1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1BarrierSet.hpp"
  27 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc/g1/g1CardTable.inline.hpp"
  29 #include "gc/g1/g1CardTableEntryClosure.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1ConcurrentRefine.hpp"
  32 #include "gc/g1/g1DirtyCardQueue.hpp"
  33 #include "gc/g1/g1FromCardCache.hpp"
  34 #include "gc/g1/g1GCPhaseTimes.hpp"
  35 #include "gc/g1/g1HotCardCache.hpp"
  36 #include "gc/g1/g1OopClosures.inline.hpp"
  37 #include "gc/g1/g1RootClosures.hpp"
  38 #include "gc/g1/g1RemSet.hpp"
  39 #include "gc/g1/g1SharedDirtyCardQueue.hpp"
  40 #include "gc/g1/heapRegion.inline.hpp"
  41 #include "gc/g1/heapRegionManager.inline.hpp"
  42 #include "gc/g1/heapRegionRemSet.inline.hpp"
  43 #include "gc/g1/sparsePRT.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/ptrQueue.hpp"
  46 #include "gc/shared/suspendibleThreadSet.hpp"
  47 #include "jfr/jfrEvents.hpp"
  48 #include "memory/iterator.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "oops/access.inline.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "runtime/os.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/globalDefinitions.hpp"
  55 #include "utilities/stack.inline.hpp"
  56 #include "utilities/ticks.hpp"
  57 
  58 // Collects information about the overall heap root scan progress during an evacuation.
  59 //
  60 // Scanning the remembered sets works by first merging all sources of cards to be
  61 // scanned (log buffers, hcc, remembered sets) into a single data structure to remove
  62 // duplicates and simplify work distribution.
  63 //
  64 // During the following card scanning we not only scan this combined set of cards, but
  65 // also remember that these were completely scanned. The following evacuation passes
  66 // do not scan these cards again, and so need to be preserved across increments.
  67 //
  68 // The representation for all the cards to scan is the card table: cards can have
  69 // one of three states during GC:
  70 // - clean: these cards will not be scanned in this pass
  71 // - dirty: these cards will be scanned in this pass
  72 // - scanned: these cards have already been scanned in a previous pass
  73 //
  74 // After all evacuation is done, we reset the card table to clean.
  75 //
  76 // Work distribution occurs on "chunk" basis, i.e. contiguous ranges of cards. As an
  77 // additional optimization, during card merging we remember which regions and which
  78 // chunks actually contain cards to be scanned. Threads iterate only across these
  79 // regions, and only compete for chunks containing any cards.
  80 //
  81 // Within these chunks, a worker scans the card table on "blocks" of cards, i.e.
  82 // contiguous ranges of dirty cards to be scanned. These blocks are converted to actual
  83 // memory ranges and then passed on to actual scanning.
  84 class G1RemSetScanState : public CHeapObj<mtGC> {
  85   class G1DirtyRegions;
  86 
  87   size_t _max_regions;
  88 
  89   // Has this region that is part of the regions in the collection set been processed yet.
  90   typedef bool G1RemsetIterState;
  91 
  92   G1RemsetIterState volatile* _collection_set_iter_state;
  93 
  94   // Card table iteration claim for each heap region, from 0 (completely unscanned)
  95   // to (>=) HeapRegion::CardsPerRegion (completely scanned).
  96   uint volatile* _card_table_scan_state;
  97 
  98   // Return "optimal" number of chunks per region we want to use for claiming areas
  99   // within a region to claim. Dependent on the region size as proxy for the heap
 100   // size, we limit the total number of chunks to limit memory usage and maintenance
 101   // effort of that table vs. granularity of distributing scanning work.
 102   // Testing showed that 8 for 1M/2M region, 16 for 4M/8M regions, 32 for 16/32M regions
 103   // seems to be such a good trade-off.
 104   static uint get_chunks_per_region(uint log_region_size) {
 105     // Limit the expected input values to current known possible values of the
 106     // (log) region size. Adjust as necessary after testing if changing the permissible
 107     // values for region size.
 108     assert(log_region_size >= 20 && log_region_size <= 25,
 109            "expected value in [20,25], but got %u", log_region_size);
 110     return 1u << (log_region_size / 2 - 7);
 111   }
 112 
 113   uint _scan_chunks_per_region;         // Number of chunks per region.
 114   uint8_t _log_scan_chunks_per_region;  // Log of number of chunks per region.
 115   bool* _region_scan_chunks;
 116   size_t _num_total_scan_chunks;        // Total number of elements in _region_scan_chunks.
 117   uint8_t _scan_chunks_shift;           // For conversion between card index and chunk index.
 118 public:
 119   uint scan_chunk_size() const { return (uint)1 << _scan_chunks_shift; }
 120 
 121   // Returns whether the chunk corresponding to the given region/card in region contain a
 122   // dirty card, i.e. actually needs scanning.
 123   bool chunk_needs_scan(uint const region_idx, uint const card_in_region) const {
 124     size_t const idx = ((size_t)region_idx << _log_scan_chunks_per_region) + (card_in_region >> _scan_chunks_shift);
 125     assert(idx < _num_total_scan_chunks, "Index " SIZE_FORMAT " out of bounds " SIZE_FORMAT,
 126            idx, _num_total_scan_chunks);
 127     return _region_scan_chunks[idx];
 128   }
 129 
 130 private:
 131   // The complete set of regions which card table needs to be cleared at the end of GC because
 132   // we scribbled all over them.
 133   G1DirtyRegions* _all_dirty_regions;
 134   // The set of regions which card table needs to be scanned for new dirty cards
 135   // in the current evacuation pass.
 136   G1DirtyRegions* _next_dirty_regions;
 137 
 138   // Set of (unique) regions that can be added to concurrently.
 139   class G1DirtyRegions : public CHeapObj<mtGC> {
 140     uint* _buffer;
 141     uint _cur_idx;
 142     size_t _max_regions;
 143 
 144     bool* _contains;
 145 
 146   public:
 147     G1DirtyRegions(size_t max_regions) :
 148       _buffer(NEW_C_HEAP_ARRAY(uint, max_regions, mtGC)),
 149       _cur_idx(0),
 150       _max_regions(max_regions),
 151       _contains(NEW_C_HEAP_ARRAY(bool, max_regions, mtGC)) {
 152 
 153       reset();
 154     }
 155 
 156     static size_t chunk_size() { return M; }
 157 
 158     ~G1DirtyRegions() {
 159       FREE_C_HEAP_ARRAY(uint, _buffer);
 160       FREE_C_HEAP_ARRAY(bool, _contains);
 161     }
 162 
 163     void reset() {
 164       _cur_idx = 0;
 165       ::memset(_contains, false, _max_regions * sizeof(bool));
 166     }
 167 
 168     uint size() const { return _cur_idx; }
 169 
 170     uint at(uint idx) const {
 171       assert(idx < _cur_idx, "Index %u beyond valid regions", idx);
 172       return _buffer[idx];
 173     }
 174 
 175     void add_dirty_region(uint region) {
 176       if (_contains[region]) {
 177         return;
 178       }
 179 
 180       bool marked_as_dirty = Atomic::cmpxchg(true, &_contains[region], false) == false;
 181       if (marked_as_dirty) {
 182         uint allocated = Atomic::add(1u, &_cur_idx) - 1;
 183         _buffer[allocated] = region;
 184       }
 185     }
 186 
 187     // Creates the union of this and the other G1DirtyRegions.
 188     void merge(const G1DirtyRegions* other) {
 189       for (uint i = 0; i < other->size(); i++) {
 190         uint region = other->at(i);
 191         if (!_contains[region]) {
 192           _buffer[_cur_idx++] = region;
 193           _contains[region] = true;
 194         }
 195       }
 196     }
 197   };
 198 
 199   // For each region, contains the maximum top() value to be used during this garbage
 200   // collection. Subsumes common checks like filtering out everything but old and
 201   // humongous regions outside the collection set.
 202   // This is valid because we are not interested in scanning stray remembered set
 203   // entries from free or archive regions.
 204   HeapWord** _scan_top;
 205 
 206   class G1ClearCardTableTask : public AbstractGangTask {
 207     G1CollectedHeap* _g1h;
 208     G1DirtyRegions* _regions;
 209     uint _chunk_length;
 210 
 211     uint volatile _cur_dirty_regions;
 212 
 213     G1RemSetScanState* _scan_state;
 214 
 215   public:
 216     G1ClearCardTableTask(G1CollectedHeap* g1h,
 217                          G1DirtyRegions* regions,
 218                          uint chunk_length,
 219                          G1RemSetScanState* scan_state) :
 220       AbstractGangTask("G1 Clear Card Table Task"),
 221       _g1h(g1h),
 222       _regions(regions),
 223       _chunk_length(chunk_length),
 224       _cur_dirty_regions(0),
 225       _scan_state(scan_state) {
 226 
 227       assert(chunk_length > 0, "must be");
 228     }
 229 
 230     static uint chunk_size() { return M; }
 231 
 232     void work(uint worker_id) {
 233       while (_cur_dirty_regions < _regions->size()) {
 234         uint next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length;
 235         uint max = MIN2(next + _chunk_length, _regions->size());
 236 
 237         for (uint i = next; i < max; i++) {
 238           HeapRegion* r = _g1h->region_at(_regions->at(i));
 239           if (!r->is_survivor()) {
 240             r->clear_cardtable();
 241           }
 242         }
 243       }
 244     }
 245   };
 246 
 247   // Clear the card table of "dirty" regions.
 248   void clear_card_table(WorkGang* workers) {
 249     uint num_regions = _all_dirty_regions->size();
 250 
 251     if (num_regions == 0) {
 252       return;
 253     }
 254 
 255     uint const num_chunks = (uint)(align_up((size_t)num_regions << HeapRegion::LogCardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size());
 256     uint const num_workers = MIN2(num_chunks, workers->active_workers());
 257     uint const chunk_length = G1ClearCardTableTask::chunk_size() / (uint)HeapRegion::CardsPerRegion;
 258 
 259     // Iterate over the dirty cards region list.
 260     G1ClearCardTableTask cl(G1CollectedHeap::heap(), _all_dirty_regions, chunk_length, this);
 261 
 262     log_debug(gc, ergo)("Running %s using %u workers for %u "
 263                         "units of work for %u regions.",
 264                         cl.name(), num_workers, num_chunks, num_regions);
 265     workers->run_task(&cl, num_workers);
 266 
 267 #ifndef PRODUCT
 268     G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
 269 #endif
 270   }
 271 
 272 public:
 273   G1RemSetScanState() :
 274     _max_regions(0),
 275     _collection_set_iter_state(NULL),
 276     _card_table_scan_state(NULL),
 277     _scan_chunks_per_region(get_chunks_per_region(HeapRegion::LogOfHRGrainBytes)),
 278     _log_scan_chunks_per_region(log2_uint(_scan_chunks_per_region)),
 279     _region_scan_chunks(NULL),
 280     _num_total_scan_chunks(0),
 281     _scan_chunks_shift(0),
 282     _all_dirty_regions(NULL),
 283     _next_dirty_regions(NULL),
 284     _scan_top(NULL) {
 285   }
 286 
 287   ~G1RemSetScanState() {
 288     FREE_C_HEAP_ARRAY(G1RemsetIterState, _collection_set_iter_state);
 289     FREE_C_HEAP_ARRAY(uint, _card_table_scan_state);
 290     FREE_C_HEAP_ARRAY(bool, _region_scan_chunks);
 291     FREE_C_HEAP_ARRAY(HeapWord*, _scan_top);
 292   }
 293 
 294   void initialize(size_t max_regions) {
 295     assert(_collection_set_iter_state == NULL, "Must not be initialized twice");
 296     _max_regions = max_regions;
 297     _collection_set_iter_state = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC);
 298     _card_table_scan_state = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC);
 299     _num_total_scan_chunks = max_regions * _scan_chunks_per_region;
 300     _region_scan_chunks = NEW_C_HEAP_ARRAY(bool, _num_total_scan_chunks, mtGC);
 301 
 302     _scan_chunks_shift = (uint8_t)log2_intptr(HeapRegion::CardsPerRegion / _scan_chunks_per_region);
 303     _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC);
 304   }
 305 
 306   void prepare() {
 307     for (size_t i = 0; i < _max_regions; i++) {
 308       _collection_set_iter_state[i] = false;
 309       clear_scan_top((uint)i);
 310     }
 311 
 312     _all_dirty_regions = new G1DirtyRegions(_max_regions);
 313     _next_dirty_regions = new G1DirtyRegions(_max_regions);
 314   }
 315 
 316   void prepare_for_merge_heap_roots() {
 317     _all_dirty_regions->merge(_next_dirty_regions);
 318 
 319     _next_dirty_regions->reset();
 320     for (size_t i = 0; i < _max_regions; i++) {
 321       _card_table_scan_state[i] = 0;
 322     }
 323 
 324     ::memset(_region_scan_chunks, false, _num_total_scan_chunks * sizeof(*_region_scan_chunks));
 325   }
 326 
 327   // Returns whether the given region contains cards we need to scan. The remembered
 328   // set and other sources may contain cards that
 329   // - are in uncommitted regions
 330   // - are located in the collection set
 331   // - are located in free regions
 332   // as we do not clean up remembered sets before merging heap roots.
 333   bool contains_cards_to_process(uint const region_idx) const {
 334     HeapRegion* hr = G1CollectedHeap::heap()->region_at_or_null(region_idx);
 335     return (hr != NULL && !hr->in_collection_set() && hr->is_old_or_humongous_or_archive());
 336   }
 337 
 338   size_t num_visited_cards() const {
 339     size_t result = 0;
 340     for (uint i = 0; i < _num_total_scan_chunks; i++) {
 341       if (_region_scan_chunks[i]) {
 342         result++;
 343       }
 344     }
 345     return result * (HeapRegion::CardsPerRegion / _scan_chunks_per_region);
 346   }
 347 
 348   size_t num_cards_in_dirty_regions() const {
 349     return _next_dirty_regions->size() * HeapRegion::CardsPerRegion;
 350   }
 351 
 352   void set_chunk_region_dirty(size_t const region_card_idx) {
 353     size_t chunk_idx = region_card_idx >> _scan_chunks_shift;
 354     for (uint i = 0; i < _scan_chunks_per_region; i++) {
 355       _region_scan_chunks[chunk_idx++] = true;
 356     }
 357   }
 358 
 359   void set_chunk_dirty(size_t const card_idx) {
 360     assert((card_idx >> _scan_chunks_shift) < _num_total_scan_chunks,
 361            "Trying to access index " SIZE_FORMAT " out of bounds " SIZE_FORMAT,
 362            card_idx >> _scan_chunks_shift, _num_total_scan_chunks);
 363     size_t const chunk_idx = card_idx >> _scan_chunks_shift;
 364     if (!_region_scan_chunks[chunk_idx]) {
 365       _region_scan_chunks[chunk_idx] = true;
 366     }
 367   }
 368 
 369   void cleanup(WorkGang* workers) {
 370     _all_dirty_regions->merge(_next_dirty_regions);
 371 
 372     clear_card_table(workers);
 373 
 374     delete _all_dirty_regions;
 375     _all_dirty_regions = NULL;
 376 
 377     delete _next_dirty_regions;
 378     _next_dirty_regions = NULL;
 379   }
 380 
 381   void iterate_dirty_regions_from(HeapRegionClosure* cl, uint worker_id) {
 382     uint num_regions = _next_dirty_regions->size();
 383 
 384     if (num_regions == 0) {
 385       return;
 386     }
 387 
 388     G1CollectedHeap* g1h = G1CollectedHeap::heap();
 389 
 390     WorkGang* workers = g1h->workers();
 391     uint const max_workers = workers->active_workers();
 392 
 393     uint const start_pos = num_regions * worker_id / max_workers;
 394     uint cur = start_pos;
 395 
 396     do {
 397       bool result = cl->do_heap_region(g1h->region_at(_next_dirty_regions->at(cur)));
 398       guarantee(!result, "Not allowed to ask for early termination.");
 399       cur++;
 400       if (cur == _next_dirty_regions->size()) {
 401         cur = 0;
 402       }
 403     } while (cur != start_pos);
 404   }
 405 
 406   // Attempt to claim the given region in the collection set for iteration. Returns true
 407   // if this call caused the transition from Unclaimed to Claimed.
 408   inline bool claim_collection_set_region(uint region) {
 409     assert(region < _max_regions, "Tried to access invalid region %u", region);
 410     if (_collection_set_iter_state[region]) {
 411       return false;
 412     }
 413     return !Atomic::cmpxchg(true, &_collection_set_iter_state[region], false);
 414   }
 415 
 416   bool has_cards_to_scan(uint region) {
 417     assert(region < _max_regions, "Tried to access invalid region %u", region);
 418     return _card_table_scan_state[region] < HeapRegion::CardsPerRegion;
 419   }
 420 
 421   uint claim_cards_to_scan(uint region, uint increment) {
 422     assert(region < _max_regions, "Tried to access invalid region %u", region);
 423     return Atomic::add(increment, &_card_table_scan_state[region]) - increment;
 424   }
 425 
 426   void add_dirty_region(uint const region) {
 427 #ifdef ASSERT
 428    HeapRegion* hr = G1CollectedHeap::heap()->region_at(region);
 429    assert(!hr->in_collection_set() && hr->is_old_or_humongous_or_archive(),
 430           "Region %u is not suitable for scanning, is %sin collection set or %s",
 431           hr->hrm_index(), hr->in_collection_set() ? "" : "not ", hr->get_short_type_str());
 432 #endif
 433     _next_dirty_regions->add_dirty_region(region);
 434   }
 435 
 436   void add_all_dirty_region(uint region) {
 437 #ifdef ASSERT
 438     HeapRegion* hr = G1CollectedHeap::heap()->region_at(region);
 439     assert(hr->in_collection_set(),
 440            "Only add young regions to all dirty regions directly but %u is %s",
 441            hr->hrm_index(), hr->get_short_type_str());
 442 #endif
 443     _all_dirty_regions->add_dirty_region(region);
 444   }
 445 
 446   void set_scan_top(uint region_idx, HeapWord* value) {
 447     _scan_top[region_idx] = value;
 448   }
 449 
 450   HeapWord* scan_top(uint region_idx) const {
 451     return _scan_top[region_idx];
 452   }
 453 
 454   void clear_scan_top(uint region_idx) {
 455     set_scan_top(region_idx, NULL);
 456   }
 457 };
 458 
 459 G1RemSet::G1RemSet(G1CollectedHeap* g1h,
 460                    G1CardTable* ct,
 461                    G1HotCardCache* hot_card_cache) :
 462   _scan_state(new G1RemSetScanState()),
 463   _prev_period_summary(false),
 464   _g1h(g1h),
 465   _ct(ct),
 466   _g1p(_g1h->policy()),
 467   _hot_card_cache(hot_card_cache) {
 468 }
 469 
 470 G1RemSet::~G1RemSet() {
 471   delete _scan_state;
 472 }
 473 
 474 uint G1RemSet::num_par_rem_sets() {
 475   return G1DirtyCardQueueSet::num_par_ids() + G1ConcurrentRefine::max_num_threads() + MAX2(ConcGCThreads, ParallelGCThreads);
 476 }
 477 
 478 void G1RemSet::initialize(size_t capacity, uint max_regions) {
 479   G1FromCardCache::initialize(num_par_rem_sets(), max_regions);
 480   _scan_state->initialize(max_regions);
 481 }
 482 
 483 // Helper class to scan and detect ranges of cards that need to be scanned on the
 484 // card table.
 485 class G1CardTableScanner : public StackObj {
 486 public:
 487   typedef CardTable::CardValue CardValue;
 488 
 489 private:
 490   CardValue* const _base_addr;
 491 
 492   CardValue* _cur_addr;
 493   CardValue* const _end_addr;
 494 
 495   static const size_t ToScanMask = G1CardTable::g1_card_already_scanned;
 496   static const size_t ExpandedToScanMask = G1CardTable::WordAlreadyScanned;
 497 
 498   bool cur_addr_aligned() const {
 499     return ((uintptr_t)_cur_addr) % sizeof(size_t) == 0;
 500   }
 501 
 502   bool cur_card_is_dirty() const {
 503     CardValue value = *_cur_addr;
 504     return (value & ToScanMask) == 0;
 505   }
 506 
 507   bool cur_word_of_cards_contains_any_dirty_card() const {
 508     assert(cur_addr_aligned(), "Current address should be aligned");
 509     size_t const value = *(size_t*)_cur_addr;
 510     return (~value & ExpandedToScanMask) != 0;
 511   }
 512 
 513   bool cur_word_of_cards_all_dirty_cards() const {
 514     size_t const value = *(size_t*)_cur_addr;
 515     return value == G1CardTable::WordAllDirty;
 516   }
 517 
 518   size_t get_and_advance_pos() {
 519     _cur_addr++;
 520     return pointer_delta(_cur_addr, _base_addr, sizeof(CardValue)) - 1;
 521   }
 522 
 523 public:
 524   G1CardTableScanner(CardValue* start_card, size_t size) :
 525     _base_addr(start_card),
 526     _cur_addr(start_card),
 527     _end_addr(start_card + size) {
 528 
 529     assert(is_aligned(start_card, sizeof(size_t)), "Unaligned start addr " PTR_FORMAT, p2i(start_card));
 530     assert(is_aligned(size, sizeof(size_t)), "Unaligned size " SIZE_FORMAT, size);
 531   }
 532 
 533   size_t find_next_dirty() {
 534     while (!cur_addr_aligned()) {
 535       if (cur_card_is_dirty()) {
 536         return get_and_advance_pos();
 537       }
 538       _cur_addr++;
 539     }
 540 
 541     assert(cur_addr_aligned(), "Current address should be aligned now.");
 542     while (_cur_addr != _end_addr) {
 543       if (cur_word_of_cards_contains_any_dirty_card()) {
 544         for (size_t i = 0; i < sizeof(size_t); i++) {
 545           if (cur_card_is_dirty()) {
 546             return get_and_advance_pos();
 547           }
 548           _cur_addr++;
 549         }
 550         assert(false, "Should not reach here given we detected a dirty card in the word.");
 551       }
 552       _cur_addr += sizeof(size_t);
 553     }
 554     return get_and_advance_pos();
 555   }
 556 
 557   size_t find_next_non_dirty() {
 558     assert(_cur_addr <= _end_addr, "Not allowed to search for marks after area.");
 559 
 560     while (!cur_addr_aligned()) {
 561       if (!cur_card_is_dirty()) {
 562         return get_and_advance_pos();
 563       }
 564       _cur_addr++;
 565     }
 566 
 567     assert(cur_addr_aligned(), "Current address should be aligned now.");
 568     while (_cur_addr != _end_addr) {
 569       if (!cur_word_of_cards_all_dirty_cards()) {
 570         for (size_t i = 0; i < sizeof(size_t); i++) {
 571           if (!cur_card_is_dirty()) {
 572             return get_and_advance_pos();
 573           }
 574           _cur_addr++;
 575         }
 576         assert(false, "Should not reach here given we detected a non-dirty card in the word.");
 577       }
 578       _cur_addr += sizeof(size_t);
 579     }
 580     return get_and_advance_pos();
 581   }
 582 };
 583 
 584 // Helper class to claim dirty chunks within the card table.
 585 class G1CardTableChunkClaimer {
 586   G1RemSetScanState* _scan_state;
 587   uint _region_idx;
 588   uint _cur_claim;
 589 
 590 public:
 591   G1CardTableChunkClaimer(G1RemSetScanState* scan_state, uint region_idx) :
 592     _scan_state(scan_state),
 593     _region_idx(region_idx),
 594     _cur_claim(0) {
 595     guarantee(size() <= HeapRegion::CardsPerRegion, "Should not claim more space than possible.");
 596   }
 597 
 598   bool has_next() {
 599     while (true) {
 600       _cur_claim = _scan_state->claim_cards_to_scan(_region_idx, size());
 601       if (_cur_claim >= HeapRegion::CardsPerRegion) {
 602         return false;
 603       }
 604       if (_scan_state->chunk_needs_scan(_region_idx, _cur_claim)) {
 605         return true;
 606       }
 607     }
 608   }
 609 
 610   uint value() const { return _cur_claim; }
 611   uint size() const { return _scan_state->scan_chunk_size(); }
 612 };
 613 
 614 // Scans a heap region for dirty cards.
 615 class G1ScanHRForRegionClosure : public HeapRegionClosure {
 616   G1CollectedHeap* _g1h;
 617   G1CardTable* _ct;
 618   G1BlockOffsetTable* _bot;
 619 
 620   G1ParScanThreadState* _pss;
 621 
 622   G1RemSetScanState* _scan_state;
 623 
 624   G1GCPhaseTimes::GCParPhases _phase;
 625 
 626   uint   _worker_id;
 627 
 628   size_t _cards_scanned;
 629   size_t _blocks_scanned;
 630   size_t _chunks_claimed;
 631 
 632   Tickspan _rem_set_root_scan_time;
 633   Tickspan _rem_set_trim_partially_time;
 634 
 635   // The address to which this thread already scanned (walked the heap) up to during
 636   // card scanning (exclusive).
 637   HeapWord* _scanned_to;
 638 
 639   HeapWord* scan_memregion(uint region_idx_for_card, MemRegion mr) {
 640     HeapRegion* const card_region = _g1h->region_at(region_idx_for_card);
 641     G1ScanCardClosure card_cl(_g1h, _pss);
 642 
 643     HeapWord* const scanned_to = card_region->oops_on_memregion_seq_iterate_careful<true>(mr, &card_cl);
 644     assert(scanned_to != NULL, "Should be able to scan range");
 645     assert(scanned_to >= mr.end(), "Scanned to " PTR_FORMAT " less than range " PTR_FORMAT, p2i(scanned_to), p2i(mr.end()));
 646 
 647     _pss->trim_queue_partially();
 648     return scanned_to;
 649   }
 650 
 651   void do_claimed_block(uint const region_idx_for_card, size_t const first_card, size_t const num_cards) {
 652     HeapWord* const card_start = _bot->address_for_index_raw(first_card);
 653 #ifdef ASSERT
 654     HeapRegion* hr = _g1h->region_at_or_null(region_idx_for_card);
 655     assert(hr == NULL || hr->is_in_reserved(card_start),
 656              "Card start " PTR_FORMAT " to scan outside of region %u", p2i(card_start), _g1h->region_at(region_idx_for_card)->hrm_index());
 657 #endif
 658     HeapWord* const top = _scan_state->scan_top(region_idx_for_card);
 659     if (card_start >= top) {
 660       return;
 661     }
 662 
 663     HeapWord* scan_end = MIN2(card_start + (num_cards << BOTConstants::LogN_words), top);
 664     if (_scanned_to >= scan_end) {
 665       return;
 666     }
 667     MemRegion mr(MAX2(card_start, _scanned_to), scan_end);
 668     _scanned_to = scan_memregion(region_idx_for_card, mr);
 669 
 670     _cards_scanned += num_cards;
 671   }
 672 
 673   ALWAYSINLINE void do_card_block(uint const region_idx, size_t const first_card, size_t const num_cards) {
 674     _ct->mark_as_scanned(first_card, num_cards);
 675     do_claimed_block(region_idx, first_card, num_cards);
 676     _blocks_scanned++;
 677   }
 678 
 679    void scan_heap_roots(HeapRegion* r) {
 680     EventGCPhaseParallel event;
 681     uint const region_idx = r->hrm_index();
 682 
 683     ResourceMark rm;
 684 
 685     G1CardTableChunkClaimer claim(_scan_state, region_idx);
 686 
 687     // Set the current scan "finger" to NULL for every heap region to scan. Since
 688     // the claim value is monotonically increasing, the check to not scan below this
 689     // will filter out objects spanning chunks within the region too then, as opposed
 690     // to resetting this value for every claim.
 691     _scanned_to = NULL;
 692 
 693     while (claim.has_next()) {
 694       size_t const region_card_base_idx = ((size_t)region_idx << HeapRegion::LogCardsPerRegion) + claim.value();
 695       CardTable::CardValue* const base_addr = _ct->byte_for_index(region_card_base_idx);
 696 
 697       G1CardTableScanner scan(base_addr, claim.size());
 698 
 699       size_t first_scan_idx = scan.find_next_dirty();
 700       while (first_scan_idx != claim.size()) {
 701         assert(*_ct->byte_for_index(region_card_base_idx + first_scan_idx) <= 0x1, "is %d at region %u idx " SIZE_FORMAT, *_ct->byte_for_index(region_card_base_idx + first_scan_idx), region_idx, first_scan_idx);
 702 
 703         size_t const last_scan_idx = scan.find_next_non_dirty();
 704         size_t const len = last_scan_idx - first_scan_idx;
 705 
 706         do_card_block(region_idx, region_card_base_idx + first_scan_idx, len);
 707 
 708         if (last_scan_idx == claim.size()) {
 709           break;
 710         }
 711 
 712         first_scan_idx = scan.find_next_dirty();
 713       }
 714       _chunks_claimed++;
 715     }
 716 
 717     event.commit(GCId::current(), _worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ScanHR));
 718   }
 719 
 720 public:
 721   G1ScanHRForRegionClosure(G1RemSetScanState* scan_state,
 722                            G1ParScanThreadState* pss,
 723                            uint worker_id,
 724                            G1GCPhaseTimes::GCParPhases phase) :
 725     _g1h(G1CollectedHeap::heap()),
 726     _ct(_g1h->card_table()),
 727     _bot(_g1h->bot()),
 728     _pss(pss),
 729     _scan_state(scan_state),
 730     _phase(phase),
 731     _worker_id(worker_id),
 732     _cards_scanned(0),
 733     _blocks_scanned(0),
 734     _chunks_claimed(0),
 735     _rem_set_root_scan_time(),
 736     _rem_set_trim_partially_time(),
 737     _scanned_to(NULL) {
 738   }
 739 
 740   bool do_heap_region(HeapRegion* r) {
 741     assert(!r->in_collection_set() && r->is_old_or_humongous_or_archive(),
 742            "Should only be called on old gen non-collection set regions but region %u is not.",
 743            r->hrm_index());
 744     uint const region_idx = r->hrm_index();
 745 
 746     if (_scan_state->has_cards_to_scan(region_idx)) {
 747       G1EvacPhaseWithTrimTimeTracker timer(_pss, _rem_set_root_scan_time, _rem_set_trim_partially_time);
 748       scan_heap_roots(r);
 749     }
 750     return false;
 751   }
 752 
 753   Tickspan rem_set_root_scan_time() const { return _rem_set_root_scan_time; }
 754   Tickspan rem_set_trim_partially_time() const { return _rem_set_trim_partially_time; }
 755 
 756   size_t cards_scanned() const { return _cards_scanned; }
 757   size_t blocks_scanned() const { return _blocks_scanned; }
 758   size_t chunks_claimed() const { return _chunks_claimed; }
 759 };
 760 
 761 void G1RemSet::scan_heap_roots(G1ParScanThreadState* pss,
 762                             uint worker_id,
 763                             G1GCPhaseTimes::GCParPhases scan_phase,
 764                             G1GCPhaseTimes::GCParPhases objcopy_phase) {
 765   G1ScanHRForRegionClosure cl(_scan_state, pss, worker_id, scan_phase);
 766   _scan_state->iterate_dirty_regions_from(&cl, worker_id);
 767 
 768   G1GCPhaseTimes* p = _g1p->phase_times();
 769 
 770   p->record_or_add_time_secs(objcopy_phase, worker_id, cl.rem_set_trim_partially_time().seconds());
 771 
 772   p->record_or_add_time_secs(scan_phase, worker_id, cl.rem_set_root_scan_time().seconds());
 773   p->record_or_add_thread_work_item(scan_phase, worker_id, cl.cards_scanned(), G1GCPhaseTimes::ScanHRScannedCards);
 774   p->record_or_add_thread_work_item(scan_phase, worker_id, cl.blocks_scanned(), G1GCPhaseTimes::ScanHRScannedBlocks);
 775   p->record_or_add_thread_work_item(scan_phase, worker_id, cl.chunks_claimed(), G1GCPhaseTimes::ScanHRClaimedChunks);
 776 }
 777 
 778 // Heap region closure to be applied to all regions in the current collection set
 779 // increment to fix up non-card related roots.
 780 class G1ScanCollectionSetRegionClosure : public HeapRegionClosure {
 781   G1ParScanThreadState* _pss;
 782   G1RemSetScanState* _scan_state;
 783 
 784   G1GCPhaseTimes::GCParPhases _scan_phase;
 785   G1GCPhaseTimes::GCParPhases _code_roots_phase;
 786 
 787   uint _worker_id;
 788 
 789   size_t _opt_refs_scanned;
 790   size_t _opt_refs_memory_used;
 791 
 792   Tickspan _strong_code_root_scan_time;
 793   Tickspan _strong_code_trim_partially_time;
 794 
 795   Tickspan _rem_set_opt_root_scan_time;
 796   Tickspan _rem_set_opt_trim_partially_time;
 797 
 798   void scan_opt_rem_set_roots(HeapRegion* r) {
 799     EventGCPhaseParallel event;
 800 
 801     G1OopStarChunkedList* opt_rem_set_list = _pss->oops_into_optional_region(r);
 802 
 803     G1ScanCardClosure scan_cl(G1CollectedHeap::heap(), _pss);
 804     G1ScanRSForOptionalClosure cl(G1CollectedHeap::heap(), &scan_cl);
 805     _opt_refs_scanned += opt_rem_set_list->oops_do(&cl, _pss->closures()->strong_oops());
 806     _opt_refs_memory_used += opt_rem_set_list->used_memory();
 807 
 808     event.commit(GCId::current(), _worker_id, G1GCPhaseTimes::phase_name(_scan_phase));
 809   }
 810 
 811 public:
 812   G1ScanCollectionSetRegionClosure(G1RemSetScanState* scan_state,
 813                                    G1ParScanThreadState* pss,
 814                                    uint worker_id,
 815                                    G1GCPhaseTimes::GCParPhases scan_phase,
 816                                    G1GCPhaseTimes::GCParPhases code_roots_phase) :
 817     _pss(pss),
 818     _scan_state(scan_state),
 819     _scan_phase(scan_phase),
 820     _code_roots_phase(code_roots_phase),
 821     _worker_id(worker_id),
 822     _opt_refs_scanned(0),
 823     _opt_refs_memory_used(0),
 824     _strong_code_root_scan_time(),
 825     _strong_code_trim_partially_time(),
 826     _rem_set_opt_root_scan_time(),
 827     _rem_set_opt_trim_partially_time() { }
 828 
 829   bool do_heap_region(HeapRegion* r) {
 830     uint const region_idx = r->hrm_index();
 831 
 832     // The individual references for the optional remembered set are per-worker, so we
 833     // always need to scan them.
 834     if (r->has_index_in_opt_cset()) {
 835       G1EvacPhaseWithTrimTimeTracker timer(_pss, _rem_set_opt_root_scan_time, _rem_set_opt_trim_partially_time);
 836       scan_opt_rem_set_roots(r);
 837     }
 838 
 839     if (_scan_state->claim_collection_set_region(region_idx)) {
 840       EventGCPhaseParallel event;
 841 
 842       G1EvacPhaseWithTrimTimeTracker timer(_pss, _strong_code_root_scan_time, _strong_code_trim_partially_time);
 843       // Scan the strong code root list attached to the current region
 844       r->strong_code_roots_do(_pss->closures()->weak_codeblobs());
 845 
 846       event.commit(GCId::current(), _worker_id, G1GCPhaseTimes::phase_name(_code_roots_phase));
 847     }
 848 
 849     return false;
 850   }
 851 
 852   Tickspan strong_code_root_scan_time() const { return _strong_code_root_scan_time;  }
 853   Tickspan strong_code_root_trim_partially_time() const { return _strong_code_trim_partially_time; }
 854 
 855   Tickspan rem_set_opt_root_scan_time() const { return _rem_set_opt_root_scan_time; }
 856   Tickspan rem_set_opt_trim_partially_time() const { return _rem_set_opt_trim_partially_time; }
 857 
 858   size_t opt_refs_scanned() const { return _opt_refs_scanned; }
 859   size_t opt_refs_memory_used() const { return _opt_refs_memory_used; }
 860 };
 861 
 862 void G1RemSet::scan_collection_set_regions(G1ParScanThreadState* pss,
 863                                            uint worker_id,
 864                                            G1GCPhaseTimes::GCParPhases scan_phase,
 865                                            G1GCPhaseTimes::GCParPhases coderoots_phase,
 866                                            G1GCPhaseTimes::GCParPhases objcopy_phase) {
 867   G1ScanCollectionSetRegionClosure cl(_scan_state, pss, worker_id, scan_phase, coderoots_phase);
 868   _g1h->collection_set_iterate_increment_from(&cl, worker_id);
 869 
 870   G1GCPhaseTimes* p = _g1h->phase_times();
 871 
 872   p->record_or_add_time_secs(scan_phase, worker_id, cl.rem_set_opt_root_scan_time().seconds());
 873   p->record_or_add_time_secs(scan_phase, worker_id, cl.rem_set_opt_trim_partially_time().seconds());
 874 
 875   p->record_or_add_time_secs(coderoots_phase, worker_id, cl.strong_code_root_scan_time().seconds());
 876   p->add_time_secs(objcopy_phase, worker_id, cl.strong_code_root_trim_partially_time().seconds());
 877 
 878   // At this time we record some metrics only for the evacuations after the initial one.
 879   if (scan_phase == G1GCPhaseTimes::OptScanHR) {
 880     p->record_or_add_thread_work_item(scan_phase, worker_id, cl.opt_refs_scanned(), G1GCPhaseTimes::ScanHRScannedOptRefs);
 881     p->record_or_add_thread_work_item(scan_phase, worker_id, cl.opt_refs_memory_used(), G1GCPhaseTimes::ScanHRUsedMemory);
 882   }
 883 }
 884 
 885 // Creates a snapshot of the current _top values at the start of collection to
 886 // filter out card marks that we do not want to scan.
 887 void G1RemSet::prepare_region_for_scanning(HeapRegion* region) {
 888   uint hrm_index = region->hrm_index();
 889   if (region->in_collection_set()) {
 890     // Young regions had their card table marked as young at their allocation;
 891     // we need to make sure that these marks are cleared at the end of GC, *but*
 892     // they should not be scanned for cards.
 893     // So directly add them to the "all_dirty_regions".
 894     // Same for regions in the (initial) collection set: they may contain cards from
 895     // the log buffers, make sure they are cleaned.
 896     _scan_state->add_all_dirty_region(hrm_index);
 897   } else if (region->is_old_or_humongous_or_archive()) {
 898     _scan_state->set_scan_top(hrm_index, region->top());
 899   }
 900 }
 901 
 902 void G1RemSet::prepare_for_scan_heap_roots() {
 903   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 904   dcqs.concatenate_logs();
 905 
 906   _scan_state->prepare();
 907 }
 908 
 909 class G1MergeHeapRootsTask : public AbstractGangTask {
 910 
 911   // Visitor for remembered sets, dropping entries onto the card table.
 912   class G1MergeCardSetClosure : public HeapRegionClosure {
 913     G1RemSetScanState* _scan_state;
 914     G1CardTable* _ct;
 915 
 916     uint _merged_sparse;
 917     uint _merged_fine;
 918     uint _merged_coarse;
 919 
 920     // Returns if the region contains cards we need to scan. If so, remember that
 921     // region in the current set of dirty regions.
 922     bool remember_if_interesting(uint const region_idx) {
 923       if (!_scan_state->contains_cards_to_process(region_idx)) {
 924         return false;
 925       }
 926       _scan_state->add_dirty_region(region_idx);
 927       return true;
 928     }
 929   public:
 930     G1MergeCardSetClosure(G1RemSetScanState* scan_state) :
 931       _scan_state(scan_state),
 932       _ct(G1CollectedHeap::heap()->card_table()),
 933       _merged_sparse(0),
 934       _merged_fine(0),
 935       _merged_coarse(0) { }
 936 
 937     void next_coarse_prt(uint const region_idx) {
 938       if (!remember_if_interesting(region_idx)) {
 939         return;
 940       }
 941 
 942       _merged_coarse++;
 943 
 944       size_t region_base_idx = (size_t)region_idx << HeapRegion::LogCardsPerRegion;
 945       _ct->mark_region_dirty(region_base_idx, HeapRegion::CardsPerRegion);
 946       _scan_state->set_chunk_region_dirty(region_base_idx);
 947     }
 948 
 949     void next_fine_prt(uint const region_idx, BitMap* bm) {
 950       if (!remember_if_interesting(region_idx)) {
 951         return;
 952       }
 953 
 954       _merged_fine++;
 955 
 956       size_t const region_base_idx = (size_t)region_idx << HeapRegion::LogCardsPerRegion;
 957       BitMap::idx_t cur = bm->get_next_one_offset(0);
 958       while (cur != bm->size()) {
 959         _ct->mark_clean_as_dirty(region_base_idx + cur);
 960         _scan_state->set_chunk_dirty(region_base_idx + cur);
 961         cur = bm->get_next_one_offset(cur + 1);
 962       }
 963     }
 964 
 965     void next_sparse_prt(uint const region_idx, SparsePRTEntry::card_elem_t* cards, uint const num_cards) {
 966       if (!remember_if_interesting(region_idx)) {
 967         return;
 968       }
 969 
 970       _merged_sparse++;
 971 
 972       size_t const region_base_idx = (size_t)region_idx << HeapRegion::LogCardsPerRegion;
 973       for (uint i = 0; i < num_cards; i++) {
 974         size_t card_idx = region_base_idx + cards[i];
 975         _ct->mark_clean_as_dirty(card_idx);
 976         _scan_state->set_chunk_dirty(card_idx);
 977       }
 978     }
 979 
 980     virtual bool do_heap_region(HeapRegion* r) {
 981       assert(r->in_collection_set() || r->is_starts_humongous(), "must be");
 982 
 983       HeapRegionRemSet* rem_set = r->rem_set();
 984       if (!rem_set->is_empty()) {
 985         rem_set->iterate_prts(*this);
 986       }
 987 
 988       return false;
 989     }
 990 
 991     size_t merged_sparse() const { return _merged_sparse; }
 992     size_t merged_fine() const { return _merged_fine; }
 993     size_t merged_coarse() const { return _merged_coarse; }
 994   };
 995 
 996   // Visitor for the remembered sets of humongous candidate regions to merge their
 997   // remembered set into the card table.
 998   class G1FlushHumongousCandidateRemSets : public HeapRegionClosure {
 999     G1MergeCardSetClosure _cl;
1000 
1001   public:
1002     G1FlushHumongousCandidateRemSets(G1RemSetScanState* scan_state) : _cl(scan_state) { }
1003 
1004     virtual bool do_heap_region(HeapRegion* r) {
1005       G1CollectedHeap* g1h = G1CollectedHeap::heap();
1006 
1007       if (!r->is_starts_humongous() ||
1008           !g1h->region_attr(r->hrm_index()).is_humongous() ||
1009           r->rem_set()->is_empty()) {
1010         return false;
1011       }
1012 
1013       guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
1014                 "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
1015 
1016       _cl.do_heap_region(r);
1017 
1018       // We should only clear the card based remembered set here as we will not
1019       // implicitly rebuild anything else during eager reclaim. Note that at the moment
1020       // (and probably never) we do not enter this path if there are other kind of
1021       // remembered sets for this region.
1022       r->rem_set()->clear_locked(true /* only_cardset */);
1023       // Clear_locked() above sets the state to Empty. However we want to continue
1024       // collecting remembered set entries for humongous regions that were not
1025       // reclaimed.
1026       r->rem_set()->set_state_complete();
1027 #ifdef ASSERT
1028       G1HeapRegionAttr region_attr = g1h->region_attr(r->hrm_index());
1029       assert(region_attr.needs_remset_update(), "must be");
1030 #endif
1031       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
1032 
1033       return false;
1034     }
1035 
1036     size_t merged_sparse() const { return _cl.merged_sparse(); }
1037     size_t merged_fine() const { return _cl.merged_fine(); }
1038     size_t merged_coarse() const { return _cl.merged_coarse(); }
1039   };
1040 
1041   // Visitor for the log buffer entries to merge them into the card table.
1042   class G1MergeLogBufferCardsClosure : public G1CardTableEntryClosure {
1043     G1RemSetScanState* _scan_state;
1044     G1CardTable* _ct;
1045 
1046     size_t _cards_dirty;
1047     size_t _cards_skipped;
1048   public:
1049     G1MergeLogBufferCardsClosure(G1CollectedHeap* g1h, G1RemSetScanState* scan_state) :
1050       _scan_state(scan_state), _ct(g1h->card_table()), _cards_dirty(0), _cards_skipped(0)
1051     {}
1052 
1053     void do_card_ptr(CardValue* card_ptr, uint worker_id) {
1054       // The only time we care about recording cards that
1055       // contain references that point into the collection set
1056       // is during RSet updating within an evacuation pause.
1057       // In this case worker_id should be the id of a GC worker thread.
1058       assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
1059 
1060       uint const region_idx = _ct->region_idx_for(card_ptr);
1061 
1062       // The second clause must come after - the log buffers might contain cards to uncommited
1063       // regions.
1064       // This code may count duplicate entries in the log buffers (even if rare) multiple
1065       // times.
1066       if (_scan_state->contains_cards_to_process(region_idx) && (*card_ptr == G1CardTable::dirty_card_val())) {
1067         _scan_state->add_dirty_region(region_idx);
1068         _scan_state->set_chunk_dirty(_ct->index_for_cardvalue(card_ptr));
1069         _cards_dirty++;
1070       } else {
1071         // We may have had dirty cards in the (initial) collection set (or the
1072         // young regions which are always in the initial collection set). We do
1073         // not fix their cards here: we already added these regions to the set of
1074         // regions to clear the card table at the end during the prepare() phase.
1075         _cards_skipped++;
1076       }
1077     }
1078 
1079     size_t cards_dirty() const { return _cards_dirty; }
1080     size_t cards_skipped() const { return _cards_skipped; }
1081   };
1082 
1083   HeapRegionClaimer _hr_claimer;
1084   G1RemSetScanState* _scan_state;
1085   BufferNode::Stack _dirty_card_buffers;
1086   bool _initial_evacuation;
1087 
1088   volatile bool _fast_reclaim_handled;
1089 
1090   void apply_closure_to_dirty_card_buffers(G1MergeLogBufferCardsClosure* cl, uint worker_id) {
1091     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1092     size_t buffer_size = dcqs.buffer_size();
1093     while (BufferNode* node = _dirty_card_buffers.pop()) {
1094       cl->apply_to_buffer(node, buffer_size, worker_id);
1095       dcqs.deallocate_buffer(node);
1096     }
1097   }
1098 
1099 public:
1100   G1MergeHeapRootsTask(G1RemSetScanState* scan_state, uint num_workers, bool initial_evacuation) :
1101     AbstractGangTask("G1 Merge Heap Roots"),
1102     _hr_claimer(num_workers),
1103     _scan_state(scan_state),
1104     _dirty_card_buffers(),
1105     _initial_evacuation(initial_evacuation),
1106     _fast_reclaim_handled(false)
1107   {
1108     if (initial_evacuation) {
1109       G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1110       G1BufferNodeList buffers = dcqs.take_all_completed_buffers();
1111       if (buffers._entry_count != 0) {
1112         _dirty_card_buffers.prepend(*buffers._head, *buffers._tail);
1113       }
1114     }
1115   }
1116 
1117   virtual void work(uint worker_id) {
1118     G1CollectedHeap* g1h = G1CollectedHeap::heap();
1119     G1GCPhaseTimes* p = g1h->phase_times();
1120 
1121     G1GCPhaseTimes::GCParPhases merge_remset_phase = _initial_evacuation ?
1122                                                      G1GCPhaseTimes::MergeRS :
1123                                                      G1GCPhaseTimes::OptMergeRS;
1124 
1125     // We schedule flushing the remembered sets of humongous fast reclaim candidates
1126     // onto the card table first to allow the remaining parallelized tasks hide it.
1127     if (_initial_evacuation &&
1128         p->fast_reclaim_humongous_candidates() > 0 &&
1129         !_fast_reclaim_handled &&
1130         !Atomic::cmpxchg(true, &_fast_reclaim_handled, false)) {
1131 
1132       G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::MergeER, worker_id);
1133 
1134       G1FlushHumongousCandidateRemSets cl(_scan_state);
1135       g1h->heap_region_iterate(&cl);
1136 
1137       p->record_or_add_thread_work_item(merge_remset_phase, worker_id, cl.merged_sparse(), G1GCPhaseTimes::MergeRSMergedSparse);
1138       p->record_or_add_thread_work_item(merge_remset_phase, worker_id, cl.merged_fine(), G1GCPhaseTimes::MergeRSMergedFine);
1139       p->record_or_add_thread_work_item(merge_remset_phase, worker_id, cl.merged_coarse(), G1GCPhaseTimes::MergeRSMergedCoarse);
1140     }
1141 
1142     // Merge remembered sets of current candidates.
1143     {
1144       G1GCParPhaseTimesTracker x(p, merge_remset_phase, worker_id, _initial_evacuation /* must_record */);
1145       G1MergeCardSetClosure cl(_scan_state);
1146       g1h->collection_set_iterate_increment_from(&cl, &_hr_claimer, worker_id);
1147 
1148       p->record_or_add_thread_work_item(merge_remset_phase, worker_id, cl.merged_sparse(), G1GCPhaseTimes::MergeRSMergedSparse);
1149       p->record_or_add_thread_work_item(merge_remset_phase, worker_id, cl.merged_fine(), G1GCPhaseTimes::MergeRSMergedFine);
1150       p->record_or_add_thread_work_item(merge_remset_phase, worker_id, cl.merged_coarse(), G1GCPhaseTimes::MergeRSMergedCoarse);
1151     }
1152 
1153     // Apply closure to log entries in the HCC.
1154     if (_initial_evacuation && G1HotCardCache::default_use_cache()) {
1155       assert(merge_remset_phase == G1GCPhaseTimes::MergeRS, "Wrong merge phase");
1156       G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::MergeHCC, worker_id);
1157       G1MergeLogBufferCardsClosure cl(g1h, _scan_state);
1158       g1h->iterate_hcc_closure(&cl, worker_id);
1159 
1160       p->record_thread_work_item(G1GCPhaseTimes::MergeHCC, worker_id, cl.cards_dirty(), G1GCPhaseTimes::MergeHCCDirtyCards);
1161       p->record_thread_work_item(G1GCPhaseTimes::MergeHCC, worker_id, cl.cards_skipped(), G1GCPhaseTimes::MergeHCCSkippedCards);
1162     }
1163 
1164     // Now apply the closure to all remaining log entries.
1165     if (_initial_evacuation) {
1166       assert(merge_remset_phase == G1GCPhaseTimes::MergeRS, "Wrong merge phase");
1167       G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::MergeLB, worker_id);
1168 
1169       G1MergeLogBufferCardsClosure cl(g1h, _scan_state);
1170       apply_closure_to_dirty_card_buffers(&cl, worker_id);
1171 
1172       p->record_thread_work_item(G1GCPhaseTimes::MergeLB, worker_id, cl.cards_dirty(), G1GCPhaseTimes::MergeLBDirtyCards);
1173       p->record_thread_work_item(G1GCPhaseTimes::MergeLB, worker_id, cl.cards_skipped(), G1GCPhaseTimes::MergeLBSkippedCards);
1174     }
1175   }
1176 };
1177 
1178 void G1RemSet::print_merge_heap_roots_stats() {
1179   size_t num_visited_cards = _scan_state->num_visited_cards();
1180 
1181   size_t total_dirty_region_cards = _scan_state->num_cards_in_dirty_regions();
1182 
1183   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1184   size_t total_old_region_cards =
1185     (g1h->num_regions() - (g1h->num_free_regions() - g1h->collection_set()->cur_length())) * HeapRegion::CardsPerRegion;
1186 
1187   log_debug(gc,remset)("Visited cards " SIZE_FORMAT " Total dirty " SIZE_FORMAT " (%.2lf%%) Total old " SIZE_FORMAT " (%.2lf%%)",
1188                        num_visited_cards,
1189                        total_dirty_region_cards,
1190                        percent_of(num_visited_cards, total_dirty_region_cards),
1191                        total_old_region_cards,
1192                        percent_of(num_visited_cards, total_old_region_cards));
1193 }
1194 
1195 void G1RemSet::merge_heap_roots(bool initial_evacuation) {
1196   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1197 
1198   {
1199     Ticks start = Ticks::now();
1200 
1201     _scan_state->prepare_for_merge_heap_roots();
1202 
1203     Tickspan total = Ticks::now() - start;
1204     if (initial_evacuation) {
1205       g1h->phase_times()->record_prepare_merge_heap_roots_time(total.seconds() * 1000.0);
1206     } else {
1207       g1h->phase_times()->record_or_add_optional_prepare_merge_heap_roots_time(total.seconds() * 1000.0);
1208     }
1209   }
1210 
1211   WorkGang* workers = g1h->workers();
1212   size_t const increment_length = g1h->collection_set()->increment_length();
1213 
1214   uint const num_workers = initial_evacuation ? workers->active_workers() :
1215                                                 MIN2(workers->active_workers(), (uint)increment_length);
1216 
1217   {
1218     G1MergeHeapRootsTask cl(_scan_state, num_workers, initial_evacuation);
1219     log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " regions",
1220                         cl.name(), num_workers, increment_length);
1221     workers->run_task(&cl, num_workers);
1222   }
1223 
1224   if (log_is_enabled(Debug, gc, remset)) {
1225     print_merge_heap_roots_stats();
1226   }
1227 }
1228 
1229 void G1RemSet::prepare_for_scan_heap_roots(uint region_idx) {
1230   _scan_state->clear_scan_top(region_idx);
1231 }
1232 
1233 void G1RemSet::cleanup_after_scan_heap_roots() {
1234   G1GCPhaseTimes* phase_times = _g1h->phase_times();
1235 
1236   // Set all cards back to clean.
1237   double start = os::elapsedTime();
1238   _scan_state->cleanup(_g1h->workers());
1239   phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0);
1240 }
1241 
1242 inline void check_card_ptr(CardTable::CardValue* card_ptr, G1CardTable* ct) {
1243 #ifdef ASSERT
1244   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1245   assert(g1h->is_in_exact(ct->addr_for(card_ptr)),
1246          "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
1247          p2i(card_ptr),
1248          ct->index_for(ct->addr_for(card_ptr)),
1249          p2i(ct->addr_for(card_ptr)),
1250          g1h->addr_to_region(ct->addr_for(card_ptr)));
1251 #endif
1252 }
1253 
1254 void G1RemSet::refine_card_concurrently(CardValue* card_ptr,
1255                                         uint worker_id) {
1256   assert(!_g1h->is_gc_active(), "Only call concurrently");
1257 
1258   // Construct the region representing the card.
1259   HeapWord* start = _ct->addr_for(card_ptr);
1260   // And find the region containing it.
1261   HeapRegion* r = _g1h->heap_region_containing_or_null(start);
1262 
1263   // If this is a (stale) card into an uncommitted region, exit.
1264   if (r == NULL) {
1265     return;
1266   }
1267 
1268   check_card_ptr(card_ptr, _ct);
1269 
1270   // If the card is no longer dirty, nothing to do.
1271   if (*card_ptr != G1CardTable::dirty_card_val()) {
1272     return;
1273   }
1274 
1275   // This check is needed for some uncommon cases where we should
1276   // ignore the card.
1277   //
1278   // The region could be young.  Cards for young regions are
1279   // distinctly marked (set to g1_young_gen), so the post-barrier will
1280   // filter them out.  However, that marking is performed
1281   // concurrently.  A write to a young object could occur before the
1282   // card has been marked young, slipping past the filter.
1283   //
1284   // The card could be stale, because the region has been freed since
1285   // the card was recorded. In this case the region type could be
1286   // anything.  If (still) free or (reallocated) young, just ignore
1287   // it.  If (reallocated) old or humongous, the later card trimming
1288   // and additional checks in iteration may detect staleness.  At
1289   // worst, we end up processing a stale card unnecessarily.
1290   //
1291   // In the normal (non-stale) case, the synchronization between the
1292   // enqueueing of the card and processing it here will have ensured
1293   // we see the up-to-date region type here.
1294   if (!r->is_old_or_humongous_or_archive()) {
1295     return;
1296   }
1297 
1298   // The result from the hot card cache insert call is either:
1299   //   * pointer to the current card
1300   //     (implying that the current card is not 'hot'),
1301   //   * null
1302   //     (meaning we had inserted the card ptr into the "hot" card cache,
1303   //     which had some headroom),
1304   //   * a pointer to a "hot" card that was evicted from the "hot" cache.
1305   //
1306 
1307   if (_hot_card_cache->use_cache()) {
1308     assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
1309 
1310     const CardValue* orig_card_ptr = card_ptr;
1311     card_ptr = _hot_card_cache->insert(card_ptr);
1312     if (card_ptr == NULL) {
1313       // There was no eviction. Nothing to do.
1314       return;
1315     } else if (card_ptr != orig_card_ptr) {
1316       // Original card was inserted and an old card was evicted.
1317       start = _ct->addr_for(card_ptr);
1318       r = _g1h->heap_region_containing(start);
1319 
1320       // Check whether the region formerly in the cache should be
1321       // ignored, as discussed earlier for the original card.  The
1322       // region could have been freed while in the cache.
1323       if (!r->is_old_or_humongous_or_archive()) {
1324         return;
1325       }
1326     } // Else we still have the original card.
1327   }
1328 
1329   // Trim the region designated by the card to what's been allocated
1330   // in the region.  The card could be stale, or the card could cover
1331   // (part of) an object at the end of the allocated space and extend
1332   // beyond the end of allocation.
1333 
1334   // Non-humongous objects are only allocated in the old-gen during
1335   // GC, so if region is old then top is stable.  Humongous object
1336   // allocation sets top last; if top has not yet been set, this is
1337   // a stale card and we'll end up with an empty intersection.  If
1338   // this is not a stale card, the synchronization between the
1339   // enqueuing of the card and processing it here will have ensured
1340   // we see the up-to-date top here.
1341   HeapWord* scan_limit = r->top();
1342 
1343   if (scan_limit <= start) {
1344     // If the trimmed region is empty, the card must be stale.
1345     return;
1346   }
1347 
1348   // Okay to clean and process the card now.  There are still some
1349   // stale card cases that may be detected by iteration and dealt with
1350   // as iteration failure.
1351   *const_cast<volatile CardValue*>(card_ptr) = G1CardTable::clean_card_val();
1352 
1353   // This fence serves two purposes.  First, the card must be cleaned
1354   // before processing the contents.  Second, we can't proceed with
1355   // processing until after the read of top, for synchronization with
1356   // possibly concurrent humongous object allocation.  It's okay that
1357   // reading top and reading type were racy wrto each other.  We need
1358   // both set, in any order, to proceed.
1359   OrderAccess::fence();
1360 
1361   // Don't use addr_for(card_ptr + 1) which can ask for
1362   // a card beyond the heap.
1363   HeapWord* end = start + G1CardTable::card_size_in_words;
1364   MemRegion dirty_region(start, MIN2(scan_limit, end));
1365   assert(!dirty_region.is_empty(), "sanity");
1366 
1367   G1ConcurrentRefineOopClosure conc_refine_cl(_g1h, worker_id);
1368   if (r->oops_on_memregion_seq_iterate_careful<false>(dirty_region, &conc_refine_cl) != NULL) {
1369     return;
1370   }
1371 
1372   // If unable to process the card then we encountered an unparsable
1373   // part of the heap (e.g. a partially allocated object, so only
1374   // temporarily a problem) while processing a stale card.  Despite
1375   // the card being stale, we can't simply ignore it, because we've
1376   // already marked the card cleaned, so taken responsibility for
1377   // ensuring the card gets scanned.
1378   //
1379   // However, the card might have gotten re-dirtied and re-enqueued
1380   // while we worked.  (In fact, it's pretty likely.)
1381   if (*card_ptr == G1CardTable::dirty_card_val()) {
1382     return;
1383   }
1384 
1385   // Re-dirty the card and enqueue in the *shared* queue.  Can't use
1386   // the thread-local queue, because that might be the queue that is
1387   // being processed by us; we could be a Java thread conscripted to
1388   // perform refinement on our queue's current buffer.
1389   *card_ptr = G1CardTable::dirty_card_val();
1390   G1BarrierSet::shared_dirty_card_queue().enqueue(card_ptr);
1391 }
1392 
1393 void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) {
1394   if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
1395       (period_count % G1SummarizeRSetStatsPeriod == 0)) {
1396 
1397     G1RemSetSummary current;
1398     _prev_period_summary.subtract_from(&current);
1399 
1400     Log(gc, remset) log;
1401     log.trace("%s", header);
1402     ResourceMark rm;
1403     LogStream ls(log.trace());
1404     _prev_period_summary.print_on(&ls);
1405 
1406     _prev_period_summary.set(&current);
1407   }
1408 }
1409 
1410 void G1RemSet::print_summary_info() {
1411   Log(gc, remset, exit) log;
1412   if (log.is_trace()) {
1413     log.trace(" Cumulative RS summary");
1414     G1RemSetSummary current;
1415     ResourceMark rm;
1416     LogStream ls(log.trace());
1417     current.print_on(&ls);
1418   }
1419 }
1420 
1421 class G1RebuildRemSetTask: public AbstractGangTask {
1422   // Aggregate the counting data that was constructed concurrently
1423   // with marking.
1424   class G1RebuildRemSetHeapRegionClosure : public HeapRegionClosure {
1425     G1ConcurrentMark* _cm;
1426     G1RebuildRemSetClosure _update_cl;
1427 
1428     // Applies _update_cl to the references of the given object, limiting objArrays
1429     // to the given MemRegion. Returns the amount of words actually scanned.
1430     size_t scan_for_references(oop const obj, MemRegion mr) {
1431       size_t const obj_size = obj->size();
1432       // All non-objArrays and objArrays completely within the mr
1433       // can be scanned without passing the mr.
1434       if (!obj->is_objArray() || mr.contains(MemRegion((HeapWord*)obj, obj_size))) {
1435         obj->oop_iterate(&_update_cl);
1436         return obj_size;
1437       }
1438       // This path is for objArrays crossing the given MemRegion. Only scan the
1439       // area within the MemRegion.
1440       obj->oop_iterate(&_update_cl, mr);
1441       return mr.intersection(MemRegion((HeapWord*)obj, obj_size)).word_size();
1442     }
1443 
1444     // A humongous object is live (with respect to the scanning) either
1445     // a) it is marked on the bitmap as such
1446     // b) its TARS is larger than TAMS, i.e. has been allocated during marking.
1447     bool is_humongous_live(oop const humongous_obj, const G1CMBitMap* const bitmap, HeapWord* tams, HeapWord* tars) const {
1448       return bitmap->is_marked(humongous_obj) || (tars > tams);
1449     }
1450 
1451     // Iterator over the live objects within the given MemRegion.
1452     class LiveObjIterator : public StackObj {
1453       const G1CMBitMap* const _bitmap;
1454       const HeapWord* _tams;
1455       const MemRegion _mr;
1456       HeapWord* _current;
1457 
1458       bool is_below_tams() const {
1459         return _current < _tams;
1460       }
1461 
1462       bool is_live(HeapWord* obj) const {
1463         return !is_below_tams() || _bitmap->is_marked(obj);
1464       }
1465 
1466       HeapWord* bitmap_limit() const {
1467         return MIN2(const_cast<HeapWord*>(_tams), _mr.end());
1468       }
1469 
1470       void move_if_below_tams() {
1471         if (is_below_tams() && has_next()) {
1472           _current = _bitmap->get_next_marked_addr(_current, bitmap_limit());
1473         }
1474       }
1475     public:
1476       LiveObjIterator(const G1CMBitMap* const bitmap, const HeapWord* tams, const MemRegion mr, HeapWord* first_oop_into_mr) :
1477           _bitmap(bitmap),
1478           _tams(tams),
1479           _mr(mr),
1480           _current(first_oop_into_mr) {
1481 
1482         assert(_current <= _mr.start(),
1483                "First oop " PTR_FORMAT " should extend into mr [" PTR_FORMAT ", " PTR_FORMAT ")",
1484                p2i(first_oop_into_mr), p2i(mr.start()), p2i(mr.end()));
1485 
1486         // Step to the next live object within the MemRegion if needed.
1487         if (is_live(_current)) {
1488           // Non-objArrays were scanned by the previous part of that region.
1489           if (_current < mr.start() && !oop(_current)->is_objArray()) {
1490             _current += oop(_current)->size();
1491             // We might have positioned _current on a non-live object. Reposition to the next
1492             // live one if needed.
1493             move_if_below_tams();
1494           }
1495         } else {
1496           // The object at _current can only be dead if below TAMS, so we can use the bitmap.
1497           // immediately.
1498           _current = _bitmap->get_next_marked_addr(_current, bitmap_limit());
1499           assert(_current == _mr.end() || is_live(_current),
1500                  "Current " PTR_FORMAT " should be live (%s) or beyond the end of the MemRegion (" PTR_FORMAT ")",
1501                  p2i(_current), BOOL_TO_STR(is_live(_current)), p2i(_mr.end()));
1502         }
1503       }
1504 
1505       void move_to_next() {
1506         _current += next()->size();
1507         move_if_below_tams();
1508       }
1509 
1510       oop next() const {
1511         oop result = oop(_current);
1512         assert(is_live(_current),
1513                "Object " PTR_FORMAT " must be live TAMS " PTR_FORMAT " below %d mr " PTR_FORMAT " " PTR_FORMAT " outside %d",
1514                p2i(_current), p2i(_tams), _tams > _current, p2i(_mr.start()), p2i(_mr.end()), _mr.contains(result));
1515         return result;
1516       }
1517 
1518       bool has_next() const {
1519         return _current < _mr.end();
1520       }
1521     };
1522 
1523     // Rebuild remembered sets in the part of the region specified by mr and hr.
1524     // Objects between the bottom of the region and the TAMS are checked for liveness
1525     // using the given bitmap. Objects between TAMS and TARS are assumed to be live.
1526     // Returns the number of live words between bottom and TAMS.
1527     size_t rebuild_rem_set_in_region(const G1CMBitMap* const bitmap,
1528                                      HeapWord* const top_at_mark_start,
1529                                      HeapWord* const top_at_rebuild_start,
1530                                      HeapRegion* hr,
1531                                      MemRegion mr) {
1532       size_t marked_words = 0;
1533 
1534       if (hr->is_humongous()) {
1535         oop const humongous_obj = oop(hr->humongous_start_region()->bottom());
1536         if (is_humongous_live(humongous_obj, bitmap, top_at_mark_start, top_at_rebuild_start)) {
1537           // We need to scan both [bottom, TAMS) and [TAMS, top_at_rebuild_start);
1538           // however in case of humongous objects it is sufficient to scan the encompassing
1539           // area (top_at_rebuild_start is always larger or equal to TAMS) as one of the
1540           // two areas will be zero sized. I.e. TAMS is either
1541           // the same as bottom or top(_at_rebuild_start). There is no way TAMS has a different
1542           // value: this would mean that TAMS points somewhere into the object.
1543           assert(hr->top() == top_at_mark_start || hr->top() == top_at_rebuild_start,
1544                  "More than one object in the humongous region?");
1545           humongous_obj->oop_iterate(&_update_cl, mr);
1546           return top_at_mark_start != hr->bottom() ? mr.intersection(MemRegion((HeapWord*)humongous_obj, humongous_obj->size())).byte_size() : 0;
1547         } else {
1548           return 0;
1549         }
1550       }
1551 
1552       for (LiveObjIterator it(bitmap, top_at_mark_start, mr, hr->block_start(mr.start())); it.has_next(); it.move_to_next()) {
1553         oop obj = it.next();
1554         size_t scanned_size = scan_for_references(obj, mr);
1555         if ((HeapWord*)obj < top_at_mark_start) {
1556           marked_words += scanned_size;
1557         }
1558       }
1559 
1560       return marked_words * HeapWordSize;
1561     }
1562 public:
1563   G1RebuildRemSetHeapRegionClosure(G1CollectedHeap* g1h,
1564                                    G1ConcurrentMark* cm,
1565                                    uint worker_id) :
1566     HeapRegionClosure(),
1567     _cm(cm),
1568     _update_cl(g1h, worker_id) { }
1569 
1570     bool do_heap_region(HeapRegion* hr) {
1571       if (_cm->has_aborted()) {
1572         return true;
1573       }
1574 
1575       uint const region_idx = hr->hrm_index();
1576       DEBUG_ONLY(HeapWord* const top_at_rebuild_start_check = _cm->top_at_rebuild_start(region_idx);)
1577       assert(top_at_rebuild_start_check == NULL ||
1578              top_at_rebuild_start_check > hr->bottom(),
1579              "A TARS (" PTR_FORMAT ") == bottom() (" PTR_FORMAT ") indicates the old region %u is empty (%s)",
1580              p2i(top_at_rebuild_start_check), p2i(hr->bottom()),  region_idx, hr->get_type_str());
1581 
1582       size_t total_marked_bytes = 0;
1583       size_t const chunk_size_in_words = G1RebuildRemSetChunkSize / HeapWordSize;
1584 
1585       HeapWord* const top_at_mark_start = hr->prev_top_at_mark_start();
1586 
1587       HeapWord* cur = hr->bottom();
1588       while (cur < hr->end()) {
1589         // After every iteration (yield point) we need to check whether the region's
1590         // TARS changed due to e.g. eager reclaim.
1591         HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);
1592         if (top_at_rebuild_start == NULL) {
1593           return false;
1594         }
1595 
1596         MemRegion next_chunk = MemRegion(hr->bottom(), top_at_rebuild_start).intersection(MemRegion(cur, chunk_size_in_words));
1597         if (next_chunk.is_empty()) {
1598           break;
1599         }
1600 
1601         const Ticks start = Ticks::now();
1602         size_t marked_bytes = rebuild_rem_set_in_region(_cm->prev_mark_bitmap(),
1603                                                         top_at_mark_start,
1604                                                         top_at_rebuild_start,
1605                                                         hr,
1606                                                         next_chunk);
1607         Tickspan time = Ticks::now() - start;
1608 
1609         log_trace(gc, remset, tracking)("Rebuilt region %u "
1610                                         "live " SIZE_FORMAT " "
1611                                         "time %.3fms "
1612                                         "marked bytes " SIZE_FORMAT " "
1613                                         "bot " PTR_FORMAT " "
1614                                         "TAMS " PTR_FORMAT " "
1615                                         "TARS " PTR_FORMAT,
1616                                         region_idx,
1617                                         _cm->liveness(region_idx) * HeapWordSize,
1618                                         time.seconds() * 1000.0,
1619                                         marked_bytes,
1620                                         p2i(hr->bottom()),
1621                                         p2i(top_at_mark_start),
1622                                         p2i(top_at_rebuild_start));
1623 
1624         if (marked_bytes > 0) {
1625           total_marked_bytes += marked_bytes;
1626         }
1627         cur += chunk_size_in_words;
1628 
1629         _cm->do_yield_check();
1630         if (_cm->has_aborted()) {
1631           return true;
1632         }
1633       }
1634       // In the final iteration of the loop the region might have been eagerly reclaimed.
1635       // Simply filter out those regions. We can not just use region type because there
1636       // might have already been new allocations into these regions.
1637       DEBUG_ONLY(HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);)
1638       assert(top_at_rebuild_start == NULL ||
1639              total_marked_bytes == hr->marked_bytes(),
1640              "Marked bytes " SIZE_FORMAT " for region %u (%s) in [bottom, TAMS) do not match calculated marked bytes " SIZE_FORMAT " "
1641              "(" PTR_FORMAT " " PTR_FORMAT " " PTR_FORMAT ")",
1642              total_marked_bytes, hr->hrm_index(), hr->get_type_str(), hr->marked_bytes(),
1643              p2i(hr->bottom()), p2i(top_at_mark_start), p2i(top_at_rebuild_start));
1644        // Abort state may have changed after the yield check.
1645       return _cm->has_aborted();
1646     }
1647   };
1648 
1649   HeapRegionClaimer _hr_claimer;
1650   G1ConcurrentMark* _cm;
1651 
1652   uint _worker_id_offset;
1653 public:
1654   G1RebuildRemSetTask(G1ConcurrentMark* cm,
1655                       uint n_workers,
1656                       uint worker_id_offset) :
1657       AbstractGangTask("G1 Rebuild Remembered Set"),
1658       _hr_claimer(n_workers),
1659       _cm(cm),
1660       _worker_id_offset(worker_id_offset) {
1661   }
1662 
1663   void work(uint worker_id) {
1664     SuspendibleThreadSetJoiner sts_join;
1665 
1666     G1CollectedHeap* g1h = G1CollectedHeap::heap();
1667 
1668     G1RebuildRemSetHeapRegionClosure cl(g1h, _cm, _worker_id_offset + worker_id);
1669     g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hr_claimer, worker_id);
1670   }
1671 };
1672 
1673 void G1RemSet::rebuild_rem_set(G1ConcurrentMark* cm,
1674                                WorkGang* workers,
1675                                uint worker_id_offset) {
1676   uint num_workers = workers->active_workers();
1677 
1678   G1RebuildRemSetTask cl(cm,
1679                          num_workers,
1680                          worker_id_offset);
1681   workers->run_task(&cl, num_workers);
1682 }