1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCParPhaseTimesTracker.hpp"
  45 #include "gc/g1/g1GCPhaseTimes.hpp"
  46 #include "gc/g1/g1HeapSizingPolicy.hpp"
  47 #include "gc/g1/g1HeapTransition.hpp"
  48 #include "gc/g1/g1HeapVerifier.hpp"
  49 #include "gc/g1/g1HotCardCache.hpp"
  50 #include "gc/g1/g1InitLogger.hpp"
  51 #include "gc/g1/g1MemoryPool.hpp"
  52 #include "gc/g1/g1OopClosures.inline.hpp"
  53 #include "gc/g1/g1ParallelCleaning.hpp"
  54 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  55 #include "gc/g1/g1Policy.hpp"
  56 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  57 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  58 #include "gc/g1/g1RemSet.hpp"
  59 #include "gc/g1/g1RootClosures.hpp"
  60 #include "gc/g1/g1RootProcessor.hpp"
  61 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  62 #include "gc/g1/g1StringDedup.hpp"
  63 #include "gc/g1/g1ThreadLocalData.hpp"
  64 #include "gc/g1/g1Trace.hpp"
  65 #include "gc/g1/g1YCTypes.hpp"
  66 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  67 #include "gc/g1/g1VMOperations.hpp"
  68 #include "gc/g1/heapRegion.inline.hpp"
  69 #include "gc/g1/heapRegionRemSet.hpp"
  70 #include "gc/g1/heapRegionSet.inline.hpp"
  71 #include "gc/shared/concurrentGCBreakpoints.hpp"
  72 #include "gc/shared/gcBehaviours.hpp"
  73 #include "gc/shared/gcHeapSummary.hpp"
  74 #include "gc/shared/gcId.hpp"
  75 #include "gc/shared/gcLocker.hpp"
  76 #include "gc/shared/gcTimer.hpp"
  77 #include "gc/shared/gcTraceTime.inline.hpp"
  78 #include "gc/shared/generationSpec.hpp"
  79 #include "gc/shared/isGCActiveMark.hpp"
  80 #include "gc/shared/locationPrinter.inline.hpp"
  81 #include "gc/shared/oopStorageParState.hpp"
  82 #include "gc/shared/preservedMarks.inline.hpp"
  83 #include "gc/shared/suspendibleThreadSet.hpp"
  84 #include "gc/shared/referenceProcessor.inline.hpp"
  85 #include "gc/shared/taskTerminator.hpp"
  86 #include "gc/shared/taskqueue.inline.hpp"
  87 #include "gc/shared/weakProcessor.inline.hpp"
  88 #include "gc/shared/workerPolicy.hpp"
  89 #include "logging/log.hpp"
  90 #include "memory/allocation.hpp"
  91 #include "memory/iterator.hpp"
  92 #include "memory/resourceArea.hpp"
  93 #include "memory/universe.hpp"
  94 #include "oops/access.inline.hpp"
  95 #include "oops/compressedOops.inline.hpp"
  96 #include "oops/oop.inline.hpp"
  97 #include "runtime/atomic.hpp"
  98 #include "runtime/flags/flagSetting.hpp"
  99 #include "runtime/handles.inline.hpp"
 100 #include "runtime/init.hpp"
 101 #include "runtime/orderAccess.hpp"
 102 #include "runtime/threadSMR.hpp"
 103 #include "runtime/vmThread.hpp"
 104 #include "utilities/align.hpp"
 105 #include "utilities/bitMap.inline.hpp"
 106 #include "utilities/globalDefinitions.hpp"
 107 #include "utilities/stack.inline.hpp"
 108 
 109 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 110 
 111 // INVARIANTS/NOTES
 112 //
 113 // All allocation activity covered by the G1CollectedHeap interface is
 114 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 115 // and allocate_new_tlab, which are the "entry" points to the
 116 // allocation code from the rest of the JVM.  (Note that this does not
 117 // apply to TLAB allocation, which is not part of this interface: it
 118 // is done by clients of this interface.)
 119 
 120 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 121  private:
 122   size_t _num_dirtied;
 123   G1CollectedHeap* _g1h;
 124   G1CardTable* _g1_ct;
 125 
 126   HeapRegion* region_for_card(CardValue* card_ptr) const {
 127     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 128   }
 129 
 130   bool will_become_free(HeapRegion* hr) const {
 131     // A region will be freed by free_collection_set if the region is in the
 132     // collection set and has not had an evacuation failure.
 133     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 134   }
 135 
 136  public:
 137   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 138     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 139 
 140   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 141     HeapRegion* hr = region_for_card(card_ptr);
 142 
 143     // Should only dirty cards in regions that won't be freed.
 144     if (!will_become_free(hr)) {
 145       *card_ptr = G1CardTable::dirty_card_val();
 146       _num_dirtied++;
 147     }
 148   }
 149 
 150   size_t num_dirtied()   const { return _num_dirtied; }
 151 };
 152 
 153 
 154 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 155   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 156 }
 157 
 158 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 159   // The from card cache is not the memory that is actually committed. So we cannot
 160   // take advantage of the zero_filled parameter.
 161   reset_from_card_cache(start_idx, num_regions);
 162 }
 163 
 164 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 165   Ticks start = Ticks::now();
 166   workers()->run_task(task, workers()->active_workers());
 167   return Ticks::now() - start;
 168 }
 169 
 170 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 171                                              MemRegion mr) {
 172   return new HeapRegion(hrs_index, bot(), mr);
 173 }
 174 
 175 // Private methods.
 176 
 177 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 178                                         HeapRegionType type,
 179                                         bool do_expand,
 180                                         uint node_index) {
 181   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 182          "the only time we use this to allocate a humongous region is "
 183          "when we are allocating a single humongous region");
 184 
 185   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
 186 
 187   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 188     // Currently, only attempts to allocate GC alloc regions set
 189     // do_expand to true. So, we should only reach here during a
 190     // safepoint. If this assumption changes we might have to
 191     // reconsider the use of _expand_heap_after_alloc_failure.
 192     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 193 
 194     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 195                               word_size * HeapWordSize);
 196 
 197     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 198            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 199            word_size * HeapWordSize);
 200     if (expand_single_region(node_index)) {
 201       // Given that expand_single_region() succeeded in expanding the heap, and we
 202       // always expand the heap by an amount aligned to the heap
 203       // region size, the free list should in theory not be empty.
 204       // In either case allocate_free_region() will check for NULL.
 205       res = _hrm->allocate_free_region(type, node_index);
 206     } else {
 207       _expand_heap_after_alloc_failure = false;
 208     }
 209   }
 210   return res;
 211 }
 212 
 213 HeapWord*
 214 G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
 215                                                            uint num_regions,
 216                                                            size_t word_size) {
 217   assert(first_hr != NULL, "pre-condition");
 218   assert(is_humongous(word_size), "word_size should be humongous");
 219   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 220 
 221   // Index of last region in the series.
 222   uint first = first_hr->hrm_index();
 223   uint last = first + num_regions - 1;
 224 
 225   // We need to initialize the region(s) we just discovered. This is
 226   // a bit tricky given that it can happen concurrently with
 227   // refinement threads refining cards on these regions and
 228   // potentially wanting to refine the BOT as they are scanning
 229   // those cards (this can happen shortly after a cleanup; see CR
 230   // 6991377). So we have to set up the region(s) carefully and in
 231   // a specific order.
 232 
 233   // The word size sum of all the regions we will allocate.
 234   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 235   assert(word_size <= word_size_sum, "sanity");
 236 
 237   // The passed in hr will be the "starts humongous" region. The header
 238   // of the new object will be placed at the bottom of this region.
 239   HeapWord* new_obj = first_hr->bottom();
 240   // This will be the new top of the new object.
 241   HeapWord* obj_top = new_obj + word_size;
 242 
 243   // First, we need to zero the header of the space that we will be
 244   // allocating. When we update top further down, some refinement
 245   // threads might try to scan the region. By zeroing the header we
 246   // ensure that any thread that will try to scan the region will
 247   // come across the zero klass word and bail out.
 248   //
 249   // NOTE: It would not have been correct to have used
 250   // CollectedHeap::fill_with_object() and make the space look like
 251   // an int array. The thread that is doing the allocation will
 252   // later update the object header to a potentially different array
 253   // type and, for a very short period of time, the klass and length
 254   // fields will be inconsistent. This could cause a refinement
 255   // thread to calculate the object size incorrectly.
 256   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 257 
 258   // Next, pad out the unused tail of the last region with filler
 259   // objects, for improved usage accounting.
 260   // How many words we use for filler objects.
 261   size_t word_fill_size = word_size_sum - word_size;
 262 
 263   // How many words memory we "waste" which cannot hold a filler object.
 264   size_t words_not_fillable = 0;
 265 
 266   if (word_fill_size >= min_fill_size()) {
 267     fill_with_objects(obj_top, word_fill_size);
 268   } else if (word_fill_size > 0) {
 269     // We have space to fill, but we cannot fit an object there.
 270     words_not_fillable = word_fill_size;
 271     word_fill_size = 0;
 272   }
 273 
 274   // We will set up the first region as "starts humongous". This
 275   // will also update the BOT covering all the regions to reflect
 276   // that there is a single object that starts at the bottom of the
 277   // first region.
 278   first_hr->set_starts_humongous(obj_top, word_fill_size);
 279   _policy->remset_tracker()->update_at_allocate(first_hr);
 280   // Then, if there are any, we will set up the "continues
 281   // humongous" regions.
 282   HeapRegion* hr = NULL;
 283   for (uint i = first + 1; i <= last; ++i) {
 284     hr = region_at(i);
 285     hr->set_continues_humongous(first_hr);
 286     _policy->remset_tracker()->update_at_allocate(hr);
 287   }
 288 
 289   // Up to this point no concurrent thread would have been able to
 290   // do any scanning on any region in this series. All the top
 291   // fields still point to bottom, so the intersection between
 292   // [bottom,top] and [card_start,card_end] will be empty. Before we
 293   // update the top fields, we'll do a storestore to make sure that
 294   // no thread sees the update to top before the zeroing of the
 295   // object header and the BOT initialization.
 296   OrderAccess::storestore();
 297 
 298   // Now, we will update the top fields of the "continues humongous"
 299   // regions except the last one.
 300   for (uint i = first; i < last; ++i) {
 301     hr = region_at(i);
 302     hr->set_top(hr->end());
 303   }
 304 
 305   hr = region_at(last);
 306   // If we cannot fit a filler object, we must set top to the end
 307   // of the humongous object, otherwise we cannot iterate the heap
 308   // and the BOT will not be complete.
 309   hr->set_top(hr->end() - words_not_fillable);
 310 
 311   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 312          "obj_top should be in last region");
 313 
 314   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 315 
 316   assert(words_not_fillable == 0 ||
 317          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 318          "Miscalculation in humongous allocation");
 319 
 320   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 321 
 322   for (uint i = first; i <= last; ++i) {
 323     hr = region_at(i);
 324     _humongous_set.add(hr);
 325     _hr_printer.alloc(hr);
 326   }
 327 
 328   return new_obj;
 329 }
 330 
 331 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 332   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 333   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 334 }
 335 
 336 // If could fit into free regions w/o expansion, try.
 337 // Otherwise, if can expand, do so.
 338 // Otherwise, if using ex regions might help, try with ex given back.
 339 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 340   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 341 
 342   _verifier->verify_region_sets_optional();
 343 
 344   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 345 
 346   // Policy: First try to allocate a humongous object in the free list.
 347   HeapRegion* humongous_start = _hrm->allocate_humongous(obj_regions);
 348   if (humongous_start == NULL) {
 349     // Policy: We could not find enough regions for the humongous object in the
 350     // free list. Look through the heap to find a mix of free and uncommitted regions.
 351     // If so, expand the heap and allocate the humongous object.
 352     humongous_start = _hrm->expand_and_allocate_humongous(obj_regions);
 353     if (humongous_start != NULL) {
 354       // We managed to find a region by expanding the heap.
 355       log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B",
 356                                 word_size * HeapWordSize);
 357       policy()->record_new_heap_size(num_regions());
 358     } else {
 359       // Policy: Potentially trigger a defragmentation GC.
 360     }
 361   }
 362 
 363   HeapWord* result = NULL;
 364   if (humongous_start != NULL) {
 365     result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
 366     assert(result != NULL, "it should always return a valid result");
 367 
 368     // A successful humongous object allocation changes the used space
 369     // information of the old generation so we need to recalculate the
 370     // sizes and update the jstat counters here.
 371     g1mm()->update_sizes();
 372   }
 373 
 374   _verifier->verify_region_sets_optional();
 375 
 376   return result;
 377 }
 378 
 379 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 380                                              size_t requested_size,
 381                                              size_t* actual_size) {
 382   assert_heap_not_locked_and_not_at_safepoint();
 383   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 384 
 385   return attempt_allocation(min_size, requested_size, actual_size);
 386 }
 387 
 388 HeapWord*
 389 G1CollectedHeap::mem_allocate(size_t word_size,
 390                               bool*  gc_overhead_limit_was_exceeded) {
 391   assert_heap_not_locked_and_not_at_safepoint();
 392 
 393   if (is_humongous(word_size)) {
 394     return attempt_allocation_humongous(word_size);
 395   }
 396   size_t dummy = 0;
 397   return attempt_allocation(word_size, word_size, &dummy);
 398 }
 399 
 400 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 401   ResourceMark rm; // For retrieving the thread names in log messages.
 402 
 403   // Make sure you read the note in attempt_allocation_humongous().
 404 
 405   assert_heap_not_locked_and_not_at_safepoint();
 406   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 407          "be called for humongous allocation requests");
 408 
 409   // We should only get here after the first-level allocation attempt
 410   // (attempt_allocation()) failed to allocate.
 411 
 412   // We will loop until a) we manage to successfully perform the
 413   // allocation or b) we successfully schedule a collection which
 414   // fails to perform the allocation. b) is the only case when we'll
 415   // return NULL.
 416   HeapWord* result = NULL;
 417   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 418     bool should_try_gc;
 419     uint gc_count_before;
 420 
 421     {
 422       MutexLocker x(Heap_lock);
 423       result = _allocator->attempt_allocation_locked(word_size);
 424       if (result != NULL) {
 425         return result;
 426       }
 427 
 428       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 429       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 430       // waiting because the GCLocker is active to not wait too long.
 431       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 432         // No need for an ergo message here, can_expand_young_list() does this when
 433         // it returns true.
 434         result = _allocator->attempt_allocation_force(word_size);
 435         if (result != NULL) {
 436           return result;
 437         }
 438       }
 439       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 440       // the GCLocker initiated GC has been performed and then retry. This includes
 441       // the case when the GC Locker is not active but has not been performed.
 442       should_try_gc = !GCLocker::needs_gc();
 443       // Read the GC count while still holding the Heap_lock.
 444       gc_count_before = total_collections();
 445     }
 446 
 447     if (should_try_gc) {
 448       bool succeeded;
 449       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 450                                    GCCause::_g1_inc_collection_pause);
 451       if (result != NULL) {
 452         assert(succeeded, "only way to get back a non-NULL result");
 453         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 454                              Thread::current()->name(), p2i(result));
 455         return result;
 456       }
 457 
 458       if (succeeded) {
 459         // We successfully scheduled a collection which failed to allocate. No
 460         // point in trying to allocate further. We'll just return NULL.
 461         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 462                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 463         return NULL;
 464       }
 465       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 466                            Thread::current()->name(), word_size);
 467     } else {
 468       // Failed to schedule a collection.
 469       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 470         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 471                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 472         return NULL;
 473       }
 474       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 475       // The GCLocker is either active or the GCLocker initiated
 476       // GC has not yet been performed. Stall until it is and
 477       // then retry the allocation.
 478       GCLocker::stall_until_clear();
 479       gclocker_retry_count += 1;
 480     }
 481 
 482     // We can reach here if we were unsuccessful in scheduling a
 483     // collection (because another thread beat us to it) or if we were
 484     // stalled due to the GC locker. In either can we should retry the
 485     // allocation attempt in case another thread successfully
 486     // performed a collection and reclaimed enough space. We do the
 487     // first attempt (without holding the Heap_lock) here and the
 488     // follow-on attempt will be at the start of the next loop
 489     // iteration (after taking the Heap_lock).
 490     size_t dummy = 0;
 491     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 492     if (result != NULL) {
 493       return result;
 494     }
 495 
 496     // Give a warning if we seem to be looping forever.
 497     if ((QueuedAllocationWarningCount > 0) &&
 498         (try_count % QueuedAllocationWarningCount == 0)) {
 499       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 500                              Thread::current()->name(), try_count, word_size);
 501     }
 502   }
 503 
 504   ShouldNotReachHere();
 505   return NULL;
 506 }
 507 
 508 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 509   assert_at_safepoint_on_vm_thread();
 510   if (_archive_allocator == NULL) {
 511     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 512   }
 513 }
 514 
 515 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 516   // Allocations in archive regions cannot be of a size that would be considered
 517   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 518   // may be different at archive-restore time.
 519   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 520 }
 521 
 522 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 523   assert_at_safepoint_on_vm_thread();
 524   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 525   if (is_archive_alloc_too_large(word_size)) {
 526     return NULL;
 527   }
 528   return _archive_allocator->archive_mem_allocate(word_size);
 529 }
 530 
 531 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 532                                               size_t end_alignment_in_bytes) {
 533   assert_at_safepoint_on_vm_thread();
 534   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 535 
 536   // Call complete_archive to do the real work, filling in the MemRegion
 537   // array with the archive regions.
 538   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 539   delete _archive_allocator;
 540   _archive_allocator = NULL;
 541 }
 542 
 543 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 544   assert(ranges != NULL, "MemRegion array NULL");
 545   assert(count != 0, "No MemRegions provided");
 546   MemRegion reserved = _hrm->reserved();
 547   for (size_t i = 0; i < count; i++) {
 548     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 549       return false;
 550     }
 551   }
 552   return true;
 553 }
 554 
 555 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 556                                             size_t count,
 557                                             bool open) {
 558   assert(!is_init_completed(), "Expect to be called at JVM init time");
 559   assert(ranges != NULL, "MemRegion array NULL");
 560   assert(count != 0, "No MemRegions provided");
 561   MutexLocker x(Heap_lock);
 562 
 563   MemRegion reserved = _hrm->reserved();
 564   HeapWord* prev_last_addr = NULL;
 565   HeapRegion* prev_last_region = NULL;
 566 
 567   // Temporarily disable pretouching of heap pages. This interface is used
 568   // when mmap'ing archived heap data in, so pre-touching is wasted.
 569   FlagSetting fs(AlwaysPreTouch, false);
 570 
 571   // Enable archive object checking used by G1MarkSweep. We have to let it know
 572   // about each archive range, so that objects in those ranges aren't marked.
 573   G1ArchiveAllocator::enable_archive_object_check();
 574 
 575   // For each specified MemRegion range, allocate the corresponding G1
 576   // regions and mark them as archive regions. We expect the ranges
 577   // in ascending starting address order, without overlap.
 578   for (size_t i = 0; i < count; i++) {
 579     MemRegion curr_range = ranges[i];
 580     HeapWord* start_address = curr_range.start();
 581     size_t word_size = curr_range.word_size();
 582     HeapWord* last_address = curr_range.last();
 583     size_t commits = 0;
 584 
 585     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 586               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 587               p2i(start_address), p2i(last_address));
 588     guarantee(start_address > prev_last_addr,
 589               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 590               p2i(start_address), p2i(prev_last_addr));
 591     prev_last_addr = last_address;
 592 
 593     // Check for ranges that start in the same G1 region in which the previous
 594     // range ended, and adjust the start address so we don't try to allocate
 595     // the same region again. If the current range is entirely within that
 596     // region, skip it, just adjusting the recorded top.
 597     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 598     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 599       start_address = start_region->end();
 600       if (start_address > last_address) {
 601         increase_used(word_size * HeapWordSize);
 602         start_region->set_top(last_address + 1);
 603         continue;
 604       }
 605       start_region->set_top(start_address);
 606       curr_range = MemRegion(start_address, last_address + 1);
 607       start_region = _hrm->addr_to_region(start_address);
 608     }
 609 
 610     // Perform the actual region allocation, exiting if it fails.
 611     // Then note how much new space we have allocated.
 612     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 613       return false;
 614     }
 615     increase_used(word_size * HeapWordSize);
 616     if (commits != 0) {
 617       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 618                                 HeapRegion::GrainWords * HeapWordSize * commits);
 619 
 620     }
 621 
 622     // Mark each G1 region touched by the range as archive, add it to
 623     // the old set, and set top.
 624     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 625     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 626     prev_last_region = last_region;
 627 
 628     while (curr_region != NULL) {
 629       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 630              "Region already in use (index %u)", curr_region->hrm_index());
 631       if (open) {
 632         curr_region->set_open_archive();
 633       } else {
 634         curr_region->set_closed_archive();
 635       }
 636       _hr_printer.alloc(curr_region);
 637       _archive_set.add(curr_region);
 638       HeapWord* top;
 639       HeapRegion* next_region;
 640       if (curr_region != last_region) {
 641         top = curr_region->end();
 642         next_region = _hrm->next_region_in_heap(curr_region);
 643       } else {
 644         top = last_address + 1;
 645         next_region = NULL;
 646       }
 647       curr_region->set_top(top);
 648       curr_region = next_region;
 649     }
 650 
 651     // Notify mark-sweep of the archive
 652     G1ArchiveAllocator::set_range_archive(curr_range, open);
 653   }
 654   return true;
 655 }
 656 
 657 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 658   assert(!is_init_completed(), "Expect to be called at JVM init time");
 659   assert(ranges != NULL, "MemRegion array NULL");
 660   assert(count != 0, "No MemRegions provided");
 661   MemRegion reserved = _hrm->reserved();
 662   HeapWord *prev_last_addr = NULL;
 663   HeapRegion* prev_last_region = NULL;
 664 
 665   // For each MemRegion, create filler objects, if needed, in the G1 regions
 666   // that contain the address range. The address range actually within the
 667   // MemRegion will not be modified. That is assumed to have been initialized
 668   // elsewhere, probably via an mmap of archived heap data.
 669   MutexLocker x(Heap_lock);
 670   for (size_t i = 0; i < count; i++) {
 671     HeapWord* start_address = ranges[i].start();
 672     HeapWord* last_address = ranges[i].last();
 673 
 674     assert(reserved.contains(start_address) && reserved.contains(last_address),
 675            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 676            p2i(start_address), p2i(last_address));
 677     assert(start_address > prev_last_addr,
 678            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 679            p2i(start_address), p2i(prev_last_addr));
 680 
 681     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 682     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 683     HeapWord* bottom_address = start_region->bottom();
 684 
 685     // Check for a range beginning in the same region in which the
 686     // previous one ended.
 687     if (start_region == prev_last_region) {
 688       bottom_address = prev_last_addr + 1;
 689     }
 690 
 691     // Verify that the regions were all marked as archive regions by
 692     // alloc_archive_regions.
 693     HeapRegion* curr_region = start_region;
 694     while (curr_region != NULL) {
 695       guarantee(curr_region->is_archive(),
 696                 "Expected archive region at index %u", curr_region->hrm_index());
 697       if (curr_region != last_region) {
 698         curr_region = _hrm->next_region_in_heap(curr_region);
 699       } else {
 700         curr_region = NULL;
 701       }
 702     }
 703 
 704     prev_last_addr = last_address;
 705     prev_last_region = last_region;
 706 
 707     // Fill the memory below the allocated range with dummy object(s),
 708     // if the region bottom does not match the range start, or if the previous
 709     // range ended within the same G1 region, and there is a gap.
 710     if (start_address != bottom_address) {
 711       size_t fill_size = pointer_delta(start_address, bottom_address);
 712       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 713       increase_used(fill_size * HeapWordSize);
 714     }
 715   }
 716 }
 717 
 718 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 719                                                      size_t desired_word_size,
 720                                                      size_t* actual_word_size) {
 721   assert_heap_not_locked_and_not_at_safepoint();
 722   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 723          "be called for humongous allocation requests");
 724 
 725   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 726 
 727   if (result == NULL) {
 728     *actual_word_size = desired_word_size;
 729     result = attempt_allocation_slow(desired_word_size);
 730   }
 731 
 732   assert_heap_not_locked();
 733   if (result != NULL) {
 734     assert(*actual_word_size != 0, "Actual size must have been set here");
 735     dirty_young_block(result, *actual_word_size);
 736   } else {
 737     *actual_word_size = 0;
 738   }
 739 
 740   return result;
 741 }
 742 
 743 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 744   assert(!is_init_completed(), "Expect to be called at JVM init time");
 745   assert(ranges != NULL, "MemRegion array NULL");
 746   assert(count != 0, "No MemRegions provided");
 747   MemRegion reserved = _hrm->reserved();
 748   HeapWord* prev_last_addr = NULL;
 749   HeapRegion* prev_last_region = NULL;
 750   size_t size_used = 0;
 751   size_t uncommitted_regions = 0;
 752 
 753   // For each Memregion, free the G1 regions that constitute it, and
 754   // notify mark-sweep that the range is no longer to be considered 'archive.'
 755   MutexLocker x(Heap_lock);
 756   for (size_t i = 0; i < count; i++) {
 757     HeapWord* start_address = ranges[i].start();
 758     HeapWord* last_address = ranges[i].last();
 759 
 760     assert(reserved.contains(start_address) && reserved.contains(last_address),
 761            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 762            p2i(start_address), p2i(last_address));
 763     assert(start_address > prev_last_addr,
 764            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 765            p2i(start_address), p2i(prev_last_addr));
 766     size_used += ranges[i].byte_size();
 767     prev_last_addr = last_address;
 768 
 769     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 770     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 771 
 772     // Check for ranges that start in the same G1 region in which the previous
 773     // range ended, and adjust the start address so we don't try to free
 774     // the same region again. If the current range is entirely within that
 775     // region, skip it.
 776     if (start_region == prev_last_region) {
 777       start_address = start_region->end();
 778       if (start_address > last_address) {
 779         continue;
 780       }
 781       start_region = _hrm->addr_to_region(start_address);
 782     }
 783     prev_last_region = last_region;
 784 
 785     // After verifying that each region was marked as an archive region by
 786     // alloc_archive_regions, set it free and empty and uncommit it.
 787     HeapRegion* curr_region = start_region;
 788     while (curr_region != NULL) {
 789       guarantee(curr_region->is_archive(),
 790                 "Expected archive region at index %u", curr_region->hrm_index());
 791       uint curr_index = curr_region->hrm_index();
 792       _archive_set.remove(curr_region);
 793       curr_region->set_free();
 794       curr_region->set_top(curr_region->bottom());
 795       if (curr_region != last_region) {
 796         curr_region = _hrm->next_region_in_heap(curr_region);
 797       } else {
 798         curr_region = NULL;
 799       }
 800       _hrm->shrink_at(curr_index, 1);
 801       uncommitted_regions++;
 802     }
 803 
 804     // Notify mark-sweep that this is no longer an archive range.
 805     G1ArchiveAllocator::clear_range_archive(ranges[i]);
 806   }
 807 
 808   if (uncommitted_regions != 0) {
 809     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 810                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 811   }
 812   decrease_used(size_used);
 813 }
 814 
 815 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 816   assert(obj != NULL, "archived obj is NULL");
 817   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 818 
 819   // Loading an archived object makes it strongly reachable. If it is
 820   // loaded during concurrent marking, it must be enqueued to the SATB
 821   // queue, shading the previously white object gray.
 822   G1BarrierSet::enqueue(obj);
 823 
 824   return obj;
 825 }
 826 
 827 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 828   ResourceMark rm; // For retrieving the thread names in log messages.
 829 
 830   // The structure of this method has a lot of similarities to
 831   // attempt_allocation_slow(). The reason these two were not merged
 832   // into a single one is that such a method would require several "if
 833   // allocation is not humongous do this, otherwise do that"
 834   // conditional paths which would obscure its flow. In fact, an early
 835   // version of this code did use a unified method which was harder to
 836   // follow and, as a result, it had subtle bugs that were hard to
 837   // track down. So keeping these two methods separate allows each to
 838   // be more readable. It will be good to keep these two in sync as
 839   // much as possible.
 840 
 841   assert_heap_not_locked_and_not_at_safepoint();
 842   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 843          "should only be called for humongous allocations");
 844 
 845   // Humongous objects can exhaust the heap quickly, so we should check if we
 846   // need to start a marking cycle at each humongous object allocation. We do
 847   // the check before we do the actual allocation. The reason for doing it
 848   // before the allocation is that we avoid having to keep track of the newly
 849   // allocated memory while we do a GC.
 850   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 851                                            word_size)) {
 852     collect(GCCause::_g1_humongous_allocation);
 853   }
 854 
 855   // We will loop until a) we manage to successfully perform the
 856   // allocation or b) we successfully schedule a collection which
 857   // fails to perform the allocation. b) is the only case when we'll
 858   // return NULL.
 859   HeapWord* result = NULL;
 860   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 861     bool should_try_gc;
 862     uint gc_count_before;
 863 
 864 
 865     {
 866       MutexLocker x(Heap_lock);
 867 
 868       // Given that humongous objects are not allocated in young
 869       // regions, we'll first try to do the allocation without doing a
 870       // collection hoping that there's enough space in the heap.
 871       result = humongous_obj_allocate(word_size);
 872       if (result != NULL) {
 873         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 874         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 875         return result;
 876       }
 877 
 878       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 879       // the GCLocker initiated GC has been performed and then retry. This includes
 880       // the case when the GC Locker is not active but has not been performed.
 881       should_try_gc = !GCLocker::needs_gc();
 882       // Read the GC count while still holding the Heap_lock.
 883       gc_count_before = total_collections();
 884     }
 885 
 886     if (should_try_gc) {
 887       bool succeeded;
 888       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 889                                    GCCause::_g1_humongous_allocation);
 890       if (result != NULL) {
 891         assert(succeeded, "only way to get back a non-NULL result");
 892         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 893                              Thread::current()->name(), p2i(result));
 894         return result;
 895       }
 896 
 897       if (succeeded) {
 898         // We successfully scheduled a collection which failed to allocate. No
 899         // point in trying to allocate further. We'll just return NULL.
 900         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 901                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 902         return NULL;
 903       }
 904       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 905                            Thread::current()->name(), word_size);
 906     } else {
 907       // Failed to schedule a collection.
 908       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 909         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 910                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 911         return NULL;
 912       }
 913       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 914       // The GCLocker is either active or the GCLocker initiated
 915       // GC has not yet been performed. Stall until it is and
 916       // then retry the allocation.
 917       GCLocker::stall_until_clear();
 918       gclocker_retry_count += 1;
 919     }
 920 
 921 
 922     // We can reach here if we were unsuccessful in scheduling a
 923     // collection (because another thread beat us to it) or if we were
 924     // stalled due to the GC locker. In either can we should retry the
 925     // allocation attempt in case another thread successfully
 926     // performed a collection and reclaimed enough space.
 927     // Humongous object allocation always needs a lock, so we wait for the retry
 928     // in the next iteration of the loop, unlike for the regular iteration case.
 929     // Give a warning if we seem to be looping forever.
 930 
 931     if ((QueuedAllocationWarningCount > 0) &&
 932         (try_count % QueuedAllocationWarningCount == 0)) {
 933       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 934                              Thread::current()->name(), try_count, word_size);
 935     }
 936   }
 937 
 938   ShouldNotReachHere();
 939   return NULL;
 940 }
 941 
 942 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 943                                                            bool expect_null_mutator_alloc_region) {
 944   assert_at_safepoint_on_vm_thread();
 945   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 946          "the current alloc region was unexpectedly found to be non-NULL");
 947 
 948   if (!is_humongous(word_size)) {
 949     return _allocator->attempt_allocation_locked(word_size);
 950   } else {
 951     HeapWord* result = humongous_obj_allocate(word_size);
 952     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 953       collector_state()->set_initiate_conc_mark_if_possible(true);
 954     }
 955     return result;
 956   }
 957 
 958   ShouldNotReachHere();
 959 }
 960 
 961 class PostCompactionPrinterClosure: public HeapRegionClosure {
 962 private:
 963   G1HRPrinter* _hr_printer;
 964 public:
 965   bool do_heap_region(HeapRegion* hr) {
 966     assert(!hr->is_young(), "not expecting to find young regions");
 967     _hr_printer->post_compaction(hr);
 968     return false;
 969   }
 970 
 971   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 972     : _hr_printer(hr_printer) { }
 973 };
 974 
 975 void G1CollectedHeap::print_hrm_post_compaction() {
 976   if (_hr_printer.is_active()) {
 977     PostCompactionPrinterClosure cl(hr_printer());
 978     heap_region_iterate(&cl);
 979   }
 980 }
 981 
 982 void G1CollectedHeap::abort_concurrent_cycle() {
 983   // If we start the compaction before the CM threads finish
 984   // scanning the root regions we might trip them over as we'll
 985   // be moving objects / updating references. So let's wait until
 986   // they are done. By telling them to abort, they should complete
 987   // early.
 988   _cm->root_regions()->abort();
 989   _cm->root_regions()->wait_until_scan_finished();
 990 
 991   // Disable discovery and empty the discovered lists
 992   // for the CM ref processor.
 993   _ref_processor_cm->disable_discovery();
 994   _ref_processor_cm->abandon_partial_discovery();
 995   _ref_processor_cm->verify_no_references_recorded();
 996 
 997   // Abandon current iterations of concurrent marking and concurrent
 998   // refinement, if any are in progress.
 999   concurrent_mark()->concurrent_cycle_abort();
1000 }
1001 
1002 void G1CollectedHeap::prepare_heap_for_full_collection() {
1003   // Make sure we'll choose a new allocation region afterwards.
1004   _allocator->release_mutator_alloc_regions();
1005   _allocator->abandon_gc_alloc_regions();
1006 
1007   // We may have added regions to the current incremental collection
1008   // set between the last GC or pause and now. We need to clear the
1009   // incremental collection set and then start rebuilding it afresh
1010   // after this full GC.
1011   abandon_collection_set(collection_set());
1012 
1013   tear_down_region_sets(false /* free_list_only */);
1014 
1015   hrm()->prepare_for_full_collection_start();
1016 }
1017 
1018 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1019   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1020   assert_used_and_recalculate_used_equal(this);
1021   _verifier->verify_region_sets_optional();
1022   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1023   _verifier->check_bitmaps("Full GC Start");
1024 }
1025 
1026 void G1CollectedHeap::prepare_heap_for_mutators() {
1027   hrm()->prepare_for_full_collection_end();
1028 
1029   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1030   ClassLoaderDataGraph::purge();
1031   MetaspaceUtils::verify_metrics();
1032 
1033   // Prepare heap for normal collections.
1034   assert(num_free_regions() == 0, "we should not have added any free regions");
1035   rebuild_region_sets(false /* free_list_only */);
1036   abort_refinement();
1037   resize_heap_if_necessary();
1038 
1039   // Rebuild the strong code root lists for each region
1040   rebuild_strong_code_roots();
1041 
1042   // Purge code root memory
1043   purge_code_root_memory();
1044 
1045   // Start a new incremental collection set for the next pause
1046   start_new_collection_set();
1047 
1048   _allocator->init_mutator_alloc_regions();
1049 
1050   // Post collection state updates.
1051   MetaspaceGC::compute_new_size();
1052 }
1053 
1054 void G1CollectedHeap::abort_refinement() {
1055   if (_hot_card_cache->use_cache()) {
1056     _hot_card_cache->reset_hot_cache();
1057   }
1058 
1059   // Discard all remembered set updates and reset refinement statistics.
1060   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1061   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1062          "DCQS should be empty");
1063   concurrent_refine()->get_and_reset_refinement_stats();
1064 }
1065 
1066 void G1CollectedHeap::verify_after_full_collection() {
1067   _hrm->verify_optional();
1068   _verifier->verify_region_sets_optional();
1069   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1070   // Clear the previous marking bitmap, if needed for bitmap verification.
1071   // Note we cannot do this when we clear the next marking bitmap in
1072   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1073   // objects marked during a full GC against the previous bitmap.
1074   // But we need to clear it before calling check_bitmaps below since
1075   // the full GC has compacted objects and updated TAMS but not updated
1076   // the prev bitmap.
1077   if (G1VerifyBitmaps) {
1078     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1079     _cm->clear_prev_bitmap(workers());
1080   }
1081   // This call implicitly verifies that the next bitmap is clear after Full GC.
1082   _verifier->check_bitmaps("Full GC End");
1083 
1084   // At this point there should be no regions in the
1085   // entire heap tagged as young.
1086   assert(check_young_list_empty(), "young list should be empty at this point");
1087 
1088   // Note: since we've just done a full GC, concurrent
1089   // marking is no longer active. Therefore we need not
1090   // re-enable reference discovery for the CM ref processor.
1091   // That will be done at the start of the next marking cycle.
1092   // We also know that the STW processor should no longer
1093   // discover any new references.
1094   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1095   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1096   _ref_processor_stw->verify_no_references_recorded();
1097   _ref_processor_cm->verify_no_references_recorded();
1098 }
1099 
1100 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1101   // Post collection logging.
1102   // We should do this after we potentially resize the heap so
1103   // that all the COMMIT / UNCOMMIT events are generated before
1104   // the compaction events.
1105   print_hrm_post_compaction();
1106   heap_transition->print();
1107   print_heap_after_gc();
1108   print_heap_regions();
1109 }
1110 
1111 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1112                                          bool clear_all_soft_refs) {
1113   assert_at_safepoint_on_vm_thread();
1114 
1115   if (GCLocker::check_active_before_gc()) {
1116     // Full GC was not completed.
1117     return false;
1118   }
1119 
1120   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1121       soft_ref_policy()->should_clear_all_soft_refs();
1122 
1123   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1124   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1125 
1126   collector.prepare_collection();
1127   collector.collect();
1128   collector.complete_collection();
1129 
1130   // Full collection was successfully completed.
1131   return true;
1132 }
1133 
1134 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1135   // Currently, there is no facility in the do_full_collection(bool) API to notify
1136   // the caller that the collection did not succeed (e.g., because it was locked
1137   // out by the GC locker). So, right now, we'll ignore the return value.
1138   bool dummy = do_full_collection(true,                /* explicit_gc */
1139                                   clear_all_soft_refs);
1140 }
1141 
1142 void G1CollectedHeap::resize_heap_if_necessary() {
1143   assert_at_safepoint_on_vm_thread();
1144 
1145   // Capacity, free and used after the GC counted as full regions to
1146   // include the waste in the following calculations.
1147   const size_t capacity_after_gc = capacity();
1148   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1149 
1150   // This is enforced in arguments.cpp.
1151   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1152          "otherwise the code below doesn't make sense");
1153 
1154   // We don't have floating point command-line arguments
1155   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1156   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1157   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1158   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1159 
1160   // We have to be careful here as these two calculations can overflow
1161   // 32-bit size_t's.
1162   double used_after_gc_d = (double) used_after_gc;
1163   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1164   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1165 
1166   // Let's make sure that they are both under the max heap size, which
1167   // by default will make them fit into a size_t.
1168   double desired_capacity_upper_bound = (double) MaxHeapSize;
1169   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1170                                     desired_capacity_upper_bound);
1171   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1172                                     desired_capacity_upper_bound);
1173 
1174   // We can now safely turn them into size_t's.
1175   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1176   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1177 
1178   // This assert only makes sense here, before we adjust them
1179   // with respect to the min and max heap size.
1180   assert(minimum_desired_capacity <= maximum_desired_capacity,
1181          "minimum_desired_capacity = " SIZE_FORMAT ", "
1182          "maximum_desired_capacity = " SIZE_FORMAT,
1183          minimum_desired_capacity, maximum_desired_capacity);
1184 
1185   // Should not be greater than the heap max size. No need to adjust
1186   // it with respect to the heap min size as it's a lower bound (i.e.,
1187   // we'll try to make the capacity larger than it, not smaller).
1188   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1189   // Should not be less than the heap min size. No need to adjust it
1190   // with respect to the heap max size as it's an upper bound (i.e.,
1191   // we'll try to make the capacity smaller than it, not greater).
1192   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1193 
1194   if (capacity_after_gc < minimum_desired_capacity) {
1195     // Don't expand unless it's significant
1196     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1197 
1198     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1199                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1200                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1201                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1202 
1203     expand(expand_bytes, _workers);
1204 
1205     // No expansion, now see if we want to shrink
1206   } else if (capacity_after_gc > maximum_desired_capacity) {
1207     // Capacity too large, compute shrinking size
1208     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1209 
1210     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1211                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1212                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1213                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1214 
1215     shrink(shrink_bytes);
1216   }
1217 }
1218 
1219 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1220                                                             bool do_gc,
1221                                                             bool clear_all_soft_refs,
1222                                                             bool expect_null_mutator_alloc_region,
1223                                                             bool* gc_succeeded) {
1224   *gc_succeeded = true;
1225   // Let's attempt the allocation first.
1226   HeapWord* result =
1227     attempt_allocation_at_safepoint(word_size,
1228                                     expect_null_mutator_alloc_region);
1229   if (result != NULL) {
1230     return result;
1231   }
1232 
1233   // In a G1 heap, we're supposed to keep allocation from failing by
1234   // incremental pauses.  Therefore, at least for now, we'll favor
1235   // expansion over collection.  (This might change in the future if we can
1236   // do something smarter than full collection to satisfy a failed alloc.)
1237   result = expand_and_allocate(word_size);
1238   if (result != NULL) {
1239     return result;
1240   }
1241 
1242   if (do_gc) {
1243     // Expansion didn't work, we'll try to do a Full GC.
1244     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1245                                        clear_all_soft_refs);
1246   }
1247 
1248   return NULL;
1249 }
1250 
1251 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1252                                                      bool* succeeded) {
1253   assert_at_safepoint_on_vm_thread();
1254 
1255   // Attempts to allocate followed by Full GC.
1256   HeapWord* result =
1257     satisfy_failed_allocation_helper(word_size,
1258                                      true,  /* do_gc */
1259                                      false, /* clear_all_soft_refs */
1260                                      false, /* expect_null_mutator_alloc_region */
1261                                      succeeded);
1262 
1263   if (result != NULL || !*succeeded) {
1264     return result;
1265   }
1266 
1267   // Attempts to allocate followed by Full GC that will collect all soft references.
1268   result = satisfy_failed_allocation_helper(word_size,
1269                                             true, /* do_gc */
1270                                             true, /* clear_all_soft_refs */
1271                                             true, /* expect_null_mutator_alloc_region */
1272                                             succeeded);
1273 
1274   if (result != NULL || !*succeeded) {
1275     return result;
1276   }
1277 
1278   // Attempts to allocate, no GC
1279   result = satisfy_failed_allocation_helper(word_size,
1280                                             false, /* do_gc */
1281                                             false, /* clear_all_soft_refs */
1282                                             true,  /* expect_null_mutator_alloc_region */
1283                                             succeeded);
1284 
1285   if (result != NULL) {
1286     return result;
1287   }
1288 
1289   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1290          "Flag should have been handled and cleared prior to this point");
1291 
1292   // What else?  We might try synchronous finalization later.  If the total
1293   // space available is large enough for the allocation, then a more
1294   // complete compaction phase than we've tried so far might be
1295   // appropriate.
1296   return NULL;
1297 }
1298 
1299 // Attempting to expand the heap sufficiently
1300 // to support an allocation of the given "word_size".  If
1301 // successful, perform the allocation and return the address of the
1302 // allocated block, or else "NULL".
1303 
1304 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1305   assert_at_safepoint_on_vm_thread();
1306 
1307   _verifier->verify_region_sets_optional();
1308 
1309   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1310   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1311                             word_size * HeapWordSize);
1312 
1313 
1314   if (expand(expand_bytes, _workers)) {
1315     _hrm->verify_optional();
1316     _verifier->verify_region_sets_optional();
1317     return attempt_allocation_at_safepoint(word_size,
1318                                            false /* expect_null_mutator_alloc_region */);
1319   }
1320   return NULL;
1321 }
1322 
1323 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1324   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1325   aligned_expand_bytes = align_up(aligned_expand_bytes,
1326                                        HeapRegion::GrainBytes);
1327 
1328   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1329                             expand_bytes, aligned_expand_bytes);
1330 
1331   if (is_maximal_no_gc()) {
1332     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1333     return false;
1334   }
1335 
1336   double expand_heap_start_time_sec = os::elapsedTime();
1337   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1338   assert(regions_to_expand > 0, "Must expand by at least one region");
1339 
1340   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1341   if (expand_time_ms != NULL) {
1342     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1343   }
1344 
1345   if (expanded_by > 0) {
1346     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1347     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1348     policy()->record_new_heap_size(num_regions());
1349   } else {
1350     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1351 
1352     // The expansion of the virtual storage space was unsuccessful.
1353     // Let's see if it was because we ran out of swap.
1354     if (G1ExitOnExpansionFailure &&
1355         _hrm->available() >= regions_to_expand) {
1356       // We had head room...
1357       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1358     }
1359   }
1360   return regions_to_expand > 0;
1361 }
1362 
1363 bool G1CollectedHeap::expand_single_region(uint node_index) {
1364   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1365 
1366   if (expanded_by == 0) {
1367     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1368     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1369     return false;
1370   }
1371 
1372   policy()->record_new_heap_size(num_regions());
1373   return true;
1374 }
1375 
1376 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1377   size_t aligned_shrink_bytes =
1378     ReservedSpace::page_align_size_down(shrink_bytes);
1379   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1380                                          HeapRegion::GrainBytes);
1381   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1382 
1383   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1384   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1385 
1386   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1387                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1388   if (num_regions_removed > 0) {
1389     policy()->record_new_heap_size(num_regions());
1390   } else {
1391     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1392   }
1393 }
1394 
1395 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1396   _verifier->verify_region_sets_optional();
1397 
1398   // We should only reach here at the end of a Full GC or during Remark which
1399   // means we should not not be holding to any GC alloc regions. The method
1400   // below will make sure of that and do any remaining clean up.
1401   _allocator->abandon_gc_alloc_regions();
1402 
1403   // Instead of tearing down / rebuilding the free lists here, we
1404   // could instead use the remove_all_pending() method on free_list to
1405   // remove only the ones that we need to remove.
1406   tear_down_region_sets(true /* free_list_only */);
1407   shrink_helper(shrink_bytes);
1408   rebuild_region_sets(true /* free_list_only */);
1409 
1410   _hrm->verify_optional();
1411   _verifier->verify_region_sets_optional();
1412 }
1413 
1414 class OldRegionSetChecker : public HeapRegionSetChecker {
1415 public:
1416   void check_mt_safety() {
1417     // Master Old Set MT safety protocol:
1418     // (a) If we're at a safepoint, operations on the master old set
1419     // should be invoked:
1420     // - by the VM thread (which will serialize them), or
1421     // - by the GC workers while holding the FreeList_lock, if we're
1422     //   at a safepoint for an evacuation pause (this lock is taken
1423     //   anyway when an GC alloc region is retired so that a new one
1424     //   is allocated from the free list), or
1425     // - by the GC workers while holding the OldSets_lock, if we're at a
1426     //   safepoint for a cleanup pause.
1427     // (b) If we're not at a safepoint, operations on the master old set
1428     // should be invoked while holding the Heap_lock.
1429 
1430     if (SafepointSynchronize::is_at_safepoint()) {
1431       guarantee(Thread::current()->is_VM_thread() ||
1432                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1433                 "master old set MT safety protocol at a safepoint");
1434     } else {
1435       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1436     }
1437   }
1438   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1439   const char* get_description() { return "Old Regions"; }
1440 };
1441 
1442 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1443 public:
1444   void check_mt_safety() {
1445     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1446               "May only change archive regions during initialization or safepoint.");
1447   }
1448   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1449   const char* get_description() { return "Archive Regions"; }
1450 };
1451 
1452 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1453 public:
1454   void check_mt_safety() {
1455     // Humongous Set MT safety protocol:
1456     // (a) If we're at a safepoint, operations on the master humongous
1457     // set should be invoked by either the VM thread (which will
1458     // serialize them) or by the GC workers while holding the
1459     // OldSets_lock.
1460     // (b) If we're not at a safepoint, operations on the master
1461     // humongous set should be invoked while holding the Heap_lock.
1462 
1463     if (SafepointSynchronize::is_at_safepoint()) {
1464       guarantee(Thread::current()->is_VM_thread() ||
1465                 OldSets_lock->owned_by_self(),
1466                 "master humongous set MT safety protocol at a safepoint");
1467     } else {
1468       guarantee(Heap_lock->owned_by_self(),
1469                 "master humongous set MT safety protocol outside a safepoint");
1470     }
1471   }
1472   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1473   const char* get_description() { return "Humongous Regions"; }
1474 };
1475 
1476 G1CollectedHeap::G1CollectedHeap() :
1477   CollectedHeap(),
1478   _young_gen_sampling_thread(NULL),
1479   _workers(NULL),
1480   _card_table(NULL),
1481   _soft_ref_policy(),
1482   _old_set("Old Region Set", new OldRegionSetChecker()),
1483   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1484   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1485   _bot(NULL),
1486   _listener(),
1487   _numa(G1NUMA::create()),
1488   _hrm(NULL),
1489   _allocator(NULL),
1490   _verifier(NULL),
1491   _summary_bytes_used(0),
1492   _bytes_used_during_gc(0),
1493   _archive_allocator(NULL),
1494   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1495   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1496   _expand_heap_after_alloc_failure(true),
1497   _g1mm(NULL),
1498   _humongous_reclaim_candidates(),
1499   _has_humongous_reclaim_candidates(false),
1500   _hr_printer(),
1501   _collector_state(),
1502   _old_marking_cycles_started(0),
1503   _old_marking_cycles_completed(0),
1504   _eden(),
1505   _survivor(),
1506   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1507   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1508   _policy(G1Policy::create_policy(_gc_timer_stw)),
1509   _heap_sizing_policy(NULL),
1510   _collection_set(this, _policy),
1511   _hot_card_cache(NULL),
1512   _rem_set(NULL),
1513   _cm(NULL),
1514   _cm_thread(NULL),
1515   _cr(NULL),
1516   _task_queues(NULL),
1517   _evacuation_failed(false),
1518   _evacuation_failed_info_array(NULL),
1519   _preserved_marks_set(true /* in_c_heap */),
1520 #ifndef PRODUCT
1521   _evacuation_failure_alot_for_current_gc(false),
1522   _evacuation_failure_alot_gc_number(0),
1523   _evacuation_failure_alot_count(0),
1524 #endif
1525   _ref_processor_stw(NULL),
1526   _is_alive_closure_stw(this),
1527   _is_subject_to_discovery_stw(this),
1528   _ref_processor_cm(NULL),
1529   _is_alive_closure_cm(this),
1530   _is_subject_to_discovery_cm(this),
1531   _region_attr() {
1532 
1533   _verifier = new G1HeapVerifier(this);
1534 
1535   _allocator = new G1Allocator(this);
1536 
1537   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1538 
1539   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1540 
1541   // Override the default _filler_array_max_size so that no humongous filler
1542   // objects are created.
1543   _filler_array_max_size = _humongous_object_threshold_in_words;
1544 
1545   uint n_queues = ParallelGCThreads;
1546   _task_queues = new ScannerTasksQueueSet(n_queues);
1547 
1548   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1549 
1550   for (uint i = 0; i < n_queues; i++) {
1551     ScannerTasksQueue* q = new ScannerTasksQueue();
1552     q->initialize();
1553     _task_queues->register_queue(i, q);
1554     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1555   }
1556 
1557   // Initialize the G1EvacuationFailureALot counters and flags.
1558   NOT_PRODUCT(reset_evacuation_should_fail();)
1559   _gc_tracer_stw->initialize();
1560 
1561   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1562 }
1563 
1564 static size_t actual_reserved_page_size(ReservedSpace rs) {
1565   size_t page_size = os::vm_page_size();
1566   if (UseLargePages) {
1567     // There are two ways to manage large page memory.
1568     // 1. OS supports committing large page memory.
1569     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1570     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1571     //    we reserved memory without large page.
1572     if (os::can_commit_large_page_memory() || rs.special()) {
1573       // An alignment at ReservedSpace comes from preferred page size or
1574       // heap alignment, and if the alignment came from heap alignment, it could be
1575       // larger than large pages size. So need to cap with the large page size.
1576       page_size = MIN2(rs.alignment(), os::large_page_size());
1577     }
1578   }
1579 
1580   return page_size;
1581 }
1582 
1583 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1584                                                                  size_t size,
1585                                                                  size_t translation_factor) {
1586   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1587   // Allocate a new reserved space, preferring to use large pages.
1588   ReservedSpace rs(size, preferred_page_size);
1589   size_t page_size = actual_reserved_page_size(rs);
1590   G1RegionToSpaceMapper* result  =
1591     G1RegionToSpaceMapper::create_mapper(rs,
1592                                          size,
1593                                          page_size,
1594                                          HeapRegion::GrainBytes,
1595                                          translation_factor,
1596                                          mtGC);
1597 
1598   os::trace_page_sizes_for_requested_size(description,
1599                                           size,
1600                                           preferred_page_size,
1601                                           page_size,
1602                                           rs.base(),
1603                                           rs.size());
1604 
1605   return result;
1606 }
1607 
1608 jint G1CollectedHeap::initialize_concurrent_refinement() {
1609   jint ecode = JNI_OK;
1610   _cr = G1ConcurrentRefine::create(&ecode);
1611   return ecode;
1612 }
1613 
1614 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1615   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1616   if (_young_gen_sampling_thread->osthread() == NULL) {
1617     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1618     return JNI_ENOMEM;
1619   }
1620   return JNI_OK;
1621 }
1622 
1623 jint G1CollectedHeap::initialize() {
1624 
1625   // Necessary to satisfy locking discipline assertions.
1626 
1627   MutexLocker x(Heap_lock);
1628 
1629   // While there are no constraints in the GC code that HeapWordSize
1630   // be any particular value, there are multiple other areas in the
1631   // system which believe this to be true (e.g. oop->object_size in some
1632   // cases incorrectly returns the size in wordSize units rather than
1633   // HeapWordSize).
1634   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1635 
1636   size_t init_byte_size = InitialHeapSize;
1637   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1638 
1639   // Ensure that the sizes are properly aligned.
1640   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1641   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1642   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1643 
1644   // Reserve the maximum.
1645 
1646   // When compressed oops are enabled, the preferred heap base
1647   // is calculated by subtracting the requested size from the
1648   // 32Gb boundary and using the result as the base address for
1649   // heap reservation. If the requested size is not aligned to
1650   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1651   // into the ReservedHeapSpace constructor) then the actual
1652   // base of the reserved heap may end up differing from the
1653   // address that was requested (i.e. the preferred heap base).
1654   // If this happens then we could end up using a non-optimal
1655   // compressed oops mode.
1656 
1657   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1658                                                      HeapAlignment);
1659 
1660   initialize_reserved_region(heap_rs);
1661 
1662   // Create the barrier set for the entire reserved region.
1663   G1CardTable* ct = new G1CardTable(heap_rs.region());
1664   ct->initialize();
1665   G1BarrierSet* bs = new G1BarrierSet(ct);
1666   bs->initialize();
1667   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1668   BarrierSet::set_barrier_set(bs);
1669   _card_table = ct;
1670 
1671   {
1672     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1673     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1674     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1675   }
1676 
1677   // Create the hot card cache.
1678   _hot_card_cache = new G1HotCardCache(this);
1679 
1680   // Carve out the G1 part of the heap.
1681   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1682   size_t page_size = actual_reserved_page_size(heap_rs);
1683   G1RegionToSpaceMapper* heap_storage =
1684     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1685                                               g1_rs.size(),
1686                                               page_size,
1687                                               HeapRegion::GrainBytes,
1688                                               1,
1689                                               mtJavaHeap);
1690   if(heap_storage == NULL) {
1691     vm_shutdown_during_initialization("Could not initialize G1 heap");
1692     return JNI_ERR;
1693   }
1694 
1695   os::trace_page_sizes("Heap",
1696                        MinHeapSize,
1697                        reserved_byte_size,
1698                        page_size,
1699                        heap_rs.base(),
1700                        heap_rs.size());
1701   heap_storage->set_mapping_changed_listener(&_listener);
1702 
1703   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1704   G1RegionToSpaceMapper* bot_storage =
1705     create_aux_memory_mapper("Block Offset Table",
1706                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1707                              G1BlockOffsetTable::heap_map_factor());
1708 
1709   G1RegionToSpaceMapper* cardtable_storage =
1710     create_aux_memory_mapper("Card Table",
1711                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1712                              G1CardTable::heap_map_factor());
1713 
1714   G1RegionToSpaceMapper* card_counts_storage =
1715     create_aux_memory_mapper("Card Counts Table",
1716                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1717                              G1CardCounts::heap_map_factor());
1718 
1719   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1720   G1RegionToSpaceMapper* prev_bitmap_storage =
1721     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1722   G1RegionToSpaceMapper* next_bitmap_storage =
1723     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1724 
1725   _hrm = HeapRegionManager::create_manager(this);
1726 
1727   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1728   _card_table->initialize(cardtable_storage);
1729 
1730   // Do later initialization work for concurrent refinement.
1731   _hot_card_cache->initialize(card_counts_storage);
1732 
1733   // 6843694 - ensure that the maximum region index can fit
1734   // in the remembered set structures.
1735   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1736   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1737 
1738   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1739   // start within the first card.
1740   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1741   // Also create a G1 rem set.
1742   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1743   _rem_set->initialize(max_reserved_capacity(), max_regions());
1744 
1745   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1746   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1747   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1748             "too many cards per region");
1749 
1750   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1751 
1752   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1753 
1754   {
1755     HeapWord* start = _hrm->reserved().start();
1756     HeapWord* end = _hrm->reserved().end();
1757     size_t granularity = HeapRegion::GrainBytes;
1758 
1759     _region_attr.initialize(start, end, granularity);
1760     _humongous_reclaim_candidates.initialize(start, end, granularity);
1761   }
1762 
1763   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1764                           true /* are_GC_task_threads */,
1765                           false /* are_ConcurrentGC_threads */);
1766   if (_workers == NULL) {
1767     return JNI_ENOMEM;
1768   }
1769   _workers->initialize_workers();
1770 
1771   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1772 
1773   // Create the G1ConcurrentMark data structure and thread.
1774   // (Must do this late, so that "max_regions" is defined.)
1775   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1776   _cm_thread = _cm->cm_thread();
1777 
1778   // Now expand into the initial heap size.
1779   if (!expand(init_byte_size, _workers)) {
1780     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1781     return JNI_ENOMEM;
1782   }
1783 
1784   // Perform any initialization actions delegated to the policy.
1785   policy()->init(this, &_collection_set);
1786 
1787   jint ecode = initialize_concurrent_refinement();
1788   if (ecode != JNI_OK) {
1789     return ecode;
1790   }
1791 
1792   ecode = initialize_young_gen_sampling_thread();
1793   if (ecode != JNI_OK) {
1794     return ecode;
1795   }
1796 
1797   {
1798     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1799     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1800     dcqs.set_max_cards(concurrent_refine()->red_zone());
1801   }
1802 
1803   // Here we allocate the dummy HeapRegion that is required by the
1804   // G1AllocRegion class.
1805   HeapRegion* dummy_region = _hrm->get_dummy_region();
1806 
1807   // We'll re-use the same region whether the alloc region will
1808   // require BOT updates or not and, if it doesn't, then a non-young
1809   // region will complain that it cannot support allocations without
1810   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1811   dummy_region->set_eden();
1812   // Make sure it's full.
1813   dummy_region->set_top(dummy_region->end());
1814   G1AllocRegion::setup(this, dummy_region);
1815 
1816   _allocator->init_mutator_alloc_regions();
1817 
1818   // Do create of the monitoring and management support so that
1819   // values in the heap have been properly initialized.
1820   _g1mm = new G1MonitoringSupport(this);
1821 
1822   G1StringDedup::initialize();
1823 
1824   _preserved_marks_set.init(ParallelGCThreads);
1825 
1826   _collection_set.initialize(max_regions());
1827 
1828   G1InitLogger::print();
1829 
1830   return JNI_OK;
1831 }
1832 
1833 void G1CollectedHeap::stop() {
1834   // Stop all concurrent threads. We do this to make sure these threads
1835   // do not continue to execute and access resources (e.g. logging)
1836   // that are destroyed during shutdown.
1837   _cr->stop();
1838   _young_gen_sampling_thread->stop();
1839   _cm_thread->stop();
1840   if (G1StringDedup::is_enabled()) {
1841     G1StringDedup::stop();
1842   }
1843 }
1844 
1845 void G1CollectedHeap::safepoint_synchronize_begin() {
1846   SuspendibleThreadSet::synchronize();
1847 }
1848 
1849 void G1CollectedHeap::safepoint_synchronize_end() {
1850   SuspendibleThreadSet::desynchronize();
1851 }
1852 
1853 void G1CollectedHeap::post_initialize() {
1854   CollectedHeap::post_initialize();
1855   ref_processing_init();
1856 }
1857 
1858 void G1CollectedHeap::ref_processing_init() {
1859   // Reference processing in G1 currently works as follows:
1860   //
1861   // * There are two reference processor instances. One is
1862   //   used to record and process discovered references
1863   //   during concurrent marking; the other is used to
1864   //   record and process references during STW pauses
1865   //   (both full and incremental).
1866   // * Both ref processors need to 'span' the entire heap as
1867   //   the regions in the collection set may be dotted around.
1868   //
1869   // * For the concurrent marking ref processor:
1870   //   * Reference discovery is enabled at initial marking.
1871   //   * Reference discovery is disabled and the discovered
1872   //     references processed etc during remarking.
1873   //   * Reference discovery is MT (see below).
1874   //   * Reference discovery requires a barrier (see below).
1875   //   * Reference processing may or may not be MT
1876   //     (depending on the value of ParallelRefProcEnabled
1877   //     and ParallelGCThreads).
1878   //   * A full GC disables reference discovery by the CM
1879   //     ref processor and abandons any entries on it's
1880   //     discovered lists.
1881   //
1882   // * For the STW processor:
1883   //   * Non MT discovery is enabled at the start of a full GC.
1884   //   * Processing and enqueueing during a full GC is non-MT.
1885   //   * During a full GC, references are processed after marking.
1886   //
1887   //   * Discovery (may or may not be MT) is enabled at the start
1888   //     of an incremental evacuation pause.
1889   //   * References are processed near the end of a STW evacuation pause.
1890   //   * For both types of GC:
1891   //     * Discovery is atomic - i.e. not concurrent.
1892   //     * Reference discovery will not need a barrier.
1893 
1894   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1895 
1896   // Concurrent Mark ref processor
1897   _ref_processor_cm =
1898     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1899                            mt_processing,                                  // mt processing
1900                            ParallelGCThreads,                              // degree of mt processing
1901                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1902                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1903                            false,                                          // Reference discovery is not atomic
1904                            &_is_alive_closure_cm,                          // is alive closure
1905                            true);                                          // allow changes to number of processing threads
1906 
1907   // STW ref processor
1908   _ref_processor_stw =
1909     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1910                            mt_processing,                        // mt processing
1911                            ParallelGCThreads,                    // degree of mt processing
1912                            (ParallelGCThreads > 1),              // mt discovery
1913                            ParallelGCThreads,                    // degree of mt discovery
1914                            true,                                 // Reference discovery is atomic
1915                            &_is_alive_closure_stw,               // is alive closure
1916                            true);                                // allow changes to number of processing threads
1917 }
1918 
1919 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1920   return &_soft_ref_policy;
1921 }
1922 
1923 size_t G1CollectedHeap::capacity() const {
1924   return _hrm->length() * HeapRegion::GrainBytes;
1925 }
1926 
1927 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1928   return _hrm->total_free_bytes();
1929 }
1930 
1931 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1932   _hot_card_cache->drain(cl, worker_id);
1933 }
1934 
1935 // Computes the sum of the storage used by the various regions.
1936 size_t G1CollectedHeap::used() const {
1937   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1938   if (_archive_allocator != NULL) {
1939     result += _archive_allocator->used();
1940   }
1941   return result;
1942 }
1943 
1944 size_t G1CollectedHeap::used_unlocked() const {
1945   return _summary_bytes_used;
1946 }
1947 
1948 class SumUsedClosure: public HeapRegionClosure {
1949   size_t _used;
1950 public:
1951   SumUsedClosure() : _used(0) {}
1952   bool do_heap_region(HeapRegion* r) {
1953     _used += r->used();
1954     return false;
1955   }
1956   size_t result() { return _used; }
1957 };
1958 
1959 size_t G1CollectedHeap::recalculate_used() const {
1960   SumUsedClosure blk;
1961   heap_region_iterate(&blk);
1962   return blk.result();
1963 }
1964 
1965 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1966   switch (cause) {
1967     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1968     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1969     case GCCause::_wb_conc_mark:                        return true;
1970     default :                                           return false;
1971   }
1972 }
1973 
1974 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1975   switch (cause) {
1976     case GCCause::_g1_humongous_allocation: return true;
1977     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1978     case GCCause::_wb_breakpoint:           return true;
1979     default:                                return is_user_requested_concurrent_full_gc(cause);
1980   }
1981 }
1982 
1983 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
1984   if (policy()->force_upgrade_to_full()) {
1985     return true;
1986   } else if (should_do_concurrent_full_gc(_gc_cause)) {
1987     return false;
1988   } else if (has_regions_left_for_allocation()) {
1989     return false;
1990   } else {
1991     return true;
1992   }
1993 }
1994 
1995 #ifndef PRODUCT
1996 void G1CollectedHeap::allocate_dummy_regions() {
1997   // Let's fill up most of the region
1998   size_t word_size = HeapRegion::GrainWords - 1024;
1999   // And as a result the region we'll allocate will be humongous.
2000   guarantee(is_humongous(word_size), "sanity");
2001 
2002   // _filler_array_max_size is set to humongous object threshold
2003   // but temporarily change it to use CollectedHeap::fill_with_object().
2004   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2005 
2006   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2007     // Let's use the existing mechanism for the allocation
2008     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2009     if (dummy_obj != NULL) {
2010       MemRegion mr(dummy_obj, word_size);
2011       CollectedHeap::fill_with_object(mr);
2012     } else {
2013       // If we can't allocate once, we probably cannot allocate
2014       // again. Let's get out of the loop.
2015       break;
2016     }
2017   }
2018 }
2019 #endif // !PRODUCT
2020 
2021 void G1CollectedHeap::increment_old_marking_cycles_started() {
2022   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2023          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2024          "Wrong marking cycle count (started: %d, completed: %d)",
2025          _old_marking_cycles_started, _old_marking_cycles_completed);
2026 
2027   _old_marking_cycles_started++;
2028 }
2029 
2030 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2031   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
2032 
2033   // We assume that if concurrent == true, then the caller is a
2034   // concurrent thread that was joined the Suspendible Thread
2035   // Set. If there's ever a cheap way to check this, we should add an
2036   // assert here.
2037 
2038   // Given that this method is called at the end of a Full GC or of a
2039   // concurrent cycle, and those can be nested (i.e., a Full GC can
2040   // interrupt a concurrent cycle), the number of full collections
2041   // completed should be either one (in the case where there was no
2042   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2043   // behind the number of full collections started.
2044 
2045   // This is the case for the inner caller, i.e. a Full GC.
2046   assert(concurrent ||
2047          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2048          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2049          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2050          "is inconsistent with _old_marking_cycles_completed = %u",
2051          _old_marking_cycles_started, _old_marking_cycles_completed);
2052 
2053   // This is the case for the outer caller, i.e. the concurrent cycle.
2054   assert(!concurrent ||
2055          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2056          "for outer caller (concurrent cycle): "
2057          "_old_marking_cycles_started = %u "
2058          "is inconsistent with _old_marking_cycles_completed = %u",
2059          _old_marking_cycles_started, _old_marking_cycles_completed);
2060 
2061   _old_marking_cycles_completed += 1;
2062 
2063   // We need to clear the "in_progress" flag in the CM thread before
2064   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2065   // is set) so that if a waiter requests another System.gc() it doesn't
2066   // incorrectly see that a marking cycle is still in progress.
2067   if (concurrent) {
2068     _cm_thread->set_idle();
2069   }
2070 
2071   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
2072   // for a full GC to finish that their wait is over.
2073   ml.notify_all();
2074 }
2075 
2076 void G1CollectedHeap::collect(GCCause::Cause cause) {
2077   try_collect(cause);
2078 }
2079 
2080 // Return true if (x < y) with allowance for wraparound.
2081 static bool gc_counter_less_than(uint x, uint y) {
2082   return (x - y) > (UINT_MAX/2);
2083 }
2084 
2085 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
2086 // Macro so msg printing is format-checked.
2087 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
2088   do {                                                                  \
2089     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
2090     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
2091       ResourceMark rm; /* For thread name. */                           \
2092       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
2093       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
2094                                        Thread::current()->name(),       \
2095                                        GCCause::to_string(cause));      \
2096       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
2097     }                                                                   \
2098   } while (0)
2099 
2100 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
2101   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
2102 
2103 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
2104                                                uint gc_counter,
2105                                                uint old_marking_started_before) {
2106   assert_heap_not_locked();
2107   assert(should_do_concurrent_full_gc(cause),
2108          "Non-concurrent cause %s", GCCause::to_string(cause));
2109 
2110   for (uint i = 1; true; ++i) {
2111     // Try to schedule an initial-mark evacuation pause that will
2112     // start a concurrent cycle.
2113     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
2114     VM_G1TryInitiateConcMark op(gc_counter,
2115                                 cause,
2116                                 policy()->max_pause_time_ms());
2117     VMThread::execute(&op);
2118 
2119     // Request is trivially finished.
2120     if (cause == GCCause::_g1_periodic_collection) {
2121       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
2122       return op.gc_succeeded();
2123     }
2124 
2125     // If VMOp skipped initiating concurrent marking cycle because
2126     // we're terminating, then we're done.
2127     if (op.terminating()) {
2128       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
2129       return false;
2130     }
2131 
2132     // Lock to get consistent set of values.
2133     uint old_marking_started_after;
2134     uint old_marking_completed_after;
2135     {
2136       MutexLocker ml(Heap_lock);
2137       // Update gc_counter for retrying VMOp if needed. Captured here to be
2138       // consistent with the values we use below for termination tests.  If
2139       // a retry is needed after a possible wait, and another collection
2140       // occurs in the meantime, it will cause our retry to be skipped and
2141       // we'll recheck for termination with updated conditions from that
2142       // more recent collection.  That's what we want, rather than having
2143       // our retry possibly perform an unnecessary collection.
2144       gc_counter = total_collections();
2145       old_marking_started_after = _old_marking_cycles_started;
2146       old_marking_completed_after = _old_marking_cycles_completed;
2147     }
2148 
2149     if (cause == GCCause::_wb_breakpoint) {
2150       if (op.gc_succeeded()) {
2151         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2152         return true;
2153       }
2154       // When _wb_breakpoint there can't be another cycle or deferred.
2155       assert(!op.cycle_already_in_progress(), "invariant");
2156       assert(!op.whitebox_attached(), "invariant");
2157       // Concurrent cycle attempt might have been cancelled by some other
2158       // collection, so retry.  Unlike other cases below, we want to retry
2159       // even if cancelled by a STW full collection, because we really want
2160       // to start a concurrent cycle.
2161       if (old_marking_started_before != old_marking_started_after) {
2162         LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
2163         old_marking_started_before = old_marking_started_after;
2164       }
2165     } else if (!GCCause::is_user_requested_gc(cause)) {
2166       // For an "automatic" (not user-requested) collection, we just need to
2167       // ensure that progress is made.
2168       //
2169       // Request is finished if any of
2170       // (1) the VMOp successfully performed a GC,
2171       // (2) a concurrent cycle was already in progress,
2172       // (3) whitebox is controlling concurrent cycles,
2173       // (4) a new cycle was started (by this thread or some other), or
2174       // (5) a Full GC was performed.
2175       // Cases (4) and (5) are detected together by a change to
2176       // _old_marking_cycles_started.
2177       //
2178       // Note that (1) does not imply (4).  If we're still in the mixed
2179       // phase of an earlier concurrent collection, the request to make the
2180       // collection an initial-mark won't be honored.  If we don't check for
2181       // both conditions we'll spin doing back-to-back collections.
2182       if (op.gc_succeeded() ||
2183           op.cycle_already_in_progress() ||
2184           op.whitebox_attached() ||
2185           (old_marking_started_before != old_marking_started_after)) {
2186         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2187         return true;
2188       }
2189     } else {                    // User-requested GC.
2190       // For a user-requested collection, we want to ensure that a complete
2191       // full collection has been performed before returning, but without
2192       // waiting for more than needed.
2193 
2194       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
2195       // new cycle was started.  That's good, because it's not clear what we
2196       // should do otherwise.  Trying again just does back to back GCs.
2197       // Can't wait for someone else to start a cycle.  And returning fails
2198       // to meet the goal of ensuring a full collection was performed.
2199       assert(!op.gc_succeeded() ||
2200              (old_marking_started_before != old_marking_started_after),
2201              "invariant: succeeded %s, started before %u, started after %u",
2202              BOOL_TO_STR(op.gc_succeeded()),
2203              old_marking_started_before, old_marking_started_after);
2204 
2205       // Request is finished if a full collection (concurrent or stw)
2206       // was started after this request and has completed, e.g.
2207       // started_before < completed_after.
2208       if (gc_counter_less_than(old_marking_started_before,
2209                                old_marking_completed_after)) {
2210         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2211         return true;
2212       }
2213 
2214       if (old_marking_started_after != old_marking_completed_after) {
2215         // If there is an in-progress cycle (possibly started by us), then
2216         // wait for that cycle to complete, e.g.
2217         // while completed_now < started_after.
2218         LOG_COLLECT_CONCURRENTLY(cause, "wait");
2219         MonitorLocker ml(G1OldGCCount_lock);
2220         while (gc_counter_less_than(_old_marking_cycles_completed,
2221                                     old_marking_started_after)) {
2222           ml.wait();
2223         }
2224         // Request is finished if the collection we just waited for was
2225         // started after this request.
2226         if (old_marking_started_before != old_marking_started_after) {
2227           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
2228           return true;
2229         }
2230       }
2231 
2232       // If VMOp was successful then it started a new cycle that the above
2233       // wait &etc should have recognized as finishing this request.  This
2234       // differs from a non-user-request, where gc_succeeded does not imply
2235       // a new cycle was started.
2236       assert(!op.gc_succeeded(), "invariant");
2237 
2238       if (op.cycle_already_in_progress()) {
2239         // If VMOp failed because a cycle was already in progress, it
2240         // is now complete.  But it didn't finish this user-requested
2241         // GC, so try again.
2242         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
2243         continue;
2244       } else if (op.whitebox_attached()) {
2245         // If WhiteBox wants control, wait for notification of a state
2246         // change in the controller, then try again.  Don't wait for
2247         // release of control, since collections may complete while in
2248         // control.  Note: This won't recognize a STW full collection
2249         // while waiting; we can't wait on multiple monitors.
2250         LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
2251         MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
2252         if (ConcurrentGCBreakpoints::is_controlled()) {
2253           ml.wait();
2254         }
2255         continue;
2256       }
2257     }
2258 
2259     // Collection failed and should be retried.
2260     assert(op.transient_failure(), "invariant");
2261 
2262     if (GCLocker::is_active_and_needs_gc()) {
2263       // If GCLocker is active, wait until clear before retrying.
2264       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
2265       GCLocker::stall_until_clear();
2266     }
2267 
2268     LOG_COLLECT_CONCURRENTLY(cause, "retry");
2269   }
2270 }
2271 
2272 bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
2273   assert_heap_not_locked();
2274 
2275   // Lock to get consistent set of values.
2276   uint gc_count_before;
2277   uint full_gc_count_before;
2278   uint old_marking_started_before;
2279   {
2280     MutexLocker ml(Heap_lock);
2281     gc_count_before = total_collections();
2282     full_gc_count_before = total_full_collections();
2283     old_marking_started_before = _old_marking_cycles_started;
2284   }
2285 
2286   if (should_do_concurrent_full_gc(cause)) {
2287     return try_collect_concurrently(cause,
2288                                     gc_count_before,
2289                                     old_marking_started_before);
2290   } else if (GCLocker::should_discard(cause, gc_count_before)) {
2291     // Indicate failure to be consistent with VMOp failure due to
2292     // another collection slipping in after our gc_count but before
2293     // our request is processed.
2294     return false;
2295   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2296              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2297 
2298     // Schedule a standard evacuation pause. We're setting word_size
2299     // to 0 which means that we are not requesting a post-GC allocation.
2300     VM_G1CollectForAllocation op(0,     /* word_size */
2301                                  gc_count_before,
2302                                  cause,
2303                                  policy()->max_pause_time_ms());
2304     VMThread::execute(&op);
2305     return op.gc_succeeded();
2306   } else {
2307     // Schedule a Full GC.
2308     VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2309     VMThread::execute(&op);
2310     return op.gc_succeeded();
2311   }
2312 }
2313 
2314 bool G1CollectedHeap::is_in(const void* p) const {
2315   if (_hrm->reserved().contains(p)) {
2316     // Given that we know that p is in the reserved space,
2317     // heap_region_containing() should successfully
2318     // return the containing region.
2319     HeapRegion* hr = heap_region_containing(p);
2320     return hr->is_in(p);
2321   } else {
2322     return false;
2323   }
2324 }
2325 
2326 #ifdef ASSERT
2327 bool G1CollectedHeap::is_in_exact(const void* p) const {
2328   bool contains = reserved_region().contains(p);
2329   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2330   if (contains && available) {
2331     return true;
2332   } else {
2333     return false;
2334   }
2335 }
2336 #endif
2337 
2338 // Iteration functions.
2339 
2340 // Iterates an ObjectClosure over all objects within a HeapRegion.
2341 
2342 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2343   ObjectClosure* _cl;
2344 public:
2345   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2346   bool do_heap_region(HeapRegion* r) {
2347     if (!r->is_continues_humongous()) {
2348       r->object_iterate(_cl);
2349     }
2350     return false;
2351   }
2352 };
2353 
2354 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2355   IterateObjectClosureRegionClosure blk(cl);
2356   heap_region_iterate(&blk);
2357 }
2358 
2359 void G1CollectedHeap::keep_alive(oop obj) {
2360   G1BarrierSet::enqueue(obj);
2361 }
2362 
2363 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2364   _hrm->iterate(cl);
2365 }
2366 
2367 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2368                                                                  HeapRegionClaimer *hrclaimer,
2369                                                                  uint worker_id) const {
2370   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2371 }
2372 
2373 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2374                                                          HeapRegionClaimer *hrclaimer) const {
2375   _hrm->par_iterate(cl, hrclaimer, 0);
2376 }
2377 
2378 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2379   _collection_set.iterate(cl);
2380 }
2381 
2382 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2383   _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers());
2384 }
2385 
2386 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2387   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2388 }
2389 
2390 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2391   HeapRegion* hr = heap_region_containing(addr);
2392   return hr->block_start(addr);
2393 }
2394 
2395 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2396   HeapRegion* hr = heap_region_containing(addr);
2397   return hr->block_is_obj(addr);
2398 }
2399 
2400 bool G1CollectedHeap::supports_tlab_allocation() const {
2401   return true;
2402 }
2403 
2404 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2405   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2406 }
2407 
2408 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2409   return _eden.length() * HeapRegion::GrainBytes;
2410 }
2411 
2412 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2413 // must be equal to the humongous object limit.
2414 size_t G1CollectedHeap::max_tlab_size() const {
2415   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2416 }
2417 
2418 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2419   return _allocator->unsafe_max_tlab_alloc();
2420 }
2421 
2422 size_t G1CollectedHeap::max_capacity() const {
2423   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2424 }
2425 
2426 size_t G1CollectedHeap::max_reserved_capacity() const {
2427   return _hrm->max_length() * HeapRegion::GrainBytes;
2428 }
2429 
2430 jlong G1CollectedHeap::millis_since_last_gc() {
2431   // See the notes in GenCollectedHeap::millis_since_last_gc()
2432   // for more information about the implementation.
2433   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2434                   _policy->collection_pause_end_millis();
2435   if (ret_val < 0) {
2436     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2437       ". returning zero instead.", ret_val);
2438     return 0;
2439   }
2440   return ret_val;
2441 }
2442 
2443 void G1CollectedHeap::deduplicate_string(oop str) {
2444   assert(java_lang_String::is_instance(str), "invariant");
2445 
2446   if (G1StringDedup::is_enabled()) {
2447     G1StringDedup::deduplicate(str);
2448   }
2449 }
2450 
2451 void G1CollectedHeap::prepare_for_verify() {
2452   _verifier->prepare_for_verify();
2453 }
2454 
2455 void G1CollectedHeap::verify(VerifyOption vo) {
2456   _verifier->verify(vo);
2457 }
2458 
2459 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
2460   return true;
2461 }
2462 
2463 bool G1CollectedHeap::is_heterogeneous_heap() const {
2464   return G1Arguments::is_heterogeneous_heap();
2465 }
2466 
2467 class PrintRegionClosure: public HeapRegionClosure {
2468   outputStream* _st;
2469 public:
2470   PrintRegionClosure(outputStream* st) : _st(st) {}
2471   bool do_heap_region(HeapRegion* r) {
2472     r->print_on(_st);
2473     return false;
2474   }
2475 };
2476 
2477 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2478                                        const HeapRegion* hr,
2479                                        const VerifyOption vo) const {
2480   switch (vo) {
2481   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2482   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2483   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2484   default:                            ShouldNotReachHere();
2485   }
2486   return false; // keep some compilers happy
2487 }
2488 
2489 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2490                                        const VerifyOption vo) const {
2491   switch (vo) {
2492   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2493   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2494   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2495   default:                            ShouldNotReachHere();
2496   }
2497   return false; // keep some compilers happy
2498 }
2499 
2500 void G1CollectedHeap::print_heap_regions() const {
2501   LogTarget(Trace, gc, heap, region) lt;
2502   if (lt.is_enabled()) {
2503     LogStream ls(lt);
2504     print_regions_on(&ls);
2505   }
2506 }
2507 
2508 void G1CollectedHeap::print_on(outputStream* st) const {
2509   st->print(" %-20s", "garbage-first heap");
2510   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2511             capacity()/K, used_unlocked()/K);
2512   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2513             p2i(_hrm->reserved().start()),
2514             p2i(_hrm->reserved().end()));
2515   st->cr();
2516   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2517   uint young_regions = young_regions_count();
2518   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2519             (size_t) young_regions * HeapRegion::GrainBytes / K);
2520   uint survivor_regions = survivor_regions_count();
2521   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2522             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2523   st->cr();
2524   if (_numa->is_enabled()) {
2525     uint num_nodes = _numa->num_active_nodes();
2526     st->print("  remaining free region(s) on each NUMA node: ");
2527     const int* node_ids = _numa->node_ids();
2528     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2529       st->print("%d=%u ", node_ids[node_index], _hrm->num_free_regions(node_index));
2530     }
2531     st->cr();
2532   }
2533   MetaspaceUtils::print_on(st);
2534 }
2535 
2536 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2537   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2538                "HS=humongous(starts), HC=humongous(continues), "
2539                "CS=collection set, F=free, "
2540                "OA=open archive, CA=closed archive, "
2541                "TAMS=top-at-mark-start (previous, next)");
2542   PrintRegionClosure blk(st);
2543   heap_region_iterate(&blk);
2544 }
2545 
2546 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2547   print_on(st);
2548 
2549   // Print the per-region information.
2550   print_regions_on(st);
2551 }
2552 
2553 void G1CollectedHeap::print_on_error(outputStream* st) const {
2554   this->CollectedHeap::print_on_error(st);
2555 
2556   if (_cm != NULL) {
2557     st->cr();
2558     _cm->print_on_error(st);
2559   }
2560 }
2561 
2562 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2563   workers()->print_worker_threads_on(st);
2564   _cm_thread->print_on(st);
2565   st->cr();
2566   _cm->print_worker_threads_on(st);
2567   _cr->print_threads_on(st);
2568   _young_gen_sampling_thread->print_on(st);
2569   if (G1StringDedup::is_enabled()) {
2570     G1StringDedup::print_worker_threads_on(st);
2571   }
2572 }
2573 
2574 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2575   workers()->threads_do(tc);
2576   tc->do_thread(_cm_thread);
2577   _cm->threads_do(tc);
2578   _cr->threads_do(tc);
2579   tc->do_thread(_young_gen_sampling_thread);
2580   if (G1StringDedup::is_enabled()) {
2581     G1StringDedup::threads_do(tc);
2582   }
2583 }
2584 
2585 void G1CollectedHeap::print_tracing_info() const {
2586   rem_set()->print_summary_info();
2587   concurrent_mark()->print_summary_info();
2588 }
2589 
2590 #ifndef PRODUCT
2591 // Helpful for debugging RSet issues.
2592 
2593 class PrintRSetsClosure : public HeapRegionClosure {
2594 private:
2595   const char* _msg;
2596   size_t _occupied_sum;
2597 
2598 public:
2599   bool do_heap_region(HeapRegion* r) {
2600     HeapRegionRemSet* hrrs = r->rem_set();
2601     size_t occupied = hrrs->occupied();
2602     _occupied_sum += occupied;
2603 
2604     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2605     if (occupied == 0) {
2606       tty->print_cr("  RSet is empty");
2607     } else {
2608       hrrs->print();
2609     }
2610     tty->print_cr("----------");
2611     return false;
2612   }
2613 
2614   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2615     tty->cr();
2616     tty->print_cr("========================================");
2617     tty->print_cr("%s", msg);
2618     tty->cr();
2619   }
2620 
2621   ~PrintRSetsClosure() {
2622     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2623     tty->print_cr("========================================");
2624     tty->cr();
2625   }
2626 };
2627 
2628 void G1CollectedHeap::print_cset_rsets() {
2629   PrintRSetsClosure cl("Printing CSet RSets");
2630   collection_set_iterate_all(&cl);
2631 }
2632 
2633 void G1CollectedHeap::print_all_rsets() {
2634   PrintRSetsClosure cl("Printing All RSets");;
2635   heap_region_iterate(&cl);
2636 }
2637 #endif // PRODUCT
2638 
2639 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2640   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2641 }
2642 
2643 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2644 
2645   size_t eden_used_bytes = _eden.used_bytes();
2646   size_t survivor_used_bytes = _survivor.used_bytes();
2647   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2648 
2649   size_t eden_capacity_bytes =
2650     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2651 
2652   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2653   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2654                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2655 }
2656 
2657 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2658   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2659                        stats->unused(), stats->used(), stats->region_end_waste(),
2660                        stats->regions_filled(), stats->direct_allocated(),
2661                        stats->failure_used(), stats->failure_waste());
2662 }
2663 
2664 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2665   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2666   gc_tracer->report_gc_heap_summary(when, heap_summary);
2667 
2668   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2669   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2670 }
2671 
2672 G1CollectedHeap* G1CollectedHeap::heap() {
2673   CollectedHeap* heap = Universe::heap();
2674   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2675   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2676   return (G1CollectedHeap*)heap;
2677 }
2678 
2679 void G1CollectedHeap::gc_prologue(bool full) {
2680   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2681 
2682   // This summary needs to be printed before incrementing total collections.
2683   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2684 
2685   // Update common counters.
2686   increment_total_collections(full /* full gc */);
2687   if (full || collector_state()->in_initial_mark_gc()) {
2688     increment_old_marking_cycles_started();
2689   }
2690 
2691   // Fill TLAB's and such
2692   {
2693     Ticks start = Ticks::now();
2694     ensure_parsability(true);
2695     Tickspan dt = Ticks::now() - start;
2696     phase_times()->record_prepare_tlab_time_ms(dt.seconds() * MILLIUNITS);
2697   }
2698 
2699   if (!full) {
2700     // Flush dirty card queues to qset, so later phases don't need to account
2701     // for partially filled per-thread queues and such.  Not needed for full
2702     // collections, which ignore those logs.
2703     Ticks start = Ticks::now();
2704     G1BarrierSet::dirty_card_queue_set().concatenate_logs();
2705     Tickspan dt = Ticks::now() - start;
2706     phase_times()->record_concatenate_dirty_card_logs_time_ms(dt.seconds() * MILLIUNITS);
2707   }
2708 }
2709 
2710 void G1CollectedHeap::gc_epilogue(bool full) {
2711   // Update common counters.
2712   if (full) {
2713     // Update the number of full collections that have been completed.
2714     increment_old_marking_cycles_completed(false /* concurrent */);
2715   }
2716 
2717   // We are at the end of the GC. Total collections has already been increased.
2718   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2719 
2720   // FIXME: what is this about?
2721   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2722   // is set.
2723 #if COMPILER2_OR_JVMCI
2724   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2725 #endif
2726 
2727   double start = os::elapsedTime();
2728   resize_all_tlabs();
2729   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2730 
2731   MemoryService::track_memory_usage();
2732   // We have just completed a GC. Update the soft reference
2733   // policy with the new heap occupancy
2734   Universe::update_heap_info_at_gc();
2735 
2736   // Print NUMA statistics.
2737   _numa->print_statistics();
2738 }
2739 
2740 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2741   LogTarget(Trace, gc, heap, verify) lt;
2742 
2743   if (lt.is_enabled()) {
2744     LogStream ls(lt);
2745     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2746     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2747     heap_region_iterate(&cl);
2748   }
2749 }
2750 
2751 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2752                                                uint gc_count_before,
2753                                                bool* succeeded,
2754                                                GCCause::Cause gc_cause) {
2755   assert_heap_not_locked_and_not_at_safepoint();
2756   VM_G1CollectForAllocation op(word_size,
2757                                gc_count_before,
2758                                gc_cause,
2759                                policy()->max_pause_time_ms());
2760   VMThread::execute(&op);
2761 
2762   HeapWord* result = op.result();
2763   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2764   assert(result == NULL || ret_succeeded,
2765          "the result should be NULL if the VM did not succeed");
2766   *succeeded = ret_succeeded;
2767 
2768   assert_heap_not_locked();
2769   return result;
2770 }
2771 
2772 void G1CollectedHeap::do_concurrent_mark() {
2773   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2774   if (!_cm_thread->in_progress()) {
2775     _cm_thread->set_started();
2776     CGC_lock->notify();
2777   }
2778 }
2779 
2780 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2781   // We don't nominate objects with many remembered set entries, on
2782   // the assumption that such objects are likely still live.
2783   HeapRegionRemSet* rem_set = r->rem_set();
2784 
2785   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2786          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2787          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2788 }
2789 
2790 #ifndef PRODUCT
2791 void G1CollectedHeap::verify_region_attr_remset_update() {
2792   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2793   public:
2794     virtual bool do_heap_region(HeapRegion* r) {
2795       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2796       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2797       assert(r->rem_set()->is_tracked() == needs_remset_update,
2798              "Region %u remset tracking status (%s) different to region attribute (%s)",
2799              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2800       return false;
2801     }
2802   } cl;
2803   heap_region_iterate(&cl);
2804 }
2805 #endif
2806 
2807 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2808   public:
2809     bool do_heap_region(HeapRegion* hr) {
2810       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2811         hr->verify_rem_set();
2812       }
2813       return false;
2814     }
2815 };
2816 
2817 uint G1CollectedHeap::num_task_queues() const {
2818   return _task_queues->size();
2819 }
2820 
2821 #if TASKQUEUE_STATS
2822 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2823   st->print_raw_cr("GC Task Stats");
2824   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2825   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2826 }
2827 
2828 void G1CollectedHeap::print_taskqueue_stats() const {
2829   if (!log_is_enabled(Trace, gc, task, stats)) {
2830     return;
2831   }
2832   Log(gc, task, stats) log;
2833   ResourceMark rm;
2834   LogStream ls(log.trace());
2835   outputStream* st = &ls;
2836 
2837   print_taskqueue_stats_hdr(st);
2838 
2839   TaskQueueStats totals;
2840   const uint n = num_task_queues();
2841   for (uint i = 0; i < n; ++i) {
2842     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2843     totals += task_queue(i)->stats;
2844   }
2845   st->print_raw("tot "); totals.print(st); st->cr();
2846 
2847   DEBUG_ONLY(totals.verify());
2848 }
2849 
2850 void G1CollectedHeap::reset_taskqueue_stats() {
2851   const uint n = num_task_queues();
2852   for (uint i = 0; i < n; ++i) {
2853     task_queue(i)->stats.reset();
2854   }
2855 }
2856 #endif // TASKQUEUE_STATS
2857 
2858 void G1CollectedHeap::wait_for_root_region_scanning() {
2859   double scan_wait_start = os::elapsedTime();
2860   // We have to wait until the CM threads finish scanning the
2861   // root regions as it's the only way to ensure that all the
2862   // objects on them have been correctly scanned before we start
2863   // moving them during the GC.
2864   bool waited = _cm->root_regions()->wait_until_scan_finished();
2865   double wait_time_ms = 0.0;
2866   if (waited) {
2867     double scan_wait_end = os::elapsedTime();
2868     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2869   }
2870   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2871 }
2872 
2873 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2874 private:
2875   G1HRPrinter* _hr_printer;
2876 public:
2877   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2878 
2879   virtual bool do_heap_region(HeapRegion* r) {
2880     _hr_printer->cset(r);
2881     return false;
2882   }
2883 };
2884 
2885 void G1CollectedHeap::start_new_collection_set() {
2886   double start = os::elapsedTime();
2887 
2888   collection_set()->start_incremental_building();
2889 
2890   clear_region_attr();
2891 
2892   guarantee(_eden.length() == 0, "eden should have been cleared");
2893   policy()->transfer_survivors_to_cset(survivor());
2894 
2895   // We redo the verification but now wrt to the new CSet which
2896   // has just got initialized after the previous CSet was freed.
2897   _cm->verify_no_collection_set_oops();
2898 
2899   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2900 }
2901 
2902 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2903 
2904   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2905   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2906                                             collection_set()->optional_region_length());
2907 
2908   _cm->verify_no_collection_set_oops();
2909 
2910   if (_hr_printer.is_active()) {
2911     G1PrintCollectionSetClosure cl(&_hr_printer);
2912     _collection_set.iterate(&cl);
2913     _collection_set.iterate_optional(&cl);
2914   }
2915 }
2916 
2917 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2918   if (collector_state()->in_initial_mark_gc()) {
2919     return G1HeapVerifier::G1VerifyConcurrentStart;
2920   } else if (collector_state()->in_young_only_phase()) {
2921     return G1HeapVerifier::G1VerifyYoungNormal;
2922   } else {
2923     return G1HeapVerifier::G1VerifyMixed;
2924   }
2925 }
2926 
2927 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2928   if (VerifyRememberedSets) {
2929     log_info(gc, verify)("[Verifying RemSets before GC]");
2930     VerifyRegionRemSetClosure v_cl;
2931     heap_region_iterate(&v_cl);
2932   }
2933   _verifier->verify_before_gc(type);
2934   _verifier->check_bitmaps("GC Start");
2935   verify_numa_regions("GC Start");
2936 }
2937 
2938 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2939   if (VerifyRememberedSets) {
2940     log_info(gc, verify)("[Verifying RemSets after GC]");
2941     VerifyRegionRemSetClosure v_cl;
2942     heap_region_iterate(&v_cl);
2943   }
2944   _verifier->verify_after_gc(type);
2945   _verifier->check_bitmaps("GC End");
2946   verify_numa_regions("GC End");
2947 }
2948 
2949 void G1CollectedHeap::expand_heap_after_young_collection(){
2950   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2951   if (expand_bytes > 0) {
2952     // No need for an ergo logging here,
2953     // expansion_amount() does this when it returns a value > 0.
2954     double expand_ms;
2955     if (!expand(expand_bytes, _workers, &expand_ms)) {
2956       // We failed to expand the heap. Cannot do anything about it.
2957     }
2958     phase_times()->record_expand_heap_time(expand_ms);
2959   }
2960 }
2961 
2962 const char* G1CollectedHeap::young_gc_name() const {
2963   if (collector_state()->in_initial_mark_gc()) {
2964     return "Pause Young (Concurrent Start)";
2965   } else if (collector_state()->in_young_only_phase()) {
2966     if (collector_state()->in_young_gc_before_mixed()) {
2967       return "Pause Young (Prepare Mixed)";
2968     } else {
2969       return "Pause Young (Normal)";
2970     }
2971   } else {
2972     return "Pause Young (Mixed)";
2973   }
2974 }
2975 
2976 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2977   assert_at_safepoint_on_vm_thread();
2978   guarantee(!is_gc_active(), "collection is not reentrant");
2979 
2980   if (GCLocker::check_active_before_gc()) {
2981     return false;
2982   }
2983 
2984   do_collection_pause_at_safepoint_helper(target_pause_time_ms);
2985   if (should_upgrade_to_full_gc(gc_cause())) {
2986     log_info(gc, ergo)("Attempting maximally compacting collection");
2987     bool result = do_full_collection(false /* explicit gc */,
2988                                      true /* clear_all_soft_refs */);
2989     // do_full_collection only fails if blocked by GC locker, but
2990     // we've already checked for that above.
2991     assert(result, "invariant");
2992   }
2993   return true;
2994 }
2995 
2996 void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) {
2997   GCIdMark gc_id_mark;
2998 
2999   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3000   ResourceMark rm;
3001 
3002   policy()->note_gc_start();
3003 
3004   _gc_timer_stw->register_gc_start();
3005   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3006 
3007   wait_for_root_region_scanning();
3008 
3009   print_heap_before_gc();
3010   print_heap_regions();
3011   trace_heap_before_gc(_gc_tracer_stw);
3012 
3013   _verifier->verify_region_sets_optional();
3014   _verifier->verify_dirty_young_regions();
3015 
3016   // We should not be doing initial mark unless the conc mark thread is running
3017   if (!_cm_thread->should_terminate()) {
3018     // This call will decide whether this pause is an initial-mark
3019     // pause. If it is, in_initial_mark_gc() will return true
3020     // for the duration of this pause.
3021     policy()->decide_on_conc_mark_initiation();
3022   }
3023 
3024   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3025   assert(!collector_state()->in_initial_mark_gc() ||
3026          collector_state()->in_young_only_phase(), "sanity");
3027   // We also do not allow mixed GCs during marking.
3028   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
3029 
3030   // Record whether this pause is an initial mark. When the current
3031   // thread has completed its logging output and it's safe to signal
3032   // the CM thread, the flag's value in the policy has been reset.
3033   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3034   if (should_start_conc_mark) {
3035     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3036   }
3037 
3038   // Inner scope for scope based logging, timers, and stats collection
3039   {
3040     G1EvacuationInfo evacuation_info;
3041 
3042     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3043 
3044     GCTraceCPUTime tcpu;
3045 
3046     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3047 
3048     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3049                                                             workers()->active_workers(),
3050                                                             Threads::number_of_non_daemon_threads());
3051     active_workers = workers()->update_active_workers(active_workers);
3052     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3053 
3054     G1MonitoringScope ms(g1mm(),
3055                          false /* full_gc */,
3056                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3057 
3058     G1HeapTransition heap_transition(this);
3059 
3060     {
3061       IsGCActiveMark x;
3062 
3063       gc_prologue(false);
3064 
3065       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3066       verify_before_young_collection(verify_type);
3067 
3068       {
3069         // The elapsed time induced by the start time below deliberately elides
3070         // the possible verification above.
3071         double sample_start_time_sec = os::elapsedTime();
3072 
3073         // Please see comment in g1CollectedHeap.hpp and
3074         // G1CollectedHeap::ref_processing_init() to see how
3075         // reference processing currently works in G1.
3076         _ref_processor_stw->enable_discovery();
3077 
3078         // We want to temporarily turn off discovery by the
3079         // CM ref processor, if necessary, and turn it back on
3080         // on again later if we do. Using a scoped
3081         // NoRefDiscovery object will do this.
3082         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3083 
3084         policy()->record_collection_pause_start(sample_start_time_sec);
3085 
3086         // Forget the current allocation region (we might even choose it to be part
3087         // of the collection set!).
3088         _allocator->release_mutator_alloc_regions();
3089 
3090         calculate_collection_set(evacuation_info, target_pause_time_ms);
3091 
3092         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3093         G1ParScanThreadStateSet per_thread_states(this,
3094                                                   &rdcqs,
3095                                                   workers()->active_workers(),
3096                                                   collection_set()->young_region_length(),
3097                                                   collection_set()->optional_region_length());
3098         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3099 
3100         // Actually do the work...
3101         evacuate_initial_collection_set(&per_thread_states);
3102 
3103         if (_collection_set.optional_region_length() != 0) {
3104           evacuate_optional_collection_set(&per_thread_states);
3105         }
3106         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3107 
3108         start_new_collection_set();
3109 
3110         _survivor_evac_stats.adjust_desired_plab_sz();
3111         _old_evac_stats.adjust_desired_plab_sz();
3112 
3113         if (should_start_conc_mark) {
3114           // We have to do this before we notify the CM threads that
3115           // they can start working to make sure that all the
3116           // appropriate initialization is done on the CM object.
3117           concurrent_mark()->post_initial_mark();
3118           // Note that we don't actually trigger the CM thread at
3119           // this point. We do that later when we're sure that
3120           // the current thread has completed its logging output.
3121         }
3122 
3123         allocate_dummy_regions();
3124 
3125         _allocator->init_mutator_alloc_regions();
3126 
3127         expand_heap_after_young_collection();
3128 
3129         double sample_end_time_sec = os::elapsedTime();
3130         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3131         policy()->record_collection_pause_end(pause_time_ms);
3132       }
3133 
3134       verify_after_young_collection(verify_type);
3135 
3136       gc_epilogue(false);
3137     }
3138 
3139     // Print the remainder of the GC log output.
3140     if (evacuation_failed()) {
3141       log_info(gc)("To-space exhausted");
3142     }
3143 
3144     policy()->print_phases();
3145     heap_transition.print();
3146 
3147     _hrm->verify_optional();
3148     _verifier->verify_region_sets_optional();
3149 
3150     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3151     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3152 
3153     print_heap_after_gc();
3154     print_heap_regions();
3155     trace_heap_after_gc(_gc_tracer_stw);
3156 
3157     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3158     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3159     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3160     // before any GC notifications are raised.
3161     g1mm()->update_sizes();
3162 
3163     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3164     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3165     _gc_timer_stw->register_gc_end();
3166     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3167   }
3168   // It should now be safe to tell the concurrent mark thread to start
3169   // without its logging output interfering with the logging output
3170   // that came from the pause.
3171 
3172   if (should_start_conc_mark) {
3173     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3174     // thread(s) could be running concurrently with us. Make sure that anything
3175     // after this point does not assume that we are the only GC thread running.
3176     // Note: of course, the actual marking work will not start until the safepoint
3177     // itself is released in SuspendibleThreadSet::desynchronize().
3178     do_concurrent_mark();
3179     ConcurrentGCBreakpoints::notify_idle_to_active();
3180   }
3181 }
3182 
3183 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3184   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3185   workers()->run_task(&rsfp_task);
3186 }
3187 
3188 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3189   double remove_self_forwards_start = os::elapsedTime();
3190 
3191   remove_self_forwarding_pointers(rdcqs);
3192   _preserved_marks_set.restore(workers());
3193 
3194   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3195 }
3196 
3197 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3198   if (!_evacuation_failed) {
3199     _evacuation_failed = true;
3200   }
3201 
3202   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3203   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3204 }
3205 
3206 bool G1ParEvacuateFollowersClosure::offer_termination() {
3207   EventGCPhaseParallel event;
3208   G1ParScanThreadState* const pss = par_scan_state();
3209   start_term_time();
3210   const bool res = terminator()->offer_termination();
3211   end_term_time();
3212   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3213   return res;
3214 }
3215 
3216 void G1ParEvacuateFollowersClosure::do_void() {
3217   EventGCPhaseParallel event;
3218   G1ParScanThreadState* const pss = par_scan_state();
3219   pss->trim_queue();
3220   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3221   do {
3222     EventGCPhaseParallel event;
3223     pss->steal_and_trim_queue(queues());
3224     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3225   } while (!offer_termination());
3226 }
3227 
3228 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3229                                         bool class_unloading_occurred) {
3230   uint num_workers = workers()->active_workers();
3231   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3232   workers()->run_task(&unlink_task);
3233 }
3234 
3235 // Clean string dedup data structures.
3236 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3237 // record the durations of the phases. Hence the almost-copy.
3238 class G1StringDedupCleaningTask : public AbstractGangTask {
3239   BoolObjectClosure* _is_alive;
3240   OopClosure* _keep_alive;
3241   G1GCPhaseTimes* _phase_times;
3242 
3243 public:
3244   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3245                             OopClosure* keep_alive,
3246                             G1GCPhaseTimes* phase_times) :
3247     AbstractGangTask("Partial Cleaning Task"),
3248     _is_alive(is_alive),
3249     _keep_alive(keep_alive),
3250     _phase_times(phase_times)
3251   {
3252     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3253     StringDedup::gc_prologue(true);
3254   }
3255 
3256   ~G1StringDedupCleaningTask() {
3257     StringDedup::gc_epilogue();
3258   }
3259 
3260   void work(uint worker_id) {
3261     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3262     {
3263       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3264       StringDedupQueue::unlink_or_oops_do(&cl);
3265     }
3266     {
3267       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3268       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3269     }
3270   }
3271 };
3272 
3273 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3274                                             OopClosure* keep_alive,
3275                                             G1GCPhaseTimes* phase_times) {
3276   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3277   workers()->run_task(&cl);
3278 }
3279 
3280 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3281  private:
3282   G1RedirtyCardsQueueSet* _qset;
3283   G1CollectedHeap* _g1h;
3284   BufferNode* volatile _nodes;
3285 
3286   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3287     size_t buffer_size = _qset->buffer_size();
3288     BufferNode* next = Atomic::load(&_nodes);
3289     while (next != NULL) {
3290       BufferNode* node = next;
3291       next = Atomic::cmpxchg(&_nodes, node, node->next());
3292       if (next == node) {
3293         cl->apply_to_buffer(node, buffer_size, worker_id);
3294         next = node->next();
3295       }
3296     }
3297   }
3298 
3299  public:
3300   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3301     AbstractGangTask("Redirty Cards"),
3302     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3303 
3304   virtual void work(uint worker_id) {
3305     G1GCPhaseTimes* p = _g1h->phase_times();
3306     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3307 
3308     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3309     par_apply(&cl, worker_id);
3310 
3311     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3312   }
3313 };
3314 
3315 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3316   double redirty_logged_cards_start = os::elapsedTime();
3317 
3318   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3319   workers()->run_task(&redirty_task);
3320 
3321   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3322   dcq.merge_bufferlists(rdcqs);
3323 
3324   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3325 }
3326 
3327 // Weak Reference Processing support
3328 
3329 bool G1STWIsAliveClosure::do_object_b(oop p) {
3330   // An object is reachable if it is outside the collection set,
3331   // or is inside and copied.
3332   return !_g1h->is_in_cset(p) || p->is_forwarded();
3333 }
3334 
3335 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3336   assert(obj != NULL, "must not be NULL");
3337   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3338   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3339   // may falsely indicate that this is not the case here: however the collection set only
3340   // contains old regions when concurrent mark is not running.
3341   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3342 }
3343 
3344 // Non Copying Keep Alive closure
3345 class G1KeepAliveClosure: public OopClosure {
3346   G1CollectedHeap*_g1h;
3347 public:
3348   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3349   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3350   void do_oop(oop* p) {
3351     oop obj = *p;
3352     assert(obj != NULL, "the caller should have filtered out NULL values");
3353 
3354     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3355     if (!region_attr.is_in_cset_or_humongous()) {
3356       return;
3357     }
3358     if (region_attr.is_in_cset()) {
3359       assert( obj->is_forwarded(), "invariant" );
3360       *p = obj->forwardee();
3361     } else {
3362       assert(!obj->is_forwarded(), "invariant" );
3363       assert(region_attr.is_humongous(),
3364              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3365      _g1h->set_humongous_is_live(obj);
3366     }
3367   }
3368 };
3369 
3370 // Copying Keep Alive closure - can be called from both
3371 // serial and parallel code as long as different worker
3372 // threads utilize different G1ParScanThreadState instances
3373 // and different queues.
3374 
3375 class G1CopyingKeepAliveClosure: public OopClosure {
3376   G1CollectedHeap*         _g1h;
3377   G1ParScanThreadState*    _par_scan_state;
3378 
3379 public:
3380   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3381                             G1ParScanThreadState* pss):
3382     _g1h(g1h),
3383     _par_scan_state(pss)
3384   {}
3385 
3386   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3387   virtual void do_oop(      oop* p) { do_oop_work(p); }
3388 
3389   template <class T> void do_oop_work(T* p) {
3390     oop obj = RawAccess<>::oop_load(p);
3391 
3392     if (_g1h->is_in_cset_or_humongous(obj)) {
3393       // If the referent object has been forwarded (either copied
3394       // to a new location or to itself in the event of an
3395       // evacuation failure) then we need to update the reference
3396       // field and, if both reference and referent are in the G1
3397       // heap, update the RSet for the referent.
3398       //
3399       // If the referent has not been forwarded then we have to keep
3400       // it alive by policy. Therefore we have copy the referent.
3401       //
3402       // When the queue is drained (after each phase of reference processing)
3403       // the object and it's followers will be copied, the reference field set
3404       // to point to the new location, and the RSet updated.
3405       _par_scan_state->push_on_queue(ScannerTask(p));
3406     }
3407   }
3408 };
3409 
3410 // Serial drain queue closure. Called as the 'complete_gc'
3411 // closure for each discovered list in some of the
3412 // reference processing phases.
3413 
3414 class G1STWDrainQueueClosure: public VoidClosure {
3415 protected:
3416   G1CollectedHeap* _g1h;
3417   G1ParScanThreadState* _par_scan_state;
3418 
3419   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3420 
3421 public:
3422   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3423     _g1h(g1h),
3424     _par_scan_state(pss)
3425   { }
3426 
3427   void do_void() {
3428     G1ParScanThreadState* const pss = par_scan_state();
3429     pss->trim_queue();
3430   }
3431 };
3432 
3433 // Parallel Reference Processing closures
3434 
3435 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3436 // processing during G1 evacuation pauses.
3437 
3438 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3439 private:
3440   G1CollectedHeap*          _g1h;
3441   G1ParScanThreadStateSet*  _pss;
3442   ScannerTasksQueueSet*     _queues;
3443   WorkGang*                 _workers;
3444 
3445 public:
3446   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3447                            G1ParScanThreadStateSet* per_thread_states,
3448                            WorkGang* workers,
3449                            ScannerTasksQueueSet *task_queues) :
3450     _g1h(g1h),
3451     _pss(per_thread_states),
3452     _queues(task_queues),
3453     _workers(workers)
3454   {
3455     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3456   }
3457 
3458   // Executes the given task using concurrent marking worker threads.
3459   virtual void execute(ProcessTask& task, uint ergo_workers);
3460 };
3461 
3462 // Gang task for possibly parallel reference processing
3463 
3464 class G1STWRefProcTaskProxy: public AbstractGangTask {
3465   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3466   ProcessTask&     _proc_task;
3467   G1CollectedHeap* _g1h;
3468   G1ParScanThreadStateSet* _pss;
3469   ScannerTasksQueueSet* _task_queues;
3470   TaskTerminator* _terminator;
3471 
3472 public:
3473   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3474                         G1CollectedHeap* g1h,
3475                         G1ParScanThreadStateSet* per_thread_states,
3476                         ScannerTasksQueueSet *task_queues,
3477                         TaskTerminator* terminator) :
3478     AbstractGangTask("Process reference objects in parallel"),
3479     _proc_task(proc_task),
3480     _g1h(g1h),
3481     _pss(per_thread_states),
3482     _task_queues(task_queues),
3483     _terminator(terminator)
3484   {}
3485 
3486   virtual void work(uint worker_id) {
3487     // The reference processing task executed by a single worker.
3488     ResourceMark rm;
3489     HandleMark   hm;
3490 
3491     G1STWIsAliveClosure is_alive(_g1h);
3492 
3493     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3494     pss->set_ref_discoverer(NULL);
3495 
3496     // Keep alive closure.
3497     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3498 
3499     // Complete GC closure
3500     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3501 
3502     // Call the reference processing task's work routine.
3503     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3504 
3505     // Note we cannot assert that the refs array is empty here as not all
3506     // of the processing tasks (specifically phase2 - pp2_work) execute
3507     // the complete_gc closure (which ordinarily would drain the queue) so
3508     // the queue may not be empty.
3509   }
3510 };
3511 
3512 // Driver routine for parallel reference processing.
3513 // Creates an instance of the ref processing gang
3514 // task and has the worker threads execute it.
3515 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3516   assert(_workers != NULL, "Need parallel worker threads.");
3517 
3518   assert(_workers->active_workers() >= ergo_workers,
3519          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3520          ergo_workers, _workers->active_workers());
3521   TaskTerminator terminator(ergo_workers, _queues);
3522   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3523 
3524   _workers->run_task(&proc_task_proxy, ergo_workers);
3525 }
3526 
3527 // End of weak reference support closures
3528 
3529 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3530   double ref_proc_start = os::elapsedTime();
3531 
3532   ReferenceProcessor* rp = _ref_processor_stw;
3533   assert(rp->discovery_enabled(), "should have been enabled");
3534 
3535   // Closure to test whether a referent is alive.
3536   G1STWIsAliveClosure is_alive(this);
3537 
3538   // Even when parallel reference processing is enabled, the processing
3539   // of JNI refs is serial and performed serially by the current thread
3540   // rather than by a worker. The following PSS will be used for processing
3541   // JNI refs.
3542 
3543   // Use only a single queue for this PSS.
3544   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3545   pss->set_ref_discoverer(NULL);
3546   assert(pss->queue_is_empty(), "pre-condition");
3547 
3548   // Keep alive closure.
3549   G1CopyingKeepAliveClosure keep_alive(this, pss);
3550 
3551   // Serial Complete GC closure
3552   G1STWDrainQueueClosure drain_queue(this, pss);
3553 
3554   // Setup the soft refs policy...
3555   rp->setup_policy(false);
3556 
3557   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3558 
3559   ReferenceProcessorStats stats;
3560   if (!rp->processing_is_mt()) {
3561     // Serial reference processing...
3562     stats = rp->process_discovered_references(&is_alive,
3563                                               &keep_alive,
3564                                               &drain_queue,
3565                                               NULL,
3566                                               pt);
3567   } else {
3568     uint no_of_gc_workers = workers()->active_workers();
3569 
3570     // Parallel reference processing
3571     assert(no_of_gc_workers <= rp->max_num_queues(),
3572            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3573            no_of_gc_workers,  rp->max_num_queues());
3574 
3575     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3576     stats = rp->process_discovered_references(&is_alive,
3577                                               &keep_alive,
3578                                               &drain_queue,
3579                                               &par_task_executor,
3580                                               pt);
3581   }
3582 
3583   _gc_tracer_stw->report_gc_reference_stats(stats);
3584 
3585   // We have completed copying any necessary live referent objects.
3586   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3587 
3588   make_pending_list_reachable();
3589 
3590   assert(!rp->discovery_enabled(), "Postcondition");
3591   rp->verify_no_references_recorded();
3592 
3593   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3594   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3595 }
3596 
3597 void G1CollectedHeap::make_pending_list_reachable() {
3598   if (collector_state()->in_initial_mark_gc()) {
3599     oop pll_head = Universe::reference_pending_list();
3600     if (pll_head != NULL) {
3601       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3602       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3603     }
3604   }
3605 }
3606 
3607 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3608   Ticks start = Ticks::now();
3609   per_thread_states->flush();
3610   phase_times()->record_or_add_time_secs(G1GCPhaseTimes::MergePSS, 0 /* worker_id */, (Ticks::now() - start).seconds());
3611 }
3612 
3613 class G1PrepareEvacuationTask : public AbstractGangTask {
3614   class G1PrepareRegionsClosure : public HeapRegionClosure {
3615     G1CollectedHeap* _g1h;
3616     G1PrepareEvacuationTask* _parent_task;
3617     size_t _worker_humongous_total;
3618     size_t _worker_humongous_candidates;
3619 
3620     bool humongous_region_is_candidate(HeapRegion* region) const {
3621       assert(region->is_starts_humongous(), "Must start a humongous object");
3622 
3623       oop obj = oop(region->bottom());
3624 
3625       // Dead objects cannot be eager reclaim candidates. Due to class
3626       // unloading it is unsafe to query their classes so we return early.
3627       if (_g1h->is_obj_dead(obj, region)) {
3628         return false;
3629       }
3630 
3631       // If we do not have a complete remembered set for the region, then we can
3632       // not be sure that we have all references to it.
3633       if (!region->rem_set()->is_complete()) {
3634         return false;
3635       }
3636       // Candidate selection must satisfy the following constraints
3637       // while concurrent marking is in progress:
3638       //
3639       // * In order to maintain SATB invariants, an object must not be
3640       // reclaimed if it was allocated before the start of marking and
3641       // has not had its references scanned.  Such an object must have
3642       // its references (including type metadata) scanned to ensure no
3643       // live objects are missed by the marking process.  Objects
3644       // allocated after the start of concurrent marking don't need to
3645       // be scanned.
3646       //
3647       // * An object must not be reclaimed if it is on the concurrent
3648       // mark stack.  Objects allocated after the start of concurrent
3649       // marking are never pushed on the mark stack.
3650       //
3651       // Nominating only objects allocated after the start of concurrent
3652       // marking is sufficient to meet both constraints.  This may miss
3653       // some objects that satisfy the constraints, but the marking data
3654       // structures don't support efficiently performing the needed
3655       // additional tests or scrubbing of the mark stack.
3656       //
3657       // However, we presently only nominate is_typeArray() objects.
3658       // A humongous object containing references induces remembered
3659       // set entries on other regions.  In order to reclaim such an
3660       // object, those remembered sets would need to be cleaned up.
3661       //
3662       // We also treat is_typeArray() objects specially, allowing them
3663       // to be reclaimed even if allocated before the start of
3664       // concurrent mark.  For this we rely on mark stack insertion to
3665       // exclude is_typeArray() objects, preventing reclaiming an object
3666       // that is in the mark stack.  We also rely on the metadata for
3667       // such objects to be built-in and so ensured to be kept live.
3668       // Frequent allocation and drop of large binary blobs is an
3669       // important use case for eager reclaim, and this special handling
3670       // may reduce needed headroom.
3671 
3672       return obj->is_typeArray() &&
3673              _g1h->is_potential_eager_reclaim_candidate(region);
3674     }
3675 
3676   public:
3677     G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
3678       _g1h(g1h),
3679       _parent_task(parent_task),
3680       _worker_humongous_total(0),
3681       _worker_humongous_candidates(0) { }
3682 
3683     ~G1PrepareRegionsClosure() {
3684       _parent_task->add_humongous_candidates(_worker_humongous_candidates);
3685       _parent_task->add_humongous_total(_worker_humongous_total);
3686     }
3687 
3688     virtual bool do_heap_region(HeapRegion* hr) {
3689       // First prepare the region for scanning
3690       _g1h->rem_set()->prepare_region_for_scan(hr);
3691 
3692       // Now check if region is a humongous candidate
3693       if (!hr->is_starts_humongous()) {
3694         _g1h->register_region_with_region_attr(hr);
3695         return false;
3696       }
3697 
3698       uint index = hr->hrm_index();
3699       if (humongous_region_is_candidate(hr)) {
3700         _g1h->set_humongous_reclaim_candidate(index, true);
3701         _g1h->register_humongous_region_with_region_attr(index);
3702         _worker_humongous_candidates++;
3703         // We will later handle the remembered sets of these regions.
3704       } else {
3705         _g1h->set_humongous_reclaim_candidate(index, false);
3706         _g1h->register_region_with_region_attr(hr);
3707       }
3708       _worker_humongous_total++;
3709 
3710       return false;
3711     }
3712   };
3713 
3714   G1CollectedHeap* _g1h;
3715   HeapRegionClaimer _claimer;
3716   volatile size_t _humongous_total;
3717   volatile size_t _humongous_candidates;
3718 public:
3719   G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
3720     AbstractGangTask("Prepare Evacuation"),
3721     _g1h(g1h),
3722     _claimer(_g1h->workers()->active_workers()),
3723     _humongous_total(0),
3724     _humongous_candidates(0) { }
3725 
3726   ~G1PrepareEvacuationTask() {
3727     _g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0);
3728   }
3729 
3730   void work(uint worker_id) {
3731     G1PrepareRegionsClosure cl(_g1h, this);
3732     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
3733   }
3734 
3735   void add_humongous_candidates(size_t candidates) {
3736     Atomic::add(&_humongous_candidates, candidates);
3737   }
3738 
3739   void add_humongous_total(size_t total) {
3740     Atomic::add(&_humongous_total, total);
3741   }
3742 
3743   size_t humongous_candidates() {
3744     return _humongous_candidates;
3745   }
3746 
3747   size_t humongous_total() {
3748     return _humongous_total;
3749   }
3750 };
3751 
3752 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3753   _bytes_used_during_gc = 0;
3754 
3755   _expand_heap_after_alloc_failure = true;
3756   _evacuation_failed = false;
3757 
3758   // Disable the hot card cache.
3759   _hot_card_cache->reset_hot_cache_claimed_index();
3760   _hot_card_cache->set_use_cache(false);
3761 
3762   // Initialize the GC alloc regions.
3763   _allocator->init_gc_alloc_regions(evacuation_info);
3764 
3765   {
3766     Ticks start = Ticks::now();
3767     rem_set()->prepare_for_scan_heap_roots();
3768     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3769   }
3770 
3771   {
3772     G1PrepareEvacuationTask g1_prep_task(this);
3773     Tickspan task_time = run_task(&g1_prep_task);
3774 
3775     phase_times()->record_register_regions(task_time.seconds() * 1000.0,
3776                                            g1_prep_task.humongous_total(),
3777                                            g1_prep_task.humongous_candidates());
3778   }
3779 
3780   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3781   _preserved_marks_set.assert_empty();
3782 
3783 #if COMPILER2_OR_JVMCI
3784   DerivedPointerTable::clear();
3785 #endif
3786 
3787   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3788   if (collector_state()->in_initial_mark_gc()) {
3789     concurrent_mark()->pre_initial_mark();
3790 
3791     double start_clear_claimed_marks = os::elapsedTime();
3792 
3793     ClassLoaderDataGraph::clear_claimed_marks();
3794 
3795     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3796     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3797   }
3798 
3799   // Should G1EvacuationFailureALot be in effect for this GC?
3800   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3801 }
3802 
3803 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3804 protected:
3805   G1CollectedHeap* _g1h;
3806   G1ParScanThreadStateSet* _per_thread_states;
3807   ScannerTasksQueueSet* _task_queues;
3808   TaskTerminator _terminator;
3809   uint _num_workers;
3810 
3811   void evacuate_live_objects(G1ParScanThreadState* pss,
3812                              uint worker_id,
3813                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3814                              G1GCPhaseTimes::GCParPhases termination_phase) {
3815     G1GCPhaseTimes* p = _g1h->phase_times();
3816 
3817     Ticks start = Ticks::now();
3818     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase);
3819     cl.do_void();
3820 
3821     assert(pss->queue_is_empty(), "should be empty");
3822 
3823     Tickspan evac_time = (Ticks::now() - start);
3824     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3825 
3826     if (termination_phase == G1GCPhaseTimes::Termination) {
3827       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3828       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3829     } else {
3830       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3831       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3832     }
3833     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3834   }
3835 
3836   virtual void start_work(uint worker_id) { }
3837 
3838   virtual void end_work(uint worker_id) { }
3839 
3840   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3841 
3842   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3843 
3844 public:
3845   G1EvacuateRegionsBaseTask(const char* name,
3846                             G1ParScanThreadStateSet* per_thread_states,
3847                             ScannerTasksQueueSet* task_queues,
3848                             uint num_workers) :
3849     AbstractGangTask(name),
3850     _g1h(G1CollectedHeap::heap()),
3851     _per_thread_states(per_thread_states),
3852     _task_queues(task_queues),
3853     _terminator(num_workers, _task_queues),
3854     _num_workers(num_workers)
3855   { }
3856 
3857   void work(uint worker_id) {
3858     start_work(worker_id);
3859 
3860     {
3861       ResourceMark rm;
3862       HandleMark   hm;
3863 
3864       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3865       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3866 
3867       scan_roots(pss, worker_id);
3868       evacuate_live_objects(pss, worker_id);
3869     }
3870 
3871     end_work(worker_id);
3872   }
3873 };
3874 
3875 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3876   G1RootProcessor* _root_processor;
3877 
3878   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3879     _root_processor->evacuate_roots(pss, worker_id);
3880     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3881     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3882   }
3883 
3884   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3885     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3886   }
3887 
3888   void start_work(uint worker_id) {
3889     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3890   }
3891 
3892   void end_work(uint worker_id) {
3893     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3894   }
3895 
3896 public:
3897   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3898                         G1ParScanThreadStateSet* per_thread_states,
3899                         ScannerTasksQueueSet* task_queues,
3900                         G1RootProcessor* root_processor,
3901                         uint num_workers) :
3902     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3903     _root_processor(root_processor)
3904   { }
3905 };
3906 
3907 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3908   G1GCPhaseTimes* p = phase_times();
3909 
3910   {
3911     Ticks start = Ticks::now();
3912     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3913     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3914   }
3915 
3916   Tickspan task_time;
3917   const uint num_workers = workers()->active_workers();
3918 
3919   Ticks start_processing = Ticks::now();
3920   {
3921     G1RootProcessor root_processor(this, num_workers);
3922     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3923     task_time = run_task(&g1_par_task);
3924     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3925     // To extract its code root fixup time we measure total time of this scope and
3926     // subtract from the time the WorkGang task took.
3927   }
3928   Tickspan total_processing = Ticks::now() - start_processing;
3929 
3930   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3931   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3932 }
3933 
3934 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3935 
3936   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3937     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3938     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3939   }
3940 
3941   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3942     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3943   }
3944 
3945 public:
3946   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3947                                 ScannerTasksQueueSet* queues,
3948                                 uint num_workers) :
3949     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3950   }
3951 };
3952 
3953 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3954   class G1MarkScope : public MarkScope { };
3955 
3956   Tickspan task_time;
3957 
3958   Ticks start_processing = Ticks::now();
3959   {
3960     G1MarkScope code_mark_scope;
3961     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3962     task_time = run_task(&task);
3963     // See comment in evacuate_collection_set() for the reason of the scope.
3964   }
3965   Tickspan total_processing = Ticks::now() - start_processing;
3966 
3967   G1GCPhaseTimes* p = phase_times();
3968   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3969 }
3970 
3971 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3972   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3973 
3974   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3975 
3976     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3977     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3978 
3979     if (time_left_ms < 0 ||
3980         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3981       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3982                                 _collection_set.optional_region_length(), time_left_ms);
3983       break;
3984     }
3985 
3986     {
3987       Ticks start = Ticks::now();
3988       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3989       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3990     }
3991 
3992     {
3993       Ticks start = Ticks::now();
3994       evacuate_next_optional_regions(per_thread_states);
3995       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3996     }
3997   }
3998 
3999   _collection_set.abandon_optional_collection_set(per_thread_states);
4000 }
4001 
4002 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
4003                                                    G1RedirtyCardsQueueSet* rdcqs,
4004                                                    G1ParScanThreadStateSet* per_thread_states) {
4005   G1GCPhaseTimes* p = phase_times();
4006 
4007   rem_set()->cleanup_after_scan_heap_roots();
4008 
4009   // Process any discovered reference objects - we have
4010   // to do this _before_ we retire the GC alloc regions
4011   // as we may have to copy some 'reachable' referent
4012   // objects (and their reachable sub-graphs) that were
4013   // not copied during the pause.
4014   process_discovered_references(per_thread_states);
4015 
4016   G1STWIsAliveClosure is_alive(this);
4017   G1KeepAliveClosure keep_alive(this);
4018 
4019   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times());
4020 
4021   if (G1StringDedup::is_enabled()) {
4022     double string_dedup_time_ms = os::elapsedTime();
4023 
4024     string_dedup_cleaning(&is_alive, &keep_alive, p);
4025 
4026     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
4027     p->record_string_deduplication_time(string_cleanup_time_ms);
4028   }
4029 
4030   _allocator->release_gc_alloc_regions(evacuation_info);
4031 
4032   if (evacuation_failed()) {
4033     restore_after_evac_failure(rdcqs);
4034 
4035     // Reset the G1EvacuationFailureALot counters and flags
4036     NOT_PRODUCT(reset_evacuation_should_fail();)
4037 
4038     double recalculate_used_start = os::elapsedTime();
4039     set_used(recalculate_used());
4040     p->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
4041 
4042     if (_archive_allocator != NULL) {
4043       _archive_allocator->clear_used();
4044     }
4045     for (uint i = 0; i < ParallelGCThreads; i++) {
4046       if (_evacuation_failed_info_array[i].has_failed()) {
4047         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4048       }
4049     }
4050   } else {
4051     // The "used" of the the collection set have already been subtracted
4052     // when they were freed.  Add in the bytes used.
4053     increase_used(_bytes_used_during_gc);
4054   }
4055 
4056   _preserved_marks_set.assert_empty();
4057 
4058   merge_per_thread_state_info(per_thread_states);
4059 
4060   // Reset and re-enable the hot card cache.
4061   // Note the counts for the cards in the regions in the
4062   // collection set are reset when the collection set is freed.
4063   _hot_card_cache->reset_hot_cache();
4064   _hot_card_cache->set_use_cache(true);
4065 
4066   purge_code_root_memory();
4067 
4068   redirty_logged_cards(rdcqs);
4069 
4070   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
4071 
4072   eagerly_reclaim_humongous_regions();
4073 
4074   record_obj_copy_mem_stats();
4075 
4076   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
4077   evacuation_info.set_bytes_used(_bytes_used_during_gc);
4078 
4079 #if COMPILER2_OR_JVMCI
4080   double start = os::elapsedTime();
4081   DerivedPointerTable::update_pointers();
4082   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4083 #endif
4084   policy()->print_age_table();
4085 }
4086 
4087 void G1CollectedHeap::record_obj_copy_mem_stats() {
4088   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4089 
4090   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4091                                                create_g1_evac_summary(&_old_evac_stats));
4092 }
4093 
4094 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
4095   assert(!hr->is_free(), "the region should not be free");
4096   assert(!hr->is_empty(), "the region should not be empty");
4097   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
4098 
4099   if (G1VerifyBitmaps) {
4100     MemRegion mr(hr->bottom(), hr->end());
4101     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4102   }
4103 
4104   // Clear the card counts for this region.
4105   // Note: we only need to do this if the region is not young
4106   // (since we don't refine cards in young regions).
4107   if (!hr->is_young()) {
4108     _hot_card_cache->reset_card_counts(hr);
4109   }
4110 
4111   // Reset region metadata to allow reuse.
4112   hr->hr_clear(true /* clear_space */);
4113   _policy->remset_tracker()->update_at_free(hr);
4114 
4115   if (free_list != NULL) {
4116     free_list->add_ordered(hr);
4117   }
4118 }
4119 
4120 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4121                                             FreeRegionList* free_list) {
4122   assert(hr->is_humongous(), "this is only for humongous regions");
4123   assert(free_list != NULL, "pre-condition");
4124   hr->clear_humongous();
4125   free_region(hr, free_list);
4126 }
4127 
4128 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4129                                            const uint humongous_regions_removed) {
4130   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4131     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4132     _old_set.bulk_remove(old_regions_removed);
4133     _humongous_set.bulk_remove(humongous_regions_removed);
4134   }
4135 
4136 }
4137 
4138 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4139   assert(list != NULL, "list can't be null");
4140   if (!list->is_empty()) {
4141     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4142     _hrm->insert_list_into_free_list(list);
4143   }
4144 }
4145 
4146 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4147   decrease_used(bytes);
4148 }
4149 
4150 class G1FreeCollectionSetTask : public AbstractGangTask {
4151   // Helper class to keep statistics for the collection set freeing
4152   class FreeCSetStats {
4153     size_t _before_used_bytes;   // Usage in regions successfully evacutate
4154     size_t _after_used_bytes;    // Usage in regions failing evacuation
4155     size_t _bytes_allocated_in_old_since_last_gc; // Size of young regions turned into old
4156     size_t _failure_used_words;  // Live size in failed regions
4157     size_t _failure_waste_words; // Wasted size in failed regions
4158     size_t _rs_length;           // Remembered set size
4159     uint _regions_freed;         // Number of regions freed
4160   public:
4161     FreeCSetStats() :
4162         _before_used_bytes(0),
4163         _after_used_bytes(0),
4164         _bytes_allocated_in_old_since_last_gc(0),
4165         _failure_used_words(0),
4166         _failure_waste_words(0),
4167         _rs_length(0),
4168         _regions_freed(0) { }
4169 
4170     void merge_stats(FreeCSetStats* other) {
4171       assert(other != NULL, "invariant");
4172       _before_used_bytes += other->_before_used_bytes;
4173       _after_used_bytes += other->_after_used_bytes;
4174       _bytes_allocated_in_old_since_last_gc += other->_bytes_allocated_in_old_since_last_gc;
4175       _failure_used_words += other->_failure_used_words;
4176       _failure_waste_words += other->_failure_waste_words;
4177       _rs_length += other->_rs_length;
4178       _regions_freed += other->_regions_freed;
4179     }
4180 
4181     void report(G1CollectedHeap* g1h, G1EvacuationInfo* evacuation_info) {
4182       evacuation_info->set_regions_freed(_regions_freed);
4183       evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4184 
4185       g1h->decrement_summary_bytes(_before_used_bytes);
4186       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4187 
4188       G1Policy *policy = g1h->policy();
4189       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4190       policy->record_rs_length(_rs_length);
4191       policy->cset_regions_freed();
4192     }
4193 
4194     void account_failed_region(HeapRegion* r) {
4195       size_t used_words = r->marked_bytes() / HeapWordSize;
4196       _failure_used_words += used_words;
4197       _failure_waste_words += HeapRegion::GrainWords - used_words;
4198       _after_used_bytes += r->used();
4199 
4200       // When moving a young gen region to old gen, we "allocate" that whole
4201       // region there. This is in addition to any already evacuated objects.
4202       // Notify the policy about that. Old gen regions do not cause an
4203       // additional allocation: both the objects still in the region and the
4204       // ones already moved are accounted for elsewhere.
4205       if (r->is_young()) {
4206         _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4207       }
4208     }
4209 
4210     void account_evacuated_region(HeapRegion* r) {
4211       _before_used_bytes += r->used();
4212       _regions_freed += 1;
4213     }
4214 
4215     void account_rs_length(HeapRegion* r) {
4216       _rs_length += r->rem_set()->occupied();
4217     }
4218   };
4219 
4220   // Closure applied to all regions in the collection set.
4221   class FreeCSetClosure : public HeapRegionClosure {
4222     // Helper to send JFR events for regions.
4223     class JFREventForRegion {
4224       EventGCPhaseParallel _event;
4225     public:
4226       JFREventForRegion(HeapRegion* region, uint worker_id) : _event() {
4227         _event.set_gcId(GCId::current());
4228         _event.set_gcWorkerId(worker_id);
4229         if (region->is_young()) {
4230           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4231         } else {
4232           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4233         }
4234       }
4235 
4236       ~JFREventForRegion() {
4237         _event.commit();
4238       }
4239     };
4240 
4241     // Helper to do timing for region work.
4242     class TimerForRegion {
4243       Tickspan& _time;
4244       Ticks     _start_time;
4245     public:
4246       TimerForRegion(Tickspan& time) : _time(time), _start_time(Ticks::now()) { }
4247       ~TimerForRegion() {
4248         _time += Ticks::now() - _start_time;
4249       }
4250     };
4251 
4252     // FreeCSetClosure members
4253     G1CollectedHeap* _g1h;
4254     const size_t*    _surviving_young_words;
4255     uint             _worker_id;
4256     Tickspan         _young_time;
4257     Tickspan         _non_young_time;
4258     FreeCSetStats*   _stats;
4259 
4260     void assert_in_cset(HeapRegion* r) {
4261       assert(r->young_index_in_cset() != 0 &&
4262              (uint)r->young_index_in_cset() <= _g1h->collection_set()->young_region_length(),
4263              "Young index %u is wrong for region %u of type %s with %u young regions",
4264              r->young_index_in_cset(), r->hrm_index(), r->get_type_str(), _g1h->collection_set()->young_region_length());
4265     }
4266 
4267     void handle_evacuated_region(HeapRegion* r) {
4268       assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4269       stats()->account_evacuated_region(r);
4270 
4271       // Free the region and and its remembered set.
4272       _g1h->free_region(r, NULL);
4273     }
4274 
4275     void handle_failed_region(HeapRegion* r) {
4276       // Do some allocation statistics accounting. Regions that failed evacuation
4277       // are always made old, so there is no need to update anything in the young
4278       // gen statistics, but we need to update old gen statistics.
4279       stats()->account_failed_region(r);
4280 
4281       // Update the region state due to the failed evacuation.
4282       r->handle_evacuation_failure();
4283 
4284       // Add region to old set, need to hold lock.
4285       MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4286       _g1h->old_set_add(r);
4287     }
4288 
4289     Tickspan& timer_for_region(HeapRegion* r) {
4290       return r->is_young() ? _young_time : _non_young_time;
4291     }
4292 
4293     FreeCSetStats* stats() {
4294       return _stats;
4295     }
4296   public:
4297     FreeCSetClosure(const size_t* surviving_young_words,
4298                     uint worker_id,
4299                     FreeCSetStats* stats) :
4300         HeapRegionClosure(),
4301         _g1h(G1CollectedHeap::heap()),
4302         _surviving_young_words(surviving_young_words),
4303         _worker_id(worker_id),
4304         _young_time(),
4305         _non_young_time(),
4306         _stats(stats) { }
4307 
4308     virtual bool do_heap_region(HeapRegion* r) {
4309       assert(r->in_collection_set(), "Invariant: %u missing from CSet", r->hrm_index());
4310       JFREventForRegion event(r, _worker_id);
4311       TimerForRegion timer(timer_for_region(r));
4312 
4313       _g1h->clear_region_attr(r);
4314       stats()->account_rs_length(r);
4315 
4316       if (r->is_young()) {
4317         assert_in_cset(r);
4318         r->record_surv_words_in_group(_surviving_young_words[r->young_index_in_cset()]);
4319       }
4320 
4321       if (r->evacuation_failed()) {
4322         handle_failed_region(r);
4323       } else {
4324         handle_evacuated_region(r);
4325       }
4326       assert(!_g1h->is_on_master_free_list(r), "sanity");
4327 
4328       return false;
4329     }
4330 
4331     void report_timing(Tickspan parallel_time) {
4332       G1GCPhaseTimes* pt = _g1h->phase_times();
4333       pt->record_time_secs(G1GCPhaseTimes::ParFreeCSet, _worker_id, parallel_time.seconds());
4334       if (_young_time.value() > 0) {
4335         pt->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, _worker_id, _young_time.seconds());
4336       }
4337       if (_non_young_time.value() > 0) {
4338         pt->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, _worker_id, _non_young_time.seconds());
4339       }
4340     }
4341   };
4342 
4343   // G1FreeCollectionSetTask members
4344   G1CollectedHeap*  _g1h;
4345   G1EvacuationInfo* _evacuation_info;
4346   FreeCSetStats*    _worker_stats;
4347   HeapRegionClaimer _claimer;
4348   const size_t*     _surviving_young_words;
4349   uint              _active_workers;
4350 
4351   FreeCSetStats* worker_stats(uint worker) {
4352     return &_worker_stats[worker];
4353   }
4354 
4355   void report_statistics() {
4356     // Merge the accounting
4357     FreeCSetStats total_stats;
4358     for (uint worker = 0; worker < _active_workers; worker++) {
4359       total_stats.merge_stats(worker_stats(worker));
4360     }
4361     total_stats.report(_g1h, _evacuation_info);
4362   }
4363 
4364 public:
4365   G1FreeCollectionSetTask(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words, uint active_workers) :
4366       AbstractGangTask("G1 Free Collection Set"),
4367       _g1h(G1CollectedHeap::heap()),
4368       _evacuation_info(evacuation_info),
4369       _worker_stats(NEW_C_HEAP_ARRAY(FreeCSetStats, active_workers, mtGC)),
4370       _claimer(active_workers),
4371       _surviving_young_words(surviving_young_words),
4372       _active_workers(active_workers) {
4373     for (uint worker = 0; worker < active_workers; worker++) {
4374       ::new (&_worker_stats[worker]) FreeCSetStats();
4375     }
4376   }
4377 
4378   ~G1FreeCollectionSetTask() {
4379     Ticks serial_time = Ticks::now();
4380     report_statistics();
4381     for (uint worker = 0; worker < _active_workers; worker++) {
4382       _worker_stats[worker].~FreeCSetStats();
4383     }
4384     FREE_C_HEAP_ARRAY(FreeCSetStats, _worker_stats);
4385     _g1h->phase_times()->record_serial_free_cset_time_ms((Ticks::now() - serial_time).seconds() * 1000.0);
4386   }
4387 
4388   virtual void work(uint worker_id) {
4389     EventGCPhaseParallel event;
4390     Ticks start = Ticks::now();
4391     FreeCSetClosure cl(_surviving_young_words, worker_id, worker_stats(worker_id));
4392     _g1h->collection_set_par_iterate_all(&cl, &_claimer, worker_id);
4393 
4394     // Report the total parallel time along with some more detailed metrics.
4395     cl.report_timing(Ticks::now() - start);
4396     event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ParFreeCSet));
4397   }
4398 };
4399 
4400 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4401   _eden.clear();
4402 
4403   // The free collections set is split up in two tasks, the first
4404   // frees the collection set and records what regions are free,
4405   // and the second one rebuilds the free list. This proved to be
4406   // more efficient than adding a sorted list to another.
4407 
4408   Ticks free_cset_start_time = Ticks::now();
4409   {
4410     uint const num_cs_regions = _collection_set.region_length();
4411     uint const num_workers = clamp(num_cs_regions, 1u, workers()->active_workers());
4412     G1FreeCollectionSetTask cl(&evacuation_info, surviving_young_words, num_workers);
4413 
4414     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u (%u)",
4415                         cl.name(), num_workers, num_cs_regions, num_regions());
4416     workers()->run_task(&cl, num_workers);
4417   }
4418 
4419   Ticks free_cset_end_time = Ticks::now();
4420   phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0);
4421 
4422   // Now rebuild the free region list.
4423   hrm()->rebuild_free_list(workers());
4424   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0);
4425 
4426   collection_set->clear();
4427 }
4428 
4429 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4430  private:
4431   FreeRegionList* _free_region_list;
4432   HeapRegionSet* _proxy_set;
4433   uint _humongous_objects_reclaimed;
4434   uint _humongous_regions_reclaimed;
4435   size_t _freed_bytes;
4436  public:
4437 
4438   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4439     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4440   }
4441 
4442   virtual bool do_heap_region(HeapRegion* r) {
4443     if (!r->is_starts_humongous()) {
4444       return false;
4445     }
4446 
4447     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4448 
4449     oop obj = (oop)r->bottom();
4450     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4451 
4452     // The following checks whether the humongous object is live are sufficient.
4453     // The main additional check (in addition to having a reference from the roots
4454     // or the young gen) is whether the humongous object has a remembered set entry.
4455     //
4456     // A humongous object cannot be live if there is no remembered set for it
4457     // because:
4458     // - there can be no references from within humongous starts regions referencing
4459     // the object because we never allocate other objects into them.
4460     // (I.e. there are no intra-region references that may be missed by the
4461     // remembered set)
4462     // - as soon there is a remembered set entry to the humongous starts region
4463     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4464     // until the end of a concurrent mark.
4465     //
4466     // It is not required to check whether the object has been found dead by marking
4467     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4468     // all objects allocated during that time are considered live.
4469     // SATB marking is even more conservative than the remembered set.
4470     // So if at this point in the collection there is no remembered set entry,
4471     // nobody has a reference to it.
4472     // At the start of collection we flush all refinement logs, and remembered sets
4473     // are completely up-to-date wrt to references to the humongous object.
4474     //
4475     // Other implementation considerations:
4476     // - never consider object arrays at this time because they would pose
4477     // considerable effort for cleaning up the the remembered sets. This is
4478     // required because stale remembered sets might reference locations that
4479     // are currently allocated into.
4480     uint region_idx = r->hrm_index();
4481     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4482         !r->rem_set()->is_empty()) {
4483       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4484                                region_idx,
4485                                (size_t)obj->size() * HeapWordSize,
4486                                p2i(r->bottom()),
4487                                r->rem_set()->occupied(),
4488                                r->rem_set()->strong_code_roots_list_length(),
4489                                next_bitmap->is_marked(r->bottom()),
4490                                g1h->is_humongous_reclaim_candidate(region_idx),
4491                                obj->is_typeArray()
4492                               );
4493       return false;
4494     }
4495 
4496     guarantee(obj->is_typeArray(),
4497               "Only eagerly reclaiming type arrays is supported, but the object "
4498               PTR_FORMAT " is not.", p2i(r->bottom()));
4499 
4500     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4501                              region_idx,
4502                              (size_t)obj->size() * HeapWordSize,
4503                              p2i(r->bottom()),
4504                              r->rem_set()->occupied(),
4505                              r->rem_set()->strong_code_roots_list_length(),
4506                              next_bitmap->is_marked(r->bottom()),
4507                              g1h->is_humongous_reclaim_candidate(region_idx),
4508                              obj->is_typeArray()
4509                             );
4510 
4511     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4512     cm->humongous_object_eagerly_reclaimed(r);
4513     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4514            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4515            region_idx,
4516            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4517            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4518     _humongous_objects_reclaimed++;
4519     do {
4520       HeapRegion* next = g1h->next_region_in_humongous(r);
4521       _freed_bytes += r->used();
4522       r->set_containing_set(NULL);
4523       _humongous_regions_reclaimed++;
4524       g1h->free_humongous_region(r, _free_region_list);
4525       r = next;
4526     } while (r != NULL);
4527 
4528     return false;
4529   }
4530 
4531   uint humongous_objects_reclaimed() {
4532     return _humongous_objects_reclaimed;
4533   }
4534 
4535   uint humongous_regions_reclaimed() {
4536     return _humongous_regions_reclaimed;
4537   }
4538 
4539   size_t bytes_freed() const {
4540     return _freed_bytes;
4541   }
4542 };
4543 
4544 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4545   assert_at_safepoint_on_vm_thread();
4546 
4547   if (!G1EagerReclaimHumongousObjects ||
4548       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4549     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4550     return;
4551   }
4552 
4553   double start_time = os::elapsedTime();
4554 
4555   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4556 
4557   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4558   heap_region_iterate(&cl);
4559 
4560   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4561 
4562   G1HRPrinter* hrp = hr_printer();
4563   if (hrp->is_active()) {
4564     FreeRegionListIterator iter(&local_cleanup_list);
4565     while (iter.more_available()) {
4566       HeapRegion* hr = iter.get_next();
4567       hrp->cleanup(hr);
4568     }
4569   }
4570 
4571   prepend_to_freelist(&local_cleanup_list);
4572   decrement_summary_bytes(cl.bytes_freed());
4573 
4574   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4575                                                        cl.humongous_objects_reclaimed());
4576 }
4577 
4578 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4579 public:
4580   virtual bool do_heap_region(HeapRegion* r) {
4581     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4582     G1CollectedHeap::heap()->clear_region_attr(r);
4583     r->clear_young_index_in_cset();
4584     return false;
4585   }
4586 };
4587 
4588 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4589   G1AbandonCollectionSetClosure cl;
4590   collection_set_iterate_all(&cl);
4591 
4592   collection_set->clear();
4593   collection_set->stop_incremental_building();
4594 }
4595 
4596 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4597   return _allocator->is_retained_old_region(hr);
4598 }
4599 
4600 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4601   _eden.add(hr);
4602   _policy->set_region_eden(hr);
4603 }
4604 
4605 #ifdef ASSERT
4606 
4607 class NoYoungRegionsClosure: public HeapRegionClosure {
4608 private:
4609   bool _success;
4610 public:
4611   NoYoungRegionsClosure() : _success(true) { }
4612   bool do_heap_region(HeapRegion* r) {
4613     if (r->is_young()) {
4614       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4615                             p2i(r->bottom()), p2i(r->end()));
4616       _success = false;
4617     }
4618     return false;
4619   }
4620   bool success() { return _success; }
4621 };
4622 
4623 bool G1CollectedHeap::check_young_list_empty() {
4624   bool ret = (young_regions_count() == 0);
4625 
4626   NoYoungRegionsClosure closure;
4627   heap_region_iterate(&closure);
4628   ret = ret && closure.success();
4629 
4630   return ret;
4631 }
4632 
4633 #endif // ASSERT
4634 
4635 class TearDownRegionSetsClosure : public HeapRegionClosure {
4636   HeapRegionSet *_old_set;
4637 
4638 public:
4639   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4640 
4641   bool do_heap_region(HeapRegion* r) {
4642     if (r->is_old()) {
4643       _old_set->remove(r);
4644     } else if(r->is_young()) {
4645       r->uninstall_surv_rate_group();
4646     } else {
4647       // We ignore free regions, we'll empty the free list afterwards.
4648       // We ignore humongous and archive regions, we're not tearing down these
4649       // sets.
4650       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4651              "it cannot be another type");
4652     }
4653     return false;
4654   }
4655 
4656   ~TearDownRegionSetsClosure() {
4657     assert(_old_set->is_empty(), "post-condition");
4658   }
4659 };
4660 
4661 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4662   assert_at_safepoint_on_vm_thread();
4663 
4664   if (!free_list_only) {
4665     TearDownRegionSetsClosure cl(&_old_set);
4666     heap_region_iterate(&cl);
4667 
4668     // Note that emptying the _young_list is postponed and instead done as
4669     // the first step when rebuilding the regions sets again. The reason for
4670     // this is that during a full GC string deduplication needs to know if
4671     // a collected region was young or old when the full GC was initiated.
4672   }
4673   _hrm->remove_all_free_regions();
4674 }
4675 
4676 void G1CollectedHeap::increase_used(size_t bytes) {
4677   _summary_bytes_used += bytes;
4678 }
4679 
4680 void G1CollectedHeap::decrease_used(size_t bytes) {
4681   assert(_summary_bytes_used >= bytes,
4682          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4683          _summary_bytes_used, bytes);
4684   _summary_bytes_used -= bytes;
4685 }
4686 
4687 void G1CollectedHeap::set_used(size_t bytes) {
4688   _summary_bytes_used = bytes;
4689 }
4690 
4691 class RebuildRegionSetsClosure : public HeapRegionClosure {
4692 private:
4693   bool _free_list_only;
4694 
4695   HeapRegionSet* _old_set;
4696   HeapRegionManager* _hrm;
4697 
4698   size_t _total_used;
4699 
4700 public:
4701   RebuildRegionSetsClosure(bool free_list_only,
4702                            HeapRegionSet* old_set,
4703                            HeapRegionManager* hrm) :
4704     _free_list_only(free_list_only),
4705     _old_set(old_set), _hrm(hrm), _total_used(0) {
4706     assert(_hrm->num_free_regions() == 0, "pre-condition");
4707     if (!free_list_only) {
4708       assert(_old_set->is_empty(), "pre-condition");
4709     }
4710   }
4711 
4712   bool do_heap_region(HeapRegion* r) {
4713     if (r->is_empty()) {
4714       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4715       // Add free regions to the free list
4716       r->set_free();
4717       _hrm->insert_into_free_list(r);
4718     } else if (!_free_list_only) {
4719       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4720 
4721       if (r->is_archive() || r->is_humongous()) {
4722         // We ignore archive and humongous regions. We left these sets unchanged.
4723       } else {
4724         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4725         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4726         r->move_to_old();
4727         _old_set->add(r);
4728       }
4729       _total_used += r->used();
4730     }
4731 
4732     return false;
4733   }
4734 
4735   size_t total_used() {
4736     return _total_used;
4737   }
4738 };
4739 
4740 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4741   assert_at_safepoint_on_vm_thread();
4742 
4743   if (!free_list_only) {
4744     _eden.clear();
4745     _survivor.clear();
4746   }
4747 
4748   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4749   heap_region_iterate(&cl);
4750 
4751   if (!free_list_only) {
4752     set_used(cl.total_used());
4753     if (_archive_allocator != NULL) {
4754       _archive_allocator->clear_used();
4755     }
4756   }
4757   assert_used_and_recalculate_used_equal(this);
4758 }
4759 
4760 // Methods for the mutator alloc region
4761 
4762 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4763                                                       bool force,
4764                                                       uint node_index) {
4765   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4766   bool should_allocate = policy()->should_allocate_mutator_region();
4767   if (force || should_allocate) {
4768     HeapRegion* new_alloc_region = new_region(word_size,
4769                                               HeapRegionType::Eden,
4770                                               false /* do_expand */,
4771                                               node_index);
4772     if (new_alloc_region != NULL) {
4773       set_region_short_lived_locked(new_alloc_region);
4774       _hr_printer.alloc(new_alloc_region, !should_allocate);
4775       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4776       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4777       return new_alloc_region;
4778     }
4779   }
4780   return NULL;
4781 }
4782 
4783 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4784                                                   size_t allocated_bytes) {
4785   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4786   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4787 
4788   collection_set()->add_eden_region(alloc_region);
4789   increase_used(allocated_bytes);
4790   _eden.add_used_bytes(allocated_bytes);
4791   _hr_printer.retire(alloc_region);
4792 
4793   // We update the eden sizes here, when the region is retired,
4794   // instead of when it's allocated, since this is the point that its
4795   // used space has been recorded in _summary_bytes_used.
4796   g1mm()->update_eden_size();
4797 }
4798 
4799 // Methods for the GC alloc regions
4800 
4801 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4802   if (dest.is_old()) {
4803     return true;
4804   } else {
4805     return survivor_regions_count() < policy()->max_survivor_regions();
4806   }
4807 }
4808 
4809 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4810   assert(FreeList_lock->owned_by_self(), "pre-condition");
4811 
4812   if (!has_more_regions(dest)) {
4813     return NULL;
4814   }
4815 
4816   HeapRegionType type;
4817   if (dest.is_young()) {
4818     type = HeapRegionType::Survivor;
4819   } else {
4820     type = HeapRegionType::Old;
4821   }
4822 
4823   HeapRegion* new_alloc_region = new_region(word_size,
4824                                             type,
4825                                             true /* do_expand */,
4826                                             node_index);
4827 
4828   if (new_alloc_region != NULL) {
4829     if (type.is_survivor()) {
4830       new_alloc_region->set_survivor();
4831       _survivor.add(new_alloc_region);
4832       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4833     } else {
4834       new_alloc_region->set_old();
4835       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4836     }
4837     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4838     register_region_with_region_attr(new_alloc_region);
4839     _hr_printer.alloc(new_alloc_region);
4840     return new_alloc_region;
4841   }
4842   return NULL;
4843 }
4844 
4845 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4846                                              size_t allocated_bytes,
4847                                              G1HeapRegionAttr dest) {
4848   _bytes_used_during_gc += allocated_bytes;
4849   if (dest.is_old()) {
4850     old_set_add(alloc_region);
4851   } else {
4852     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4853     _survivor.add_used_bytes(allocated_bytes);
4854   }
4855 
4856   bool const during_im = collector_state()->in_initial_mark_gc();
4857   if (during_im && allocated_bytes > 0) {
4858     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4859   }
4860   _hr_printer.retire(alloc_region);
4861 }
4862 
4863 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4864   bool expanded = false;
4865   uint index = _hrm->find_highest_free(&expanded);
4866 
4867   if (index != G1_NO_HRM_INDEX) {
4868     if (expanded) {
4869       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4870                                 HeapRegion::GrainWords * HeapWordSize);
4871     }
4872     return _hrm->allocate_free_regions_starting_at(index, 1);
4873   }
4874   return NULL;
4875 }
4876 
4877 // Optimized nmethod scanning
4878 
4879 class RegisterNMethodOopClosure: public OopClosure {
4880   G1CollectedHeap* _g1h;
4881   nmethod* _nm;
4882 
4883   template <class T> void do_oop_work(T* p) {
4884     T heap_oop = RawAccess<>::oop_load(p);
4885     if (!CompressedOops::is_null(heap_oop)) {
4886       oop obj = CompressedOops::decode_not_null(heap_oop);
4887       HeapRegion* hr = _g1h->heap_region_containing(obj);
4888       assert(!hr->is_continues_humongous(),
4889              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4890              " starting at " HR_FORMAT,
4891              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4892 
4893       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4894       hr->add_strong_code_root_locked(_nm);
4895     }
4896   }
4897 
4898 public:
4899   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4900     _g1h(g1h), _nm(nm) {}
4901 
4902   void do_oop(oop* p)       { do_oop_work(p); }
4903   void do_oop(narrowOop* p) { do_oop_work(p); }
4904 };
4905 
4906 class UnregisterNMethodOopClosure: public OopClosure {
4907   G1CollectedHeap* _g1h;
4908   nmethod* _nm;
4909 
4910   template <class T> void do_oop_work(T* p) {
4911     T heap_oop = RawAccess<>::oop_load(p);
4912     if (!CompressedOops::is_null(heap_oop)) {
4913       oop obj = CompressedOops::decode_not_null(heap_oop);
4914       HeapRegion* hr = _g1h->heap_region_containing(obj);
4915       assert(!hr->is_continues_humongous(),
4916              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4917              " starting at " HR_FORMAT,
4918              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4919 
4920       hr->remove_strong_code_root(_nm);
4921     }
4922   }
4923 
4924 public:
4925   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4926     _g1h(g1h), _nm(nm) {}
4927 
4928   void do_oop(oop* p)       { do_oop_work(p); }
4929   void do_oop(narrowOop* p) { do_oop_work(p); }
4930 };
4931 
4932 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4933   guarantee(nm != NULL, "sanity");
4934   RegisterNMethodOopClosure reg_cl(this, nm);
4935   nm->oops_do(&reg_cl);
4936 }
4937 
4938 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4939   guarantee(nm != NULL, "sanity");
4940   UnregisterNMethodOopClosure reg_cl(this, nm);
4941   nm->oops_do(&reg_cl, true);
4942 }
4943 
4944 void G1CollectedHeap::purge_code_root_memory() {
4945   double purge_start = os::elapsedTime();
4946   G1CodeRootSet::purge();
4947   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4948   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4949 }
4950 
4951 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4952   G1CollectedHeap* _g1h;
4953 
4954 public:
4955   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4956     _g1h(g1h) {}
4957 
4958   void do_code_blob(CodeBlob* cb) {
4959     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4960     if (nm == NULL) {
4961       return;
4962     }
4963 
4964     _g1h->register_nmethod(nm);
4965   }
4966 };
4967 
4968 void G1CollectedHeap::rebuild_strong_code_roots() {
4969   RebuildStrongCodeRootClosure blob_cl(this);
4970   CodeCache::blobs_do(&blob_cl);
4971 }
4972 
4973 void G1CollectedHeap::initialize_serviceability() {
4974   _g1mm->initialize_serviceability();
4975 }
4976 
4977 MemoryUsage G1CollectedHeap::memory_usage() {
4978   return _g1mm->memory_usage();
4979 }
4980 
4981 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4982   return _g1mm->memory_managers();
4983 }
4984 
4985 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4986   return _g1mm->memory_pools();
4987 }