1 /*
   2  * Copyright (c) 1997, 2008, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 import java.io.*;
  28 
  29 /**
  30  * Hash table based implementation of the <tt>Map</tt> interface.  This
  31  * implementation provides all of the optional map operations, and permits
  32  * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
  33  * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
  34  * unsynchronized and permits nulls.)  This class makes no guarantees as to
  35  * the order of the map; in particular, it does not guarantee that the order
  36  * will remain constant over time.
  37  *
  38  * <p>This implementation provides constant-time performance for the basic
  39  * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
  40  * disperses the elements properly among the buckets.  Iteration over
  41  * collection views requires time proportional to the "capacity" of the
  42  * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
  43  * of key-value mappings).  Thus, it's very important not to set the initial
  44  * capacity too high (or the load factor too low) if iteration performance is
  45  * important.
  46  *
  47  * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
  48  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
  49  * <i>capacity</i> is the number of buckets in the hash table, and the initial
  50  * capacity is simply the capacity at the time the hash table is created.  The
  51  * <i>load factor</i> is a measure of how full the hash table is allowed to
  52  * get before its capacity is automatically increased.  When the number of
  53  * entries in the hash table exceeds the product of the load factor and the
  54  * current capacity, the hash table is <i>rehashed</i> (that is, internal data
  55  * structures are rebuilt) so that the hash table has approximately twice the
  56  * number of buckets.
  57  *
  58  * <p>As a general rule, the default load factor (.75) offers a good tradeoff
  59  * between time and space costs.  Higher values decrease the space overhead
  60  * but increase the lookup cost (reflected in most of the operations of the
  61  * <tt>HashMap</tt> class, including <tt>get</tt> and <tt>put</tt>).  The
  62  * expected number of entries in the map and its load factor should be taken
  63  * into account when setting its initial capacity, so as to minimize the
  64  * number of rehash operations.  If the initial capacity is greater
  65  * than the maximum number of entries divided by the load factor, no
  66  * rehash operations will ever occur.
  67  *
  68  * <p>If many mappings are to be stored in a <tt>HashMap</tt> instance,
  69  * creating it with a sufficiently large capacity will allow the mappings to
  70  * be stored more efficiently than letting it perform automatic rehashing as
  71  * needed to grow the table.
  72  *
  73  * <p><strong>Note that this implementation is not synchronized.</strong>
  74  * If multiple threads access a hash map concurrently, and at least one of
  75  * the threads modifies the map structurally, it <i>must</i> be
  76  * synchronized externally.  (A structural modification is any operation
  77  * that adds or deletes one or more mappings; merely changing the value
  78  * associated with a key that an instance already contains is not a
  79  * structural modification.)  This is typically accomplished by
  80  * synchronizing on some object that naturally encapsulates the map.
  81  *
  82  * If no such object exists, the map should be "wrapped" using the
  83  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  84  * method.  This is best done at creation time, to prevent accidental
  85  * unsynchronized access to the map:<pre>
  86  *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
  87  *
  88  * <p>The iterators returned by all of this class's "collection view methods"
  89  * are <i>fail-fast</i>: if the map is structurally modified at any time after
  90  * the iterator is created, in any way except through the iterator's own
  91  * <tt>remove</tt> method, the iterator will throw a
  92  * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
  93  * modification, the iterator fails quickly and cleanly, rather than risking
  94  * arbitrary, non-deterministic behavior at an undetermined time in the
  95  * future.
  96  *
  97  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  98  * as it is, generally speaking, impossible to make any hard guarantees in the
  99  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 100  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 101  * Therefore, it would be wrong to write a program that depended on this
 102  * exception for its correctness: <i>the fail-fast behavior of iterators
 103  * should be used only to detect bugs.</i>
 104  *
 105  * <p>This class is a member of the
 106  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 107  * Java Collections Framework</a>.
 108  *
 109  * @param <K> the type of keys maintained by this map
 110  * @param <V> the type of mapped values
 111  *
 112  * @author  Doug Lea
 113  * @author  Josh Bloch
 114  * @author  Arthur van Hoff
 115  * @author  Neal Gafter
 116  * @see     Object#hashCode()
 117  * @see     Collection
 118  * @see     Map
 119  * @see     TreeMap
 120  * @see     Hashtable
 121  * @since   1.2
 122  */
 123 
 124 public class HashMap<K,V>
 125     extends AbstractMap<K,V>
 126     implements Map<K,V>, Cloneable, Serializable
 127 {
 128 
 129     /**
 130      * The default initial capacity - MUST be a power of two.
 131      */
 132     static final int DEFAULT_INITIAL_CAPACITY = 16;
 133 
 134     /**
 135      * The maximum capacity, used if a higher value is implicitly specified
 136      * by either of the constructors with arguments.
 137      * MUST be a power of two <= 1<<30.
 138      */
 139     static final int MAXIMUM_CAPACITY = 1 << 30;
 140 
 141     /**
 142      * The load factor used when none specified in constructor.
 143      */
 144     static final float DEFAULT_LOAD_FACTOR = 0.75f;
 145 
 146     /**
 147      * The table, resized as necessary. Length MUST Always be a power of two.
 148      */
 149     transient Entry[] table;
 150 
 151     /**
 152      * The number of key-value mappings contained in this map.
 153      */
 154     transient int size;
 155 
 156     /**
 157      * The next size value at which to resize (capacity * load factor).
 158      * @serial
 159      */
 160     int threshold;
 161 
 162     /**
 163      * The load factor for the hash table.
 164      *
 165      * @serial
 166      */
 167     final float loadFactor;
 168 
 169     /**
 170      * The number of times this HashMap has been structurally modified
 171      * Structural modifications are those that change the number of mappings in
 172      * the HashMap or otherwise modify its internal structure (e.g.,
 173      * rehash).  This field is used to make iterators on Collection-views of
 174      * the HashMap fail-fast.  (See ConcurrentModificationException).
 175      */
 176     transient int modCount;
 177 
 178     /**
 179      * Constructs an empty <tt>HashMap</tt> with the specified initial
 180      * capacity and load factor.
 181      *
 182      * @param  initialCapacity the initial capacity
 183      * @param  loadFactor      the load factor
 184      * @throws IllegalArgumentException if the initial capacity is negative
 185      *         or the load factor is nonpositive
 186      */
 187     public HashMap(int initialCapacity, float loadFactor) {
 188         if (initialCapacity < 0)
 189             throw new IllegalArgumentException("Illegal initial capacity: " +
 190                                                initialCapacity);
 191         if (initialCapacity > MAXIMUM_CAPACITY)
 192             initialCapacity = MAXIMUM_CAPACITY;
 193         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 194             throw new IllegalArgumentException("Illegal load factor: " +
 195                                                loadFactor);
 196 
 197         // Find a power of 2 >= initialCapacity
 198         int capacity = 1;
 199         while (capacity < initialCapacity)
 200             capacity <<= 1;
 201 
 202         this.loadFactor = loadFactor;
 203         threshold = (int)(capacity * loadFactor);
 204         table = new Entry[capacity];
 205         init();
 206     }
 207 
 208     /**
 209      * Constructs an empty <tt>HashMap</tt> with the specified initial
 210      * capacity and the default load factor (0.75).
 211      *
 212      * @param  initialCapacity the initial capacity.
 213      * @throws IllegalArgumentException if the initial capacity is negative.
 214      */
 215     public HashMap(int initialCapacity) {
 216         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 217     }
 218 
 219     /**
 220      * Constructs an empty <tt>HashMap</tt> with the default initial capacity
 221      * (16) and the default load factor (0.75).
 222      */
 223     public HashMap() {
 224         this.loadFactor = DEFAULT_LOAD_FACTOR;
 225         threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
 226         table = new Entry[DEFAULT_INITIAL_CAPACITY];
 227         init();
 228     }
 229 
 230     /**
 231      * Constructs a new <tt>HashMap</tt> with the same mappings as the
 232      * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
 233      * default load factor (0.75) and an initial capacity sufficient to
 234      * hold the mappings in the specified <tt>Map</tt>.
 235      *
 236      * @param   m the map whose mappings are to be placed in this map
 237      * @throws  NullPointerException if the specified map is null
 238      */
 239     public HashMap(Map<? extends K, ? extends V> m) {
 240         this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
 241                       DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
 242         putAllForCreate(m);
 243     }
 244 
 245     // internal utilities
 246 
 247     /**
 248      * Initialization hook for subclasses. This method is called
 249      * in all constructors and pseudo-constructors (clone, readObject)
 250      * after HashMap has been initialized but before any entries have
 251      * been inserted.  (In the absence of this method, readObject would
 252      * require explicit knowledge of subclasses.)
 253      */
 254     void init() {
 255     }
 256 
 257     /**
 258      * Applies a supplemental hash function to a given hashCode, which
 259      * defends against poor quality hash functions.  This is critical
 260      * because HashMap uses power-of-two length hash tables, that
 261      * otherwise encounter collisions for hashCodes that do not differ
 262      * in lower bits. Note: Null keys always map to hash 0, thus index 0.
 263      */
 264     static int hash(int h) {
 265         // This function ensures that hashCodes that differ only by
 266         // constant multiples at each bit position have a bounded
 267         // number of collisions (approximately 8 at default load factor).
 268         h ^= (h >>> 20) ^ (h >>> 12);
 269         return h ^ (h >>> 7) ^ (h >>> 4);
 270     }
 271 
 272     /**
 273      * Returns index for hash code h.
 274      */
 275     static int indexFor(int h, int length) {
 276         return h & (length-1);
 277     }
 278 
 279     /**
 280      * Returns the number of key-value mappings in this map.
 281      *
 282      * @return the number of key-value mappings in this map
 283      */
 284     public int size() {
 285         return size;
 286     }
 287 
 288     /**
 289      * Returns <tt>true</tt> if this map contains no key-value mappings.
 290      *
 291      * @return <tt>true</tt> if this map contains no key-value mappings
 292      */
 293     public boolean isEmpty() {
 294         return size == 0;
 295     }
 296 
 297     /**
 298      * Returns the value to which the specified key is mapped,
 299      * or {@code null} if this map contains no mapping for the key.
 300      *
 301      * <p>More formally, if this map contains a mapping from a key
 302      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 303      * key.equals(k))}, then this method returns {@code v}; otherwise
 304      * it returns {@code null}.  (There can be at most one such mapping.)
 305      *
 306      * <p>A return value of {@code null} does not <i>necessarily</i>
 307      * indicate that the map contains no mapping for the key; it's also
 308      * possible that the map explicitly maps the key to {@code null}.
 309      * The {@link #containsKey containsKey} operation may be used to
 310      * distinguish these two cases.
 311      *
 312      * @see #put(Object, Object)
 313      */
 314     public V get(Object key) {
 315         if (key == null)
 316             return getForNullKey();
 317         int hash = hash(key.hashCode());
 318         for (Entry<K,V> e = table[indexFor(hash, table.length)];
 319              e != null;
 320              e = e.next) {
 321             Object k;
 322             if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
 323                 return e.value;
 324         }
 325         return null;
 326     }
 327 
 328     /**
 329      * Offloaded version of get() to look up null keys.  Null keys map
 330      * to index 0.  This null case is split out into separate methods
 331      * for the sake of performance in the two most commonly used
 332      * operations (get and put), but incorporated with conditionals in
 333      * others.
 334      */
 335     private V getForNullKey() {
 336         for (Entry<K,V> e = table[0]; e != null; e = e.next) {
 337             if (e.key == null)
 338                 return e.value;
 339         }
 340         return null;
 341     }
 342 
 343     /**
 344      * Returns <tt>true</tt> if this map contains a mapping for the
 345      * specified key.
 346      *
 347      * @param   key   The key whose presence in this map is to be tested
 348      * @return <tt>true</tt> if this map contains a mapping for the specified
 349      * key.
 350      */
 351     public boolean containsKey(Object key) {
 352         return getEntry(key) != null;
 353     }
 354 
 355     /**
 356      * Returns the entry associated with the specified key in the
 357      * HashMap.  Returns null if the HashMap contains no mapping
 358      * for the key.
 359      */
 360     final Entry<K,V> getEntry(Object key) {
 361         int hash = (key == null) ? 0 : hash(key.hashCode());
 362         for (Entry<K,V> e = table[indexFor(hash, table.length)];
 363              e != null;
 364              e = e.next) {
 365             Object k;
 366             if (e.hash == hash &&
 367                 ((k = e.key) == key || (key != null && key.equals(k))))
 368                 return e;
 369         }
 370         return null;
 371     }
 372 
 373 
 374     /**
 375      * Associates the specified value with the specified key in this map.
 376      * If the map previously contained a mapping for the key, the old
 377      * value is replaced.
 378      *
 379      * @param key key with which the specified value is to be associated
 380      * @param value value to be associated with the specified key
 381      * @return the previous value associated with <tt>key</tt>, or
 382      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 383      *         (A <tt>null</tt> return can also indicate that the map
 384      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 385      */
 386     public V put(K key, V value) {
 387         if (key == null)
 388             return putForNullKey(value);
 389         int hash = hash(key.hashCode());
 390         int i = indexFor(hash, table.length);
 391         for (Entry<K,V> e = table[i]; e != null; e = e.next) {
 392             Object k;
 393             if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
 394                 V oldValue = e.value;
 395                 e.value = value;
 396                 e.recordAccess(this);
 397                 return oldValue;
 398             }
 399         }
 400 
 401         modCount++;
 402         addEntry(hash, key, value, i);
 403         return null;
 404     }
 405 
 406     /**
 407      * Offloaded version of put for null keys
 408      */
 409     private V putForNullKey(V value) {
 410         for (Entry<K,V> e = table[0]; e != null; e = e.next) {
 411             if (e.key == null) {
 412                 V oldValue = e.value;
 413                 e.value = value;
 414                 e.recordAccess(this);
 415                 return oldValue;
 416             }
 417         }
 418         modCount++;
 419         addEntry(0, null, value, 0);
 420         return null;
 421     }
 422 
 423     /**
 424      * This method is used instead of put by constructors and
 425      * pseudoconstructors (clone, readObject).  It does not resize the table,
 426      * check for comodification, etc.  It calls createEntry rather than
 427      * addEntry.
 428      */
 429     private void putForCreate(K key, V value) {
 430         int hash = (key == null) ? 0 : hash(key.hashCode());
 431         int i = indexFor(hash, table.length);
 432 
 433         /**
 434          * Look for preexisting entry for key.  This will never happen for
 435          * clone or deserialize.  It will only happen for construction if the
 436          * input Map is a sorted map whose ordering is inconsistent w/ equals.
 437          */
 438         for (Entry<K,V> e = table[i]; e != null; e = e.next) {
 439             Object k;
 440             if (e.hash == hash &&
 441                 ((k = e.key) == key || (key != null && key.equals(k)))) {
 442                 e.value = value;
 443                 return;
 444             }
 445         }
 446 
 447         createEntry(hash, key, value, i);
 448     }
 449 
 450     private void putAllForCreate(Map<? extends K, ? extends V> m) {
 451         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
 452             putForCreate(e.getKey(), e.getValue());
 453     }
 454 
 455     /**
 456      * Rehashes the contents of this map into a new array with a
 457      * larger capacity.  This method is called automatically when the
 458      * number of keys in this map reaches its threshold.
 459      *
 460      * If current capacity is MAXIMUM_CAPACITY, this method does not
 461      * resize the map, but sets threshold to Integer.MAX_VALUE.
 462      * This has the effect of preventing future calls.
 463      *
 464      * @param newCapacity the new capacity, MUST be a power of two;
 465      *        must be greater than current capacity unless current
 466      *        capacity is MAXIMUM_CAPACITY (in which case value
 467      *        is irrelevant).
 468      */
 469     void resize(int newCapacity) {
 470         Entry[] oldTable = table;
 471         int oldCapacity = oldTable.length;
 472         if (oldCapacity == MAXIMUM_CAPACITY) {
 473             threshold = Integer.MAX_VALUE;
 474             return;
 475         }
 476 
 477         Entry[] newTable = new Entry[newCapacity];
 478         transfer(newTable);
 479         table = newTable;
 480         threshold = (int)(newCapacity * loadFactor);
 481     }
 482 
 483     /**
 484      * Transfers all entries from current table to newTable.
 485      */
 486     void transfer(Entry[] newTable) {
 487         Entry[] src = table;
 488         int newCapacity = newTable.length;
 489         for (int j = 0; j < src.length; j++) {
 490             Entry<K,V> e = src[j];
 491             if (e != null) {
 492                 src[j] = null;
 493                 do {
 494                     Entry<K,V> next = e.next;
 495                     int i = indexFor(e.hash, newCapacity);
 496                     e.next = newTable[i];
 497                     newTable[i] = e;
 498                     e = next;
 499                 } while (e != null);
 500             }
 501         }
 502     }
 503 
 504     /**
 505      * Copies all of the mappings from the specified map to this map.
 506      * These mappings will replace any mappings that this map had for
 507      * any of the keys currently in the specified map.
 508      *
 509      * @param m mappings to be stored in this map
 510      * @throws NullPointerException if the specified map is null
 511      */
 512     public void putAll(Map<? extends K, ? extends V> m) {
 513         int numKeysToBeAdded = m.size();
 514         if (numKeysToBeAdded == 0)
 515             return;
 516 
 517         /*
 518          * Expand the map if the map if the number of mappings to be added
 519          * is greater than or equal to threshold.  This is conservative; the
 520          * obvious condition is (m.size() + size) >= threshold, but this
 521          * condition could result in a map with twice the appropriate capacity,
 522          * if the keys to be added overlap with the keys already in this map.
 523          * By using the conservative calculation, we subject ourself
 524          * to at most one extra resize.
 525          */
 526         if (numKeysToBeAdded > threshold) {
 527             int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
 528             if (targetCapacity > MAXIMUM_CAPACITY)
 529                 targetCapacity = MAXIMUM_CAPACITY;
 530             int newCapacity = table.length;
 531             while (newCapacity < targetCapacity)
 532                 newCapacity <<= 1;
 533             if (newCapacity > table.length)
 534                 resize(newCapacity);
 535         }
 536 
 537         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
 538             put(e.getKey(), e.getValue());
 539     }
 540 
 541     /**
 542      * Removes the mapping for the specified key from this map if present.
 543      *
 544      * @param  key key whose mapping is to be removed from the map
 545      * @return the previous value associated with <tt>key</tt>, or
 546      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 547      *         (A <tt>null</tt> return can also indicate that the map
 548      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 549      */
 550     public V remove(Object key) {
 551         Entry<K,V> e = removeEntryForKey(key);
 552         return (e == null ? null : e.value);
 553     }
 554 
 555     /**
 556      * Removes and returns the entry associated with the specified key
 557      * in the HashMap.  Returns null if the HashMap contains no mapping
 558      * for this key.
 559      */
 560     final Entry<K,V> removeEntryForKey(Object key) {
 561         int hash = (key == null) ? 0 : hash(key.hashCode());
 562         int i = indexFor(hash, table.length);
 563         Entry<K,V> prev = table[i];
 564         Entry<K,V> e = prev;
 565 
 566         while (e != null) {
 567             Entry<K,V> next = e.next;
 568             Object k;
 569             if (e.hash == hash &&
 570                 ((k = e.key) == key || (key != null && key.equals(k)))) {
 571                 modCount++;
 572                 size--;
 573                 if (prev == e)
 574                     table[i] = next;
 575                 else
 576                     prev.next = next;
 577                 e.recordRemoval(this);
 578                 return e;
 579             }
 580             prev = e;
 581             e = next;
 582         }
 583 
 584         return e;
 585     }
 586 
 587     /**
 588      * Special version of remove for EntrySet.
 589      */
 590     final Entry<K,V> removeMapping(Object o) {
 591         if (!(o instanceof Map.Entry))
 592             return null;
 593 
 594         Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
 595         Object key = entry.getKey();
 596         int hash = (key == null) ? 0 : hash(key.hashCode());
 597         int i = indexFor(hash, table.length);
 598         Entry<K,V> prev = table[i];
 599         Entry<K,V> e = prev;
 600 
 601         while (e != null) {
 602             Entry<K,V> next = e.next;
 603             if (e.hash == hash && e.equals(entry)) {
 604                 modCount++;
 605                 size--;
 606                 if (prev == e)
 607                     table[i] = next;
 608                 else
 609                     prev.next = next;
 610                 e.recordRemoval(this);
 611                 return e;
 612             }
 613             prev = e;
 614             e = next;
 615         }
 616 
 617         return e;
 618     }
 619 
 620     /**
 621      * Removes all of the mappings from this map.
 622      * The map will be empty after this call returns.
 623      */
 624     public void clear() {
 625         modCount++;
 626         Entry[] tab = table;
 627         for (int i = 0; i < tab.length; i++)
 628             tab[i] = null;
 629         size = 0;
 630     }
 631 
 632     /**
 633      * Returns <tt>true</tt> if this map maps one or more keys to the
 634      * specified value.
 635      *
 636      * @param value value whose presence in this map is to be tested
 637      * @return <tt>true</tt> if this map maps one or more keys to the
 638      *         specified value
 639      */
 640     public boolean containsValue(Object value) {
 641         if (value == null)
 642             return containsNullValue();
 643 
 644         Entry[] tab = table;
 645         for (int i = 0; i < tab.length ; i++)
 646             for (Entry e = tab[i] ; e != null ; e = e.next)
 647                 if (value.equals(e.value))
 648                     return true;
 649         return false;
 650     }
 651 
 652     /**
 653      * Special-case code for containsValue with null argument
 654      */
 655     private boolean containsNullValue() {
 656         Entry[] tab = table;
 657         for (int i = 0; i < tab.length ; i++)
 658             for (Entry e = tab[i] ; e != null ; e = e.next)
 659                 if (e.value == null)
 660                     return true;
 661         return false;
 662     }
 663 
 664     /**
 665      * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
 666      * values themselves are not cloned.
 667      *
 668      * @return a shallow copy of this map
 669      */
 670     public Object clone() {
 671         HashMap<K,V> result = null;
 672         try {
 673             result = (HashMap<K,V>)super.clone();
 674         } catch (CloneNotSupportedException e) {
 675             // assert false;
 676         }
 677         result.table = new Entry[table.length];
 678         result.entrySet = null;
 679         result.modCount = 0;
 680         result.size = 0;
 681         result.init();
 682         result.putAllForCreate(this);
 683 
 684         return result;
 685     }
 686 
 687     static class Entry<K,V> implements Map.Entry<K,V> {
 688         final K key;
 689         V value;
 690         Entry<K,V> next;
 691         final int hash;
 692 
 693         /**
 694          * Creates new entry.
 695          */
 696         Entry(int h, K k, V v, Entry<K,V> n) {
 697             value = v;
 698             next = n;
 699             key = k;
 700             hash = h;
 701         }
 702 
 703         public final K getKey() {
 704             return key;
 705         }
 706 
 707         public final V getValue() {
 708             return value;
 709         }
 710 
 711         public final V setValue(V newValue) {
 712             V oldValue = value;
 713             value = newValue;
 714             return oldValue;
 715         }
 716 
 717         public final boolean equals(Object o) {
 718             if (!(o instanceof Map.Entry))
 719                 return false;
 720             Map.Entry e = (Map.Entry)o;
 721             Object k1 = getKey();
 722             Object k2 = e.getKey();
 723             if (k1 == k2 || (k1 != null && k1.equals(k2))) {
 724                 Object v1 = getValue();
 725                 Object v2 = e.getValue();
 726                 if (v1 == v2 || (v1 != null && v1.equals(v2)))
 727                     return true;
 728             }
 729             return false;
 730         }
 731 
 732         public final int hashCode() {
 733             return (key==null   ? 0 : key.hashCode()) ^
 734                    (value==null ? 0 : value.hashCode());
 735         }
 736 
 737         public final String toString() {
 738             return getKey() + "=" + getValue();
 739         }
 740 
 741         /**
 742          * This method is invoked whenever the value in an entry is
 743          * overwritten by an invocation of put(k,v) for a key k that's already
 744          * in the HashMap.
 745          */
 746         void recordAccess(HashMap<K,V> m) {
 747         }
 748 
 749         /**
 750          * This method is invoked whenever the entry is
 751          * removed from the table.
 752          */
 753         void recordRemoval(HashMap<K,V> m) {
 754         }
 755     }
 756 
 757     /**
 758      * Adds a new entry with the specified key, value and hash code to
 759      * the specified bucket.  It is the responsibility of this
 760      * method to resize the table if appropriate.
 761      *
 762      * Subclass overrides this to alter the behavior of put method.
 763      */
 764     void addEntry(int hash, K key, V value, int bucketIndex) {
 765         Entry<K,V> e = table[bucketIndex];
 766         table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
 767         if (size++ >= threshold)
 768             resize(2 * table.length);
 769     }
 770 
 771     /**
 772      * Like addEntry except that this version is used when creating entries
 773      * as part of Map construction or "pseudo-construction" (cloning,
 774      * deserialization).  This version needn't worry about resizing the table.
 775      *
 776      * Subclass overrides this to alter the behavior of HashMap(Map),
 777      * clone, and readObject.
 778      */
 779     void createEntry(int hash, K key, V value, int bucketIndex) {
 780         Entry<K,V> e = table[bucketIndex];
 781         table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
 782         size++;
 783     }
 784 
 785     private abstract class HashIterator<E> implements Iterator<E> {
 786         Entry<K,V> next;        // next entry to return
 787         int expectedModCount;   // For fast-fail
 788         int index;              // current slot
 789         Entry<K,V> current;     // current entry
 790 
 791         HashIterator() {
 792             expectedModCount = modCount;
 793             if (size > 0) { // advance to first entry
 794                 Entry[] t = table;
 795                 while (index < t.length && (next = t[index++]) == null)
 796                     ;
 797             }
 798         }
 799 
 800         public final boolean hasNext() {
 801             return next != null;
 802         }
 803 
 804         final Entry<K,V> nextEntry() {
 805             if (modCount != expectedModCount)
 806                 throw new ConcurrentModificationException();
 807             Entry<K,V> e = next;
 808             if (e == null)
 809                 throw new NoSuchElementException();
 810 
 811             if ((next = e.next) == null) {
 812                 Entry[] t = table;
 813                 while (index < t.length && (next = t[index++]) == null)
 814                     ;
 815             }
 816             current = e;
 817             return e;
 818         }
 819 
 820         public void remove() {
 821             if (current == null)
 822                 throw new IllegalStateException();
 823             if (modCount != expectedModCount)
 824                 throw new ConcurrentModificationException();
 825             Object k = current.key;
 826             current = null;
 827             HashMap.this.removeEntryForKey(k);
 828             expectedModCount = modCount;
 829         }
 830 
 831     }
 832 
 833     private final class ValueIterator extends HashIterator<V> {
 834         public V next() {
 835             return nextEntry().value;
 836         }
 837     }
 838 
 839     private final class KeyIterator extends HashIterator<K> {
 840         public K next() {
 841             return nextEntry().getKey();
 842         }
 843     }
 844 
 845     private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
 846         public Map.Entry<K,V> next() {
 847             return nextEntry();
 848         }
 849     }
 850 
 851     // Subclass overrides these to alter behavior of views' iterator() method
 852     Iterator<K> newKeyIterator()   {
 853         return new KeyIterator();
 854     }
 855     Iterator<V> newValueIterator()   {
 856         return new ValueIterator();
 857     }
 858     Iterator<Map.Entry<K,V>> newEntryIterator()   {
 859         return new EntryIterator();
 860     }
 861 
 862 
 863     // Views
 864 
 865     private transient Set<Map.Entry<K,V>> entrySet = null;
 866 
 867     /**
 868      * Returns a {@link Set} view of the keys contained in this map.
 869      * The set is backed by the map, so changes to the map are
 870      * reflected in the set, and vice-versa.  If the map is modified
 871      * while an iteration over the set is in progress (except through
 872      * the iterator's own <tt>remove</tt> operation), the results of
 873      * the iteration are undefined.  The set supports element removal,
 874      * which removes the corresponding mapping from the map, via the
 875      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 876      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 877      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
 878      * operations.
 879      */
 880     public Set<K> keySet() {
 881         Set<K> ks = keySet;
 882         return (ks != null ? ks : (keySet = new KeySet()));
 883     }
 884 
 885     private final class KeySet extends AbstractSet<K> {
 886         public Iterator<K> iterator() {
 887             return newKeyIterator();
 888         }
 889         public int size() {
 890             return size;
 891         }
 892         public boolean contains(Object o) {
 893             return containsKey(o);
 894         }
 895         public boolean remove(Object o) {
 896             return HashMap.this.removeEntryForKey(o) != null;
 897         }
 898         public void clear() {
 899             HashMap.this.clear();
 900         }
 901     }
 902 
 903     /**
 904      * Returns a {@link Collection} view of the values contained in this map.
 905      * The collection is backed by the map, so changes to the map are
 906      * reflected in the collection, and vice-versa.  If the map is
 907      * modified while an iteration over the collection is in progress
 908      * (except through the iterator's own <tt>remove</tt> operation),
 909      * the results of the iteration are undefined.  The collection
 910      * supports element removal, which removes the corresponding
 911      * mapping from the map, via the <tt>Iterator.remove</tt>,
 912      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 913      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
 914      * support the <tt>add</tt> or <tt>addAll</tt> operations.
 915      */
 916     public Collection<V> values() {
 917         Collection<V> vs = values;
 918         return (vs != null ? vs : (values = new Values()));
 919     }
 920 
 921     private final class Values extends AbstractCollection<V> {
 922         public Iterator<V> iterator() {
 923             return newValueIterator();
 924         }
 925         public int size() {
 926             return size;
 927         }
 928         public boolean contains(Object o) {
 929             return containsValue(o);
 930         }
 931         public void clear() {
 932             HashMap.this.clear();
 933         }
 934     }
 935 
 936     /**
 937      * Returns a {@link Set} view of the mappings contained in this map.
 938      * The set is backed by the map, so changes to the map are
 939      * reflected in the set, and vice-versa.  If the map is modified
 940      * while an iteration over the set is in progress (except through
 941      * the iterator's own <tt>remove</tt> operation, or through the
 942      * <tt>setValue</tt> operation on a map entry returned by the
 943      * iterator) the results of the iteration are undefined.  The set
 944      * supports element removal, which removes the corresponding
 945      * mapping from the map, via the <tt>Iterator.remove</tt>,
 946      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
 947      * <tt>clear</tt> operations.  It does not support the
 948      * <tt>add</tt> or <tt>addAll</tt> operations.
 949      *
 950      * @return a set view of the mappings contained in this map
 951      */
 952     public Set<Map.Entry<K,V>> entrySet() {
 953         return entrySet0();
 954     }
 955 
 956     private Set<Map.Entry<K,V>> entrySet0() {
 957         Set<Map.Entry<K,V>> es = entrySet;
 958         return es != null ? es : (entrySet = new EntrySet());
 959     }
 960 
 961     private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
 962         public Iterator<Map.Entry<K,V>> iterator() {
 963             return newEntryIterator();
 964         }
 965         public boolean contains(Object o) {
 966             if (!(o instanceof Map.Entry))
 967                 return false;
 968             Map.Entry<K,V> e = (Map.Entry<K,V>) o;
 969             Entry<K,V> candidate = getEntry(e.getKey());
 970             return candidate != null && candidate.equals(e);
 971         }
 972         public boolean remove(Object o) {
 973             return removeMapping(o) != null;
 974         }
 975         public int size() {
 976             return size;
 977         }
 978         public void clear() {
 979             HashMap.this.clear();
 980         }
 981     }
 982 
 983     /**
 984      * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
 985      * serialize it).
 986      *
 987      * @serialData The <i>capacity</i> of the HashMap (the length of the
 988      *             bucket array) is emitted (int), followed by the
 989      *             <i>size</i> (an int, the number of key-value
 990      *             mappings), followed by the key (Object) and value (Object)
 991      *             for each key-value mapping.  The key-value mappings are
 992      *             emitted in no particular order.
 993      */
 994     private void writeObject(java.io.ObjectOutputStream s)
 995         throws IOException
 996     {
 997         Iterator<Map.Entry<K,V>> i =
 998             (size > 0) ? entrySet0().iterator() : null;
 999 
1000         // Write out the threshold, loadfactor, and any hidden stuff
1001         s.defaultWriteObject();
1002 
1003         // Write out number of buckets
1004         s.writeInt(table.length);
1005 
1006         // Write out size (number of Mappings)
1007         s.writeInt(size);
1008 
1009         // Write out keys and values (alternating)
1010         if (i != null) {
1011             while (i.hasNext()) {
1012                 Map.Entry<K,V> e = i.next();
1013                 s.writeObject(e.getKey());
1014                 s.writeObject(e.getValue());
1015             }
1016         }
1017     }
1018 
1019     private static final long serialVersionUID = 362498820763181265L;
1020 
1021     /**
1022      * Reconstitute the <tt>HashMap</tt> instance from a stream (i.e.,
1023      * deserialize it).
1024      */
1025     private void readObject(java.io.ObjectInputStream s)
1026          throws IOException, ClassNotFoundException
1027     {
1028         // Read in the threshold, loadfactor, and any hidden stuff
1029         s.defaultReadObject();
1030 
1031         // Read in number of buckets and allocate the bucket array;
1032         int numBuckets = s.readInt();
1033         table = new Entry[numBuckets];
1034 
1035         init();  // Give subclass a chance to do its thing.
1036 
1037         // Read in size (number of Mappings)
1038         int size = s.readInt();
1039 
1040         // Read the keys and values, and put the mappings in the HashMap
1041         for (int i=0; i<size; i++) {
1042             K key = (K) s.readObject();
1043             V value = (V) s.readObject();
1044             putForCreate(key, value);
1045         }
1046     }
1047 
1048     // These methods are used when serializing HashSets
1049     int   capacity()     { return table.length; }
1050     float loadFactor()   { return loadFactor;   }
1051 }