1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1HeapRegionTraceType.hpp"
  31 #include "gc/g1/g1NUMA.hpp"
  32 #include "gc/g1/g1OopClosures.inline.hpp"
  33 #include "gc/g1/heapRegion.inline.hpp"
  34 #include "gc/g1/heapRegionBounds.inline.hpp"
  35 #include "gc/g1/heapRegionManager.inline.hpp"
  36 #include "gc/g1/heapRegionRemSet.hpp"
  37 #include "gc/g1/heapRegionTracer.hpp"
  38 #include "gc/shared/genOopClosures.inline.hpp"
  39 #include "logging/log.hpp"
  40 #include "logging/logStream.hpp"
  41 #include "memory/iterator.inline.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "oops/access.inline.hpp"
  44 #include "oops/compressedOops.inline.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "runtime/atomic.hpp"
  47 #include "runtime/orderAccess.hpp"
  48 
  49 int    HeapRegion::LogOfHRGrainBytes = 0;
  50 int    HeapRegion::LogOfHRGrainWords = 0;
  51 int    HeapRegion::LogCardsPerRegion = 0;
  52 size_t HeapRegion::GrainBytes        = 0;
  53 size_t HeapRegion::GrainWords        = 0;
  54 size_t HeapRegion::CardsPerRegion    = 0;
  55 
  56 size_t HeapRegion::max_region_size() {
  57   return HeapRegionBounds::max_size();
  58 }
  59 
  60 size_t HeapRegion::min_region_size_in_words() {
  61   return HeapRegionBounds::min_size() >> LogHeapWordSize;
  62 }
  63 
  64 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
  65   size_t region_size = G1HeapRegionSize;
  66   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
  67     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
  68     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
  69                        HeapRegionBounds::min_size());
  70   }
  71 
  72   int region_size_log = log2_long((jlong) region_size);
  73   // Recalculate the region size to make sure it's a power of
  74   // 2. This means that region_size is the largest power of 2 that's
  75   // <= what we've calculated so far.
  76   region_size = ((size_t)1 << region_size_log);
  77 
  78   // Now make sure that we don't go over or under our limits.
  79   if (region_size < HeapRegionBounds::min_size()) {
  80     region_size = HeapRegionBounds::min_size();
  81   } else if (region_size > HeapRegionBounds::max_size()) {
  82     region_size = HeapRegionBounds::max_size();
  83   }
  84 
  85   // And recalculate the log.
  86   region_size_log = log2_long((jlong) region_size);
  87 
  88   // Now, set up the globals.
  89   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
  90   LogOfHRGrainBytes = region_size_log;
  91 
  92   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
  93   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
  94 
  95   guarantee(GrainBytes == 0, "we should only set it once");
  96   // The cast to int is safe, given that we've bounded region_size by
  97   // MIN_REGION_SIZE and MAX_REGION_SIZE.
  98   GrainBytes = region_size;
  99   log_info(gc, heap)("Heap region size: " SIZE_FORMAT "M", GrainBytes / M);
 100 
 101   guarantee(GrainWords == 0, "we should only set it once");
 102   GrainWords = GrainBytes >> LogHeapWordSize;
 103   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 104 
 105   guarantee(CardsPerRegion == 0, "we should only set it once");
 106   CardsPerRegion = GrainBytes >> G1CardTable::card_shift;
 107 
 108   LogCardsPerRegion = log2_long((jlong) CardsPerRegion);
 109 
 110   if (G1HeapRegionSize != GrainBytes) {
 111     FLAG_SET_ERGO(G1HeapRegionSize, GrainBytes);
 112   }
 113 }
 114 
 115 void HeapRegion::handle_evacuation_failed() {
 116   uninstall_surv_rate_group();
 117   clear_young_index_in_cset();
 118   set_evacuation_failed(false);
 119   set_old();
 120 }
 121 
 122 void HeapRegion::unlink_from_list() {
 123   set_next(NULL);
 124   set_prev(NULL);
 125   set_containing_set(NULL);
 126 }
 127 
 128 void HeapRegion::hr_clear(bool keep_remset, bool clear_space, bool locked) {
 129   assert(_humongous_start_region == NULL,
 130          "we should have already filtered out humongous regions");
 131   assert(!in_collection_set(),
 132          "Should not clear heap region %u in the collection set", hrm_index());
 133 
 134   clear_young_index_in_cset();
 135   clear_index_in_opt_cset();
 136   uninstall_surv_rate_group();
 137   set_free();
 138   reset_pre_dummy_top();
 139 
 140   if (!keep_remset) {
 141     if (locked) {
 142       rem_set()->clear_locked();
 143     } else {
 144       rem_set()->clear();
 145     }
 146   }
 147 
 148   zero_marked_bytes();
 149 
 150   init_top_at_mark_start();
 151   if (clear_space) clear(SpaceDecorator::Mangle);
 152 
 153   _evacuation_failed = false;
 154   _gc_efficiency = 0.0;
 155   _recorded_rs_length = 0;
 156   _predicted_elapsed_time_ms = 0.0;
 157 }
 158 
 159 void HeapRegion::clear_cardtable() {
 160   G1CardTable* ct = G1CollectedHeap::heap()->card_table();
 161   ct->clear(MemRegion(bottom(), end()));
 162 }
 163 
 164 void HeapRegion::calc_gc_efficiency() {
 165   // GC efficiency is the ratio of how much space would be
 166   // reclaimed over how long we predict it would take to reclaim it.
 167   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 168   G1Policy* policy = g1h->policy();
 169 
 170   // Retrieve a prediction of the elapsed time for this region for
 171   // a mixed gc because the region will only be evacuated during a
 172   // mixed gc.
 173   double region_elapsed_time_ms =
 174     policy->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 175   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 176 }
 177 
 178 void HeapRegion::set_free() {
 179   report_region_type_change(G1HeapRegionTraceType::Free);
 180   _type.set_free();
 181 }
 182 
 183 void HeapRegion::set_eden() {
 184   report_region_type_change(G1HeapRegionTraceType::Eden);
 185   _type.set_eden();
 186 }
 187 
 188 void HeapRegion::set_eden_pre_gc() {
 189   report_region_type_change(G1HeapRegionTraceType::Eden);
 190   _type.set_eden_pre_gc();
 191 }
 192 
 193 void HeapRegion::set_survivor() {
 194   report_region_type_change(G1HeapRegionTraceType::Survivor);
 195   _type.set_survivor();
 196 }
 197 
 198 void HeapRegion::move_to_old() {
 199   if (_type.relabel_as_old()) {
 200     report_region_type_change(G1HeapRegionTraceType::Old);
 201   }
 202 }
 203 
 204 void HeapRegion::set_old() {
 205   report_region_type_change(G1HeapRegionTraceType::Old);
 206   _type.set_old();
 207 }
 208 
 209 void HeapRegion::set_open_archive() {
 210   report_region_type_change(G1HeapRegionTraceType::OpenArchive);
 211   _type.set_open_archive();
 212 }
 213 
 214 void HeapRegion::set_closed_archive() {
 215   report_region_type_change(G1HeapRegionTraceType::ClosedArchive);
 216   _type.set_closed_archive();
 217 }
 218 
 219 void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) {
 220   assert(!is_humongous(), "sanity / pre-condition");
 221   assert(top() == bottom(), "should be empty");
 222 
 223   report_region_type_change(G1HeapRegionTraceType::StartsHumongous);
 224   _type.set_starts_humongous();
 225   _humongous_start_region = this;
 226 
 227   _bot_part.set_for_starts_humongous(obj_top, fill_size);
 228 }
 229 
 230 void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
 231   assert(!is_humongous(), "sanity / pre-condition");
 232   assert(top() == bottom(), "should be empty");
 233   assert(first_hr->is_starts_humongous(), "pre-condition");
 234 
 235   report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous);
 236   _type.set_continues_humongous();
 237   _humongous_start_region = first_hr;
 238 
 239   _bot_part.set_object_can_span(true);
 240 }
 241 
 242 void HeapRegion::clear_humongous() {
 243   assert(is_humongous(), "pre-condition");
 244 
 245   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 246   _humongous_start_region = NULL;
 247 
 248   _bot_part.set_object_can_span(false);
 249 }
 250 
 251 HeapRegion::HeapRegion(uint hrm_index,
 252                        G1BlockOffsetTable* bot,
 253                        MemRegion mr) :
 254   _bottom(mr.start()),
 255   _end(mr.end()),
 256   _top(NULL),
 257   _compaction_top(NULL),
 258   _bot_part(bot, this),
 259   _par_alloc_lock(Mutex::leaf, "HeapRegion par alloc lock", true),
 260   _pre_dummy_top(NULL),
 261   _rem_set(NULL),
 262   _hrm_index(hrm_index),
 263   _type(),
 264   _humongous_start_region(NULL),
 265   _evacuation_failed(false),
 266   _index_in_opt_cset(InvalidCSetIndex),
 267   _next(NULL), _prev(NULL),
 268 #ifdef ASSERT
 269   _containing_set(NULL),
 270 #endif
 271   _prev_top_at_mark_start(NULL), _next_top_at_mark_start(NULL),
 272   _prev_marked_bytes(0), _next_marked_bytes(0),
 273   _young_index_in_cset(-1),
 274   _surv_rate_group(NULL), _age_index(-1), _gc_efficiency(0.0),
 275   _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 276   _node_index(G1NUMA::UnknownNodeIndex)
 277 {
 278   assert(Universe::on_page_boundary(mr.start()) && Universe::on_page_boundary(mr.end()),
 279          "invalid space boundaries");
 280 
 281   _rem_set = new HeapRegionRemSet(bot, this);
 282   initialize();
 283 }
 284 
 285 void HeapRegion::initialize(bool clear_space, bool mangle_space) {
 286   assert(_rem_set->is_empty(), "Remembered set must be empty");
 287 
 288   if (clear_space) {
 289     clear(mangle_space);
 290   }
 291 
 292   set_top(bottom());
 293   set_compaction_top(bottom());
 294   reset_bot();
 295 
 296   hr_clear(false /*par*/, false /*clear_space*/);
 297 }
 298 
 299 void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) {
 300   HeapRegionTracer::send_region_type_change(_hrm_index,
 301                                             get_trace_type(),
 302                                             to,
 303                                             (uintptr_t)bottom(),
 304                                             used());
 305 }
 306 
 307 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 308                                                     bool during_conc_mark) {
 309   // We always recreate the prev marking info and we'll explicitly
 310   // mark all objects we find to be self-forwarded on the prev
 311   // bitmap. So all objects need to be below PTAMS.
 312   _prev_marked_bytes = 0;
 313 
 314   if (during_initial_mark) {
 315     // During initial-mark, we'll also explicitly mark all objects
 316     // we find to be self-forwarded on the next bitmap. So all
 317     // objects need to be below NTAMS.
 318     _next_top_at_mark_start = top();
 319     _next_marked_bytes = 0;
 320   } else if (during_conc_mark) {
 321     // During concurrent mark, all objects in the CSet (including
 322     // the ones we find to be self-forwarded) are implicitly live.
 323     // So all objects need to be above NTAMS.
 324     _next_top_at_mark_start = bottom();
 325     _next_marked_bytes = 0;
 326   }
 327 }
 328 
 329 void HeapRegion::note_self_forwarding_removal_end(size_t marked_bytes) {
 330   assert(marked_bytes <= used(),
 331          "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used());
 332   _prev_top_at_mark_start = top();
 333   _prev_marked_bytes = marked_bytes;
 334 }
 335 
 336 // Code roots support
 337 
 338 void HeapRegion::add_strong_code_root(nmethod* nm) {
 339   HeapRegionRemSet* hrrs = rem_set();
 340   hrrs->add_strong_code_root(nm);
 341 }
 342 
 343 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 344   assert_locked_or_safepoint(CodeCache_lock);
 345   HeapRegionRemSet* hrrs = rem_set();
 346   hrrs->add_strong_code_root_locked(nm);
 347 }
 348 
 349 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 350   HeapRegionRemSet* hrrs = rem_set();
 351   hrrs->remove_strong_code_root(nm);
 352 }
 353 
 354 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 355   HeapRegionRemSet* hrrs = rem_set();
 356   hrrs->strong_code_roots_do(blk);
 357 }
 358 
 359 class VerifyStrongCodeRootOopClosure: public OopClosure {
 360   const HeapRegion* _hr;
 361   bool _failures;
 362   bool _has_oops_in_region;
 363 
 364   template <class T> void do_oop_work(T* p) {
 365     T heap_oop = RawAccess<>::oop_load(p);
 366     if (!CompressedOops::is_null(heap_oop)) {
 367       oop obj = CompressedOops::decode_not_null(heap_oop);
 368 
 369       // Note: not all the oops embedded in the nmethod are in the
 370       // current region. We only look at those which are.
 371       if (_hr->is_in(obj)) {
 372         // Object is in the region. Check that its less than top
 373         if (_hr->top() <= (HeapWord*)obj) {
 374           // Object is above top
 375           log_error(gc, verify)("Object " PTR_FORMAT " in region " HR_FORMAT " is above top ",
 376                                 p2i(obj), HR_FORMAT_PARAMS(_hr));
 377           _failures = true;
 378           return;
 379         }
 380         // Nmethod has at least one oop in the current region
 381         _has_oops_in_region = true;
 382       }
 383     }
 384   }
 385 
 386 public:
 387   VerifyStrongCodeRootOopClosure(const HeapRegion* hr):
 388     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 389 
 390   void do_oop(narrowOop* p) { do_oop_work(p); }
 391   void do_oop(oop* p)       { do_oop_work(p); }
 392 
 393   bool failures()           { return _failures; }
 394   bool has_oops_in_region() { return _has_oops_in_region; }
 395 };
 396 
 397 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 398   const HeapRegion* _hr;
 399   bool _failures;
 400 public:
 401   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 402     _hr(hr), _failures(false) {}
 403 
 404   void do_code_blob(CodeBlob* cb) {
 405     nmethod* nm = (cb == NULL) ? NULL : cb->as_compiled_method()->as_nmethod_or_null();
 406     if (nm != NULL) {
 407       // Verify that the nemthod is live
 408       if (!nm->is_alive()) {
 409         log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots",
 410                               p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 411         _failures = true;
 412       } else {
 413         VerifyStrongCodeRootOopClosure oop_cl(_hr);
 414         nm->oops_do(&oop_cl);
 415         if (!oop_cl.has_oops_in_region()) {
 416           log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region",
 417                                 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 418           _failures = true;
 419         } else if (oop_cl.failures()) {
 420           log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT,
 421                                 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 422           _failures = true;
 423         }
 424       }
 425     }
 426   }
 427 
 428   bool failures()       { return _failures; }
 429 };
 430 
 431 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 432   if (!G1VerifyHeapRegionCodeRoots) {
 433     // We're not verifying code roots.
 434     return;
 435   }
 436   if (vo == VerifyOption_G1UseFullMarking) {
 437     // Marking verification during a full GC is performed after class
 438     // unloading, code cache unloading, etc so the strong code roots
 439     // attached to each heap region are in an inconsistent state. They won't
 440     // be consistent until the strong code roots are rebuilt after the
 441     // actual GC. Skip verifying the strong code roots in this particular
 442     // time.
 443     assert(VerifyDuringGC, "only way to get here");
 444     return;
 445   }
 446 
 447   HeapRegionRemSet* hrrs = rem_set();
 448   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 449 
 450   // if this region is empty then there should be no entries
 451   // on its strong code root list
 452   if (is_empty()) {
 453     if (strong_code_roots_length > 0) {
 454       log_error(gc, verify)("region " HR_FORMAT " is empty but has " SIZE_FORMAT " code root entries",
 455                             HR_FORMAT_PARAMS(this), strong_code_roots_length);
 456       *failures = true;
 457     }
 458     return;
 459   }
 460 
 461   if (is_continues_humongous()) {
 462     if (strong_code_roots_length > 0) {
 463       log_error(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries",
 464                             HR_FORMAT_PARAMS(this), strong_code_roots_length);
 465       *failures = true;
 466     }
 467     return;
 468   }
 469 
 470   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 471   strong_code_roots_do(&cb_cl);
 472 
 473   if (cb_cl.failures()) {
 474     *failures = true;
 475   }
 476 }
 477 
 478 void HeapRegion::print() const { print_on(tty); }
 479 
 480 void HeapRegion::print_on(outputStream* st) const {
 481   st->print("|%4u", this->_hrm_index);
 482   st->print("|" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT,
 483             p2i(bottom()), p2i(top()), p2i(end()));
 484   st->print("|%3d%%", (int) ((double) used() * 100 / capacity()));
 485   st->print("|%2s", get_short_type_str());
 486   if (in_collection_set()) {
 487     st->print("|CS");
 488   } else {
 489     st->print("|  ");
 490   }
 491   st->print("|TAMS " PTR_FORMAT ", " PTR_FORMAT "| %s ",
 492                p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()), rem_set()->get_state_str());
 493   if (UseNUMA) {
 494     G1NUMA* numa = G1NUMA::numa();
 495     if (node_index() < numa->num_active_nodes()) {
 496       st->print("|%d", numa->numa_id(node_index()));
 497     } else {
 498       st->print("|-");
 499     }
 500   }
 501   st->print_cr("");
 502 }
 503 
 504 class G1VerificationClosure : public BasicOopIterateClosure {
 505 protected:
 506   G1CollectedHeap* _g1h;
 507   G1CardTable *_ct;
 508   oop _containing_obj;
 509   bool _failures;
 510   int _n_failures;
 511   VerifyOption _vo;
 512 public:
 513   // _vo == UsePrevMarking -> use "prev" marking information,
 514   // _vo == UseNextMarking -> use "next" marking information,
 515   // _vo == UseFullMarking -> use "next" marking bitmap but no TAMS.
 516   G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 517     _g1h(g1h), _ct(g1h->card_table()),
 518     _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo) {
 519   }
 520 
 521   void set_containing_obj(oop obj) {
 522     _containing_obj = obj;
 523   }
 524 
 525   bool failures() { return _failures; }
 526   int n_failures() { return _n_failures; }
 527 
 528   void print_object(outputStream* out, oop obj) {
 529 #ifdef PRODUCT
 530     Klass* k = obj->klass();
 531     const char* class_name = k->external_name();
 532     out->print_cr("class name %s", class_name);
 533 #else // PRODUCT
 534     obj->print_on(out);
 535 #endif // PRODUCT
 536   }
 537 
 538   // This closure provides its own oop verification code.
 539   debug_only(virtual bool should_verify_oops() { return false; })
 540 };
 541 
 542 class VerifyLiveClosure : public G1VerificationClosure {
 543 public:
 544   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 545   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 546   virtual void do_oop(oop* p) { do_oop_work(p); }
 547 
 548   template <class T>
 549   void do_oop_work(T* p) {
 550     assert(_containing_obj != NULL, "Precondition");
 551     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 552       "Precondition");
 553     verify_liveness(p);
 554   }
 555 
 556   template <class T>
 557   void verify_liveness(T* p) {
 558     T heap_oop = RawAccess<>::oop_load(p);
 559     Log(gc, verify) log;
 560     if (!CompressedOops::is_null(heap_oop)) {
 561       oop obj = CompressedOops::decode_not_null(heap_oop);
 562       bool failed = false;
 563       if (!_g1h->is_in(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 564         MutexLocker x(ParGCRareEvent_lock,
 565           Mutex::_no_safepoint_check_flag);
 566 
 567         if (!_failures) {
 568           log.error("----------");
 569         }
 570         ResourceMark rm;
 571         if (!_g1h->is_in(obj)) {
 572           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 573           log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region " HR_FORMAT,
 574                     p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
 575           LogStream ls(log.error());
 576           print_object(&ls, _containing_obj);
 577           HeapRegion* const to = _g1h->heap_region_containing(obj);
 578           log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT " remset %s",
 579                     p2i(obj), HR_FORMAT_PARAMS(to), to->rem_set()->get_state_str());
 580         } else {
 581           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 582           HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj);
 583           log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region " HR_FORMAT,
 584                     p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
 585           LogStream ls(log.error());
 586           print_object(&ls, _containing_obj);
 587           log.error("points to dead obj " PTR_FORMAT " in region " HR_FORMAT,
 588                     p2i(obj), HR_FORMAT_PARAMS(to));
 589           print_object(&ls, obj);
 590         }
 591         log.error("----------");
 592         _failures = true;
 593         failed = true;
 594         _n_failures++;
 595       }
 596     }
 597   }
 598 };
 599 
 600 class VerifyRemSetClosure : public G1VerificationClosure {
 601 public:
 602   VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 603   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 604   virtual void do_oop(oop* p) { do_oop_work(p); }
 605 
 606   template <class T>
 607   void do_oop_work(T* p) {
 608     assert(_containing_obj != NULL, "Precondition");
 609     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 610       "Precondition");
 611     verify_remembered_set(p);
 612   }
 613 
 614   template <class T>
 615   void verify_remembered_set(T* p) {
 616     T heap_oop = RawAccess<>::oop_load(p);
 617     Log(gc, verify) log;
 618     if (!CompressedOops::is_null(heap_oop)) {
 619       oop obj = CompressedOops::decode_not_null(heap_oop);
 620       HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 621       HeapRegion* to = _g1h->heap_region_containing(obj);
 622       if (from != NULL && to != NULL &&
 623         from != to &&
 624         !to->is_pinned() &&
 625         to->rem_set()->is_complete()) {
 626         jbyte cv_obj = *_ct->byte_for_const(_containing_obj);
 627         jbyte cv_field = *_ct->byte_for_const(p);
 628         const jbyte dirty = G1CardTable::dirty_card_val();
 629 
 630         bool is_bad = !(from->is_young()
 631           || to->rem_set()->contains_reference(p)
 632           || (_containing_obj->is_objArray() ?
 633                 cv_field == dirty :
 634                 cv_obj == dirty || cv_field == dirty));
 635         if (is_bad) {
 636           MutexLocker x(ParGCRareEvent_lock,
 637             Mutex::_no_safepoint_check_flag);
 638 
 639           if (!_failures) {
 640             log.error("----------");
 641           }
 642           log.error("Missing rem set entry:");
 643           log.error("Field " PTR_FORMAT " of obj " PTR_FORMAT " in region " HR_FORMAT,
 644                     p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
 645           ResourceMark rm;
 646           LogStream ls(log.error());
 647           _containing_obj->print_on(&ls);
 648           log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT " remset %s",
 649                     p2i(obj), HR_FORMAT_PARAMS(to), to->rem_set()->get_state_str());
 650           if (oopDesc::is_oop(obj)) {
 651             obj->print_on(&ls);
 652           }
 653           log.error("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field);
 654           log.error("----------");
 655           _failures = true;
 656           _n_failures++;
 657         }
 658       }
 659     }
 660   }
 661 };
 662 
 663 // Closure that applies the given two closures in sequence.
 664 class G1Mux2Closure : public BasicOopIterateClosure {
 665   OopClosure* _c1;
 666   OopClosure* _c2;
 667 public:
 668   G1Mux2Closure(OopClosure *c1, OopClosure *c2) { _c1 = c1; _c2 = c2; }
 669   template <class T> inline void do_oop_work(T* p) {
 670     // Apply first closure; then apply the second.
 671     _c1->do_oop(p);
 672     _c2->do_oop(p);
 673   }
 674   virtual inline void do_oop(oop* p) { do_oop_work(p); }
 675   virtual inline void do_oop(narrowOop* p) { do_oop_work(p); }
 676 
 677   // This closure provides its own oop verification code.
 678   debug_only(virtual bool should_verify_oops() { return false; })
 679 };
 680 
 681 void HeapRegion::verify(VerifyOption vo,
 682                         bool* failures) const {
 683   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 684   *failures = false;
 685   HeapWord* p = bottom();
 686   HeapWord* prev_p = NULL;
 687   VerifyLiveClosure vl_cl(g1h, vo);
 688   VerifyRemSetClosure vr_cl(g1h, vo);
 689   bool is_region_humongous = is_humongous();
 690   size_t object_num = 0;
 691   while (p < top()) {
 692     oop obj = oop(p);
 693     size_t obj_size = block_size(p);
 694     object_num += 1;
 695 
 696     if (!g1h->is_obj_dead_cond(obj, this, vo)) {
 697       if (oopDesc::is_oop(obj)) {
 698         Klass* klass = obj->klass();
 699         bool is_metaspace_object = Metaspace::contains(klass);
 700         if (!is_metaspace_object) {
 701           log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 702                                 "not metadata", p2i(klass), p2i(obj));
 703           *failures = true;
 704           return;
 705         } else if (!klass->is_klass()) {
 706           log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 707                                 "not a klass", p2i(klass), p2i(obj));
 708           *failures = true;
 709           return;
 710         } else {
 711           vl_cl.set_containing_obj(obj);
 712           if (!g1h->collector_state()->in_full_gc() || G1VerifyRSetsDuringFullGC) {
 713             // verify liveness and rem_set
 714             vr_cl.set_containing_obj(obj);
 715             G1Mux2Closure mux(&vl_cl, &vr_cl);
 716             obj->oop_iterate(&mux);
 717 
 718             if (vr_cl.failures()) {
 719               *failures = true;
 720             }
 721             if (G1MaxVerifyFailures >= 0 &&
 722               vr_cl.n_failures() >= G1MaxVerifyFailures) {
 723               return;
 724             }
 725           } else {
 726             // verify only liveness
 727             obj->oop_iterate(&vl_cl);
 728           }
 729           if (vl_cl.failures()) {
 730             *failures = true;
 731           }
 732           if (G1MaxVerifyFailures >= 0 &&
 733               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 734             return;
 735           }
 736         }
 737       } else {
 738         log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
 739         *failures = true;
 740         return;
 741       }
 742     }
 743     prev_p = p;
 744     p += obj_size;
 745   }
 746 
 747   if (!is_young() && !is_empty()) {
 748     _bot_part.verify();
 749   }
 750 
 751   if (is_region_humongous) {
 752     oop obj = oop(this->humongous_start_region()->bottom());
 753     if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) {
 754       log_error(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj));
 755       *failures = true;
 756       return;
 757     }
 758   }
 759 
 760   if (!is_region_humongous && p != top()) {
 761     log_error(gc, verify)("end of last object " PTR_FORMAT " "
 762                           "does not match top " PTR_FORMAT, p2i(p), p2i(top()));
 763     *failures = true;
 764     return;
 765   }
 766 
 767   HeapWord* the_end = end();
 768   // Do some extra BOT consistency checking for addresses in the
 769   // range [top, end). BOT look-ups in this range should yield
 770   // top. No point in doing that if top == end (there's nothing there).
 771   if (p < the_end) {
 772     // Look up top
 773     HeapWord* addr_1 = p;
 774     HeapWord* b_start_1 = block_start_const(addr_1);
 775     if (b_start_1 != p) {
 776       log_error(gc, verify)("BOT look up for top: " PTR_FORMAT " "
 777                             " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 778                             p2i(addr_1), p2i(b_start_1), p2i(p));
 779       *failures = true;
 780       return;
 781     }
 782 
 783     // Look up top + 1
 784     HeapWord* addr_2 = p + 1;
 785     if (addr_2 < the_end) {
 786       HeapWord* b_start_2 = block_start_const(addr_2);
 787       if (b_start_2 != p) {
 788         log_error(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " "
 789                               " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 790                               p2i(addr_2), p2i(b_start_2), p2i(p));
 791         *failures = true;
 792         return;
 793       }
 794     }
 795 
 796     // Look up an address between top and end
 797     size_t diff = pointer_delta(the_end, p) / 2;
 798     HeapWord* addr_3 = p + diff;
 799     if (addr_3 < the_end) {
 800       HeapWord* b_start_3 = block_start_const(addr_3);
 801       if (b_start_3 != p) {
 802         log_error(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " "
 803                               " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 804                               p2i(addr_3), p2i(b_start_3), p2i(p));
 805         *failures = true;
 806         return;
 807       }
 808     }
 809 
 810     // Look up end - 1
 811     HeapWord* addr_4 = the_end - 1;
 812     HeapWord* b_start_4 = block_start_const(addr_4);
 813     if (b_start_4 != p) {
 814       log_error(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " "
 815                             " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 816                             p2i(addr_4), p2i(b_start_4), p2i(p));
 817       *failures = true;
 818       return;
 819     }
 820   }
 821 
 822   verify_strong_code_roots(vo, failures);
 823 }
 824 
 825 void HeapRegion::verify() const {
 826   bool dummy = false;
 827   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 828 }
 829 
 830 void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
 831   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 832   *failures = false;
 833   HeapWord* p = bottom();
 834   HeapWord* prev_p = NULL;
 835   VerifyRemSetClosure vr_cl(g1h, vo);
 836   while (p < top()) {
 837     oop obj = oop(p);
 838     size_t obj_size = block_size(p);
 839 
 840     if (!g1h->is_obj_dead_cond(obj, this, vo)) {
 841       if (oopDesc::is_oop(obj)) {
 842         vr_cl.set_containing_obj(obj);
 843         obj->oop_iterate(&vr_cl);
 844 
 845         if (vr_cl.failures()) {
 846           *failures = true;
 847         }
 848         if (G1MaxVerifyFailures >= 0 &&
 849           vr_cl.n_failures() >= G1MaxVerifyFailures) {
 850           return;
 851         }
 852       } else {
 853         log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
 854         *failures = true;
 855         return;
 856       }
 857     }
 858 
 859     prev_p = p;
 860     p += obj_size;
 861   }
 862 }
 863 
 864 void HeapRegion::verify_rem_set() const {
 865   bool failures = false;
 866   verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
 867   guarantee(!failures, "HeapRegion RemSet verification failed");
 868 }
 869 
 870 void HeapRegion::clear(bool mangle_space) {
 871   set_top(bottom());
 872   set_compaction_top(bottom());
 873 
 874   if (ZapUnusedHeapArea && mangle_space) {
 875     mangle_unused_area();
 876   }
 877   reset_bot();
 878 }
 879 
 880 #ifndef PRODUCT
 881 void HeapRegion::mangle_unused_area() {
 882   SpaceMangler::mangle_region(MemRegion(top(), end()));
 883 }
 884 #endif
 885 
 886 HeapWord* HeapRegion::initialize_threshold() {
 887   return _bot_part.initialize_threshold();
 888 }
 889 
 890 HeapWord* HeapRegion::cross_threshold(HeapWord* start, HeapWord* end) {
 891   _bot_part.alloc_block(start, end);
 892   return _bot_part.threshold();
 893 }
 894 
 895 void HeapRegion::object_iterate(ObjectClosure* blk) {
 896   HeapWord* p = bottom();
 897   while (p < top()) {
 898     if (block_is_obj(p)) {
 899       blk->do_object(oop(p));
 900     }
 901     p += block_size(p);
 902   }
 903 }