1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1CardLiveData.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/shared/gcId.hpp"
  42 #include "gc/shared/gcTimer.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/genOopClosures.inline.hpp"
  46 #include "gc/shared/referencePolicy.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/suspendibleThreadSet.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "gc/shared/weakProcessor.hpp"
  52 #include "logging/log.hpp"
  53 #include "memory/allocation.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "runtime/atomic.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/prefetch.inline.hpp"
  60 #include "services/memTracker.hpp"
  61 #include "utilities/align.hpp"
  62 #include "utilities/growableArray.hpp"
  63 
  64 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  65   assert(addr < _cm->finger(), "invariant");
  66   assert(addr >= _task->finger(), "invariant");
  67 
  68   // We move that task's local finger along.
  69   _task->move_finger_to(addr);
  70 
  71   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  72   // we only partially drain the local queue and global stack
  73   _task->drain_local_queue(true);
  74   _task->drain_global_stack(true);
  75 
  76   // if the has_aborted flag has been raised, we need to bail out of
  77   // the iteration
  78   return !_task->has_aborted();
  79 }
  80 
  81 G1CMMarkStack::G1CMMarkStack() :
  82   _max_chunk_capacity(0),
  83   _base(NULL),
  84   _chunk_capacity(0) {
  85   set_empty();
  86 }
  87 
  88 bool G1CMMarkStack::resize(size_t new_capacity) {
  89   assert(is_empty(), "Only resize when stack is empty.");
  90   assert(new_capacity <= _max_chunk_capacity,
  91          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  92 
  93   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  94 
  95   if (new_base == NULL) {
  96     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
  97     return false;
  98   }
  99   // Release old mapping.
 100   if (_base != NULL) {
 101     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 102   }
 103 
 104   _base = new_base;
 105   _chunk_capacity = new_capacity;
 106   set_empty();
 107 
 108   return true;
 109 }
 110 
 111 size_t G1CMMarkStack::capacity_alignment() {
 112   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 113 }
 114 
 115 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 116   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 117 
 118   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 119 
 120   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 121   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 122 
 123   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 124             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 125             _max_chunk_capacity,
 126             initial_chunk_capacity);
 127 
 128   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 129                 initial_chunk_capacity, _max_chunk_capacity);
 130 
 131   return resize(initial_chunk_capacity);
 132 }
 133 
 134 void G1CMMarkStack::expand() {
 135   if (_chunk_capacity == _max_chunk_capacity) {
 136     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 137     return;
 138   }
 139   size_t old_capacity = _chunk_capacity;
 140   // Double capacity if possible
 141   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 142 
 143   if (resize(new_capacity)) {
 144     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 145                   old_capacity, new_capacity);
 146   } else {
 147     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 148                     old_capacity, new_capacity);
 149   }
 150 }
 151 
 152 G1CMMarkStack::~G1CMMarkStack() {
 153   if (_base != NULL) {
 154     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 155   }
 156 }
 157 
 158 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 159   elem->next = *list;
 160   *list = elem;
 161 }
 162 
 163 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 164   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 165   add_chunk_to_list(&_chunk_list, elem);
 166   _chunks_in_chunk_list++;
 167 }
 168 
 169 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 170   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 171   add_chunk_to_list(&_free_list, elem);
 172 }
 173 
 174 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 175   TaskQueueEntryChunk* result = *list;
 176   if (result != NULL) {
 177     *list = (*list)->next;
 178   }
 179   return result;
 180 }
 181 
 182 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 183   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 184   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 185   if (result != NULL) {
 186     _chunks_in_chunk_list--;
 187   }
 188   return result;
 189 }
 190 
 191 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 192   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 193   return remove_chunk_from_list(&_free_list);
 194 }
 195 
 196 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 197   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 198   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 199   // wraparound of _hwm.
 200   if (_hwm >= _chunk_capacity) {
 201     return NULL;
 202   }
 203 
 204   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 205   if (cur_idx >= _chunk_capacity) {
 206     return NULL;
 207   }
 208 
 209   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 210   result->next = NULL;
 211   return result;
 212 }
 213 
 214 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 215   // Get a new chunk.
 216   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 217 
 218   if (new_chunk == NULL) {
 219     // Did not get a chunk from the free list. Allocate from backing memory.
 220     new_chunk = allocate_new_chunk();
 221 
 222     if (new_chunk == NULL) {
 223       return false;
 224     }
 225   }
 226 
 227   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 228 
 229   add_chunk_to_chunk_list(new_chunk);
 230 
 231   return true;
 232 }
 233 
 234 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 235   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 236 
 237   if (cur == NULL) {
 238     return false;
 239   }
 240 
 241   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 242 
 243   add_chunk_to_free_list(cur);
 244   return true;
 245 }
 246 
 247 void G1CMMarkStack::set_empty() {
 248   _chunks_in_chunk_list = 0;
 249   _hwm = 0;
 250   _chunk_list = NULL;
 251   _free_list = NULL;
 252 }
 253 
 254 G1CMRootRegions::G1CMRootRegions() :
 255   _cm(NULL), _scan_in_progress(false),
 256   _should_abort(false), _claimed_survivor_index(0) { }
 257 
 258 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 259   _survivors = survivors;
 260   _cm = cm;
 261 }
 262 
 263 void G1CMRootRegions::prepare_for_scan() {
 264   assert(!scan_in_progress(), "pre-condition");
 265 
 266   // Currently, only survivors can be root regions.
 267   _claimed_survivor_index = 0;
 268   _scan_in_progress = _survivors->regions()->is_nonempty();
 269   _should_abort = false;
 270 }
 271 
 272 HeapRegion* G1CMRootRegions::claim_next() {
 273   if (_should_abort) {
 274     // If someone has set the should_abort flag, we return NULL to
 275     // force the caller to bail out of their loop.
 276     return NULL;
 277   }
 278 
 279   // Currently, only survivors can be root regions.
 280   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 281 
 282   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 283   if (claimed_index < survivor_regions->length()) {
 284     return survivor_regions->at(claimed_index);
 285   }
 286   return NULL;
 287 }
 288 
 289 uint G1CMRootRegions::num_root_regions() const {
 290   return (uint)_survivors->regions()->length();
 291 }
 292 
 293 void G1CMRootRegions::notify_scan_done() {
 294   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 295   _scan_in_progress = false;
 296   RootRegionScan_lock->notify_all();
 297 }
 298 
 299 void G1CMRootRegions::cancel_scan() {
 300   notify_scan_done();
 301 }
 302 
 303 void G1CMRootRegions::scan_finished() {
 304   assert(scan_in_progress(), "pre-condition");
 305 
 306   // Currently, only survivors can be root regions.
 307   if (!_should_abort) {
 308     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 309     assert((uint)_claimed_survivor_index >= _survivors->length(),
 310            "we should have claimed all survivors, claimed index = %u, length = %u",
 311            (uint)_claimed_survivor_index, _survivors->length());
 312   }
 313 
 314   notify_scan_done();
 315 }
 316 
 317 bool G1CMRootRegions::wait_until_scan_finished() {
 318   if (!scan_in_progress()) return false;
 319 
 320   {
 321     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 322     while (scan_in_progress()) {
 323       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 324     }
 325   }
 326   return true;
 327 }
 328 
 329 // Returns the maximum number of workers to be used in a concurrent
 330 // phase based on the number of GC workers being used in a STW
 331 // phase.
 332 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 333   return MAX2((num_gc_workers + 2) / 4, 1U);
 334 }
 335 
 336 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 337                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 338                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 339   // _cm_thread set inside the constructor
 340   _g1h(g1h),
 341   _completed_initialization(false),
 342 
 343   _cleanup_list("Concurrent Mark Cleanup List"),
 344   _mark_bitmap_1(),
 345   _mark_bitmap_2(),
 346   _prev_mark_bitmap(&_mark_bitmap_1),
 347   _next_mark_bitmap(&_mark_bitmap_2),
 348 
 349   _heap_start(_g1h->reserved_region().start()),
 350   _heap_end(_g1h->reserved_region().end()),
 351 
 352   _root_regions(),
 353 
 354   _global_mark_stack(),
 355 
 356   // _finger set in set_non_marking_state
 357 
 358   _max_num_tasks(ParallelGCThreads),
 359   // _num_active_tasks set in set_non_marking_state()
 360   // _tasks set inside the constructor
 361 
 362   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 363   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 364 
 365   _first_overflow_barrier_sync(),
 366   _second_overflow_barrier_sync(),
 367 
 368   _has_overflown(false),
 369   _concurrent(false),
 370   _has_aborted(false),
 371   _restart_for_overflow(false),
 372   _concurrent_marking_in_progress(false),
 373   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 374   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 375 
 376   // _verbose_level set below
 377 
 378   _init_times(),
 379   _remark_times(),
 380   _remark_mark_times(),
 381   _remark_weak_ref_times(),
 382   _cleanup_times(),
 383   _total_counting_time(0.0),
 384   _total_rs_scrub_time(0.0),
 385 
 386   _accum_task_vtime(NULL),
 387 
 388   _concurrent_workers(NULL),
 389   _num_concurrent_workers(0),
 390   _max_concurrent_workers(0)
 391 {
 392   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 393   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 394 
 395   // Create & start ConcurrentMark thread.
 396   _cm_thread = new ConcurrentMarkThread(this);
 397   if (_cm_thread->osthread() == NULL) {
 398     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 399   }
 400 
 401   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 402 
 403   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 404   satb_qs.set_buffer_size(G1SATBBufferSize);
 405 
 406   _root_regions.init(_g1h->survivor(), this);
 407 
 408   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 409     // Calculate the number of concurrent worker threads by scaling
 410     // the number of parallel GC threads.
 411     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 412     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 413   }
 414 
 415   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 416   if (ConcGCThreads > ParallelGCThreads) {
 417     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 418                     ConcGCThreads, ParallelGCThreads);
 419     return;
 420   }
 421 
 422   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 423   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 424 
 425   _num_concurrent_workers = ConcGCThreads;
 426   _max_concurrent_workers = _num_concurrent_workers;
 427 
 428   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 429   _concurrent_workers->initialize_workers();
 430 
 431   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 432     size_t mark_stack_size =
 433       MIN2(MarkStackSizeMax,
 434           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 435     // Verify that the calculated value for MarkStackSize is in range.
 436     // It would be nice to use the private utility routine from Arguments.
 437     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 438       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 439                       "must be between 1 and " SIZE_FORMAT,
 440                       mark_stack_size, MarkStackSizeMax);
 441       return;
 442     }
 443     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 444   } else {
 445     // Verify MarkStackSize is in range.
 446     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 447       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 448         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 449           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 450                           "must be between 1 and " SIZE_FORMAT,
 451                           MarkStackSize, MarkStackSizeMax);
 452           return;
 453         }
 454       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 455         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 456           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 457                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 458                           MarkStackSize, MarkStackSizeMax);
 459           return;
 460         }
 461       }
 462     }
 463   }
 464 
 465   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 466     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 467   }
 468 
 469   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 470   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 471 
 472   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 473   _num_active_tasks = _max_num_tasks;
 474 
 475   for (uint i = 0; i < _max_num_tasks; ++i) {
 476     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 477     task_queue->initialize();
 478     _task_queues->register_queue(i, task_queue);
 479 
 480     _tasks[i] = new G1CMTask(i, this, task_queue);
 481 
 482     _accum_task_vtime[i] = 0.0;
 483   }
 484 
 485   set_non_marking_state();
 486   _completed_initialization = true;
 487 }
 488 
 489 void G1ConcurrentMark::reset() {
 490   // Starting values for these two. This should be called in a STW
 491   // phase.
 492   MemRegion reserved = _g1h->g1_reserved();
 493   _heap_start = reserved.start();
 494   _heap_end   = reserved.end();
 495 
 496   // Separated the asserts so that we know which one fires.
 497   assert(_heap_start != NULL, "heap bounds should look ok");
 498   assert(_heap_end != NULL, "heap bounds should look ok");
 499   assert(_heap_start < _heap_end, "heap bounds should look ok");
 500 
 501   // Reset all the marking data structures and any necessary flags
 502   reset_marking_state();
 503 
 504   // We reset all of them, since different phases will use
 505   // different number of active threads. So, it's easiest to have all
 506   // of them ready.
 507   for (uint i = 0; i < _max_num_tasks; ++i) {
 508     _tasks[i]->reset(_next_mark_bitmap);
 509   }
 510 
 511   // we need this to make sure that the flag is on during the evac
 512   // pause with initial mark piggy-backed
 513   set_concurrent_marking_in_progress();
 514 }
 515 
 516 
 517 void G1ConcurrentMark::reset_marking_state() {
 518   _global_mark_stack.set_empty();
 519 
 520   // Expand the marking stack, if we have to and if we can.
 521   if (has_overflown()) {
 522     _global_mark_stack.expand();
 523   }
 524 
 525   clear_has_overflown();
 526   _finger = _heap_start;
 527 
 528   for (uint i = 0; i < _max_num_tasks; ++i) {
 529     G1CMTaskQueue* queue = _task_queues->queue(i);
 530     queue->set_empty();
 531   }
 532 }
 533 
 534 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 535   assert(active_tasks <= _max_num_tasks, "we should not have more");
 536 
 537   _num_active_tasks = active_tasks;
 538   // Need to update the three data structures below according to the
 539   // number of active threads for this phase.
 540   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 541   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 542   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 543 }
 544 
 545 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 546   set_concurrency(active_tasks);
 547 
 548   _concurrent = concurrent;
 549   // We propagate this to all tasks, not just the active ones.
 550   for (uint i = 0; i < _max_num_tasks; ++i) {
 551     _tasks[i]->set_concurrent(concurrent);
 552   }
 553 
 554   if (concurrent) {
 555     set_concurrent_marking_in_progress();
 556   } else {
 557     // We currently assume that the concurrent flag has been set to
 558     // false before we start remark. At this point we should also be
 559     // in a STW phase.
 560     assert(!concurrent_marking_in_progress(), "invariant");
 561     assert(out_of_regions(),
 562            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 563            p2i(_finger), p2i(_heap_end));
 564   }
 565 }
 566 
 567 void G1ConcurrentMark::set_non_marking_state() {
 568   // We set the global marking state to some default values when we're
 569   // not doing marking.
 570   reset_marking_state();
 571   _num_active_tasks = 0;
 572   clear_concurrent_marking_in_progress();
 573 }
 574 
 575 G1ConcurrentMark::~G1ConcurrentMark() {
 576   // The G1ConcurrentMark instance is never freed.
 577   ShouldNotReachHere();
 578 }
 579 
 580 class G1ClearBitMapTask : public AbstractGangTask {
 581 public:
 582   static size_t chunk_size() { return M; }
 583 
 584 private:
 585   // Heap region closure used for clearing the given mark bitmap.
 586   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 587   private:
 588     G1CMBitMap* _bitmap;
 589     G1ConcurrentMark* _cm;
 590   public:
 591     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 592     }
 593 
 594     virtual bool do_heap_region(HeapRegion* r) {
 595       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 596 
 597       HeapWord* cur = r->bottom();
 598       HeapWord* const end = r->end();
 599 
 600       while (cur < end) {
 601         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 602         _bitmap->clear_range(mr);
 603 
 604         cur += chunk_size_in_words;
 605 
 606         // Abort iteration if after yielding the marking has been aborted.
 607         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 608           return true;
 609         }
 610         // Repeat the asserts from before the start of the closure. We will do them
 611         // as asserts here to minimize their overhead on the product. However, we
 612         // will have them as guarantees at the beginning / end of the bitmap
 613         // clearing to get some checking in the product.
 614         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 615         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 616       }
 617       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 618 
 619       return false;
 620     }
 621   };
 622 
 623   G1ClearBitmapHRClosure _cl;
 624   HeapRegionClaimer _hr_claimer;
 625   bool _suspendible; // If the task is suspendible, workers must join the STS.
 626 
 627 public:
 628   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 629     AbstractGangTask("G1 Clear Bitmap"),
 630     _cl(bitmap, suspendible ? cm : NULL),
 631     _hr_claimer(n_workers),
 632     _suspendible(suspendible)
 633   { }
 634 
 635   void work(uint worker_id) {
 636     SuspendibleThreadSetJoiner sts_join(_suspendible);
 637     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 638   }
 639 
 640   bool is_complete() {
 641     return _cl.is_complete();
 642   }
 643 };
 644 
 645 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 646   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 647 
 648   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 649   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 650 
 651   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 652 
 653   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 654 
 655   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 656   workers->run_task(&cl, num_workers);
 657   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 658 }
 659 
 660 void G1ConcurrentMark::cleanup_for_next_mark() {
 661   // Make sure that the concurrent mark thread looks to still be in
 662   // the current cycle.
 663   guarantee(cm_thread()->during_cycle(), "invariant");
 664 
 665   // We are finishing up the current cycle by clearing the next
 666   // marking bitmap and getting it ready for the next cycle. During
 667   // this time no other cycle can start. So, let's make sure that this
 668   // is the case.
 669   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 670 
 671   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 672 
 673   // Clear the live count data. If the marking has been aborted, the abort()
 674   // call already did that.
 675   if (!has_aborted()) {
 676     clear_live_data(_concurrent_workers);
 677     DEBUG_ONLY(verify_live_data_clear());
 678   }
 679 
 680   // Repeat the asserts from above.
 681   guarantee(cm_thread()->during_cycle(), "invariant");
 682   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 683 }
 684 
 685 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 686   assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
 687   clear_bitmap(_prev_mark_bitmap, workers, false);
 688 }
 689 
 690 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 691   G1CMBitMap* _bitmap;
 692   bool _error;
 693  public:
 694   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 695   }
 696 
 697   virtual bool do_heap_region(HeapRegion* r) {
 698     // This closure can be called concurrently to the mutator, so we must make sure
 699     // that the result of the getNextMarkedWordAddress() call is compared to the
 700     // value passed to it as limit to detect any found bits.
 701     // end never changes in G1.
 702     HeapWord* end = r->end();
 703     return _bitmap->get_next_marked_addr(r->bottom(), end) != end;
 704   }
 705 };
 706 
 707 bool G1ConcurrentMark::next_mark_bitmap_is_clear() {
 708   CheckBitmapClearHRClosure cl(_next_mark_bitmap);
 709   _g1h->heap_region_iterate(&cl);
 710   return cl.is_complete();
 711 }
 712 
 713 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 714 public:
 715   bool do_heap_region(HeapRegion* r) {
 716     r->note_start_of_marking();
 717     return false;
 718   }
 719 };
 720 
 721 void G1ConcurrentMark::checkpoint_roots_initial_pre() {
 722   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 723 
 724   _has_aborted = false;
 725 
 726   // Initialize marking structures. This has to be done in a STW phase.
 727   reset();
 728 
 729   // For each region note start of marking.
 730   NoteStartOfMarkHRClosure startcl;
 731   g1h->heap_region_iterate(&startcl);
 732 }
 733 
 734 
 735 void G1ConcurrentMark::checkpoint_roots_initial_post() {
 736   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 737 
 738   // Start Concurrent Marking weak-reference discovery.
 739   ReferenceProcessor* rp = g1h->ref_processor_cm();
 740   // enable ("weak") refs discovery
 741   rp->enable_discovery();
 742   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 743 
 744   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 745   // This is the start of  the marking cycle, we're expected all
 746   // threads to have SATB queues with active set to false.
 747   satb_mq_set.set_active_all_threads(true, /* new active value */
 748                                      false /* expected_active */);
 749 
 750   _root_regions.prepare_for_scan();
 751 
 752   // update_g1_committed() will be called at the end of an evac pause
 753   // when marking is on. So, it's also called at the end of the
 754   // initial-mark pause to update the heap end, if the heap expands
 755   // during it. No need to call it here.
 756 }
 757 
 758 /*
 759  * Notice that in the next two methods, we actually leave the STS
 760  * during the barrier sync and join it immediately afterwards. If we
 761  * do not do this, the following deadlock can occur: one thread could
 762  * be in the barrier sync code, waiting for the other thread to also
 763  * sync up, whereas another one could be trying to yield, while also
 764  * waiting for the other threads to sync up too.
 765  *
 766  * Note, however, that this code is also used during remark and in
 767  * this case we should not attempt to leave / enter the STS, otherwise
 768  * we'll either hit an assert (debug / fastdebug) or deadlock
 769  * (product). So we should only leave / enter the STS if we are
 770  * operating concurrently.
 771  *
 772  * Because the thread that does the sync barrier has left the STS, it
 773  * is possible to be suspended for a Full GC or an evacuation pause
 774  * could occur. This is actually safe, since the entering the sync
 775  * barrier is one of the last things do_marking_step() does, and it
 776  * doesn't manipulate any data structures afterwards.
 777  */
 778 
 779 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 780   bool barrier_aborted;
 781   {
 782     SuspendibleThreadSetLeaver sts_leave(concurrent());
 783     barrier_aborted = !_first_overflow_barrier_sync.enter();
 784   }
 785 
 786   // at this point everyone should have synced up and not be doing any
 787   // more work
 788 
 789   if (barrier_aborted) {
 790     // If the barrier aborted we ignore the overflow condition and
 791     // just abort the whole marking phase as quickly as possible.
 792     return;
 793   }
 794 
 795   // If we're executing the concurrent phase of marking, reset the marking
 796   // state; otherwise the marking state is reset after reference processing,
 797   // during the remark pause.
 798   // If we reset here as a result of an overflow during the remark we will
 799   // see assertion failures from any subsequent set_concurrency_and_phase()
 800   // calls.
 801   if (concurrent()) {
 802     // let the task associated with with worker 0 do this
 803     if (worker_id == 0) {
 804       // task 0 is responsible for clearing the global data structures
 805       // We should be here because of an overflow. During STW we should
 806       // not clear the overflow flag since we rely on it being true when
 807       // we exit this method to abort the pause and restart concurrent
 808       // marking.
 809       reset_marking_state();
 810 
 811       log_info(gc, marking)("Concurrent Mark reset for overflow");
 812     }
 813   }
 814 
 815   // after this, each task should reset its own data structures then
 816   // then go into the second barrier
 817 }
 818 
 819 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 820   SuspendibleThreadSetLeaver sts_leave(concurrent());
 821   _second_overflow_barrier_sync.enter();
 822 
 823   // at this point everything should be re-initialized and ready to go
 824 }
 825 
 826 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 827 private:
 828   G1ConcurrentMark*     _cm;
 829   ConcurrentMarkThread* _cmt;
 830 
 831 public:
 832   void work(uint worker_id) {
 833     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 834     ResourceMark rm;
 835 
 836     double start_vtime = os::elapsedVTime();
 837 
 838     {
 839       SuspendibleThreadSetJoiner sts_join;
 840 
 841       assert(worker_id < _cm->active_tasks(), "invariant");
 842 
 843       G1CMTask* task = _cm->task(worker_id);
 844       task->record_start_time();
 845       if (!_cm->has_aborted()) {
 846         do {
 847           task->do_marking_step(G1ConcMarkStepDurationMillis,
 848                                 true  /* do_termination */,
 849                                 false /* is_serial*/);
 850 
 851           _cm->do_yield_check();
 852         } while (!_cm->has_aborted() && task->has_aborted());
 853       }
 854       task->record_end_time();
 855       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 856     }
 857 
 858     double end_vtime = os::elapsedVTime();
 859     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 860   }
 861 
 862   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 863                             ConcurrentMarkThread* cmt) :
 864       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 865 
 866   ~G1CMConcurrentMarkingTask() { }
 867 };
 868 
 869 uint G1ConcurrentMark::calc_active_marking_workers() {
 870   uint result = 0;
 871   if (!UseDynamicNumberOfGCThreads ||
 872       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 873        !ForceDynamicNumberOfGCThreads)) {
 874     result = _max_concurrent_workers;
 875   } else {
 876     result =
 877       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 878                                                       1, /* Minimum workers */
 879                                                       _num_concurrent_workers,
 880                                                       Threads::number_of_non_daemon_threads());
 881     // Don't scale the result down by scale_concurrent_workers() because
 882     // that scaling has already gone into "_max_concurrent_workers".
 883   }
 884   assert(result > 0 && result <= _max_concurrent_workers,
 885          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 886          _max_concurrent_workers, result);
 887   return result;
 888 }
 889 
 890 void G1ConcurrentMark::scan_root_region(HeapRegion* hr) {
 891   // Currently, only survivors can be root regions.
 892   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 893   G1RootRegionScanClosure cl(_g1h, this);
 894 
 895   const uintx interval = PrefetchScanIntervalInBytes;
 896   HeapWord* curr = hr->bottom();
 897   const HeapWord* end = hr->top();
 898   while (curr < end) {
 899     Prefetch::read(curr, interval);
 900     oop obj = oop(curr);
 901     int size = obj->oop_iterate_size(&cl);
 902     assert(size == obj->size(), "sanity");
 903     curr += size;
 904   }
 905 }
 906 
 907 class G1CMRootRegionScanTask : public AbstractGangTask {
 908 private:
 909   G1ConcurrentMark* _cm;
 910 
 911 public:
 912   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 913     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 914 
 915   void work(uint worker_id) {
 916     assert(Thread::current()->is_ConcurrentGC_thread(),
 917            "this should only be done by a conc GC thread");
 918 
 919     G1CMRootRegions* root_regions = _cm->root_regions();
 920     HeapRegion* hr = root_regions->claim_next();
 921     while (hr != NULL) {
 922       _cm->scan_root_region(hr);
 923       hr = root_regions->claim_next();
 924     }
 925   }
 926 };
 927 
 928 void G1ConcurrentMark::scan_root_regions() {
 929   // scan_in_progress() will have been set to true only if there was
 930   // at least one root region to scan. So, if it's false, we
 931   // should not attempt to do any further work.
 932   if (root_regions()->scan_in_progress()) {
 933     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 934 
 935     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 936                                    // We distribute work on a per-region basis, so starting
 937                                    // more threads than that is useless.
 938                                    root_regions()->num_root_regions());
 939     assert(_num_concurrent_workers <= _max_concurrent_workers,
 940            "Maximum number of marking threads exceeded");
 941 
 942     G1CMRootRegionScanTask task(this);
 943     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 944                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 945     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 946 
 947     // It's possible that has_aborted() is true here without actually
 948     // aborting the survivor scan earlier. This is OK as it's
 949     // mainly used for sanity checking.
 950     root_regions()->scan_finished();
 951   }
 952 }
 953 
 954 void G1ConcurrentMark::concurrent_cycle_start() {
 955   _gc_timer_cm->register_gc_start();
 956 
 957   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 958 
 959   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 960 }
 961 
 962 void G1ConcurrentMark::concurrent_cycle_end() {
 963   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 964 
 965   if (has_aborted()) {
 966     _gc_tracer_cm->report_concurrent_mode_failure();
 967   }
 968 
 969   _gc_timer_cm->register_gc_end();
 970 
 971   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 972 }
 973 
 974 void G1ConcurrentMark::mark_from_roots() {
 975   // we might be tempted to assert that:
 976   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
 977   //        "inconsistent argument?");
 978   // However that wouldn't be right, because it's possible that
 979   // a safepoint is indeed in progress as a younger generation
 980   // stop-the-world GC happens even as we mark in this generation.
 981 
 982   _restart_for_overflow = false;
 983 
 984   _num_concurrent_workers = calc_active_marking_workers();
 985 
 986   uint active_workers = MAX2(1U, _num_concurrent_workers);
 987 
 988   // Setting active workers is not guaranteed since fewer
 989   // worker threads may currently exist and more may not be
 990   // available.
 991   active_workers = _concurrent_workers->update_active_workers(active_workers);
 992   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 993 
 994   // Parallel task terminator is set in "set_concurrency_and_phase()"
 995   set_concurrency_and_phase(active_workers, true /* concurrent */);
 996 
 997   G1CMConcurrentMarkingTask marking_task(this, cm_thread());
 998   _concurrent_workers->run_task(&marking_task);
 999   print_stats();
1000 }
1001 
1002 void G1ConcurrentMark::checkpoint_roots_final(bool clear_all_soft_refs) {
1003   // world is stopped at this checkpoint
1004   assert(SafepointSynchronize::is_at_safepoint(),
1005          "world should be stopped");
1006 
1007   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1008 
1009   // If a full collection has happened, we shouldn't do this.
1010   if (has_aborted()) {
1011     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1012     return;
1013   }
1014 
1015   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1016 
1017   if (VerifyDuringGC) {
1018     g1h->verifier()->verify(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "During GC (before)");
1019   }
1020   g1h->verifier()->check_bitmaps("Remark Start");
1021 
1022   G1Policy* g1p = g1h->g1_policy();
1023   g1p->record_concurrent_mark_remark_start();
1024 
1025   double start = os::elapsedTime();
1026 
1027   checkpoint_roots_final_work();
1028 
1029   double mark_work_end = os::elapsedTime();
1030 
1031   weak_refs_work(clear_all_soft_refs);
1032 
1033   if (has_overflown()) {
1034     // We overflowed.  Restart concurrent marking.
1035     _restart_for_overflow = true;
1036 
1037     // Verify the heap w.r.t. the previous marking bitmap.
1038     if (VerifyDuringGC) {
1039       g1h->verifier()->verify(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1040     }
1041 
1042     // Clear the marking state because we will be restarting
1043     // marking due to overflowing the global mark stack.
1044     reset_marking_state();
1045   } else {
1046     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1047     // We're done with marking.
1048     // This is the end of  the marking cycle, we're expected all
1049     // threads to have SATB queues with active set to true.
1050     satb_mq_set.set_active_all_threads(false, /* new active value */
1051                                        true /* expected_active */);
1052 
1053     if (VerifyDuringGC) {
1054       g1h->verifier()->verify(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UseNextMarking, "During GC (after)");
1055     }
1056     g1h->verifier()->check_bitmaps("Remark End");
1057     assert(!restart_for_overflow(), "sanity");
1058     // Completely reset the marking state since marking completed
1059     set_non_marking_state();
1060   }
1061 
1062   // Statistics
1063   double now = os::elapsedTime();
1064   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1065   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1066   _remark_times.add((now - start) * 1000.0);
1067 
1068   g1p->record_concurrent_mark_remark_end();
1069 
1070   G1CMIsAliveClosure is_alive(g1h);
1071   _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1072 }
1073 
1074 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1075   G1CollectedHeap* _g1;
1076   size_t _freed_bytes;
1077   FreeRegionList* _local_cleanup_list;
1078   uint _old_regions_removed;
1079   uint _humongous_regions_removed;
1080   HRRSCleanupTask* _hrrs_cleanup_task;
1081 
1082 public:
1083   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1084                              FreeRegionList* local_cleanup_list,
1085                              HRRSCleanupTask* hrrs_cleanup_task) :
1086     _g1(g1),
1087     _freed_bytes(0),
1088     _local_cleanup_list(local_cleanup_list),
1089     _old_regions_removed(0),
1090     _humongous_regions_removed(0),
1091     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1092 
1093   size_t freed_bytes() { return _freed_bytes; }
1094   const uint old_regions_removed() { return _old_regions_removed; }
1095   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1096 
1097   bool do_heap_region(HeapRegion *hr) {
1098     _g1->reset_gc_time_stamps(hr);
1099     hr->note_end_of_marking();
1100 
1101     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1102       _freed_bytes += hr->used();
1103       hr->set_containing_set(NULL);
1104       if (hr->is_humongous()) {
1105         _humongous_regions_removed++;
1106         _g1->free_humongous_region(hr, _local_cleanup_list, true /* skip_remset */);
1107       } else {
1108         _old_regions_removed++;
1109         _g1->free_region(hr, _local_cleanup_list, true /* skip_remset */);
1110       }
1111     } else {
1112       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1113     }
1114 
1115     return false;
1116   }
1117 };
1118 
1119 class G1ParNoteEndTask: public AbstractGangTask {
1120   friend class G1NoteEndOfConcMarkClosure;
1121 
1122 protected:
1123   G1CollectedHeap* _g1h;
1124   FreeRegionList* _cleanup_list;
1125   HeapRegionClaimer _hrclaimer;
1126 
1127 public:
1128   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1129       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1130   }
1131 
1132   void work(uint worker_id) {
1133     FreeRegionList local_cleanup_list("Local Cleanup List");
1134     HRRSCleanupTask hrrs_cleanup_task;
1135     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1136                                            &hrrs_cleanup_task);
1137     _g1h->heap_region_par_iterate_from_worker_offset(&g1_note_end, &_hrclaimer, worker_id);
1138     assert(g1_note_end.is_complete(), "Shouldn't have yielded!");
1139 
1140     // Now update the lists
1141     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1142     {
1143       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1144       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1145 
1146       // If we iterate over the global cleanup list at the end of
1147       // cleanup to do this printing we will not guarantee to only
1148       // generate output for the newly-reclaimed regions (the list
1149       // might not be empty at the beginning of cleanup; we might
1150       // still be working on its previous contents). So we do the
1151       // printing here, before we append the new regions to the global
1152       // cleanup list.
1153 
1154       G1HRPrinter* hr_printer = _g1h->hr_printer();
1155       if (hr_printer->is_active()) {
1156         FreeRegionListIterator iter(&local_cleanup_list);
1157         while (iter.more_available()) {
1158           HeapRegion* hr = iter.get_next();
1159           hr_printer->cleanup(hr);
1160         }
1161       }
1162 
1163       _cleanup_list->add_ordered(&local_cleanup_list);
1164       assert(local_cleanup_list.is_empty(), "post-condition");
1165 
1166       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1167     }
1168   }
1169 };
1170 
1171 void G1ConcurrentMark::cleanup() {
1172   // world is stopped at this checkpoint
1173   assert(SafepointSynchronize::is_at_safepoint(),
1174          "world should be stopped");
1175   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1176 
1177   // If a full collection has happened, we shouldn't do this.
1178   if (has_aborted()) {
1179     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1180     return;
1181   }
1182 
1183   g1h->verifier()->verify_region_sets_optional();
1184 
1185   if (VerifyDuringGC) {
1186     g1h->verifier()->verify(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "During GC (before)");
1187   }
1188   g1h->verifier()->check_bitmaps("Cleanup Start");
1189 
1190   G1Policy* g1p = g1h->g1_policy();
1191   g1p->record_concurrent_mark_cleanup_start();
1192 
1193   double start = os::elapsedTime();
1194 
1195   HeapRegionRemSet::reset_for_cleanup_tasks();
1196 
1197   {
1198     GCTraceTime(Debug, gc)("Finalize Live Data");
1199     finalize_live_data();
1200   }
1201 
1202   if (VerifyDuringGC) {
1203     GCTraceTime(Debug, gc)("Verify Live Data");
1204     verify_live_data();
1205   }
1206 
1207   g1h->collector_state()->set_mark_in_progress(false);
1208 
1209   double count_end = os::elapsedTime();
1210   double this_final_counting_time = (count_end - start);
1211   _total_counting_time += this_final_counting_time;
1212 
1213   if (log_is_enabled(Trace, gc, liveness)) {
1214     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1215     _g1h->heap_region_iterate(&cl);
1216   }
1217 
1218   // Install newly created mark bitMap as "prev".
1219   swap_mark_bitmaps();
1220 
1221   g1h->reset_gc_time_stamp();
1222 
1223   uint n_workers = _g1h->workers()->active_workers();
1224 
1225   // Note end of marking in all heap regions.
1226   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1227   g1h->workers()->run_task(&g1_par_note_end_task);
1228   g1h->check_gc_time_stamps();
1229 
1230   if (!cleanup_list_is_empty()) {
1231     // The cleanup list is not empty, so we'll have to process it
1232     // concurrently. Notify anyone else that might be wanting free
1233     // regions that there will be more free regions coming soon.
1234     g1h->set_free_regions_coming();
1235   }
1236 
1237   // call below, since it affects the metric by which we sort the heap
1238   // regions.
1239   if (G1ScrubRemSets) {
1240     double rs_scrub_start = os::elapsedTime();
1241     g1h->scrub_rem_set();
1242     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1243   }
1244 
1245   // this will also free any regions totally full of garbage objects,
1246   // and sort the regions.
1247   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1248 
1249   // Statistics.
1250   double end = os::elapsedTime();
1251   _cleanup_times.add((end - start) * 1000.0);
1252 
1253   // Clean up will have freed any regions completely full of garbage.
1254   // Update the soft reference policy with the new heap occupancy.
1255   Universe::update_heap_info_at_gc();
1256 
1257   if (VerifyDuringGC) {
1258     g1h->verifier()->verify(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "During GC (after)");
1259   }
1260 
1261   g1h->verifier()->check_bitmaps("Cleanup End");
1262 
1263   g1h->verifier()->verify_region_sets_optional();
1264 
1265   // We need to make this be a "collection" so any collection pause that
1266   // races with it goes around and waits for completeCleanup to finish.
1267   g1h->increment_total_collections();
1268 
1269   // Clean out dead classes and update Metaspace sizes.
1270   if (ClassUnloadingWithConcurrentMark) {
1271     ClassLoaderDataGraph::purge();
1272   }
1273   MetaspaceGC::compute_new_size();
1274 
1275   // We reclaimed old regions so we should calculate the sizes to make
1276   // sure we update the old gen/space data.
1277   g1h->g1mm()->update_sizes();
1278 }
1279 
1280 void G1ConcurrentMark::complete_cleanup() {
1281   if (has_aborted()) return;
1282 
1283   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1284 
1285   _cleanup_list.verify_optional();
1286   FreeRegionList tmp_free_list("Tmp Free List");
1287 
1288   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1289                                   "cleanup list has %u entries",
1290                                   _cleanup_list.length());
1291 
1292   // No one else should be accessing the _cleanup_list at this point,
1293   // so it is not necessary to take any locks
1294   while (!_cleanup_list.is_empty()) {
1295     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1296     assert(hr != NULL, "Got NULL from a non-empty list");
1297     hr->par_clear();
1298     tmp_free_list.add_ordered(hr);
1299 
1300     // Instead of adding one region at a time to the secondary_free_list,
1301     // we accumulate them in the local list and move them a few at a
1302     // time. This also cuts down on the number of notify_all() calls
1303     // we do during this process. We'll also append the local list when
1304     // _cleanup_list is empty (which means we just removed the last
1305     // region from the _cleanup_list).
1306     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1307         _cleanup_list.is_empty()) {
1308       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1309                                       "appending %u entries to the secondary_free_list, "
1310                                       "cleanup list still has %u entries",
1311                                       tmp_free_list.length(),
1312                                       _cleanup_list.length());
1313 
1314       {
1315         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1316         g1h->secondary_free_list_add(&tmp_free_list);
1317         SecondaryFreeList_lock->notify_all();
1318       }
1319 #ifndef PRODUCT
1320       if (G1StressConcRegionFreeing) {
1321         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1322           os::sleep(Thread::current(), (jlong) 1, false);
1323         }
1324       }
1325 #endif
1326     }
1327   }
1328   assert(tmp_free_list.is_empty(), "post-condition");
1329 }
1330 
1331 // Supporting Object and Oop closures for reference discovery
1332 // and processing in during marking
1333 
1334 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1335   HeapWord* addr = (HeapWord*)obj;
1336   return addr != NULL &&
1337          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1338 }
1339 
1340 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1341 // Uses the G1CMTask associated with a worker thread (for serial reference
1342 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1343 // trace referent objects.
1344 //
1345 // Using the G1CMTask and embedded local queues avoids having the worker
1346 // threads operating on the global mark stack. This reduces the risk
1347 // of overflowing the stack - which we would rather avoid at this late
1348 // state. Also using the tasks' local queues removes the potential
1349 // of the workers interfering with each other that could occur if
1350 // operating on the global stack.
1351 
1352 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1353   G1ConcurrentMark* _cm;
1354   G1CMTask*         _task;
1355   int               _ref_counter_limit;
1356   int               _ref_counter;
1357   bool              _is_serial;
1358  public:
1359   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1360     _cm(cm), _task(task), _is_serial(is_serial),
1361     _ref_counter_limit(G1RefProcDrainInterval) {
1362     assert(_ref_counter_limit > 0, "sanity");
1363     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1364     _ref_counter = _ref_counter_limit;
1365   }
1366 
1367   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1368   virtual void do_oop(      oop* p) { do_oop_work(p); }
1369 
1370   template <class T> void do_oop_work(T* p) {
1371     if (!_cm->has_overflown()) {
1372       oop obj = oopDesc::load_decode_heap_oop(p);
1373       _task->deal_with_reference(obj);
1374       _ref_counter--;
1375 
1376       if (_ref_counter == 0) {
1377         // We have dealt with _ref_counter_limit references, pushing them
1378         // and objects reachable from them on to the local stack (and
1379         // possibly the global stack). Call G1CMTask::do_marking_step() to
1380         // process these entries.
1381         //
1382         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1383         // there's nothing more to do (i.e. we're done with the entries that
1384         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1385         // above) or we overflow.
1386         //
1387         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1388         // flag while there may still be some work to do. (See the comment at
1389         // the beginning of G1CMTask::do_marking_step() for those conditions -
1390         // one of which is reaching the specified time target.) It is only
1391         // when G1CMTask::do_marking_step() returns without setting the
1392         // has_aborted() flag that the marking step has completed.
1393         do {
1394           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1395           _task->do_marking_step(mark_step_duration_ms,
1396                                  false      /* do_termination */,
1397                                  _is_serial);
1398         } while (_task->has_aborted() && !_cm->has_overflown());
1399         _ref_counter = _ref_counter_limit;
1400       }
1401     }
1402   }
1403 };
1404 
1405 // 'Drain' oop closure used by both serial and parallel reference processing.
1406 // Uses the G1CMTask associated with a given worker thread (for serial
1407 // reference processing the G1CMtask for worker 0 is used). Calls the
1408 // do_marking_step routine, with an unbelievably large timeout value,
1409 // to drain the marking data structures of the remaining entries
1410 // added by the 'keep alive' oop closure above.
1411 
1412 class G1CMDrainMarkingStackClosure: public VoidClosure {
1413   G1ConcurrentMark* _cm;
1414   G1CMTask*         _task;
1415   bool              _is_serial;
1416  public:
1417   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1418     _cm(cm), _task(task), _is_serial(is_serial) {
1419     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1420   }
1421 
1422   void do_void() {
1423     do {
1424       // We call G1CMTask::do_marking_step() to completely drain the local
1425       // and global marking stacks of entries pushed by the 'keep alive'
1426       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1427       //
1428       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1429       // if there's nothing more to do (i.e. we've completely drained the
1430       // entries that were pushed as a a result of applying the 'keep alive'
1431       // closure to the entries on the discovered ref lists) or we overflow
1432       // the global marking stack.
1433       //
1434       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1435       // flag while there may still be some work to do. (See the comment at
1436       // the beginning of G1CMTask::do_marking_step() for those conditions -
1437       // one of which is reaching the specified time target.) It is only
1438       // when G1CMTask::do_marking_step() returns without setting the
1439       // has_aborted() flag that the marking step has completed.
1440 
1441       _task->do_marking_step(1000000000.0 /* something very large */,
1442                              true         /* do_termination */,
1443                              _is_serial);
1444     } while (_task->has_aborted() && !_cm->has_overflown());
1445   }
1446 };
1447 
1448 // Implementation of AbstractRefProcTaskExecutor for parallel
1449 // reference processing at the end of G1 concurrent marking
1450 
1451 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1452 private:
1453   G1CollectedHeap*  _g1h;
1454   G1ConcurrentMark* _cm;
1455   WorkGang*         _workers;
1456   uint              _active_workers;
1457 
1458 public:
1459   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1460                           G1ConcurrentMark* cm,
1461                           WorkGang* workers,
1462                           uint n_workers) :
1463     _g1h(g1h), _cm(cm),
1464     _workers(workers), _active_workers(n_workers) { }
1465 
1466   // Executes the given task using concurrent marking worker threads.
1467   virtual void execute(ProcessTask& task);
1468   virtual void execute(EnqueueTask& task);
1469 };
1470 
1471 class G1CMRefProcTaskProxy: public AbstractGangTask {
1472   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1473   ProcessTask&      _proc_task;
1474   G1CollectedHeap*  _g1h;
1475   G1ConcurrentMark* _cm;
1476 
1477 public:
1478   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1479                        G1CollectedHeap* g1h,
1480                        G1ConcurrentMark* cm) :
1481     AbstractGangTask("Process reference objects in parallel"),
1482     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1483     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1484     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1485   }
1486 
1487   virtual void work(uint worker_id) {
1488     ResourceMark rm;
1489     HandleMark hm;
1490     G1CMTask* task = _cm->task(worker_id);
1491     G1CMIsAliveClosure g1_is_alive(_g1h);
1492     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1493     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1494 
1495     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1496   }
1497 };
1498 
1499 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1500   assert(_workers != NULL, "Need parallel worker threads.");
1501   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1502 
1503   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1504 
1505   // We need to reset the concurrency level before each
1506   // proxy task execution, so that the termination protocol
1507   // and overflow handling in G1CMTask::do_marking_step() knows
1508   // how many workers to wait for.
1509   _cm->set_concurrency(_active_workers);
1510   _workers->run_task(&proc_task_proxy);
1511 }
1512 
1513 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1514   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1515   EnqueueTask& _enq_task;
1516 
1517 public:
1518   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1519     AbstractGangTask("Enqueue reference objects in parallel"),
1520     _enq_task(enq_task) { }
1521 
1522   virtual void work(uint worker_id) {
1523     _enq_task.work(worker_id);
1524   }
1525 };
1526 
1527 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1528   assert(_workers != NULL, "Need parallel worker threads.");
1529   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1530 
1531   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1532 
1533   // Not strictly necessary but...
1534   //
1535   // We need to reset the concurrency level before each
1536   // proxy task execution, so that the termination protocol
1537   // and overflow handling in G1CMTask::do_marking_step() knows
1538   // how many workers to wait for.
1539   _cm->set_concurrency(_active_workers);
1540   _workers->run_task(&enq_task_proxy);
1541 }
1542 
1543 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1544   if (has_overflown()) {
1545     // Skip processing the discovered references if we have
1546     // overflown the global marking stack. Reference objects
1547     // only get discovered once so it is OK to not
1548     // de-populate the discovered reference lists. We could have,
1549     // but the only benefit would be that, when marking restarts,
1550     // less reference objects are discovered.
1551     return;
1552   }
1553 
1554   ResourceMark rm;
1555   HandleMark   hm;
1556 
1557   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1558 
1559   // Is alive closure.
1560   G1CMIsAliveClosure g1_is_alive(g1h);
1561 
1562   // Inner scope to exclude the cleaning of the string and symbol
1563   // tables from the displayed time.
1564   {
1565     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1566 
1567     ReferenceProcessor* rp = g1h->ref_processor_cm();
1568 
1569     // See the comment in G1CollectedHeap::ref_processing_init()
1570     // about how reference processing currently works in G1.
1571 
1572     // Set the soft reference policy
1573     rp->setup_policy(clear_all_soft_refs);
1574     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1575 
1576     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1577     // in serial reference processing. Note these closures are also
1578     // used for serially processing (by the the current thread) the
1579     // JNI references during parallel reference processing.
1580     //
1581     // These closures do not need to synchronize with the worker
1582     // threads involved in parallel reference processing as these
1583     // instances are executed serially by the current thread (e.g.
1584     // reference processing is not multi-threaded and is thus
1585     // performed by the current thread instead of a gang worker).
1586     //
1587     // The gang tasks involved in parallel reference processing create
1588     // their own instances of these closures, which do their own
1589     // synchronization among themselves.
1590     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1591     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1592 
1593     // We need at least one active thread. If reference processing
1594     // is not multi-threaded we use the current (VMThread) thread,
1595     // otherwise we use the work gang from the G1CollectedHeap and
1596     // we utilize all the worker threads we can.
1597     bool processing_is_mt = rp->processing_is_mt();
1598     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
1599     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1600 
1601     // Parallel processing task executor.
1602     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
1603                                               g1h->workers(), active_workers);
1604     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1605 
1606     // Set the concurrency level. The phase was already set prior to
1607     // executing the remark task.
1608     set_concurrency(active_workers);
1609 
1610     // Set the degree of MT processing here.  If the discovery was done MT,
1611     // the number of threads involved during discovery could differ from
1612     // the number of active workers.  This is OK as long as the discovered
1613     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1614     rp->set_active_mt_degree(active_workers);
1615 
1616     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
1617 
1618     // Process the weak references.
1619     const ReferenceProcessorStats& stats =
1620         rp->process_discovered_references(&g1_is_alive,
1621                                           &g1_keep_alive,
1622                                           &g1_drain_mark_stack,
1623                                           executor,
1624                                           &pt);
1625     _gc_tracer_cm->report_gc_reference_stats(stats);
1626     pt.print_all_references();
1627 
1628     // The do_oop work routines of the keep_alive and drain_marking_stack
1629     // oop closures will set the has_overflown flag if we overflow the
1630     // global marking stack.
1631 
1632     assert(has_overflown() || _global_mark_stack.is_empty(),
1633             "Mark stack should be empty (unless it has overflown)");
1634 
1635     assert(rp->num_q() == active_workers, "why not");
1636 
1637     rp->enqueue_discovered_references(executor, &pt);
1638 
1639     rp->verify_no_references_recorded();
1640 
1641     pt.print_enqueue_phase();
1642 
1643     assert(!rp->discovery_enabled(), "Post condition");
1644   }
1645 
1646   assert(has_overflown() || _global_mark_stack.is_empty(),
1647           "Mark stack should be empty (unless it has overflown)");
1648 
1649   {
1650     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1651     WeakProcessor::weak_oops_do(&g1_is_alive, &do_nothing_cl);
1652   }
1653 
1654   if (has_overflown()) {
1655     // We can not trust g1_is_alive if the marking stack overflowed
1656     return;
1657   }
1658 
1659   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1660 
1661   // Unload Klasses, String, Symbols, Code Cache, etc.
1662   if (ClassUnloadingWithConcurrentMark) {
1663     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1664     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */);
1665     g1h->complete_cleaning(&g1_is_alive, purged_classes);
1666   } else {
1667     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1668     // No need to clean string table and symbol table as they are treated as strong roots when
1669     // class unloading is disabled.
1670     g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1671 
1672   }
1673 }
1674 
1675 void G1ConcurrentMark::swap_mark_bitmaps() {
1676   G1CMBitMap* temp = _prev_mark_bitmap;
1677   _prev_mark_bitmap = _next_mark_bitmap;
1678   _next_mark_bitmap = temp;
1679 }
1680 
1681 // Closure for marking entries in SATB buffers.
1682 class G1CMSATBBufferClosure : public SATBBufferClosure {
1683 private:
1684   G1CMTask* _task;
1685   G1CollectedHeap* _g1h;
1686 
1687   // This is very similar to G1CMTask::deal_with_reference, but with
1688   // more relaxed requirements for the argument, so this must be more
1689   // circumspect about treating the argument as an object.
1690   void do_entry(void* entry) const {
1691     _task->increment_refs_reached();
1692     oop const obj = static_cast<oop>(entry);
1693     _task->make_reference_grey(obj);
1694   }
1695 
1696 public:
1697   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1698     : _task(task), _g1h(g1h) { }
1699 
1700   virtual void do_buffer(void** buffer, size_t size) {
1701     for (size_t i = 0; i < size; ++i) {
1702       do_entry(buffer[i]);
1703     }
1704   }
1705 };
1706 
1707 class G1RemarkThreadsClosure : public ThreadClosure {
1708   G1CMSATBBufferClosure _cm_satb_cl;
1709   G1CMOopClosure _cm_cl;
1710   MarkingCodeBlobClosure _code_cl;
1711   int _thread_parity;
1712 
1713  public:
1714   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1715     _cm_satb_cl(task, g1h),
1716     _cm_cl(g1h, g1h->concurrent_mark(), task),
1717     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1718     _thread_parity(Threads::thread_claim_parity()) {}
1719 
1720   void do_thread(Thread* thread) {
1721     if (thread->is_Java_thread()) {
1722       if (thread->claim_oops_do(true, _thread_parity)) {
1723         JavaThread* jt = (JavaThread*)thread;
1724 
1725         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1726         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1727         // * Alive if on the stack of an executing method
1728         // * Weakly reachable otherwise
1729         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1730         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1731         jt->nmethods_do(&_code_cl);
1732 
1733         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1734       }
1735     } else if (thread->is_VM_thread()) {
1736       if (thread->claim_oops_do(true, _thread_parity)) {
1737         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1738       }
1739     }
1740   }
1741 };
1742 
1743 class G1CMRemarkTask: public AbstractGangTask {
1744 private:
1745   G1ConcurrentMark* _cm;
1746 public:
1747   void work(uint worker_id) {
1748     G1CMTask* task = _cm->task(worker_id);
1749     task->record_start_time();
1750     {
1751       ResourceMark rm;
1752       HandleMark hm;
1753 
1754       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1755       Threads::threads_do(&threads_f);
1756     }
1757 
1758     do {
1759       task->do_marking_step(1000000000.0 /* something very large */,
1760                             true         /* do_termination       */,
1761                             false        /* is_serial            */);
1762     } while (task->has_aborted() && !_cm->has_overflown());
1763     // If we overflow, then we do not want to restart. We instead
1764     // want to abort remark and do concurrent marking again.
1765     task->record_end_time();
1766   }
1767 
1768   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1769     AbstractGangTask("Par Remark"), _cm(cm) {
1770     _cm->terminator()->reset_for_reuse(active_workers);
1771   }
1772 };
1773 
1774 void G1ConcurrentMark::checkpoint_roots_final_work() {
1775   ResourceMark rm;
1776   HandleMark   hm;
1777   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1778 
1779   GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1780 
1781   g1h->ensure_parsability(false);
1782 
1783   // this is remark, so we'll use up all active threads
1784   uint active_workers = g1h->workers()->active_workers();
1785   set_concurrency_and_phase(active_workers, false /* concurrent */);
1786   // Leave _parallel_marking_threads at it's
1787   // value originally calculated in the G1ConcurrentMark
1788   // constructor and pass values of the active workers
1789   // through the gang in the task.
1790 
1791   {
1792     StrongRootsScope srs(active_workers);
1793 
1794     G1CMRemarkTask remarkTask(this, active_workers);
1795     // We will start all available threads, even if we decide that the
1796     // active_workers will be fewer. The extra ones will just bail out
1797     // immediately.
1798     g1h->workers()->run_task(&remarkTask);
1799   }
1800 
1801   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1802   guarantee(has_overflown() ||
1803             satb_mq_set.completed_buffers_num() == 0,
1804             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1805             BOOL_TO_STR(has_overflown()),
1806             satb_mq_set.completed_buffers_num());
1807 
1808   print_stats();
1809 }
1810 
1811 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1812   _prev_mark_bitmap->clear_range(mr);
1813 }
1814 
1815 HeapRegion*
1816 G1ConcurrentMark::claim_region(uint worker_id) {
1817   // "checkpoint" the finger
1818   HeapWord* finger = _finger;
1819 
1820   // _heap_end will not change underneath our feet; it only changes at
1821   // yield points.
1822   while (finger < _heap_end) {
1823     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1824 
1825     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1826     // Make sure that the reads below do not float before loading curr_region.
1827     OrderAccess::loadload();
1828     // Above heap_region_containing may return NULL as we always scan claim
1829     // until the end of the heap. In this case, just jump to the next region.
1830     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1831 
1832     // Is the gap between reading the finger and doing the CAS too long?
1833     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1834     if (res == finger && curr_region != NULL) {
1835       // we succeeded
1836       HeapWord*   bottom        = curr_region->bottom();
1837       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1838 
1839       // notice that _finger == end cannot be guaranteed here since,
1840       // someone else might have moved the finger even further
1841       assert(_finger >= end, "the finger should have moved forward");
1842 
1843       if (limit > bottom) {
1844         return curr_region;
1845       } else {
1846         assert(limit == bottom,
1847                "the region limit should be at bottom");
1848         // we return NULL and the caller should try calling
1849         // claim_region() again.
1850         return NULL;
1851       }
1852     } else {
1853       assert(_finger > finger, "the finger should have moved forward");
1854       // read it again
1855       finger = _finger;
1856     }
1857   }
1858 
1859   return NULL;
1860 }
1861 
1862 #ifndef PRODUCT
1863 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
1864 private:
1865   G1CollectedHeap* _g1h;
1866   const char* _phase;
1867   int _info;
1868 
1869 public:
1870   VerifyNoCSetOops(const char* phase, int info = -1) :
1871     _g1h(G1CollectedHeap::heap()),
1872     _phase(phase),
1873     _info(info)
1874   { }
1875 
1876   void operator()(G1TaskQueueEntry task_entry) const {
1877     if (task_entry.is_array_slice()) {
1878       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1879       return;
1880     }
1881     guarantee(oopDesc::is_oop(task_entry.obj()),
1882               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1883               p2i(task_entry.obj()), _phase, _info);
1884     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1885               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1886               p2i(task_entry.obj()), _phase, _info);
1887   }
1888 };
1889 
1890 void G1ConcurrentMark::verify_no_cset_oops() {
1891   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1892   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
1893     return;
1894   }
1895 
1896   // Verify entries on the global mark stack
1897   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1898 
1899   // Verify entries on the task queues
1900   for (uint i = 0; i < _max_num_tasks; ++i) {
1901     G1CMTaskQueue* queue = _task_queues->queue(i);
1902     queue->iterate(VerifyNoCSetOops("Queue", i));
1903   }
1904 
1905   // Verify the global finger
1906   HeapWord* global_finger = finger();
1907   if (global_finger != NULL && global_finger < _heap_end) {
1908     // Since we always iterate over all regions, we might get a NULL HeapRegion
1909     // here.
1910     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1911     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1912               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1913               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1914   }
1915 
1916   // Verify the task fingers
1917   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1918   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1919     G1CMTask* task = _tasks[i];
1920     HeapWord* task_finger = task->finger();
1921     if (task_finger != NULL && task_finger < _heap_end) {
1922       // See above note on the global finger verification.
1923       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1924       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1925                 !task_hr->in_collection_set(),
1926                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1927                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1928     }
1929   }
1930 }
1931 #endif // PRODUCT
1932 void G1ConcurrentMark::create_live_data() {
1933   _g1h->g1_rem_set()->create_card_live_data(_concurrent_workers, _next_mark_bitmap);
1934 }
1935 
1936 void G1ConcurrentMark::finalize_live_data() {
1937   _g1h->g1_rem_set()->finalize_card_live_data(_g1h->workers(), _next_mark_bitmap);
1938 }
1939 
1940 void G1ConcurrentMark::verify_live_data() {
1941   _g1h->g1_rem_set()->verify_card_live_data(_g1h->workers(), _next_mark_bitmap);
1942 }
1943 
1944 void G1ConcurrentMark::clear_live_data(WorkGang* workers) {
1945   _g1h->g1_rem_set()->clear_card_live_data(workers);
1946 }
1947 
1948 #ifdef ASSERT
1949 void G1ConcurrentMark::verify_live_data_clear() {
1950   _g1h->g1_rem_set()->verify_card_live_data_is_clear();
1951 }
1952 #endif
1953 
1954 void G1ConcurrentMark::print_stats() {
1955   if (!log_is_enabled(Debug, gc, stats)) {
1956     return;
1957   }
1958   log_debug(gc, stats)("---------------------------------------------------------------------");
1959   for (size_t i = 0; i < _num_active_tasks; ++i) {
1960     _tasks[i]->print_stats();
1961     log_debug(gc, stats)("---------------------------------------------------------------------");
1962   }
1963 }
1964 
1965 void G1ConcurrentMark::abort() {
1966   if (!cm_thread()->during_cycle() || _has_aborted) {
1967     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1968     return;
1969   }
1970 
1971   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1972   // concurrent bitmap clearing.
1973   {
1974     GCTraceTime(Debug, gc)("Clear Next Bitmap");
1975     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
1976   }
1977   // Note we cannot clear the previous marking bitmap here
1978   // since VerifyDuringGC verifies the objects marked during
1979   // a full GC against the previous bitmap.
1980 
1981   {
1982     GCTraceTime(Debug, gc)("Clear Live Data");
1983     clear_live_data(_g1h->workers());
1984   }
1985   DEBUG_ONLY({
1986     GCTraceTime(Debug, gc)("Verify Live Data Clear");
1987     verify_live_data_clear();
1988   })
1989   // Empty mark stack
1990   reset_marking_state();
1991   for (uint i = 0; i < _max_num_tasks; ++i) {
1992     _tasks[i]->clear_region_fields();
1993   }
1994   _first_overflow_barrier_sync.abort();
1995   _second_overflow_barrier_sync.abort();
1996   _has_aborted = true;
1997 
1998   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1999   satb_mq_set.abandon_partial_marking();
2000   // This can be called either during or outside marking, we'll read
2001   // the expected_active value from the SATB queue set.
2002   satb_mq_set.set_active_all_threads(
2003                                  false, /* new active value */
2004                                  satb_mq_set.is_active() /* expected_active */);
2005 }
2006 
2007 static void print_ms_time_info(const char* prefix, const char* name,
2008                                NumberSeq& ns) {
2009   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2010                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2011   if (ns.num() > 0) {
2012     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2013                            prefix, ns.sd(), ns.maximum());
2014   }
2015 }
2016 
2017 void G1ConcurrentMark::print_summary_info() {
2018   Log(gc, marking) log;
2019   if (!log.is_trace()) {
2020     return;
2021   }
2022 
2023   log.trace(" Concurrent marking:");
2024   print_ms_time_info("  ", "init marks", _init_times);
2025   print_ms_time_info("  ", "remarks", _remark_times);
2026   {
2027     print_ms_time_info("     ", "final marks", _remark_mark_times);
2028     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2029 
2030   }
2031   print_ms_time_info("  ", "cleanups", _cleanup_times);
2032   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2033             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2034   if (G1ScrubRemSets) {
2035     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2036               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2037   }
2038   log.trace("  Total stop_world time = %8.2f s.",
2039             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2040   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2041             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2042 }
2043 
2044 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2045   _concurrent_workers->print_worker_threads_on(st);
2046 }
2047 
2048 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2049   _concurrent_workers->threads_do(tc);
2050 }
2051 
2052 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2053   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2054                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2055   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2056   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2057 }
2058 
2059 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2060   ReferenceProcessor* result = g1h->ref_processor_cm();
2061   assert(result != NULL, "CM reference processor should not be NULL");
2062   return result;
2063 }
2064 
2065 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2066                                G1ConcurrentMark* cm,
2067                                G1CMTask* task)
2068   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2069     _g1h(g1h), _cm(cm), _task(task)
2070 { }
2071 
2072 void G1CMTask::setup_for_region(HeapRegion* hr) {
2073   assert(hr != NULL,
2074         "claim_region() should have filtered out NULL regions");
2075   _curr_region  = hr;
2076   _finger       = hr->bottom();
2077   update_region_limit();
2078 }
2079 
2080 void G1CMTask::update_region_limit() {
2081   HeapRegion* hr            = _curr_region;
2082   HeapWord* bottom          = hr->bottom();
2083   HeapWord* limit           = hr->next_top_at_mark_start();
2084 
2085   if (limit == bottom) {
2086     // The region was collected underneath our feet.
2087     // We set the finger to bottom to ensure that the bitmap
2088     // iteration that will follow this will not do anything.
2089     // (this is not a condition that holds when we set the region up,
2090     // as the region is not supposed to be empty in the first place)
2091     _finger = bottom;
2092   } else if (limit >= _region_limit) {
2093     assert(limit >= _finger, "peace of mind");
2094   } else {
2095     assert(limit < _region_limit, "only way to get here");
2096     // This can happen under some pretty unusual circumstances.  An
2097     // evacuation pause empties the region underneath our feet (NTAMS
2098     // at bottom). We then do some allocation in the region (NTAMS
2099     // stays at bottom), followed by the region being used as a GC
2100     // alloc region (NTAMS will move to top() and the objects
2101     // originally below it will be grayed). All objects now marked in
2102     // the region are explicitly grayed, if below the global finger,
2103     // and we do not need in fact to scan anything else. So, we simply
2104     // set _finger to be limit to ensure that the bitmap iteration
2105     // doesn't do anything.
2106     _finger = limit;
2107   }
2108 
2109   _region_limit = limit;
2110 }
2111 
2112 void G1CMTask::giveup_current_region() {
2113   assert(_curr_region != NULL, "invariant");
2114   clear_region_fields();
2115 }
2116 
2117 void G1CMTask::clear_region_fields() {
2118   // Values for these three fields that indicate that we're not
2119   // holding on to a region.
2120   _curr_region   = NULL;
2121   _finger        = NULL;
2122   _region_limit  = NULL;
2123 }
2124 
2125 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2126   if (cm_oop_closure == NULL) {
2127     assert(_cm_oop_closure != NULL, "invariant");
2128   } else {
2129     assert(_cm_oop_closure == NULL, "invariant");
2130   }
2131   _cm_oop_closure = cm_oop_closure;
2132 }
2133 
2134 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2135   guarantee(next_mark_bitmap != NULL, "invariant");
2136   _next_mark_bitmap              = next_mark_bitmap;
2137   clear_region_fields();
2138 
2139   _calls                         = 0;
2140   _elapsed_time_ms               = 0.0;
2141   _termination_time_ms           = 0.0;
2142   _termination_start_time_ms     = 0.0;
2143 }
2144 
2145 bool G1CMTask::should_exit_termination() {
2146   regular_clock_call();
2147   // This is called when we are in the termination protocol. We should
2148   // quit if, for some reason, this task wants to abort or the global
2149   // stack is not empty (this means that we can get work from it).
2150   return !_cm->mark_stack_empty() || has_aborted();
2151 }
2152 
2153 void G1CMTask::reached_limit() {
2154   assert(_words_scanned >= _words_scanned_limit ||
2155          _refs_reached >= _refs_reached_limit ,
2156          "shouldn't have been called otherwise");
2157   regular_clock_call();
2158 }
2159 
2160 void G1CMTask::regular_clock_call() {
2161   if (has_aborted()) return;
2162 
2163   // First, we need to recalculate the words scanned and refs reached
2164   // limits for the next clock call.
2165   recalculate_limits();
2166 
2167   // During the regular clock call we do the following
2168 
2169   // (1) If an overflow has been flagged, then we abort.
2170   if (_cm->has_overflown()) {
2171     set_has_aborted();
2172     return;
2173   }
2174 
2175   // If we are not concurrent (i.e. we're doing remark) we don't need
2176   // to check anything else. The other steps are only needed during
2177   // the concurrent marking phase.
2178   if (!_concurrent) {
2179     return;
2180   }
2181 
2182   // (2) If marking has been aborted for Full GC, then we also abort.
2183   if (_cm->has_aborted()) {
2184     set_has_aborted();
2185     return;
2186   }
2187 
2188   double curr_time_ms = os::elapsedVTime() * 1000.0;
2189 
2190   // (4) We check whether we should yield. If we have to, then we abort.
2191   if (SuspendibleThreadSet::should_yield()) {
2192     // We should yield. To do this we abort the task. The caller is
2193     // responsible for yielding.
2194     set_has_aborted();
2195     return;
2196   }
2197 
2198   // (5) We check whether we've reached our time quota. If we have,
2199   // then we abort.
2200   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2201   if (elapsed_time_ms > _time_target_ms) {
2202     set_has_aborted();
2203     _has_timed_out = true;
2204     return;
2205   }
2206 
2207   // (6) Finally, we check whether there are enough completed STAB
2208   // buffers available for processing. If there are, we abort.
2209   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2210   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2211     // we do need to process SATB buffers, we'll abort and restart
2212     // the marking task to do so
2213     set_has_aborted();
2214     return;
2215   }
2216 }
2217 
2218 void G1CMTask::recalculate_limits() {
2219   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2220   _words_scanned_limit      = _real_words_scanned_limit;
2221 
2222   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2223   _refs_reached_limit       = _real_refs_reached_limit;
2224 }
2225 
2226 void G1CMTask::decrease_limits() {
2227   // This is called when we believe that we're going to do an infrequent
2228   // operation which will increase the per byte scanned cost (i.e. move
2229   // entries to/from the global stack). It basically tries to decrease the
2230   // scanning limit so that the clock is called earlier.
2231 
2232   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2233   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2234 }
2235 
2236 void G1CMTask::move_entries_to_global_stack() {
2237   // Local array where we'll store the entries that will be popped
2238   // from the local queue.
2239   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2240 
2241   size_t n = 0;
2242   G1TaskQueueEntry task_entry;
2243   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2244     buffer[n] = task_entry;
2245     ++n;
2246   }
2247   if (n < G1CMMarkStack::EntriesPerChunk) {
2248     buffer[n] = G1TaskQueueEntry();
2249   }
2250 
2251   if (n > 0) {
2252     if (!_cm->mark_stack_push(buffer)) {
2253       set_has_aborted();
2254     }
2255   }
2256 
2257   // This operation was quite expensive, so decrease the limits.
2258   decrease_limits();
2259 }
2260 
2261 bool G1CMTask::get_entries_from_global_stack() {
2262   // Local array where we'll store the entries that will be popped
2263   // from the global stack.
2264   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2265 
2266   if (!_cm->mark_stack_pop(buffer)) {
2267     return false;
2268   }
2269 
2270   // We did actually pop at least one entry.
2271   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2272     G1TaskQueueEntry task_entry = buffer[i];
2273     if (task_entry.is_null()) {
2274       break;
2275     }
2276     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2277     bool success = _task_queue->push(task_entry);
2278     // We only call this when the local queue is empty or under a
2279     // given target limit. So, we do not expect this push to fail.
2280     assert(success, "invariant");
2281   }
2282 
2283   // This operation was quite expensive, so decrease the limits
2284   decrease_limits();
2285   return true;
2286 }
2287 
2288 void G1CMTask::drain_local_queue(bool partially) {
2289   if (has_aborted()) {
2290     return;
2291   }
2292 
2293   // Decide what the target size is, depending whether we're going to
2294   // drain it partially (so that other tasks can steal if they run out
2295   // of things to do) or totally (at the very end).
2296   size_t target_size;
2297   if (partially) {
2298     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2299   } else {
2300     target_size = 0;
2301   }
2302 
2303   if (_task_queue->size() > target_size) {
2304     G1TaskQueueEntry entry;
2305     bool ret = _task_queue->pop_local(entry);
2306     while (ret) {
2307       scan_task_entry(entry);
2308       if (_task_queue->size() <= target_size || has_aborted()) {
2309         ret = false;
2310       } else {
2311         ret = _task_queue->pop_local(entry);
2312       }
2313     }
2314   }
2315 }
2316 
2317 void G1CMTask::drain_global_stack(bool partially) {
2318   if (has_aborted()) return;
2319 
2320   // We have a policy to drain the local queue before we attempt to
2321   // drain the global stack.
2322   assert(partially || _task_queue->size() == 0, "invariant");
2323 
2324   // Decide what the target size is, depending whether we're going to
2325   // drain it partially (so that other tasks can steal if they run out
2326   // of things to do) or totally (at the very end).
2327   // Notice that when draining the global mark stack partially, due to the racyness
2328   // of the mark stack size update we might in fact drop below the target. But,
2329   // this is not a problem.
2330   // In case of total draining, we simply process until the global mark stack is
2331   // totally empty, disregarding the size counter.
2332   if (partially) {
2333     size_t const target_size = _cm->partial_mark_stack_size_target();
2334     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2335       if (get_entries_from_global_stack()) {
2336         drain_local_queue(partially);
2337       }
2338     }
2339   } else {
2340     while (!has_aborted() && get_entries_from_global_stack()) {
2341       drain_local_queue(partially);
2342     }
2343   }
2344 }
2345 
2346 // SATB Queue has several assumptions on whether to call the par or
2347 // non-par versions of the methods. this is why some of the code is
2348 // replicated. We should really get rid of the single-threaded version
2349 // of the code to simplify things.
2350 void G1CMTask::drain_satb_buffers() {
2351   if (has_aborted()) return;
2352 
2353   // We set this so that the regular clock knows that we're in the
2354   // middle of draining buffers and doesn't set the abort flag when it
2355   // notices that SATB buffers are available for draining. It'd be
2356   // very counter productive if it did that. :-)
2357   _draining_satb_buffers = true;
2358 
2359   G1CMSATBBufferClosure satb_cl(this, _g1h);
2360   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2361 
2362   // This keeps claiming and applying the closure to completed buffers
2363   // until we run out of buffers or we need to abort.
2364   while (!has_aborted() &&
2365          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2366     regular_clock_call();
2367   }
2368 
2369   _draining_satb_buffers = false;
2370 
2371   assert(has_aborted() ||
2372          _concurrent ||
2373          satb_mq_set.completed_buffers_num() == 0, "invariant");
2374 
2375   // again, this was a potentially expensive operation, decrease the
2376   // limits to get the regular clock call early
2377   decrease_limits();
2378 }
2379 
2380 void G1CMTask::print_stats() {
2381   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u",
2382                        _worker_id, _calls);
2383   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2384                        _elapsed_time_ms, _termination_time_ms);
2385   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
2386                        _step_times_ms.num(), _step_times_ms.avg(),
2387                        _step_times_ms.sd());
2388   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
2389                        _step_times_ms.maximum(), _step_times_ms.sum());
2390 }
2391 
2392 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2393   return _task_queues->steal(worker_id, hash_seed, task_entry);
2394 }
2395 
2396 /*****************************************************************************
2397 
2398     The do_marking_step(time_target_ms, ...) method is the building
2399     block of the parallel marking framework. It can be called in parallel
2400     with other invocations of do_marking_step() on different tasks
2401     (but only one per task, obviously) and concurrently with the
2402     mutator threads, or during remark, hence it eliminates the need
2403     for two versions of the code. When called during remark, it will
2404     pick up from where the task left off during the concurrent marking
2405     phase. Interestingly, tasks are also claimable during evacuation
2406     pauses too, since do_marking_step() ensures that it aborts before
2407     it needs to yield.
2408 
2409     The data structures that it uses to do marking work are the
2410     following:
2411 
2412       (1) Marking Bitmap. If there are gray objects that appear only
2413       on the bitmap (this happens either when dealing with an overflow
2414       or when the initial marking phase has simply marked the roots
2415       and didn't push them on the stack), then tasks claim heap
2416       regions whose bitmap they then scan to find gray objects. A
2417       global finger indicates where the end of the last claimed region
2418       is. A local finger indicates how far into the region a task has
2419       scanned. The two fingers are used to determine how to gray an
2420       object (i.e. whether simply marking it is OK, as it will be
2421       visited by a task in the future, or whether it needs to be also
2422       pushed on a stack).
2423 
2424       (2) Local Queue. The local queue of the task which is accessed
2425       reasonably efficiently by the task. Other tasks can steal from
2426       it when they run out of work. Throughout the marking phase, a
2427       task attempts to keep its local queue short but not totally
2428       empty, so that entries are available for stealing by other
2429       tasks. Only when there is no more work, a task will totally
2430       drain its local queue.
2431 
2432       (3) Global Mark Stack. This handles local queue overflow. During
2433       marking only sets of entries are moved between it and the local
2434       queues, as access to it requires a mutex and more fine-grain
2435       interaction with it which might cause contention. If it
2436       overflows, then the marking phase should restart and iterate
2437       over the bitmap to identify gray objects. Throughout the marking
2438       phase, tasks attempt to keep the global mark stack at a small
2439       length but not totally empty, so that entries are available for
2440       popping by other tasks. Only when there is no more work, tasks
2441       will totally drain the global mark stack.
2442 
2443       (4) SATB Buffer Queue. This is where completed SATB buffers are
2444       made available. Buffers are regularly removed from this queue
2445       and scanned for roots, so that the queue doesn't get too
2446       long. During remark, all completed buffers are processed, as
2447       well as the filled in parts of any uncompleted buffers.
2448 
2449     The do_marking_step() method tries to abort when the time target
2450     has been reached. There are a few other cases when the
2451     do_marking_step() method also aborts:
2452 
2453       (1) When the marking phase has been aborted (after a Full GC).
2454 
2455       (2) When a global overflow (on the global stack) has been
2456       triggered. Before the task aborts, it will actually sync up with
2457       the other tasks to ensure that all the marking data structures
2458       (local queues, stacks, fingers etc.)  are re-initialized so that
2459       when do_marking_step() completes, the marking phase can
2460       immediately restart.
2461 
2462       (3) When enough completed SATB buffers are available. The
2463       do_marking_step() method only tries to drain SATB buffers right
2464       at the beginning. So, if enough buffers are available, the
2465       marking step aborts and the SATB buffers are processed at
2466       the beginning of the next invocation.
2467 
2468       (4) To yield. when we have to yield then we abort and yield
2469       right at the end of do_marking_step(). This saves us from a lot
2470       of hassle as, by yielding we might allow a Full GC. If this
2471       happens then objects will be compacted underneath our feet, the
2472       heap might shrink, etc. We save checking for this by just
2473       aborting and doing the yield right at the end.
2474 
2475     From the above it follows that the do_marking_step() method should
2476     be called in a loop (or, otherwise, regularly) until it completes.
2477 
2478     If a marking step completes without its has_aborted() flag being
2479     true, it means it has completed the current marking phase (and
2480     also all other marking tasks have done so and have all synced up).
2481 
2482     A method called regular_clock_call() is invoked "regularly" (in
2483     sub ms intervals) throughout marking. It is this clock method that
2484     checks all the abort conditions which were mentioned above and
2485     decides when the task should abort. A work-based scheme is used to
2486     trigger this clock method: when the number of object words the
2487     marking phase has scanned or the number of references the marking
2488     phase has visited reach a given limit. Additional invocations to
2489     the method clock have been planted in a few other strategic places
2490     too. The initial reason for the clock method was to avoid calling
2491     vtime too regularly, as it is quite expensive. So, once it was in
2492     place, it was natural to piggy-back all the other conditions on it
2493     too and not constantly check them throughout the code.
2494 
2495     If do_termination is true then do_marking_step will enter its
2496     termination protocol.
2497 
2498     The value of is_serial must be true when do_marking_step is being
2499     called serially (i.e. by the VMThread) and do_marking_step should
2500     skip any synchronization in the termination and overflow code.
2501     Examples include the serial remark code and the serial reference
2502     processing closures.
2503 
2504     The value of is_serial must be false when do_marking_step is
2505     being called by any of the worker threads in a work gang.
2506     Examples include the concurrent marking code (CMMarkingTask),
2507     the MT remark code, and the MT reference processing closures.
2508 
2509  *****************************************************************************/
2510 
2511 void G1CMTask::do_marking_step(double time_target_ms,
2512                                bool do_termination,
2513                                bool is_serial) {
2514   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2515   assert(_concurrent == _cm->concurrent(), "they should be the same");
2516 
2517   _start_time_ms = os::elapsedVTime() * 1000.0;
2518 
2519   // If do_stealing is true then do_marking_step will attempt to
2520   // steal work from the other G1CMTasks. It only makes sense to
2521   // enable stealing when the termination protocol is enabled
2522   // and do_marking_step() is not being called serially.
2523   bool do_stealing = do_termination && !is_serial;
2524 
2525   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2526   _time_target_ms = time_target_ms - diff_prediction_ms;
2527 
2528   // set up the variables that are used in the work-based scheme to
2529   // call the regular clock method
2530   _words_scanned = 0;
2531   _refs_reached  = 0;
2532   recalculate_limits();
2533 
2534   // clear all flags
2535   clear_has_aborted();
2536   _has_timed_out = false;
2537   _draining_satb_buffers = false;
2538 
2539   ++_calls;
2540 
2541   // Set up the bitmap and oop closures. Anything that uses them is
2542   // eventually called from this method, so it is OK to allocate these
2543   // statically.
2544   G1CMBitMapClosure bitmap_closure(this, _cm);
2545   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
2546   set_cm_oop_closure(&cm_oop_closure);
2547 
2548   if (_cm->has_overflown()) {
2549     // This can happen if the mark stack overflows during a GC pause
2550     // and this task, after a yield point, restarts. We have to abort
2551     // as we need to get into the overflow protocol which happens
2552     // right at the end of this task.
2553     set_has_aborted();
2554   }
2555 
2556   // First drain any available SATB buffers. After this, we will not
2557   // look at SATB buffers before the next invocation of this method.
2558   // If enough completed SATB buffers are queued up, the regular clock
2559   // will abort this task so that it restarts.
2560   drain_satb_buffers();
2561   // ...then partially drain the local queue and the global stack
2562   drain_local_queue(true);
2563   drain_global_stack(true);
2564 
2565   do {
2566     if (!has_aborted() && _curr_region != NULL) {
2567       // This means that we're already holding on to a region.
2568       assert(_finger != NULL, "if region is not NULL, then the finger "
2569              "should not be NULL either");
2570 
2571       // We might have restarted this task after an evacuation pause
2572       // which might have evacuated the region we're holding on to
2573       // underneath our feet. Let's read its limit again to make sure
2574       // that we do not iterate over a region of the heap that
2575       // contains garbage (update_region_limit() will also move
2576       // _finger to the start of the region if it is found empty).
2577       update_region_limit();
2578       // We will start from _finger not from the start of the region,
2579       // as we might be restarting this task after aborting half-way
2580       // through scanning this region. In this case, _finger points to
2581       // the address where we last found a marked object. If this is a
2582       // fresh region, _finger points to start().
2583       MemRegion mr = MemRegion(_finger, _region_limit);
2584 
2585       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2586              "humongous regions should go around loop once only");
2587 
2588       // Some special cases:
2589       // If the memory region is empty, we can just give up the region.
2590       // If the current region is humongous then we only need to check
2591       // the bitmap for the bit associated with the start of the object,
2592       // scan the object if it's live, and give up the region.
2593       // Otherwise, let's iterate over the bitmap of the part of the region
2594       // that is left.
2595       // If the iteration is successful, give up the region.
2596       if (mr.is_empty()) {
2597         giveup_current_region();
2598         regular_clock_call();
2599       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2600         if (_next_mark_bitmap->is_marked(mr.start())) {
2601           // The object is marked - apply the closure
2602           bitmap_closure.do_addr(mr.start());
2603         }
2604         // Even if this task aborted while scanning the humongous object
2605         // we can (and should) give up the current region.
2606         giveup_current_region();
2607         regular_clock_call();
2608       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2609         giveup_current_region();
2610         regular_clock_call();
2611       } else {
2612         assert(has_aborted(), "currently the only way to do so");
2613         // The only way to abort the bitmap iteration is to return
2614         // false from the do_bit() method. However, inside the
2615         // do_bit() method we move the _finger to point to the
2616         // object currently being looked at. So, if we bail out, we
2617         // have definitely set _finger to something non-null.
2618         assert(_finger != NULL, "invariant");
2619 
2620         // Region iteration was actually aborted. So now _finger
2621         // points to the address of the object we last scanned. If we
2622         // leave it there, when we restart this task, we will rescan
2623         // the object. It is easy to avoid this. We move the finger by
2624         // enough to point to the next possible object header.
2625         assert(_finger < _region_limit, "invariant");
2626         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2627         // Check if bitmap iteration was aborted while scanning the last object
2628         if (new_finger >= _region_limit) {
2629           giveup_current_region();
2630         } else {
2631           move_finger_to(new_finger);
2632         }
2633       }
2634     }
2635     // At this point we have either completed iterating over the
2636     // region we were holding on to, or we have aborted.
2637 
2638     // We then partially drain the local queue and the global stack.
2639     // (Do we really need this?)
2640     drain_local_queue(true);
2641     drain_global_stack(true);
2642 
2643     // Read the note on the claim_region() method on why it might
2644     // return NULL with potentially more regions available for
2645     // claiming and why we have to check out_of_regions() to determine
2646     // whether we're done or not.
2647     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2648       // We are going to try to claim a new region. We should have
2649       // given up on the previous one.
2650       // Separated the asserts so that we know which one fires.
2651       assert(_curr_region  == NULL, "invariant");
2652       assert(_finger       == NULL, "invariant");
2653       assert(_region_limit == NULL, "invariant");
2654       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2655       if (claimed_region != NULL) {
2656         // Yes, we managed to claim one
2657         setup_for_region(claimed_region);
2658         assert(_curr_region == claimed_region, "invariant");
2659       }
2660       // It is important to call the regular clock here. It might take
2661       // a while to claim a region if, for example, we hit a large
2662       // block of empty regions. So we need to call the regular clock
2663       // method once round the loop to make sure it's called
2664       // frequently enough.
2665       regular_clock_call();
2666     }
2667 
2668     if (!has_aborted() && _curr_region == NULL) {
2669       assert(_cm->out_of_regions(),
2670              "at this point we should be out of regions");
2671     }
2672   } while ( _curr_region != NULL && !has_aborted());
2673 
2674   if (!has_aborted()) {
2675     // We cannot check whether the global stack is empty, since other
2676     // tasks might be pushing objects to it concurrently.
2677     assert(_cm->out_of_regions(),
2678            "at this point we should be out of regions");
2679     // Try to reduce the number of available SATB buffers so that
2680     // remark has less work to do.
2681     drain_satb_buffers();
2682   }
2683 
2684   // Since we've done everything else, we can now totally drain the
2685   // local queue and global stack.
2686   drain_local_queue(false);
2687   drain_global_stack(false);
2688 
2689   // Attempt at work stealing from other task's queues.
2690   if (do_stealing && !has_aborted()) {
2691     // We have not aborted. This means that we have finished all that
2692     // we could. Let's try to do some stealing...
2693 
2694     // We cannot check whether the global stack is empty, since other
2695     // tasks might be pushing objects to it concurrently.
2696     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2697            "only way to reach here");
2698     while (!has_aborted()) {
2699       G1TaskQueueEntry entry;
2700       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2701         scan_task_entry(entry);
2702 
2703         // And since we're towards the end, let's totally drain the
2704         // local queue and global stack.
2705         drain_local_queue(false);
2706         drain_global_stack(false);
2707       } else {
2708         break;
2709       }
2710     }
2711   }
2712 
2713   // We still haven't aborted. Now, let's try to get into the
2714   // termination protocol.
2715   if (do_termination && !has_aborted()) {
2716     // We cannot check whether the global stack is empty, since other
2717     // tasks might be concurrently pushing objects on it.
2718     // Separated the asserts so that we know which one fires.
2719     assert(_cm->out_of_regions(), "only way to reach here");
2720     assert(_task_queue->size() == 0, "only way to reach here");
2721     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2722 
2723     // The G1CMTask class also extends the TerminatorTerminator class,
2724     // hence its should_exit_termination() method will also decide
2725     // whether to exit the termination protocol or not.
2726     bool finished = (is_serial ||
2727                      _cm->terminator()->offer_termination(this));
2728     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2729     _termination_time_ms +=
2730       termination_end_time_ms - _termination_start_time_ms;
2731 
2732     if (finished) {
2733       // We're all done.
2734 
2735       if (_worker_id == 0) {
2736         // Let's allow task 0 to do this
2737         if (_concurrent) {
2738           assert(_cm->concurrent_marking_in_progress(), "invariant");
2739           // We need to set this to false before the next
2740           // safepoint. This way we ensure that the marking phase
2741           // doesn't observe any more heap expansions.
2742           _cm->clear_concurrent_marking_in_progress();
2743         }
2744       }
2745 
2746       // We can now guarantee that the global stack is empty, since
2747       // all other tasks have finished. We separated the guarantees so
2748       // that, if a condition is false, we can immediately find out
2749       // which one.
2750       guarantee(_cm->out_of_regions(), "only way to reach here");
2751       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2752       guarantee(_task_queue->size() == 0, "only way to reach here");
2753       guarantee(!_cm->has_overflown(), "only way to reach here");
2754     } else {
2755       // Apparently there's more work to do. Let's abort this task. It
2756       // will restart it and we can hopefully find more things to do.
2757       set_has_aborted();
2758     }
2759   }
2760 
2761   // Mainly for debugging purposes to make sure that a pointer to the
2762   // closure which was statically allocated in this frame doesn't
2763   // escape it by accident.
2764   set_cm_oop_closure(NULL);
2765   double end_time_ms = os::elapsedVTime() * 1000.0;
2766   double elapsed_time_ms = end_time_ms - _start_time_ms;
2767   // Update the step history.
2768   _step_times_ms.add(elapsed_time_ms);
2769 
2770   if (has_aborted()) {
2771     // The task was aborted for some reason.
2772     if (_has_timed_out) {
2773       double diff_ms = elapsed_time_ms - _time_target_ms;
2774       // Keep statistics of how well we did with respect to hitting
2775       // our target only if we actually timed out (if we aborted for
2776       // other reasons, then the results might get skewed).
2777       _marking_step_diffs_ms.add(diff_ms);
2778     }
2779 
2780     if (_cm->has_overflown()) {
2781       // This is the interesting one. We aborted because a global
2782       // overflow was raised. This means we have to restart the
2783       // marking phase and start iterating over regions. However, in
2784       // order to do this we have to make sure that all tasks stop
2785       // what they are doing and re-initialize in a safe manner. We
2786       // will achieve this with the use of two barrier sync points.
2787 
2788       if (!is_serial) {
2789         // We only need to enter the sync barrier if being called
2790         // from a parallel context
2791         _cm->enter_first_sync_barrier(_worker_id);
2792 
2793         // When we exit this sync barrier we know that all tasks have
2794         // stopped doing marking work. So, it's now safe to
2795         // re-initialize our data structures. At the end of this method,
2796         // task 0 will clear the global data structures.
2797       }
2798 
2799       // We clear the local state of this task...
2800       clear_region_fields();
2801 
2802       if (!is_serial) {
2803         // ...and enter the second barrier.
2804         _cm->enter_second_sync_barrier(_worker_id);
2805       }
2806       // At this point, if we're during the concurrent phase of
2807       // marking, everything has been re-initialized and we're
2808       // ready to restart.
2809     }
2810   }
2811 }
2812 
2813 G1CMTask::G1CMTask(uint worker_id, G1ConcurrentMark* cm, G1CMTaskQueue* task_queue) :
2814   _objArray_processor(this),
2815   _worker_id(worker_id),
2816   _g1h(G1CollectedHeap::heap()),
2817   _cm(cm),
2818   _next_mark_bitmap(NULL),
2819   _task_queue(task_queue),
2820   _calls(0),
2821   _time_target_ms(0.0),
2822   _start_time_ms(0.0),
2823   _cm_oop_closure(NULL),
2824   _curr_region(NULL),
2825   _finger(NULL),
2826   _region_limit(NULL),
2827   _words_scanned(0),
2828   _words_scanned_limit(0),
2829   _real_words_scanned_limit(0),
2830   _refs_reached(0),
2831   _refs_reached_limit(0),
2832   _real_refs_reached_limit(0),
2833   _hash_seed(17),
2834   _has_aborted(false),
2835   _has_timed_out(false),
2836   _draining_satb_buffers(false),
2837   _step_times_ms(),
2838   _elapsed_time_ms(0.0),
2839   _termination_time_ms(0.0),
2840   _termination_start_time_ms(0.0),
2841   _concurrent(false),
2842   _marking_step_diffs_ms()
2843 {
2844   guarantee(task_queue != NULL, "invariant");
2845 
2846   _marking_step_diffs_ms.add(0.5);
2847 }
2848 
2849 // These are formatting macros that are used below to ensure
2850 // consistent formatting. The *_H_* versions are used to format the
2851 // header for a particular value and they should be kept consistent
2852 // with the corresponding macro. Also note that most of the macros add
2853 // the necessary white space (as a prefix) which makes them a bit
2854 // easier to compose.
2855 
2856 // All the output lines are prefixed with this string to be able to
2857 // identify them easily in a large log file.
2858 #define G1PPRL_LINE_PREFIX            "###"
2859 
2860 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2861 #ifdef _LP64
2862 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2863 #else // _LP64
2864 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2865 #endif // _LP64
2866 
2867 // For per-region info
2868 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2869 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2870 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2871 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2872 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2873 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2874 
2875 // For summary info
2876 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2877 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2878 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2879 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2880 
2881 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2882   _total_used_bytes(0), _total_capacity_bytes(0),
2883   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2884   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2885 {
2886   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2887   MemRegion g1_reserved = g1h->g1_reserved();
2888   double now = os::elapsedTime();
2889 
2890   // Print the header of the output.
2891   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2892   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2893                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2894                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2895                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2896                           HeapRegion::GrainBytes);
2897   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2898   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2899                           G1PPRL_TYPE_H_FORMAT
2900                           G1PPRL_ADDR_BASE_H_FORMAT
2901                           G1PPRL_BYTE_H_FORMAT
2902                           G1PPRL_BYTE_H_FORMAT
2903                           G1PPRL_BYTE_H_FORMAT
2904                           G1PPRL_DOUBLE_H_FORMAT
2905                           G1PPRL_BYTE_H_FORMAT
2906                           G1PPRL_BYTE_H_FORMAT,
2907                           "type", "address-range",
2908                           "used", "prev-live", "next-live", "gc-eff",
2909                           "remset", "code-roots");
2910   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2911                           G1PPRL_TYPE_H_FORMAT
2912                           G1PPRL_ADDR_BASE_H_FORMAT
2913                           G1PPRL_BYTE_H_FORMAT
2914                           G1PPRL_BYTE_H_FORMAT
2915                           G1PPRL_BYTE_H_FORMAT
2916                           G1PPRL_DOUBLE_H_FORMAT
2917                           G1PPRL_BYTE_H_FORMAT
2918                           G1PPRL_BYTE_H_FORMAT,
2919                           "", "",
2920                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2921                           "(bytes)", "(bytes)");
2922 }
2923 
2924 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2925   const char* type       = r->get_type_str();
2926   HeapWord* bottom       = r->bottom();
2927   HeapWord* end          = r->end();
2928   size_t capacity_bytes  = r->capacity();
2929   size_t used_bytes      = r->used();
2930   size_t prev_live_bytes = r->live_bytes();
2931   size_t next_live_bytes = r->next_live_bytes();
2932   double gc_eff          = r->gc_efficiency();
2933   size_t remset_bytes    = r->rem_set()->mem_size();
2934   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2935 
2936   _total_used_bytes      += used_bytes;
2937   _total_capacity_bytes  += capacity_bytes;
2938   _total_prev_live_bytes += prev_live_bytes;
2939   _total_next_live_bytes += next_live_bytes;
2940   _total_remset_bytes    += remset_bytes;
2941   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2942 
2943   // Print a line for this particular region.
2944   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2945                           G1PPRL_TYPE_FORMAT
2946                           G1PPRL_ADDR_BASE_FORMAT
2947                           G1PPRL_BYTE_FORMAT
2948                           G1PPRL_BYTE_FORMAT
2949                           G1PPRL_BYTE_FORMAT
2950                           G1PPRL_DOUBLE_FORMAT
2951                           G1PPRL_BYTE_FORMAT
2952                           G1PPRL_BYTE_FORMAT,
2953                           type, p2i(bottom), p2i(end),
2954                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2955                           remset_bytes, strong_code_roots_bytes);
2956 
2957   return false;
2958 }
2959 
2960 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
2961   // add static memory usages to remembered set sizes
2962   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
2963   // Print the footer of the output.
2964   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2965   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2966                          " SUMMARY"
2967                          G1PPRL_SUM_MB_FORMAT("capacity")
2968                          G1PPRL_SUM_MB_PERC_FORMAT("used")
2969                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
2970                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
2971                          G1PPRL_SUM_MB_FORMAT("remset")
2972                          G1PPRL_SUM_MB_FORMAT("code-roots"),
2973                          bytes_to_mb(_total_capacity_bytes),
2974                          bytes_to_mb(_total_used_bytes),
2975                          percent_of(_total_used_bytes, _total_capacity_bytes),
2976                          bytes_to_mb(_total_prev_live_bytes),
2977                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
2978                          bytes_to_mb(_total_next_live_bytes),
2979                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
2980                          bytes_to_mb(_total_remset_bytes),
2981                          bytes_to_mb(_total_strong_code_roots_bytes));
2982 }