1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1Allocator.inline.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1YCTypes.hpp"
  57 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  58 #include "gc/g1/heapRegion.inline.hpp"
  59 #include "gc/g1/heapRegionRemSet.hpp"
  60 #include "gc/g1/heapRegionSet.inline.hpp"
  61 #include "gc/g1/vm_operations_g1.hpp"
  62 #include "gc/shared/gcHeapSummary.hpp"
  63 #include "gc/shared/gcId.hpp"
  64 #include "gc/shared/gcLocker.inline.hpp"
  65 #include "gc/shared/gcTimer.hpp"
  66 #include "gc/shared/gcTrace.hpp"
  67 #include "gc/shared/gcTraceTime.inline.hpp"
  68 #include "gc/shared/generationSpec.hpp"
  69 #include "gc/shared/isGCActiveMark.hpp"
  70 #include "gc/shared/preservedMarks.inline.hpp"
  71 #include "gc/shared/suspendibleThreadSet.hpp"
  72 #include "gc/shared/referenceProcessor.inline.hpp"
  73 #include "gc/shared/taskqueue.inline.hpp"
  74 #include "gc/shared/weakProcessor.hpp"
  75 #include "logging/log.hpp"
  76 #include "memory/allocation.hpp"
  77 #include "memory/iterator.hpp"
  78 #include "memory/resourceArea.hpp"
  79 #include "oops/oop.inline.hpp"
  80 #include "prims/resolvedMethodTable.hpp"
  81 #include "runtime/atomic.hpp"
  82 #include "runtime/init.hpp"
  83 #include "runtime/orderAccess.inline.hpp"
  84 #include "runtime/threadSMR.hpp"
  85 #include "runtime/vmThread.hpp"
  86 #include "utilities/align.hpp"
  87 #include "utilities/globalDefinitions.hpp"
  88 #include "utilities/stack.inline.hpp"
  89 
  90 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  91 
  92 // INVARIANTS/NOTES
  93 //
  94 // All allocation activity covered by the G1CollectedHeap interface is
  95 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  96 // and allocate_new_tlab, which are the "entry" points to the
  97 // allocation code from the rest of the JVM.  (Note that this does not
  98 // apply to TLAB allocation, which is not part of this interface: it
  99 // is done by clients of this interface.)
 100 
 101 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 102  private:
 103   size_t _num_dirtied;
 104   G1CollectedHeap* _g1h;
 105   G1SATBCardTableLoggingModRefBS* _g1_bs;
 106 
 107   HeapRegion* region_for_card(jbyte* card_ptr) const {
 108     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 109   }
 110 
 111   bool will_become_free(HeapRegion* hr) const {
 112     // A region will be freed by free_collection_set if the region is in the
 113     // collection set and has not had an evacuation failure.
 114     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 115   }
 116 
 117  public:
 118   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 119     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 120 
 121   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 122     HeapRegion* hr = region_for_card(card_ptr);
 123 
 124     // Should only dirty cards in regions that won't be freed.
 125     if (!will_become_free(hr)) {
 126       *card_ptr = CardTableModRefBS::dirty_card_val();
 127       _num_dirtied++;
 128     }
 129 
 130     return true;
 131   }
 132 
 133   size_t num_dirtied()   const { return _num_dirtied; }
 134 };
 135 
 136 
 137 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 138   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 139 }
 140 
 141 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 142   // The from card cache is not the memory that is actually committed. So we cannot
 143   // take advantage of the zero_filled parameter.
 144   reset_from_card_cache(start_idx, num_regions);
 145 }
 146 
 147 
 148 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 149                                              MemRegion mr) {
 150   return new HeapRegion(hrs_index, bot(), mr);
 151 }
 152 
 153 // Private methods.
 154 
 155 HeapRegion*
 156 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 157   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 158   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 159     if (!_secondary_free_list.is_empty()) {
 160       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 161                                       "secondary_free_list has %u entries",
 162                                       _secondary_free_list.length());
 163       // It looks as if there are free regions available on the
 164       // secondary_free_list. Let's move them to the free_list and try
 165       // again to allocate from it.
 166       append_secondary_free_list();
 167 
 168       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 169              "empty we should have moved at least one entry to the free_list");
 170       HeapRegion* res = _hrm.allocate_free_region(is_old);
 171       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 172                                       "allocated " HR_FORMAT " from secondary_free_list",
 173                                       HR_FORMAT_PARAMS(res));
 174       return res;
 175     }
 176 
 177     // Wait here until we get notified either when (a) there are no
 178     // more free regions coming or (b) some regions have been moved on
 179     // the secondary_free_list.
 180     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 181   }
 182 
 183   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 184                                   "could not allocate from secondary_free_list");
 185   return NULL;
 186 }
 187 
 188 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 189   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 190          "the only time we use this to allocate a humongous region is "
 191          "when we are allocating a single humongous region");
 192 
 193   HeapRegion* res;
 194   if (G1StressConcRegionFreeing) {
 195     if (!_secondary_free_list.is_empty()) {
 196       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 197                                       "forced to look at the secondary_free_list");
 198       res = new_region_try_secondary_free_list(is_old);
 199       if (res != NULL) {
 200         return res;
 201       }
 202     }
 203   }
 204 
 205   res = _hrm.allocate_free_region(is_old);
 206 
 207   if (res == NULL) {
 208     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 209                                     "res == NULL, trying the secondary_free_list");
 210     res = new_region_try_secondary_free_list(is_old);
 211   }
 212   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 213     // Currently, only attempts to allocate GC alloc regions set
 214     // do_expand to true. So, we should only reach here during a
 215     // safepoint. If this assumption changes we might have to
 216     // reconsider the use of _expand_heap_after_alloc_failure.
 217     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 218 
 219     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 220                               word_size * HeapWordSize);
 221 
 222     if (expand(word_size * HeapWordSize)) {
 223       // Given that expand() succeeded in expanding the heap, and we
 224       // always expand the heap by an amount aligned to the heap
 225       // region size, the free list should in theory not be empty.
 226       // In either case allocate_free_region() will check for NULL.
 227       res = _hrm.allocate_free_region(is_old);
 228     } else {
 229       _expand_heap_after_alloc_failure = false;
 230     }
 231   }
 232   return res;
 233 }
 234 
 235 HeapWord*
 236 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 237                                                            uint num_regions,
 238                                                            size_t word_size,
 239                                                            AllocationContext_t context) {
 240   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 241   assert(is_humongous(word_size), "word_size should be humongous");
 242   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 243 
 244   // Index of last region in the series.
 245   uint last = first + num_regions - 1;
 246 
 247   // We need to initialize the region(s) we just discovered. This is
 248   // a bit tricky given that it can happen concurrently with
 249   // refinement threads refining cards on these regions and
 250   // potentially wanting to refine the BOT as they are scanning
 251   // those cards (this can happen shortly after a cleanup; see CR
 252   // 6991377). So we have to set up the region(s) carefully and in
 253   // a specific order.
 254 
 255   // The word size sum of all the regions we will allocate.
 256   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 257   assert(word_size <= word_size_sum, "sanity");
 258 
 259   // This will be the "starts humongous" region.
 260   HeapRegion* first_hr = region_at(first);
 261   // The header of the new object will be placed at the bottom of
 262   // the first region.
 263   HeapWord* new_obj = first_hr->bottom();
 264   // This will be the new top of the new object.
 265   HeapWord* obj_top = new_obj + word_size;
 266 
 267   // First, we need to zero the header of the space that we will be
 268   // allocating. When we update top further down, some refinement
 269   // threads might try to scan the region. By zeroing the header we
 270   // ensure that any thread that will try to scan the region will
 271   // come across the zero klass word and bail out.
 272   //
 273   // NOTE: It would not have been correct to have used
 274   // CollectedHeap::fill_with_object() and make the space look like
 275   // an int array. The thread that is doing the allocation will
 276   // later update the object header to a potentially different array
 277   // type and, for a very short period of time, the klass and length
 278   // fields will be inconsistent. This could cause a refinement
 279   // thread to calculate the object size incorrectly.
 280   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 281 
 282   // Next, pad out the unused tail of the last region with filler
 283   // objects, for improved usage accounting.
 284   // How many words we use for filler objects.
 285   size_t word_fill_size = word_size_sum - word_size;
 286 
 287   // How many words memory we "waste" which cannot hold a filler object.
 288   size_t words_not_fillable = 0;
 289 
 290   if (word_fill_size >= min_fill_size()) {
 291     fill_with_objects(obj_top, word_fill_size);
 292   } else if (word_fill_size > 0) {
 293     // We have space to fill, but we cannot fit an object there.
 294     words_not_fillable = word_fill_size;
 295     word_fill_size = 0;
 296   }
 297 
 298   // We will set up the first region as "starts humongous". This
 299   // will also update the BOT covering all the regions to reflect
 300   // that there is a single object that starts at the bottom of the
 301   // first region.
 302   first_hr->set_starts_humongous(obj_top, word_fill_size);
 303   first_hr->set_allocation_context(context);
 304   // Then, if there are any, we will set up the "continues
 305   // humongous" regions.
 306   HeapRegion* hr = NULL;
 307   for (uint i = first + 1; i <= last; ++i) {
 308     hr = region_at(i);
 309     hr->set_continues_humongous(first_hr);
 310     hr->set_allocation_context(context);
 311   }
 312 
 313   // Up to this point no concurrent thread would have been able to
 314   // do any scanning on any region in this series. All the top
 315   // fields still point to bottom, so the intersection between
 316   // [bottom,top] and [card_start,card_end] will be empty. Before we
 317   // update the top fields, we'll do a storestore to make sure that
 318   // no thread sees the update to top before the zeroing of the
 319   // object header and the BOT initialization.
 320   OrderAccess::storestore();
 321 
 322   // Now, we will update the top fields of the "continues humongous"
 323   // regions except the last one.
 324   for (uint i = first; i < last; ++i) {
 325     hr = region_at(i);
 326     hr->set_top(hr->end());
 327   }
 328 
 329   hr = region_at(last);
 330   // If we cannot fit a filler object, we must set top to the end
 331   // of the humongous object, otherwise we cannot iterate the heap
 332   // and the BOT will not be complete.
 333   hr->set_top(hr->end() - words_not_fillable);
 334 
 335   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 336          "obj_top should be in last region");
 337 
 338   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 339 
 340   assert(words_not_fillable == 0 ||
 341          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 342          "Miscalculation in humongous allocation");
 343 
 344   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 345 
 346   for (uint i = first; i <= last; ++i) {
 347     hr = region_at(i);
 348     _humongous_set.add(hr);
 349     _hr_printer.alloc(hr);
 350   }
 351 
 352   return new_obj;
 353 }
 354 
 355 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 356   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 357   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 358 }
 359 
 360 // If could fit into free regions w/o expansion, try.
 361 // Otherwise, if can expand, do so.
 362 // Otherwise, if using ex regions might help, try with ex given back.
 363 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 364   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 365 
 366   _verifier->verify_region_sets_optional();
 367 
 368   uint first = G1_NO_HRM_INDEX;
 369   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 370 
 371   if (obj_regions == 1) {
 372     // Only one region to allocate, try to use a fast path by directly allocating
 373     // from the free lists. Do not try to expand here, we will potentially do that
 374     // later.
 375     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 376     if (hr != NULL) {
 377       first = hr->hrm_index();
 378     }
 379   } else {
 380     // We can't allocate humongous regions spanning more than one region while
 381     // cleanupComplete() is running, since some of the regions we find to be
 382     // empty might not yet be added to the free list. It is not straightforward
 383     // to know in which list they are on so that we can remove them. We only
 384     // need to do this if we need to allocate more than one region to satisfy the
 385     // current humongous allocation request. If we are only allocating one region
 386     // we use the one-region region allocation code (see above), that already
 387     // potentially waits for regions from the secondary free list.
 388     wait_while_free_regions_coming();
 389     append_secondary_free_list_if_not_empty_with_lock();
 390 
 391     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 392     // are lucky enough to find some.
 393     first = _hrm.find_contiguous_only_empty(obj_regions);
 394     if (first != G1_NO_HRM_INDEX) {
 395       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 396     }
 397   }
 398 
 399   if (first == G1_NO_HRM_INDEX) {
 400     // Policy: We could not find enough regions for the humongous object in the
 401     // free list. Look through the heap to find a mix of free and uncommitted regions.
 402     // If so, try expansion.
 403     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 404     if (first != G1_NO_HRM_INDEX) {
 405       // We found something. Make sure these regions are committed, i.e. expand
 406       // the heap. Alternatively we could do a defragmentation GC.
 407       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 408                                     word_size * HeapWordSize);
 409 
 410       _hrm.expand_at(first, obj_regions, workers());
 411       g1_policy()->record_new_heap_size(num_regions());
 412 
 413 #ifdef ASSERT
 414       for (uint i = first; i < first + obj_regions; ++i) {
 415         HeapRegion* hr = region_at(i);
 416         assert(hr->is_free(), "sanity");
 417         assert(hr->is_empty(), "sanity");
 418         assert(is_on_master_free_list(hr), "sanity");
 419       }
 420 #endif
 421       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 422     } else {
 423       // Policy: Potentially trigger a defragmentation GC.
 424     }
 425   }
 426 
 427   HeapWord* result = NULL;
 428   if (first != G1_NO_HRM_INDEX) {
 429     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 430                                                        word_size, context);
 431     assert(result != NULL, "it should always return a valid result");
 432 
 433     // A successful humongous object allocation changes the used space
 434     // information of the old generation so we need to recalculate the
 435     // sizes and update the jstat counters here.
 436     g1mm()->update_sizes();
 437   }
 438 
 439   _verifier->verify_region_sets_optional();
 440 
 441   return result;
 442 }
 443 
 444 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 445   assert_heap_not_locked_and_not_at_safepoint();
 446   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 447 
 448   return attempt_allocation(word_size);
 449 }
 450 
 451 HeapWord*
 452 G1CollectedHeap::mem_allocate(size_t word_size,
 453                               bool*  gc_overhead_limit_was_exceeded) {
 454   assert_heap_not_locked_and_not_at_safepoint();
 455 
 456   if (is_humongous(word_size)) {
 457     return attempt_allocation_humongous(word_size);
 458   }
 459   return attempt_allocation(word_size);
 460 }
 461 
 462 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 463                                                    AllocationContext_t context) {
 464   ResourceMark rm; // For retrieving the thread names in log messages.
 465 
 466   // Make sure you read the note in attempt_allocation_humongous().
 467 
 468   assert_heap_not_locked_and_not_at_safepoint();
 469   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 470          "be called for humongous allocation requests");
 471 
 472   // We should only get here after the first-level allocation attempt
 473   // (attempt_allocation()) failed to allocate.
 474 
 475   // We will loop until a) we manage to successfully perform the
 476   // allocation or b) we successfully schedule a collection which
 477   // fails to perform the allocation. b) is the only case when we'll
 478   // return NULL.
 479   HeapWord* result = NULL;
 480   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 481     bool should_try_gc;
 482     uint gc_count_before;
 483 
 484     {
 485       MutexLockerEx x(Heap_lock);
 486       result = _allocator->attempt_allocation_locked(word_size, context);
 487       if (result != NULL) {
 488         return result;
 489       }
 490 
 491       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 492       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 493       // waiting because the GCLocker is active to not wait too long.
 494       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 495         // No need for an ergo message here, can_expand_young_list() does this when
 496         // it returns true.
 497         result = _allocator->attempt_allocation_force(word_size, context);
 498         if (result != NULL) {
 499           return result;
 500         }
 501       }
 502       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 503       // the GCLocker initiated GC has been performed and then retry. This includes
 504       // the case when the GC Locker is not active but has not been performed.
 505       should_try_gc = !GCLocker::needs_gc();
 506       // Read the GC count while still holding the Heap_lock.
 507       gc_count_before = total_collections();
 508     }
 509 
 510     if (should_try_gc) {
 511       bool succeeded;
 512       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 513                                    GCCause::_g1_inc_collection_pause);
 514       if (result != NULL) {
 515         assert(succeeded, "only way to get back a non-NULL result");
 516         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 517                              Thread::current()->name(), p2i(result));
 518         return result;
 519       }
 520 
 521       if (succeeded) {
 522         // We successfully scheduled a collection which failed to allocate. No
 523         // point in trying to allocate further. We'll just return NULL.
 524         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 525                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 526         return NULL;
 527       }
 528       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 529                            Thread::current()->name(), word_size);
 530     } else {
 531       // Failed to schedule a collection.
 532       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 533         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 534                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 535         return NULL;
 536       }
 537       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 538       // The GCLocker is either active or the GCLocker initiated
 539       // GC has not yet been performed. Stall until it is and
 540       // then retry the allocation.
 541       GCLocker::stall_until_clear();
 542       gclocker_retry_count += 1;
 543     }
 544 
 545     // We can reach here if we were unsuccessful in scheduling a
 546     // collection (because another thread beat us to it) or if we were
 547     // stalled due to the GC locker. In either can we should retry the
 548     // allocation attempt in case another thread successfully
 549     // performed a collection and reclaimed enough space. We do the
 550     // first attempt (without holding the Heap_lock) here and the
 551     // follow-on attempt will be at the start of the next loop
 552     // iteration (after taking the Heap_lock).
 553 
 554     result = _allocator->attempt_allocation(word_size, context);
 555     if (result != NULL) {
 556       return result;
 557     }
 558 
 559     // Give a warning if we seem to be looping forever.
 560     if ((QueuedAllocationWarningCount > 0) &&
 561         (try_count % QueuedAllocationWarningCount == 0)) {
 562       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 563                              Thread::current()->name(), try_count, word_size);
 564     }
 565   }
 566 
 567   ShouldNotReachHere();
 568   return NULL;
 569 }
 570 
 571 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 572   assert_at_safepoint(true /* should_be_vm_thread */);
 573   if (_archive_allocator == NULL) {
 574     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 575   }
 576 }
 577 
 578 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 579   // Allocations in archive regions cannot be of a size that would be considered
 580   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 581   // may be different at archive-restore time.
 582   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 583 }
 584 
 585 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 586   assert_at_safepoint(true /* should_be_vm_thread */);
 587   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 588   if (is_archive_alloc_too_large(word_size)) {
 589     return NULL;
 590   }
 591   return _archive_allocator->archive_mem_allocate(word_size);
 592 }
 593 
 594 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 595                                               size_t end_alignment_in_bytes) {
 596   assert_at_safepoint(true /* should_be_vm_thread */);
 597   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 598 
 599   // Call complete_archive to do the real work, filling in the MemRegion
 600   // array with the archive regions.
 601   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 602   delete _archive_allocator;
 603   _archive_allocator = NULL;
 604 }
 605 
 606 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 607   assert(ranges != NULL, "MemRegion array NULL");
 608   assert(count != 0, "No MemRegions provided");
 609   MemRegion reserved = _hrm.reserved();
 610   for (size_t i = 0; i < count; i++) {
 611     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 612       return false;
 613     }
 614   }
 615   return true;
 616 }
 617 
 618 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 619                                             size_t count,
 620                                             bool open) {
 621   assert(!is_init_completed(), "Expect to be called at JVM init time");
 622   assert(ranges != NULL, "MemRegion array NULL");
 623   assert(count != 0, "No MemRegions provided");
 624   MutexLockerEx x(Heap_lock);
 625 
 626   MemRegion reserved = _hrm.reserved();
 627   HeapWord* prev_last_addr = NULL;
 628   HeapRegion* prev_last_region = NULL;
 629 
 630   // Temporarily disable pretouching of heap pages. This interface is used
 631   // when mmap'ing archived heap data in, so pre-touching is wasted.
 632   FlagSetting fs(AlwaysPreTouch, false);
 633 
 634   // Enable archive object checking used by G1MarkSweep. We have to let it know
 635   // about each archive range, so that objects in those ranges aren't marked.
 636   G1ArchiveAllocator::enable_archive_object_check();
 637 
 638   // For each specified MemRegion range, allocate the corresponding G1
 639   // regions and mark them as archive regions. We expect the ranges
 640   // in ascending starting address order, without overlap.
 641   for (size_t i = 0; i < count; i++) {
 642     MemRegion curr_range = ranges[i];
 643     HeapWord* start_address = curr_range.start();
 644     size_t word_size = curr_range.word_size();
 645     HeapWord* last_address = curr_range.last();
 646     size_t commits = 0;
 647 
 648     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 649               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 650               p2i(start_address), p2i(last_address));
 651     guarantee(start_address > prev_last_addr,
 652               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 653               p2i(start_address), p2i(prev_last_addr));
 654     prev_last_addr = last_address;
 655 
 656     // Check for ranges that start in the same G1 region in which the previous
 657     // range ended, and adjust the start address so we don't try to allocate
 658     // the same region again. If the current range is entirely within that
 659     // region, skip it, just adjusting the recorded top.
 660     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 661     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 662       start_address = start_region->end();
 663       if (start_address > last_address) {
 664         increase_used(word_size * HeapWordSize);
 665         start_region->set_top(last_address + 1);
 666         continue;
 667       }
 668       start_region->set_top(start_address);
 669       curr_range = MemRegion(start_address, last_address + 1);
 670       start_region = _hrm.addr_to_region(start_address);
 671     }
 672 
 673     // Perform the actual region allocation, exiting if it fails.
 674     // Then note how much new space we have allocated.
 675     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 676       return false;
 677     }
 678     increase_used(word_size * HeapWordSize);
 679     if (commits != 0) {
 680       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 681                                 HeapRegion::GrainWords * HeapWordSize * commits);
 682 
 683     }
 684 
 685     // Mark each G1 region touched by the range as archive, add it to
 686     // the old set, and set the allocation context and top.
 687     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 688     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 689     prev_last_region = last_region;
 690 
 691     while (curr_region != NULL) {
 692       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 693              "Region already in use (index %u)", curr_region->hrm_index());
 694       curr_region->set_allocation_context(AllocationContext::system());
 695       if (open) {
 696         curr_region->set_open_archive();
 697       } else {
 698         curr_region->set_closed_archive();
 699       }
 700       _hr_printer.alloc(curr_region);
 701       _old_set.add(curr_region);
 702       HeapWord* top;
 703       HeapRegion* next_region;
 704       if (curr_region != last_region) {
 705         top = curr_region->end();
 706         next_region = _hrm.next_region_in_heap(curr_region);
 707       } else {
 708         top = last_address + 1;
 709         next_region = NULL;
 710       }
 711       curr_region->set_top(top);
 712       curr_region->set_first_dead(top);
 713       curr_region->set_end_of_live(top);
 714       curr_region = next_region;
 715     }
 716 
 717     // Notify mark-sweep of the archive
 718     G1ArchiveAllocator::set_range_archive(curr_range, open);
 719   }
 720   return true;
 721 }
 722 
 723 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 724   assert(!is_init_completed(), "Expect to be called at JVM init time");
 725   assert(ranges != NULL, "MemRegion array NULL");
 726   assert(count != 0, "No MemRegions provided");
 727   MemRegion reserved = _hrm.reserved();
 728   HeapWord *prev_last_addr = NULL;
 729   HeapRegion* prev_last_region = NULL;
 730 
 731   // For each MemRegion, create filler objects, if needed, in the G1 regions
 732   // that contain the address range. The address range actually within the
 733   // MemRegion will not be modified. That is assumed to have been initialized
 734   // elsewhere, probably via an mmap of archived heap data.
 735   MutexLockerEx x(Heap_lock);
 736   for (size_t i = 0; i < count; i++) {
 737     HeapWord* start_address = ranges[i].start();
 738     HeapWord* last_address = ranges[i].last();
 739 
 740     assert(reserved.contains(start_address) && reserved.contains(last_address),
 741            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 742            p2i(start_address), p2i(last_address));
 743     assert(start_address > prev_last_addr,
 744            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 745            p2i(start_address), p2i(prev_last_addr));
 746 
 747     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 748     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 749     HeapWord* bottom_address = start_region->bottom();
 750 
 751     // Check for a range beginning in the same region in which the
 752     // previous one ended.
 753     if (start_region == prev_last_region) {
 754       bottom_address = prev_last_addr + 1;
 755     }
 756 
 757     // Verify that the regions were all marked as archive regions by
 758     // alloc_archive_regions.
 759     HeapRegion* curr_region = start_region;
 760     while (curr_region != NULL) {
 761       guarantee(curr_region->is_archive(),
 762                 "Expected archive region at index %u", curr_region->hrm_index());
 763       if (curr_region != last_region) {
 764         curr_region = _hrm.next_region_in_heap(curr_region);
 765       } else {
 766         curr_region = NULL;
 767       }
 768     }
 769 
 770     prev_last_addr = last_address;
 771     prev_last_region = last_region;
 772 
 773     // Fill the memory below the allocated range with dummy object(s),
 774     // if the region bottom does not match the range start, or if the previous
 775     // range ended within the same G1 region, and there is a gap.
 776     if (start_address != bottom_address) {
 777       size_t fill_size = pointer_delta(start_address, bottom_address);
 778       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 779       increase_used(fill_size * HeapWordSize);
 780     }
 781   }
 782 }
 783 
 784 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size) {
 785   assert_heap_not_locked_and_not_at_safepoint();
 786   assert(!is_humongous(word_size), "attempt_allocation() should not "
 787          "be called for humongous allocation requests");
 788 
 789   AllocationContext_t context = AllocationContext::current();
 790   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 791 
 792   if (result == NULL) {
 793     result = attempt_allocation_slow(word_size, context);
 794   }
 795   assert_heap_not_locked();
 796   if (result != NULL) {
 797     dirty_young_block(result, word_size);
 798   }
 799   return result;
 800 }
 801 
 802 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 803   assert(!is_init_completed(), "Expect to be called at JVM init time");
 804   assert(ranges != NULL, "MemRegion array NULL");
 805   assert(count != 0, "No MemRegions provided");
 806   MemRegion reserved = _hrm.reserved();
 807   HeapWord* prev_last_addr = NULL;
 808   HeapRegion* prev_last_region = NULL;
 809   size_t size_used = 0;
 810   size_t uncommitted_regions = 0;
 811 
 812   // For each Memregion, free the G1 regions that constitute it, and
 813   // notify mark-sweep that the range is no longer to be considered 'archive.'
 814   MutexLockerEx x(Heap_lock);
 815   for (size_t i = 0; i < count; i++) {
 816     HeapWord* start_address = ranges[i].start();
 817     HeapWord* last_address = ranges[i].last();
 818 
 819     assert(reserved.contains(start_address) && reserved.contains(last_address),
 820            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 821            p2i(start_address), p2i(last_address));
 822     assert(start_address > prev_last_addr,
 823            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 824            p2i(start_address), p2i(prev_last_addr));
 825     size_used += ranges[i].byte_size();
 826     prev_last_addr = last_address;
 827 
 828     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 829     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 830 
 831     // Check for ranges that start in the same G1 region in which the previous
 832     // range ended, and adjust the start address so we don't try to free
 833     // the same region again. If the current range is entirely within that
 834     // region, skip it.
 835     if (start_region == prev_last_region) {
 836       start_address = start_region->end();
 837       if (start_address > last_address) {
 838         continue;
 839       }
 840       start_region = _hrm.addr_to_region(start_address);
 841     }
 842     prev_last_region = last_region;
 843 
 844     // After verifying that each region was marked as an archive region by
 845     // alloc_archive_regions, set it free and empty and uncommit it.
 846     HeapRegion* curr_region = start_region;
 847     while (curr_region != NULL) {
 848       guarantee(curr_region->is_archive(),
 849                 "Expected archive region at index %u", curr_region->hrm_index());
 850       uint curr_index = curr_region->hrm_index();
 851       _old_set.remove(curr_region);
 852       curr_region->set_free();
 853       curr_region->set_top(curr_region->bottom());
 854       if (curr_region != last_region) {
 855         curr_region = _hrm.next_region_in_heap(curr_region);
 856       } else {
 857         curr_region = NULL;
 858       }
 859       _hrm.shrink_at(curr_index, 1);
 860       uncommitted_regions++;
 861     }
 862 
 863     // Notify mark-sweep that this is no longer an archive range.
 864     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 865   }
 866 
 867   if (uncommitted_regions != 0) {
 868     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 869                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 870   }
 871   decrease_used(size_used);
 872 }
 873 
 874 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 875   ResourceMark rm; // For retrieving the thread names in log messages.
 876 
 877   // The structure of this method has a lot of similarities to
 878   // attempt_allocation_slow(). The reason these two were not merged
 879   // into a single one is that such a method would require several "if
 880   // allocation is not humongous do this, otherwise do that"
 881   // conditional paths which would obscure its flow. In fact, an early
 882   // version of this code did use a unified method which was harder to
 883   // follow and, as a result, it had subtle bugs that were hard to
 884   // track down. So keeping these two methods separate allows each to
 885   // be more readable. It will be good to keep these two in sync as
 886   // much as possible.
 887 
 888   assert_heap_not_locked_and_not_at_safepoint();
 889   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 890          "should only be called for humongous allocations");
 891 
 892   // Humongous objects can exhaust the heap quickly, so we should check if we
 893   // need to start a marking cycle at each humongous object allocation. We do
 894   // the check before we do the actual allocation. The reason for doing it
 895   // before the allocation is that we avoid having to keep track of the newly
 896   // allocated memory while we do a GC.
 897   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 898                                            word_size)) {
 899     collect(GCCause::_g1_humongous_allocation);
 900   }
 901 
 902   // We will loop until a) we manage to successfully perform the
 903   // allocation or b) we successfully schedule a collection which
 904   // fails to perform the allocation. b) is the only case when we'll
 905   // return NULL.
 906   HeapWord* result = NULL;
 907   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 908     bool should_try_gc;
 909     uint gc_count_before;
 910 
 911 
 912     {
 913       MutexLockerEx x(Heap_lock);
 914 
 915       // Given that humongous objects are not allocated in young
 916       // regions, we'll first try to do the allocation without doing a
 917       // collection hoping that there's enough space in the heap.
 918       result = humongous_obj_allocate(word_size, AllocationContext::current());
 919       if (result != NULL) {
 920         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 921         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 922         return result;
 923       }
 924 
 925       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 926       // the GCLocker initiated GC has been performed and then retry. This includes
 927       // the case when the GC Locker is not active but has not been performed.
 928       should_try_gc = !GCLocker::needs_gc();
 929       // Read the GC count while still holding the Heap_lock.
 930       gc_count_before = total_collections();
 931     }
 932 
 933     if (should_try_gc) {
 934       bool succeeded;
 935       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 936                                    GCCause::_g1_humongous_allocation);
 937       if (result != NULL) {
 938         assert(succeeded, "only way to get back a non-NULL result");
 939         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 940                              Thread::current()->name(), p2i(result));
 941         return result;
 942       }
 943 
 944       if (succeeded) {
 945         // We successfully scheduled a collection which failed to allocate. No
 946         // point in trying to allocate further. We'll just return NULL.
 947         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 948                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 949         return NULL;
 950       }
 951       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 952                            Thread::current()->name(), word_size);
 953     } else {
 954       // Failed to schedule a collection.
 955       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 956         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 957                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 958         return NULL;
 959       }
 960       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 961       // The GCLocker is either active or the GCLocker initiated
 962       // GC has not yet been performed. Stall until it is and
 963       // then retry the allocation.
 964       GCLocker::stall_until_clear();
 965       gclocker_retry_count += 1;
 966     }
 967 
 968 
 969     // We can reach here if we were unsuccessful in scheduling a
 970     // collection (because another thread beat us to it) or if we were
 971     // stalled due to the GC locker. In either can we should retry the
 972     // allocation attempt in case another thread successfully
 973     // performed a collection and reclaimed enough space.
 974     // Humongous object allocation always needs a lock, so we wait for the retry
 975     // in the next iteration of the loop, unlike for the regular iteration case.
 976     // Give a warning if we seem to be looping forever.
 977 
 978     if ((QueuedAllocationWarningCount > 0) &&
 979         (try_count % QueuedAllocationWarningCount == 0)) {
 980       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 981                              Thread::current()->name(), try_count, word_size);
 982     }
 983   }
 984 
 985   ShouldNotReachHere();
 986   return NULL;
 987 }
 988 
 989 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 990                                                            AllocationContext_t context,
 991                                                            bool expect_null_mutator_alloc_region) {
 992   assert_at_safepoint(true /* should_be_vm_thread */);
 993   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
 994          "the current alloc region was unexpectedly found to be non-NULL");
 995 
 996   if (!is_humongous(word_size)) {
 997     return _allocator->attempt_allocation_locked(word_size, context);
 998   } else {
 999     HeapWord* result = humongous_obj_allocate(word_size, context);
1000     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1001       collector_state()->set_initiate_conc_mark_if_possible(true);
1002     }
1003     return result;
1004   }
1005 
1006   ShouldNotReachHere();
1007 }
1008 
1009 class PostCompactionPrinterClosure: public HeapRegionClosure {
1010 private:
1011   G1HRPrinter* _hr_printer;
1012 public:
1013   bool do_heap_region(HeapRegion* hr) {
1014     assert(!hr->is_young(), "not expecting to find young regions");
1015     _hr_printer->post_compaction(hr);
1016     return false;
1017   }
1018 
1019   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1020     : _hr_printer(hr_printer) { }
1021 };
1022 
1023 void G1CollectedHeap::print_hrm_post_compaction() {
1024   if (_hr_printer.is_active()) {
1025     PostCompactionPrinterClosure cl(hr_printer());
1026     heap_region_iterate(&cl);
1027   }
1028 }
1029 
1030 void G1CollectedHeap::abort_concurrent_cycle() {
1031   // Note: When we have a more flexible GC logging framework that
1032   // allows us to add optional attributes to a GC log record we
1033   // could consider timing and reporting how long we wait in the
1034   // following two methods.
1035   wait_while_free_regions_coming();
1036   // If we start the compaction before the CM threads finish
1037   // scanning the root regions we might trip them over as we'll
1038   // be moving objects / updating references. So let's wait until
1039   // they are done. By telling them to abort, they should complete
1040   // early.
1041   _cm->root_regions()->abort();
1042   _cm->root_regions()->wait_until_scan_finished();
1043   append_secondary_free_list_if_not_empty_with_lock();
1044 
1045   // Disable discovery and empty the discovered lists
1046   // for the CM ref processor.
1047   ref_processor_cm()->disable_discovery();
1048   ref_processor_cm()->abandon_partial_discovery();
1049   ref_processor_cm()->verify_no_references_recorded();
1050 
1051   // Abandon current iterations of concurrent marking and concurrent
1052   // refinement, if any are in progress.
1053   concurrent_mark()->abort();
1054 }
1055 
1056 void G1CollectedHeap::prepare_heap_for_full_collection() {
1057   // Make sure we'll choose a new allocation region afterwards.
1058   _allocator->release_mutator_alloc_region();
1059   _allocator->abandon_gc_alloc_regions();
1060   g1_rem_set()->cleanupHRRS();
1061 
1062   // We may have added regions to the current incremental collection
1063   // set between the last GC or pause and now. We need to clear the
1064   // incremental collection set and then start rebuilding it afresh
1065   // after this full GC.
1066   abandon_collection_set(collection_set());
1067 
1068   tear_down_region_sets(false /* free_list_only */);
1069   collector_state()->set_gcs_are_young(true);
1070 }
1071 
1072 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1073   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1074   assert(used() == recalculate_used(), "Should be equal");
1075   _verifier->verify_region_sets_optional();
1076   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1077   _verifier->check_bitmaps("Full GC Start");
1078 }
1079 
1080 void G1CollectedHeap::prepare_heap_for_mutators() {
1081   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1082   ClassLoaderDataGraph::purge();
1083   MetaspaceAux::verify_metrics();
1084 
1085   // Prepare heap for normal collections.
1086   assert(num_free_regions() == 0, "we should not have added any free regions");
1087   rebuild_region_sets(false /* free_list_only */);
1088   abort_refinement();
1089   resize_if_necessary_after_full_collection();
1090 
1091   // Rebuild the strong code root lists for each region
1092   rebuild_strong_code_roots();
1093 
1094   // Start a new incremental collection set for the next pause
1095   start_new_collection_set();
1096 
1097   _allocator->init_mutator_alloc_region();
1098 
1099   // Post collection state updates.
1100   MetaspaceGC::compute_new_size();
1101 }
1102 
1103 void G1CollectedHeap::abort_refinement() {
1104   if (_hot_card_cache->use_cache()) {
1105     _hot_card_cache->reset_hot_cache();
1106   }
1107 
1108   // Discard all remembered set updates.
1109   JavaThread::dirty_card_queue_set().abandon_logs();
1110   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1111 }
1112 
1113 void G1CollectedHeap::verify_after_full_collection() {
1114   check_gc_time_stamps();
1115   _hrm.verify_optional();
1116   _verifier->verify_region_sets_optional();
1117   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1118   // Clear the previous marking bitmap, if needed for bitmap verification.
1119   // Note we cannot do this when we clear the next marking bitmap in
1120   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1121   // objects marked during a full GC against the previous bitmap.
1122   // But we need to clear it before calling check_bitmaps below since
1123   // the full GC has compacted objects and updated TAMS but not updated
1124   // the prev bitmap.
1125   if (G1VerifyBitmaps) {
1126     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1127     _cm->clear_prev_bitmap(workers());
1128   }
1129   _verifier->check_bitmaps("Full GC End");
1130 
1131   // At this point there should be no regions in the
1132   // entire heap tagged as young.
1133   assert(check_young_list_empty(), "young list should be empty at this point");
1134 
1135   // Note: since we've just done a full GC, concurrent
1136   // marking is no longer active. Therefore we need not
1137   // re-enable reference discovery for the CM ref processor.
1138   // That will be done at the start of the next marking cycle.
1139   // We also know that the STW processor should no longer
1140   // discover any new references.
1141   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1142   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1143   ref_processor_stw()->verify_no_references_recorded();
1144   ref_processor_cm()->verify_no_references_recorded();
1145 }
1146 
1147 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1148   // Post collection logging.
1149   // We should do this after we potentially resize the heap so
1150   // that all the COMMIT / UNCOMMIT events are generated before
1151   // the compaction events.
1152   print_hrm_post_compaction();
1153   heap_transition->print();
1154   print_heap_after_gc();
1155   print_heap_regions();
1156 #ifdef TRACESPINNING
1157   ParallelTaskTerminator::print_termination_counts();
1158 #endif
1159 }
1160 
1161 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1162                                          bool clear_all_soft_refs) {
1163   assert_at_safepoint(true /* should_be_vm_thread */);
1164 
1165   if (GCLocker::check_active_before_gc()) {
1166     // Full GC was not completed.
1167     return false;
1168   }
1169 
1170   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1171       collector_policy()->should_clear_all_soft_refs();
1172 
1173   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1174   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1175 
1176   collector.prepare_collection();
1177   collector.collect();
1178   collector.complete_collection();
1179 
1180   // Full collection was successfully completed.
1181   return true;
1182 }
1183 
1184 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1185   // Currently, there is no facility in the do_full_collection(bool) API to notify
1186   // the caller that the collection did not succeed (e.g., because it was locked
1187   // out by the GC locker). So, right now, we'll ignore the return value.
1188   bool dummy = do_full_collection(true,                /* explicit_gc */
1189                                   clear_all_soft_refs);
1190 }
1191 
1192 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1193   // Capacity, free and used after the GC counted as full regions to
1194   // include the waste in the following calculations.
1195   const size_t capacity_after_gc = capacity();
1196   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1197 
1198   // This is enforced in arguments.cpp.
1199   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1200          "otherwise the code below doesn't make sense");
1201 
1202   // We don't have floating point command-line arguments
1203   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1204   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1205   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1206   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1207 
1208   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1209   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1210 
1211   // We have to be careful here as these two calculations can overflow
1212   // 32-bit size_t's.
1213   double used_after_gc_d = (double) used_after_gc;
1214   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1215   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1216 
1217   // Let's make sure that they are both under the max heap size, which
1218   // by default will make them fit into a size_t.
1219   double desired_capacity_upper_bound = (double) max_heap_size;
1220   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1221                                     desired_capacity_upper_bound);
1222   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1223                                     desired_capacity_upper_bound);
1224 
1225   // We can now safely turn them into size_t's.
1226   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1227   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1228 
1229   // This assert only makes sense here, before we adjust them
1230   // with respect to the min and max heap size.
1231   assert(minimum_desired_capacity <= maximum_desired_capacity,
1232          "minimum_desired_capacity = " SIZE_FORMAT ", "
1233          "maximum_desired_capacity = " SIZE_FORMAT,
1234          minimum_desired_capacity, maximum_desired_capacity);
1235 
1236   // Should not be greater than the heap max size. No need to adjust
1237   // it with respect to the heap min size as it's a lower bound (i.e.,
1238   // we'll try to make the capacity larger than it, not smaller).
1239   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1240   // Should not be less than the heap min size. No need to adjust it
1241   // with respect to the heap max size as it's an upper bound (i.e.,
1242   // we'll try to make the capacity smaller than it, not greater).
1243   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1244 
1245   if (capacity_after_gc < minimum_desired_capacity) {
1246     // Don't expand unless it's significant
1247     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1248 
1249     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1250                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1251                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1252                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1253 
1254     expand(expand_bytes, _workers);
1255 
1256     // No expansion, now see if we want to shrink
1257   } else if (capacity_after_gc > maximum_desired_capacity) {
1258     // Capacity too large, compute shrinking size
1259     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1260 
1261     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1262                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1263                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1264                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1265 
1266     shrink(shrink_bytes);
1267   }
1268 }
1269 
1270 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1271                                                             AllocationContext_t context,
1272                                                             bool do_gc,
1273                                                             bool clear_all_soft_refs,
1274                                                             bool expect_null_mutator_alloc_region,
1275                                                             bool* gc_succeeded) {
1276   *gc_succeeded = true;
1277   // Let's attempt the allocation first.
1278   HeapWord* result =
1279     attempt_allocation_at_safepoint(word_size,
1280                                     context,
1281                                     expect_null_mutator_alloc_region);
1282   if (result != NULL) {
1283     return result;
1284   }
1285 
1286   // In a G1 heap, we're supposed to keep allocation from failing by
1287   // incremental pauses.  Therefore, at least for now, we'll favor
1288   // expansion over collection.  (This might change in the future if we can
1289   // do something smarter than full collection to satisfy a failed alloc.)
1290   result = expand_and_allocate(word_size, context);
1291   if (result != NULL) {
1292     return result;
1293   }
1294 
1295   if (do_gc) {
1296     // Expansion didn't work, we'll try to do a Full GC.
1297     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1298                                        clear_all_soft_refs);
1299   }
1300 
1301   return NULL;
1302 }
1303 
1304 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1305                                                      AllocationContext_t context,
1306                                                      bool* succeeded) {
1307   assert_at_safepoint(true /* should_be_vm_thread */);
1308 
1309   // Attempts to allocate followed by Full GC.
1310   HeapWord* result =
1311     satisfy_failed_allocation_helper(word_size,
1312                                      context,
1313                                      true,  /* do_gc */
1314                                      false, /* clear_all_soft_refs */
1315                                      false, /* expect_null_mutator_alloc_region */
1316                                      succeeded);
1317 
1318   if (result != NULL || !*succeeded) {
1319     return result;
1320   }
1321 
1322   // Attempts to allocate followed by Full GC that will collect all soft references.
1323   result = satisfy_failed_allocation_helper(word_size,
1324                                             context,
1325                                             true, /* do_gc */
1326                                             true, /* clear_all_soft_refs */
1327                                             true, /* expect_null_mutator_alloc_region */
1328                                             succeeded);
1329 
1330   if (result != NULL || !*succeeded) {
1331     return result;
1332   }
1333 
1334   // Attempts to allocate, no GC
1335   result = satisfy_failed_allocation_helper(word_size,
1336                                             context,
1337                                             false, /* do_gc */
1338                                             false, /* clear_all_soft_refs */
1339                                             true,  /* expect_null_mutator_alloc_region */
1340                                             succeeded);
1341 
1342   if (result != NULL) {
1343     return result;
1344   }
1345 
1346   assert(!collector_policy()->should_clear_all_soft_refs(),
1347          "Flag should have been handled and cleared prior to this point");
1348 
1349   // What else?  We might try synchronous finalization later.  If the total
1350   // space available is large enough for the allocation, then a more
1351   // complete compaction phase than we've tried so far might be
1352   // appropriate.
1353   return NULL;
1354 }
1355 
1356 // Attempting to expand the heap sufficiently
1357 // to support an allocation of the given "word_size".  If
1358 // successful, perform the allocation and return the address of the
1359 // allocated block, or else "NULL".
1360 
1361 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1362   assert_at_safepoint(true /* should_be_vm_thread */);
1363 
1364   _verifier->verify_region_sets_optional();
1365 
1366   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1367   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1368                             word_size * HeapWordSize);
1369 
1370 
1371   if (expand(expand_bytes, _workers)) {
1372     _hrm.verify_optional();
1373     _verifier->verify_region_sets_optional();
1374     return attempt_allocation_at_safepoint(word_size,
1375                                            context,
1376                                            false /* expect_null_mutator_alloc_region */);
1377   }
1378   return NULL;
1379 }
1380 
1381 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1382   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1383   aligned_expand_bytes = align_up(aligned_expand_bytes,
1384                                        HeapRegion::GrainBytes);
1385 
1386   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1387                             expand_bytes, aligned_expand_bytes);
1388 
1389   if (is_maximal_no_gc()) {
1390     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1391     return false;
1392   }
1393 
1394   double expand_heap_start_time_sec = os::elapsedTime();
1395   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1396   assert(regions_to_expand > 0, "Must expand by at least one region");
1397 
1398   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1399   if (expand_time_ms != NULL) {
1400     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1401   }
1402 
1403   if (expanded_by > 0) {
1404     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1405     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1406     g1_policy()->record_new_heap_size(num_regions());
1407   } else {
1408     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1409 
1410     // The expansion of the virtual storage space was unsuccessful.
1411     // Let's see if it was because we ran out of swap.
1412     if (G1ExitOnExpansionFailure &&
1413         _hrm.available() >= regions_to_expand) {
1414       // We had head room...
1415       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1416     }
1417   }
1418   return regions_to_expand > 0;
1419 }
1420 
1421 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1422   size_t aligned_shrink_bytes =
1423     ReservedSpace::page_align_size_down(shrink_bytes);
1424   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1425                                          HeapRegion::GrainBytes);
1426   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1427 
1428   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1429   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1430 
1431 
1432   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1433                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1434   if (num_regions_removed > 0) {
1435     g1_policy()->record_new_heap_size(num_regions());
1436   } else {
1437     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1438   }
1439 }
1440 
1441 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1442   _verifier->verify_region_sets_optional();
1443 
1444   // We should only reach here at the end of a Full GC which means we
1445   // should not not be holding to any GC alloc regions. The method
1446   // below will make sure of that and do any remaining clean up.
1447   _allocator->abandon_gc_alloc_regions();
1448 
1449   // Instead of tearing down / rebuilding the free lists here, we
1450   // could instead use the remove_all_pending() method on free_list to
1451   // remove only the ones that we need to remove.
1452   tear_down_region_sets(true /* free_list_only */);
1453   shrink_helper(shrink_bytes);
1454   rebuild_region_sets(true /* free_list_only */);
1455 
1456   _hrm.verify_optional();
1457   _verifier->verify_region_sets_optional();
1458 }
1459 
1460 // Public methods.
1461 
1462 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1463   CollectedHeap(),
1464   _young_gen_sampling_thread(NULL),
1465   _collector_policy(collector_policy),
1466   _memory_manager("G1 Young Generation", "end of minor GC"),
1467   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1468   _eden_pool(NULL),
1469   _survivor_pool(NULL),
1470   _old_pool(NULL),
1471   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1472   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1473   _g1_policy(create_g1_policy(_gc_timer_stw)),
1474   _collection_set(this, _g1_policy),
1475   _dirty_card_queue_set(false),
1476   _is_alive_closure_cm(this),
1477   _is_alive_closure_stw(this),
1478   _ref_processor_cm(NULL),
1479   _ref_processor_stw(NULL),
1480   _bot(NULL),
1481   _hot_card_cache(NULL),
1482   _g1_rem_set(NULL),
1483   _cr(NULL),
1484   _g1mm(NULL),
1485   _preserved_marks_set(true /* in_c_heap */),
1486   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1487   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1488   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1489   _humongous_reclaim_candidates(),
1490   _has_humongous_reclaim_candidates(false),
1491   _archive_allocator(NULL),
1492   _free_regions_coming(false),
1493   _gc_time_stamp(0),
1494   _summary_bytes_used(0),
1495   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1496   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1497   _expand_heap_after_alloc_failure(true),
1498   _old_marking_cycles_started(0),
1499   _old_marking_cycles_completed(0),
1500   _in_cset_fast_test() {
1501 
1502   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1503                           /* are_GC_task_threads */true,
1504                           /* are_ConcurrentGC_threads */false);
1505   _workers->initialize_workers();
1506   _verifier = new G1HeapVerifier(this);
1507 
1508   _allocator = G1Allocator::create_allocator(this);
1509 
1510   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1511 
1512   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1513 
1514   // Override the default _filler_array_max_size so that no humongous filler
1515   // objects are created.
1516   _filler_array_max_size = _humongous_object_threshold_in_words;
1517 
1518   uint n_queues = ParallelGCThreads;
1519   _task_queues = new RefToScanQueueSet(n_queues);
1520 
1521   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1522 
1523   for (uint i = 0; i < n_queues; i++) {
1524     RefToScanQueue* q = new RefToScanQueue();
1525     q->initialize();
1526     _task_queues->register_queue(i, q);
1527     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1528   }
1529 
1530   // Initialize the G1EvacuationFailureALot counters and flags.
1531   NOT_PRODUCT(reset_evacuation_should_fail();)
1532 
1533   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1534 }
1535 
1536 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1537                                                                  size_t size,
1538                                                                  size_t translation_factor) {
1539   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1540   // Allocate a new reserved space, preferring to use large pages.
1541   ReservedSpace rs(size, preferred_page_size);
1542   G1RegionToSpaceMapper* result  =
1543     G1RegionToSpaceMapper::create_mapper(rs,
1544                                          size,
1545                                          rs.alignment(),
1546                                          HeapRegion::GrainBytes,
1547                                          translation_factor,
1548                                          mtGC);
1549 
1550   os::trace_page_sizes_for_requested_size(description,
1551                                           size,
1552                                           preferred_page_size,
1553                                           rs.alignment(),
1554                                           rs.base(),
1555                                           rs.size());
1556 
1557   return result;
1558 }
1559 
1560 jint G1CollectedHeap::initialize_concurrent_refinement() {
1561   jint ecode = JNI_OK;
1562   _cr = G1ConcurrentRefine::create(&ecode);
1563   return ecode;
1564 }
1565 
1566 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1567   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1568   if (_young_gen_sampling_thread->osthread() == NULL) {
1569     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1570     return JNI_ENOMEM;
1571   }
1572   return JNI_OK;
1573 }
1574 
1575 jint G1CollectedHeap::initialize() {
1576   os::enable_vtime();
1577 
1578   // Necessary to satisfy locking discipline assertions.
1579 
1580   MutexLocker x(Heap_lock);
1581 
1582   // While there are no constraints in the GC code that HeapWordSize
1583   // be any particular value, there are multiple other areas in the
1584   // system which believe this to be true (e.g. oop->object_size in some
1585   // cases incorrectly returns the size in wordSize units rather than
1586   // HeapWordSize).
1587   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1588 
1589   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1590   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1591   size_t heap_alignment = collector_policy()->heap_alignment();
1592 
1593   // Ensure that the sizes are properly aligned.
1594   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1595   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1596   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1597 
1598   // Reserve the maximum.
1599 
1600   // When compressed oops are enabled, the preferred heap base
1601   // is calculated by subtracting the requested size from the
1602   // 32Gb boundary and using the result as the base address for
1603   // heap reservation. If the requested size is not aligned to
1604   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1605   // into the ReservedHeapSpace constructor) then the actual
1606   // base of the reserved heap may end up differing from the
1607   // address that was requested (i.e. the preferred heap base).
1608   // If this happens then we could end up using a non-optimal
1609   // compressed oops mode.
1610 
1611   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1612                                                  heap_alignment);
1613 
1614   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1615 
1616   // Create the barrier set for the entire reserved region.
1617   G1SATBCardTableLoggingModRefBS* bs
1618     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1619   bs->initialize();
1620   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1621   set_barrier_set(bs);
1622 
1623   // Create the hot card cache.
1624   _hot_card_cache = new G1HotCardCache(this);
1625 
1626   // Carve out the G1 part of the heap.
1627   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1628   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1629   G1RegionToSpaceMapper* heap_storage =
1630     G1RegionToSpaceMapper::create_mapper(g1_rs,
1631                                          g1_rs.size(),
1632                                          page_size,
1633                                          HeapRegion::GrainBytes,
1634                                          1,
1635                                          mtJavaHeap);
1636   os::trace_page_sizes("Heap",
1637                        collector_policy()->min_heap_byte_size(),
1638                        max_byte_size,
1639                        page_size,
1640                        heap_rs.base(),
1641                        heap_rs.size());
1642   heap_storage->set_mapping_changed_listener(&_listener);
1643 
1644   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1645   G1RegionToSpaceMapper* bot_storage =
1646     create_aux_memory_mapper("Block Offset Table",
1647                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1648                              G1BlockOffsetTable::heap_map_factor());
1649 
1650   G1RegionToSpaceMapper* cardtable_storage =
1651     create_aux_memory_mapper("Card Table",
1652                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1653                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1654 
1655   G1RegionToSpaceMapper* card_counts_storage =
1656     create_aux_memory_mapper("Card Counts Table",
1657                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1658                              G1CardCounts::heap_map_factor());
1659 
1660   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1661   G1RegionToSpaceMapper* prev_bitmap_storage =
1662     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1663   G1RegionToSpaceMapper* next_bitmap_storage =
1664     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1665 
1666   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1667   g1_barrier_set()->initialize(cardtable_storage);
1668   // Do later initialization work for concurrent refinement.
1669   _hot_card_cache->initialize(card_counts_storage);
1670 
1671   // 6843694 - ensure that the maximum region index can fit
1672   // in the remembered set structures.
1673   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1674   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1675 
1676   // Also create a G1 rem set.
1677   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1678   _g1_rem_set->initialize(max_capacity(), max_regions());
1679 
1680   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1681   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1682   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1683             "too many cards per region");
1684 
1685   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1686 
1687   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1688 
1689   {
1690     HeapWord* start = _hrm.reserved().start();
1691     HeapWord* end = _hrm.reserved().end();
1692     size_t granularity = HeapRegion::GrainBytes;
1693 
1694     _in_cset_fast_test.initialize(start, end, granularity);
1695     _humongous_reclaim_candidates.initialize(start, end, granularity);
1696   }
1697 
1698   // Create the G1ConcurrentMark data structure and thread.
1699   // (Must do this late, so that "max_regions" is defined.)
1700   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1701   if (_cm == NULL || !_cm->completed_initialization()) {
1702     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1703     return JNI_ENOMEM;
1704   }
1705   _cmThread = _cm->cm_thread();
1706 
1707   // Now expand into the initial heap size.
1708   if (!expand(init_byte_size, _workers)) {
1709     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1710     return JNI_ENOMEM;
1711   }
1712 
1713   // Perform any initialization actions delegated to the policy.
1714   g1_policy()->init(this, &_collection_set);
1715 
1716   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1717                                                SATB_Q_FL_lock,
1718                                                G1SATBProcessCompletedThreshold,
1719                                                Shared_SATB_Q_lock);
1720 
1721   jint ecode = initialize_concurrent_refinement();
1722   if (ecode != JNI_OK) {
1723     return ecode;
1724   }
1725 
1726   ecode = initialize_young_gen_sampling_thread();
1727   if (ecode != JNI_OK) {
1728     return ecode;
1729   }
1730 
1731   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1732                                                 DirtyCardQ_FL_lock,
1733                                                 (int)concurrent_refine()->yellow_zone(),
1734                                                 (int)concurrent_refine()->red_zone(),
1735                                                 Shared_DirtyCardQ_lock,
1736                                                 NULL,  // fl_owner
1737                                                 true); // init_free_ids
1738 
1739   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1740                                     DirtyCardQ_FL_lock,
1741                                     -1, // never trigger processing
1742                                     -1, // no limit on length
1743                                     Shared_DirtyCardQ_lock,
1744                                     &JavaThread::dirty_card_queue_set());
1745 
1746   // Here we allocate the dummy HeapRegion that is required by the
1747   // G1AllocRegion class.
1748   HeapRegion* dummy_region = _hrm.get_dummy_region();
1749 
1750   // We'll re-use the same region whether the alloc region will
1751   // require BOT updates or not and, if it doesn't, then a non-young
1752   // region will complain that it cannot support allocations without
1753   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1754   dummy_region->set_eden();
1755   // Make sure it's full.
1756   dummy_region->set_top(dummy_region->end());
1757   G1AllocRegion::setup(this, dummy_region);
1758 
1759   _allocator->init_mutator_alloc_region();
1760 
1761   // Do create of the monitoring and management support so that
1762   // values in the heap have been properly initialized.
1763   _g1mm = new G1MonitoringSupport(this);
1764 
1765   G1StringDedup::initialize();
1766 
1767   _preserved_marks_set.init(ParallelGCThreads);
1768 
1769   _collection_set.initialize(max_regions());
1770 
1771   return JNI_OK;
1772 }
1773 
1774 void G1CollectedHeap::initialize_serviceability() {
1775   _eden_pool = new G1EdenPool(this);
1776   _survivor_pool = new G1SurvivorPool(this);
1777   _old_pool = new G1OldGenPool(this);
1778 
1779   _full_gc_memory_manager.add_pool(_eden_pool);
1780   _full_gc_memory_manager.add_pool(_survivor_pool);
1781   _full_gc_memory_manager.add_pool(_old_pool);
1782 
1783   _memory_manager.add_pool(_eden_pool);
1784   _memory_manager.add_pool(_survivor_pool);
1785 
1786 }
1787 
1788 void G1CollectedHeap::stop() {
1789   // Stop all concurrent threads. We do this to make sure these threads
1790   // do not continue to execute and access resources (e.g. logging)
1791   // that are destroyed during shutdown.
1792   _cr->stop();
1793   _young_gen_sampling_thread->stop();
1794   _cmThread->stop();
1795   if (G1StringDedup::is_enabled()) {
1796     G1StringDedup::stop();
1797   }
1798 }
1799 
1800 void G1CollectedHeap::safepoint_synchronize_begin() {
1801   SuspendibleThreadSet::synchronize();
1802 }
1803 
1804 void G1CollectedHeap::safepoint_synchronize_end() {
1805   SuspendibleThreadSet::desynchronize();
1806 }
1807 
1808 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1809   return HeapRegion::max_region_size();
1810 }
1811 
1812 void G1CollectedHeap::post_initialize() {
1813   CollectedHeap::post_initialize();
1814   ref_processing_init();
1815 }
1816 
1817 void G1CollectedHeap::ref_processing_init() {
1818   // Reference processing in G1 currently works as follows:
1819   //
1820   // * There are two reference processor instances. One is
1821   //   used to record and process discovered references
1822   //   during concurrent marking; the other is used to
1823   //   record and process references during STW pauses
1824   //   (both full and incremental).
1825   // * Both ref processors need to 'span' the entire heap as
1826   //   the regions in the collection set may be dotted around.
1827   //
1828   // * For the concurrent marking ref processor:
1829   //   * Reference discovery is enabled at initial marking.
1830   //   * Reference discovery is disabled and the discovered
1831   //     references processed etc during remarking.
1832   //   * Reference discovery is MT (see below).
1833   //   * Reference discovery requires a barrier (see below).
1834   //   * Reference processing may or may not be MT
1835   //     (depending on the value of ParallelRefProcEnabled
1836   //     and ParallelGCThreads).
1837   //   * A full GC disables reference discovery by the CM
1838   //     ref processor and abandons any entries on it's
1839   //     discovered lists.
1840   //
1841   // * For the STW processor:
1842   //   * Non MT discovery is enabled at the start of a full GC.
1843   //   * Processing and enqueueing during a full GC is non-MT.
1844   //   * During a full GC, references are processed after marking.
1845   //
1846   //   * Discovery (may or may not be MT) is enabled at the start
1847   //     of an incremental evacuation pause.
1848   //   * References are processed near the end of a STW evacuation pause.
1849   //   * For both types of GC:
1850   //     * Discovery is atomic - i.e. not concurrent.
1851   //     * Reference discovery will not need a barrier.
1852 
1853   MemRegion mr = reserved_region();
1854 
1855   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1856 
1857   // Concurrent Mark ref processor
1858   _ref_processor_cm =
1859     new ReferenceProcessor(mr,    // span
1860                            mt_processing,
1861                                 // mt processing
1862                            ParallelGCThreads,
1863                                 // degree of mt processing
1864                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1865                                 // mt discovery
1866                            MAX2(ParallelGCThreads, ConcGCThreads),
1867                                 // degree of mt discovery
1868                            false,
1869                                 // Reference discovery is not atomic
1870                            &_is_alive_closure_cm);
1871                                 // is alive closure
1872                                 // (for efficiency/performance)
1873 
1874   // STW ref processor
1875   _ref_processor_stw =
1876     new ReferenceProcessor(mr,    // span
1877                            mt_processing,
1878                                 // mt processing
1879                            ParallelGCThreads,
1880                                 // degree of mt processing
1881                            (ParallelGCThreads > 1),
1882                                 // mt discovery
1883                            ParallelGCThreads,
1884                                 // degree of mt discovery
1885                            true,
1886                                 // Reference discovery is atomic
1887                            &_is_alive_closure_stw);
1888                                 // is alive closure
1889                                 // (for efficiency/performance)
1890 }
1891 
1892 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1893   return _collector_policy;
1894 }
1895 
1896 size_t G1CollectedHeap::capacity() const {
1897   return _hrm.length() * HeapRegion::GrainBytes;
1898 }
1899 
1900 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1901   return _hrm.total_free_bytes();
1902 }
1903 
1904 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1905   hr->reset_gc_time_stamp();
1906 }
1907 
1908 #ifndef PRODUCT
1909 
1910 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1911 private:
1912   unsigned _gc_time_stamp;
1913   bool _failures;
1914 
1915 public:
1916   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1917     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1918 
1919   virtual bool do_heap_region(HeapRegion* hr) {
1920     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1921     if (_gc_time_stamp != region_gc_time_stamp) {
1922       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1923                             region_gc_time_stamp, _gc_time_stamp);
1924       _failures = true;
1925     }
1926     return false;
1927   }
1928 
1929   bool failures() { return _failures; }
1930 };
1931 
1932 void G1CollectedHeap::check_gc_time_stamps() {
1933   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
1934   heap_region_iterate(&cl);
1935   guarantee(!cl.failures(), "all GC time stamps should have been reset");
1936 }
1937 #endif // PRODUCT
1938 
1939 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1940   _hot_card_cache->drain(cl, worker_i);
1941 }
1942 
1943 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1944   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1945   size_t n_completed_buffers = 0;
1946   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1947     n_completed_buffers++;
1948   }
1949   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
1950   dcqs.clear_n_completed_buffers();
1951   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1952 }
1953 
1954 // Computes the sum of the storage used by the various regions.
1955 size_t G1CollectedHeap::used() const {
1956   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1957   if (_archive_allocator != NULL) {
1958     result += _archive_allocator->used();
1959   }
1960   return result;
1961 }
1962 
1963 size_t G1CollectedHeap::used_unlocked() const {
1964   return _summary_bytes_used;
1965 }
1966 
1967 class SumUsedClosure: public HeapRegionClosure {
1968   size_t _used;
1969 public:
1970   SumUsedClosure() : _used(0) {}
1971   bool do_heap_region(HeapRegion* r) {
1972     _used += r->used();
1973     return false;
1974   }
1975   size_t result() { return _used; }
1976 };
1977 
1978 size_t G1CollectedHeap::recalculate_used() const {
1979   double recalculate_used_start = os::elapsedTime();
1980 
1981   SumUsedClosure blk;
1982   heap_region_iterate(&blk);
1983 
1984   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1985   return blk.result();
1986 }
1987 
1988 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1989   switch (cause) {
1990     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1991     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1992     case GCCause::_wb_conc_mark:                        return true;
1993     default :                                           return false;
1994   }
1995 }
1996 
1997 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1998   switch (cause) {
1999     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2000     case GCCause::_g1_humongous_allocation: return true;
2001     default:                                return is_user_requested_concurrent_full_gc(cause);
2002   }
2003 }
2004 
2005 #ifndef PRODUCT
2006 void G1CollectedHeap::allocate_dummy_regions() {
2007   // Let's fill up most of the region
2008   size_t word_size = HeapRegion::GrainWords - 1024;
2009   // And as a result the region we'll allocate will be humongous.
2010   guarantee(is_humongous(word_size), "sanity");
2011 
2012   // _filler_array_max_size is set to humongous object threshold
2013   // but temporarily change it to use CollectedHeap::fill_with_object().
2014   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2015 
2016   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2017     // Let's use the existing mechanism for the allocation
2018     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2019                                                  AllocationContext::system());
2020     if (dummy_obj != NULL) {
2021       MemRegion mr(dummy_obj, word_size);
2022       CollectedHeap::fill_with_object(mr);
2023     } else {
2024       // If we can't allocate once, we probably cannot allocate
2025       // again. Let's get out of the loop.
2026       break;
2027     }
2028   }
2029 }
2030 #endif // !PRODUCT
2031 
2032 void G1CollectedHeap::increment_old_marking_cycles_started() {
2033   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2034          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2035          "Wrong marking cycle count (started: %d, completed: %d)",
2036          _old_marking_cycles_started, _old_marking_cycles_completed);
2037 
2038   _old_marking_cycles_started++;
2039 }
2040 
2041 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2042   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2043 
2044   // We assume that if concurrent == true, then the caller is a
2045   // concurrent thread that was joined the Suspendible Thread
2046   // Set. If there's ever a cheap way to check this, we should add an
2047   // assert here.
2048 
2049   // Given that this method is called at the end of a Full GC or of a
2050   // concurrent cycle, and those can be nested (i.e., a Full GC can
2051   // interrupt a concurrent cycle), the number of full collections
2052   // completed should be either one (in the case where there was no
2053   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2054   // behind the number of full collections started.
2055 
2056   // This is the case for the inner caller, i.e. a Full GC.
2057   assert(concurrent ||
2058          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2059          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2060          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2061          "is inconsistent with _old_marking_cycles_completed = %u",
2062          _old_marking_cycles_started, _old_marking_cycles_completed);
2063 
2064   // This is the case for the outer caller, i.e. the concurrent cycle.
2065   assert(!concurrent ||
2066          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2067          "for outer caller (concurrent cycle): "
2068          "_old_marking_cycles_started = %u "
2069          "is inconsistent with _old_marking_cycles_completed = %u",
2070          _old_marking_cycles_started, _old_marking_cycles_completed);
2071 
2072   _old_marking_cycles_completed += 1;
2073 
2074   // We need to clear the "in_progress" flag in the CM thread before
2075   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2076   // is set) so that if a waiter requests another System.gc() it doesn't
2077   // incorrectly see that a marking cycle is still in progress.
2078   if (concurrent) {
2079     _cmThread->set_idle();
2080   }
2081 
2082   // This notify_all() will ensure that a thread that called
2083   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2084   // and it's waiting for a full GC to finish will be woken up. It is
2085   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2086   FullGCCount_lock->notify_all();
2087 }
2088 
2089 void G1CollectedHeap::collect(GCCause::Cause cause) {
2090   assert_heap_not_locked();
2091 
2092   uint gc_count_before;
2093   uint old_marking_count_before;
2094   uint full_gc_count_before;
2095   bool retry_gc;
2096 
2097   do {
2098     retry_gc = false;
2099 
2100     {
2101       MutexLocker ml(Heap_lock);
2102 
2103       // Read the GC count while holding the Heap_lock
2104       gc_count_before = total_collections();
2105       full_gc_count_before = total_full_collections();
2106       old_marking_count_before = _old_marking_cycles_started;
2107     }
2108 
2109     if (should_do_concurrent_full_gc(cause)) {
2110       // Schedule an initial-mark evacuation pause that will start a
2111       // concurrent cycle. We're setting word_size to 0 which means that
2112       // we are not requesting a post-GC allocation.
2113       VM_G1CollectForAllocation op(0,     /* word_size */
2114                                    gc_count_before,
2115                                    cause,
2116                                    true,  /* should_initiate_conc_mark */
2117                                    g1_policy()->max_pause_time_ms(),
2118                                    AllocationContext::current());
2119       VMThread::execute(&op);
2120       if (!op.pause_succeeded()) {
2121         if (old_marking_count_before == _old_marking_cycles_started) {
2122           retry_gc = op.should_retry_gc();
2123         } else {
2124           // A Full GC happened while we were trying to schedule the
2125           // initial-mark GC. No point in starting a new cycle given
2126           // that the whole heap was collected anyway.
2127         }
2128 
2129         if (retry_gc) {
2130           if (GCLocker::is_active_and_needs_gc()) {
2131             GCLocker::stall_until_clear();
2132           }
2133         }
2134       }
2135     } else {
2136       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2137           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2138 
2139         // Schedule a standard evacuation pause. We're setting word_size
2140         // to 0 which means that we are not requesting a post-GC allocation.
2141         VM_G1CollectForAllocation op(0,     /* word_size */
2142                                      gc_count_before,
2143                                      cause,
2144                                      false, /* should_initiate_conc_mark */
2145                                      g1_policy()->max_pause_time_ms(),
2146                                      AllocationContext::current());
2147         VMThread::execute(&op);
2148       } else {
2149         // Schedule a Full GC.
2150         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2151         VMThread::execute(&op);
2152       }
2153     }
2154   } while (retry_gc);
2155 }
2156 
2157 bool G1CollectedHeap::is_in(const void* p) const {
2158   if (_hrm.reserved().contains(p)) {
2159     // Given that we know that p is in the reserved space,
2160     // heap_region_containing() should successfully
2161     // return the containing region.
2162     HeapRegion* hr = heap_region_containing(p);
2163     return hr->is_in(p);
2164   } else {
2165     return false;
2166   }
2167 }
2168 
2169 #ifdef ASSERT
2170 bool G1CollectedHeap::is_in_exact(const void* p) const {
2171   bool contains = reserved_region().contains(p);
2172   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2173   if (contains && available) {
2174     return true;
2175   } else {
2176     return false;
2177   }
2178 }
2179 #endif
2180 
2181 // Iteration functions.
2182 
2183 // Iterates an ObjectClosure over all objects within a HeapRegion.
2184 
2185 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2186   ObjectClosure* _cl;
2187 public:
2188   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2189   bool do_heap_region(HeapRegion* r) {
2190     if (!r->is_continues_humongous()) {
2191       r->object_iterate(_cl);
2192     }
2193     return false;
2194   }
2195 };
2196 
2197 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2198   IterateObjectClosureRegionClosure blk(cl);
2199   heap_region_iterate(&blk);
2200 }
2201 
2202 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2203   _hrm.iterate(cl);
2204 }
2205 
2206 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2207                                                                  HeapRegionClaimer *hrclaimer,
2208                                                                  uint worker_id) const {
2209   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2210 }
2211 
2212 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2213                                                          HeapRegionClaimer *hrclaimer) const {
2214   _hrm.par_iterate(cl, hrclaimer, 0);
2215 }
2216 
2217 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2218   _collection_set.iterate(cl);
2219 }
2220 
2221 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2222   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2223 }
2224 
2225 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2226   HeapRegion* hr = heap_region_containing(addr);
2227   return hr->block_start(addr);
2228 }
2229 
2230 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2231   HeapRegion* hr = heap_region_containing(addr);
2232   return hr->block_size(addr);
2233 }
2234 
2235 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2236   HeapRegion* hr = heap_region_containing(addr);
2237   return hr->block_is_obj(addr);
2238 }
2239 
2240 bool G1CollectedHeap::supports_tlab_allocation() const {
2241   return true;
2242 }
2243 
2244 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2245   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2246 }
2247 
2248 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2249   return _eden.length() * HeapRegion::GrainBytes;
2250 }
2251 
2252 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2253 // must be equal to the humongous object limit.
2254 size_t G1CollectedHeap::max_tlab_size() const {
2255   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2256 }
2257 
2258 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2259   AllocationContext_t context = AllocationContext::current();
2260   return _allocator->unsafe_max_tlab_alloc(context);
2261 }
2262 
2263 size_t G1CollectedHeap::max_capacity() const {
2264   return _hrm.reserved().byte_size();
2265 }
2266 
2267 jlong G1CollectedHeap::millis_since_last_gc() {
2268   // See the notes in GenCollectedHeap::millis_since_last_gc()
2269   // for more information about the implementation.
2270   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2271     _g1_policy->collection_pause_end_millis();
2272   if (ret_val < 0) {
2273     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2274       ". returning zero instead.", ret_val);
2275     return 0;
2276   }
2277   return ret_val;
2278 }
2279 
2280 void G1CollectedHeap::prepare_for_verify() {
2281   _verifier->prepare_for_verify();
2282 }
2283 
2284 void G1CollectedHeap::verify(VerifyOption vo) {
2285   _verifier->verify(vo);
2286 }
2287 
2288 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2289   return true;
2290 }
2291 
2292 const char* const* G1CollectedHeap::concurrent_phases() const {
2293   return _cmThread->concurrent_phases();
2294 }
2295 
2296 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2297   return _cmThread->request_concurrent_phase(phase);
2298 }
2299 
2300 class PrintRegionClosure: public HeapRegionClosure {
2301   outputStream* _st;
2302 public:
2303   PrintRegionClosure(outputStream* st) : _st(st) {}
2304   bool do_heap_region(HeapRegion* r) {
2305     r->print_on(_st);
2306     return false;
2307   }
2308 };
2309 
2310 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2311                                        const HeapRegion* hr,
2312                                        const VerifyOption vo) const {
2313   switch (vo) {
2314   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2315   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2316   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2317   default:                            ShouldNotReachHere();
2318   }
2319   return false; // keep some compilers happy
2320 }
2321 
2322 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2323                                        const VerifyOption vo) const {
2324   switch (vo) {
2325   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2326   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2327   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2328   default:                            ShouldNotReachHere();
2329   }
2330   return false; // keep some compilers happy
2331 }
2332 
2333 void G1CollectedHeap::print_heap_regions() const {
2334   LogTarget(Trace, gc, heap, region) lt;
2335   if (lt.is_enabled()) {
2336     LogStream ls(lt);
2337     print_regions_on(&ls);
2338   }
2339 }
2340 
2341 void G1CollectedHeap::print_on(outputStream* st) const {
2342   st->print(" %-20s", "garbage-first heap");
2343   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2344             capacity()/K, used_unlocked()/K);
2345   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2346             p2i(_hrm.reserved().start()),
2347             p2i(_hrm.reserved().end()));
2348   st->cr();
2349   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2350   uint young_regions = young_regions_count();
2351   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2352             (size_t) young_regions * HeapRegion::GrainBytes / K);
2353   uint survivor_regions = survivor_regions_count();
2354   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2355             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2356   st->cr();
2357   MetaspaceAux::print_on(st);
2358 }
2359 
2360 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2361   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2362                "HS=humongous(starts), HC=humongous(continues), "
2363                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2364                "AC=allocation context, "
2365                "TAMS=top-at-mark-start (previous, next)");
2366   PrintRegionClosure blk(st);
2367   heap_region_iterate(&blk);
2368 }
2369 
2370 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2371   print_on(st);
2372 
2373   // Print the per-region information.
2374   print_regions_on(st);
2375 }
2376 
2377 void G1CollectedHeap::print_on_error(outputStream* st) const {
2378   this->CollectedHeap::print_on_error(st);
2379 
2380   if (_cm != NULL) {
2381     st->cr();
2382     _cm->print_on_error(st);
2383   }
2384 }
2385 
2386 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2387   workers()->print_worker_threads_on(st);
2388   _cmThread->print_on(st);
2389   st->cr();
2390   _cm->print_worker_threads_on(st);
2391   _cr->print_threads_on(st);
2392   _young_gen_sampling_thread->print_on(st);
2393   if (G1StringDedup::is_enabled()) {
2394     G1StringDedup::print_worker_threads_on(st);
2395   }
2396 }
2397 
2398 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2399   workers()->threads_do(tc);
2400   tc->do_thread(_cmThread);
2401   _cm->threads_do(tc);
2402   _cr->threads_do(tc);
2403   tc->do_thread(_young_gen_sampling_thread);
2404   if (G1StringDedup::is_enabled()) {
2405     G1StringDedup::threads_do(tc);
2406   }
2407 }
2408 
2409 void G1CollectedHeap::print_tracing_info() const {
2410   g1_rem_set()->print_summary_info();
2411   concurrent_mark()->print_summary_info();
2412 }
2413 
2414 #ifndef PRODUCT
2415 // Helpful for debugging RSet issues.
2416 
2417 class PrintRSetsClosure : public HeapRegionClosure {
2418 private:
2419   const char* _msg;
2420   size_t _occupied_sum;
2421 
2422 public:
2423   bool do_heap_region(HeapRegion* r) {
2424     HeapRegionRemSet* hrrs = r->rem_set();
2425     size_t occupied = hrrs->occupied();
2426     _occupied_sum += occupied;
2427 
2428     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2429     if (occupied == 0) {
2430       tty->print_cr("  RSet is empty");
2431     } else {
2432       hrrs->print();
2433     }
2434     tty->print_cr("----------");
2435     return false;
2436   }
2437 
2438   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2439     tty->cr();
2440     tty->print_cr("========================================");
2441     tty->print_cr("%s", msg);
2442     tty->cr();
2443   }
2444 
2445   ~PrintRSetsClosure() {
2446     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2447     tty->print_cr("========================================");
2448     tty->cr();
2449   }
2450 };
2451 
2452 void G1CollectedHeap::print_cset_rsets() {
2453   PrintRSetsClosure cl("Printing CSet RSets");
2454   collection_set_iterate(&cl);
2455 }
2456 
2457 void G1CollectedHeap::print_all_rsets() {
2458   PrintRSetsClosure cl("Printing All RSets");;
2459   heap_region_iterate(&cl);
2460 }
2461 #endif // PRODUCT
2462 
2463 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2464 
2465   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2466   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2467   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2468 
2469   size_t eden_capacity_bytes =
2470     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2471 
2472   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2473   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2474                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2475 }
2476 
2477 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2478   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2479                        stats->unused(), stats->used(), stats->region_end_waste(),
2480                        stats->regions_filled(), stats->direct_allocated(),
2481                        stats->failure_used(), stats->failure_waste());
2482 }
2483 
2484 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2485   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2486   gc_tracer->report_gc_heap_summary(when, heap_summary);
2487 
2488   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2489   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2490 }
2491 
2492 G1CollectedHeap* G1CollectedHeap::heap() {
2493   CollectedHeap* heap = Universe::heap();
2494   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2495   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2496   return (G1CollectedHeap*)heap;
2497 }
2498 
2499 void G1CollectedHeap::gc_prologue(bool full) {
2500   // always_do_update_barrier = false;
2501   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2502 
2503   // This summary needs to be printed before incrementing total collections.
2504   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2505 
2506   // Update common counters.
2507   increment_total_collections(full /* full gc */);
2508   if (full) {
2509     increment_old_marking_cycles_started();
2510     reset_gc_time_stamp();
2511   } else {
2512     increment_gc_time_stamp();
2513   }
2514 
2515   // Fill TLAB's and such
2516   double start = os::elapsedTime();
2517   accumulate_statistics_all_tlabs();
2518   ensure_parsability(true);
2519   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2520 }
2521 
2522 void G1CollectedHeap::gc_epilogue(bool full) {
2523   // Update common counters.
2524   if (full) {
2525     // Update the number of full collections that have been completed.
2526     increment_old_marking_cycles_completed(false /* concurrent */);
2527   }
2528 
2529   // We are at the end of the GC. Total collections has already been increased.
2530   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2531 
2532   // FIXME: what is this about?
2533   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2534   // is set.
2535 #if COMPILER2_OR_JVMCI
2536   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2537 #endif
2538   // always_do_update_barrier = true;
2539 
2540   double start = os::elapsedTime();
2541   resize_all_tlabs();
2542   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2543 
2544   MemoryService::track_memory_usage();
2545   // We have just completed a GC. Update the soft reference
2546   // policy with the new heap occupancy
2547   Universe::update_heap_info_at_gc();
2548 }
2549 
2550 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2551                                                uint gc_count_before,
2552                                                bool* succeeded,
2553                                                GCCause::Cause gc_cause) {
2554   assert_heap_not_locked_and_not_at_safepoint();
2555   VM_G1CollectForAllocation op(word_size,
2556                                gc_count_before,
2557                                gc_cause,
2558                                false, /* should_initiate_conc_mark */
2559                                g1_policy()->max_pause_time_ms(),
2560                                AllocationContext::current());
2561   VMThread::execute(&op);
2562 
2563   HeapWord* result = op.result();
2564   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2565   assert(result == NULL || ret_succeeded,
2566          "the result should be NULL if the VM did not succeed");
2567   *succeeded = ret_succeeded;
2568 
2569   assert_heap_not_locked();
2570   return result;
2571 }
2572 
2573 void
2574 G1CollectedHeap::doConcurrentMark() {
2575   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2576   if (!_cmThread->in_progress()) {
2577     _cmThread->set_started();
2578     CGC_lock->notify();
2579   }
2580 }
2581 
2582 size_t G1CollectedHeap::pending_card_num() {
2583   size_t extra_cards = 0;
2584   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2585     DirtyCardQueue& dcq = curr->dirty_card_queue();
2586     extra_cards += dcq.size();
2587   }
2588   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2589   size_t buffer_size = dcqs.buffer_size();
2590   size_t buffer_num = dcqs.completed_buffers_num();
2591 
2592   return buffer_size * buffer_num + extra_cards;
2593 }
2594 
2595 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2596  private:
2597   size_t _total_humongous;
2598   size_t _candidate_humongous;
2599 
2600   DirtyCardQueue _dcq;
2601 
2602   // We don't nominate objects with many remembered set entries, on
2603   // the assumption that such objects are likely still live.
2604   bool is_remset_small(HeapRegion* region) const {
2605     HeapRegionRemSet* const rset = region->rem_set();
2606     return G1EagerReclaimHumongousObjectsWithStaleRefs
2607       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2608       : rset->is_empty();
2609   }
2610 
2611   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2612     assert(region->is_starts_humongous(), "Must start a humongous object");
2613 
2614     oop obj = oop(region->bottom());
2615 
2616     // Dead objects cannot be eager reclaim candidates. Due to class
2617     // unloading it is unsafe to query their classes so we return early.
2618     if (heap->is_obj_dead(obj, region)) {
2619       return false;
2620     }
2621 
2622     // Candidate selection must satisfy the following constraints
2623     // while concurrent marking is in progress:
2624     //
2625     // * In order to maintain SATB invariants, an object must not be
2626     // reclaimed if it was allocated before the start of marking and
2627     // has not had its references scanned.  Such an object must have
2628     // its references (including type metadata) scanned to ensure no
2629     // live objects are missed by the marking process.  Objects
2630     // allocated after the start of concurrent marking don't need to
2631     // be scanned.
2632     //
2633     // * An object must not be reclaimed if it is on the concurrent
2634     // mark stack.  Objects allocated after the start of concurrent
2635     // marking are never pushed on the mark stack.
2636     //
2637     // Nominating only objects allocated after the start of concurrent
2638     // marking is sufficient to meet both constraints.  This may miss
2639     // some objects that satisfy the constraints, but the marking data
2640     // structures don't support efficiently performing the needed
2641     // additional tests or scrubbing of the mark stack.
2642     //
2643     // However, we presently only nominate is_typeArray() objects.
2644     // A humongous object containing references induces remembered
2645     // set entries on other regions.  In order to reclaim such an
2646     // object, those remembered sets would need to be cleaned up.
2647     //
2648     // We also treat is_typeArray() objects specially, allowing them
2649     // to be reclaimed even if allocated before the start of
2650     // concurrent mark.  For this we rely on mark stack insertion to
2651     // exclude is_typeArray() objects, preventing reclaiming an object
2652     // that is in the mark stack.  We also rely on the metadata for
2653     // such objects to be built-in and so ensured to be kept live.
2654     // Frequent allocation and drop of large binary blobs is an
2655     // important use case for eager reclaim, and this special handling
2656     // may reduce needed headroom.
2657 
2658     return obj->is_typeArray() && is_remset_small(region);
2659   }
2660 
2661  public:
2662   RegisterHumongousWithInCSetFastTestClosure()
2663   : _total_humongous(0),
2664     _candidate_humongous(0),
2665     _dcq(&JavaThread::dirty_card_queue_set()) {
2666   }
2667 
2668   virtual bool do_heap_region(HeapRegion* r) {
2669     if (!r->is_starts_humongous()) {
2670       return false;
2671     }
2672     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2673 
2674     bool is_candidate = humongous_region_is_candidate(g1h, r);
2675     uint rindex = r->hrm_index();
2676     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2677     if (is_candidate) {
2678       _candidate_humongous++;
2679       g1h->register_humongous_region_with_cset(rindex);
2680       // Is_candidate already filters out humongous object with large remembered sets.
2681       // If we have a humongous object with a few remembered sets, we simply flush these
2682       // remembered set entries into the DCQS. That will result in automatic
2683       // re-evaluation of their remembered set entries during the following evacuation
2684       // phase.
2685       if (!r->rem_set()->is_empty()) {
2686         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2687                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2688         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2689         HeapRegionRemSetIterator hrrs(r->rem_set());
2690         size_t card_index;
2691         while (hrrs.has_next(card_index)) {
2692           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2693           // The remembered set might contain references to already freed
2694           // regions. Filter out such entries to avoid failing card table
2695           // verification.
2696           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2697             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2698               *card_ptr = CardTableModRefBS::dirty_card_val();
2699               _dcq.enqueue(card_ptr);
2700             }
2701           }
2702         }
2703         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2704                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2705                hrrs.n_yielded(), r->rem_set()->occupied());
2706         r->rem_set()->clear_locked();
2707       }
2708       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2709     }
2710     _total_humongous++;
2711 
2712     return false;
2713   }
2714 
2715   size_t total_humongous() const { return _total_humongous; }
2716   size_t candidate_humongous() const { return _candidate_humongous; }
2717 
2718   void flush_rem_set_entries() { _dcq.flush(); }
2719 };
2720 
2721 void G1CollectedHeap::register_humongous_regions_with_cset() {
2722   if (!G1EagerReclaimHumongousObjects) {
2723     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2724     return;
2725   }
2726   double time = os::elapsed_counter();
2727 
2728   // Collect reclaim candidate information and register candidates with cset.
2729   RegisterHumongousWithInCSetFastTestClosure cl;
2730   heap_region_iterate(&cl);
2731 
2732   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2733   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2734                                                                   cl.total_humongous(),
2735                                                                   cl.candidate_humongous());
2736   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2737 
2738   // Finally flush all remembered set entries to re-check into the global DCQS.
2739   cl.flush_rem_set_entries();
2740 }
2741 
2742 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2743   public:
2744     bool do_heap_region(HeapRegion* hr) {
2745       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2746         hr->verify_rem_set();
2747       }
2748       return false;
2749     }
2750 };
2751 
2752 uint G1CollectedHeap::num_task_queues() const {
2753   return _task_queues->size();
2754 }
2755 
2756 #if TASKQUEUE_STATS
2757 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2758   st->print_raw_cr("GC Task Stats");
2759   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2760   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2761 }
2762 
2763 void G1CollectedHeap::print_taskqueue_stats() const {
2764   if (!log_is_enabled(Trace, gc, task, stats)) {
2765     return;
2766   }
2767   Log(gc, task, stats) log;
2768   ResourceMark rm;
2769   LogStream ls(log.trace());
2770   outputStream* st = &ls;
2771 
2772   print_taskqueue_stats_hdr(st);
2773 
2774   TaskQueueStats totals;
2775   const uint n = num_task_queues();
2776   for (uint i = 0; i < n; ++i) {
2777     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2778     totals += task_queue(i)->stats;
2779   }
2780   st->print_raw("tot "); totals.print(st); st->cr();
2781 
2782   DEBUG_ONLY(totals.verify());
2783 }
2784 
2785 void G1CollectedHeap::reset_taskqueue_stats() {
2786   const uint n = num_task_queues();
2787   for (uint i = 0; i < n; ++i) {
2788     task_queue(i)->stats.reset();
2789   }
2790 }
2791 #endif // TASKQUEUE_STATS
2792 
2793 void G1CollectedHeap::wait_for_root_region_scanning() {
2794   double scan_wait_start = os::elapsedTime();
2795   // We have to wait until the CM threads finish scanning the
2796   // root regions as it's the only way to ensure that all the
2797   // objects on them have been correctly scanned before we start
2798   // moving them during the GC.
2799   bool waited = _cm->root_regions()->wait_until_scan_finished();
2800   double wait_time_ms = 0.0;
2801   if (waited) {
2802     double scan_wait_end = os::elapsedTime();
2803     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2804   }
2805   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2806 }
2807 
2808 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2809 private:
2810   G1HRPrinter* _hr_printer;
2811 public:
2812   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2813 
2814   virtual bool do_heap_region(HeapRegion* r) {
2815     _hr_printer->cset(r);
2816     return false;
2817   }
2818 };
2819 
2820 void G1CollectedHeap::start_new_collection_set() {
2821   collection_set()->start_incremental_building();
2822 
2823   clear_cset_fast_test();
2824 
2825   guarantee(_eden.length() == 0, "eden should have been cleared");
2826   g1_policy()->transfer_survivors_to_cset(survivor());
2827 }
2828 
2829 bool
2830 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2831   assert_at_safepoint(true /* should_be_vm_thread */);
2832   guarantee(!is_gc_active(), "collection is not reentrant");
2833 
2834   if (GCLocker::check_active_before_gc()) {
2835     return false;
2836   }
2837 
2838   _gc_timer_stw->register_gc_start();
2839 
2840   GCIdMark gc_id_mark;
2841   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2842 
2843   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2844   ResourceMark rm;
2845 
2846   g1_policy()->note_gc_start();
2847 
2848   wait_for_root_region_scanning();
2849 
2850   print_heap_before_gc();
2851   print_heap_regions();
2852   trace_heap_before_gc(_gc_tracer_stw);
2853 
2854   _verifier->verify_region_sets_optional();
2855   _verifier->verify_dirty_young_regions();
2856 
2857   // We should not be doing initial mark unless the conc mark thread is running
2858   if (!_cmThread->should_terminate()) {
2859     // This call will decide whether this pause is an initial-mark
2860     // pause. If it is, during_initial_mark_pause() will return true
2861     // for the duration of this pause.
2862     g1_policy()->decide_on_conc_mark_initiation();
2863   }
2864 
2865   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2866   assert(!collector_state()->during_initial_mark_pause() ||
2867           collector_state()->gcs_are_young(), "sanity");
2868 
2869   // We also do not allow mixed GCs during marking.
2870   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2871 
2872   // Record whether this pause is an initial mark. When the current
2873   // thread has completed its logging output and it's safe to signal
2874   // the CM thread, the flag's value in the policy has been reset.
2875   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2876 
2877   // Inner scope for scope based logging, timers, and stats collection
2878   {
2879     EvacuationInfo evacuation_info;
2880 
2881     if (collector_state()->during_initial_mark_pause()) {
2882       // We are about to start a marking cycle, so we increment the
2883       // full collection counter.
2884       increment_old_marking_cycles_started();
2885       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2886     }
2887 
2888     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2889 
2890     GCTraceCPUTime tcpu;
2891 
2892     G1HeapVerifier::G1VerifyType verify_type;
2893     FormatBuffer<> gc_string("Pause ");
2894     if (collector_state()->during_initial_mark_pause()) {
2895       gc_string.append("Initial Mark");
2896       verify_type = G1HeapVerifier::G1VerifyInitialMark;
2897     } else if (collector_state()->gcs_are_young()) {
2898       gc_string.append("Young");
2899       verify_type = G1HeapVerifier::G1VerifyYoungOnly;
2900     } else {
2901       gc_string.append("Mixed");
2902       verify_type = G1HeapVerifier::G1VerifyMixed;
2903     }
2904     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2905 
2906     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2907                                                                   workers()->active_workers(),
2908                                                                   Threads::number_of_non_daemon_threads());
2909     workers()->update_active_workers(active_workers);
2910     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2911 
2912     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2913     TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
2914 
2915     // If the secondary_free_list is not empty, append it to the
2916     // free_list. No need to wait for the cleanup operation to finish;
2917     // the region allocation code will check the secondary_free_list
2918     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2919     // set, skip this step so that the region allocation code has to
2920     // get entries from the secondary_free_list.
2921     if (!G1StressConcRegionFreeing) {
2922       append_secondary_free_list_if_not_empty_with_lock();
2923     }
2924 
2925     G1HeapTransition heap_transition(this);
2926     size_t heap_used_bytes_before_gc = used();
2927 
2928     // Don't dynamically change the number of GC threads this early.  A value of
2929     // 0 is used to indicate serial work.  When parallel work is done,
2930     // it will be set.
2931 
2932     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2933       IsGCActiveMark x;
2934 
2935       gc_prologue(false);
2936 
2937       if (VerifyRememberedSets) {
2938         log_info(gc, verify)("[Verifying RemSets before GC]");
2939         VerifyRegionRemSetClosure v_cl;
2940         heap_region_iterate(&v_cl);
2941       }
2942 
2943       _verifier->verify_before_gc(verify_type);
2944 
2945       _verifier->check_bitmaps("GC Start");
2946 
2947 #if COMPILER2_OR_JVMCI
2948       DerivedPointerTable::clear();
2949 #endif
2950 
2951       // Please see comment in g1CollectedHeap.hpp and
2952       // G1CollectedHeap::ref_processing_init() to see how
2953       // reference processing currently works in G1.
2954 
2955       // Enable discovery in the STW reference processor
2956       if (g1_policy()->should_process_references()) {
2957         ref_processor_stw()->enable_discovery();
2958       } else {
2959         ref_processor_stw()->disable_discovery();
2960       }
2961 
2962       {
2963         // We want to temporarily turn off discovery by the
2964         // CM ref processor, if necessary, and turn it back on
2965         // on again later if we do. Using a scoped
2966         // NoRefDiscovery object will do this.
2967         NoRefDiscovery no_cm_discovery(ref_processor_cm());
2968 
2969         // Forget the current alloc region (we might even choose it to be part
2970         // of the collection set!).
2971         _allocator->release_mutator_alloc_region();
2972 
2973         // This timing is only used by the ergonomics to handle our pause target.
2974         // It is unclear why this should not include the full pause. We will
2975         // investigate this in CR 7178365.
2976         //
2977         // Preserving the old comment here if that helps the investigation:
2978         //
2979         // The elapsed time induced by the start time below deliberately elides
2980         // the possible verification above.
2981         double sample_start_time_sec = os::elapsedTime();
2982 
2983         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2984 
2985         if (collector_state()->during_initial_mark_pause()) {
2986           concurrent_mark()->checkpoint_roots_initial_pre();
2987         }
2988 
2989         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2990 
2991         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2992 
2993         // Make sure the remembered sets are up to date. This needs to be
2994         // done before register_humongous_regions_with_cset(), because the
2995         // remembered sets are used there to choose eager reclaim candidates.
2996         // If the remembered sets are not up to date we might miss some
2997         // entries that need to be handled.
2998         g1_rem_set()->cleanupHRRS();
2999 
3000         register_humongous_regions_with_cset();
3001 
3002         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3003 
3004         // We call this after finalize_cset() to
3005         // ensure that the CSet has been finalized.
3006         _cm->verify_no_cset_oops();
3007 
3008         if (_hr_printer.is_active()) {
3009           G1PrintCollectionSetClosure cl(&_hr_printer);
3010           _collection_set.iterate(&cl);
3011         }
3012 
3013         // Initialize the GC alloc regions.
3014         _allocator->init_gc_alloc_regions(evacuation_info);
3015 
3016         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3017         pre_evacuate_collection_set();
3018 
3019         // Actually do the work...
3020         evacuate_collection_set(evacuation_info, &per_thread_states);
3021 
3022         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3023 
3024         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3025         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3026 
3027         eagerly_reclaim_humongous_regions();
3028 
3029         record_obj_copy_mem_stats();
3030         _survivor_evac_stats.adjust_desired_plab_sz();
3031         _old_evac_stats.adjust_desired_plab_sz();
3032 
3033         double start = os::elapsedTime();
3034         start_new_collection_set();
3035         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3036 
3037         if (evacuation_failed()) {
3038           set_used(recalculate_used());
3039           if (_archive_allocator != NULL) {
3040             _archive_allocator->clear_used();
3041           }
3042           for (uint i = 0; i < ParallelGCThreads; i++) {
3043             if (_evacuation_failed_info_array[i].has_failed()) {
3044               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3045             }
3046           }
3047         } else {
3048           // The "used" of the the collection set have already been subtracted
3049           // when they were freed.  Add in the bytes evacuated.
3050           increase_used(g1_policy()->bytes_copied_during_gc());
3051         }
3052 
3053         if (collector_state()->during_initial_mark_pause()) {
3054           // We have to do this before we notify the CM threads that
3055           // they can start working to make sure that all the
3056           // appropriate initialization is done on the CM object.
3057           concurrent_mark()->checkpoint_roots_initial_post();
3058           collector_state()->set_mark_in_progress(true);
3059           // Note that we don't actually trigger the CM thread at
3060           // this point. We do that later when we're sure that
3061           // the current thread has completed its logging output.
3062         }
3063 
3064         allocate_dummy_regions();
3065 
3066         _allocator->init_mutator_alloc_region();
3067 
3068         {
3069           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3070           if (expand_bytes > 0) {
3071             size_t bytes_before = capacity();
3072             // No need for an ergo logging here,
3073             // expansion_amount() does this when it returns a value > 0.
3074             double expand_ms;
3075             if (!expand(expand_bytes, _workers, &expand_ms)) {
3076               // We failed to expand the heap. Cannot do anything about it.
3077             }
3078             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3079           }
3080         }
3081 
3082         // We redo the verification but now wrt to the new CSet which
3083         // has just got initialized after the previous CSet was freed.
3084         _cm->verify_no_cset_oops();
3085 
3086         // This timing is only used by the ergonomics to handle our pause target.
3087         // It is unclear why this should not include the full pause. We will
3088         // investigate this in CR 7178365.
3089         double sample_end_time_sec = os::elapsedTime();
3090         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3091         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3092         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3093 
3094         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3095         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3096 
3097         if (VerifyRememberedSets) {
3098           log_info(gc, verify)("[Verifying RemSets after GC]");
3099           VerifyRegionRemSetClosure v_cl;
3100           heap_region_iterate(&v_cl);
3101         }
3102 
3103         _verifier->verify_after_gc(verify_type);
3104         _verifier->check_bitmaps("GC End");
3105 
3106         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3107         ref_processor_stw()->verify_no_references_recorded();
3108 
3109         // CM reference discovery will be re-enabled if necessary.
3110       }
3111 
3112 #ifdef TRACESPINNING
3113       ParallelTaskTerminator::print_termination_counts();
3114 #endif
3115 
3116       gc_epilogue(false);
3117     }
3118 
3119     // Print the remainder of the GC log output.
3120     if (evacuation_failed()) {
3121       log_info(gc)("To-space exhausted");
3122     }
3123 
3124     g1_policy()->print_phases();
3125     heap_transition.print();
3126 
3127     // It is not yet to safe to tell the concurrent mark to
3128     // start as we have some optional output below. We don't want the
3129     // output from the concurrent mark thread interfering with this
3130     // logging output either.
3131 
3132     _hrm.verify_optional();
3133     _verifier->verify_region_sets_optional();
3134 
3135     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3136     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3137 
3138     print_heap_after_gc();
3139     print_heap_regions();
3140     trace_heap_after_gc(_gc_tracer_stw);
3141 
3142     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3143     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3144     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3145     // before any GC notifications are raised.
3146     g1mm()->update_sizes();
3147 
3148     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3149     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3150     _gc_timer_stw->register_gc_end();
3151     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3152   }
3153   // It should now be safe to tell the concurrent mark thread to start
3154   // without its logging output interfering with the logging output
3155   // that came from the pause.
3156 
3157   if (should_start_conc_mark) {
3158     // CAUTION: after the doConcurrentMark() call below,
3159     // the concurrent marking thread(s) could be running
3160     // concurrently with us. Make sure that anything after
3161     // this point does not assume that we are the only GC thread
3162     // running. Note: of course, the actual marking work will
3163     // not start until the safepoint itself is released in
3164     // SuspendibleThreadSet::desynchronize().
3165     doConcurrentMark();
3166   }
3167 
3168   return true;
3169 }
3170 
3171 void G1CollectedHeap::remove_self_forwarding_pointers() {
3172   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3173   workers()->run_task(&rsfp_task);
3174 }
3175 
3176 void G1CollectedHeap::restore_after_evac_failure() {
3177   double remove_self_forwards_start = os::elapsedTime();
3178 
3179   remove_self_forwarding_pointers();
3180   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3181   _preserved_marks_set.restore(&task_executor);
3182 
3183   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3184 }
3185 
3186 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3187   if (!_evacuation_failed) {
3188     _evacuation_failed = true;
3189   }
3190 
3191   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3192   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3193 }
3194 
3195 bool G1ParEvacuateFollowersClosure::offer_termination() {
3196   G1ParScanThreadState* const pss = par_scan_state();
3197   start_term_time();
3198   const bool res = terminator()->offer_termination();
3199   end_term_time();
3200   return res;
3201 }
3202 
3203 void G1ParEvacuateFollowersClosure::do_void() {
3204   G1ParScanThreadState* const pss = par_scan_state();
3205   pss->trim_queue();
3206   do {
3207     pss->steal_and_trim_queue(queues());
3208   } while (!offer_termination());
3209 }
3210 
3211 class G1ParTask : public AbstractGangTask {
3212 protected:
3213   G1CollectedHeap*         _g1h;
3214   G1ParScanThreadStateSet* _pss;
3215   RefToScanQueueSet*       _queues;
3216   G1RootProcessor*         _root_processor;
3217   ParallelTaskTerminator   _terminator;
3218   uint                     _n_workers;
3219 
3220 public:
3221   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3222     : AbstractGangTask("G1 collection"),
3223       _g1h(g1h),
3224       _pss(per_thread_states),
3225       _queues(task_queues),
3226       _root_processor(root_processor),
3227       _terminator(n_workers, _queues),
3228       _n_workers(n_workers)
3229   {}
3230 
3231   void work(uint worker_id) {
3232     if (worker_id >= _n_workers) return;  // no work needed this round
3233 
3234     double start_sec = os::elapsedTime();
3235     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3236 
3237     {
3238       ResourceMark rm;
3239       HandleMark   hm;
3240 
3241       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3242 
3243       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3244       pss->set_ref_processor(rp);
3245 
3246       double start_strong_roots_sec = os::elapsedTime();
3247 
3248       _root_processor->evacuate_roots(pss->closures(), worker_id);
3249 
3250       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3251       // treating the nmethods visited to act as roots for concurrent marking.
3252       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3253       // objects copied by the current evacuation.
3254       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3255                                                       pss->closures()->weak_codeblobs(),
3256                                                       worker_id);
3257 
3258       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3259 
3260       double term_sec = 0.0;
3261       size_t evac_term_attempts = 0;
3262       {
3263         double start = os::elapsedTime();
3264         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3265         evac.do_void();
3266 
3267         evac_term_attempts = evac.term_attempts();
3268         term_sec = evac.term_time();
3269         double elapsed_sec = os::elapsedTime() - start;
3270         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3271         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3272         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3273       }
3274 
3275       assert(pss->queue_is_empty(), "should be empty");
3276 
3277       if (log_is_enabled(Debug, gc, task, stats)) {
3278         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3279         size_t lab_waste;
3280         size_t lab_undo_waste;
3281         pss->waste(lab_waste, lab_undo_waste);
3282         _g1h->print_termination_stats(worker_id,
3283                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3284                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3285                                       term_sec * 1000.0,                          /* evac term time */
3286                                       evac_term_attempts,                         /* evac term attempts */
3287                                       lab_waste,                                  /* alloc buffer waste */
3288                                       lab_undo_waste                              /* undo waste */
3289                                       );
3290       }
3291 
3292       // Close the inner scope so that the ResourceMark and HandleMark
3293       // destructors are executed here and are included as part of the
3294       // "GC Worker Time".
3295     }
3296     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3297   }
3298 };
3299 
3300 void G1CollectedHeap::print_termination_stats_hdr() {
3301   log_debug(gc, task, stats)("GC Termination Stats");
3302   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3303   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3304   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3305 }
3306 
3307 void G1CollectedHeap::print_termination_stats(uint worker_id,
3308                                               double elapsed_ms,
3309                                               double strong_roots_ms,
3310                                               double term_ms,
3311                                               size_t term_attempts,
3312                                               size_t alloc_buffer_waste,
3313                                               size_t undo_waste) const {
3314   log_debug(gc, task, stats)
3315               ("%3d %9.2f %9.2f %6.2f "
3316                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3317                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3318                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3319                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3320                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3321                alloc_buffer_waste * HeapWordSize / K,
3322                undo_waste * HeapWordSize / K);
3323 }
3324 
3325 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3326 private:
3327   BoolObjectClosure* _is_alive;
3328   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3329 
3330   int _initial_string_table_size;
3331   int _initial_symbol_table_size;
3332 
3333   bool  _process_strings;
3334   int _strings_processed;
3335   int _strings_removed;
3336 
3337   bool  _process_symbols;
3338   int _symbols_processed;
3339   int _symbols_removed;
3340 
3341   bool _process_string_dedup;
3342 
3343 public:
3344   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3345     AbstractGangTask("String/Symbol Unlinking"),
3346     _is_alive(is_alive),
3347     _dedup_closure(is_alive, NULL, false),
3348     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3349     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3350     _process_string_dedup(process_string_dedup) {
3351 
3352     _initial_string_table_size = StringTable::the_table()->table_size();
3353     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3354     if (process_strings) {
3355       StringTable::clear_parallel_claimed_index();
3356     }
3357     if (process_symbols) {
3358       SymbolTable::clear_parallel_claimed_index();
3359     }
3360   }
3361 
3362   ~G1StringAndSymbolCleaningTask() {
3363     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3364               "claim value %d after unlink less than initial string table size %d",
3365               StringTable::parallel_claimed_index(), _initial_string_table_size);
3366     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3367               "claim value %d after unlink less than initial symbol table size %d",
3368               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3369 
3370     log_info(gc, stringtable)(
3371         "Cleaned string and symbol table, "
3372         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3373         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3374         strings_processed(), strings_removed(),
3375         symbols_processed(), symbols_removed());
3376   }
3377 
3378   void work(uint worker_id) {
3379     int strings_processed = 0;
3380     int strings_removed = 0;
3381     int symbols_processed = 0;
3382     int symbols_removed = 0;
3383     if (_process_strings) {
3384       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3385       Atomic::add(strings_processed, &_strings_processed);
3386       Atomic::add(strings_removed, &_strings_removed);
3387     }
3388     if (_process_symbols) {
3389       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3390       Atomic::add(symbols_processed, &_symbols_processed);
3391       Atomic::add(symbols_removed, &_symbols_removed);
3392     }
3393     if (_process_string_dedup) {
3394       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3395     }
3396   }
3397 
3398   size_t strings_processed() const { return (size_t)_strings_processed; }
3399   size_t strings_removed()   const { return (size_t)_strings_removed; }
3400 
3401   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3402   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3403 };
3404 
3405 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3406 private:
3407   static Monitor* _lock;
3408 
3409   BoolObjectClosure* const _is_alive;
3410   const bool               _unloading_occurred;
3411   const uint               _num_workers;
3412 
3413   // Variables used to claim nmethods.
3414   CompiledMethod* _first_nmethod;
3415   CompiledMethod* volatile _claimed_nmethod;
3416 
3417   // The list of nmethods that need to be processed by the second pass.
3418   CompiledMethod* volatile _postponed_list;
3419   volatile uint            _num_entered_barrier;
3420 
3421  public:
3422   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3423       _is_alive(is_alive),
3424       _unloading_occurred(unloading_occurred),
3425       _num_workers(num_workers),
3426       _first_nmethod(NULL),
3427       _claimed_nmethod(NULL),
3428       _postponed_list(NULL),
3429       _num_entered_barrier(0)
3430   {
3431     CompiledMethod::increase_unloading_clock();
3432     // Get first alive nmethod
3433     CompiledMethodIterator iter = CompiledMethodIterator();
3434     if(iter.next_alive()) {
3435       _first_nmethod = iter.method();
3436     }
3437     _claimed_nmethod = _first_nmethod;
3438   }
3439 
3440   ~G1CodeCacheUnloadingTask() {
3441     CodeCache::verify_clean_inline_caches();
3442 
3443     CodeCache::set_needs_cache_clean(false);
3444     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3445 
3446     CodeCache::verify_icholder_relocations();
3447   }
3448 
3449  private:
3450   void add_to_postponed_list(CompiledMethod* nm) {
3451       CompiledMethod* old;
3452       do {
3453         old = _postponed_list;
3454         nm->set_unloading_next(old);
3455       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3456   }
3457 
3458   void clean_nmethod(CompiledMethod* nm) {
3459     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3460 
3461     if (postponed) {
3462       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3463       add_to_postponed_list(nm);
3464     }
3465 
3466     // Mark that this thread has been cleaned/unloaded.
3467     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3468     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3469   }
3470 
3471   void clean_nmethod_postponed(CompiledMethod* nm) {
3472     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3473   }
3474 
3475   static const int MaxClaimNmethods = 16;
3476 
3477   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3478     CompiledMethod* first;
3479     CompiledMethodIterator last;
3480 
3481     do {
3482       *num_claimed_nmethods = 0;
3483 
3484       first = _claimed_nmethod;
3485       last = CompiledMethodIterator(first);
3486 
3487       if (first != NULL) {
3488 
3489         for (int i = 0; i < MaxClaimNmethods; i++) {
3490           if (!last.next_alive()) {
3491             break;
3492           }
3493           claimed_nmethods[i] = last.method();
3494           (*num_claimed_nmethods)++;
3495         }
3496       }
3497 
3498     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3499   }
3500 
3501   CompiledMethod* claim_postponed_nmethod() {
3502     CompiledMethod* claim;
3503     CompiledMethod* next;
3504 
3505     do {
3506       claim = _postponed_list;
3507       if (claim == NULL) {
3508         return NULL;
3509       }
3510 
3511       next = claim->unloading_next();
3512 
3513     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3514 
3515     return claim;
3516   }
3517 
3518  public:
3519   // Mark that we're done with the first pass of nmethod cleaning.
3520   void barrier_mark(uint worker_id) {
3521     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3522     _num_entered_barrier++;
3523     if (_num_entered_barrier == _num_workers) {
3524       ml.notify_all();
3525     }
3526   }
3527 
3528   // See if we have to wait for the other workers to
3529   // finish their first-pass nmethod cleaning work.
3530   void barrier_wait(uint worker_id) {
3531     if (_num_entered_barrier < _num_workers) {
3532       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3533       while (_num_entered_barrier < _num_workers) {
3534           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3535       }
3536     }
3537   }
3538 
3539   // Cleaning and unloading of nmethods. Some work has to be postponed
3540   // to the second pass, when we know which nmethods survive.
3541   void work_first_pass(uint worker_id) {
3542     // The first nmethods is claimed by the first worker.
3543     if (worker_id == 0 && _first_nmethod != NULL) {
3544       clean_nmethod(_first_nmethod);
3545       _first_nmethod = NULL;
3546     }
3547 
3548     int num_claimed_nmethods;
3549     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3550 
3551     while (true) {
3552       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3553 
3554       if (num_claimed_nmethods == 0) {
3555         break;
3556       }
3557 
3558       for (int i = 0; i < num_claimed_nmethods; i++) {
3559         clean_nmethod(claimed_nmethods[i]);
3560       }
3561     }
3562   }
3563 
3564   void work_second_pass(uint worker_id) {
3565     CompiledMethod* nm;
3566     // Take care of postponed nmethods.
3567     while ((nm = claim_postponed_nmethod()) != NULL) {
3568       clean_nmethod_postponed(nm);
3569     }
3570   }
3571 };
3572 
3573 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3574 
3575 class G1KlassCleaningTask : public StackObj {
3576   BoolObjectClosure*                      _is_alive;
3577   volatile int                            _clean_klass_tree_claimed;
3578   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3579 
3580  public:
3581   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3582       _is_alive(is_alive),
3583       _clean_klass_tree_claimed(0),
3584       _klass_iterator() {
3585   }
3586 
3587  private:
3588   bool claim_clean_klass_tree_task() {
3589     if (_clean_klass_tree_claimed) {
3590       return false;
3591     }
3592 
3593     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3594   }
3595 
3596   InstanceKlass* claim_next_klass() {
3597     Klass* klass;
3598     do {
3599       klass =_klass_iterator.next_klass();
3600     } while (klass != NULL && !klass->is_instance_klass());
3601 
3602     // this can be null so don't call InstanceKlass::cast
3603     return static_cast<InstanceKlass*>(klass);
3604   }
3605 
3606 public:
3607 
3608   void clean_klass(InstanceKlass* ik) {
3609     ik->clean_weak_instanceklass_links(_is_alive);
3610   }
3611 
3612   void work() {
3613     ResourceMark rm;
3614 
3615     // One worker will clean the subklass/sibling klass tree.
3616     if (claim_clean_klass_tree_task()) {
3617       Klass::clean_subklass_tree(_is_alive);
3618     }
3619 
3620     // All workers will help cleaning the classes,
3621     InstanceKlass* klass;
3622     while ((klass = claim_next_klass()) != NULL) {
3623       clean_klass(klass);
3624     }
3625   }
3626 };
3627 
3628 class G1ResolvedMethodCleaningTask : public StackObj {
3629   BoolObjectClosure* _is_alive;
3630   volatile int       _resolved_method_task_claimed;
3631 public:
3632   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3633       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3634 
3635   bool claim_resolved_method_task() {
3636     if (_resolved_method_task_claimed) {
3637       return false;
3638     }
3639     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3640   }
3641 
3642   // These aren't big, one thread can do it all.
3643   void work() {
3644     if (claim_resolved_method_task()) {
3645       ResolvedMethodTable::unlink(_is_alive);
3646     }
3647   }
3648 };
3649 
3650 
3651 // To minimize the remark pause times, the tasks below are done in parallel.
3652 class G1ParallelCleaningTask : public AbstractGangTask {
3653 private:
3654   G1StringAndSymbolCleaningTask _string_symbol_task;
3655   G1CodeCacheUnloadingTask      _code_cache_task;
3656   G1KlassCleaningTask           _klass_cleaning_task;
3657   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3658 
3659 public:
3660   // The constructor is run in the VMThread.
3661   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3662       AbstractGangTask("Parallel Cleaning"),
3663       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3664       _code_cache_task(num_workers, is_alive, unloading_occurred),
3665       _klass_cleaning_task(is_alive),
3666       _resolved_method_cleaning_task(is_alive) {
3667   }
3668 
3669   // The parallel work done by all worker threads.
3670   void work(uint worker_id) {
3671     // Do first pass of code cache cleaning.
3672     _code_cache_task.work_first_pass(worker_id);
3673 
3674     // Let the threads mark that the first pass is done.
3675     _code_cache_task.barrier_mark(worker_id);
3676 
3677     // Clean the Strings and Symbols.
3678     _string_symbol_task.work(worker_id);
3679 
3680     // Clean unreferenced things in the ResolvedMethodTable
3681     _resolved_method_cleaning_task.work();
3682 
3683     // Wait for all workers to finish the first code cache cleaning pass.
3684     _code_cache_task.barrier_wait(worker_id);
3685 
3686     // Do the second code cache cleaning work, which realize on
3687     // the liveness information gathered during the first pass.
3688     _code_cache_task.work_second_pass(worker_id);
3689 
3690     // Clean all klasses that were not unloaded.
3691     _klass_cleaning_task.work();
3692   }
3693 };
3694 
3695 
3696 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3697                                         bool class_unloading_occurred) {
3698   uint n_workers = workers()->active_workers();
3699 
3700   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3701   workers()->run_task(&g1_unlink_task);
3702 }
3703 
3704 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3705                                        bool process_strings,
3706                                        bool process_symbols,
3707                                        bool process_string_dedup) {
3708   if (!process_strings && !process_symbols && !process_string_dedup) {
3709     // Nothing to clean.
3710     return;
3711   }
3712 
3713   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3714   workers()->run_task(&g1_unlink_task);
3715 
3716 }
3717 
3718 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3719  private:
3720   DirtyCardQueueSet* _queue;
3721   G1CollectedHeap* _g1h;
3722  public:
3723   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3724     _queue(queue), _g1h(g1h) { }
3725 
3726   virtual void work(uint worker_id) {
3727     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3728     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3729 
3730     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3731     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3732 
3733     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3734   }
3735 };
3736 
3737 void G1CollectedHeap::redirty_logged_cards() {
3738   double redirty_logged_cards_start = os::elapsedTime();
3739 
3740   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3741   dirty_card_queue_set().reset_for_par_iteration();
3742   workers()->run_task(&redirty_task);
3743 
3744   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3745   dcq.merge_bufferlists(&dirty_card_queue_set());
3746   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3747 
3748   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3749 }
3750 
3751 // Weak Reference Processing support
3752 
3753 // An always "is_alive" closure that is used to preserve referents.
3754 // If the object is non-null then it's alive.  Used in the preservation
3755 // of referent objects that are pointed to by reference objects
3756 // discovered by the CM ref processor.
3757 class G1AlwaysAliveClosure: public BoolObjectClosure {
3758   G1CollectedHeap* _g1;
3759 public:
3760   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3761   bool do_object_b(oop p) {
3762     if (p != NULL) {
3763       return true;
3764     }
3765     return false;
3766   }
3767 };
3768 
3769 bool G1STWIsAliveClosure::do_object_b(oop p) {
3770   // An object is reachable if it is outside the collection set,
3771   // or is inside and copied.
3772   return !_g1->is_in_cset(p) || p->is_forwarded();
3773 }
3774 
3775 // Non Copying Keep Alive closure
3776 class G1KeepAliveClosure: public OopClosure {
3777   G1CollectedHeap* _g1;
3778 public:
3779   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3780   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3781   void do_oop(oop* p) {
3782     oop obj = *p;
3783     assert(obj != NULL, "the caller should have filtered out NULL values");
3784 
3785     const InCSetState cset_state = _g1->in_cset_state(obj);
3786     if (!cset_state.is_in_cset_or_humongous()) {
3787       return;
3788     }
3789     if (cset_state.is_in_cset()) {
3790       assert( obj->is_forwarded(), "invariant" );
3791       *p = obj->forwardee();
3792     } else {
3793       assert(!obj->is_forwarded(), "invariant" );
3794       assert(cset_state.is_humongous(),
3795              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3796       _g1->set_humongous_is_live(obj);
3797     }
3798   }
3799 };
3800 
3801 // Copying Keep Alive closure - can be called from both
3802 // serial and parallel code as long as different worker
3803 // threads utilize different G1ParScanThreadState instances
3804 // and different queues.
3805 
3806 class G1CopyingKeepAliveClosure: public OopClosure {
3807   G1CollectedHeap*         _g1h;
3808   OopClosure*              _copy_non_heap_obj_cl;
3809   G1ParScanThreadState*    _par_scan_state;
3810 
3811 public:
3812   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3813                             OopClosure* non_heap_obj_cl,
3814                             G1ParScanThreadState* pss):
3815     _g1h(g1h),
3816     _copy_non_heap_obj_cl(non_heap_obj_cl),
3817     _par_scan_state(pss)
3818   {}
3819 
3820   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3821   virtual void do_oop(      oop* p) { do_oop_work(p); }
3822 
3823   template <class T> void do_oop_work(T* p) {
3824     oop obj = oopDesc::load_decode_heap_oop(p);
3825 
3826     if (_g1h->is_in_cset_or_humongous(obj)) {
3827       // If the referent object has been forwarded (either copied
3828       // to a new location or to itself in the event of an
3829       // evacuation failure) then we need to update the reference
3830       // field and, if both reference and referent are in the G1
3831       // heap, update the RSet for the referent.
3832       //
3833       // If the referent has not been forwarded then we have to keep
3834       // it alive by policy. Therefore we have copy the referent.
3835       //
3836       // If the reference field is in the G1 heap then we can push
3837       // on the PSS queue. When the queue is drained (after each
3838       // phase of reference processing) the object and it's followers
3839       // will be copied, the reference field set to point to the
3840       // new location, and the RSet updated. Otherwise we need to
3841       // use the the non-heap or metadata closures directly to copy
3842       // the referent object and update the pointer, while avoiding
3843       // updating the RSet.
3844 
3845       if (_g1h->is_in_g1_reserved(p)) {
3846         _par_scan_state->push_on_queue(p);
3847       } else {
3848         assert(!Metaspace::contains((const void*)p),
3849                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3850         _copy_non_heap_obj_cl->do_oop(p);
3851       }
3852     }
3853   }
3854 };
3855 
3856 // Serial drain queue closure. Called as the 'complete_gc'
3857 // closure for each discovered list in some of the
3858 // reference processing phases.
3859 
3860 class G1STWDrainQueueClosure: public VoidClosure {
3861 protected:
3862   G1CollectedHeap* _g1h;
3863   G1ParScanThreadState* _par_scan_state;
3864 
3865   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3866 
3867 public:
3868   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3869     _g1h(g1h),
3870     _par_scan_state(pss)
3871   { }
3872 
3873   void do_void() {
3874     G1ParScanThreadState* const pss = par_scan_state();
3875     pss->trim_queue();
3876   }
3877 };
3878 
3879 // Parallel Reference Processing closures
3880 
3881 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3882 // processing during G1 evacuation pauses.
3883 
3884 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3885 private:
3886   G1CollectedHeap*          _g1h;
3887   G1ParScanThreadStateSet*  _pss;
3888   RefToScanQueueSet*        _queues;
3889   WorkGang*                 _workers;
3890   uint                      _active_workers;
3891 
3892 public:
3893   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3894                            G1ParScanThreadStateSet* per_thread_states,
3895                            WorkGang* workers,
3896                            RefToScanQueueSet *task_queues,
3897                            uint n_workers) :
3898     _g1h(g1h),
3899     _pss(per_thread_states),
3900     _queues(task_queues),
3901     _workers(workers),
3902     _active_workers(n_workers)
3903   {
3904     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3905   }
3906 
3907   // Executes the given task using concurrent marking worker threads.
3908   virtual void execute(ProcessTask& task);
3909   virtual void execute(EnqueueTask& task);
3910 };
3911 
3912 // Gang task for possibly parallel reference processing
3913 
3914 class G1STWRefProcTaskProxy: public AbstractGangTask {
3915   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3916   ProcessTask&     _proc_task;
3917   G1CollectedHeap* _g1h;
3918   G1ParScanThreadStateSet* _pss;
3919   RefToScanQueueSet* _task_queues;
3920   ParallelTaskTerminator* _terminator;
3921 
3922 public:
3923   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3924                         G1CollectedHeap* g1h,
3925                         G1ParScanThreadStateSet* per_thread_states,
3926                         RefToScanQueueSet *task_queues,
3927                         ParallelTaskTerminator* terminator) :
3928     AbstractGangTask("Process reference objects in parallel"),
3929     _proc_task(proc_task),
3930     _g1h(g1h),
3931     _pss(per_thread_states),
3932     _task_queues(task_queues),
3933     _terminator(terminator)
3934   {}
3935 
3936   virtual void work(uint worker_id) {
3937     // The reference processing task executed by a single worker.
3938     ResourceMark rm;
3939     HandleMark   hm;
3940 
3941     G1STWIsAliveClosure is_alive(_g1h);
3942 
3943     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3944     pss->set_ref_processor(NULL);
3945 
3946     // Keep alive closure.
3947     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3948 
3949     // Complete GC closure
3950     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3951 
3952     // Call the reference processing task's work routine.
3953     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3954 
3955     // Note we cannot assert that the refs array is empty here as not all
3956     // of the processing tasks (specifically phase2 - pp2_work) execute
3957     // the complete_gc closure (which ordinarily would drain the queue) so
3958     // the queue may not be empty.
3959   }
3960 };
3961 
3962 // Driver routine for parallel reference processing.
3963 // Creates an instance of the ref processing gang
3964 // task and has the worker threads execute it.
3965 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
3966   assert(_workers != NULL, "Need parallel worker threads.");
3967 
3968   ParallelTaskTerminator terminator(_active_workers, _queues);
3969   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3970 
3971   _workers->run_task(&proc_task_proxy);
3972 }
3973 
3974 // Gang task for parallel reference enqueueing.
3975 
3976 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
3977   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
3978   EnqueueTask& _enq_task;
3979 
3980 public:
3981   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
3982     AbstractGangTask("Enqueue reference objects in parallel"),
3983     _enq_task(enq_task)
3984   { }
3985 
3986   virtual void work(uint worker_id) {
3987     _enq_task.work(worker_id);
3988   }
3989 };
3990 
3991 // Driver routine for parallel reference enqueueing.
3992 // Creates an instance of the ref enqueueing gang
3993 // task and has the worker threads execute it.
3994 
3995 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
3996   assert(_workers != NULL, "Need parallel worker threads.");
3997 
3998   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
3999 
4000   _workers->run_task(&enq_task_proxy);
4001 }
4002 
4003 // End of weak reference support closures
4004 
4005 // Abstract task used to preserve (i.e. copy) any referent objects
4006 // that are in the collection set and are pointed to by reference
4007 // objects discovered by the CM ref processor.
4008 
4009 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4010 protected:
4011   G1CollectedHeap*         _g1h;
4012   G1ParScanThreadStateSet* _pss;
4013   RefToScanQueueSet*       _queues;
4014   ParallelTaskTerminator   _terminator;
4015   uint                     _n_workers;
4016 
4017 public:
4018   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4019     AbstractGangTask("ParPreserveCMReferents"),
4020     _g1h(g1h),
4021     _pss(per_thread_states),
4022     _queues(task_queues),
4023     _terminator(workers, _queues),
4024     _n_workers(workers)
4025   {
4026     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4027   }
4028 
4029   void work(uint worker_id) {
4030     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4031 
4032     ResourceMark rm;
4033     HandleMark   hm;
4034 
4035     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4036     pss->set_ref_processor(NULL);
4037     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4038 
4039     // Is alive closure
4040     G1AlwaysAliveClosure always_alive(_g1h);
4041 
4042     // Copying keep alive closure. Applied to referent objects that need
4043     // to be copied.
4044     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4045 
4046     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4047 
4048     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4049     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4050 
4051     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4052     // So this must be true - but assert just in case someone decides to
4053     // change the worker ids.
4054     assert(worker_id < limit, "sanity");
4055     assert(!rp->discovery_is_atomic(), "check this code");
4056 
4057     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4058     for (uint idx = worker_id; idx < limit; idx += stride) {
4059       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4060 
4061       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4062       while (iter.has_next()) {
4063         // Since discovery is not atomic for the CM ref processor, we
4064         // can see some null referent objects.
4065         iter.load_ptrs(DEBUG_ONLY(true));
4066         oop ref = iter.obj();
4067 
4068         // This will filter nulls.
4069         if (iter.is_referent_alive()) {
4070           iter.make_referent_alive();
4071         }
4072         iter.move_to_next();
4073       }
4074     }
4075 
4076     // Drain the queue - which may cause stealing
4077     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4078     drain_queue.do_void();
4079     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4080     assert(pss->queue_is_empty(), "should be");
4081   }
4082 };
4083 
4084 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4085   // Any reference objects, in the collection set, that were 'discovered'
4086   // by the CM ref processor should have already been copied (either by
4087   // applying the external root copy closure to the discovered lists, or
4088   // by following an RSet entry).
4089   //
4090   // But some of the referents, that are in the collection set, that these
4091   // reference objects point to may not have been copied: the STW ref
4092   // processor would have seen that the reference object had already
4093   // been 'discovered' and would have skipped discovering the reference,
4094   // but would not have treated the reference object as a regular oop.
4095   // As a result the copy closure would not have been applied to the
4096   // referent object.
4097   //
4098   // We need to explicitly copy these referent objects - the references
4099   // will be processed at the end of remarking.
4100   //
4101   // We also need to do this copying before we process the reference
4102   // objects discovered by the STW ref processor in case one of these
4103   // referents points to another object which is also referenced by an
4104   // object discovered by the STW ref processor.
4105   double preserve_cm_referents_time = 0.0;
4106 
4107   // To avoid spawning task when there is no work to do, check that
4108   // a concurrent cycle is active and that some references have been
4109   // discovered.
4110   if (concurrent_mark()->cm_thread()->during_cycle() &&
4111       ref_processor_cm()->has_discovered_references()) {
4112     double preserve_cm_referents_start = os::elapsedTime();
4113     uint no_of_gc_workers = workers()->active_workers();
4114     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4115                                                    per_thread_states,
4116                                                    no_of_gc_workers,
4117                                                    _task_queues);
4118     workers()->run_task(&keep_cm_referents);
4119     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4120   }
4121 
4122   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4123 }
4124 
4125 // Weak Reference processing during an evacuation pause (part 1).
4126 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4127   double ref_proc_start = os::elapsedTime();
4128 
4129   ReferenceProcessor* rp = _ref_processor_stw;
4130   assert(rp->discovery_enabled(), "should have been enabled");
4131 
4132   // Closure to test whether a referent is alive.
4133   G1STWIsAliveClosure is_alive(this);
4134 
4135   // Even when parallel reference processing is enabled, the processing
4136   // of JNI refs is serial and performed serially by the current thread
4137   // rather than by a worker. The following PSS will be used for processing
4138   // JNI refs.
4139 
4140   // Use only a single queue for this PSS.
4141   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4142   pss->set_ref_processor(NULL);
4143   assert(pss->queue_is_empty(), "pre-condition");
4144 
4145   // Keep alive closure.
4146   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4147 
4148   // Serial Complete GC closure
4149   G1STWDrainQueueClosure drain_queue(this, pss);
4150 
4151   // Setup the soft refs policy...
4152   rp->setup_policy(false);
4153 
4154   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4155 
4156   ReferenceProcessorStats stats;
4157   if (!rp->processing_is_mt()) {
4158     // Serial reference processing...
4159     stats = rp->process_discovered_references(&is_alive,
4160                                               &keep_alive,
4161                                               &drain_queue,
4162                                               NULL,
4163                                               pt);
4164   } else {
4165     uint no_of_gc_workers = workers()->active_workers();
4166 
4167     // Parallel reference processing
4168     assert(no_of_gc_workers <= rp->max_num_q(),
4169            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4170            no_of_gc_workers,  rp->max_num_q());
4171 
4172     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4173     stats = rp->process_discovered_references(&is_alive,
4174                                               &keep_alive,
4175                                               &drain_queue,
4176                                               &par_task_executor,
4177                                               pt);
4178   }
4179 
4180   _gc_tracer_stw->report_gc_reference_stats(stats);
4181 
4182   // We have completed copying any necessary live referent objects.
4183   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4184 
4185   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4186   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4187 }
4188 
4189 // Weak Reference processing during an evacuation pause (part 2).
4190 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4191   double ref_enq_start = os::elapsedTime();
4192 
4193   ReferenceProcessor* rp = _ref_processor_stw;
4194   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4195 
4196   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4197 
4198   // Now enqueue any remaining on the discovered lists on to
4199   // the pending list.
4200   if (!rp->processing_is_mt()) {
4201     // Serial reference processing...
4202     rp->enqueue_discovered_references(NULL, pt);
4203   } else {
4204     // Parallel reference enqueueing
4205 
4206     uint n_workers = workers()->active_workers();
4207 
4208     assert(n_workers <= rp->max_num_q(),
4209            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4210            n_workers,  rp->max_num_q());
4211 
4212     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4213     rp->enqueue_discovered_references(&par_task_executor, pt);
4214   }
4215 
4216   rp->verify_no_references_recorded();
4217   assert(!rp->discovery_enabled(), "should have been disabled");
4218 
4219   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4220   // ensure that it is marked in the bitmap for concurrent marking to discover.
4221   if (collector_state()->during_initial_mark_pause()) {
4222     oop pll_head = Universe::reference_pending_list();
4223     if (pll_head != NULL) {
4224       _cm->mark_in_next_bitmap(pll_head);
4225     }
4226   }
4227 
4228   // FIXME
4229   // CM's reference processing also cleans up the string and symbol tables.
4230   // Should we do that here also? We could, but it is a serial operation
4231   // and could significantly increase the pause time.
4232 
4233   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4234   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4235 }
4236 
4237 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4238   double merge_pss_time_start = os::elapsedTime();
4239   per_thread_states->flush();
4240   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4241 }
4242 
4243 void G1CollectedHeap::pre_evacuate_collection_set() {
4244   _expand_heap_after_alloc_failure = true;
4245   _evacuation_failed = false;
4246 
4247   // Disable the hot card cache.
4248   _hot_card_cache->reset_hot_cache_claimed_index();
4249   _hot_card_cache->set_use_cache(false);
4250 
4251   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4252   _preserved_marks_set.assert_empty();
4253 
4254   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4255 
4256   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4257   if (collector_state()->during_initial_mark_pause()) {
4258     double start_clear_claimed_marks = os::elapsedTime();
4259 
4260     ClassLoaderDataGraph::clear_claimed_marks();
4261 
4262     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4263     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4264   }
4265 }
4266 
4267 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4268   // Should G1EvacuationFailureALot be in effect for this GC?
4269   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4270 
4271   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4272 
4273   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4274 
4275   double start_par_time_sec = os::elapsedTime();
4276   double end_par_time_sec;
4277 
4278   {
4279     const uint n_workers = workers()->active_workers();
4280     G1RootProcessor root_processor(this, n_workers);
4281     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4282 
4283     print_termination_stats_hdr();
4284 
4285     workers()->run_task(&g1_par_task);
4286     end_par_time_sec = os::elapsedTime();
4287 
4288     // Closing the inner scope will execute the destructor
4289     // for the G1RootProcessor object. We record the current
4290     // elapsed time before closing the scope so that time
4291     // taken for the destructor is NOT included in the
4292     // reported parallel time.
4293   }
4294 
4295   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4296   phase_times->record_par_time(par_time_ms);
4297 
4298   double code_root_fixup_time_ms =
4299         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4300   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4301 }
4302 
4303 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4304   // Process any discovered reference objects - we have
4305   // to do this _before_ we retire the GC alloc regions
4306   // as we may have to copy some 'reachable' referent
4307   // objects (and their reachable sub-graphs) that were
4308   // not copied during the pause.
4309   if (g1_policy()->should_process_references()) {
4310     preserve_cm_referents(per_thread_states);
4311     process_discovered_references(per_thread_states);
4312   } else {
4313     ref_processor_stw()->verify_no_references_recorded();
4314   }
4315 
4316   G1STWIsAliveClosure is_alive(this);
4317   G1KeepAliveClosure keep_alive(this);
4318 
4319   {
4320     double start = os::elapsedTime();
4321 
4322     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4323 
4324     double time_ms = (os::elapsedTime() - start) * 1000.0;
4325     g1_policy()->phase_times()->record_ref_proc_time(time_ms);
4326   }
4327 
4328   if (G1StringDedup::is_enabled()) {
4329     double fixup_start = os::elapsedTime();
4330 
4331     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4332 
4333     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4334     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4335   }
4336 
4337   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4338 
4339   if (evacuation_failed()) {
4340     restore_after_evac_failure();
4341 
4342     // Reset the G1EvacuationFailureALot counters and flags
4343     // Note: the values are reset only when an actual
4344     // evacuation failure occurs.
4345     NOT_PRODUCT(reset_evacuation_should_fail();)
4346   }
4347 
4348   _preserved_marks_set.assert_empty();
4349 
4350   // Enqueue any remaining references remaining on the STW
4351   // reference processor's discovered lists. We need to do
4352   // this after the card table is cleaned (and verified) as
4353   // the act of enqueueing entries on to the pending list
4354   // will log these updates (and dirty their associated
4355   // cards). We need these updates logged to update any
4356   // RSets.
4357   if (g1_policy()->should_process_references()) {
4358     enqueue_discovered_references(per_thread_states);
4359   } else {
4360     g1_policy()->phase_times()->record_ref_enq_time(0);
4361   }
4362 
4363   _allocator->release_gc_alloc_regions(evacuation_info);
4364 
4365   merge_per_thread_state_info(per_thread_states);
4366 
4367   // Reset and re-enable the hot card cache.
4368   // Note the counts for the cards in the regions in the
4369   // collection set are reset when the collection set is freed.
4370   _hot_card_cache->reset_hot_cache();
4371   _hot_card_cache->set_use_cache(true);
4372 
4373   purge_code_root_memory();
4374 
4375   redirty_logged_cards();
4376 #if COMPILER2_OR_JVMCI
4377   double start = os::elapsedTime();
4378   DerivedPointerTable::update_pointers();
4379   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4380 #endif
4381   g1_policy()->print_age_table();
4382 }
4383 
4384 void G1CollectedHeap::record_obj_copy_mem_stats() {
4385   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4386 
4387   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4388                                                create_g1_evac_summary(&_old_evac_stats));
4389 }
4390 
4391 void G1CollectedHeap::free_region(HeapRegion* hr,
4392                                   FreeRegionList* free_list,
4393                                   bool skip_remset,
4394                                   bool skip_hot_card_cache,
4395                                   bool locked) {
4396   assert(!hr->is_free(), "the region should not be free");
4397   assert(!hr->is_empty(), "the region should not be empty");
4398   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4399   assert(free_list != NULL, "pre-condition");
4400 
4401   if (G1VerifyBitmaps) {
4402     MemRegion mr(hr->bottom(), hr->end());
4403     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4404   }
4405 
4406   // Clear the card counts for this region.
4407   // Note: we only need to do this if the region is not young
4408   // (since we don't refine cards in young regions).
4409   if (!skip_hot_card_cache && !hr->is_young()) {
4410     _hot_card_cache->reset_card_counts(hr);
4411   }
4412   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4413   free_list->add_ordered(hr);
4414 }
4415 
4416 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4417                                             FreeRegionList* free_list,
4418                                             bool skip_remset) {
4419   assert(hr->is_humongous(), "this is only for humongous regions");
4420   assert(free_list != NULL, "pre-condition");
4421   hr->clear_humongous();
4422   free_region(hr, free_list, skip_remset);
4423 }
4424 
4425 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4426                                            const uint humongous_regions_removed) {
4427   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4428     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4429     _old_set.bulk_remove(old_regions_removed);
4430     _humongous_set.bulk_remove(humongous_regions_removed);
4431   }
4432 
4433 }
4434 
4435 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4436   assert(list != NULL, "list can't be null");
4437   if (!list->is_empty()) {
4438     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4439     _hrm.insert_list_into_free_list(list);
4440   }
4441 }
4442 
4443 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4444   decrease_used(bytes);
4445 }
4446 
4447 class G1ParScrubRemSetTask: public AbstractGangTask {
4448 protected:
4449   G1RemSet* _g1rs;
4450   HeapRegionClaimer _hrclaimer;
4451 
4452 public:
4453   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4454     AbstractGangTask("G1 ScrubRS"),
4455     _g1rs(g1_rs),
4456     _hrclaimer(num_workers) {
4457   }
4458 
4459   void work(uint worker_id) {
4460     _g1rs->scrub(worker_id, &_hrclaimer);
4461   }
4462 };
4463 
4464 void G1CollectedHeap::scrub_rem_set() {
4465   uint num_workers = workers()->active_workers();
4466   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4467   workers()->run_task(&g1_par_scrub_rs_task);
4468 }
4469 
4470 class G1FreeCollectionSetTask : public AbstractGangTask {
4471 private:
4472 
4473   // Closure applied to all regions in the collection set to do work that needs to
4474   // be done serially in a single thread.
4475   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4476   private:
4477     EvacuationInfo* _evacuation_info;
4478     const size_t* _surviving_young_words;
4479 
4480     // Bytes used in successfully evacuated regions before the evacuation.
4481     size_t _before_used_bytes;
4482     // Bytes used in unsucessfully evacuated regions before the evacuation
4483     size_t _after_used_bytes;
4484 
4485     size_t _bytes_allocated_in_old_since_last_gc;
4486 
4487     size_t _failure_used_words;
4488     size_t _failure_waste_words;
4489 
4490     FreeRegionList _local_free_list;
4491   public:
4492     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4493       HeapRegionClosure(),
4494       _evacuation_info(evacuation_info),
4495       _surviving_young_words(surviving_young_words),
4496       _before_used_bytes(0),
4497       _after_used_bytes(0),
4498       _bytes_allocated_in_old_since_last_gc(0),
4499       _failure_used_words(0),
4500       _failure_waste_words(0),
4501       _local_free_list("Local Region List for CSet Freeing") {
4502     }
4503 
4504     virtual bool do_heap_region(HeapRegion* r) {
4505       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4506 
4507       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4508       g1h->clear_in_cset(r);
4509 
4510       if (r->is_young()) {
4511         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4512                "Young index %d is wrong for region %u of type %s with %u young regions",
4513                r->young_index_in_cset(),
4514                r->hrm_index(),
4515                r->get_type_str(),
4516                g1h->collection_set()->young_region_length());
4517         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4518         r->record_surv_words_in_group(words_survived);
4519       }
4520 
4521       if (!r->evacuation_failed()) {
4522         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4523         _before_used_bytes += r->used();
4524         g1h->free_region(r,
4525                          &_local_free_list,
4526                          true, /* skip_remset */
4527                          true, /* skip_hot_card_cache */
4528                          true  /* locked */);
4529       } else {
4530         r->uninstall_surv_rate_group();
4531         r->set_young_index_in_cset(-1);
4532         r->set_evacuation_failed(false);
4533         // When moving a young gen region to old gen, we "allocate" that whole region
4534         // there. This is in addition to any already evacuated objects. Notify the
4535         // policy about that.
4536         // Old gen regions do not cause an additional allocation: both the objects
4537         // still in the region and the ones already moved are accounted for elsewhere.
4538         if (r->is_young()) {
4539           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4540         }
4541         // The region is now considered to be old.
4542         r->set_old();
4543         // Do some allocation statistics accounting. Regions that failed evacuation
4544         // are always made old, so there is no need to update anything in the young
4545         // gen statistics, but we need to update old gen statistics.
4546         size_t used_words = r->marked_bytes() / HeapWordSize;
4547 
4548         _failure_used_words += used_words;
4549         _failure_waste_words += HeapRegion::GrainWords - used_words;
4550 
4551         g1h->old_set_add(r);
4552         _after_used_bytes += r->used();
4553       }
4554       return false;
4555     }
4556 
4557     void complete_work() {
4558       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4559 
4560       _evacuation_info->set_regions_freed(_local_free_list.length());
4561       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4562 
4563       g1h->prepend_to_freelist(&_local_free_list);
4564       g1h->decrement_summary_bytes(_before_used_bytes);
4565 
4566       G1Policy* policy = g1h->g1_policy();
4567       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4568 
4569       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4570     }
4571   };
4572 
4573   G1CollectionSet* _collection_set;
4574   G1SerialFreeCollectionSetClosure _cl;
4575   const size_t* _surviving_young_words;
4576 
4577   size_t _rs_lengths;
4578 
4579   volatile jint _serial_work_claim;
4580 
4581   struct WorkItem {
4582     uint region_idx;
4583     bool is_young;
4584     bool evacuation_failed;
4585 
4586     WorkItem(HeapRegion* r) {
4587       region_idx = r->hrm_index();
4588       is_young = r->is_young();
4589       evacuation_failed = r->evacuation_failed();
4590     }
4591   };
4592 
4593   volatile size_t _parallel_work_claim;
4594   size_t _num_work_items;
4595   WorkItem* _work_items;
4596 
4597   void do_serial_work() {
4598     // Need to grab the lock to be allowed to modify the old region list.
4599     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4600     _collection_set->iterate(&_cl);
4601   }
4602 
4603   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4604     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4605 
4606     HeapRegion* r = g1h->region_at(region_idx);
4607     assert(!g1h->is_on_master_free_list(r), "sanity");
4608 
4609     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4610 
4611     if (!is_young) {
4612       g1h->_hot_card_cache->reset_card_counts(r);
4613     }
4614 
4615     if (!evacuation_failed) {
4616       r->rem_set()->clear_locked();
4617     }
4618   }
4619 
4620   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4621   private:
4622     size_t _cur_idx;
4623     WorkItem* _work_items;
4624   public:
4625     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4626 
4627     virtual bool do_heap_region(HeapRegion* r) {
4628       _work_items[_cur_idx++] = WorkItem(r);
4629       return false;
4630     }
4631   };
4632 
4633   void prepare_work() {
4634     G1PrepareFreeCollectionSetClosure cl(_work_items);
4635     _collection_set->iterate(&cl);
4636   }
4637 
4638   void complete_work() {
4639     _cl.complete_work();
4640 
4641     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4642     policy->record_max_rs_lengths(_rs_lengths);
4643     policy->cset_regions_freed();
4644   }
4645 public:
4646   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4647     AbstractGangTask("G1 Free Collection Set"),
4648     _cl(evacuation_info, surviving_young_words),
4649     _collection_set(collection_set),
4650     _surviving_young_words(surviving_young_words),
4651     _serial_work_claim(0),
4652     _rs_lengths(0),
4653     _parallel_work_claim(0),
4654     _num_work_items(collection_set->region_length()),
4655     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4656     prepare_work();
4657   }
4658 
4659   ~G1FreeCollectionSetTask() {
4660     complete_work();
4661     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4662   }
4663 
4664   // Chunk size for work distribution. The chosen value has been determined experimentally
4665   // to be a good tradeoff between overhead and achievable parallelism.
4666   static uint chunk_size() { return 32; }
4667 
4668   virtual void work(uint worker_id) {
4669     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4670 
4671     // Claim serial work.
4672     if (_serial_work_claim == 0) {
4673       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4674       if (value == 0) {
4675         double serial_time = os::elapsedTime();
4676         do_serial_work();
4677         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4678       }
4679     }
4680 
4681     // Start parallel work.
4682     double young_time = 0.0;
4683     bool has_young_time = false;
4684     double non_young_time = 0.0;
4685     bool has_non_young_time = false;
4686 
4687     while (true) {
4688       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4689       size_t cur = end - chunk_size();
4690 
4691       if (cur >= _num_work_items) {
4692         break;
4693       }
4694 
4695       double start_time = os::elapsedTime();
4696 
4697       end = MIN2(end, _num_work_items);
4698 
4699       for (; cur < end; cur++) {
4700         bool is_young = _work_items[cur].is_young;
4701 
4702         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4703 
4704         double end_time = os::elapsedTime();
4705         double time_taken = end_time - start_time;
4706         if (is_young) {
4707           young_time += time_taken;
4708           has_young_time = true;
4709         } else {
4710           non_young_time += time_taken;
4711           has_non_young_time = true;
4712         }
4713         start_time = end_time;
4714       }
4715     }
4716 
4717     if (has_young_time) {
4718       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4719     }
4720     if (has_non_young_time) {
4721       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4722     }
4723   }
4724 };
4725 
4726 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4727   _eden.clear();
4728 
4729   double free_cset_start_time = os::elapsedTime();
4730 
4731   {
4732     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4733     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4734 
4735     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4736 
4737     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4738                         cl.name(),
4739                         num_workers,
4740                         _collection_set.region_length());
4741     workers()->run_task(&cl, num_workers);
4742   }
4743   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4744 
4745   collection_set->clear();
4746 }
4747 
4748 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4749  private:
4750   FreeRegionList* _free_region_list;
4751   HeapRegionSet* _proxy_set;
4752   uint _humongous_objects_reclaimed;
4753   uint _humongous_regions_reclaimed;
4754   size_t _freed_bytes;
4755  public:
4756 
4757   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4758     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4759   }
4760 
4761   virtual bool do_heap_region(HeapRegion* r) {
4762     if (!r->is_starts_humongous()) {
4763       return false;
4764     }
4765 
4766     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4767 
4768     oop obj = (oop)r->bottom();
4769     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4770 
4771     // The following checks whether the humongous object is live are sufficient.
4772     // The main additional check (in addition to having a reference from the roots
4773     // or the young gen) is whether the humongous object has a remembered set entry.
4774     //
4775     // A humongous object cannot be live if there is no remembered set for it
4776     // because:
4777     // - there can be no references from within humongous starts regions referencing
4778     // the object because we never allocate other objects into them.
4779     // (I.e. there are no intra-region references that may be missed by the
4780     // remembered set)
4781     // - as soon there is a remembered set entry to the humongous starts region
4782     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4783     // until the end of a concurrent mark.
4784     //
4785     // It is not required to check whether the object has been found dead by marking
4786     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4787     // all objects allocated during that time are considered live.
4788     // SATB marking is even more conservative than the remembered set.
4789     // So if at this point in the collection there is no remembered set entry,
4790     // nobody has a reference to it.
4791     // At the start of collection we flush all refinement logs, and remembered sets
4792     // are completely up-to-date wrt to references to the humongous object.
4793     //
4794     // Other implementation considerations:
4795     // - never consider object arrays at this time because they would pose
4796     // considerable effort for cleaning up the the remembered sets. This is
4797     // required because stale remembered sets might reference locations that
4798     // are currently allocated into.
4799     uint region_idx = r->hrm_index();
4800     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4801         !r->rem_set()->is_empty()) {
4802       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4803                                region_idx,
4804                                (size_t)obj->size() * HeapWordSize,
4805                                p2i(r->bottom()),
4806                                r->rem_set()->occupied(),
4807                                r->rem_set()->strong_code_roots_list_length(),
4808                                next_bitmap->is_marked(r->bottom()),
4809                                g1h->is_humongous_reclaim_candidate(region_idx),
4810                                obj->is_typeArray()
4811                               );
4812       return false;
4813     }
4814 
4815     guarantee(obj->is_typeArray(),
4816               "Only eagerly reclaiming type arrays is supported, but the object "
4817               PTR_FORMAT " is not.", p2i(r->bottom()));
4818 
4819     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4820                              region_idx,
4821                              (size_t)obj->size() * HeapWordSize,
4822                              p2i(r->bottom()),
4823                              r->rem_set()->occupied(),
4824                              r->rem_set()->strong_code_roots_list_length(),
4825                              next_bitmap->is_marked(r->bottom()),
4826                              g1h->is_humongous_reclaim_candidate(region_idx),
4827                              obj->is_typeArray()
4828                             );
4829 
4830     // Need to clear mark bit of the humongous object if already set.
4831     if (next_bitmap->is_marked(r->bottom())) {
4832       next_bitmap->clear(r->bottom());
4833     }
4834     _humongous_objects_reclaimed++;
4835     do {
4836       HeapRegion* next = g1h->next_region_in_humongous(r);
4837       _freed_bytes += r->used();
4838       r->set_containing_set(NULL);
4839       _humongous_regions_reclaimed++;
4840       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4841       r = next;
4842     } while (r != NULL);
4843 
4844     return false;
4845   }
4846 
4847   uint humongous_objects_reclaimed() {
4848     return _humongous_objects_reclaimed;
4849   }
4850 
4851   uint humongous_regions_reclaimed() {
4852     return _humongous_regions_reclaimed;
4853   }
4854 
4855   size_t bytes_freed() const {
4856     return _freed_bytes;
4857   }
4858 };
4859 
4860 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4861   assert_at_safepoint(true);
4862 
4863   if (!G1EagerReclaimHumongousObjects ||
4864       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4865     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4866     return;
4867   }
4868 
4869   double start_time = os::elapsedTime();
4870 
4871   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4872 
4873   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4874   heap_region_iterate(&cl);
4875 
4876   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4877 
4878   G1HRPrinter* hrp = hr_printer();
4879   if (hrp->is_active()) {
4880     FreeRegionListIterator iter(&local_cleanup_list);
4881     while (iter.more_available()) {
4882       HeapRegion* hr = iter.get_next();
4883       hrp->cleanup(hr);
4884     }
4885   }
4886 
4887   prepend_to_freelist(&local_cleanup_list);
4888   decrement_summary_bytes(cl.bytes_freed());
4889 
4890   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4891                                                                     cl.humongous_objects_reclaimed());
4892 }
4893 
4894 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4895 public:
4896   virtual bool do_heap_region(HeapRegion* r) {
4897     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4898     G1CollectedHeap::heap()->clear_in_cset(r);
4899     r->set_young_index_in_cset(-1);
4900     return false;
4901   }
4902 };
4903 
4904 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4905   G1AbandonCollectionSetClosure cl;
4906   collection_set->iterate(&cl);
4907 
4908   collection_set->clear();
4909   collection_set->stop_incremental_building();
4910 }
4911 
4912 void G1CollectedHeap::set_free_regions_coming() {
4913   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4914 
4915   assert(!free_regions_coming(), "pre-condition");
4916   _free_regions_coming = true;
4917 }
4918 
4919 void G1CollectedHeap::reset_free_regions_coming() {
4920   assert(free_regions_coming(), "pre-condition");
4921 
4922   {
4923     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4924     _free_regions_coming = false;
4925     SecondaryFreeList_lock->notify_all();
4926   }
4927 
4928   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
4929 }
4930 
4931 void G1CollectedHeap::wait_while_free_regions_coming() {
4932   // Most of the time we won't have to wait, so let's do a quick test
4933   // first before we take the lock.
4934   if (!free_regions_coming()) {
4935     return;
4936   }
4937 
4938   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
4939 
4940   {
4941     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4942     while (free_regions_coming()) {
4943       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
4944     }
4945   }
4946 
4947   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
4948 }
4949 
4950 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4951   return _allocator->is_retained_old_region(hr);
4952 }
4953 
4954 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4955   _eden.add(hr);
4956   _g1_policy->set_region_eden(hr);
4957 }
4958 
4959 #ifdef ASSERT
4960 
4961 class NoYoungRegionsClosure: public HeapRegionClosure {
4962 private:
4963   bool _success;
4964 public:
4965   NoYoungRegionsClosure() : _success(true) { }
4966   bool do_heap_region(HeapRegion* r) {
4967     if (r->is_young()) {
4968       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4969                             p2i(r->bottom()), p2i(r->end()));
4970       _success = false;
4971     }
4972     return false;
4973   }
4974   bool success() { return _success; }
4975 };
4976 
4977 bool G1CollectedHeap::check_young_list_empty() {
4978   bool ret = (young_regions_count() == 0);
4979 
4980   NoYoungRegionsClosure closure;
4981   heap_region_iterate(&closure);
4982   ret = ret && closure.success();
4983 
4984   return ret;
4985 }
4986 
4987 #endif // ASSERT
4988 
4989 class TearDownRegionSetsClosure : public HeapRegionClosure {
4990 private:
4991   HeapRegionSet *_old_set;
4992 
4993 public:
4994   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4995 
4996   bool do_heap_region(HeapRegion* r) {
4997     if (r->is_old()) {
4998       _old_set->remove(r);
4999     } else if(r->is_young()) {
5000       r->uninstall_surv_rate_group();
5001     } else {
5002       // We ignore free regions, we'll empty the free list afterwards.
5003       // We ignore humongous regions, we're not tearing down the
5004       // humongous regions set.
5005       assert(r->is_free() || r->is_humongous(),
5006              "it cannot be another type");
5007     }
5008     return false;
5009   }
5010 
5011   ~TearDownRegionSetsClosure() {
5012     assert(_old_set->is_empty(), "post-condition");
5013   }
5014 };
5015 
5016 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5017   assert_at_safepoint(true /* should_be_vm_thread */);
5018 
5019   if (!free_list_only) {
5020     TearDownRegionSetsClosure cl(&_old_set);
5021     heap_region_iterate(&cl);
5022 
5023     // Note that emptying the _young_list is postponed and instead done as
5024     // the first step when rebuilding the regions sets again. The reason for
5025     // this is that during a full GC string deduplication needs to know if
5026     // a collected region was young or old when the full GC was initiated.
5027   }
5028   _hrm.remove_all_free_regions();
5029 }
5030 
5031 void G1CollectedHeap::increase_used(size_t bytes) {
5032   _summary_bytes_used += bytes;
5033 }
5034 
5035 void G1CollectedHeap::decrease_used(size_t bytes) {
5036   assert(_summary_bytes_used >= bytes,
5037          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5038          _summary_bytes_used, bytes);
5039   _summary_bytes_used -= bytes;
5040 }
5041 
5042 void G1CollectedHeap::set_used(size_t bytes) {
5043   _summary_bytes_used = bytes;
5044 }
5045 
5046 class RebuildRegionSetsClosure : public HeapRegionClosure {
5047 private:
5048   bool            _free_list_only;
5049   HeapRegionSet*   _old_set;
5050   HeapRegionManager*   _hrm;
5051   size_t          _total_used;
5052 
5053 public:
5054   RebuildRegionSetsClosure(bool free_list_only,
5055                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5056     _free_list_only(free_list_only),
5057     _old_set(old_set), _hrm(hrm), _total_used(0) {
5058     assert(_hrm->num_free_regions() == 0, "pre-condition");
5059     if (!free_list_only) {
5060       assert(_old_set->is_empty(), "pre-condition");
5061     }
5062   }
5063 
5064   bool do_heap_region(HeapRegion* r) {
5065     if (r->is_empty()) {
5066       // Add free regions to the free list
5067       r->set_free();
5068       r->set_allocation_context(AllocationContext::system());
5069       _hrm->insert_into_free_list(r);
5070     } else if (!_free_list_only) {
5071 
5072       if (r->is_humongous()) {
5073         // We ignore humongous regions. We left the humongous set unchanged.
5074       } else {
5075         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5076         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
5077         r->move_to_old();
5078         _old_set->add(r);
5079       }
5080       _total_used += r->used();
5081     }
5082 
5083     return false;
5084   }
5085 
5086   size_t total_used() {
5087     return _total_used;
5088   }
5089 };
5090 
5091 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5092   assert_at_safepoint(true /* should_be_vm_thread */);
5093 
5094   if (!free_list_only) {
5095     _eden.clear();
5096     _survivor.clear();
5097   }
5098 
5099   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5100   heap_region_iterate(&cl);
5101 
5102   if (!free_list_only) {
5103     set_used(cl.total_used());
5104     if (_archive_allocator != NULL) {
5105       _archive_allocator->clear_used();
5106     }
5107   }
5108   assert(used_unlocked() == recalculate_used(),
5109          "inconsistent used_unlocked(), "
5110          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5111          used_unlocked(), recalculate_used());
5112 }
5113 
5114 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5115   HeapRegion* hr = heap_region_containing(p);
5116   return hr->is_in(p);
5117 }
5118 
5119 // Methods for the mutator alloc region
5120 
5121 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5122                                                       bool force) {
5123   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5124   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5125   if (force || should_allocate) {
5126     HeapRegion* new_alloc_region = new_region(word_size,
5127                                               false /* is_old */,
5128                                               false /* do_expand */);
5129     if (new_alloc_region != NULL) {
5130       set_region_short_lived_locked(new_alloc_region);
5131       _hr_printer.alloc(new_alloc_region, !should_allocate);
5132       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5133       return new_alloc_region;
5134     }
5135   }
5136   return NULL;
5137 }
5138 
5139 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5140                                                   size_t allocated_bytes) {
5141   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5142   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5143 
5144   collection_set()->add_eden_region(alloc_region);
5145   increase_used(allocated_bytes);
5146   _hr_printer.retire(alloc_region);
5147   // We update the eden sizes here, when the region is retired,
5148   // instead of when it's allocated, since this is the point that its
5149   // used space has been recored in _summary_bytes_used.
5150   g1mm()->update_eden_size();
5151 }
5152 
5153 // Methods for the GC alloc regions
5154 
5155 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5156   if (dest.is_old()) {
5157     return true;
5158   } else {
5159     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5160   }
5161 }
5162 
5163 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5164   assert(FreeList_lock->owned_by_self(), "pre-condition");
5165 
5166   if (!has_more_regions(dest)) {
5167     return NULL;
5168   }
5169 
5170   const bool is_survivor = dest.is_young();
5171 
5172   HeapRegion* new_alloc_region = new_region(word_size,
5173                                             !is_survivor,
5174                                             true /* do_expand */);
5175   if (new_alloc_region != NULL) {
5176     // We really only need to do this for old regions given that we
5177     // should never scan survivors. But it doesn't hurt to do it
5178     // for survivors too.
5179     new_alloc_region->record_timestamp();
5180     if (is_survivor) {
5181       new_alloc_region->set_survivor();
5182       _survivor.add(new_alloc_region);
5183       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5184     } else {
5185       new_alloc_region->set_old();
5186       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5187     }
5188     _hr_printer.alloc(new_alloc_region);
5189     bool during_im = collector_state()->during_initial_mark_pause();
5190     new_alloc_region->note_start_of_copying(during_im);
5191     return new_alloc_region;
5192   }
5193   return NULL;
5194 }
5195 
5196 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5197                                              size_t allocated_bytes,
5198                                              InCSetState dest) {
5199   bool during_im = collector_state()->during_initial_mark_pause();
5200   alloc_region->note_end_of_copying(during_im);
5201   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5202   if (dest.is_old()) {
5203     _old_set.add(alloc_region);
5204   }
5205   _hr_printer.retire(alloc_region);
5206 }
5207 
5208 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5209   bool expanded = false;
5210   uint index = _hrm.find_highest_free(&expanded);
5211 
5212   if (index != G1_NO_HRM_INDEX) {
5213     if (expanded) {
5214       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5215                                 HeapRegion::GrainWords * HeapWordSize);
5216     }
5217     _hrm.allocate_free_regions_starting_at(index, 1);
5218     return region_at(index);
5219   }
5220   return NULL;
5221 }
5222 
5223 // Optimized nmethod scanning
5224 
5225 class RegisterNMethodOopClosure: public OopClosure {
5226   G1CollectedHeap* _g1h;
5227   nmethod* _nm;
5228 
5229   template <class T> void do_oop_work(T* p) {
5230     T heap_oop = oopDesc::load_heap_oop(p);
5231     if (!oopDesc::is_null(heap_oop)) {
5232       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5233       HeapRegion* hr = _g1h->heap_region_containing(obj);
5234       assert(!hr->is_continues_humongous(),
5235              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5236              " starting at " HR_FORMAT,
5237              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5238 
5239       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5240       hr->add_strong_code_root_locked(_nm);
5241     }
5242   }
5243 
5244 public:
5245   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5246     _g1h(g1h), _nm(nm) {}
5247 
5248   void do_oop(oop* p)       { do_oop_work(p); }
5249   void do_oop(narrowOop* p) { do_oop_work(p); }
5250 };
5251 
5252 class UnregisterNMethodOopClosure: public OopClosure {
5253   G1CollectedHeap* _g1h;
5254   nmethod* _nm;
5255 
5256   template <class T> void do_oop_work(T* p) {
5257     T heap_oop = oopDesc::load_heap_oop(p);
5258     if (!oopDesc::is_null(heap_oop)) {
5259       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5260       HeapRegion* hr = _g1h->heap_region_containing(obj);
5261       assert(!hr->is_continues_humongous(),
5262              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5263              " starting at " HR_FORMAT,
5264              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5265 
5266       hr->remove_strong_code_root(_nm);
5267     }
5268   }
5269 
5270 public:
5271   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5272     _g1h(g1h), _nm(nm) {}
5273 
5274   void do_oop(oop* p)       { do_oop_work(p); }
5275   void do_oop(narrowOop* p) { do_oop_work(p); }
5276 };
5277 
5278 // Returns true if the reference points to an object that
5279 // can move in an incremental collection.
5280 bool G1CollectedHeap::is_scavengable(oop obj) {
5281   HeapRegion* hr = heap_region_containing(obj);
5282   return !hr->is_pinned();
5283 }
5284 
5285 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5286   guarantee(nm != NULL, "sanity");
5287   RegisterNMethodOopClosure reg_cl(this, nm);
5288   nm->oops_do(&reg_cl);
5289 }
5290 
5291 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5292   guarantee(nm != NULL, "sanity");
5293   UnregisterNMethodOopClosure reg_cl(this, nm);
5294   nm->oops_do(&reg_cl, true);
5295 }
5296 
5297 void G1CollectedHeap::purge_code_root_memory() {
5298   double purge_start = os::elapsedTime();
5299   G1CodeRootSet::purge();
5300   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5301   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5302 }
5303 
5304 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5305   G1CollectedHeap* _g1h;
5306 
5307 public:
5308   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5309     _g1h(g1h) {}
5310 
5311   void do_code_blob(CodeBlob* cb) {
5312     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5313     if (nm == NULL) {
5314       return;
5315     }
5316 
5317     if (ScavengeRootsInCode) {
5318       _g1h->register_nmethod(nm);
5319     }
5320   }
5321 };
5322 
5323 void G1CollectedHeap::rebuild_strong_code_roots() {
5324   RebuildStrongCodeRootClosure blob_cl(this);
5325   CodeCache::blobs_do(&blob_cl);
5326 }
5327 
5328 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
5329   GrowableArray<GCMemoryManager*> memory_managers(2);
5330   memory_managers.append(&_memory_manager);
5331   memory_managers.append(&_full_gc_memory_manager);
5332   return memory_managers;
5333 }
5334 
5335 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
5336   GrowableArray<MemoryPool*> memory_pools(3);
5337   memory_pools.append(_eden_pool);
5338   memory_pools.append(_survivor_pool);
5339   memory_pools.append(_old_pool);
5340   return memory_pools;
5341 }