   assert(num_free_regions() == 0, "we should not have added any free regions");
1060   rebuild_region_sets(false /* free_list_only */);
1061   abort_refinement();
1062   resize_heap_if_necessary();
1063 
1064   // Rebuild the strong code root lists for each region
1065   rebuild_strong_code_roots();
1066 
1067   // Purge code root memory
1068   purge_code_root_memory();
1069 
1070   // Start a new incremental collection set for the next pause
1071   start_new_collection_set();
1072 
1073   _allocator->init_mutator_alloc_regions();
1074 
1075   // Post collection state updates.
1076   MetaspaceGC::compute_new_size();
1077 }
1078 
1079 void G1CollectedHeap::abort_refinement() {
1080   if (_hot_card_cache->use_cache()) {
1081     _hot_card_cache->reset_hot_cache();
1082   }
1083 
1084   // Discard all remembered set updates.
1085   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1086   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1087          "DCQS should be empty");
1088 }
1089 
1090 void G1CollectedHeap::verify_after_full_collection() {
1091   _hrm->verify_optional();
1092   _verifier->verify_region_sets_optional();
1093   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1094   // Clear the previous marking bitmap, if needed for bitmap verification.
1095   // Note we cannot do this when we clear the next marking bitmap in
1096   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1097   // objects marked during a full GC against the previous bitmap.
1098   // But we need to clear it before calling check_bitmaps below since
1099   // the full GC has compacted objects and updated TAMS but not updated
1100   // the prev bitmap.
1101   if (G1VerifyBitmaps) {
1102     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1103     _cm->clear_prev_bitmap(workers());
1104   }
1105   // This call implicitly verifies that the next bitmap is clear after Full GC.
1106   _verifier->check_bitmaps("Full GC End");
1107 
1108   // At this point there should be no regions in the
1109   // entire heap tagged as young.
1110   assert(check_young_list_empty(), "young list should be empty at this point");
1111 
1112   // Note: since we've just done a full GC, concurrent
1113   // marking is no longer active. Therefore we need not
1114   // re-enable reference discovery for the CM ref processor.
1115   // That will be done at the start of the next marking cycle.
1116   // We also know that the STW processor should no longer
1117   // discover any new references.
1118   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1119   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1120   _ref_processor_stw->verify_no_references_recorded();
1121   _ref_processor_cm->verify_no_references_recorded();
1122 }
1123 
1124 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1125   // Post collection logging.
1126   // We should do this after we potentially resize the heap so
1127   // that all the COMMIT / UNCOMMIT events are generated before
1128   // the compaction events.
1129   print_hrm_post_compaction();
1130   heap_transition->print();
1131   print_heap_after_gc();
1132   print_heap_regions();
1133 #ifdef TRACESPINNING
1134   ParallelTaskTerminator::print_termination_counts();
1135 #endif
1136 }
1137 
1138 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1139                                          bool clear_all_soft_refs) {
1140   assert_at_safepoint_on_vm_thread();
1141 
1142   if (GCLocker::check_active_before_gc()) {
1143     // Full GC was not completed.
1144     return false;
1145   }
1146 
1147   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1148       soft_ref_policy()->should_clear_all_soft_refs();
1149 
1150   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1151   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1152 
1153   collector.prepare_collection();
1154   collector.collect();
1155   collector.complete_collection();
1156 
1157   // Full collection was successfully completed.
1158   return true;
1159 }
1160 
1161 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1162   // Currently, there is no facility in the do_full_collection(bool) API to notify
1163   // the caller that the collection did not succeed (e.g., because it was locked
1164   // out by the GC locker). So, right now, we'll ignore the return value.
1165   bool dummy = do_full_collection(true,                /* explicit_gc */
1166                                   clear_all_soft_refs);
1167 }
1168 
1169 void G1CollectedHeap::resize_heap_if_necessary() {
1170   assert_at_safepoint_on_vm_thread();
1171 
1172   // Capacity, free and used after the GC counted as full regions to
1173   // include the waste in the following calculations.
1174   const size_t capacity_after_gc = capacity();
1175   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1176 
1177   // This is enforced in arguments.cpp.
1178   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1179          "otherwise the code below doesn't make sense");
1180 
1181   // We don't have floating point command-line arguments
1182   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1183   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1184   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1185   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1186 
1187   // We have to be careful here as these two calculations can overflow
1188   // 32-bit size_t's.
1189   double used_after_gc_d = (double) used_after_gc;
1190   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1191   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1192 
1193   // Let's make sure that they are both under the max heap size, which
1194   // by default will make them fit into a size_t.
1195   double desired_capacity_upper_bound = (double) MaxHeapSize;
1196   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1197                                     desired_capacity_upper_bound);
1198   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1199                                     desired_capacity_upper_bound);
1200 
1201   // We can now safely turn them into size_t's.
1202   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1203   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1204 
1205   // This assert only makes sense here, before we adjust them
1206   // with respect to the min and max heap size.
1207   assert(minimum_desired_capacity <= maximum_desired_capacity,
1208          "minimum_desired_capacity = " SIZE_FORMAT ", "
1209          "maximum_desired_capacity = " SIZE_FORMAT,
1210          minimum_desired_capacity, maximum_desired_capacity);
1211 
1212   // Should not be greater than the heap max size. No need to adjust
1213   // it with respect to the heap min size as it's a lower bound (i.e.,
1214   // we'll try to make the capacity larger than it, not smaller).
1215   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1216   // Should not be less than the heap min size. No need to adjust it
1217   // with respect to the heap max size as it's an upper bound (i.e.,
1218   // we'll try to make the capacity smaller than it, not greater).
1219   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1220 
1221   if (capacity_after_gc < minimum_desired_capacity) {
1222     // Don't expand unless it's significant
1223     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1224 
1225     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1226                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1227                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1228                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1229 
1230     expand(expand_bytes, _workers);
1231 
1232     // No expansion, now see if we want to shrink
1233   } else if (capacity_after_gc > maximum_desired_capacity) {
1234     // Capacity too large, compute shrinking size
1235     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1236 
1237     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1238                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1239                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1240                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1241 
1242     shrink(shrink_bytes);
1243   }
1244 }
1245 
1246 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1247                                                             bool do_gc,
1248                                                             bool clear_all_soft_refs,
1249                                                             bool expect_null_mutator_alloc_region,
1250                                                             bool* gc_succeeded) {
1251   *gc_succeeded = true;
1252   // Let's attempt the allocation first.
1253   HeapWord* result =
1254     attempt_allocation_at_safepoint(word_size,
1255                                     expect_null_mutator_alloc_region);
1256   if (result != NULL) {
1257     return result;
1258   }
1259 
1260   // In a G1 heap, we're supposed to keep allocation from failing by
1261   // incremental pauses.  Therefore, at least for now, we'll favor
1262   // expansion over collection.  (This might change in the future if we can
1263   // do something smarter than full collection to satisfy a failed alloc.)
1264   result = expand_and_allocate(word_size);
1265   if (result != NULL) {
1266     return result;
1267   }
1268 
1269   if (do_gc) {
1270     // Expansion didn't work, we'll try to do a Full GC.
1271     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1272                                        clear_all_soft_refs);
1273   }
1274 
1275   return NULL;
1276 }
1277 
1278 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1279                                                      bool* succeeded) {
1280   assert_at_safepoint_on_vm_thread();
1281 
1282   // Attempts to allocate followed by Full GC.
1283   HeapWord* result =
1284     satisfy_failed_allocation_helper(word_size,
1285                                      true,  /* do_gc */
1286                                      false, /* clear_all_soft_refs */
1287                                      false, /* expect_null_mutator_alloc_region */
1288                                      succeeded);
1289 
1290   if (result != NULL || !*succeeded) {
1291     return result;
1292   }
1293 
1294   // Attempts to allocate followed by Full GC that will collect all soft references.
1295   result = satisfy_failed_allocation_helper(word_size,
1296                                             true, /* do_gc */
1297                                             true, /* clear_all_soft_refs */
1298                                             true, /* expect_null_mutator_alloc_region */
1299                                             succeeded);
1300 
1301   if (result != NULL || !*succeeded) {
1302     return result;
1303   }
1304 
1305   // Attempts to allocate, no GC
1306   result = satisfy_failed_allocation_helper(word_size,
1307                                             false, /* do_gc */
1308                                             false, /* clear_all_soft_refs */
1309                                             true,  /* expect_null_mutator_alloc_region */
1310                                             succeeded);
1311 
1312   if (result != NULL) {
1313     return result;
1314   }
1315 
1316   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1317          "Flag should have been handled and cleared prior to this point");
1318 
1319   // What else?  We might try synchronous finalization later.  If the total
1320   // space available is large enough for the allocation, then a more
1321   // complete compaction phase than we've tried so far might be
1322   // appropriate.
1323   return NULL;
1324 }
1325 
1326 // Attempting to expand the heap sufficiently
1327 // to support an allocation of the given "word_size".  If
1328 // successful, perform the allocation and return the address of the
1329 // allocated block, or else "NULL".
1330 
1331 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1332   assert_at_safepoint_on_vm_thread();
1333 
1334   _verifier->verify_region_sets_optional();
1335 
1336   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1337   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1338                             word_size * HeapWordSize);
1339 
1340 
1341   if (expand(expand_bytes, _workers)) {
1342     _hrm->verify_optional();
1343     _verifier->verify_region_sets_optional();
1344     return attempt_allocation_at_safepoint(word_size,
1345                                            false /* expect_null_mutator_alloc_region */);
1346   }
1347   return NULL;
1348 }
1349 
1350 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1351   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1352   aligned_expand_bytes = align_up(aligned_expand_bytes,
1353                                        HeapRegion::GrainBytes);
1354 
1355   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1356                             expand_bytes, aligned_expand_bytes);
1357 
1358   if (is_maximal_no_gc()) {
1359     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1360     return false;
1361   }
1362 
1363   double expand_heap_start_time_sec = os::elapsedTime();
1364   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1365   assert(regions_to_expand > 0, "Must expand by at least one region");
1366 
1367   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1368   if (expand_time_ms != NULL) {
1369     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1370   }
1371 
1372   if (expanded_by > 0) {
1373     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1374     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1375     policy()->record_new_heap_size(num_regions());
1376   } else {
1377     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1378 
1379     // The expansion of the virtual storage space was unsuccessful.
1380     // Let's see if it was because we ran out of swap.
1381     if (G1ExitOnExpansionFailure &&
1382         _hrm->available() >= regions_to_expand) {
1383       // We had head room...
1384       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1385     }
1386   }
1387   return regions_to_expand > 0;
1388 }
1389 
1390 bool G1CollectedHeap::expand_single_region(uint node_index) {
1391   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1392 
1393   if (expanded_by == 0) {
1394     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1395     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1396     return false;
1397   }
1398 
1399   policy()->record_new_heap_size(num_regions());
1400   return true;
1401 }
1402 
1403 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1404   size_t aligned_shrink_bytes =
1405     ReservedSpace::page_align_size_down(shrink_bytes);
1406   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1407                                          HeapRegion::GrainBytes);
1408   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1409 
1410   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1411   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1412 
1413   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1414                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1415   if (num_regions_removed > 0) {
1416     policy()->record_new_heap_size(num_regions());
1417   } else {
1418     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1419   }
1420 }
1421 
1422 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1423   _verifier->verify_region_sets_optional();
1424 
1425   // We should only reach here at the end of a Full GC or during Remark which
1426   // means we should not not be holding to any GC alloc regions. The method
1427   // below will make sure of that and do any remaining clean up.
1428   _allocator->abandon_gc_alloc_regions();
1429 
1430   // Instead of tearing down / rebuilding the free lists here, we
1431   // could instead use the remove_all_pending() method on free_list to
1432   // remove only the ones that we need to remove.
1433   tear_down_region_sets(true /* free_list_only */);
1434   shrink_helper(shrink_bytes);
1435   rebuild_region_sets(true /* free_list_only */);
1436 
1437   _hrm->verify_optional();
1438   _verifier->verify_region_sets_optional();
1439 }
1440 
1441 class OldRegionSetChecker : public HeapRegionSetChecker {
1442 public:
1443   void check_mt_safety() {
1444     // Master Old Set MT safety protocol:
1445     // (a) If we're at a safepoint, operations on the master old set
1446     // should be invoked:
1447     // - by the VM thread (which will serialize them), or
1448     // - by the GC workers while holding the FreeList_lock, if we're
1449     //   at a safepoint for an evacuation pause (this lock is taken
1450     //   anyway when an GC alloc region is retired so that a new one
1451     //   is allocated from the free list), or
1452     // - by the GC workers while holding the OldSets_lock, if we're at a
1453     //   safepoint for a cleanup pause.
1454     // (b) If we're not at a safepoint, operations on the master old set
1455     // should be invoked while holding the Heap_lock.
1456 
1457     if (SafepointSynchronize::is_at_safepoint()) {
1458       guarantee(Thread::current()->is_VM_thread() ||
1459                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1460                 "master old set MT safety protocol at a safepoint");
1461     } else {
1462       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1463     }
1464   }
1465   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1466   const char* get_description() { return "Old Regions"; }
1467 };
1468 
1469 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1470 public:
1471   void check_mt_safety() {
1472     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1473               "May only change archive regions during initialization or safepoint.");
1474   }
1475   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1476   const char* get_description() { return "Archive Regions"; }
1477 };
1478 
1479 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1480 public:
1481   void check_mt_safety() {
1482     // Humongous Set MT safety protocol:
1483     // (a) If we're at a safepoint, operations on the master humongous
1484     // set should be invoked by either the VM thread (which will
1485     // serialize them) or by the GC workers while holding the
1486     // OldSets_lock.
1487     // (b) If we're not at a safepoint, operations on the master
1488     // humongous set should be invoked while holding the Heap_lock.
1489 
1490     if (SafepointSynchronize::is_at_safepoint()) {
1491       guarantee(Thread::current()->is_VM_thread() ||
1492                 OldSets_lock->owned_by_self(),
1493                 "master humongous set MT safety protocol at a safepoint");
1494     } else {
1495       guarantee(Heap_lock->owned_by_self(),
1496                 "master humongous set MT safety protocol outside a safepoint");
1497     }
1498   }
1499   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1500   const char* get_description() { return "Humongous Regions"; }
1501 };
1502 
1503 G1CollectedHeap::G1CollectedHeap() :
1504   CollectedHeap(),
1505   _young_gen_sampling_thread(NULL),
1506   _workers(NULL),
1507   _card_table(NULL),
1508   _soft_ref_policy(),
1509   _old_set("Old Region Set", new OldRegionSetChecker()),
1510   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1511   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1512   _bot(NULL),
1513   _listener(),
1514   _numa(G1NUMA::create()),
1515   _hrm(NULL),
1516   _allocator(NULL),
1517   _verifier(NULL),
1518   _summary_bytes_used(0),
1519   _archive_allocator(NULL),
1520   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1521   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1522   _expand_heap_after_alloc_failure(true),
1523   _g1mm(NULL),
1524   _humongous_reclaim_candidates(),
1525   _has_humongous_reclaim_candidates(false),
1526   _hr_printer(),
1527   _collector_state(),
1528   _old_marking_cycles_started(0),
1529   _old_marking_cycles_completed(0),
1530   _eden(),
1531   _survivor(),
1532   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1533   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1534   _policy(G1Policy::create_policy(_gc_timer_stw)),
1535   _heap_sizing_policy(NULL),
1536   _collection_set(this, _policy),
1537   _hot_card_cache(NULL),
1538   _rem_set(NULL),
1539   _cm(NULL),
1540   _cm_thread(NULL),
1541   _cr(NULL),
1542   _task_queues(NULL),
1543   _evacuation_failed(false),
1544   _evacuation_failed_info_array(NULL),
1545   _preserved_marks_set(true /* in_c_heap */),
1546 #ifndef PRODUCT
1547   _evacuation_failure_alot_for_current_gc(false),
1548   _evacuation_failure_alot_gc_number(0),
1549   _evacuation_failure_alot_count(0),
1550 #endif
1551   _ref_processor_stw(NULL),
1552   _is_alive_closure_stw(this),
1553   _is_subject_to_discovery_stw(this),
1554   _ref_processor_cm(NULL),
1555   _is_alive_closure_cm(this),
1556   _is_subject_to_discovery_cm(this),
1557   _region_attr() {
1558 
1559   _verifier = new G1HeapVerifier(this);
1560 
1561   _allocator = new G1Allocator(this);
1562 
1563   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1564 
1565   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1566 
1567   // Override the default _filler_array_max_size so that no humongous filler
1568   // objects are created.
1569   _filler_array_max_size = _humongous_object_threshold_in_words;
1570 
1571   uint n_queues = ParallelGCThreads;
1572   _task_queues = new RefToScanQueueSet(n_queues);
1573 
1574   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1575 
1576   for (uint i = 0; i < n_queues; i++) {
1577     RefToScanQueue* q = new RefToScanQueue();
1578     q->initialize();
1579     _task_queues->register_queue(i, q);
1580     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1581   }
1582 
1583   // Initialize the G1EvacuationFailureALot counters and flags.
1584   NOT_PRODUCT(reset_evacuation_should_fail();)
1585   _gc_tracer_stw->initialize();
1586 
1587   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1588 }
1589 
1590 static size_t actual_reserved_page_size(ReservedSpace rs) {
1591   size_t page_size = os::vm_page_size();
1592   if (UseLargePages) {
1593     // There are two ways to manage large page memory.
1594     // 1. OS supports committing large page memory.
1595     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1596     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1597     //    we reserved memory without large page.
1598     if (os::can_commit_large_page_memory() || rs.special()) {
1599       // An alignment at ReservedSpace comes from preferred page size or
1600       // heap alignment, and if the alignment came from heap alignment, it could be
1601       // larger than large pages size. So need to cap with the large page size.
1602       page_size = MIN2(rs.alignment(), os::large_page_size());
1603     }
1604   }
1605 
1606   return page_size;
1607 }
1608 
1609 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1610                                                                  size_t size,
1611                                                                  size_t translation_factor) {
1612   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1613   // Allocate a new reserved space, preferring to use large pages.
1614   ReservedSpace rs(size, preferred_page_size);
1615   size_t page_size = actual_reserved_page_size(rs);
1616   G1RegionToSpaceMapper* result  =
1617     G1RegionToSpaceMapper::create_mapper(rs,
1618                                          size,
1619                                          page_size,
1620                                          HeapRegion::GrainBytes,
1621                                          translation_factor,
1622                                          mtGC);
1623 
1624   os::trace_page_sizes_for_requested_size(description,
1625                                           size,
1626                                           preferred_page_size,
1627                                           page_size,
1628                                           rs.base(),
1629                                           rs.size());
1630 
1631   return result;
1632 }
1633 
1634 jint G1CollectedHeap::initialize_concurrent_refinement() {
1635   jint ecode = JNI_OK;
1636   _cr = G1ConcurrentRefine::create(&ecode);
1637   return ecode;
1638 }
1639 
1640 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1641   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1642   if (_young_gen_sampling_thread->osthread() == NULL) {
1643     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1644     return JNI_ENOMEM;
1645   }
1646   return JNI_OK;
1647 }
1648 
1649 jint G1CollectedHeap::initialize() {
1650 
1651   // Necessary to satisfy locking discipline assertions.
1652 
1653   MutexLocker x(Heap_lock);
1654 
1655   // While there are no constraints in the GC code that HeapWordSize
1656   // be any particular value, there are multiple other areas in the
1657   // system which believe this to be true (e.g. oop->object_size in some
1658   // cases incorrectly returns the size in wordSize units rather than
1659   // HeapWordSize).
1660   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1661 
1662   size_t init_byte_size = InitialHeapSize;
1663   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1664 
1665   // Ensure that the sizes are properly aligned.
1666   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1667   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1668   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1669 
1670   // Reserve the maximum.
1671 
1672   // When compressed oops are enabled, the preferred heap base
1673   // is calculated by subtracting the requested size from the
1674   // 32Gb boundary and using the result as the base address for
1675   // heap reservation. If the requested size is not aligned to
1676   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1677   // into the ReservedHeapSpace constructor) then the actual
1678   // base of the reserved heap may end up differing from the
1679   // address that was requested (i.e. the preferred heap base).
1680   // If this happens then we could end up using a non-optimal
1681   // compressed oops mode.
1682 
1683   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1684                                                      HeapAlignment);
1685 
1686   initialize_reserved_region(heap_rs);
1687 
1688   // Create the barrier set for the entire reserved region.
1689   G1CardTable* ct = new G1CardTable(heap_rs.region());
1690   ct->initialize();
1691   G1BarrierSet* bs = new G1BarrierSet(ct);
1692   bs->initialize();
1693   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1694   BarrierSet::set_barrier_set(bs);
1695   _card_table = ct;
1696 
1697   {
1698     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1699     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1700     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1701   }
1702 
1703   // Create the hot card cache.
1704   _hot_card_cache = new G1HotCardCache(this);
1705 
1706   // Carve out the G1 part of the heap.
1707   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1708   size_t page_size = actual_reserved_page_size(heap_rs);
1709   G1RegionToSpaceMapper* heap_storage =
1710     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1711                                               g1_rs.size(),
1712                                               page_size,
1713                                               HeapRegion::GrainBytes,
1714                                               1,
1715                                               mtJavaHeap);
1716   if(heap_storage == NULL) {
1717     vm_shutdown_during_initialization("Could not initialize G1 heap");
1718     return JNI_ERR;
1719   }
1720 
1721   os::trace_page_sizes("Heap",
1722                        MinHeapSize,
1723                        reserved_byte_size,
1724                        page_size,
1725                        heap_rs.base(),
1726                        heap_rs.size());
1727   heap_storage->set_mapping_changed_listener(&_listener);
1728 
1729   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1730   G1RegionToSpaceMapper* bot_storage =
1731     create_aux_memory_mapper("Block Offset Table",
1732                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1733                              G1BlockOffsetTable::heap_map_factor());
1734 
1735   G1RegionToSpaceMapper* cardtable_storage =
1736     create_aux_memory_mapper("Card Table",
1737                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1738                              G1CardTable::heap_map_factor());
1739 
1740   G1RegionToSpaceMapper* card_counts_storage =
1741     create_aux_memory_mapper("Card Counts Table",
1742                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1743                              G1CardCounts::heap_map_factor());
1744 
1745   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1746   G1RegionToSpaceMapper* prev_bitmap_storage =
1747     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1748   G1RegionToSpaceMapper* next_bitmap_storage =
1749     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1750 
1751   _hrm = HeapRegionManager::create_manager(this);
1752 
1753   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1754   _card_table->initialize(cardtable_storage);
1755 
1756   // Do later initialization work for concurrent refinement.
1757   _hot_card_cache->initialize(card_counts_storage);
1758 
1759   // 6843694 - ensure that the maximum region index can fit
1760   // in the remembered set structures.
1761   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1762   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1763 
1764   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1765   // start within the first card.
1766   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1767   // Also create a G1 rem set.
1768   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1769   _rem_set->initialize(max_reserved_capacity(), max_regions());
1770 
1771   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1772   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1773   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1774             "too many cards per region");
1775 
1776   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1777 
1778   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1779 
1780   {
1781     HeapWord* start = _hrm->reserved().start();
1782     HeapWord* end = _hrm->reserved().end();
1783     size_t granularity = HeapRegion::GrainBytes;
1784 
1785     _region_attr.initialize(start, end, granularity);
1786     _humongous_reclaim_candidates.initialize(start, end, granularity);
1787   }
1788 
1789   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1790                           true /* are_GC_task_threads */,
1791                           false /* are_ConcurrentGC_threads */);
1792   if (_workers == NULL) {
1793     return JNI_ENOMEM;
1794   }
1795   _workers->initialize_workers();
1796 
1797   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1798 
1799   // Create the G1ConcurrentMark data structure and thread.
1800   // (Must do this late, so that "max_regions" is defined.)
1801   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1802   if (_cm == NULL || !_cm->completed_initialization()) {
1803     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1804     return JNI_ENOMEM;
1805   }
1806   _cm_thread = _cm->cm_thread();
1807 
1808   // Now expand into the initial heap size.
1809   if (!expand(init_byte_size, _workers)) {
1810     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1811     return JNI_ENOMEM;
1812   }
1813 
1814   // Perform any initialization actions delegated to the policy.
1815   policy()->init(this, &_collection_set);
1816 
1817   jint ecode = initialize_concurrent_refinement();
1818   if (ecode != JNI_OK) {
1819     return ecode;
1820   }
1821 
1822   ecode = initialize_young_gen_sampling_thread();
1823   if (ecode != JNI_OK) {
1824     return ecode;
1825   }
1826 
1827   {
1828     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1829     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1830     dcqs.set_max_cards(concurrent_refine()->red_zone());
1831   }
1832 
1833   // Here we allocate the dummy HeapRegion that is required by the
1834   // G1AllocRegion class.
1835   HeapRegion* dummy_region = _hrm->get_dummy_region();
1836 
1837   // We'll re-use the same region whether the alloc region will
1838   // require BOT updates or not and, if it doesn't, then a non-young
1839   // region will complain that it cannot support allocations without
1840   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1841   dummy_region->set_eden();
1842   // Make sure it's full.
1843   dummy_region->set_top(dummy_region->end());
1844   G1AllocRegion::setup(this, dummy_region);
1845 
1846   _allocator->init_mutator_alloc_regions();
1847 
1848   // Do create of the monitoring and management support so that
1849   // values in the heap have been properly initialized.
1850   _g1mm = new G1MonitoringSupport(this);
1851 
1852   G1StringDedup::initialize();
1853 
1854   _preserved_marks_set.init(ParallelGCThreads);
1855 
1856   _collection_set.initialize(max_regions());
1857 
1858   return JNI_OK;
1859 }
1860 
1861 void G1CollectedHeap::stop() {
1862   // Stop all concurrent threads. We do this to make sure these threads
1863   // do not continue to execute and access resources (e.g. logging)
1864   // that are destroyed during shutdown.
1865   _cr->stop();
1866   _young_gen_sampling_thread->stop();
1867   _cm_thread->stop();
1868   if (G1StringDedup::is_enabled()) {
1869     G1StringDedup::stop();
1870   }
1871 }
1872 
1873 void G1CollectedHeap::safepoint_synchronize_begin() {
1874   SuspendibleThreadSet::synchronize();
1875 }
1876 
1877 void G1CollectedHeap::safepoint_synchronize_end() {
1878   SuspendibleThreadSet::desynchronize();
1879 }
1880 
1881 void G1CollectedHeap::post_initialize() {
1882   CollectedHeap::post_initialize();
1883   ref_processing_init();
1884 }
1885 
1886 void G1CollectedHeap::ref_processing_init() {
1887   // Reference processing in G1 currently works as follows:
1888   //
1889   // * There are two reference processor instances. One is
1890   //   used to record and process discovered references
1891   //   during concurrent marking; the other is used to
1892   //   record and process references during STW pauses
1893   //   (both full and incremental).
1894   // * Both ref processors need to 'span' the entire heap as
1895   //   the regions in the collection set may be dotted around.
1896   //
1897   // * For the concurrent marking ref processor:
1898   //   * Reference discovery is enabled at initial marking.
1899   //   * Reference discovery is disabled and the discovered
1900   //     references processed etc during remarking.
1901   //   * Reference discovery is MT (see below).
1902   //   * Reference discovery requires a barrier (see below).
1903   //   * Reference processing may or may not be MT
1904   //     (depending on the value of ParallelRefProcEnabled
1905   //     and ParallelGCThreads).
1906   //   * A full GC disables reference discovery by the CM
1907   //     ref processor and abandons any entries on it's
1908   //     discovered lists.
1909   //
1910   // * For the STW processor:
1911   //   * Non MT discovery is enabled at the start of a full GC.
1912   //   * Processing and enqueueing during a full GC is non-MT.
1913   //   * During a full GC, references are processed after marking.
1914   //
1915   //   * Discovery (may or may not be MT) is enabled at the start
1916   //     of an incremental evacuation pause.
1917   //   * References are processed near the end of a STW evacuation pause.
1918   //   * For both types of GC:
1919   //     * Discovery is atomic - i.e. not concurrent.
1920   //     * Reference discovery will not need a barrier.
1921 
1922   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1923 
1924   // Concurrent Mark ref processor
1925   _ref_processor_cm =
1926     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1927                            mt_processing,                                  // mt processing
1928                            ParallelGCThreads,                              // degree of mt processing
1929                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1930                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1931                            false,                                          // Reference discovery is not atomic
1932                            &_is_alive_closure_cm,                          // is alive closure
1933                            true);                                          // allow changes to number of processing threads
1934 
1935   // STW ref processor
1936   _ref_processor_stw =
1937     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1938                            mt_processing,                        // mt processing
1939                            ParallelGCThreads,                    // degree of mt processing
1940                            (ParallelGCThreads > 1),              // mt discovery
1941                            ParallelGCThreads,                    // degree of mt discovery
1942                            true,                                 // Reference discovery is atomic
1943                            &_is_alive_closure_stw,               // is alive closure
1944                            true);                                // allow changes to number of processing threads
1945 }
1946 
1947 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1948   return &_soft_ref_policy;
1949 }
1950 
1951 size_t G1CollectedHeap::capacity() const {
1952   return _hrm->length() * HeapRegion::GrainBytes;
1953 }
1954 
1955 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1956   return _hrm->total_free_bytes();
1957 }
1958 
1959 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1960   _hot_card_cache->drain(cl, worker_id);
1961 }
1962 
1963 // Computes the sum of the storage used by the various regions.
1964 size_t G1CollectedHeap::used() const {
1965   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1966   if (_archive_allocator != NULL) {
1967     result += _archive_allocator->used();
1968   }
1969   return result;
1970 }
1971 
1972 size_t G1CollectedHeap::used_unlocked() const {
1973   return _summary_bytes_used;
1974 }
1975 
1976 class SumUsedClosure: public HeapRegionClosure {
1977   size_t _used;
1978 public:
1979   SumUsedClosure() : _used(0) {}
1980   bool do_heap_region(HeapRegion* r) {
1981     _used += r->used();
1982     return false;
1983   }
1984   size_t result() { return _used; }
1985 };
1986 
1987 size_t G1CollectedHeap::recalculate_used() const {
1988   SumUsedClosure blk;
1989   heap_region_iterate(&blk);
1990   return blk.result();
1991 }
1992 
1993 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1994   switch (cause) {
1995     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1996     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1997     case GCCause::_wb_conc_mark:                        return true;
1998     default :                                           return false;
1999   }
2000 }
2001 
2002 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2003   switch (cause) {
2004     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2005     case GCCause::_g1_humongous_allocation: return true;
2006     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
2007     default:                                return is_user_requested_concurrent_full_gc(cause);
2008   }
2009 }
2010 
2011 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
2012   if (policy()->force_upgrade_to_full()) {
2013     return true;
2014   } else if (should_do_concurrent_full_gc(_gc_cause)) {
2015     return false;
2016   } else if (has_regions_left_for_allocation()) {
2017     return false;
2018   } else {
2019     return true;
2020   }
2021 }
2022 
2023 #ifndef PRODUCT
2024 void G1CollectedHeap::allocate_dummy_regions() {
2025   // Let's fill up most of the region
2026   size_t word_size = HeapRegion::GrainWords - 1024;
2027   // And as a result the region we'll allocate will be humongous.
2028   guarantee(is_humongous(word_size), "sanity");
2029 
2030   // _filler_array_max_size is set to humongous object threshold
2031   // but temporarily change it to use CollectedHeap::fill_with_object().
2032   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2033 
2034   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2035     // Let's use the existing mechanism for the allocation
2036     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2037     if (dummy_obj != NULL) {
2038       MemRegion mr(dummy_obj, word_size);
2039       CollectedHeap::fill_with_object(mr);
2040     } else {
2041       // If we can't allocate once, we probably cannot allocate
2042       // again. Let's get out of the loop.
2043       break;
2044     }
2045   }
2046 }
2047 #endif // !PRODUCT
2048 
2049 void G1CollectedHeap::increment_old_marking_cycles_started() {
2050   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2051          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2052          "Wrong marking cycle count (started: %d, completed: %d)",
2053          _old_marking_cycles_started, _old_marking_cycles_completed);
2054 
2055   _old_marking_cycles_started++;
2056 }
2057 
2058 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2059   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
2060 
2061   // We assume that if concurrent == true, then the caller is a
2062   // concurrent thread that was joined the Suspendible Thread
2063   // Set. If there's ever a cheap way to check this, we should add an
2064   // assert here.
2065 
2066   // Given that this method is called at the end of a Full GC or of a
2067   // concurrent cycle, and those can be nested (i.e., a Full GC can
2068   // interrupt a concurrent cycle), the number of full collections
2069   // completed should be either one (in the case where there was no
2070   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2071   // behind the number of full collections started.
2072 
2073   // This is the case for the inner caller, i.e. a Full GC.
2074   assert(concurrent ||
2075          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2076          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2077          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2078          "is inconsistent with _old_marking_cycles_completed = %u",
2079          _old_marking_cycles_started, _old_marking_cycles_completed);
2080 
2081   // This is the case for the outer caller, i.e. the concurrent cycle.
2082   assert(!concurrent ||
2083          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2084          "for outer caller (concurrent cycle): "
2085          "_old_marking_cycles_started = %u "
2086          "is inconsistent with _old_marking_cycles_completed = %u",
2087          _old_marking_cycles_started, _old_marking_cycles_completed);
2088 
2089   _old_marking_cycles_completed += 1;
2090 
2091   // We need to clear the "in_progress" flag in the CM thread before
2092   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2093   // is set) so that if a waiter requests another System.gc() it doesn't
2094   // incorrectly see that a marking cycle is still in progress.
2095   if (concurrent) {
2096     _cm_thread->set_idle();
2097   }
2098 
2099   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
2100   // for a full GC to finish that their wait is over.
2101   ml.notify_all();
2102 }
2103 
2104 void G1CollectedHeap::collect(GCCause::Cause cause) {
2105   try_collect(cause);
2106 }
2107 
2108 // Return true if (x < y) with allowance for wraparound.
2109 static bool gc_counter_less_than(uint x, uint y) {
2110   return (x - y) > (UINT_MAX/2);
2111 }
2112 
2113 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
2114 // Macro so msg printing is format-checked.
2115 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
2116   do {                                                                  \
2117     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
2118     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
2119       ResourceMark rm; /* For thread name. */                           \
2120       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
2121       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
2122                                        Thread::current()->name(),       \
2123                                        GCCause::to_string(cause));      \
2124       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
2125     }                                                                   \
2126   } while (0)
2127 
2128 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
2129   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
2130 
2131 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
2132                                                uint gc_counter,
2133                                                uint old_marking_started_before) {
2134   assert_heap_not_locked();
2135   assert(should_do_concurrent_full_gc(cause),
2136          "Non-concurrent cause %s", GCCause::to_string(cause));
2137 
2138   for (uint i = 1; true; ++i) {
2139     // Try to schedule an initial-mark evacuation pause that will
2140     // start a concurrent cycle.
2141     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
2142     VM_G1TryInitiateConcMark op(gc_counter,
2143                                 cause,
2144                                 policy()->max_pause_time_ms());
2145     VMThread::execute(&op);
2146 
2147     // Request is trivially finished.
2148     if (cause == GCCause::_g1_periodic_collection) {
2149       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
2150       return op.gc_succeeded();
2151     }
2152 
2153     // Lock to get consistent set of values.
2154     uint old_marking_started_after;
2155     uint old_marking_completed_after;
2156     {
2157       MutexLocker ml(Heap_lock);
2158       // Update gc_counter for retrying VMOp if needed. Captured here to be
2159       // consistent with the values we use below for termination tests.  If
2160       // a retry is needed after a possible wait, and another collection
2161       // occurs in the meantime, it will cause our retry to be skipped and
2162       // we'll recheck for termination with updated conditions from that
2163       // more recent collection.  That's what we want, rather than having
2164       // our retry possibly perform an unnecessary collection.
2165       gc_counter = total_collections();
2166       old_marking_started_after = _old_marking_cycles_started;
2167       old_marking_completed_after = _old_marking_cycles_completed;
2168     }
2169 
2170     if (!GCCause::is_user_requested_gc(cause)) {
2171       // For an "automatic" (not user-requested) collection, we just need to
2172       // ensure that progress is made.
2173       //
2174       // Request is finished if any of
2175       // (1) the VMOp successfully performed a GC,
2176       // (2) a concurrent cycle was already in progress,
2177       // (3) a new cycle was started (by this thread or some other), or
2178       // (4) a Full GC was performed.
2179       // Cases (3) and (4) are detected together by a change to
2180       // _old_marking_cycles_started.
2181       //
2182       // Note that (1) does not imply (3).  If we're still in the mixed
2183       // phase of an earlier concurrent collection, the request to make the
2184       // collection an initial-mark won't be honored.  If we don't check for
2185       // both conditions we'll spin doing back-to-back collections.
2186       if (op.gc_succeeded() ||
2187           op.cycle_already_in_progress() ||
2188           (old_marking_started_before != old_marking_started_after)) {
2189         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2190         return true;
2191       }
2192     } else {                    // User-requested GC.
2193       // For a user-requested collection, we want to ensure that a complete
2194       // full collection has been performed before returning, but without
2195       // waiting for more than needed.
2196 
2197       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
2198       // new cycle was started.  That's good, because it's not clear what we
2199       // should do otherwise.  Trying again just does back to back GCs.
2200       // Can't wait for someone else to start a cycle.  And returning fails
2201       // to meet the goal of ensuring a full collection was performed.
2202       assert(!op.gc_succeeded() ||
2203              (old_marking_started_before != old_marking_started_after),
2204              "invariant: succeeded %s, started before %u, started after %u",
2205              BOOL_TO_STR(op.gc_succeeded()),
2206              old_marking_started_before, old_marking_started_after);
2207 
2208       // Request is finished if a full collection (concurrent or stw)
2209       // was started after this request and has completed, e.g.
2210       // started_before < completed_after.
2211       if (gc_counter_less_than(old_marking_started_before,
2212                                old_marking_completed_after)) {
2213         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2214         return true;
2215       }
2216 
2217       if (old_marking_started_after != old_marking_completed_after) {
2218         // If there is an in-progress cycle (possibly started by us), then
2219         // wait for that cycle to complete, e.g.
2220         // while completed_now < started_after.
2221         LOG_COLLECT_CONCURRENTLY(cause, "wait");
2222         MonitorLocker ml(G1OldGCCount_lock);
2223         while (gc_counter_less_than(_old_marking_cycles_completed,
2224                                     old_marking_started_after)) {
2225           ml.wait();
2226         }
2227         // Request is finished if the collection we just waited for was
2228         // started after this request.
2229         if (old_marking_started_before != old_marking_started_after) {
2230           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
2231           return true;
2232         }
2233       }
2234 
2235       // If VMOp was successful then it started a new cycle that the above
2236       // wait &etc should have recognized as finishing this request.  This
2237       // differs from a non-user-request, where gc_succeeded does not imply
2238       // a new cycle was started.
2239       assert(!op.gc_succeeded(), "invariant");
2240 
2241       // If VMOp failed because a cycle was already in progress, it is now
2242       // complete.  But it didn't finish this user-requested GC, so try
2243       // again.
2244       if (op.cycle_already_in_progress()) {
2245         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
2246         continue;
2247       }
2248     }
2249 
2250     // Collection failed and should be retried.
2251     assert(op.transient_failure(), "invariant");
2252 
2253     // If GCLocker is active, wait until clear before retrying.
2254     if (GCLocker::is_active_and_needs_gc()) {
2255       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
2256       GCLocker::stall_until_clear();
2257     }
2258 
2259     LOG_COLLECT_CONCURRENTLY(cause, "retry");
2260   }
2261 }
2262 
2263 bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
2264   assert_heap_not_locked();
2265 
2266   // Lock to get consistent set of values.
2267   uint gc_count_before;
2268   uint full_gc_count_before;
2269   uint old_marking_started_before;
2270   {
2271     MutexLocker ml(Heap_lock);
2272     gc_count_before = total_collections();
2273     full_gc_count_before = total_full_collections();
2274     old_marking_started_before = _old_marking_cycles_started;
2275   }
2276 
2277   if (should_do_concurrent_full_gc(cause)) {
2278     return try_collect_concurrently(cause,
2279                                     gc_count_before,
2280                                     old_marking_started_before);
2281   } else if (GCLocker::should_discard(cause, gc_count_before)) {
2282     // Indicate failure to be consistent with VMOp failure due to
2283     // another collection slipping in after our gc_count but before
2284     // our request is processed.  _gc_locker collections upgraded by
2285     // GCLockerInvokesConcurrent are handled above and never discarded.
2286     return false;
2287   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2288              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2289 
2290     // Schedule a standard evacuation pause. We're setting word_size
2291     // to 0 which means that we are not requesting a post-GC allocation.
2292     VM_G1CollectForAllocation op(0,     /* word_size */
2293                                  gc_count_before,
2294                                  cause,
2295                                  policy()->max_pause_time_ms());
2296     VMThread::execute(&op);
2297     return op.gc_succeeded();
2298   } else {
2299     // Schedule a Full GC.
2300     VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2301     VMThread::execute(&op);
2302     return op.gc_succeeded();
2303   }
2304 }
2305 
2306 bool G1CollectedHeap::is_in(const void* p) const {
2307   if (_hrm->reserved().contains(p)) {
2308     // Given that we know that p is in the reserved space,
2309     // heap_region_containing() should successfully
2310     // return the containing region.
2311     HeapRegion* hr = heap_region_containing(p);
2312     return hr->is_in(p);
2313   } else {
2314     return false;
2315   }
2316 }
2317 
2318 #ifdef ASSERT
2319 bool G1CollectedHeap::is_in_exact(const void* p) const {
2320   bool contains = reserved_region().contains(p);
2321   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2322   if (contains && available) {
2323     return true;
2324   } else {
2325     return false;
2326   }
2327 }
2328 #endif
2329 
2330 // Iteration functions.
2331 
2332 // Iterates an ObjectClosure over all objects within a HeapRegion.
2333 
2334 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2335   ObjectClosure* _cl;
2336 public:
2337   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2338   bool do_heap_region(HeapRegion* r) {
2339     if (!r->is_continues_humongous()) {
2340       r->object_iterate(_cl);
2341     }
2342     return false;
2343   }
2344 };
2345 
2346 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2347   IterateObjectClosureRegionClosure blk(cl);
2348   heap_region_iterate(&blk);
2349 }
2350 
2351 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2352   _hrm->iterate(cl);
2353 }
2354 
2355 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2356                                                                  HeapRegionClaimer *hrclaimer,
2357                                                                  uint worker_id) const {
2358   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2359 }
2360 
2361 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2362                                                          HeapRegionClaimer *hrclaimer) const {
2363   _hrm->par_iterate(cl, hrclaimer, 0);
2364 }
2365 
2366 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2367   _collection_set.iterate(cl);
2368 }
2369 
2370 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2371   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2372 }
2373 
2374 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2375   HeapRegion* hr = heap_region_containing(addr);
2376   return hr->block_start(addr);
2377 }
2378 
2379 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2380   HeapRegion* hr = heap_region_containing(addr);
2381   return hr->block_is_obj(addr);
2382 }
2383 
2384 bool G1CollectedHeap::supports_tlab_allocation() const {
2385   return true;
2386 }
2387 
2388 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2389   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2390 }
2391 
2392 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2393   return _eden.length() * HeapRegion::GrainBytes;
2394 }
2395 
2396 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2397 // must be equal to the humongous object limit.
2398 size_t G1CollectedHeap::max_tlab_size() const {
2399   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2400 }
2401 
2402 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2403   return _allocator->unsafe_max_tlab_alloc();
2404 }
2405 
2406 size_t G1CollectedHeap::max_capacity() const {
2407   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2408 }
2409 
2410 size_t G1CollectedHeap::max_reserved_capacity() const {
2411   return _hrm->max_length() * HeapRegion::GrainBytes;
2412 }
2413 
2414 jlong G1CollectedHeap::millis_since_last_gc() {
2415   // See the notes in GenCollectedHeap::millis_since_last_gc()
2416   // for more information about the implementation.
2417   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2418                   _policy->collection_pause_end_millis();
2419   if (ret_val < 0) {
2420     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2421       ". returning zero instead.", ret_val);
2422     return 0;
2423   }
2424   return ret_val;
2425 }
2426 
2427 void G1CollectedHeap::deduplicate_string(oop str) {
2428   assert(java_lang_String::is_instance(str), "invariant");
2429 
2430   if (G1StringDedup::is_enabled()) {
2431     G1StringDedup::deduplicate(str);
2432   }
2433 }
2434 
2435 void G1CollectedHeap::prepare_for_verify() {
2436   _verifier->prepare_for_verify();
2437 }
2438 
2439 void G1CollectedHeap::verify(VerifyOption vo) {
2440   _verifier->verify(vo);
2441 }
2442 
2443 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2444   return true;
2445 }
2446 
2447 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2448   return _cm_thread->request_concurrent_phase(phase);
2449 }
2450 
2451 bool G1CollectedHeap::is_heterogeneous_heap() const {
2452   return G1Arguments::is_heterogeneous_heap();
2453 }
2454 
2455 class PrintRegionClosure: public HeapRegionClosure {
2456   outputStream* _st;
2457 public:
2458   PrintRegionClosure(outputStream* st) : _st(st) {}
2459   bool do_heap_region(HeapRegion* r) {
2460     r->print_on(_st);
2461     return false;
2462   }
2463 };
2464 
2465 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2466                                        const HeapRegion* hr,
2467                                        const VerifyOption vo) const {
2468   switch (vo) {
2469   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2470   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2471   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2472   default:                            ShouldNotReachHere();
2473   }
2474   return false; // keep some compilers happy
2475 }
2476 
2477 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2478                                        const VerifyOption vo) const {
2479   switch (vo) {
2480   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2481   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2482   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2483   default:                            ShouldNotReachHere();
2484   }
2485   return false; // keep some compilers happy
2486 }
2487 
2488 void G1CollectedHeap::print_heap_regions() const {
2489   LogTarget(Trace, gc, heap, region) lt;
2490   if (lt.is_enabled()) {
2491     LogStream ls(lt);
2492     print_regions_on(&ls);
2493   }
2494 }
2495 
2496 void G1CollectedHeap::print_on(outputStream* st) const {
2497   st->print(" %-20s", "garbage-first heap");
2498   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2499             capacity()/K, used_unlocked()/K);
2500   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2501             p2i(_hrm->reserved().start()),
2502             p2i(_hrm->reserved().end()));
2503   st->cr();
2504   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2505   uint young_regions = young_regions_count();
2506   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2507             (size_t) young_regions * HeapRegion::GrainBytes / K);
2508   uint survivor_regions = survivor_regions_count();
2509   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2510             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2511   st->cr();
2512   if (_numa->is_enabled()) {
2513     uint num_nodes = _numa->num_active_nodes();
2514     st->print("  remaining free region(s) on each NUMA node: ");
2515     const int* node_ids = _numa->node_ids();
2516     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2517       st->print("%d=%u ", node_ids[node_index], _hrm->num_free_regions(node_index));
2518     }
2519     st->cr();
2520   }
2521   MetaspaceUtils::print_on(st);
2522 }
2523 
2524 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2525   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2526                "HS=humongous(starts), HC=humongous(continues), "
2527                "CS=collection set, F=free, "
2528                "OA=open archive, CA=closed archive, "
2529                "TAMS=top-at-mark-start (previous, next)");
2530   PrintRegionClosure blk(st);
2531   heap_region_iterate(&blk);
2532 }
2533 
2534 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2535   print_on(st);
2536 
2537   // Print the per-region information.
2538   print_regions_on(st);
2539 }
2540 
2541 void G1CollectedHeap::print_on_error(outputStream* st) const {
2542   this->CollectedHeap::print_on_error(st);
2543 
2544   if (_cm != NULL) {
2545     st->cr();
2546     _cm->print_on_error(st);
2547   }
2548 }
2549 
2550 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2551   workers()->print_worker_threads_on(st);
2552   _cm_thread->print_on(st);
2553   st->cr();
2554   _cm->print_worker_threads_on(st);
2555   _cr->print_threads_on(st);
2556   _young_gen_sampling_thread->print_on(st);
2557   if (G1StringDedup::is_enabled()) {
2558     G1StringDedup::print_worker_threads_on(st);
2559   }
2560 }
2561 
2562 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2563   workers()->threads_do(tc);
2564   tc->do_thread(_cm_thread);
2565   _cm->threads_do(tc);
2566   _cr->threads_do(tc);
2567   tc->do_thread(_young_gen_sampling_thread);
2568   if (G1StringDedup::is_enabled()) {
2569     G1StringDedup::threads_do(tc);
2570   }
2571 }
2572 
2573 void G1CollectedHeap::print_tracing_info() const {
2574   rem_set()->print_summary_info();
2575   concurrent_mark()->print_summary_info();
2576 }
2577 
2578 #ifndef PRODUCT
2579 // Helpful for debugging RSet issues.
2580 
2581 class PrintRSetsClosure : public HeapRegionClosure {
2582 private:
2583   const char* _msg;
2584   size_t _occupied_sum;
2585 
2586 public:
2587   bool do_heap_region(HeapRegion* r) {
2588     HeapRegionRemSet* hrrs = r->rem_set();
2589     size_t occupied = hrrs->occupied();
2590     _occupied_sum += occupied;
2591 
2592     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2593     if (occupied == 0) {
2594       tty->print_cr("  RSet is empty");
2595     } else {
2596       hrrs->print();
2597     }
2598     tty->print_cr("----------");
2599     return false;
2600   }
2601 
2602   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2603     tty->cr();
2604     tty->print_cr("========================================");
2605     tty->print_cr("%s", msg);
2606     tty->cr();
2607   }
2608 
2609   ~PrintRSetsClosure() {
2610     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2611     tty->print_cr("========================================");
2612     tty->cr();
2613   }
2614 };
2615 
2616 void G1CollectedHeap::print_cset_rsets() {
2617   PrintRSetsClosure cl("Printing CSet RSets");
2618   collection_set_iterate_all(&cl);
2619 }
2620 
2621 void G1CollectedHeap::print_all_rsets() {
2622   PrintRSetsClosure cl("Printing All RSets");;
2623   heap_region_iterate(&cl);
2624 }
2625 #endif // PRODUCT
2626 
2627 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2628   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2629 }
2630 
2631 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2632 
2633   size_t eden_used_bytes = _eden.used_bytes();
2634   size_t survivor_used_bytes = _survivor.used_bytes();
2635   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2636 
2637   size_t eden_capacity_bytes =
2638     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2639 
2640   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2641   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2642                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2643 }
2644 
2645 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2646   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2647                        stats->unused(), stats->used(), stats->region_end_waste(),
2648                        stats->regions_filled(), stats->direct_allocated(),
2649                        stats->failure_used(), stats->failure_waste());
2650 }
2651 
2652 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2653   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2654   gc_tracer->report_gc_heap_summary(when, heap_summary);
2655 
2656   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2657   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2658 }
2659 
2660 G1CollectedHeap* G1CollectedHeap::heap() {
2661   CollectedHeap* heap = Universe::heap();
2662   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2663   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2664   return (G1CollectedHeap*)heap;
2665 }
2666 
2667 void G1CollectedHeap::gc_prologue(bool full) {
2668   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2669 
2670   // This summary needs to be printed before incrementing total collections.
2671   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2672 
2673   // Update common counters.
2674   increment_total_collections(full /* full gc */);
2675   if (full || collector_state()->in_initial_mark_gc()) {
2676     increment_old_marking_cycles_started();
2677   }
2678 
2679   // Fill TLAB's and such
2680   double start = os::elapsedTime();
2681   ensure_parsability(true);
2682   phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2683 }
2684 
2685 void G1CollectedHeap::gc_epilogue(bool full) {
2686   // Update common counters.
2687   if (full) {
2688     // Update the number of full collections that have been completed.
2689     increment_old_marking_cycles_completed(false /* concurrent */);
2690   }
2691 
2692   // We are at the end of the GC. Total collections has already been increased.
2693   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2694 
2695   // FIXME: what is this about?
2696   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2697   // is set.
2698 #if COMPILER2_OR_JVMCI
2699   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2700 #endif
2701 
2702   double start = os::elapsedTime();
2703   resize_all_tlabs();
2704   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2705 
2706   MemoryService::track_memory_usage();
2707   // We have just completed a GC. Update the soft reference
2708   // policy with the new heap occupancy
2709   Universe::update_heap_info_at_gc();
2710 
2711   // Print NUMA statistics.
2712   _numa->print_statistics();
2713 }
2714 
2715 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2716   LogTarget(Trace, gc, heap, verify) lt;
2717 
2718   if (lt.is_enabled()) {
2719     LogStream ls(lt);
2720     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2721     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2722     heap_region_iterate(&cl);
2723   }
2724 }
2725 
2726 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2727                                                uint gc_count_before,
2728                                                bool* succeeded,
2729                                                GCCause::Cause gc_cause) {
2730   assert_heap_not_locked_and_not_at_safepoint();
2731   VM_G1CollectForAllocation op(word_size,
2732                                gc_count_before,
2733                                gc_cause,
2734                                policy()->max_pause_time_ms());
2735   VMThread::execute(&op);
2736 
2737   HeapWord* result = op.result();
2738   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2739   assert(result == NULL || ret_succeeded,
2740          "the result should be NULL if the VM did not succeed");
2741   *succeeded = ret_succeeded;
2742 
2743   assert_heap_not_locked();
2744   return result;
2745 }
2746 
2747 void G1CollectedHeap::do_concurrent_mark() {
2748   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2749   if (!_cm_thread->in_progress()) {
2750     _cm_thread->set_started();
2751     CGC_lock->notify();
2752   }
2753 }
2754 
2755 size_t G1CollectedHeap::pending_card_num() {
2756   struct CountCardsClosure : public ThreadClosure {
2757     size_t _cards;
2758     CountCardsClosure() : _cards(0) {}
2759     virtual void do_thread(Thread* t) {
2760       _cards += G1ThreadLocalData::dirty_card_queue(t).size();
2761     }
2762   } count_from_threads;
2763   Threads::threads_do(&count_from_threads);
2764 
2765   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2766   dcqs.verify_num_cards();
2767 
2768   return dcqs.num_cards() + count_from_threads._cards;
2769 }
2770 
2771 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2772   // We don't nominate objects with many remembered set entries, on
2773   // the assumption that such objects are likely still live.
2774   HeapRegionRemSet* rem_set = r->rem_set();
2775 
2776   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2777          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2778          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2779 }
2780 
2781 #ifndef PRODUCT
2782 void G1CollectedHeap::verify_region_attr_remset_update() {
2783   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2784   public:
2785     virtual bool do_heap_region(HeapRegion* r) {
2786       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2787       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2788       assert(r->rem_set()->is_tracked() == needs_remset_update,
2789              "Region %u remset tracking status (%s) different to region attribute (%s)",
2790              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2791       return false;
2792     }
2793   } cl;
2794   heap_region_iterate(&cl);
2795 }
2796 #endif
2797 
2798 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2799   public:
2800     bool do_heap_region(HeapRegion* hr) {
2801       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2802         hr->verify_rem_set();
2803       }
2804       return false;
2805     }
2806 };
2807 
2808 uint G1CollectedHeap::num_task_queues() const {
2809   return _task_queues->size();
2810 }
2811 
2812 #if TASKQUEUE_STATS
2813 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2814   st->print_raw_cr("GC Task Stats");
2815   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2816   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2817 }
2818 
2819 void G1CollectedHeap::print_taskqueue_stats() const {
2820   if (!log_is_enabled(Trace, gc, task, stats)) {
2821     return;
2822   }
2823   Log(gc, task, stats) log;
2824   ResourceMark rm;
2825   LogStream ls(log.trace());
2826   outputStream* st = &ls;
2827 
2828   print_taskqueue_stats_hdr(st);
2829 
2830   TaskQueueStats totals;
2831   const uint n = num_task_queues();
2832   for (uint i = 0; i < n; ++i) {
2833     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2834     totals += task_queue(i)->stats;
2835   }
2836   st->print_raw("tot "); totals.print(st); st->cr();
2837 
2838   DEBUG_ONLY(totals.verify());
2839 }
2840 
2841 void G1CollectedHeap::reset_taskqueue_stats() {
2842   const uint n = num_task_queues();
2843   for (uint i = 0; i < n; ++i) {
2844     task_queue(i)->stats.reset();
2845   }
2846 }
2847 #endif // TASKQUEUE_STATS
2848 
2849 void G1CollectedHeap::wait_for_root_region_scanning() {
2850   double scan_wait_start = os::elapsedTime();
2851   // We have to wait until the CM threads finish scanning the
2852   // root regions as it's the only way to ensure that all the
2853   // objects on them have been correctly scanned before we start
2854   // moving them during the GC.
2855   bool waited = _cm->root_regions()->wait_until_scan_finished();
2856   double wait_time_ms = 0.0;
2857   if (waited) {
2858     double scan_wait_end = os::elapsedTime();
2859     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2860   }
2861   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2862 }
2863 
2864 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2865 private:
2866   G1HRPrinter* _hr_printer;
2867 public:
2868   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2869 
2870   virtual bool do_heap_region(HeapRegion* r) {
2871     _hr_printer->cset(r);
2872     return false;
2873   }
2874 };
2875 
2876 void G1CollectedHeap::start_new_collection_set() {
2877   double start = os::elapsedTime();
2878 
2879   collection_set()->start_incremental_building();
2880 
2881   clear_region_attr();
2882 
2883   guarantee(_eden.length() == 0, "eden should have been cleared");
2884   policy()->transfer_survivors_to_cset(survivor());
2885 
2886   // We redo the verification but now wrt to the new CSet which
2887   // has just got initialized after the previous CSet was freed.
2888   _cm->verify_no_collection_set_oops();
2889 
2890   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2891 }
2892 
2893 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2894 
2895   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2896   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2897                                             collection_set()->optional_region_length());
2898 
2899   _cm->verify_no_collection_set_oops();
2900 
2901   if (_hr_printer.is_active()) {
2902     G1PrintCollectionSetClosure cl(&_hr_printer);
2903     _collection_set.iterate(&cl);
2904     _collection_set.iterate_optional(&cl);
2905   }
2906 }
2907 
2908 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2909   if (collector_state()->in_initial_mark_gc()) {
2910     return G1HeapVerifier::G1VerifyConcurrentStart;
2911   } else if (collector_state()->in_young_only_phase()) {
2912     return G1HeapVerifier::G1VerifyYoungNormal;
2913   } else {
2914     return G1HeapVerifier::G1VerifyMixed;
2915   }
2916 }
2917 
2918 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2919   if (VerifyRememberedSets) {
2920     log_info(gc, verify)("[Verifying RemSets before GC]");
2921     VerifyRegionRemSetClosure v_cl;
2922     heap_region_iterate(&v_cl);
2923   }
2924   _verifier->verify_before_gc(type);
2925   _verifier->check_bitmaps("GC Start");
2926   verify_numa_regions("GC Start");
2927 }
2928 
2929 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2930   if (VerifyRememberedSets) {
2931     log_info(gc, verify)("[Verifying RemSets after GC]");
2932     VerifyRegionRemSetClosure v_cl;
2933     heap_region_iterate(&v_cl);
2934   }
2935   _verifier->verify_after_gc(type);
2936   _verifier->check_bitmaps("GC End");
2937   verify_numa_regions("GC End");
2938 }
2939 
2940 void G1CollectedHeap::expand_heap_after_young_collection(){
2941   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2942   if (expand_bytes > 0) {
2943     // No need for an ergo logging here,
2944     // expansion_amount() does this when it returns a value > 0.
2945     double expand_ms;
2946     if (!expand(expand_bytes, _workers, &expand_ms)) {
2947       // We failed to expand the heap. Cannot do anything about it.
2948     }
2949     phase_times()->record_expand_heap_time(expand_ms);
2950   }
2951 }
2952 
2953 const char* G1CollectedHeap::young_gc_name() const {
2954   if (collector_state()->in_initial_mark_gc()) {
2955     return "Pause Young (Concurrent Start)";
2956   } else if (collector_state()->in_young_only_phase()) {
2957     if (collector_state()->in_young_gc_before_mixed()) {
2958       return "Pause Young (Prepare Mixed)";
2959     } else {
2960       return "Pause Young (Normal)";
2961     }
2962   } else {
2963     return "Pause Young (Mixed)";
2964   }
2965 }
2966 
2967 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2968   assert_at_safepoint_on_vm_thread();
2969   guarantee(!is_gc_active(), "collection is not reentrant");
2970 
2971   if (GCLocker::check_active_before_gc()) {
2972     return false;
2973   }
2974 
2975   GCIdMark gc_id_mark;
2976 
2977   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2978   ResourceMark rm;
2979 
2980   policy()->note_gc_start();
2981 
2982   _gc_timer_stw->register_gc_start();
2983   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2984 
2985   wait_for_root_region_scanning();
2986 
2987   print_heap_before_gc();
2988   print_heap_regions();
2989   trace_heap_before_gc(_gc_tracer_stw);
2990 
2991   _verifier->verify_region_sets_optional();
2992   _verifier->verify_dirty_young_regions();
2993 
2994   // We should not be doing initial mark unless the conc mark thread is running
2995   if (!_cm_thread->should_terminate()) {
2996     // This call will decide whether this pause is an initial-mark
2997     // pause. If it is, in_initial_mark_gc() will return true
2998     // for the duration of this pause.
2999     policy()->decide_on_conc_mark_initiation();
3000   }
3001 
3002   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3003   assert(!collector_state()->in_initial_mark_gc() ||
3004          collector_state()->in_young_only_phase(), "sanity");
3005   // We also do not allow mixed GCs during marking.
3006   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
3007 
3008   // Record whether this pause is an initial mark. When the current
3009   // thread has completed its logging output and it's safe to signal
3010   // the CM thread, the flag's value in the policy has been reset.
3011   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3012   if (should_start_conc_mark) {
3013     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3014   }
3015 
3016   // Inner scope for scope based logging, timers, and stats collection
3017   {
3018     G1EvacuationInfo evacuation_info;
3019 
3020     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3021 
3022     GCTraceCPUTime tcpu;
3023 
3024     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3025 
3026     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3027                                                             workers()->active_workers(),
3028                                                             Threads::number_of_non_daemon_threads());
3029     active_workers = workers()->update_active_workers(active_workers);
3030     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3031 
3032     G1MonitoringScope ms(g1mm(),
3033                          false /* full_gc */,
3034                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3035 
3036     G1HeapTransition heap_transition(this);
3037     size_t heap_used_bytes_before_gc = used();
3038 
3039     {
3040       IsGCActiveMark x;
3041 
3042       gc_prologue(false);
3043 
3044       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3045       verify_before_young_collection(verify_type);
3046 
3047       {
3048         // The elapsed time induced by the start time below deliberately elides
3049         // the possible verification above.
3050         double sample_start_time_sec = os::elapsedTime();
3051 
3052         // Please see comment in g1CollectedHeap.hpp and
3053         // G1CollectedHeap::ref_processing_init() to see how
3054         // reference processing currently works in G1.
3055         _ref_processor_stw->enable_discovery();
3056 
3057         // We want to temporarily turn off discovery by the
3058         // CM ref processor, if necessary, and turn it back on
3059         // on again later if we do. Using a scoped
3060         // NoRefDiscovery object will do this.
3061         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3062 
3063         policy()->record_collection_pause_start(sample_start_time_sec);
3064 
3065         // Forget the current allocation region (we might even choose it to be part
3066         // of the collection set!).
3067         _allocator->release_mutator_alloc_regions();
3068 
3069         calculate_collection_set(evacuation_info, target_pause_time_ms);
3070 
3071         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3072         G1ParScanThreadStateSet per_thread_states(this,
3073                                                   &rdcqs,
3074                                                   workers()->active_workers(),
3075                                                   collection_set()->young_region_length(),
3076                                                   collection_set()->optional_region_length());
3077         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3078 
3079         // Actually do the work...
3080         evacuate_initial_collection_set(&per_thread_states);
3081 
3082         if (_collection_set.optional_region_length() != 0) {
3083           evacuate_optional_collection_set(&per_thread_states);
3084         }
3085         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3086 
3087         start_new_collection_set();
3088 
3089         _survivor_evac_stats.adjust_desired_plab_sz();
3090         _old_evac_stats.adjust_desired_plab_sz();
3091 
3092         if (should_start_conc_mark) {
3093           // We have to do this before we notify the CM threads that
3094           // they can start working to make sure that all the
3095           // appropriate initialization is done on the CM object.
3096           concurrent_mark()->post_initial_mark();
3097           // Note that we don't actually trigger the CM thread at
3098           // this point. We do that later when we're sure that
3099           // the current thread has completed its logging output.
3100         }
3101 
3102         allocate_dummy_regions();
3103 
3104         _allocator->init_mutator_alloc_regions();
3105 
3106         expand_heap_after_young_collection();
3107 
3108         double sample_end_time_sec = os::elapsedTime();
3109         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3110         policy()->record_collection_pause_end(pause_time_ms, heap_used_bytes_before_gc);
3111       }
3112 
3113       verify_after_young_collection(verify_type);
3114 
3115 #ifdef TRACESPINNING
3116       ParallelTaskTerminator::print_termination_counts();
3117 #endif
3118 
3119       gc_epilogue(false);
3120     }
3121 
3122     // Print the remainder of the GC log output.
3123     if (evacuation_failed()) {
3124       log_info(gc)("To-space exhausted");
3125     }
3126 
3127     policy()->print_phases();
3128     heap_transition.print();
3129 
3130     _hrm->verify_optional();
3131     _verifier->verify_region_sets_optional();
3132 
3133     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3134     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3135 
3136     print_heap_after_gc();
3137     print_heap_regions();
3138     trace_heap_after_gc(_gc_tracer_stw);
3139 
3140     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3141     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3142     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3143     // before any GC notifications are raised.
3144     g1mm()->update_sizes();
3145 
3146     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3147     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3148     _gc_timer_stw->register_gc_end();
3149     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3150   }
3151   // It should now be safe to tell the concurrent mark thread to start
3152   // without its logging output interfering with the logging output
3153   // that came from the pause.
3154 
3155   if (should_start_conc_mark) {
3156     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3157     // thread(s) could be running concurrently with us. Make sure that anything
3158     // after this point does not assume that we are the only GC thread running.
3159     // Note: of course, the actual marking work will not start until the safepoint
3160     // itself is released in SuspendibleThreadSet::desynchronize().
3161     do_concurrent_mark();
3162   }
3163 
3164   return true;
3165 }
3166 
3167 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3168   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3169   workers()->run_task(&rsfp_task);
3170 }
3171 
3172 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3173   double remove_self_forwards_start = os::elapsedTime();
3174 
3175   remove_self_forwarding_pointers(rdcqs);
3176   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3177   _preserved_marks_set.restore(&task_executor);
3178 
3179   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3180 }
3181 
3182 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3183   if (!_evacuation_failed) {
3184     _evacuation_failed = true;
3185   }
3186 
3187   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3188   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3189 }
3190 
3191 bool G1ParEvacuateFollowersClosure::offer_termination() {
3192   EventGCPhaseParallel event;
3193   G1ParScanThreadState* const pss = par_scan_state();
3194   start_term_time();
3195   const bool res = terminator()->offer_termination();
3196   end_term_time();
3197   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3198   return res;
3199 }
3200 
3201 void G1ParEvacuateFollowersClosure::do_void() {
3202   EventGCPhaseParallel event;
3203   G1ParScanThreadState* const pss = par_scan_state();
3204   pss->trim_queue();
3205   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3206   do {
3207     EventGCPhaseParallel event;
3208     pss->steal_and_trim_queue(queues());
3209     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3210   } while (!offer_termination());
3211 }
3212 
3213 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3214                                         bool class_unloading_occurred) {
3215   uint num_workers = workers()->active_workers();
3216   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3217   workers()->run_task(&unlink_task);
3218 }
3219 
3220 // Clean string dedup data structures.
3221 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3222 // record the durations of the phases. Hence the almost-copy.
3223 class G1StringDedupCleaningTask : public AbstractGangTask {
3224   BoolObjectClosure* _is_alive;
3225   OopClosure* _keep_alive;
3226   G1GCPhaseTimes* _phase_times;
3227 
3228 public:
3229   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3230                             OopClosure* keep_alive,
3231                             G1GCPhaseTimes* phase_times) :
3232     AbstractGangTask("Partial Cleaning Task"),
3233     _is_alive(is_alive),
3234     _keep_alive(keep_alive),
3235     _phase_times(phase_times)
3236   {
3237     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3238     StringDedup::gc_prologue(true);
3239   }
3240 
3241   ~G1StringDedupCleaningTask() {
3242     StringDedup::gc_epilogue();
3243   }
3244 
3245   void work(uint worker_id) {
3246     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3247     {
3248       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3249       StringDedupQueue::unlink_or_oops_do(&cl);
3250     }
3251     {
3252       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3253       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3254     }
3255   }
3256 };
3257 
3258 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3259                                             OopClosure* keep_alive,
3260                                             G1GCPhaseTimes* phase_times) {
3261   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3262   workers()->run_task(&cl);
3263 }
3264 
3265 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3266  private:
3267   G1RedirtyCardsQueueSet* _qset;
3268   G1CollectedHeap* _g1h;
3269   BufferNode* volatile _nodes;
3270 
3271   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3272     size_t buffer_size = _qset->buffer_size();
3273     BufferNode* next = Atomic::load(&_nodes);
3274     while (next != NULL) {
3275       BufferNode* node = next;
3276       next = Atomic::cmpxchg(node->next(), &_nodes, node);
3277       if (next == node) {
3278         cl->apply_to_buffer(node, buffer_size, worker_id);
3279         next = node->next();
3280       }
3281     }
3282   }
3283 
3284  public:
3285   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3286     AbstractGangTask("Redirty Cards"),
3287     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3288 
3289   virtual void work(uint worker_id) {
3290     G1GCPhaseTimes* p = _g1h->phase_times();
3291     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3292 
3293     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3294     par_apply(&cl, worker_id);
3295 
3296     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3297   }
3298 };
3299 
3300 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3301   double redirty_logged_cards_start = os::elapsedTime();
3302 
3303   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3304   workers()->run_task(&redirty_task);
3305 
3306   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3307   dcq.merge_bufferlists(rdcqs);
3308 
3309   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3310 }
3311 
3312 // Weak Reference Processing support
3313 
3314 bool G1STWIsAliveClosure::do_object_b(oop p) {
3315   // An object is reachable if it is outside the collection set,
3316   // or is inside and copied.
3317   return !_g1h->is_in_cset(p) || p->is_forwarded();
3318 }
3319 
3320 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3321   assert(obj != NULL, "must not be NULL");
3322   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3323   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3324   // may falsely indicate that this is not the case here: however the collection set only
3325   // contains old regions when concurrent mark is not running.
3326   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3327 }
3328 
3329 // Non Copying Keep Alive closure
3330 class G1KeepAliveClosure: public OopClosure {
3331   G1CollectedHeap*_g1h;
3332 public:
3333   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3334   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3335   void do_oop(oop* p) {
3336     oop obj = *p;
3337     assert(obj != NULL, "the caller should have filtered out NULL values");
3338 
3339     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3340     if (!region_attr.is_in_cset_or_humongous()) {
3341       return;
3342     }
3343     if (region_attr.is_in_cset()) {
3344       assert( obj->is_forwarded(), "invariant" );
3345       *p = obj->forwardee();
3346     } else {
3347       assert(!obj->is_forwarded(), "invariant" );
3348       assert(region_attr.is_humongous(),
3349              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3350      _g1h->set_humongous_is_live(obj);
3351     }
3352   }
3353 };
3354 
3355 // Copying Keep Alive closure - can be called from both
3356 // serial and parallel code as long as different worker
3357 // threads utilize different G1ParScanThreadState instances
3358 // and different queues.
3359 
3360 class G1CopyingKeepAliveClosure: public OopClosure {
3361   G1CollectedHeap*         _g1h;
3362   G1ParScanThreadState*    _par_scan_state;
3363 
3364 public:
3365   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3366                             G1ParScanThreadState* pss):
3367     _g1h(g1h),
3368     _par_scan_state(pss)
3369   {}
3370 
3371   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3372   virtual void do_oop(      oop* p) { do_oop_work(p); }
3373 
3374   template <class T> void do_oop_work(T* p) {
3375     oop obj = RawAccess<>::oop_load(p);
3376 
3377     if (_g1h->is_in_cset_or_humongous(obj)) {
3378       // If the referent object has been forwarded (either copied
3379       // to a new location or to itself in the event of an
3380       // evacuation failure) then we need to update the reference
3381       // field and, if both reference and referent are in the G1
3382       // heap, update the RSet for the referent.
3383       //
3384       // If the referent has not been forwarded then we have to keep
3385       // it alive by policy. Therefore we have copy the referent.
3386       //
3387       // When the queue is drained (after each phase of reference processing)
3388       // the object and it's followers will be copied, the reference field set
3389       // to point to the new location, and the RSet updated.
3390       _par_scan_state->push_on_queue(p);
3391     }
3392   }
3393 };
3394 
3395 // Serial drain queue closure. Called as the 'complete_gc'
3396 // closure for each discovered list in some of the
3397 // reference processing phases.
3398 
3399 class G1STWDrainQueueClosure: public VoidClosure {
3400 protected:
3401   G1CollectedHeap* _g1h;
3402   G1ParScanThreadState* _par_scan_state;
3403 
3404   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3405 
3406 public:
3407   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3408     _g1h(g1h),
3409     _par_scan_state(pss)
3410   { }
3411 
3412   void do_void() {
3413     G1ParScanThreadState* const pss = par_scan_state();
3414     pss->trim_queue();
3415   }
3416 };
3417 
3418 // Parallel Reference Processing closures
3419 
3420 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3421 // processing during G1 evacuation pauses.
3422 
3423 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3424 private:
3425   G1CollectedHeap*          _g1h;
3426   G1ParScanThreadStateSet*  _pss;
3427   RefToScanQueueSet*        _queues;
3428   WorkGang*                 _workers;
3429 
3430 public:
3431   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3432                            G1ParScanThreadStateSet* per_thread_states,
3433                            WorkGang* workers,
3434                            RefToScanQueueSet *task_queues) :
3435     _g1h(g1h),
3436     _pss(per_thread_states),
3437     _queues(task_queues),
3438     _workers(workers)
3439   {
3440     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3441   }
3442 
3443   // Executes the given task using concurrent marking worker threads.
3444   virtual void execute(ProcessTask& task, uint ergo_workers);
3445 };
3446 
3447 // Gang task for possibly parallel reference processing
3448 
3449 class G1STWRefProcTaskProxy: public AbstractGangTask {
3450   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3451   ProcessTask&     _proc_task;
3452   G1CollectedHeap* _g1h;
3453   G1ParScanThreadStateSet* _pss;
3454   RefToScanQueueSet* _task_queues;
3455   ParallelTaskTerminator* _terminator;
3456 
3457 public:
3458   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3459                         G1CollectedHeap* g1h,
3460                         G1ParScanThreadStateSet* per_thread_states,
3461                         RefToScanQueueSet *task_queues,
3462                         ParallelTaskTerminator* terminator) :
3463     AbstractGangTask("Process reference objects in parallel"),
3464     _proc_task(proc_task),
3465     _g1h(g1h),
3466     _pss(per_thread_states),
3467     _task_queues(task_queues),
3468     _terminator(terminator)
3469   {}
3470 
3471   virtual void work(uint worker_id) {
3472     // The reference processing task executed by a single worker.
3473     ResourceMark rm;
3474     HandleMark   hm;
3475 
3476     G1STWIsAliveClosure is_alive(_g1h);
3477 
3478     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3479     pss->set_ref_discoverer(NULL);
3480 
3481     // Keep alive closure.
3482     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3483 
3484     // Complete GC closure
3485     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3486 
3487     // Call the reference processing task's work routine.
3488     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3489 
3490     // Note we cannot assert that the refs array is empty here as not all
3491     // of the processing tasks (specifically phase2 - pp2_work) execute
3492     // the complete_gc closure (which ordinarily would drain the queue) so
3493     // the queue may not be empty.
3494   }
3495 };
3496 
3497 // Driver routine for parallel reference processing.
3498 // Creates an instance of the ref processing gang
3499 // task and has the worker threads execute it.
3500 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3501   assert(_workers != NULL, "Need parallel worker threads.");
3502 
3503   assert(_workers->active_workers() >= ergo_workers,
3504          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3505          ergo_workers, _workers->active_workers());
3506   TaskTerminator terminator(ergo_workers, _queues);
3507   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, terminator.terminator());
3508 
3509   _workers->run_task(&proc_task_proxy, ergo_workers);
3510 }
3511 
3512 // End of weak reference support closures
3513 
3514 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3515   double ref_proc_start = os::elapsedTime();
3516 
3517   ReferenceProcessor* rp = _ref_processor_stw;
3518   assert(rp->discovery_enabled(), "should have been enabled");
3519 
3520   // Closure to test whether a referent is alive.
3521   G1STWIsAliveClosure is_alive(this);
3522 
3523   // Even when parallel reference processing is enabled, the processing
3524   // of JNI refs is serial and performed serially by the current thread
3525   // rather than by a worker. The following PSS will be used for processing
3526   // JNI refs.
3527 
3528   // Use only a single queue for this PSS.
3529   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3530   pss->set_ref_discoverer(NULL);
3531   assert(pss->queue_is_empty(), "pre-condition");
3532 
3533   // Keep alive closure.
3534   G1CopyingKeepAliveClosure keep_alive(this, pss);
3535 
3536   // Serial Complete GC closure
3537   G1STWDrainQueueClosure drain_queue(this, pss);
3538 
3539   // Setup the soft refs policy...
3540   rp->setup_policy(false);
3541 
3542   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3543 
3544   ReferenceProcessorStats stats;
3545   if (!rp->processing_is_mt()) {
3546     // Serial reference processing...
3547     stats = rp->process_discovered_references(&is_alive,
3548                                               &keep_alive,
3549                                               &drain_queue,
3550                                               NULL,
3551                                               pt);
3552   } else {
3553     uint no_of_gc_workers = workers()->active_workers();
3554 
3555     // Parallel reference processing
3556     assert(no_of_gc_workers <= rp->max_num_queues(),
3557            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3558            no_of_gc_workers,  rp->max_num_queues());
3559 
3560     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3561     stats = rp->process_discovered_references(&is_alive,
3562                                               &keep_alive,
3563                                               &drain_queue,
3564                                               &par_task_executor,
3565                                               pt);
3566   }
3567 
3568   _gc_tracer_stw->report_gc_reference_stats(stats);
3569 
3570   // We have completed copying any necessary live referent objects.
3571   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3572 
3573   make_pending_list_reachable();
3574 
3575   assert(!rp->discovery_enabled(), "Postcondition");
3576   rp->verify_no_references_recorded();
3577 
3578   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3579   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3580 }
3581 
3582 void G1CollectedHeap::make_pending_list_reachable() {
3583   if (collector_state()->in_initial_mark_gc()) {
3584     oop pll_head = Universe::reference_pending_list();
3585     if (pll_head != NULL) {
3586       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3587       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3588     }
3589   }
3590 }
3591 
3592 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3593   double merge_pss_time_start = os::elapsedTime();
3594   per_thread_states->flush();
3595   phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3596 }
3597 
3598 class G1PrepareEvacuationTask : public AbstractGangTask {
3599   class G1PrepareRegionsClosure : public HeapRegionClosure {
3600     G1CollectedHeap* _g1h;
3601     G1PrepareEvacuationTask* _parent_task;
3602     size_t _worker_humongous_total;
3603     size_t _worker_humongous_candidates;
3604 
3605 
3606     bool humongous_region_is_candidate(HeapRegion* region) const {
3607       assert(region->is_starts_humongous(), "Must start a humongous object");
3608 
3609       oop obj = oop(region->bottom());
3610 
3611       // Dead objects cannot be eager reclaim candidates. Due to class
3612       // unloading it is unsafe to query their classes so we return early.
3613       if (_g1h->is_obj_dead(obj, region)) {
3614         return false;
3615       }
3616 
3617       // If we do not have a complete remembered set for the region, then we can
3618       // not be sure that we have all references to it.
3619       if (!region->rem_set()->is_complete()) {
3620         return false;
3621       }
3622       // Candidate selection must satisfy the following constraints
3623       // while concurrent marking is in progress:
3624       //
3625       // * In order to maintain SATB invariants, an object must not be
3626       // reclaimed if it was allocated before the start of marking and
3627       // has not had its references scanned.  Such an object must have
3628       // its references (including type metadata) scanned to ensure no
3629       // live objects are missed by the marking process.  Objects
3630       // allocated after the start of concurrent marking don't need to
3631       // be scanned.
3632       //
3633       // * An object must not be reclaimed if it is on the concurrent
3634       // mark stack.  Objects allocated after the start of concurrent
3635       // marking are never pushed on the mark stack.
3636       //
3637       // Nominating only objects allocated after the start of concurrent
3638       // marking is sufficient to meet both constraints.  This may miss
3639       // some objects that satisfy the constraints, but the marking data
3640       // structures don't support efficiently performing the needed
3641       // additional tests or scrubbing of the mark stack.
3642       //
3643       // However, we presently only nominate is_typeArray() objects.
3644       // A humongous object containing references induces remembered
3645       // set entries on other regions.  In order to reclaim such an
3646       // object, those remembered sets would need to be cleaned up.
3647       //
3648       // We also treat is_typeArray() objects specially, allowing them
3649       // to be reclaimed even if allocated before the start of
3650       // concurrent mark.  For this we rely on mark stack insertion to
3651       // exclude is_typeArray() objects, preventing reclaiming an object
3652       // that is in the mark stack.  We also rely on the metadata for
3653       // such objects to be built-in and so ensured to be kept live.
3654       // Frequent allocation and drop of large binary blobs is an
3655       // important use case for eager reclaim, and this special handling
3656       // may reduce needed headroom.
3657 
3658       return obj->is_typeArray() &&
3659              _g1h->is_potential_eager_reclaim_candidate(region);
3660     }
3661 
3662   public:
3663     G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
3664       _g1h(g1h),
3665       _parent_task(parent_task),
3666       _worker_humongous_total(0),
3667       _worker_humongous_candidates(0) { }
3668 
3669     ~G1PrepareRegionsClosure() {
3670       _parent_task->add_humongous_candidates(_worker_humongous_candidates);
3671       _parent_task->add_humongous_total(_worker_humongous_total);
3672     }
3673 
3674     virtual bool do_heap_region(HeapRegion* hr) {
3675       // First prepare the region for scanning
3676       _g1h->rem_set()->prepare_region_for_scanning(hr);
3677 
3678       // Now check if region is a humongous candidate
3679       if (!hr->is_starts_humongous()) {
3680         _g1h->register_region_with_region_attr(hr);
3681         return false;
3682       }
3683 
3684       uint index = hr->hrm_index();
3685       if (humongous_region_is_candidate(hr)) {
3686         _g1h->set_humongous_reclaim_candidate(index, true);
3687         _g1h->register_humongous_region_with_region_attr(index);
3688         _worker_humongous_candidates++;
3689         // We will later handle the remembered sets of these regions.
3690       } else {
3691         _g1h->set_humongous_reclaim_candidate(index, false);
3692         _g1h->register_region_with_region_attr(hr);
3693       }
3694       _worker_humongous_total++;
3695 
3696       return false;
3697     }
3698 
3699   };
3700 
3701   G1CollectedHeap* _g1h;
3702   HeapRegionClaimer _claimer;
3703   volatile size_t _humongous_total;
3704   volatile size_t _humongous_candidates;
3705 public:
3706   G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
3707     AbstractGangTask("Prepare Evacuation"),
3708     _g1h(g1h),
3709     _claimer(_g1h->workers()->active_workers()),
3710     _humongous_total(0),
3711     _humongous_candidates(0) {
3712 
3713   }
3714 
3715   ~G1PrepareEvacuationTask() {
3716     _g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0);
3717   }
3718 
3719   void work(uint worker_id) {
3720     G1PrepareRegionsClosure cl(_g1h, this);
3721     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
3722   }
3723 
3724   void add_humongous_candidates(size_t candidates) {
3725     Atomic::add(candidates, &_humongous_candidates);
3726   }
3727 
3728   void add_humongous_total(size_t total) {
3729     Atomic::add(total, &_humongous_total);
3730   }
3731 
3732   size_t humongous_candidates() {
3733     return _humongous_candidates;
3734   }
3735 
3736   size_t humongous_total() {
3737     return _humongous_total;
3738   }
3739 };
3740 
3741 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3742   _expand_heap_after_alloc_failure = true;
3743   _evacuation_failed = false;
3744 
3745   // Disable the hot card cache.
3746   _hot_card_cache->reset_hot_cache_claimed_index();
3747   _hot_card_cache->set_use_cache(false);
3748 
3749   // Initialize the GC alloc regions.
3750   _allocator->init_gc_alloc_regions(evacuation_info);
3751 
3752   {
3753     Ticks start = Ticks::now();
3754     rem_set()->prepare_for_scan_heap_roots();
3755     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3756   }
3757 
3758   {
3759     G1PrepareEvacuationTask g1_prep_task(this);
3760     Tickspan task_time = run_task(&g1_prep_task);
3761 
3762     phase_times()->record_register_regions(task_time.seconds() * 1000.0,
3763                                            g1_prep_task.humongous_total(),
3764                                            g1_prep_task.humongous_candidates());
3765   }
3766 
3767   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3768   _preserved_marks_set.assert_empty();
3769 
3770 #if COMPILER2_OR_JVMCI
3771   DerivedPointerTable::clear();
3772 #endif
3773 
3774   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3775   if (collector_state()->in_initial_mark_gc()) {
3776     concurrent_mark()->pre_initial_mark();
3777 
3778     double start_clear_claimed_marks = os::elapsedTime();
3779 
3780     ClassLoaderDataGraph::clear_claimed_marks();
3781 
3782     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3783     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3784   }
3785 
3786   // Should G1EvacuationFailureALot be in effect for this GC?
3787   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3788 }
3789 
3790 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3791 protected:
3792   G1CollectedHeap* _g1h;
3793   G1ParScanThreadStateSet* _per_thread_states;
3794   RefToScanQueueSet* _task_queues;
3795   TaskTerminator _terminator;
3796   uint _num_workers;
3797 
3798   void evacuate_live_objects(G1ParScanThreadState* pss,
3799                              uint worker_id,
3800                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3801                              G1GCPhaseTimes::GCParPhases termination_phase) {
3802     G1GCPhaseTimes* p = _g1h->phase_times();
3803 
3804     Ticks start = Ticks::now();
3805     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, _terminator.terminator(), objcopy_phase);
3806     cl.do_void();
3807 
3808     assert(pss->queue_is_empty(), "should be empty");
3809 
3810     Tickspan evac_time = (Ticks::now() - start);
3811     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3812 
3813     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABWaste);
3814     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_undo_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABUndoWaste);
3815 
3816     if (termination_phase == G1GCPhaseTimes::Termination) {
3817       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3818       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3819     } else {
3820       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3821       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3822     }
3823     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3824   }
3825 
3826   virtual void start_work(uint worker_id) { }
3827 
3828   virtual void end_work(uint worker_id) { }
3829 
3830   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3831 
3832   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3833 
3834 public:
3835   G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) :
3836     AbstractGangTask(name),
3837     _g1h(G1CollectedHeap::heap()),
3838     _per_thread_states(per_thread_states),
3839     _task_queues(task_queues),
3840     _terminator(num_workers, _task_queues),
3841     _num_workers(num_workers)
3842   { }
3843 
3844   void work(uint worker_id) {
3845     start_work(worker_id);
3846 
3847     {
3848       ResourceMark rm;
3849       HandleMark   hm;
3850 
3851       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3852       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3853 
3854       scan_roots(pss, worker_id);
3855       evacuate_live_objects(pss, worker_id);
3856     }
3857 
3858     end_work(worker_id);
3859   }
3860 };
3861 
3862 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3863   G1RootProcessor* _root_processor;
3864 
3865   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3866     _root_processor->evacuate_roots(pss, worker_id);
3867     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3868     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3869   }
3870 
3871   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3872     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3873   }
3874 
3875   void start_work(uint worker_id) {
3876     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3877   }
3878 
3879   void end_work(uint worker_id) {
3880     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3881   }
3882 
3883 public:
3884   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3885                         G1ParScanThreadStateSet* per_thread_states,
3886                         RefToScanQueueSet* task_queues,
3887                         G1RootProcessor* root_processor,
3888                         uint num_workers) :
3889     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3890     _root_processor(root_processor)
3891   { }
3892 };
3893 
3894 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3895   G1GCPhaseTimes* p = phase_times();
3896 
3897   {
3898     Ticks start = Ticks::now();
3899     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3900     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3901   }
3902 
3903   Tickspan task_time;
3904   const uint num_workers = workers()->active_workers();
3905 
3906   Ticks start_processing = Ticks::now();
3907   {
3908     G1RootProcessor root_processor(this, num_workers);
3909     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3910     task_time = run_task(&g1_par_task);
3911     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3912     // To extract its code root fixup time we measure total time of this scope and
3913     // subtract from the time the WorkGang task took.
3914   }
3915   Tickspan total_processing = Ticks::now() - start_processing;
3916 
3917   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3918   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3919 }
3920 
3921 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3922 
3923   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3924     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3925     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3926   }
3927 
3928   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3929     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3930   }
3931 
3932 public:
3933   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3934                                 RefToScanQueueSet* queues,
3935                                 uint num_workers) :
3936     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3937   }
3938 };
3939 
3940 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3941   class G1MarkScope : public MarkScope { };
3942 
3943   Tickspan task_time;
3944 
3945   Ticks start_processing = Ticks::now();
3946   {
3947     G1MarkScope code_mark_scope;
3948     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3949     task_time = run_task(&task);
3950     // See comment in evacuate_collection_set() for the reason of the scope.
3951   }
3952   Tickspan total_processing = Ticks::now() - start_processing;
3953 
3954   G1GCPhaseTimes* p = phase_times();
3955   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3956 }
3957 
3958 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3959   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3960 
3961   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3962 
3963     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3964     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3965 
3966     if (time_left_ms < 0 ||
3967         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3968       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3969                                 _collection_set.optional_region_length(), time_left_ms);
3970       break;
3971     }
3972 
3973     {
3974       Ticks start = Ticks::now();
3975       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3976       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3977     }
3978 
3979     {
3980       Ticks start = Ticks::now();
3981       evacuate_next_optional_regions(per_thread_states);
3982       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3983     }
3984   }
3985 
3986   _collection_set.abandon_optional_collection_set(per_thread_states);
3987 }
3988 
3989 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
3990                                                    G1RedirtyCardsQueueSet* rdcqs,
3991                                                    G1ParScanThreadStateSet* per_thread_states) {
3992   rem_set()->cleanup_after_scan_heap_roots();
3993 
3994   // Process any discovered reference objects - we have
3995   // to do this _before_ we retire the GC alloc regions
3996   // as we may have to copy some 'reachable' referent
3997   // objects (and their reachable sub-graphs) that were
3998   // not copied during the pause.
3999   process_discovered_references(per_thread_states);
4000 
4001   G1STWIsAliveClosure is_alive(this);
4002   G1KeepAliveClosure keep_alive(this);
4003 
4004   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
4005                               phase_times()->weak_phase_times());
4006 
4007   if (G1StringDedup::is_enabled()) {
4008     double string_dedup_time_ms = os::elapsedTime();
4009 
4010     string_dedup_cleaning(&is_alive, &keep_alive, phase_times());
4011 
4012     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
4013     phase_times()->record_string_deduplication_time(string_cleanup_time_ms);
4014   }
4015 
4016   _allocator->release_gc_alloc_regions(evacuation_info);
4017 
4018   if (evacuation_failed()) {
4019     restore_after_evac_failure(rdcqs);
4020 
4021     // Reset the G1EvacuationFailureALot counters and flags
4022     NOT_PRODUCT(reset_evacuation_should_fail();)
4023 
4024     double recalculate_used_start = os::elapsedTime();
4025     set_used(recalculate_used());
4026     phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
4027 
4028     if (_archive_allocator != NULL) {
4029       _archive_allocator->clear_used();
4030     }
4031     for (uint i = 0; i < ParallelGCThreads; i++) {
4032       if (_evacuation_failed_info_array[i].has_failed()) {
4033         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4034       }
4035     }
4036   } else {
4037     // The "used" of the the collection set have already been subtracted
4038     // when they were freed.  Add in the bytes evacuated.
4039     increase_used(policy()->bytes_copied_during_gc());
4040   }
4041 
4042   _preserved_marks_set.assert_empty();
4043 
4044   merge_per_thread_state_info(per_thread_states);
4045 
4046   // Reset and re-enable the hot card cache.
4047   // Note the counts for the cards in the regions in the
4048   // collection set are reset when the collection set is freed.
4049   _hot_card_cache->reset_hot_cache();
4050   _hot_card_cache->set_use_cache(true);
4051 
4052   purge_code_root_memory();
4053 
4054   redirty_logged_cards(rdcqs);
4055 
4056   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
4057 
4058   eagerly_reclaim_humongous_regions();
4059 
4060   record_obj_copy_mem_stats();
4061 
4062   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
4063   evacuation_info.set_bytes_copied(policy()->bytes_copied_during_gc());
4064 
4065 #if COMPILER2_OR_JVMCI
4066   double start = os::elapsedTime();
4067   DerivedPointerTable::update_pointers();
4068   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4069 #endif
4070   policy()->print_age_table();
4071 }
4072 
4073 void G1CollectedHeap::record_obj_copy_mem_stats() {
4074   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4075 
4076   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4077                                                create_g1_evac_summary(&_old_evac_stats));
4078 }
4079 
4080 void G1CollectedHeap::free_region(HeapRegion* hr,
4081                                   FreeRegionList* free_list,
4082                                   bool skip_remset,
4083                                   bool skip_hot_card_cache,
4084                                   bool locked) {
4085   assert(!hr->is_free(), "the region should not be free");
4086   assert(!hr->is_empty(), "the region should not be empty");
4087   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
4088   assert(free_list != NULL, "pre-condition");
4089 
4090   if (G1VerifyBitmaps) {
4091     MemRegion mr(hr->bottom(), hr->end());
4092     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4093   }
4094 
4095   // Clear the card counts for this region.
4096   // Note: we only need to do this if the region is not young
4097   // (since we don't refine cards in young regions).
4098   if (!skip_hot_card_cache && !hr->is_young()) {
4099     _hot_card_cache->reset_card_counts(hr);
4100   }
4101   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4102   _policy->remset_tracker()->update_at_free(hr);
4103   free_list->add_ordered(hr);
4104 }
4105 
4106 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4107                                             FreeRegionList* free_list) {
4108   assert(hr->is_humongous(), "this is only for humongous regions");
4109   assert(free_list != NULL, "pre-condition");
4110   hr->clear_humongous();
4111   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4112 }
4113 
4114 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4115                                            const uint humongous_regions_removed) {
4116   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4117     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4118     _old_set.bulk_remove(old_regions_removed);
4119     _humongous_set.bulk_remove(humongous_regions_removed);
4120   }
4121 
4122 }
4123 
4124 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4125   assert(list != NULL, "list can't be null");
4126   if (!list->is_empty()) {
4127     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4128     _hrm->insert_list_into_free_list(list);
4129   }
4130 }
4131 
4132 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4133   decrease_used(bytes);
4134 }
4135 
4136 class G1FreeCollectionSetTask : public AbstractGangTask {
4137 private:
4138 
4139   // Closure applied to all regions in the collection set to do work that needs to
4140   // be done serially in a single thread.
4141   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4142   private:
4143     G1EvacuationInfo* _evacuation_info;
4144     const size_t* _surviving_young_words;
4145 
4146     // Bytes used in successfully evacuated regions before the evacuation.
4147     size_t _before_used_bytes;
4148     // Bytes used in unsucessfully evacuated regions before the evacuation
4149     size_t _after_used_bytes;
4150 
4151     size_t _bytes_allocated_in_old_since_last_gc;
4152 
4153     size_t _failure_used_words;
4154     size_t _failure_waste_words;
4155 
4156     FreeRegionList _local_free_list;
4157   public:
4158     G1SerialFreeCollectionSetClosure(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4159       HeapRegionClosure(),
4160       _evacuation_info(evacuation_info),
4161       _surviving_young_words(surviving_young_words),
4162       _before_used_bytes(0),
4163       _after_used_bytes(0),
4164       _bytes_allocated_in_old_since_last_gc(0),
4165       _failure_used_words(0),
4166       _failure_waste_words(0),
4167       _local_free_list("Local Region List for CSet Freeing") {
4168     }
4169 
4170     virtual bool do_heap_region(HeapRegion* r) {
4171       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4172 
4173       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4174       g1h->clear_region_attr(r);
4175 
4176       if (r->is_young()) {
4177         assert(r->young_index_in_cset() != 0 && (uint)r->young_index_in_cset() <= g1h->collection_set()->young_region_length(),
4178                "Young index %u is wrong for region %u of type %s with %u young regions",
4179                r->young_index_in_cset(),
4180                r->hrm_index(),
4181                r->get_type_str(),
4182                g1h->collection_set()->young_region_length());
4183         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4184         r->record_surv_words_in_group(words_survived);
4185       }
4186 
4187       if (!r->evacuation_failed()) {
4188         assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4189         _before_used_bytes += r->used();
4190         g1h->free_region(r,
4191                          &_local_free_list,
4192                          true, /* skip_remset */
4193                          true, /* skip_hot_card_cache */
4194                          true  /* locked */);
4195       } else {
4196         r->uninstall_surv_rate_group();
4197         r->clear_young_index_in_cset();
4198         r->set_evacuation_failed(false);
4199         // When moving a young gen region to old gen, we "allocate" that whole region
4200         // there. This is in addition to any already evacuated objects. Notify the
4201         // policy about that.
4202         // Old gen regions do not cause an additional allocation: both the objects
4203         // still in the region and the ones already moved are accounted for elsewhere.
4204         if (r->is_young()) {
4205           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4206         }
4207         // The region is now considered to be old.
4208         r->set_old();
4209         // Do some allocation statistics accounting. Regions that failed evacuation
4210         // are always made old, so there is no need to update anything in the young
4211         // gen statistics, but we need to update old gen statistics.
4212         size_t used_words = r->marked_bytes() / HeapWordSize;
4213 
4214         _failure_used_words += used_words;
4215         _failure_waste_words += HeapRegion::GrainWords - used_words;
4216 
4217         g1h->old_set_add(r);
4218         _after_used_bytes += r->used();
4219       }
4220       return false;
4221     }
4222 
4223     void complete_work() {
4224       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4225 
4226       _evacuation_info->set_regions_freed(_local_free_list.length());
4227       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4228 
4229       g1h->prepend_to_freelist(&_local_free_list);
4230       g1h->decrement_summary_bytes(_before_used_bytes);
4231 
4232       G1Policy* policy = g1h->policy();
4233       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4234 
4235       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4236     }
4237   };
4238 
4239   G1CollectionSet* _collection_set;
4240   G1SerialFreeCollectionSetClosure _cl;
4241   const size_t* _surviving_young_words;
4242 
4243   size_t _rs_length;
4244 
4245   volatile jint _serial_work_claim;
4246 
4247   struct WorkItem {
4248     uint region_idx;
4249     bool is_young;
4250     bool evacuation_failed;
4251 
4252     WorkItem(HeapRegion* r) {
4253       region_idx = r->hrm_index();
4254       is_young = r->is_young();
4255       evacuation_failed = r->evacuation_failed();
4256     }
4257   };
4258 
4259   volatile size_t _parallel_work_claim;
4260   size_t _num_work_items;
4261   WorkItem* _work_items;
4262 
4263   void do_serial_work() {
4264     // Need to grab the lock to be allowed to modify the old region list.
4265     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4266     _collection_set->iterate(&_cl);
4267   }
4268 
4269   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4270     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4271 
4272     HeapRegion* r = g1h->region_at(region_idx);
4273     assert(!g1h->is_on_master_free_list(r), "sanity");
4274 
4275     Atomic::add(r->rem_set()->occupied_locked(), &_rs_length);
4276 
4277     if (!is_young) {
4278       g1h->hot_card_cache()->reset_card_counts(r);
4279     }
4280 
4281     if (!evacuation_failed) {
4282       r->rem_set()->clear_locked();
4283     }
4284   }
4285 
4286   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4287   private:
4288     size_t _cur_idx;
4289     WorkItem* _work_items;
4290   public:
4291     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4292 
4293     virtual bool do_heap_region(HeapRegion* r) {
4294       _work_items[_cur_idx++] = WorkItem(r);
4295       return false;
4296     }
4297   };
4298 
4299   void prepare_work() {
4300     G1PrepareFreeCollectionSetClosure cl(_work_items);
4301     _collection_set->iterate(&cl);
4302   }
4303 
4304   void complete_work() {
4305     _cl.complete_work();
4306 
4307     G1Policy* policy = G1CollectedHeap::heap()->policy();
4308     policy->record_rs_length(_rs_length);
4309     policy->cset_regions_freed();
4310   }
4311 public:
4312   G1FreeCollectionSetTask(G1CollectionSet* collection_set, G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4313     AbstractGangTask("G1 Free Collection Set"),
4314     _collection_set(collection_set),
4315     _cl(evacuation_info, surviving_young_words),
4316     _surviving_young_words(surviving_young_words),
4317     _rs_length(0),
4318     _serial_work_claim(0),
4319     _parallel_work_claim(0),
4320     _num_work_items(collection_set->region_length()),
4321     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4322     prepare_work();
4323   }
4324 
4325   ~G1FreeCollectionSetTask() {
4326     complete_work();
4327     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4328   }
4329 
4330   // Chunk size for work distribution. The chosen value has been determined experimentally
4331   // to be a good tradeoff between overhead and achievable parallelism.
4332   static uint chunk_size() { return 32; }
4333 
4334   virtual void work(uint worker_id) {
4335     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->phase_times();
4336 
4337     // Claim serial work.
4338     if (_serial_work_claim == 0) {
4339       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4340       if (value == 0) {
4341         double serial_time = os::elapsedTime();
4342         do_serial_work();
4343         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4344       }
4345     }
4346 
4347     // Start parallel work.
4348     double young_time = 0.0;
4349     bool has_young_time = false;
4350     double non_young_time = 0.0;
4351     bool has_non_young_time = false;
4352 
4353     while (true) {
4354       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4355       size_t cur = end - chunk_size();
4356 
4357       if (cur >= _num_work_items) {
4358         break;
4359       }
4360 
4361       EventGCPhaseParallel event;
4362       double start_time = os::elapsedTime();
4363 
4364       end = MIN2(end, _num_work_items);
4365 
4366       for (; cur < end; cur++) {
4367         bool is_young = _work_items[cur].is_young;
4368 
4369         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4370 
4371         double end_time = os::elapsedTime();
4372         double time_taken = end_time - start_time;
4373         if (is_young) {
4374           young_time += time_taken;
4375           has_young_time = true;
4376           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4377         } else {
4378           non_young_time += time_taken;
4379           has_non_young_time = true;
4380           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4381         }
4382         start_time = end_time;
4383       }
4384     }
4385 
4386     if (has_young_time) {
4387       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4388     }
4389     if (has_non_young_time) {
4390       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4391     }
4392   }
4393 };
4394 
4395 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4396   _eden.clear();
4397 
4398   double free_cset_start_time = os::elapsedTime();
4399 
4400   {
4401     uint const num_regions = _collection_set.region_length();
4402     uint const num_chunks = MAX2(num_regions / G1FreeCollectionSetTask::chunk_size(), 1U);
4403     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4404 
4405     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4406 
4407     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4408                         cl.name(), num_workers, num_regions);
4409     workers()->run_task(&cl, num_workers);
4410   }
4411   phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4412 
4413   collection_set->clear();
4414 }
4415 
4416 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4417  private:
4418   FreeRegionList* _free_region_list;
4419   HeapRegionSet* _proxy_set;
4420   uint _humongous_objects_reclaimed;
4421   uint _humongous_regions_reclaimed;
4422   size_t _freed_bytes;
4423  public:
4424 
4425   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4426     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4427   }
4428 
4429   virtual bool do_heap_region(HeapRegion* r) {
4430     if (!r->is_starts_humongous()) {
4431       return false;
4432     }
4433 
4434     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4435 
4436     oop obj = (oop)r->bottom();
4437     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4438 
4439     // The following checks whether the humongous object is live are sufficient.
4440     // The main additional check (in addition to having a reference from the roots
4441     // or the young gen) is whether the humongous object has a remembered set entry.
4442     //
4443     // A humongous object cannot be live if there is no remembered set for it
4444     // because:
4445     // - there can be no references from within humongous starts regions referencing
4446     // the object because we never allocate other objects into them.
4447     // (I.e. there are no intra-region references that may be missed by the
4448     // remembered set)
4449     // - as soon there is a remembered set entry to the humongous starts region
4450     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4451     // until the end of a concurrent mark.
4452     //
4453     // It is not required to check whether the object has been found dead by marking
4454     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4455     // all objects allocated during that time are considered live.
4456     // SATB marking is even more conservative than the remembered set.
4457     // So if at this point in the collection there is no remembered set entry,
4458     // nobody has a reference to it.
4459     // At the start of collection we flush all refinement logs, and remembered sets
4460     // are completely up-to-date wrt to references to the humongous object.
4461     //
4462     // Other implementation considerations:
4463     // - never consider object arrays at this time because they would pose
4464     // considerable effort for cleaning up the the remembered sets. This is
4465     // required because stale remembered sets might reference locations that
4466     // are currently allocated into.
4467     uint region_idx = r->hrm_index();
4468     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4469         !r->rem_set()->is_empty()) {
4470       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4471                                region_idx,
4472                                (size_t)obj->size() * HeapWordSize,
4473                                p2i(r->bottom()),
4474                                r->rem_set()->occupied(),
4475                                r->rem_set()->strong_code_roots_list_length(),
4476                                next_bitmap->is_marked(r->bottom()),
4477                                g1h->is_humongous_reclaim_candidate(region_idx),
4478                                obj->is_typeArray()
4479                               );
4480       return false;
4481     }
4482 
4483     guarantee(obj->is_typeArray(),
4484               "Only eagerly reclaiming type arrays is supported, but the object "
4485               PTR_FORMAT " is not.", p2i(r->bottom()));
4486 
4487     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4488                              region_idx,
4489                              (size_t)obj->size() * HeapWordSize,
4490                              p2i(r->bottom()),
4491                              r->rem_set()->occupied(),
4492                              r->rem_set()->strong_code_roots_list_length(),
4493                              next_bitmap->is_marked(r->bottom()),
4494                              g1h->is_humongous_reclaim_candidate(region_idx),
4495                              obj->is_typeArray()
4496                             );
4497 
4498     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4499     cm->humongous_object_eagerly_reclaimed(r);
4500     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4501            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4502            region_idx,
4503            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4504            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4505     _humongous_objects_reclaimed++;
4506     do {
4507       HeapRegion* next = g1h->next_region_in_humongous(r);
4508       _freed_bytes += r->used();
4509       r->set_containing_set(NULL);
4510       _humongous_regions_reclaimed++;
4511       g1h->free_humongous_region(r, _free_region_list);
4512       r = next;
4513     } while (r != NULL);
4514 
4515     return false;
4516   }
4517 
4518   uint humongous_objects_reclaimed() {
4519     return _humongous_objects_reclaimed;
4520   }
4521 
4522   uint humongous_regions_reclaimed() {
4523     return _humongous_regions_reclaimed;
4524   }
4525 
4526   size_t bytes_freed() const {
4527     return _freed_bytes;
4528   }
4529 };
4530 
4531 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4532   assert_at_safepoint_on_vm_thread();
4533 
4534   if (!G1EagerReclaimHumongousObjects ||
4535       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4536     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4537     return;
4538   }
4539 
4540   double start_time = os::elapsedTime();
4541 
4542   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4543 
4544   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4545   heap_region_iterate(&cl);
4546 
4547   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4548 
4549   G1HRPrinter* hrp = hr_printer();
4550   if (hrp->is_active()) {
4551     FreeRegionListIterator iter(&local_cleanup_list);
4552     while (iter.more_available()) {
4553       HeapRegion* hr = iter.get_next();
4554       hrp->cleanup(hr);
4555     }
4556   }
4557 
4558   prepend_to_freelist(&local_cleanup_list);
4559   decrement_summary_bytes(cl.bytes_freed());
4560 
4561   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4562                                                        cl.humongous_objects_reclaimed());
4563 }
4564 
4565 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4566 public:
4567   virtual bool do_heap_region(HeapRegion* r) {
4568     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4569     G1CollectedHeap::heap()->clear_region_attr(r);
4570     r->clear_young_index_in_cset();
4571     return false;
4572   }
4573 };
4574 
4575 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4576   G1AbandonCollectionSetClosure cl;
4577   collection_set_iterate_all(&cl);
4578 
4579   collection_set->clear();
4580   collection_set->stop_incremental_building();
4581 }
4582 
4583 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4584   return _allocator->is_retained_old_region(hr);
4585 }
4586 
4587 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4588   _eden.add(hr);
4589   _policy->set_region_eden(hr);
4590 }
4591 
4592 #ifdef ASSERT
4593 
4594 class NoYoungRegionsClosure: public HeapRegionClosure {
4595 private:
4596   bool _success;
4597 public:
4598   NoYoungRegionsClosure() : _success(true) { }
4599   bool do_heap_region(HeapRegion* r) {
4600     if (r->is_young()) {
4601       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4602                             p2i(r->bottom()), p2i(r->end()));
4603       _success = false;
4604     }
4605     return false;
4606   }
4607   bool success() { return _success; }
4608 };
4609 
4610 bool G1CollectedHeap::check_young_list_empty() {
4611   bool ret = (young_regions_count() == 0);
4612 
4613   NoYoungRegionsClosure closure;
4614   heap_region_iterate(&closure);
4615   ret = ret && closure.success();
4616 
4617   return ret;
4618 }
4619 
4620 #endif // ASSERT
4621 
4622 class TearDownRegionSetsClosure : public HeapRegionClosure {
4623   HeapRegionSet *_old_set;
4624 
4625 public:
4626   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4627 
4628   bool do_heap_region(HeapRegion* r) {
4629     if (r->is_old()) {
4630       _old_set->remove(r);
4631     } else if(r->is_young()) {
4632       r->uninstall_surv_rate_group();
4633     } else {
4634       // We ignore free regions, we'll empty the free list afterwards.
4635       // We ignore humongous and archive regions, we're not tearing down these
4636       // sets.
4637       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4638              "it cannot be another type");
4639     }
4640     return false;
4641   }
4642 
4643   ~TearDownRegionSetsClosure() {
4644     assert(_old_set->is_empty(), "post-condition");
4645   }
4646 };
4647 
4648 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4649   assert_at_safepoint_on_vm_thread();
4650 
4651   if (!free_list_only) {
4652     TearDownRegionSetsClosure cl(&_old_set);
4653     heap_region_iterate(&cl);
4654 
4655     // Note that emptying the _young_list is postponed and instead done as
4656     // the first step when rebuilding the regions sets again. The reason for
4657     // this is that during a full GC string deduplication needs to know if
4658     // a collected region was young or old when the full GC was initiated.
4659   }
4660   _hrm->remove_all_free_regions();
4661 }
4662 
4663 void G1CollectedHeap::increase_used(size_t bytes) {
4664   _summary_bytes_used += bytes;
4665 }
4666 
4667 void G1CollectedHeap::decrease_used(size_t bytes) {
4668   assert(_summary_bytes_used >= bytes,
4669          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4670          _summary_bytes_used, bytes);
4671   _summary_bytes_used -= bytes;
4672 }
4673 
4674 void G1CollectedHeap::set_used(size_t bytes) {
4675   _summary_bytes_used = bytes;
4676 }
4677 
4678 class RebuildRegionSetsClosure : public HeapRegionClosure {
4679 private:
4680   bool _free_list_only;
4681 
4682   HeapRegionSet* _old_set;
4683   HeapRegionManager* _hrm;
4684 
4685   size_t _total_used;
4686 
4687 public:
4688   RebuildRegionSetsClosure(bool free_list_only,
4689                            HeapRegionSet* old_set,
4690                            HeapRegionManager* hrm) :
4691     _free_list_only(free_list_only),
4692     _old_set(old_set), _hrm(hrm), _total_used(0) {
4693     assert(_hrm->num_free_regions() == 0, "pre-condition");
4694     if (!free_list_only) {
4695       assert(_old_set->is_empty(), "pre-condition");
4696     }
4697   }
4698 
4699   bool do_heap_region(HeapRegion* r) {
4700     if (r->is_empty()) {
4701       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4702       // Add free regions to the free list
4703       r->set_free();
4704       _hrm->insert_into_free_list(r);
4705     } else if (!_free_list_only) {
4706       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4707 
4708       if (r->is_archive() || r->is_humongous()) {
4709         // We ignore archive and humongous regions. We left these sets unchanged.
4710       } else {
4711         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4712         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4713         r->move_to_old();
4714         _old_set->add(r);
4715       }
4716       _total_used += r->used();
4717     }
4718 
4719     return false;
4720   }
4721 
4722   size_t total_used() {
4723     return _total_used;
4724   }
4725 };
4726 
4727 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4728   assert_at_safepoint_on_vm_thread();
4729 
4730   if (!free_list_only) {
4731     _eden.clear();
4732     _survivor.clear();
4733   }
4734 
4735   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4736   heap_region_iterate(&cl);
4737 
4738   if (!free_list_only) {
4739     set_used(cl.total_used());
4740     if (_archive_allocator != NULL) {
4741       _archive_allocator->clear_used();
4742     }
4743   }
4744   assert_used_and_recalculate_used_equal(this);
4745 }
4746 
4747 // Methods for the mutator alloc region
4748 
4749 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4750                                                       bool force,
4751                                                       uint node_index) {
4752   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4753   bool should_allocate = policy()->should_allocate_mutator_region();
4754   if (force || should_allocate) {
4755     HeapRegion* new_alloc_region = new_region(word_size,
4756                                               HeapRegionType::Eden,
4757                                               false /* do_expand */,
4758                                               node_index);
4759     if (new_alloc_region != NULL) {
4760       set_region_short_lived_locked(new_alloc_region);
4761       _hr_printer.alloc(new_alloc_region, !should_allocate);
4762       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4763       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4764       return new_alloc_region;
4765     }
4766   }
4767   return NULL;
4768 }
4769 
4770 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4771                                                   size_t allocated_bytes) {
4772   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4773   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4774 
4775   collection_set()->add_eden_region(alloc_region);
4776   increase_used(allocated_bytes);
4777   _eden.add_used_bytes(allocated_bytes);
4778   _hr_printer.retire(alloc_region);
4779 
4780   // We update the eden sizes here, when the region is retired,
4781   // instead of when it's allocated, since this is the point that its
4782   // used space has been recorded in _summary_bytes_used.
4783   g1mm()->update_eden_size();
4784 }
4785 
4786 // Methods for the GC alloc regions
4787 
4788 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4789   if (dest.is_old()) {
4790     return true;
4791   } else {
4792     return survivor_regions_count() < policy()->max_survivor_regions();
4793   }
4794 }
4795 
4796 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4797   assert(FreeList_lock->owned_by_self(), "pre-condition");
4798 
4799   if (!has_more_regions(dest)) {
4800     return NULL;
4801   }
4802 
4803   HeapRegionType type;
4804   if (dest.is_young()) {
4805     type = HeapRegionType::Survivor;
4806   } else {
4807     type = HeapRegionType::Old;
4808   }
4809 
4810   HeapRegion* new_alloc_region = new_region(word_size,
4811                                             type,
4812                                             true /* do_expand */,
4813                                             node_index);
4814 
4815   if (new_alloc_region != NULL) {
4816     if (type.is_survivor()) {
4817       new_alloc_region->set_survivor();
4818       _survivor.add(new_alloc_region);
4819       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4820     } else {
4821       new_alloc_region->set_old();
4822       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4823     }
4824     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4825     register_region_with_region_attr(new_alloc_region);
4826     _hr_printer.alloc(new_alloc_region);
4827     return new_alloc_region;
4828   }
4829   return NULL;
4830 }
4831 
4832 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4833                                              size_t allocated_bytes,
4834                                              G1HeapRegionAttr dest) {
4835   policy()->record_bytes_copied_during_gc(allocated_bytes);
4836   if (dest.is_old()) {
4837     old_set_add(alloc_region);
4838   } else {
4839     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4840     _survivor.add_used_bytes(allocated_bytes);
4841   }
4842 
4843   bool const during_im = collector_state()->in_initial_mark_gc();
4844   if (during_im && allocated_bytes > 0) {
4845     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4846   }
4847   _hr_printer.retire(alloc_region);
4848 }
4849 
4850 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4851   bool expanded = false;
4852   uint index = _hrm->find_highest_free(&expanded);
4853 
4854   if (index != G1_NO_HRM_INDEX) {
4855     if (expanded) {
4856       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4857                                 HeapRegion::GrainWords * HeapWordSize);
4858     }
4859     _hrm->allocate_free_regions_starting_at(index, 1);
4860     return region_at(index);
4861   }
4862   return NULL;
4863 }
4864 
4865 // Optimized nmethod scanning
4866 
4867 class RegisterNMethodOopClosure: public OopClosure {
4868   G1CollectedHeap* _g1h;
4869   nmethod* _nm;
4870 
4871   template <class T> void do_oop_work(T* p) {
4872     T heap_oop = RawAccess<>::oop_load(p);
4873     if (!CompressedOops::is_null(heap_oop)) {
4874       oop obj = CompressedOops::decode_not_null(heap_oop);
4875       HeapRegion* hr = _g1h->heap_region_containing(obj);
4876       assert(!hr->is_continues_humongous(),
4877              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4878              " starting at " HR_FORMAT,
4879              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4880 
4881       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4882       hr->add_strong_code_root_locked(_nm);
4883     }
4884   }
4885 
4886 public:
4887   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4888     _g1h(g1h), _nm(nm) {}
4889 
4890   void do_oop(oop* p)       { do_oop_work(p); }
4891   void do_oop(narrowOop* p) { do_oop_work(p); }
4892 };
4893 
4894 class UnregisterNMethodOopClosure: public OopClosure {
4895   G1CollectedHeap* _g1h;
4896   nmethod* _nm;
4897 
4898   template <class T> void do_oop_work(T* p) {
4899     T heap_oop = RawAccess<>::oop_load(p);
4900     if (!CompressedOops::is_null(heap_oop)) {
4901       oop obj = CompressedOops::decode_not_null(heap_oop);
4902       HeapRegion* hr = _g1h->heap_region_containing(obj);
4903       assert(!hr->is_continues_humongous(),
4904              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4905              " starting at " HR_FORMAT,
4906              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4907 
4908       hr->remove_strong_code_root(_nm);
4909     }
4910   }
4911 
4912 public:
4913   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4914     _g1h(g1h), _nm(nm) {}
4915 
4916   void do_oop(oop* p)       { do_oop_work(p); }
4917   void do_oop(narrowOop* p) { do_oop_work(p); }
4918 };
4919 
4920 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4921   guarantee(nm != NULL, "sanity");
4922   RegisterNMethodOopClosure reg_cl(this, nm);
4923   nm->oops_do(&reg_cl);
4924 }
4925 
4926 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4927   guarantee(nm != NULL, "sanity");
4928   UnregisterNMethodOopClosure reg_cl(this, nm);
4929   nm->oops_do(&reg_cl, true);
4930 }
4931 
4932 void G1CollectedHeap::purge_code_root_memory() {
4933   double purge_start = os::elapsedTime();
4934   G1CodeRootSet::purge();
4935   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4936   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4937 }
4938 
4939 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4940   G1CollectedHeap* _g1h;
4941 
4942 public:
4943   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4944     _g1h(g1h) {}
4945 
4946   void do_code_blob(CodeBlob* cb) {
4947     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4948     if (nm == NULL) {
4949       return;
4950     }
4951 
4952     _g1h->register_nmethod(nm);
4953   }
4954 };
4955 
4956 void G1CollectedHeap::rebuild_strong_code_roots() {
4957   RebuildStrongCodeRootClosure blob_cl(this);
4958   CodeCache::blobs_do(&blob_cl);
4959 }
4960 
4961 void G1CollectedHeap::initialize_serviceability() {
4962   _g1mm->initialize_serviceability();
4963 }
4964 
4965 MemoryUsage G1CollectedHeap::memory_usage() {
4966   return _g1mm->memory_usage();
4967 }
4968 
4969 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4970   return _g1mm->memory_managers();
4971 }
4972 
4973 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4974   return _g1mm->memory_pools();
4975 }