1 /*
   2  * Copyright (c) 1997, 2008, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 /**
  29  * A Red-Black tree based {@link NavigableMap} implementation.
  30  * The map is sorted according to the {@linkplain Comparable natural
  31  * ordering} of its keys, or by a {@link Comparator} provided at map
  32  * creation time, depending on which constructor is used.
  33  *
  34  * <p>This implementation provides guaranteed log(n) time cost for the
  35  * {@code containsKey}, {@code get}, {@code put} and {@code remove}
  36  * operations.  Algorithms are adaptations of those in Cormen, Leiserson, and
  37  * Rivest's <em>Introduction to Algorithms</em>.
  38  *
  39  * <p>Note that the ordering maintained by a tree map, like any sorted map, and
  40  * whether or not an explicit comparator is provided, must be <em>consistent
  41  * with {@code equals}</em> if this sorted map is to correctly implement the
  42  * {@code Map} interface.  (See {@code Comparable} or {@code Comparator} for a
  43  * precise definition of <em>consistent with equals</em>.)  This is so because
  44  * the {@code Map} interface is defined in terms of the {@code equals}
  45  * operation, but a sorted map performs all key comparisons using its {@code
  46  * compareTo} (or {@code compare}) method, so two keys that are deemed equal by
  47  * this method are, from the standpoint of the sorted map, equal.  The behavior
  48  * of a sorted map <em>is</em> well-defined even if its ordering is
  49  * inconsistent with {@code equals}; it just fails to obey the general contract
  50  * of the {@code Map} interface.
  51  *
  52  * <p><strong>Note that this implementation is not synchronized.</strong>
  53  * If multiple threads access a map concurrently, and at least one of the
  54  * threads modifies the map structurally, it <em>must</em> be synchronized
  55  * externally.  (A structural modification is any operation that adds or
  56  * deletes one or more mappings; merely changing the value associated
  57  * with an existing key is not a structural modification.)  This is
  58  * typically accomplished by synchronizing on some object that naturally
  59  * encapsulates the map.
  60  * If no such object exists, the map should be "wrapped" using the
  61  * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
  62  * method.  This is best done at creation time, to prevent accidental
  63  * unsynchronized access to the map: <pre>
  64  *   SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
  65  *
  66  * <p>The iterators returned by the {@code iterator} method of the collections
  67  * returned by all of this class's "collection view methods" are
  68  * <em>fail-fast</em>: if the map is structurally modified at any time after
  69  * the iterator is created, in any way except through the iterator's own
  70  * {@code remove} method, the iterator will throw a {@link
  71  * ConcurrentModificationException}.  Thus, in the face of concurrent
  72  * modification, the iterator fails quickly and cleanly, rather than risking
  73  * arbitrary, non-deterministic behavior at an undetermined time in the future.
  74  *
  75  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  76  * as it is, generally speaking, impossible to make any hard guarantees in the
  77  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  78  * throw {@code ConcurrentModificationException} on a best-effort basis.
  79  * Therefore, it would be wrong to write a program that depended on this
  80  * exception for its correctness:   <em>the fail-fast behavior of iterators
  81  * should be used only to detect bugs.</em>
  82  *
  83  * <p>All {@code Map.Entry} pairs returned by methods in this class
  84  * and its views represent snapshots of mappings at the time they were
  85  * produced. They do <strong>not</strong> support the {@code Entry.setValue}
  86  * method. (Note however that it is possible to change mappings in the
  87  * associated map using {@code put}.)
  88  *
  89  * <p>This class is a member of the
  90  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
  91  * Java Collections Framework</a>.
  92  *
  93  * @param <K> the type of keys maintained by this map
  94  * @param <V> the type of mapped values
  95  *
  96  * @author  Josh Bloch and Doug Lea
  97  * @see Map
  98  * @see HashMap
  99  * @see Hashtable
 100  * @see Comparable
 101  * @see Comparator
 102  * @see Collection
 103  * @since 1.2
 104  */
 105 
 106 public class TreeMap<K,V>
 107     extends AbstractMap<K,V>
 108     implements NavigableMap<K,V>, Cloneable, java.io.Serializable
 109 {
 110     /**
 111      * The comparator used to maintain order in this tree map, or
 112      * null if it uses the natural ordering of its keys.
 113      *
 114      * @serial
 115      */
 116     private final Comparator<? super K> comparator;
 117 
 118     private transient Entry<K,V> root = null;
 119 
 120     /**
 121      * The number of entries in the tree
 122      */
 123     private transient int size = 0;
 124 
 125     /**
 126      * The number of structural modifications to the tree.
 127      */
 128     private transient int modCount = 0;
 129 
 130     /**
 131      * Constructs a new, empty tree map, using the natural ordering of its
 132      * keys.  All keys inserted into the map must implement the {@link
 133      * Comparable} interface.  Furthermore, all such keys must be
 134      * <em>mutually comparable</em>: {@code k1.compareTo(k2)} must not throw
 135      * a {@code ClassCastException} for any keys {@code k1} and
 136      * {@code k2} in the map.  If the user attempts to put a key into the
 137      * map that violates this constraint (for example, the user attempts to
 138      * put a string key into a map whose keys are integers), the
 139      * {@code put(Object key, Object value)} call will throw a
 140      * {@code ClassCastException}.
 141      */
 142     public TreeMap() {
 143         comparator = null;
 144     }
 145 
 146     /**
 147      * Constructs a new, empty tree map, ordered according to the given
 148      * comparator.  All keys inserted into the map must be <em>mutually
 149      * comparable</em> by the given comparator: {@code comparator.compare(k1,
 150      * k2)} must not throw a {@code ClassCastException} for any keys
 151      * {@code k1} and {@code k2} in the map.  If the user attempts to put
 152      * a key into the map that violates this constraint, the {@code put(Object
 153      * key, Object value)} call will throw a
 154      * {@code ClassCastException}.
 155      *
 156      * @param comparator the comparator that will be used to order this map.
 157      *        If {@code null}, the {@linkplain Comparable natural
 158      *        ordering} of the keys will be used.
 159      */
 160     public TreeMap(Comparator<? super K> comparator) {
 161         this.comparator = comparator;
 162     }
 163 
 164     /**
 165      * Constructs a new tree map containing the same mappings as the given
 166      * map, ordered according to the <em>natural ordering</em> of its keys.
 167      * All keys inserted into the new map must implement the {@link
 168      * Comparable} interface.  Furthermore, all such keys must be
 169      * <em>mutually comparable</em>: {@code k1.compareTo(k2)} must not throw
 170      * a {@code ClassCastException} for any keys {@code k1} and
 171      * {@code k2} in the map.  This method runs in n*log(n) time.
 172      *
 173      * @param  m the map whose mappings are to be placed in this map
 174      * @throws ClassCastException if the keys in m are not {@link Comparable},
 175      *         or are not mutually comparable
 176      * @throws NullPointerException if the specified map is null
 177      */
 178     public TreeMap(Map<? extends K, ? extends V> m) {
 179         comparator = null;
 180         putAll(m);
 181     }
 182 
 183     /**
 184      * Constructs a new tree map containing the same mappings and
 185      * using the same ordering as the specified sorted map.  This
 186      * method runs in linear time.
 187      *
 188      * @param  m the sorted map whose mappings are to be placed in this map,
 189      *         and whose comparator is to be used to sort this map
 190      * @throws NullPointerException if the specified map is null
 191      */
 192     public TreeMap(SortedMap<K, ? extends V> m) {
 193         comparator = m.comparator();
 194         try {
 195             buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
 196         } catch (java.io.IOException cannotHappen) {
 197         } catch (ClassNotFoundException cannotHappen) {
 198         }
 199     }
 200 
 201 
 202     // Query Operations
 203 
 204     /**
 205      * Returns the number of key-value mappings in this map.
 206      *
 207      * @return the number of key-value mappings in this map
 208      */
 209     public int size() {
 210         return size;
 211     }
 212 
 213     /**
 214      * Returns {@code true} if this map contains a mapping for the specified
 215      * key.
 216      *
 217      * @param key key whose presence in this map is to be tested
 218      * @return {@code true} if this map contains a mapping for the
 219      *         specified key
 220      * @throws ClassCastException if the specified key cannot be compared
 221      *         with the keys currently in the map
 222      * @throws NullPointerException if the specified key is null
 223      *         and this map uses natural ordering, or its comparator
 224      *         does not permit null keys
 225      */
 226     public boolean containsKey(Object key) {
 227         return getEntry(key) != null;
 228     }
 229 
 230     /**
 231      * Returns {@code true} if this map maps one or more keys to the
 232      * specified value.  More formally, returns {@code true} if and only if
 233      * this map contains at least one mapping to a value {@code v} such
 234      * that {@code (value==null ? v==null : value.equals(v))}.  This
 235      * operation will probably require time linear in the map size for
 236      * most implementations.
 237      *
 238      * @param value value whose presence in this map is to be tested
 239      * @return {@code true} if a mapping to {@code value} exists;
 240      *         {@code false} otherwise
 241      * @since 1.2
 242      */
 243     public boolean containsValue(Object value) {
 244         for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
 245             if (valEquals(value, e.value))
 246                 return true;
 247         return false;
 248     }
 249 
 250     /**
 251      * Returns the value to which the specified key is mapped,
 252      * or {@code null} if this map contains no mapping for the key.
 253      *
 254      * <p>More formally, if this map contains a mapping from a key
 255      * {@code k} to a value {@code v} such that {@code key} compares
 256      * equal to {@code k} according to the map's ordering, then this
 257      * method returns {@code v}; otherwise it returns {@code null}.
 258      * (There can be at most one such mapping.)
 259      *
 260      * <p>A return value of {@code null} does not <em>necessarily</em>
 261      * indicate that the map contains no mapping for the key; it's also
 262      * possible that the map explicitly maps the key to {@code null}.
 263      * The {@link #containsKey containsKey} operation may be used to
 264      * distinguish these two cases.
 265      *
 266      * @throws ClassCastException if the specified key cannot be compared
 267      *         with the keys currently in the map
 268      * @throws NullPointerException if the specified key is null
 269      *         and this map uses natural ordering, or its comparator
 270      *         does not permit null keys
 271      */
 272     public V get(Object key) {
 273         Entry<K,V> p = getEntry(key);
 274         return (p==null ? null : p.value);
 275     }
 276 
 277     public Comparator<? super K> comparator() {
 278         return comparator;
 279     }
 280 
 281     /**
 282      * @throws NoSuchElementException {@inheritDoc}
 283      */
 284     public K firstKey() {
 285         return key(getFirstEntry());
 286     }
 287 
 288     /**
 289      * @throws NoSuchElementException {@inheritDoc}
 290      */
 291     public K lastKey() {
 292         return key(getLastEntry());
 293     }
 294 
 295     /**
 296      * Copies all of the mappings from the specified map to this map.
 297      * These mappings replace any mappings that this map had for any
 298      * of the keys currently in the specified map.
 299      *
 300      * @param  map mappings to be stored in this map
 301      * @throws ClassCastException if the class of a key or value in
 302      *         the specified map prevents it from being stored in this map
 303      * @throws NullPointerException if the specified map is null or
 304      *         the specified map contains a null key and this map does not
 305      *         permit null keys
 306      */
 307     public void putAll(Map<? extends K, ? extends V> map) {
 308         int mapSize = map.size();
 309         if (size==0 && mapSize!=0 && map instanceof SortedMap) {
 310             Comparator c = ((SortedMap)map).comparator();
 311             if (c == comparator || (c != null && c.equals(comparator))) {
 312                 ++modCount;
 313                 try {
 314                     buildFromSorted(mapSize, map.entrySet().iterator(),
 315                                     null, null);
 316                 } catch (java.io.IOException cannotHappen) {
 317                 } catch (ClassNotFoundException cannotHappen) {
 318                 }
 319                 return;
 320             }
 321         }
 322         super.putAll(map);
 323     }
 324 
 325     /**
 326      * Returns this map's entry for the given key, or {@code null} if the map
 327      * does not contain an entry for the key.
 328      *
 329      * @return this map's entry for the given key, or {@code null} if the map
 330      *         does not contain an entry for the key
 331      * @throws ClassCastException if the specified key cannot be compared
 332      *         with the keys currently in the map
 333      * @throws NullPointerException if the specified key is null
 334      *         and this map uses natural ordering, or its comparator
 335      *         does not permit null keys
 336      */
 337     final Entry<K,V> getEntry(Object key) {
 338         // Offload comparator-based version for sake of performance
 339         if (comparator != null)
 340             return getEntryUsingComparator(key);
 341         if (key == null)
 342             throw new NullPointerException();
 343         Comparable<? super K> k = (Comparable<? super K>) key;
 344         Entry<K,V> p = root;
 345         while (p != null) {
 346             int cmp = k.compareTo(p.key);
 347             if (cmp < 0)
 348                 p = p.left;
 349             else if (cmp > 0)
 350                 p = p.right;
 351             else
 352                 return p;
 353         }
 354         return null;
 355     }
 356 
 357     /**
 358      * Version of getEntry using comparator. Split off from getEntry
 359      * for performance. (This is not worth doing for most methods,
 360      * that are less dependent on comparator performance, but is
 361      * worthwhile here.)
 362      */
 363     final Entry<K,V> getEntryUsingComparator(Object key) {
 364         K k = (K) key;
 365         Comparator<? super K> cpr = comparator;
 366         if (cpr != null) {
 367             Entry<K,V> p = root;
 368             while (p != null) {
 369                 int cmp = cpr.compare(k, p.key);
 370                 if (cmp < 0)
 371                     p = p.left;
 372                 else if (cmp > 0)
 373                     p = p.right;
 374                 else
 375                     return p;
 376             }
 377         }
 378         return null;
 379     }
 380 
 381     /**
 382      * Gets the entry corresponding to the specified key; if no such entry
 383      * exists, returns the entry for the least key greater than the specified
 384      * key; if no such entry exists (i.e., the greatest key in the Tree is less
 385      * than the specified key), returns {@code null}.
 386      */
 387     final Entry<K,V> getCeilingEntry(K key) {
 388         Entry<K,V> p = root;
 389         while (p != null) {
 390             int cmp = compare(key, p.key);
 391             if (cmp < 0) {
 392                 if (p.left != null)
 393                     p = p.left;
 394                 else
 395                     return p;
 396             } else if (cmp > 0) {
 397                 if (p.right != null) {
 398                     p = p.right;
 399                 } else {
 400                     Entry<K,V> parent = p.parent;
 401                     Entry<K,V> ch = p;
 402                     while (parent != null && ch == parent.right) {
 403                         ch = parent;
 404                         parent = parent.parent;
 405                     }
 406                     return parent;
 407                 }
 408             } else
 409                 return p;
 410         }
 411         return null;
 412     }
 413 
 414     /**
 415      * Gets the entry corresponding to the specified key; if no such entry
 416      * exists, returns the entry for the greatest key less than the specified
 417      * key; if no such entry exists, returns {@code null}.
 418      */
 419     final Entry<K,V> getFloorEntry(K key) {
 420         Entry<K,V> p = root;
 421         while (p != null) {
 422             int cmp = compare(key, p.key);
 423             if (cmp > 0) {
 424                 if (p.right != null)
 425                     p = p.right;
 426                 else
 427                     return p;
 428             } else if (cmp < 0) {
 429                 if (p.left != null) {
 430                     p = p.left;
 431                 } else {
 432                     Entry<K,V> parent = p.parent;
 433                     Entry<K,V> ch = p;
 434                     while (parent != null && ch == parent.left) {
 435                         ch = parent;
 436                         parent = parent.parent;
 437                     }
 438                     return parent;
 439                 }
 440             } else
 441                 return p;
 442 
 443         }
 444         return null;
 445     }
 446 
 447     /**
 448      * Gets the entry for the least key greater than the specified
 449      * key; if no such entry exists, returns the entry for the least
 450      * key greater than the specified key; if no such entry exists
 451      * returns {@code null}.
 452      */
 453     final Entry<K,V> getHigherEntry(K key) {
 454         Entry<K,V> p = root;
 455         while (p != null) {
 456             int cmp = compare(key, p.key);
 457             if (cmp < 0) {
 458                 if (p.left != null)
 459                     p = p.left;
 460                 else
 461                     return p;
 462             } else {
 463                 if (p.right != null) {
 464                     p = p.right;
 465                 } else {
 466                     Entry<K,V> parent = p.parent;
 467                     Entry<K,V> ch = p;
 468                     while (parent != null && ch == parent.right) {
 469                         ch = parent;
 470                         parent = parent.parent;
 471                     }
 472                     return parent;
 473                 }
 474             }
 475         }
 476         return null;
 477     }
 478 
 479     /**
 480      * Returns the entry for the greatest key less than the specified key; if
 481      * no such entry exists (i.e., the least key in the Tree is greater than
 482      * the specified key), returns {@code null}.
 483      */
 484     final Entry<K,V> getLowerEntry(K key) {
 485         Entry<K,V> p = root;
 486         while (p != null) {
 487             int cmp = compare(key, p.key);
 488             if (cmp > 0) {
 489                 if (p.right != null)
 490                     p = p.right;
 491                 else
 492                     return p;
 493             } else {
 494                 if (p.left != null) {
 495                     p = p.left;
 496                 } else {
 497                     Entry<K,V> parent = p.parent;
 498                     Entry<K,V> ch = p;
 499                     while (parent != null && ch == parent.left) {
 500                         ch = parent;
 501                         parent = parent.parent;
 502                     }
 503                     return parent;
 504                 }
 505             }
 506         }
 507         return null;
 508     }
 509 
 510     /**
 511      * Associates the specified value with the specified key in this map.
 512      * If the map previously contained a mapping for the key, the old
 513      * value is replaced.
 514      *
 515      * @param key key with which the specified value is to be associated
 516      * @param value value to be associated with the specified key
 517      *
 518      * @return the previous value associated with {@code key}, or
 519      *         {@code null} if there was no mapping for {@code key}.
 520      *         (A {@code null} return can also indicate that the map
 521      *         previously associated {@code null} with {@code key}.)
 522      * @throws ClassCastException if the specified key cannot be compared
 523      *         with the keys currently in the map
 524      * @throws NullPointerException if the specified key is null
 525      *         and this map uses natural ordering, or its comparator
 526      *         does not permit null keys
 527      */
 528     public V put(K key, V value) {
 529         Entry<K,V> t = root;
 530         if (t == null) {
 531             // TBD:
 532             // 5045147: (coll) Adding null to an empty TreeSet should
 533             // throw NullPointerException
 534             //
 535             // compare(key, key); // type check
 536             root = new Entry<>(key, value, null);
 537             size = 1;
 538             modCount++;
 539             return null;
 540         }
 541         int cmp;
 542         Entry<K,V> parent;
 543         // split comparator and comparable paths
 544         Comparator<? super K> cpr = comparator;
 545         if (cpr != null) {
 546             do {
 547                 parent = t;
 548                 cmp = cpr.compare(key, t.key);
 549                 if (cmp < 0)
 550                     t = t.left;
 551                 else if (cmp > 0)
 552                     t = t.right;
 553                 else
 554                     return t.setValue(value);
 555             } while (t != null);
 556         }
 557         else {
 558             if (key == null)
 559                 throw new NullPointerException();
 560             Comparable<? super K> k = (Comparable<? super K>) key;
 561             do {
 562                 parent = t;
 563                 cmp = k.compareTo(t.key);
 564                 if (cmp < 0)
 565                     t = t.left;
 566                 else if (cmp > 0)
 567                     t = t.right;
 568                 else
 569                     return t.setValue(value);
 570             } while (t != null);
 571         }
 572         Entry<K,V> e = new Entry<>(key, value, parent);
 573         if (cmp < 0)
 574             parent.left = e;
 575         else
 576             parent.right = e;
 577         fixAfterInsertion(e);
 578         size++;
 579         modCount++;
 580         return null;
 581     }
 582 
 583     /**
 584      * Removes the mapping for this key from this TreeMap if present.
 585      *
 586      * @param  key key for which mapping should be removed
 587      * @return the previous value associated with {@code key}, or
 588      *         {@code null} if there was no mapping for {@code key}.
 589      *         (A {@code null} return can also indicate that the map
 590      *         previously associated {@code null} with {@code key}.)
 591      * @throws ClassCastException if the specified key cannot be compared
 592      *         with the keys currently in the map
 593      * @throws NullPointerException if the specified key is null
 594      *         and this map uses natural ordering, or its comparator
 595      *         does not permit null keys
 596      */
 597     public V remove(Object key) {
 598         Entry<K,V> p = getEntry(key);
 599         if (p == null)
 600             return null;
 601 
 602         V oldValue = p.value;
 603         deleteEntry(p);
 604         return oldValue;
 605     }
 606 
 607     /**
 608      * Removes all of the mappings from this map.
 609      * The map will be empty after this call returns.
 610      */
 611     public void clear() {
 612         modCount++;
 613         size = 0;
 614         root = null;
 615     }
 616 
 617     /**
 618      * Returns a shallow copy of this {@code TreeMap} instance. (The keys and
 619      * values themselves are not cloned.)
 620      *
 621      * @return a shallow copy of this map
 622      */
 623     public Object clone() {
 624         TreeMap<K,V> clone = null;
 625         try {
 626             clone = (TreeMap<K,V>) super.clone();
 627         } catch (CloneNotSupportedException e) {
 628             throw new InternalError();
 629         }
 630 
 631         // Put clone into "virgin" state (except for comparator)
 632         clone.root = null;
 633         clone.size = 0;
 634         clone.modCount = 0;
 635         clone.entrySet = null;
 636         clone.navigableKeySet = null;
 637         clone.descendingMap = null;
 638 
 639         // Initialize clone with our mappings
 640         try {
 641             clone.buildFromSorted(size, entrySet().iterator(), null, null);
 642         } catch (java.io.IOException cannotHappen) {
 643         } catch (ClassNotFoundException cannotHappen) {
 644         }
 645 
 646         return clone;
 647     }
 648 
 649     // NavigableMap API methods
 650 
 651     /**
 652      * @since 1.6
 653      */
 654     public Map.Entry<K,V> firstEntry() {
 655         return exportEntry(getFirstEntry());
 656     }
 657 
 658     /**
 659      * @since 1.6
 660      */
 661     public Map.Entry<K,V> lastEntry() {
 662         return exportEntry(getLastEntry());
 663     }
 664 
 665     /**
 666      * @since 1.6
 667      */
 668     public Map.Entry<K,V> pollFirstEntry() {
 669         Entry<K,V> p = getFirstEntry();
 670         Map.Entry<K,V> result = exportEntry(p);
 671         if (p != null)
 672             deleteEntry(p);
 673         return result;
 674     }
 675 
 676     /**
 677      * @since 1.6
 678      */
 679     public Map.Entry<K,V> pollLastEntry() {
 680         Entry<K,V> p = getLastEntry();
 681         Map.Entry<K,V> result = exportEntry(p);
 682         if (p != null)
 683             deleteEntry(p);
 684         return result;
 685     }
 686 
 687     /**
 688      * @throws ClassCastException {@inheritDoc}
 689      * @throws NullPointerException if the specified key is null
 690      *         and this map uses natural ordering, or its comparator
 691      *         does not permit null keys
 692      * @since 1.6
 693      */
 694     public Map.Entry<K,V> lowerEntry(K key) {
 695         return exportEntry(getLowerEntry(key));
 696     }
 697 
 698     /**
 699      * @throws ClassCastException {@inheritDoc}
 700      * @throws NullPointerException if the specified key is null
 701      *         and this map uses natural ordering, or its comparator
 702      *         does not permit null keys
 703      * @since 1.6
 704      */
 705     public K lowerKey(K key) {
 706         return keyOrNull(getLowerEntry(key));
 707     }
 708 
 709     /**
 710      * @throws ClassCastException {@inheritDoc}
 711      * @throws NullPointerException if the specified key is null
 712      *         and this map uses natural ordering, or its comparator
 713      *         does not permit null keys
 714      * @since 1.6
 715      */
 716     public Map.Entry<K,V> floorEntry(K key) {
 717         return exportEntry(getFloorEntry(key));
 718     }
 719 
 720     /**
 721      * @throws ClassCastException {@inheritDoc}
 722      * @throws NullPointerException if the specified key is null
 723      *         and this map uses natural ordering, or its comparator
 724      *         does not permit null keys
 725      * @since 1.6
 726      */
 727     public K floorKey(K key) {
 728         return keyOrNull(getFloorEntry(key));
 729     }
 730 
 731     /**
 732      * @throws ClassCastException {@inheritDoc}
 733      * @throws NullPointerException if the specified key is null
 734      *         and this map uses natural ordering, or its comparator
 735      *         does not permit null keys
 736      * @since 1.6
 737      */
 738     public Map.Entry<K,V> ceilingEntry(K key) {
 739         return exportEntry(getCeilingEntry(key));
 740     }
 741 
 742     /**
 743      * @throws ClassCastException {@inheritDoc}
 744      * @throws NullPointerException if the specified key is null
 745      *         and this map uses natural ordering, or its comparator
 746      *         does not permit null keys
 747      * @since 1.6
 748      */
 749     public K ceilingKey(K key) {
 750         return keyOrNull(getCeilingEntry(key));
 751     }
 752 
 753     /**
 754      * @throws ClassCastException {@inheritDoc}
 755      * @throws NullPointerException if the specified key is null
 756      *         and this map uses natural ordering, or its comparator
 757      *         does not permit null keys
 758      * @since 1.6
 759      */
 760     public Map.Entry<K,V> higherEntry(K key) {
 761         return exportEntry(getHigherEntry(key));
 762     }
 763 
 764     /**
 765      * @throws ClassCastException {@inheritDoc}
 766      * @throws NullPointerException if the specified key is null
 767      *         and this map uses natural ordering, or its comparator
 768      *         does not permit null keys
 769      * @since 1.6
 770      */
 771     public K higherKey(K key) {
 772         return keyOrNull(getHigherEntry(key));
 773     }
 774 
 775     // Views
 776 
 777     /**
 778      * Fields initialized to contain an instance of the entry set view
 779      * the first time this view is requested.  Views are stateless, so
 780      * there's no reason to create more than one.
 781      */
 782     private transient EntrySet entrySet = null;
 783     private transient KeySet<K> navigableKeySet = null;
 784     private transient NavigableMap<K,V> descendingMap = null;
 785 
 786     /**
 787      * Returns a {@link Set} view of the keys contained in this map.
 788      * The set's iterator returns the keys in ascending order.
 789      * The set is backed by the map, so changes to the map are
 790      * reflected in the set, and vice-versa.  If the map is modified
 791      * while an iteration over the set is in progress (except through
 792      * the iterator's own {@code remove} operation), the results of
 793      * the iteration are undefined.  The set supports element removal,
 794      * which removes the corresponding mapping from the map, via the
 795      * {@code Iterator.remove}, {@code Set.remove},
 796      * {@code removeAll}, {@code retainAll}, and {@code clear}
 797      * operations.  It does not support the {@code add} or {@code addAll}
 798      * operations.
 799      */
 800     public Set<K> keySet() {
 801         return navigableKeySet();
 802     }
 803 
 804     /**
 805      * @since 1.6
 806      */
 807     public NavigableSet<K> navigableKeySet() {
 808         KeySet<K> nks = navigableKeySet;
 809         return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
 810     }
 811 
 812     /**
 813      * @since 1.6
 814      */
 815     public NavigableSet<K> descendingKeySet() {
 816         return descendingMap().navigableKeySet();
 817     }
 818 
 819     /**
 820      * Returns a {@link Collection} view of the values contained in this map.
 821      * The collection's iterator returns the values in ascending order
 822      * of the corresponding keys.
 823      * The collection is backed by the map, so changes to the map are
 824      * reflected in the collection, and vice-versa.  If the map is
 825      * modified while an iteration over the collection is in progress
 826      * (except through the iterator's own {@code remove} operation),
 827      * the results of the iteration are undefined.  The collection
 828      * supports element removal, which removes the corresponding
 829      * mapping from the map, via the {@code Iterator.remove},
 830      * {@code Collection.remove}, {@code removeAll},
 831      * {@code retainAll} and {@code clear} operations.  It does not
 832      * support the {@code add} or {@code addAll} operations.
 833      */
 834     public Collection<V> values() {
 835         Collection<V> vs = values;
 836         return (vs != null) ? vs : (values = new Values());
 837     }
 838 
 839     /**
 840      * Returns a {@link Set} view of the mappings contained in this map.
 841      * The set's iterator returns the entries in ascending key order.
 842      * The set is backed by the map, so changes to the map are
 843      * reflected in the set, and vice-versa.  If the map is modified
 844      * while an iteration over the set is in progress (except through
 845      * the iterator's own {@code remove} operation, or through the
 846      * {@code setValue} operation on a map entry returned by the
 847      * iterator) the results of the iteration are undefined.  The set
 848      * supports element removal, which removes the corresponding
 849      * mapping from the map, via the {@code Iterator.remove},
 850      * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
 851      * {@code clear} operations.  It does not support the
 852      * {@code add} or {@code addAll} operations.
 853      */
 854     public Set<Map.Entry<K,V>> entrySet() {
 855         EntrySet es = entrySet;
 856         return (es != null) ? es : (entrySet = new EntrySet());
 857     }
 858 
 859     /**
 860      * @since 1.6
 861      */
 862     public NavigableMap<K, V> descendingMap() {
 863         NavigableMap<K, V> km = descendingMap;
 864         return (km != null) ? km :
 865             (descendingMap = new DescendingSubMap(this,
 866                                                   true, null, true,
 867                                                   true, null, true));
 868     }
 869 
 870     /**
 871      * @throws ClassCastException       {@inheritDoc}
 872      * @throws NullPointerException if {@code fromKey} or {@code toKey} is
 873      *         null and this map uses natural ordering, or its comparator
 874      *         does not permit null keys
 875      * @throws IllegalArgumentException {@inheritDoc}
 876      * @since 1.6
 877      */
 878     public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
 879                                     K toKey,   boolean toInclusive) {
 880         return new AscendingSubMap(this,
 881                                    false, fromKey, fromInclusive,
 882                                    false, toKey,   toInclusive);
 883     }
 884 
 885     /**
 886      * @throws ClassCastException       {@inheritDoc}
 887      * @throws NullPointerException if {@code toKey} is null
 888      *         and this map uses natural ordering, or its comparator
 889      *         does not permit null keys
 890      * @throws IllegalArgumentException {@inheritDoc}
 891      * @since 1.6
 892      */
 893     public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
 894         return new AscendingSubMap(this,
 895                                    true,  null,  true,
 896                                    false, toKey, inclusive);
 897     }
 898 
 899     /**
 900      * @throws ClassCastException       {@inheritDoc}
 901      * @throws NullPointerException if {@code fromKey} is null
 902      *         and this map uses natural ordering, or its comparator
 903      *         does not permit null keys
 904      * @throws IllegalArgumentException {@inheritDoc}
 905      * @since 1.6
 906      */
 907     public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
 908         return new AscendingSubMap(this,
 909                                    false, fromKey, inclusive,
 910                                    true,  null,    true);
 911     }
 912 
 913     /**
 914      * @throws ClassCastException       {@inheritDoc}
 915      * @throws NullPointerException if {@code fromKey} or {@code toKey} is
 916      *         null and this map uses natural ordering, or its comparator
 917      *         does not permit null keys
 918      * @throws IllegalArgumentException {@inheritDoc}
 919      */
 920     public SortedMap<K,V> subMap(K fromKey, K toKey) {
 921         return subMap(fromKey, true, toKey, false);
 922     }
 923 
 924     /**
 925      * @throws ClassCastException       {@inheritDoc}
 926      * @throws NullPointerException if {@code toKey} is null
 927      *         and this map uses natural ordering, or its comparator
 928      *         does not permit null keys
 929      * @throws IllegalArgumentException {@inheritDoc}
 930      */
 931     public SortedMap<K,V> headMap(K toKey) {
 932         return headMap(toKey, false);
 933     }
 934 
 935     /**
 936      * @throws ClassCastException       {@inheritDoc}
 937      * @throws NullPointerException if {@code fromKey} is null
 938      *         and this map uses natural ordering, or its comparator
 939      *         does not permit null keys
 940      * @throws IllegalArgumentException {@inheritDoc}
 941      */
 942     public SortedMap<K,V> tailMap(K fromKey) {
 943         return tailMap(fromKey, true);
 944     }
 945 
 946     // View class support
 947 
 948     class Values extends AbstractCollection<V> {
 949         public Iterator<V> iterator() {
 950             return new ValueIterator(getFirstEntry());
 951         }
 952 
 953         public int size() {
 954             return TreeMap.this.size();
 955         }
 956 
 957         public boolean contains(Object o) {
 958             return TreeMap.this.containsValue(o);
 959         }
 960 
 961         public boolean remove(Object o) {
 962             for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
 963                 if (valEquals(e.getValue(), o)) {
 964                     deleteEntry(e);
 965                     return true;
 966                 }
 967             }
 968             return false;
 969         }
 970 
 971         public void clear() {
 972             TreeMap.this.clear();
 973         }
 974     }
 975 
 976     class EntrySet extends AbstractSet<Map.Entry<K,V>> {
 977         public Iterator<Map.Entry<K,V>> iterator() {
 978             return new EntryIterator(getFirstEntry());
 979         }
 980 
 981         public boolean contains(Object o) {
 982             if (!(o instanceof Map.Entry))
 983                 return false;
 984             Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
 985             V value = entry.getValue();
 986             Entry<K,V> p = getEntry(entry.getKey());
 987             return p != null && valEquals(p.getValue(), value);
 988         }
 989 
 990         public boolean remove(Object o) {
 991             if (!(o instanceof Map.Entry))
 992                 return false;
 993             Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
 994             V value = entry.getValue();
 995             Entry<K,V> p = getEntry(entry.getKey());
 996             if (p != null && valEquals(p.getValue(), value)) {
 997                 deleteEntry(p);
 998                 return true;
 999             }
1000             return false;
1001         }
1002 
1003         public int size() {
1004             return TreeMap.this.size();
1005         }
1006 
1007         public void clear() {
1008             TreeMap.this.clear();
1009         }
1010     }
1011 
1012     /*
1013      * Unlike Values and EntrySet, the KeySet class is static,
1014      * delegating to a NavigableMap to allow use by SubMaps, which
1015      * outweighs the ugliness of needing type-tests for the following
1016      * Iterator methods that are defined appropriately in main versus
1017      * submap classes.
1018      */
1019 
1020     Iterator<K> keyIterator() {
1021         return new KeyIterator(getFirstEntry());
1022     }
1023 
1024     Iterator<K> descendingKeyIterator() {
1025         return new DescendingKeyIterator(getLastEntry());
1026     }
1027 
1028     static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
1029         private final NavigableMap<E, Object> m;
1030         KeySet(NavigableMap<E,Object> map) { m = map; }
1031 
1032         public Iterator<E> iterator() {
1033             if (m instanceof TreeMap)
1034                 return ((TreeMap<E,Object>)m).keyIterator();
1035             else
1036                 return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
1037         }
1038 
1039         public Iterator<E> descendingIterator() {
1040             if (m instanceof TreeMap)
1041                 return ((TreeMap<E,Object>)m).descendingKeyIterator();
1042             else
1043                 return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
1044         }
1045 
1046         public int size() { return m.size(); }
1047         public boolean isEmpty() { return m.isEmpty(); }
1048         public boolean contains(Object o) { return m.containsKey(o); }
1049         public void clear() { m.clear(); }
1050         public E lower(E e) { return m.lowerKey(e); }
1051         public E floor(E e) { return m.floorKey(e); }
1052         public E ceiling(E e) { return m.ceilingKey(e); }
1053         public E higher(E e) { return m.higherKey(e); }
1054         public E first() { return m.firstKey(); }
1055         public E last() { return m.lastKey(); }
1056         public Comparator<? super E> comparator() { return m.comparator(); }
1057         public E pollFirst() {
1058             Map.Entry<E,Object> e = m.pollFirstEntry();
1059             return (e == null) ? null : e.getKey();
1060         }
1061         public E pollLast() {
1062             Map.Entry<E,Object> e = m.pollLastEntry();
1063             return (e == null) ? null : e.getKey();
1064         }
1065         public boolean remove(Object o) {
1066             int oldSize = size();
1067             m.remove(o);
1068             return size() != oldSize;
1069         }
1070         public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
1071                                       E toElement,   boolean toInclusive) {
1072             return new KeySet<>(m.subMap(fromElement, fromInclusive,
1073                                           toElement,   toInclusive));
1074         }
1075         public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1076             return new KeySet<>(m.headMap(toElement, inclusive));
1077         }
1078         public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1079             return new KeySet<>(m.tailMap(fromElement, inclusive));
1080         }
1081         public SortedSet<E> subSet(E fromElement, E toElement) {
1082             return subSet(fromElement, true, toElement, false);
1083         }
1084         public SortedSet<E> headSet(E toElement) {
1085             return headSet(toElement, false);
1086         }
1087         public SortedSet<E> tailSet(E fromElement) {
1088             return tailSet(fromElement, true);
1089         }
1090         public NavigableSet<E> descendingSet() {
1091             return new KeySet(m.descendingMap());
1092         }
1093     }
1094 
1095     /**
1096      * Base class for TreeMap Iterators
1097      */
1098     abstract class PrivateEntryIterator<T> implements Iterator<T> {
1099         Entry<K,V> next;
1100         Entry<K,V> lastReturned;
1101         int expectedModCount;
1102 
1103         PrivateEntryIterator(Entry<K,V> first) {
1104             expectedModCount = modCount;
1105             lastReturned = null;
1106             next = first;
1107         }
1108 
1109         public final boolean hasNext() {
1110             return next != null;
1111         }
1112 
1113         final Entry<K,V> nextEntry() {
1114             Entry<K,V> e = next;
1115             if (e == null)
1116                 throw new NoSuchElementException();
1117             if (modCount != expectedModCount)
1118                 throw new ConcurrentModificationException();
1119             next = successor(e);
1120             lastReturned = e;
1121             return e;
1122         }
1123 
1124         final Entry<K,V> prevEntry() {
1125             Entry<K,V> e = next;
1126             if (e == null)
1127                 throw new NoSuchElementException();
1128             if (modCount != expectedModCount)
1129                 throw new ConcurrentModificationException();
1130             next = predecessor(e);
1131             lastReturned = e;
1132             return e;
1133         }
1134 
1135         public void remove() {
1136             if (lastReturned == null)
1137                 throw new IllegalStateException();
1138             if (modCount != expectedModCount)
1139                 throw new ConcurrentModificationException();
1140             // deleted entries are replaced by their successors
1141             if (lastReturned.left != null && lastReturned.right != null)
1142                 next = lastReturned;
1143             deleteEntry(lastReturned);
1144             expectedModCount = modCount;
1145             lastReturned = null;
1146         }
1147     }
1148 
1149     final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1150         EntryIterator(Entry<K,V> first) {
1151             super(first);
1152         }
1153         public Map.Entry<K,V> next() {
1154             return nextEntry();
1155         }
1156     }
1157 
1158     final class ValueIterator extends PrivateEntryIterator<V> {
1159         ValueIterator(Entry<K,V> first) {
1160             super(first);
1161         }
1162         public V next() {
1163             return nextEntry().value;
1164         }
1165     }
1166 
1167     final class KeyIterator extends PrivateEntryIterator<K> {
1168         KeyIterator(Entry<K,V> first) {
1169             super(first);
1170         }
1171         public K next() {
1172             return nextEntry().key;
1173         }
1174     }
1175 
1176     final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1177         DescendingKeyIterator(Entry<K,V> first) {
1178             super(first);
1179         }
1180         public K next() {
1181             return prevEntry().key;
1182         }
1183     }
1184 
1185     // Little utilities
1186 
1187     /**
1188      * Compares two keys using the correct comparison method for this TreeMap.
1189      */
1190     final int compare(Object k1, Object k2) {
1191         return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1192             : comparator.compare((K)k1, (K)k2);
1193     }
1194 
1195     /**
1196      * Test two values for equality.  Differs from o1.equals(o2) only in
1197      * that it copes with {@code null} o1 properly.
1198      */
1199     static final boolean valEquals(Object o1, Object o2) {
1200         return (o1==null ? o2==null : o1.equals(o2));
1201     }
1202 
1203     /**
1204      * Return SimpleImmutableEntry for entry, or null if null
1205      */
1206     static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
1207         return (e == null) ? null :
1208             new AbstractMap.SimpleImmutableEntry<>(e);
1209     }
1210 
1211     /**
1212      * Return key for entry, or null if null
1213      */
1214     static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
1215         return (e == null) ? null : e.key;
1216     }
1217 
1218     /**
1219      * Returns the key corresponding to the specified Entry.
1220      * @throws NoSuchElementException if the Entry is null
1221      */
1222     static <K> K key(Entry<K,?> e) {
1223         if (e==null)
1224             throw new NoSuchElementException();
1225         return e.key;
1226     }
1227 
1228 
1229     // SubMaps
1230 
1231     /**
1232      * Dummy value serving as unmatchable fence key for unbounded
1233      * SubMapIterators
1234      */
1235     private static final Object UNBOUNDED = new Object();
1236 
1237     /**
1238      * @serial include
1239      */
1240     abstract static class NavigableSubMap<K,V> extends AbstractMap<K,V>
1241         implements NavigableMap<K,V>, java.io.Serializable {
1242         /**
1243          * The backing map.
1244          */
1245         final TreeMap<K,V> m;
1246 
1247         /**
1248          * Endpoints are represented as triples (fromStart, lo,
1249          * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
1250          * true, then the low (absolute) bound is the start of the
1251          * backing map, and the other values are ignored. Otherwise,
1252          * if loInclusive is true, lo is the inclusive bound, else lo
1253          * is the exclusive bound. Similarly for the upper bound.
1254          */
1255         final K lo, hi;
1256         final boolean fromStart, toEnd;
1257         final boolean loInclusive, hiInclusive;
1258 
1259         NavigableSubMap(TreeMap<K,V> m,
1260                         boolean fromStart, K lo, boolean loInclusive,
1261                         boolean toEnd,     K hi, boolean hiInclusive) {
1262             if (!fromStart && !toEnd) {
1263                 if (m.compare(lo, hi) > 0)
1264                     throw new IllegalArgumentException("fromKey > toKey");
1265             } else {
1266                 if (!fromStart) // type check
1267                     m.compare(lo, lo);
1268                 if (!toEnd)
1269                     m.compare(hi, hi);
1270             }
1271 
1272             this.m = m;
1273             this.fromStart = fromStart;
1274             this.lo = lo;
1275             this.loInclusive = loInclusive;
1276             this.toEnd = toEnd;
1277             this.hi = hi;
1278             this.hiInclusive = hiInclusive;
1279         }
1280 
1281         // internal utilities
1282 
1283         final boolean tooLow(Object key) {
1284             if (!fromStart) {
1285                 int c = m.compare(key, lo);
1286                 if (c < 0 || (c == 0 && !loInclusive))
1287                     return true;
1288             }
1289             return false;
1290         }
1291 
1292         final boolean tooHigh(Object key) {
1293             if (!toEnd) {
1294                 int c = m.compare(key, hi);
1295                 if (c > 0 || (c == 0 && !hiInclusive))
1296                     return true;
1297             }
1298             return false;
1299         }
1300 
1301         final boolean inRange(Object key) {
1302             return !tooLow(key) && !tooHigh(key);
1303         }
1304 
1305         final boolean inClosedRange(Object key) {
1306             return (fromStart || m.compare(key, lo) >= 0)
1307                 && (toEnd || m.compare(hi, key) >= 0);
1308         }
1309 
1310         final boolean inRange(Object key, boolean inclusive) {
1311             return inclusive ? inRange(key) : inClosedRange(key);
1312         }
1313 
1314         /*
1315          * Absolute versions of relation operations.
1316          * Subclasses map to these using like-named "sub"
1317          * versions that invert senses for descending maps
1318          */
1319 
1320         final TreeMap.Entry<K,V> absLowest() {
1321             TreeMap.Entry<K,V> e =
1322                 (fromStart ?  m.getFirstEntry() :
1323                  (loInclusive ? m.getCeilingEntry(lo) :
1324                                 m.getHigherEntry(lo)));
1325             return (e == null || tooHigh(e.key)) ? null : e;
1326         }
1327 
1328         final TreeMap.Entry<K,V> absHighest() {
1329             TreeMap.Entry<K,V> e =
1330                 (toEnd ?  m.getLastEntry() :
1331                  (hiInclusive ?  m.getFloorEntry(hi) :
1332                                  m.getLowerEntry(hi)));
1333             return (e == null || tooLow(e.key)) ? null : e;
1334         }
1335 
1336         final TreeMap.Entry<K,V> absCeiling(K key) {
1337             if (tooLow(key))
1338                 return absLowest();
1339             TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
1340             return (e == null || tooHigh(e.key)) ? null : e;
1341         }
1342 
1343         final TreeMap.Entry<K,V> absHigher(K key) {
1344             if (tooLow(key))
1345                 return absLowest();
1346             TreeMap.Entry<K,V> e = m.getHigherEntry(key);
1347             return (e == null || tooHigh(e.key)) ? null : e;
1348         }
1349 
1350         final TreeMap.Entry<K,V> absFloor(K key) {
1351             if (tooHigh(key))
1352                 return absHighest();
1353             TreeMap.Entry<K,V> e = m.getFloorEntry(key);
1354             return (e == null || tooLow(e.key)) ? null : e;
1355         }
1356 
1357         final TreeMap.Entry<K,V> absLower(K key) {
1358             if (tooHigh(key))
1359                 return absHighest();
1360             TreeMap.Entry<K,V> e = m.getLowerEntry(key);
1361             return (e == null || tooLow(e.key)) ? null : e;
1362         }
1363 
1364         /** Returns the absolute high fence for ascending traversal */
1365         final TreeMap.Entry<K,V> absHighFence() {
1366             return (toEnd ? null : (hiInclusive ?
1367                                     m.getHigherEntry(hi) :
1368                                     m.getCeilingEntry(hi)));
1369         }
1370 
1371         /** Return the absolute low fence for descending traversal  */
1372         final TreeMap.Entry<K,V> absLowFence() {
1373             return (fromStart ? null : (loInclusive ?
1374                                         m.getLowerEntry(lo) :
1375                                         m.getFloorEntry(lo)));
1376         }
1377 
1378         // Abstract methods defined in ascending vs descending classes
1379         // These relay to the appropriate absolute versions
1380 
1381         abstract TreeMap.Entry<K,V> subLowest();
1382         abstract TreeMap.Entry<K,V> subHighest();
1383         abstract TreeMap.Entry<K,V> subCeiling(K key);
1384         abstract TreeMap.Entry<K,V> subHigher(K key);
1385         abstract TreeMap.Entry<K,V> subFloor(K key);
1386         abstract TreeMap.Entry<K,V> subLower(K key);
1387 
1388         /** Returns ascending iterator from the perspective of this submap */
1389         abstract Iterator<K> keyIterator();
1390 
1391         /** Returns descending iterator from the perspective of this submap */
1392         abstract Iterator<K> descendingKeyIterator();
1393 
1394         // public methods
1395 
1396         public boolean isEmpty() {
1397             return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
1398         }
1399 
1400         public int size() {
1401             return (fromStart && toEnd) ? m.size() : entrySet().size();
1402         }
1403 
1404         public final boolean containsKey(Object key) {
1405             return inRange(key) && m.containsKey(key);
1406         }
1407 
1408         public final V put(K key, V value) {
1409             if (!inRange(key))
1410                 throw new IllegalArgumentException("key out of range");
1411             return m.put(key, value);
1412         }
1413 
1414         public final V get(Object key) {
1415             return !inRange(key) ? null :  m.get(key);
1416         }
1417 
1418         public final V remove(Object key) {
1419             return !inRange(key) ? null : m.remove(key);
1420         }
1421 
1422         public final Map.Entry<K,V> ceilingEntry(K key) {
1423             return exportEntry(subCeiling(key));
1424         }
1425 
1426         public final K ceilingKey(K key) {
1427             return keyOrNull(subCeiling(key));
1428         }
1429 
1430         public final Map.Entry<K,V> higherEntry(K key) {
1431             return exportEntry(subHigher(key));
1432         }
1433 
1434         public final K higherKey(K key) {
1435             return keyOrNull(subHigher(key));
1436         }
1437 
1438         public final Map.Entry<K,V> floorEntry(K key) {
1439             return exportEntry(subFloor(key));
1440         }
1441 
1442         public final K floorKey(K key) {
1443             return keyOrNull(subFloor(key));
1444         }
1445 
1446         public final Map.Entry<K,V> lowerEntry(K key) {
1447             return exportEntry(subLower(key));
1448         }
1449 
1450         public final K lowerKey(K key) {
1451             return keyOrNull(subLower(key));
1452         }
1453 
1454         public final K firstKey() {
1455             return key(subLowest());
1456         }
1457 
1458         public final K lastKey() {
1459             return key(subHighest());
1460         }
1461 
1462         public final Map.Entry<K,V> firstEntry() {
1463             return exportEntry(subLowest());
1464         }
1465 
1466         public final Map.Entry<K,V> lastEntry() {
1467             return exportEntry(subHighest());
1468         }
1469 
1470         public final Map.Entry<K,V> pollFirstEntry() {
1471             TreeMap.Entry<K,V> e = subLowest();
1472             Map.Entry<K,V> result = exportEntry(e);
1473             if (e != null)
1474                 m.deleteEntry(e);
1475             return result;
1476         }
1477 
1478         public final Map.Entry<K,V> pollLastEntry() {
1479             TreeMap.Entry<K,V> e = subHighest();
1480             Map.Entry<K,V> result = exportEntry(e);
1481             if (e != null)
1482                 m.deleteEntry(e);
1483             return result;
1484         }
1485 
1486         // Views
1487         transient NavigableMap<K,V> descendingMapView = null;
1488         transient EntrySetView entrySetView = null;
1489         transient KeySet<K> navigableKeySetView = null;
1490 
1491         public final NavigableSet<K> navigableKeySet() {
1492             KeySet<K> nksv = navigableKeySetView;
1493             return (nksv != null) ? nksv :
1494                 (navigableKeySetView = new TreeMap.KeySet(this));
1495         }
1496 
1497         public final Set<K> keySet() {
1498             return navigableKeySet();
1499         }
1500 
1501         public NavigableSet<K> descendingKeySet() {
1502             return descendingMap().navigableKeySet();
1503         }
1504 
1505         public final SortedMap<K,V> subMap(K fromKey, K toKey) {
1506             return subMap(fromKey, true, toKey, false);
1507         }
1508 
1509         public final SortedMap<K,V> headMap(K toKey) {
1510             return headMap(toKey, false);
1511         }
1512 
1513         public final SortedMap<K,V> tailMap(K fromKey) {
1514             return tailMap(fromKey, true);
1515         }
1516 
1517         // View classes
1518 
1519         abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1520             private transient int size = -1, sizeModCount;
1521 
1522             public int size() {
1523                 if (fromStart && toEnd)
1524                     return m.size();
1525                 if (size == -1 || sizeModCount != m.modCount) {
1526                     sizeModCount = m.modCount;
1527                     size = 0;
1528                     Iterator i = iterator();
1529                     while (i.hasNext()) {
1530                         size++;
1531                         i.next();
1532                     }
1533                 }
1534                 return size;
1535             }
1536 
1537             public boolean isEmpty() {
1538                 TreeMap.Entry<K,V> n = absLowest();
1539                 return n == null || tooHigh(n.key);
1540             }
1541 
1542             public boolean contains(Object o) {
1543                 if (!(o instanceof Map.Entry))
1544                     return false;
1545                 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1546                 K key = entry.getKey();
1547                 if (!inRange(key))
1548                     return false;
1549                 TreeMap.Entry node = m.getEntry(key);
1550                 return node != null &&
1551                     valEquals(node.getValue(), entry.getValue());
1552             }
1553 
1554             public boolean remove(Object o) {
1555                 if (!(o instanceof Map.Entry))
1556                     return false;
1557                 Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
1558                 K key = entry.getKey();
1559                 if (!inRange(key))
1560                     return false;
1561                 TreeMap.Entry<K,V> node = m.getEntry(key);
1562                 if (node!=null && valEquals(node.getValue(),
1563                                             entry.getValue())) {
1564                     m.deleteEntry(node);
1565                     return true;
1566                 }
1567                 return false;
1568             }
1569         }
1570 
1571         /**
1572          * Iterators for SubMaps
1573          */
1574         abstract class SubMapIterator<T> implements Iterator<T> {
1575             TreeMap.Entry<K,V> lastReturned;
1576             TreeMap.Entry<K,V> next;
1577             final Object fenceKey;
1578             int expectedModCount;
1579 
1580             SubMapIterator(TreeMap.Entry<K,V> first,
1581                            TreeMap.Entry<K,V> fence) {
1582                 expectedModCount = m.modCount;
1583                 lastReturned = null;
1584                 next = first;
1585                 fenceKey = fence == null ? UNBOUNDED : fence.key;
1586             }
1587 
1588             public final boolean hasNext() {
1589                 return next != null && next.key != fenceKey;
1590             }
1591 
1592             final TreeMap.Entry<K,V> nextEntry() {
1593                 TreeMap.Entry<K,V> e = next;
1594                 if (e == null || e.key == fenceKey)
1595                     throw new NoSuchElementException();
1596                 if (m.modCount != expectedModCount)
1597                     throw new ConcurrentModificationException();
1598                 next = successor(e);
1599                 lastReturned = e;
1600                 return e;
1601             }
1602 
1603             final TreeMap.Entry<K,V> prevEntry() {
1604                 TreeMap.Entry<K,V> e = next;
1605                 if (e == null || e.key == fenceKey)
1606                     throw new NoSuchElementException();
1607                 if (m.modCount != expectedModCount)
1608                     throw new ConcurrentModificationException();
1609                 next = predecessor(e);
1610                 lastReturned = e;
1611                 return e;
1612             }
1613 
1614             final void removeAscending() {
1615                 if (lastReturned == null)
1616                     throw new IllegalStateException();
1617                 if (m.modCount != expectedModCount)
1618                     throw new ConcurrentModificationException();
1619                 // deleted entries are replaced by their successors
1620                 if (lastReturned.left != null && lastReturned.right != null)
1621                     next = lastReturned;
1622                 m.deleteEntry(lastReturned);
1623                 lastReturned = null;
1624                 expectedModCount = m.modCount;
1625             }
1626 
1627             final void removeDescending() {
1628                 if (lastReturned == null)
1629                     throw new IllegalStateException();
1630                 if (m.modCount != expectedModCount)
1631                     throw new ConcurrentModificationException();
1632                 m.deleteEntry(lastReturned);
1633                 lastReturned = null;
1634                 expectedModCount = m.modCount;
1635             }
1636 
1637         }
1638 
1639         final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1640             SubMapEntryIterator(TreeMap.Entry<K,V> first,
1641                                 TreeMap.Entry<K,V> fence) {
1642                 super(first, fence);
1643             }
1644             public Map.Entry<K,V> next() {
1645                 return nextEntry();
1646             }
1647             public void remove() {
1648                 removeAscending();
1649             }
1650         }
1651 
1652         final class SubMapKeyIterator extends SubMapIterator<K> {
1653             SubMapKeyIterator(TreeMap.Entry<K,V> first,
1654                               TreeMap.Entry<K,V> fence) {
1655                 super(first, fence);
1656             }
1657             public K next() {
1658                 return nextEntry().key;
1659             }
1660             public void remove() {
1661                 removeAscending();
1662             }
1663         }
1664 
1665         final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1666             DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
1667                                           TreeMap.Entry<K,V> fence) {
1668                 super(last, fence);
1669             }
1670 
1671             public Map.Entry<K,V> next() {
1672                 return prevEntry();
1673             }
1674             public void remove() {
1675                 removeDescending();
1676             }
1677         }
1678 
1679         final class DescendingSubMapKeyIterator extends SubMapIterator<K> {
1680             DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
1681                                         TreeMap.Entry<K,V> fence) {
1682                 super(last, fence);
1683             }
1684             public K next() {
1685                 return prevEntry().key;
1686             }
1687             public void remove() {
1688                 removeDescending();
1689             }
1690         }
1691     }
1692 
1693     /**
1694      * @serial include
1695      */
1696     static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
1697         private static final long serialVersionUID = 912986545866124060L;
1698 
1699         AscendingSubMap(TreeMap<K,V> m,
1700                         boolean fromStart, K lo, boolean loInclusive,
1701                         boolean toEnd,     K hi, boolean hiInclusive) {
1702             super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1703         }
1704 
1705         public Comparator<? super K> comparator() {
1706             return m.comparator();
1707         }
1708 
1709         public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1710                                         K toKey,   boolean toInclusive) {
1711             if (!inRange(fromKey, fromInclusive))
1712                 throw new IllegalArgumentException("fromKey out of range");
1713             if (!inRange(toKey, toInclusive))
1714                 throw new IllegalArgumentException("toKey out of range");
1715             return new AscendingSubMap(m,
1716                                        false, fromKey, fromInclusive,
1717                                        false, toKey,   toInclusive);
1718         }
1719 
1720         public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1721             if (!inRange(toKey, inclusive))
1722                 throw new IllegalArgumentException("toKey out of range");
1723             return new AscendingSubMap(m,
1724                                        fromStart, lo,    loInclusive,
1725                                        false,     toKey, inclusive);
1726         }
1727 
1728         public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
1729             if (!inRange(fromKey, inclusive))
1730                 throw new IllegalArgumentException("fromKey out of range");
1731             return new AscendingSubMap(m,
1732                                        false, fromKey, inclusive,
1733                                        toEnd, hi,      hiInclusive);
1734         }
1735 
1736         public NavigableMap<K,V> descendingMap() {
1737             NavigableMap<K,V> mv = descendingMapView;
1738             return (mv != null) ? mv :
1739                 (descendingMapView =
1740                  new DescendingSubMap(m,
1741                                       fromStart, lo, loInclusive,
1742                                       toEnd,     hi, hiInclusive));
1743         }
1744 
1745         Iterator<K> keyIterator() {
1746             return new SubMapKeyIterator(absLowest(), absHighFence());
1747         }
1748 
1749         Iterator<K> descendingKeyIterator() {
1750             return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1751         }
1752 
1753         final class AscendingEntrySetView extends EntrySetView {
1754             public Iterator<Map.Entry<K,V>> iterator() {
1755                 return new SubMapEntryIterator(absLowest(), absHighFence());
1756             }
1757         }
1758 
1759         public Set<Map.Entry<K,V>> entrySet() {
1760             EntrySetView es = entrySetView;
1761             return (es != null) ? es : new AscendingEntrySetView();
1762         }
1763 
1764         TreeMap.Entry<K,V> subLowest()       { return absLowest(); }
1765         TreeMap.Entry<K,V> subHighest()      { return absHighest(); }
1766         TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
1767         TreeMap.Entry<K,V> subHigher(K key)  { return absHigher(key); }
1768         TreeMap.Entry<K,V> subFloor(K key)   { return absFloor(key); }
1769         TreeMap.Entry<K,V> subLower(K key)   { return absLower(key); }
1770     }
1771 
1772     /**
1773      * @serial include
1774      */
1775     static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
1776         private static final long serialVersionUID = 912986545866120460L;
1777         DescendingSubMap(TreeMap<K,V> m,
1778                         boolean fromStart, K lo, boolean loInclusive,
1779                         boolean toEnd,     K hi, boolean hiInclusive) {
1780             super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1781         }
1782 
1783         private final Comparator<? super K> reverseComparator =
1784             Collections.reverseOrder(m.comparator);
1785 
1786         public Comparator<? super K> comparator() {
1787             return reverseComparator;
1788         }
1789 
1790         public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1791                                         K toKey,   boolean toInclusive) {
1792             if (!inRange(fromKey, fromInclusive))
1793                 throw new IllegalArgumentException("fromKey out of range");
1794             if (!inRange(toKey, toInclusive))
1795                 throw new IllegalArgumentException("toKey out of range");
1796             return new DescendingSubMap(m,
1797                                         false, toKey,   toInclusive,
1798                                         false, fromKey, fromInclusive);
1799         }
1800 
1801         public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1802             if (!inRange(toKey, inclusive))
1803                 throw new IllegalArgumentException("toKey out of range");
1804             return new DescendingSubMap(m,
1805                                         false, toKey, inclusive,
1806                                         toEnd, hi,    hiInclusive);
1807         }
1808 
1809         public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
1810             if (!inRange(fromKey, inclusive))
1811                 throw new IllegalArgumentException("fromKey out of range");
1812             return new DescendingSubMap(m,
1813                                         fromStart, lo, loInclusive,
1814                                         false, fromKey, inclusive);
1815         }
1816 
1817         public NavigableMap<K,V> descendingMap() {
1818             NavigableMap<K,V> mv = descendingMapView;
1819             return (mv != null) ? mv :
1820                 (descendingMapView =
1821                  new AscendingSubMap(m,
1822                                      fromStart, lo, loInclusive,
1823                                      toEnd,     hi, hiInclusive));
1824         }
1825 
1826         Iterator<K> keyIterator() {
1827             return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1828         }
1829 
1830         Iterator<K> descendingKeyIterator() {
1831             return new SubMapKeyIterator(absLowest(), absHighFence());
1832         }
1833 
1834         final class DescendingEntrySetView extends EntrySetView {
1835             public Iterator<Map.Entry<K,V>> iterator() {
1836                 return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
1837             }
1838         }
1839 
1840         public Set<Map.Entry<K,V>> entrySet() {
1841             EntrySetView es = entrySetView;
1842             return (es != null) ? es : new DescendingEntrySetView();
1843         }
1844 
1845         TreeMap.Entry<K,V> subLowest()       { return absHighest(); }
1846         TreeMap.Entry<K,V> subHighest()      { return absLowest(); }
1847         TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
1848         TreeMap.Entry<K,V> subHigher(K key)  { return absLower(key); }
1849         TreeMap.Entry<K,V> subFloor(K key)   { return absCeiling(key); }
1850         TreeMap.Entry<K,V> subLower(K key)   { return absHigher(key); }
1851     }
1852 
1853     /**
1854      * This class exists solely for the sake of serialization
1855      * compatibility with previous releases of TreeMap that did not
1856      * support NavigableMap.  It translates an old-version SubMap into
1857      * a new-version AscendingSubMap. This class is never otherwise
1858      * used.
1859      *
1860      * @serial include
1861      */
1862     private class SubMap extends AbstractMap<K,V>
1863         implements SortedMap<K,V>, java.io.Serializable {
1864         private static final long serialVersionUID = -6520786458950516097L;
1865         private boolean fromStart = false, toEnd = false;
1866         private K fromKey, toKey;
1867         private Object readResolve() {
1868             return new AscendingSubMap(TreeMap.this,
1869                                        fromStart, fromKey, true,
1870                                        toEnd, toKey, false);
1871         }
1872         public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
1873         public K lastKey() { throw new InternalError(); }
1874         public K firstKey() { throw new InternalError(); }
1875         public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
1876         public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
1877         public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
1878         public Comparator<? super K> comparator() { throw new InternalError(); }
1879     }
1880 
1881 
1882     // Red-black mechanics
1883 
1884     private static final boolean RED   = false;
1885     private static final boolean BLACK = true;
1886 
1887     /**
1888      * Node in the Tree.  Doubles as a means to pass key-value pairs back to
1889      * user (see Map.Entry).
1890      */
1891 
1892     static final class Entry<K,V> implements Map.Entry<K,V> {
1893         K key;
1894         V value;
1895         Entry<K,V> left = null;
1896         Entry<K,V> right = null;
1897         Entry<K,V> parent;
1898         boolean color = BLACK;
1899 
1900         /**
1901          * Make a new cell with given key, value, and parent, and with
1902          * {@code null} child links, and BLACK color.
1903          */
1904         Entry(K key, V value, Entry<K,V> parent) {
1905             this.key = key;
1906             this.value = value;
1907             this.parent = parent;
1908         }
1909 
1910         /**
1911          * Returns the key.
1912          *
1913          * @return the key
1914          */
1915         public K getKey() {
1916             return key;
1917         }
1918 
1919         /**
1920          * Returns the value associated with the key.
1921          *
1922          * @return the value associated with the key
1923          */
1924         public V getValue() {
1925             return value;
1926         }
1927 
1928         /**
1929          * Replaces the value currently associated with the key with the given
1930          * value.
1931          *
1932          * @return the value associated with the key before this method was
1933          *         called
1934          */
1935         public V setValue(V value) {
1936             V oldValue = this.value;
1937             this.value = value;
1938             return oldValue;
1939         }
1940 
1941         public boolean equals(Object o) {
1942             if (!(o instanceof Map.Entry))
1943                 return false;
1944             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1945 
1946             return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
1947         }
1948 
1949         public int hashCode() {
1950             int keyHash = (key==null ? 0 : key.hashCode());
1951             int valueHash = (value==null ? 0 : value.hashCode());
1952             return keyHash ^ valueHash;
1953         }
1954 
1955         public String toString() {
1956             return key + "=" + value;
1957         }
1958     }
1959 
1960     /**
1961      * Returns the first Entry in the TreeMap (according to the TreeMap's
1962      * key-sort function).  Returns null if the TreeMap is empty.
1963      */
1964     final Entry<K,V> getFirstEntry() {
1965         Entry<K,V> p = root;
1966         if (p != null)
1967             while (p.left != null)
1968                 p = p.left;
1969         return p;
1970     }
1971 
1972     /**
1973      * Returns the last Entry in the TreeMap (according to the TreeMap's
1974      * key-sort function).  Returns null if the TreeMap is empty.
1975      */
1976     final Entry<K,V> getLastEntry() {
1977         Entry<K,V> p = root;
1978         if (p != null)
1979             while (p.right != null)
1980                 p = p.right;
1981         return p;
1982     }
1983 
1984     /**
1985      * Returns the successor of the specified Entry, or null if no such.
1986      */
1987     static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
1988         if (t == null)
1989             return null;
1990         else if (t.right != null) {
1991             Entry<K,V> p = t.right;
1992             while (p.left != null)
1993                 p = p.left;
1994             return p;
1995         } else {
1996             Entry<K,V> p = t.parent;
1997             Entry<K,V> ch = t;
1998             while (p != null && ch == p.right) {
1999                 ch = p;
2000                 p = p.parent;
2001             }
2002             return p;
2003         }
2004     }
2005 
2006     /**
2007      * Returns the predecessor of the specified Entry, or null if no such.
2008      */
2009     static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
2010         if (t == null)
2011             return null;
2012         else if (t.left != null) {
2013             Entry<K,V> p = t.left;
2014             while (p.right != null)
2015                 p = p.right;
2016             return p;
2017         } else {
2018             Entry<K,V> p = t.parent;
2019             Entry<K,V> ch = t;
2020             while (p != null && ch == p.left) {
2021                 ch = p;
2022                 p = p.parent;
2023             }
2024             return p;
2025         }
2026     }
2027 
2028     /**
2029      * Balancing operations.
2030      *
2031      * Implementations of rebalancings during insertion and deletion are
2032      * slightly different than the CLR version.  Rather than using dummy
2033      * nilnodes, we use a set of accessors that deal properly with null.  They
2034      * are used to avoid messiness surrounding nullness checks in the main
2035      * algorithms.
2036      */
2037 
2038     private static <K,V> boolean colorOf(Entry<K,V> p) {
2039         return (p == null ? BLACK : p.color);
2040     }
2041 
2042     private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
2043         return (p == null ? null: p.parent);
2044     }
2045 
2046     private static <K,V> void setColor(Entry<K,V> p, boolean c) {
2047         if (p != null)
2048             p.color = c;
2049     }
2050 
2051     private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
2052         return (p == null) ? null: p.left;
2053     }
2054 
2055     private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
2056         return (p == null) ? null: p.right;
2057     }
2058 
2059     /** From CLR */
2060     private void rotateLeft(Entry<K,V> p) {
2061         if (p != null) {
2062             Entry<K,V> r = p.right;
2063             p.right = r.left;
2064             if (r.left != null)
2065                 r.left.parent = p;
2066             r.parent = p.parent;
2067             if (p.parent == null)
2068                 root = r;
2069             else if (p.parent.left == p)
2070                 p.parent.left = r;
2071             else
2072                 p.parent.right = r;
2073             r.left = p;
2074             p.parent = r;
2075         }
2076     }
2077 
2078     /** From CLR */
2079     private void rotateRight(Entry<K,V> p) {
2080         if (p != null) {
2081             Entry<K,V> l = p.left;
2082             p.left = l.right;
2083             if (l.right != null) l.right.parent = p;
2084             l.parent = p.parent;
2085             if (p.parent == null)
2086                 root = l;
2087             else if (p.parent.right == p)
2088                 p.parent.right = l;
2089             else p.parent.left = l;
2090             l.right = p;
2091             p.parent = l;
2092         }
2093     }
2094 
2095     /** From CLR */
2096     private void fixAfterInsertion(Entry<K,V> x) {
2097         x.color = RED;
2098 
2099         while (x != null && x != root && x.parent.color == RED) {
2100             if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
2101                 Entry<K,V> y = rightOf(parentOf(parentOf(x)));
2102                 if (colorOf(y) == RED) {
2103                     setColor(parentOf(x), BLACK);
2104                     setColor(y, BLACK);
2105                     setColor(parentOf(parentOf(x)), RED);
2106                     x = parentOf(parentOf(x));
2107                 } else {
2108                     if (x == rightOf(parentOf(x))) {
2109                         x = parentOf(x);
2110                         rotateLeft(x);
2111                     }
2112                     setColor(parentOf(x), BLACK);
2113                     setColor(parentOf(parentOf(x)), RED);
2114                     rotateRight(parentOf(parentOf(x)));
2115                 }
2116             } else {
2117                 Entry<K,V> y = leftOf(parentOf(parentOf(x)));
2118                 if (colorOf(y) == RED) {
2119                     setColor(parentOf(x), BLACK);
2120                     setColor(y, BLACK);
2121                     setColor(parentOf(parentOf(x)), RED);
2122                     x = parentOf(parentOf(x));
2123                 } else {
2124                     if (x == leftOf(parentOf(x))) {
2125                         x = parentOf(x);
2126                         rotateRight(x);
2127                     }
2128                     setColor(parentOf(x), BLACK);
2129                     setColor(parentOf(parentOf(x)), RED);
2130                     rotateLeft(parentOf(parentOf(x)));
2131                 }
2132             }
2133         }
2134         root.color = BLACK;
2135     }
2136 
2137     /**
2138      * Delete node p, and then rebalance the tree.
2139      */
2140     private void deleteEntry(Entry<K,V> p) {
2141         modCount++;
2142         size--;
2143 
2144         // If strictly internal, copy successor's element to p and then make p
2145         // point to successor.
2146         if (p.left != null && p.right != null) {
2147             Entry<K,V> s = successor(p);
2148             p.key = s.key;
2149             p.value = s.value;
2150             p = s;
2151         } // p has 2 children
2152 
2153         // Start fixup at replacement node, if it exists.
2154         Entry<K,V> replacement = (p.left != null ? p.left : p.right);
2155 
2156         if (replacement != null) {
2157             // Link replacement to parent
2158             replacement.parent = p.parent;
2159             if (p.parent == null)
2160                 root = replacement;
2161             else if (p == p.parent.left)
2162                 p.parent.left  = replacement;
2163             else
2164                 p.parent.right = replacement;
2165 
2166             // Null out links so they are OK to use by fixAfterDeletion.
2167             p.left = p.right = p.parent = null;
2168 
2169             // Fix replacement
2170             if (p.color == BLACK)
2171                 fixAfterDeletion(replacement);
2172         } else if (p.parent == null) { // return if we are the only node.
2173             root = null;
2174         } else { //  No children. Use self as phantom replacement and unlink.
2175             if (p.color == BLACK)
2176                 fixAfterDeletion(p);
2177 
2178             if (p.parent != null) {
2179                 if (p == p.parent.left)
2180                     p.parent.left = null;
2181                 else if (p == p.parent.right)
2182                     p.parent.right = null;
2183                 p.parent = null;
2184             }
2185         }
2186     }
2187 
2188     /** From CLR */
2189     private void fixAfterDeletion(Entry<K,V> x) {
2190         while (x != root && colorOf(x) == BLACK) {
2191             if (x == leftOf(parentOf(x))) {
2192                 Entry<K,V> sib = rightOf(parentOf(x));
2193 
2194                 if (colorOf(sib) == RED) {
2195                     setColor(sib, BLACK);
2196                     setColor(parentOf(x), RED);
2197                     rotateLeft(parentOf(x));
2198                     sib = rightOf(parentOf(x));
2199                 }
2200 
2201                 if (colorOf(leftOf(sib))  == BLACK &&
2202                     colorOf(rightOf(sib)) == BLACK) {
2203                     setColor(sib, RED);
2204                     x = parentOf(x);
2205                 } else {
2206                     if (colorOf(rightOf(sib)) == BLACK) {
2207                         setColor(leftOf(sib), BLACK);
2208                         setColor(sib, RED);
2209                         rotateRight(sib);
2210                         sib = rightOf(parentOf(x));
2211                     }
2212                     setColor(sib, colorOf(parentOf(x)));
2213                     setColor(parentOf(x), BLACK);
2214                     setColor(rightOf(sib), BLACK);
2215                     rotateLeft(parentOf(x));
2216                     x = root;
2217                 }
2218             } else { // symmetric
2219                 Entry<K,V> sib = leftOf(parentOf(x));
2220 
2221                 if (colorOf(sib) == RED) {
2222                     setColor(sib, BLACK);
2223                     setColor(parentOf(x), RED);
2224                     rotateRight(parentOf(x));
2225                     sib = leftOf(parentOf(x));
2226                 }
2227 
2228                 if (colorOf(rightOf(sib)) == BLACK &&
2229                     colorOf(leftOf(sib)) == BLACK) {
2230                     setColor(sib, RED);
2231                     x = parentOf(x);
2232                 } else {
2233                     if (colorOf(leftOf(sib)) == BLACK) {
2234                         setColor(rightOf(sib), BLACK);
2235                         setColor(sib, RED);
2236                         rotateLeft(sib);
2237                         sib = leftOf(parentOf(x));
2238                     }
2239                     setColor(sib, colorOf(parentOf(x)));
2240                     setColor(parentOf(x), BLACK);
2241                     setColor(leftOf(sib), BLACK);
2242                     rotateRight(parentOf(x));
2243                     x = root;
2244                 }
2245             }
2246         }
2247 
2248         setColor(x, BLACK);
2249     }
2250 
2251     private static final long serialVersionUID = 919286545866124006L;
2252 
2253     /**
2254      * Save the state of the {@code TreeMap} instance to a stream (i.e.,
2255      * serialize it).
2256      *
2257      * @serialData The <em>size</em> of the TreeMap (the number of key-value
2258      *             mappings) is emitted (int), followed by the key (Object)
2259      *             and value (Object) for each key-value mapping represented
2260      *             by the TreeMap. The key-value mappings are emitted in
2261      *             key-order (as determined by the TreeMap's Comparator,
2262      *             or by the keys' natural ordering if the TreeMap has no
2263      *             Comparator).
2264      */
2265     private void writeObject(java.io.ObjectOutputStream s)
2266         throws java.io.IOException {
2267         // Write out the Comparator and any hidden stuff
2268         s.defaultWriteObject();
2269 
2270         // Write out size (number of Mappings)
2271         s.writeInt(size);
2272 
2273         // Write out keys and values (alternating)
2274         for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
2275             Map.Entry<K,V> e = i.next();
2276             s.writeObject(e.getKey());
2277             s.writeObject(e.getValue());
2278         }
2279     }
2280 
2281     /**
2282      * Reconstitute the {@code TreeMap} instance from a stream (i.e.,
2283      * deserialize it).
2284      */
2285     private void readObject(final java.io.ObjectInputStream s)
2286         throws java.io.IOException, ClassNotFoundException {
2287         // Read in the Comparator and any hidden stuff
2288         s.defaultReadObject();
2289 
2290         // Read in size
2291         int size = s.readInt();
2292 
2293         buildFromSorted(size, null, s, null);
2294     }
2295 
2296     /** Intended to be called only from TreeSet.readObject */
2297     void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2298         throws java.io.IOException, ClassNotFoundException {
2299         buildFromSorted(size, null, s, defaultVal);
2300     }
2301 
2302     /** Intended to be called only from TreeSet.addAll */
2303     void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
2304         try {
2305             buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2306         } catch (java.io.IOException cannotHappen) {
2307         } catch (ClassNotFoundException cannotHappen) {
2308         }
2309     }
2310 
2311 
2312     /**
2313      * Linear time tree building algorithm from sorted data.  Can accept keys
2314      * and/or values from iterator or stream. This leads to too many
2315      * parameters, but seems better than alternatives.  The four formats
2316      * that this method accepts are:
2317      *
2318      *    1) An iterator of Map.Entries.  (it != null, defaultVal == null).
2319      *    2) An iterator of keys.         (it != null, defaultVal != null).
2320      *    3) A stream of alternating serialized keys and values.
2321      *                                   (it == null, defaultVal == null).
2322      *    4) A stream of serialized keys. (it == null, defaultVal != null).
2323      *
2324      * It is assumed that the comparator of the TreeMap is already set prior
2325      * to calling this method.
2326      *
2327      * @param size the number of keys (or key-value pairs) to be read from
2328      *        the iterator or stream
2329      * @param it If non-null, new entries are created from entries
2330      *        or keys read from this iterator.
2331      * @param str If non-null, new entries are created from keys and
2332      *        possibly values read from this stream in serialized form.
2333      *        Exactly one of it and str should be non-null.
2334      * @param defaultVal if non-null, this default value is used for
2335      *        each value in the map.  If null, each value is read from
2336      *        iterator or stream, as described above.
2337      * @throws IOException propagated from stream reads. This cannot
2338      *         occur if str is null.
2339      * @throws ClassNotFoundException propagated from readObject.
2340      *         This cannot occur if str is null.
2341      */
2342     private void buildFromSorted(int size, Iterator it,
2343                                  java.io.ObjectInputStream str,
2344                                  V defaultVal)
2345         throws  java.io.IOException, ClassNotFoundException {
2346         this.size = size;
2347         root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
2348                                it, str, defaultVal);
2349     }
2350 
2351     /**
2352      * Recursive "helper method" that does the real work of the
2353      * previous method.  Identically named parameters have
2354      * identical definitions.  Additional parameters are documented below.
2355      * It is assumed that the comparator and size fields of the TreeMap are
2356      * already set prior to calling this method.  (It ignores both fields.)
2357      *
2358      * @param level the current level of tree. Initial call should be 0.
2359      * @param lo the first element index of this subtree. Initial should be 0.
2360      * @param hi the last element index of this subtree.  Initial should be
2361      *        size-1.
2362      * @param redLevel the level at which nodes should be red.
2363      *        Must be equal to computeRedLevel for tree of this size.
2364      */
2365     private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
2366                                              int redLevel,
2367                                              Iterator it,
2368                                              java.io.ObjectInputStream str,
2369                                              V defaultVal)
2370         throws  java.io.IOException, ClassNotFoundException {
2371         /*
2372          * Strategy: The root is the middlemost element. To get to it, we
2373          * have to first recursively construct the entire left subtree,
2374          * so as to grab all of its elements. We can then proceed with right
2375          * subtree.
2376          *
2377          * The lo and hi arguments are the minimum and maximum
2378          * indices to pull out of the iterator or stream for current subtree.
2379          * They are not actually indexed, we just proceed sequentially,
2380          * ensuring that items are extracted in corresponding order.
2381          */
2382 
2383         if (hi < lo) return null;
2384 
2385         int mid = (lo + hi) >>> 1;
2386 
2387         Entry<K,V> left  = null;
2388         if (lo < mid)
2389             left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2390                                    it, str, defaultVal);
2391 
2392         // extract key and/or value from iterator or stream
2393         K key;
2394         V value;
2395         if (it != null) {
2396             if (defaultVal==null) {
2397                 Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
2398                 key = entry.getKey();
2399                 value = entry.getValue();
2400             } else {
2401                 key = (K)it.next();
2402                 value = defaultVal;
2403             }
2404         } else { // use stream
2405             key = (K) str.readObject();
2406             value = (defaultVal != null ? defaultVal : (V) str.readObject());
2407         }
2408 
2409         Entry<K,V> middle =  new Entry<>(key, value, null);
2410 
2411         // color nodes in non-full bottommost level red
2412         if (level == redLevel)
2413             middle.color = RED;
2414 
2415         if (left != null) {
2416             middle.left = left;
2417             left.parent = middle;
2418         }
2419 
2420         if (mid < hi) {
2421             Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2422                                                it, str, defaultVal);
2423             middle.right = right;
2424             right.parent = middle;
2425         }
2426 
2427         return middle;
2428     }
2429 
2430     /**
2431      * Find the level down to which to assign all nodes BLACK.  This is the
2432      * last `full' level of the complete binary tree produced by
2433      * buildTree. The remaining nodes are colored RED. (This makes a `nice'
2434      * set of color assignments wrt future insertions.) This level number is
2435      * computed by finding the number of splits needed to reach the zeroeth
2436      * node.  (The answer is ~lg(N), but in any case must be computed by same
2437      * quick O(lg(N)) loop.)
2438      */
2439     private static int computeRedLevel(int sz) {
2440         int level = 0;
2441         for (int m = sz - 1; m >= 0; m = m / 2 - 1)
2442             level++;
2443         return level;
2444     }
2445 }