1 /*
   2  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.io.ObjectStreamField;
  29 import java.io.UnsupportedEncodingException;
  30 import java.nio.charset.Charset;
  31 import java.util.ArrayList;
  32 import java.util.Arrays;
  33 import java.util.Comparator;
  34 import java.util.Formatter;
  35 import java.util.Locale;
  36 import java.util.regex.Matcher;
  37 import java.util.regex.Pattern;
  38 import java.util.regex.PatternSyntaxException;
  39 
  40 /**
  41  * The {@code String} class represents character strings. All
  42  * string literals in Java programs, such as {@code "abc"}, are
  43  * implemented as instances of this class.
  44  * <p>
  45  * Strings are constant; their values cannot be changed after they
  46  * are created. String buffers support mutable strings.
  47  * Because String objects are immutable they can be shared. For example:
  48  * <p><blockquote><pre>
  49  *     String str = "abc";
  50  * </pre></blockquote><p>
  51  * is equivalent to:
  52  * <p><blockquote><pre>
  53  *     char data[] = {'a', 'b', 'c'};
  54  *     String str = new String(data);
  55  * </pre></blockquote><p>
  56  * Here are some more examples of how strings can be used:
  57  * <p><blockquote><pre>
  58  *     System.out.println("abc");
  59  *     String cde = "cde";
  60  *     System.out.println("abc" + cde);
  61  *     String c = "abc".substring(2,3);
  62  *     String d = cde.substring(1, 2);
  63  * </pre></blockquote>
  64  * <p>
  65  * The class {@code String} includes methods for examining
  66  * individual characters of the sequence, for comparing strings, for
  67  * searching strings, for extracting substrings, and for creating a
  68  * copy of a string with all characters translated to uppercase or to
  69  * lowercase. Case mapping is based on the Unicode Standard version
  70  * specified by the {@link java.lang.Character Character} class.
  71  * <p>
  72  * The Java language provides special support for the string
  73  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
  74  * other objects to strings. String concatenation is implemented
  75  * through the {@code StringBuilder}(or {@code StringBuffer})
  76  * class and its {@code append} method.
  77  * String conversions are implemented through the method
  78  * {@code toString}, defined by {@code Object} and
  79  * inherited by all classes in Java. For additional information on
  80  * string concatenation and conversion, see Gosling, Joy, and Steele,
  81  * <i>The Java Language Specification</i>.
  82  *
  83  * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
  84  * or method in this class will cause a {@link NullPointerException} to be
  85  * thrown.
  86  *
  87  * <p>A {@code String} represents a string in the UTF-16 format
  88  * in which <em>supplementary characters</em> are represented by <em>surrogate
  89  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
  90  * Character Representations</a> in the {@code Character} class for
  91  * more information).
  92  * Index values refer to {@code char} code units, so a supplementary
  93  * character uses two positions in a {@code String}.
  94  * <p>The {@code String} class provides methods for dealing with
  95  * Unicode code points (i.e., characters), in addition to those for
  96  * dealing with Unicode code units (i.e., {@code char} values).
  97  *
  98  * @author  Lee Boynton
  99  * @author  Arthur van Hoff
 100  * @author  Martin Buchholz
 101  * @author  Ulf Zibis
 102  * @see     java.lang.Object#toString()
 103  * @see     java.lang.StringBuffer
 104  * @see     java.lang.StringBuilder
 105  * @see     java.nio.charset.Charset
 106  * @since   JDK1.0
 107  */
 108 
 109 public final class String
 110     implements java.io.Serializable, Comparable<String>, CharSequence {
 111     /** The value is used for character storage. */
 112     private final char value[];
 113 
 114     /** Cache the hash code for the string */
 115     private int hash; // Default to 0
 116 
 117     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 118     private static final long serialVersionUID = -6849794470754667710L;
 119 
 120     /**
 121      * Class String is special cased within the Serialization Stream Protocol.
 122      *
 123      * A String instance is written initially into an ObjectOutputStream in the
 124      * following format:
 125      * <pre>
 126      *      {@code TC_STRING} (utf String)
 127      * </pre>
 128      * The String is written by method {@code DataOutput.writeUTF}.
 129      * A new handle is generated to  refer to all future references to the
 130      * string instance within the stream.
 131      */
 132     private static final ObjectStreamField[] serialPersistentFields =
 133             new ObjectStreamField[0];
 134 
 135     /**
 136      * Initializes a newly created {@code String} object so that it represents
 137      * an empty character sequence.  Note that use of this constructor is
 138      * unnecessary since Strings are immutable.
 139      */
 140     public String() {
 141         this.value = new char[0];
 142     }
 143 
 144     /**
 145      * Initializes a newly created {@code String} object so that it represents
 146      * the same sequence of characters as the argument; in other words, the
 147      * newly created string is a copy of the argument string. Unless an
 148      * explicit copy of {@code original} is needed, use of this constructor is
 149      * unnecessary since Strings are immutable.
 150      *
 151      * @param  original
 152      *         A {@code String}
 153      */
 154     public String(String original) {
 155         this.value = original.value;
 156         this.hash = original.hash;
 157     }
 158 
 159     /**
 160      * Allocates a new {@code String} so that it represents the sequence of
 161      * characters currently contained in the character array argument. The
 162      * contents of the character array are copied; subsequent modification of
 163      * the character array does not affect the newly created string.
 164      *
 165      * @param  value
 166      *         The initial value of the string
 167      */
 168     public String(char value[]) {
 169         this.value = Arrays.copyOf(value, value.length);
 170     }
 171 
 172     /**
 173      * Allocates a new {@code String} that contains characters from a subarray
 174      * of the character array argument. The {@code offset} argument is the
 175      * index of the first character of the subarray and the {@code count}
 176      * argument specifies the length of the subarray. The contents of the
 177      * subarray are copied; subsequent modification of the character array does
 178      * not affect the newly created string.
 179      *
 180      * @param  value
 181      *         Array that is the source of characters
 182      *
 183      * @param  offset
 184      *         The initial offset
 185      *
 186      * @param  count
 187      *         The length
 188      *
 189      * @throws  IndexOutOfBoundsException
 190      *          If the {@code offset} and {@code count} arguments index
 191      *          characters outside the bounds of the {@code value} array
 192      */
 193     public String(char value[], int offset, int count) {
 194         if (offset < 0) {
 195             throw new StringIndexOutOfBoundsException(offset);
 196         }
 197         if (count < 0) {
 198             throw new StringIndexOutOfBoundsException(count);
 199         }
 200         // Note: offset or count might be near -1>>>1.
 201         if (offset > value.length - count) {
 202             throw new StringIndexOutOfBoundsException(offset + count);
 203         }
 204         this.value = Arrays.copyOfRange(value, offset, offset+count);
 205     }
 206 
 207     /**
 208      * Allocates a new {@code String} that contains characters from a subarray
 209      * of the <a href="Character.html#unicode">Unicode code point</a> array
 210      * argument.  The {@code offset} argument is the index of the first code
 211      * point of the subarray and the {@code count} argument specifies the
 212      * length of the subarray.  The contents of the subarray are converted to
 213      * {@code char}s; subsequent modification of the {@code int} array does not
 214      * affect the newly created string.
 215      *
 216      * @param  codePoints
 217      *         Array that is the source of Unicode code points
 218      *
 219      * @param  offset
 220      *         The initial offset
 221      *
 222      * @param  count
 223      *         The length
 224      *
 225      * @throws  IllegalArgumentException
 226      *          If any invalid Unicode code point is found in {@code
 227      *          codePoints}
 228      *
 229      * @throws  IndexOutOfBoundsException
 230      *          If the {@code offset} and {@code count} arguments index
 231      *          characters outside the bounds of the {@code codePoints} array
 232      *
 233      * @since  1.5
 234      */
 235     public String(int[] codePoints, int offset, int count) {
 236         if (offset < 0) {
 237             throw new StringIndexOutOfBoundsException(offset);
 238         }
 239         if (count < 0) {
 240             throw new StringIndexOutOfBoundsException(count);
 241         }
 242         // Note: offset or count might be near -1>>>1.
 243         if (offset > codePoints.length - count) {
 244             throw new StringIndexOutOfBoundsException(offset + count);
 245         }
 246 
 247         final int end = offset + count;
 248 
 249         // Pass 1: Compute precise size of char[]
 250         int n = count;
 251         for (int i = offset; i < end; i++) {
 252             int c = codePoints[i];
 253             if (Character.isBmpCodePoint(c))
 254                 continue;
 255             else if (Character.isValidCodePoint(c))
 256                 n++;
 257             else throw new IllegalArgumentException(Integer.toString(c));
 258         }
 259 
 260         // Pass 2: Allocate and fill in char[]
 261         final char[] v = new char[n];
 262 
 263         for (int i = offset, j = 0; i < end; i++, j++) {
 264             int c = codePoints[i];
 265             if (Character.isBmpCodePoint(c))
 266                 v[j] = (char)c;
 267             else
 268                 Character.toSurrogates(c, v, j++);
 269         }
 270 
 271         this.value = v;
 272     }
 273 
 274     /**
 275      * Allocates a new {@code String} constructed from a subarray of an array
 276      * of 8-bit integer values.
 277      *
 278      * <p> The {@code offset} argument is the index of the first byte of the
 279      * subarray, and the {@code count} argument specifies the length of the
 280      * subarray.
 281      *
 282      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
 283      * specified in the method above.
 284      *
 285      * @deprecated This method does not properly convert bytes into characters.
 286      * As of JDK&nbsp;1.1, the preferred way to do this is via the
 287      * {@code String} constructors that take a {@link
 288      * java.nio.charset.Charset}, charset name, or that use the platform's
 289      * default charset.
 290      *
 291      * @param  ascii
 292      *         The bytes to be converted to characters
 293      *
 294      * @param  hibyte
 295      *         The top 8 bits of each 16-bit Unicode code unit
 296      *
 297      * @param  offset
 298      *         The initial offset
 299      * @param  count
 300      *         The length
 301      *
 302      * @throws  IndexOutOfBoundsException
 303      *          If the {@code offset} or {@code count} argument is invalid
 304      *
 305      * @see  #String(byte[], int)
 306      * @see  #String(byte[], int, int, java.lang.String)
 307      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 308      * @see  #String(byte[], int, int)
 309      * @see  #String(byte[], java.lang.String)
 310      * @see  #String(byte[], java.nio.charset.Charset)
 311      * @see  #String(byte[])
 312      */
 313     @Deprecated
 314     public String(byte ascii[], int hibyte, int offset, int count) {
 315         checkBounds(ascii, offset, count);
 316         char value[] = new char[count];
 317 
 318         if (hibyte == 0) {
 319             for (int i = count; i-- > 0;) {
 320                 value[i] = (char)(ascii[i + offset] & 0xff);
 321             }
 322         } else {
 323             hibyte <<= 8;
 324             for (int i = count; i-- > 0;) {
 325                 value[i] = (char)(hibyte | (ascii[i + offset] & 0xff));
 326             }
 327         }
 328         this.value = value;
 329     }
 330 
 331     /**
 332      * Allocates a new {@code String} containing characters constructed from
 333      * an array of 8-bit integer values. Each character <i>c</i>in the
 334      * resulting string is constructed from the corresponding component
 335      * <i>b</i> in the byte array such that:
 336      *
 337      * <blockquote><pre>
 338      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
 339      *                         | (<b><i>b</i></b> &amp; 0xff))
 340      * </pre></blockquote>
 341      *
 342      * @deprecated  This method does not properly convert bytes into
 343      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 344      * {@code String} constructors that take a {@link
 345      * java.nio.charset.Charset}, charset name, or that use the platform's
 346      * default charset.
 347      *
 348      * @param  ascii
 349      *         The bytes to be converted to characters
 350      *
 351      * @param  hibyte
 352      *         The top 8 bits of each 16-bit Unicode code unit
 353      *
 354      * @see  #String(byte[], int, int, java.lang.String)
 355      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 356      * @see  #String(byte[], int, int)
 357      * @see  #String(byte[], java.lang.String)
 358      * @see  #String(byte[], java.nio.charset.Charset)
 359      * @see  #String(byte[])
 360      */
 361     @Deprecated
 362     public String(byte ascii[], int hibyte) {
 363         this(ascii, hibyte, 0, ascii.length);
 364     }
 365 
 366     /* Common private utility method used to bounds check the byte array
 367      * and requested offset & length values used by the String(byte[],..)
 368      * constructors.
 369      */
 370     private static void checkBounds(byte[] bytes, int offset, int length) {
 371         if (length < 0)
 372             throw new StringIndexOutOfBoundsException(length);
 373         if (offset < 0)
 374             throw new StringIndexOutOfBoundsException(offset);
 375         if (offset > bytes.length - length)
 376             throw new StringIndexOutOfBoundsException(offset + length);
 377     }
 378 
 379     /**
 380      * Constructs a new {@code String} by decoding the specified subarray of
 381      * bytes using the specified charset.  The length of the new {@code String}
 382      * is a function of the charset, and hence may not be equal to the length
 383      * of the subarray.
 384      *
 385      * <p> The behavior of this constructor when the given bytes are not valid
 386      * in the given charset is unspecified.  The {@link
 387      * java.nio.charset.CharsetDecoder} class should be used when more control
 388      * over the decoding process is required.
 389      *
 390      * @param  bytes
 391      *         The bytes to be decoded into characters
 392      *
 393      * @param  offset
 394      *         The index of the first byte to decode
 395      *
 396      * @param  length
 397      *         The number of bytes to decode
 398 
 399      * @param  charsetName
 400      *         The name of a supported {@linkplain java.nio.charset.Charset
 401      *         charset}
 402      *
 403      * @throws  UnsupportedEncodingException
 404      *          If the named charset is not supported
 405      *
 406      * @throws  IndexOutOfBoundsException
 407      *          If the {@code offset} and {@code length} arguments index
 408      *          characters outside the bounds of the {@code bytes} array
 409      *
 410      * @since  JDK1.1
 411      */
 412     public String(byte bytes[], int offset, int length, String charsetName)
 413             throws UnsupportedEncodingException {
 414         if (charsetName == null)
 415             throw new NullPointerException("charsetName");
 416         checkBounds(bytes, offset, length);
 417         this.value = StringCoding.decode(charsetName, bytes, offset, length);
 418     }
 419 
 420     /**
 421      * Constructs a new {@code String} by decoding the specified subarray of
 422      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 423      * The length of the new {@code String} is a function of the charset, and
 424      * hence may not be equal to the length of the subarray.
 425      *
 426      * <p> This method always replaces malformed-input and unmappable-character
 427      * sequences with this charset's default replacement string.  The {@link
 428      * java.nio.charset.CharsetDecoder} class should be used when more control
 429      * over the decoding process is required.
 430      *
 431      * @param  bytes
 432      *         The bytes to be decoded into characters
 433      *
 434      * @param  offset
 435      *         The index of the first byte to decode
 436      *
 437      * @param  length
 438      *         The number of bytes to decode
 439      *
 440      * @param  charset
 441      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 442      *         decode the {@code bytes}
 443      *
 444      * @throws  IndexOutOfBoundsException
 445      *          If the {@code offset} and {@code length} arguments index
 446      *          characters outside the bounds of the {@code bytes} array
 447      *
 448      * @since  1.6
 449      */
 450     public String(byte bytes[], int offset, int length, Charset charset) {
 451         if (charset == null)
 452             throw new NullPointerException("charset");
 453         checkBounds(bytes, offset, length);
 454         this.value =  StringCoding.decode(charset, bytes, offset, length);
 455     }
 456 
 457     /**
 458      * Constructs a new {@code String} by decoding the specified array of bytes
 459      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
 460      * length of the new {@code String} is a function of the charset, and hence
 461      * may not be equal to the length of the byte array.
 462      *
 463      * <p> The behavior of this constructor when the given bytes are not valid
 464      * in the given charset is unspecified.  The {@link
 465      * java.nio.charset.CharsetDecoder} class should be used when more control
 466      * over the decoding process is required.
 467      *
 468      * @param  bytes
 469      *         The bytes to be decoded into characters
 470      *
 471      * @param  charsetName
 472      *         The name of a supported {@linkplain java.nio.charset.Charset
 473      *         charset}
 474      *
 475      * @throws  UnsupportedEncodingException
 476      *          If the named charset is not supported
 477      *
 478      * @since  JDK1.1
 479      */
 480     public String(byte bytes[], String charsetName)
 481             throws UnsupportedEncodingException {
 482         this(bytes, 0, bytes.length, charsetName);
 483     }
 484 
 485     /**
 486      * Constructs a new {@code String} by decoding the specified array of
 487      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 488      * The length of the new {@code String} is a function of the charset, and
 489      * hence may not be equal to the length of the byte array.
 490      *
 491      * <p> This method always replaces malformed-input and unmappable-character
 492      * sequences with this charset's default replacement string.  The {@link
 493      * java.nio.charset.CharsetDecoder} class should be used when more control
 494      * over the decoding process is required.
 495      *
 496      * @param  bytes
 497      *         The bytes to be decoded into characters
 498      *
 499      * @param  charset
 500      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 501      *         decode the {@code bytes}
 502      *
 503      * @since  1.6
 504      */
 505     public String(byte bytes[], Charset charset) {
 506         this(bytes, 0, bytes.length, charset);
 507     }
 508 
 509     /**
 510      * Constructs a new {@code String} by decoding the specified subarray of
 511      * bytes using the platform's default charset.  The length of the new
 512      * {@code String} is a function of the charset, and hence may not be equal
 513      * to the length of the subarray.
 514      *
 515      * <p> The behavior of this constructor when the given bytes are not valid
 516      * in the default charset is unspecified.  The {@link
 517      * java.nio.charset.CharsetDecoder} class should be used when more control
 518      * over the decoding process is required.
 519      *
 520      * @param  bytes
 521      *         The bytes to be decoded into characters
 522      *
 523      * @param  offset
 524      *         The index of the first byte to decode
 525      *
 526      * @param  length
 527      *         The number of bytes to decode
 528      *
 529      * @throws  IndexOutOfBoundsException
 530      *          If the {@code offset} and the {@code length} arguments index
 531      *          characters outside the bounds of the {@code bytes} array
 532      *
 533      * @since  JDK1.1
 534      */
 535     public String(byte bytes[], int offset, int length) {
 536         checkBounds(bytes, offset, length);
 537         this.value = StringCoding.decode(bytes, offset, length);
 538     }
 539 
 540     /**
 541      * Constructs a new {@code String} by decoding the specified array of bytes
 542      * using the platform's default charset.  The length of the new {@code
 543      * String} is a function of the charset, and hence may not be equal to the
 544      * length of the byte array.
 545      *
 546      * <p> The behavior of this constructor when the given bytes are not valid
 547      * in the default charset is unspecified.  The {@link
 548      * java.nio.charset.CharsetDecoder} class should be used when more control
 549      * over the decoding process is required.
 550      *
 551      * @param  bytes
 552      *         The bytes to be decoded into characters
 553      *
 554      * @since  JDK1.1
 555      */
 556     public String(byte bytes[]) {
 557         this(bytes, 0, bytes.length);
 558     }
 559 
 560     /**
 561      * Allocates a new string that contains the sequence of characters
 562      * currently contained in the string buffer argument. The contents of the
 563      * string buffer are copied; subsequent modification of the string buffer
 564      * does not affect the newly created string.
 565      *
 566      * @param  buffer
 567      *         A {@code StringBuffer}
 568      */
 569     public String(StringBuffer buffer) {
 570         synchronized(buffer) {
 571             this.value = Arrays.copyOf(buffer.getValue(), buffer.length());
 572         }
 573     }
 574 
 575     /**
 576      * Allocates a new string that contains the sequence of characters
 577      * currently contained in the string builder argument. The contents of the
 578      * string builder are copied; subsequent modification of the string builder
 579      * does not affect the newly created string.
 580      *
 581      * <p> This constructor is provided to ease migration to {@code
 582      * StringBuilder}. Obtaining a string from a string builder via the {@code
 583      * toString} method is likely to run faster and is generally preferred.
 584      *
 585      * @param   builder
 586      *          A {@code StringBuilder}
 587      *
 588      * @since  1.5
 589      */
 590     public String(StringBuilder builder) {
 591         this.value = Arrays.copyOf(builder.getValue(), builder.length());
 592     }
 593 
 594     /*
 595     * Package private constructor which shares value array for speed.
 596     * this constructor is always expected to be called with share==true.
 597     * a separate constructor is needed because we already have a public
 598     * String(char[]) constructor that makes a copy of the given char[].
 599     */
 600     String(char[] value, boolean share) {
 601         // assert share : "unshared not supported";
 602         this.value = value;
 603     }
 604 
 605     /**
 606      * Returns the length of this string.
 607      * The length is equal to the number of <a href="Character.html#unicode">Unicode
 608      * code units</a> in the string.
 609      *
 610      * @return  the length of the sequence of characters represented by this
 611      *          object.
 612      */
 613     public int length() {
 614         return value.length;
 615     }
 616 
 617     /**
 618      * Returns <tt>true</tt> if, and only if, {@link #length()} is <tt>0</tt>.
 619      *
 620      * @return <tt>true</tt> if {@link #length()} is <tt>0</tt>, otherwise
 621      * <tt>false</tt>
 622      *
 623      * @since 1.6
 624      */
 625     public boolean isEmpty() {
 626         return value.length == 0;
 627     }
 628 
 629     /**
 630      * Returns the {@code char} value at the
 631      * specified index. An index ranges from {@code 0} to
 632      * {@code length() - 1}. The first {@code char} value of the sequence
 633      * is at index {@code 0}, the next at index {@code 1},
 634      * and so on, as for array indexing.
 635      *
 636      * <p>If the {@code char} value specified by the index is a
 637      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 638      * value is returned.
 639      *
 640      * @param      index   the index of the {@code char} value.
 641      * @return     the {@code char} value at the specified index of this string.
 642      *             The first {@code char} value is at index {@code 0}.
 643      * @exception  IndexOutOfBoundsException  if the {@code index}
 644      *             argument is negative or not less than the length of this
 645      *             string.
 646      */
 647     public char charAt(int index) {
 648         if ((index < 0) || (index >= value.length)) {
 649             throw new StringIndexOutOfBoundsException(index);
 650         }
 651         return value[index];
 652     }
 653 
 654     /**
 655      * Returns the character (Unicode code point) at the specified
 656      * index. The index refers to {@code char} values
 657      * (Unicode code units) and ranges from {@code 0} to
 658      * {@link #length()}{@code  - 1}.
 659      *
 660      * <p> If the {@code char} value specified at the given index
 661      * is in the high-surrogate range, the following index is less
 662      * than the length of this {@code String}, and the
 663      * {@code char} value at the following index is in the
 664      * low-surrogate range, then the supplementary code point
 665      * corresponding to this surrogate pair is returned. Otherwise,
 666      * the {@code char} value at the given index is returned.
 667      *
 668      * @param      index the index to the {@code char} values
 669      * @return     the code point value of the character at the
 670      *             {@code index}
 671      * @exception  IndexOutOfBoundsException  if the {@code index}
 672      *             argument is negative or not less than the length of this
 673      *             string.
 674      * @since      1.5
 675      */
 676     public int codePointAt(int index) {
 677         if ((index < 0) || (index >= value.length)) {
 678             throw new StringIndexOutOfBoundsException(index);
 679         }
 680         return Character.codePointAtImpl(value, index, value.length);
 681     }
 682 
 683     /**
 684      * Returns the character (Unicode code point) before the specified
 685      * index. The index refers to {@code char} values
 686      * (Unicode code units) and ranges from {@code 1} to {@link
 687      * CharSequence#length() length}.
 688      *
 689      * <p> If the {@code char} value at {@code (index - 1)}
 690      * is in the low-surrogate range, {@code (index - 2)} is not
 691      * negative, and the {@code char} value at {@code (index -
 692      * 2)} is in the high-surrogate range, then the
 693      * supplementary code point value of the surrogate pair is
 694      * returned. If the {@code char} value at {@code index -
 695      * 1} is an unpaired low-surrogate or a high-surrogate, the
 696      * surrogate value is returned.
 697      *
 698      * @param     index the index following the code point that should be returned
 699      * @return    the Unicode code point value before the given index.
 700      * @exception IndexOutOfBoundsException if the {@code index}
 701      *            argument is less than 1 or greater than the length
 702      *            of this string.
 703      * @since     1.5
 704      */
 705     public int codePointBefore(int index) {
 706         int i = index - 1;
 707         if ((i < 0) || (i >= value.length)) {
 708             throw new StringIndexOutOfBoundsException(index);
 709         }
 710         return Character.codePointBeforeImpl(value, index, 0);
 711     }
 712 
 713     /**
 714      * Returns the number of Unicode code points in the specified text
 715      * range of this {@code String}. The text range begins at the
 716      * specified {@code beginIndex} and extends to the
 717      * {@code char} at index {@code endIndex - 1}. Thus the
 718      * length (in {@code char}s) of the text range is
 719      * {@code endIndex-beginIndex}. Unpaired surrogates within
 720      * the text range count as one code point each.
 721      *
 722      * @param beginIndex the index to the first {@code char} of
 723      * the text range.
 724      * @param endIndex the index after the last {@code char} of
 725      * the text range.
 726      * @return the number of Unicode code points in the specified text
 727      * range
 728      * @exception IndexOutOfBoundsException if the
 729      * {@code beginIndex} is negative, or {@code endIndex}
 730      * is larger than the length of this {@code String}, or
 731      * {@code beginIndex} is larger than {@code endIndex}.
 732      * @since  1.5
 733      */
 734     public int codePointCount(int beginIndex, int endIndex) {
 735         if (beginIndex < 0 || endIndex > value.length || beginIndex > endIndex) {
 736             throw new IndexOutOfBoundsException();
 737         }
 738         return Character.codePointCountImpl(value, beginIndex, endIndex - beginIndex);
 739     }
 740 
 741     /**
 742      * Returns the index within this {@code String} that is
 743      * offset from the given {@code index} by
 744      * {@code codePointOffset} code points. Unpaired surrogates
 745      * within the text range given by {@code index} and
 746      * {@code codePointOffset} count as one code point each.
 747      *
 748      * @param index the index to be offset
 749      * @param codePointOffset the offset in code points
 750      * @return the index within this {@code String}
 751      * @exception IndexOutOfBoundsException if {@code index}
 752      *   is negative or larger then the length of this
 753      *   {@code String}, or if {@code codePointOffset} is positive
 754      *   and the substring starting with {@code index} has fewer
 755      *   than {@code codePointOffset} code points,
 756      *   or if {@code codePointOffset} is negative and the substring
 757      *   before {@code index} has fewer than the absolute value
 758      *   of {@code codePointOffset} code points.
 759      * @since 1.5
 760      */
 761     public int offsetByCodePoints(int index, int codePointOffset) {
 762         if (index < 0 || index > value.length) {
 763             throw new IndexOutOfBoundsException();
 764         }
 765         return Character.offsetByCodePointsImpl(value, 0, value.length,
 766                 index, codePointOffset);
 767     }
 768 
 769     /**
 770      * Copy characters from this string into dst starting at dstBegin.
 771      * This method doesn't perform any range checking.
 772      */
 773     void getChars(char dst[], int dstBegin) {
 774         System.arraycopy(value, 0, dst, dstBegin, value.length);
 775     }
 776 
 777     /**
 778      * Copies characters from this string into the destination character
 779      * array.
 780      * <p>
 781      * The first character to be copied is at index {@code srcBegin};
 782      * the last character to be copied is at index {@code srcEnd-1}
 783      * (thus the total number of characters to be copied is
 784      * {@code srcEnd-srcBegin}). The characters are copied into the
 785      * subarray of {@code dst} starting at index {@code dstBegin}
 786      * and ending at index:
 787      * <p><blockquote><pre>
 788      *     dstbegin + (srcEnd-srcBegin) - 1
 789      * </pre></blockquote>
 790      *
 791      * @param      srcBegin   index of the first character in the string
 792      *                        to copy.
 793      * @param      srcEnd     index after the last character in the string
 794      *                        to copy.
 795      * @param      dst        the destination array.
 796      * @param      dstBegin   the start offset in the destination array.
 797      * @exception IndexOutOfBoundsException If any of the following
 798      *            is true:
 799      *            <ul><li>{@code srcBegin} is negative.
 800      *            <li>{@code srcBegin} is greater than {@code srcEnd}
 801      *            <li>{@code srcEnd} is greater than the length of this
 802      *                string
 803      *            <li>{@code dstBegin} is negative
 804      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
 805      *                {@code dst.length}</ul>
 806      */
 807     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
 808         if (srcBegin < 0) {
 809             throw new StringIndexOutOfBoundsException(srcBegin);
 810         }
 811         if (srcEnd > value.length) {
 812             throw new StringIndexOutOfBoundsException(srcEnd);
 813         }
 814         if (srcBegin > srcEnd) {
 815             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 816         }
 817         System.arraycopy(value, srcBegin, dst, dstBegin, srcEnd - srcBegin);
 818     }
 819 
 820     /**
 821      * Copies characters from this string into the destination byte array. Each
 822      * byte receives the 8 low-order bits of the corresponding character. The
 823      * eight high-order bits of each character are not copied and do not
 824      * participate in the transfer in any way.
 825      *
 826      * <p> The first character to be copied is at index {@code srcBegin}; the
 827      * last character to be copied is at index {@code srcEnd-1}.  The total
 828      * number of characters to be copied is {@code srcEnd-srcBegin}. The
 829      * characters, converted to bytes, are copied into the subarray of {@code
 830      * dst} starting at index {@code dstBegin} and ending at index:
 831      *
 832      * <blockquote><pre>
 833      *     dstbegin + (srcEnd-srcBegin) - 1
 834      * </pre></blockquote>
 835      *
 836      * @deprecated  This method does not properly convert characters into
 837      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 838      * {@link #getBytes()} method, which uses the platform's default charset.
 839      *
 840      * @param  srcBegin
 841      *         Index of the first character in the string to copy
 842      *
 843      * @param  srcEnd
 844      *         Index after the last character in the string to copy
 845      *
 846      * @param  dst
 847      *         The destination array
 848      *
 849      * @param  dstBegin
 850      *         The start offset in the destination array
 851      *
 852      * @throws  IndexOutOfBoundsException
 853      *          If any of the following is true:
 854      *          <ul>
 855      *            <li> {@code srcBegin} is negative
 856      *            <li> {@code srcBegin} is greater than {@code srcEnd}
 857      *            <li> {@code srcEnd} is greater than the length of this String
 858      *            <li> {@code dstBegin} is negative
 859      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
 860      *                 dst.length}
 861      *          </ul>
 862      */
 863     @Deprecated
 864     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
 865         if (srcBegin < 0) {
 866             throw new StringIndexOutOfBoundsException(srcBegin);
 867         }
 868         if (srcEnd > value.length) {
 869             throw new StringIndexOutOfBoundsException(srcEnd);
 870         }
 871         if (srcBegin > srcEnd) {
 872             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 873         }
 874         int j = dstBegin;
 875         int n = srcEnd;
 876         int i = srcBegin;
 877         char[] val = value;   /* avoid getfield opcode */
 878 
 879         while (i < n) {
 880             dst[j++] = (byte)val[i++];
 881         }
 882     }
 883 
 884     /**
 885      * Encodes this {@code String} into a sequence of bytes using the named
 886      * charset, storing the result into a new byte array.
 887      *
 888      * <p> The behavior of this method when this string cannot be encoded in
 889      * the given charset is unspecified.  The {@link
 890      * java.nio.charset.CharsetEncoder} class should be used when more control
 891      * over the encoding process is required.
 892      *
 893      * @param  charsetName
 894      *         The name of a supported {@linkplain java.nio.charset.Charset
 895      *         charset}
 896      *
 897      * @return  The resultant byte array
 898      *
 899      * @throws  UnsupportedEncodingException
 900      *          If the named charset is not supported
 901      *
 902      * @since  JDK1.1
 903      */
 904     public byte[] getBytes(String charsetName)
 905             throws UnsupportedEncodingException {
 906         if (charsetName == null) throw new NullPointerException();
 907         return StringCoding.encode(charsetName, value, 0, value.length);
 908     }
 909 
 910     /**
 911      * Encodes this {@code String} into a sequence of bytes using the given
 912      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
 913      * new byte array.
 914      *
 915      * <p> This method always replaces malformed-input and unmappable-character
 916      * sequences with this charset's default replacement byte array.  The
 917      * {@link java.nio.charset.CharsetEncoder} class should be used when more
 918      * control over the encoding process is required.
 919      *
 920      * @param  charset
 921      *         The {@linkplain java.nio.charset.Charset} to be used to encode
 922      *         the {@code String}
 923      *
 924      * @return  The resultant byte array
 925      *
 926      * @since  1.6
 927      */
 928     public byte[] getBytes(Charset charset) {
 929         if (charset == null) throw new NullPointerException();
 930         return StringCoding.encode(charset, value, 0, value.length);
 931     }
 932 
 933     /**
 934      * Encodes this {@code String} into a sequence of bytes using the
 935      * platform's default charset, storing the result into a new byte array.
 936      *
 937      * <p> The behavior of this method when this string cannot be encoded in
 938      * the default charset is unspecified.  The {@link
 939      * java.nio.charset.CharsetEncoder} class should be used when more control
 940      * over the encoding process is required.
 941      *
 942      * @return  The resultant byte array
 943      *
 944      * @since      JDK1.1
 945      */
 946     public byte[] getBytes() {
 947         return StringCoding.encode(value, 0, value.length);
 948     }
 949 
 950     /**
 951      * Compares this string to the specified object.  The result is {@code
 952      * true} if and only if the argument is not {@code null} and is a {@code
 953      * String} object that represents the same sequence of characters as this
 954      * object.
 955      *
 956      * @param  anObject
 957      *         The object to compare this {@code String} against
 958      *
 959      * @return  {@code true} if the given object represents a {@code String}
 960      *          equivalent to this string, {@code false} otherwise
 961      *
 962      * @see  #compareTo(String)
 963      * @see  #equalsIgnoreCase(String)
 964      */
 965     public boolean equals(Object anObject) {
 966         if (this == anObject) {
 967             return true;
 968         }
 969         if (anObject instanceof String) {
 970             String anotherString = (String) anObject;
 971             int n = value.length;
 972             if (n == anotherString.value.length) {
 973                 char v1[] = value;
 974                 char v2[] = anotherString.value;
 975                 int i = 0;
 976                 while (n-- != 0) {
 977                     if (v1[i] != v2[i])
 978                             return false;
 979                     i++;
 980                 }
 981                 return true;
 982             }
 983         }
 984         return false;
 985     }
 986 
 987     /**
 988      * Compares this string to the specified {@code StringBuffer}.  The result
 989      * is {@code true} if and only if this {@code String} represents the same
 990      * sequence of characters as the specified {@code StringBuffer}.
 991      *
 992      * @param  sb
 993      *         The {@code StringBuffer} to compare this {@code String} against
 994      *
 995      * @return  {@code true} if this {@code String} represents the same
 996      *          sequence of characters as the specified {@code StringBuffer},
 997      *          {@code false} otherwise
 998      *
 999      * @since  1.4
1000      */
1001     public boolean contentEquals(StringBuffer sb) {
1002         synchronized (sb) {
1003             return contentEquals((CharSequence) sb);
1004         }
1005     }
1006 
1007     /**
1008      * Compares this string to the specified {@code CharSequence}.  The result
1009      * is {@code true} if and only if this {@code String} represents the same
1010      * sequence of char values as the specified sequence.
1011      *
1012      * @param  cs
1013      *         The sequence to compare this {@code String} against
1014      *
1015      * @return  {@code true} if this {@code String} represents the same
1016      *          sequence of char values as the specified sequence, {@code
1017      *          false} otherwise
1018      *
1019      * @since  1.5
1020      */
1021     public boolean contentEquals(CharSequence cs) {
1022         if (value.length != cs.length())
1023             return false;
1024         // Argument is a StringBuffer, StringBuilder
1025         if (cs instanceof AbstractStringBuilder) {
1026             char v1[] = value;
1027             char v2[] = ((AbstractStringBuilder) cs).getValue();
1028             int i = 0;
1029             int n = value.length;
1030             while (n-- != 0) {
1031                 if (v1[i] != v2[i])
1032                     return false;
1033                 i++;
1034             }
1035             return true;
1036         }
1037         // Argument is a String
1038         if (cs.equals(this))
1039             return true;
1040         // Argument is a generic CharSequence
1041         char v1[] = value;
1042         int i = 0;
1043         int n = value.length;
1044         while (n-- != 0) {
1045             if (v1[i] != cs.charAt(i))
1046                 return false;
1047             i++;
1048         }
1049         return true;
1050     }
1051 
1052     /**
1053      * Compares this {@code String} to another {@code String}, ignoring case
1054      * considerations.  Two strings are considered equal ignoring case if they
1055      * are of the same length and corresponding characters in the two strings
1056      * are equal ignoring case.
1057      *
1058      * <p> Two characters {@code c1} and {@code c2} are considered the same
1059      * ignoring case if at least one of the following is true:
1060      * <ul>
1061      *   <li> The two characters are the same (as compared by the
1062      *        {@code ==} operator)
1063      *   <li> Applying the method {@link
1064      *        java.lang.Character#toUpperCase(char)} to each character
1065      *        produces the same result
1066      *   <li> Applying the method {@link
1067      *        java.lang.Character#toLowerCase(char)} to each character
1068      *        produces the same result
1069      * </ul>
1070      *
1071      * @param  anotherString
1072      *         The {@code String} to compare this {@code String} against
1073      *
1074      * @return  {@code true} if the argument is not {@code null} and it
1075      *          represents an equivalent {@code String} ignoring case; {@code
1076      *          false} otherwise
1077      *
1078      * @see  #equals(Object)
1079      */
1080     public boolean equalsIgnoreCase(String anotherString) {
1081         return (this == anotherString) ? true
1082                 : (anotherString != null)
1083                 && (anotherString.value.length == value.length)
1084                 && regionMatches(true, 0, anotherString, 0, value.length);
1085     }
1086 
1087     /**
1088      * Compares two strings lexicographically.
1089      * The comparison is based on the Unicode value of each character in
1090      * the strings. The character sequence represented by this
1091      * {@code String} object is compared lexicographically to the
1092      * character sequence represented by the argument string. The result is
1093      * a negative integer if this {@code String} object
1094      * lexicographically precedes the argument string. The result is a
1095      * positive integer if this {@code String} object lexicographically
1096      * follows the argument string. The result is zero if the strings
1097      * are equal; {@code compareTo} returns {@code 0} exactly when
1098      * the {@link #equals(Object)} method would return {@code true}.
1099      * <p>
1100      * This is the definition of lexicographic ordering. If two strings are
1101      * different, then either they have different characters at some index
1102      * that is a valid index for both strings, or their lengths are different,
1103      * or both. If they have different characters at one or more index
1104      * positions, let <i>k</i> be the smallest such index; then the string
1105      * whose character at position <i>k</i> has the smaller value, as
1106      * determined by using the &lt; operator, lexicographically precedes the
1107      * other string. In this case, {@code compareTo} returns the
1108      * difference of the two character values at position {@code k} in
1109      * the two string -- that is, the value:
1110      * <blockquote><pre>
1111      * this.charAt(k)-anotherString.charAt(k)
1112      * </pre></blockquote>
1113      * If there is no index position at which they differ, then the shorter
1114      * string lexicographically precedes the longer string. In this case,
1115      * {@code compareTo} returns the difference of the lengths of the
1116      * strings -- that is, the value:
1117      * <blockquote><pre>
1118      * this.length()-anotherString.length()
1119      * </pre></blockquote>
1120      *
1121      * @param   anotherString   the {@code String} to be compared.
1122      * @return  the value {@code 0} if the argument string is equal to
1123      *          this string; a value less than {@code 0} if this string
1124      *          is lexicographically less than the string argument; and a
1125      *          value greater than {@code 0} if this string is
1126      *          lexicographically greater than the string argument.
1127      */
1128     public int compareTo(String anotherString) {
1129         int len1 = value.length;
1130         int len2 = anotherString.value.length;
1131         int lim = Math.min(len1, len2);
1132         char v1[] = value;
1133         char v2[] = anotherString.value;
1134 
1135         int k = 0;
1136         while (k < lim) {
1137             char c1 = v1[k];
1138             char c2 = v2[k];
1139             if (c1 != c2) {
1140                 return c1 - c2;
1141             }
1142             k++;
1143         }
1144         return len1 - len2;
1145     }
1146 
1147     /**
1148      * A Comparator that orders {@code String} objects as by
1149      * {@code compareToIgnoreCase}. This comparator is serializable.
1150      * <p>
1151      * Note that this Comparator does <em>not</em> take locale into account,
1152      * and will result in an unsatisfactory ordering for certain locales.
1153      * The java.text package provides <em>Collators</em> to allow
1154      * locale-sensitive ordering.
1155      *
1156      * @see     java.text.Collator#compare(String, String)
1157      * @since   1.2
1158      */
1159     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1160                                          = new CaseInsensitiveComparator();
1161     private static class CaseInsensitiveComparator
1162             implements Comparator<String>, java.io.Serializable {
1163         // use serialVersionUID from JDK 1.2.2 for interoperability
1164         private static final long serialVersionUID = 8575799808933029326L;
1165 
1166         public int compare(String s1, String s2) {
1167             int n1 = s1.length();
1168             int n2 = s2.length();
1169             int min = Math.min(n1, n2);
1170             for (int i = 0; i < min; i++) {
1171                 char c1 = s1.charAt(i);
1172                 char c2 = s2.charAt(i);
1173                 if (c1 != c2) {
1174                     c1 = Character.toUpperCase(c1);
1175                     c2 = Character.toUpperCase(c2);
1176                     if (c1 != c2) {
1177                         c1 = Character.toLowerCase(c1);
1178                         c2 = Character.toLowerCase(c2);
1179                         if (c1 != c2) {
1180                             // No overflow because of numeric promotion
1181                             return c1 - c2;
1182                         }
1183                     }
1184                 }
1185             }
1186             return n1 - n2;
1187         }
1188 
1189         /** Replaces the de-serialized object. */
1190         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1191     }
1192 
1193     /**
1194      * Compares two strings lexicographically, ignoring case
1195      * differences. This method returns an integer whose sign is that of
1196      * calling {@code compareTo} with normalized versions of the strings
1197      * where case differences have been eliminated by calling
1198      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1199      * each character.
1200      * <p>
1201      * Note that this method does <em>not</em> take locale into account,
1202      * and will result in an unsatisfactory ordering for certain locales.
1203      * The java.text package provides <em>collators</em> to allow
1204      * locale-sensitive ordering.
1205      *
1206      * @param   str   the {@code String} to be compared.
1207      * @return  a negative integer, zero, or a positive integer as the
1208      *          specified String is greater than, equal to, or less
1209      *          than this String, ignoring case considerations.
1210      * @see     java.text.Collator#compare(String, String)
1211      * @since   1.2
1212      */
1213     public int compareToIgnoreCase(String str) {
1214         return CASE_INSENSITIVE_ORDER.compare(this, str);
1215     }
1216 
1217     /**
1218      * Tests if two string regions are equal.
1219      * <p>
1220      * A substring of this <tt>String</tt> object is compared to a substring
1221      * of the argument other. The result is true if these substrings
1222      * represent identical character sequences. The substring of this
1223      * <tt>String</tt> object to be compared begins at index <tt>toffset</tt>
1224      * and has length <tt>len</tt>. The substring of other to be compared
1225      * begins at index <tt>ooffset</tt> and has length <tt>len</tt>. The
1226      * result is <tt>false</tt> if and only if at least one of the following
1227      * is true:
1228      * <ul><li><tt>toffset</tt> is negative.
1229      * <li><tt>ooffset</tt> is negative.
1230      * <li><tt>toffset+len</tt> is greater than the length of this
1231      * <tt>String</tt> object.
1232      * <li><tt>ooffset+len</tt> is greater than the length of the other
1233      * argument.
1234      * <li>There is some nonnegative integer <i>k</i> less than <tt>len</tt>
1235      * such that:
1236      * <tt>this.charAt(toffset+<i>k</i>)&nbsp;!=&nbsp;other.charAt(ooffset+<i>k</i>)</tt>
1237      * </ul>
1238      *
1239      * @param   toffset   the starting offset of the subregion in this string.
1240      * @param   other     the string argument.
1241      * @param   ooffset   the starting offset of the subregion in the string
1242      *                    argument.
1243      * @param   len       the number of characters to compare.
1244      * @return  {@code true} if the specified subregion of this string
1245      *          exactly matches the specified subregion of the string argument;
1246      *          {@code false} otherwise.
1247      */
1248     public boolean regionMatches(int toffset, String other, int ooffset,
1249             int len) {
1250         char ta[] = value;
1251         int to = toffset;
1252         char pa[] = other.value;
1253         int po = ooffset;
1254         // Note: toffset, ooffset, or len might be near -1>>>1.
1255         if ((ooffset < 0) || (toffset < 0)
1256                 || (toffset > (long)value.length - len)
1257                 || (ooffset > (long)other.value.length - len)) {
1258             return false;
1259         }
1260         while (len-- > 0) {
1261             if (ta[to++] != pa[po++]) {
1262                 return false;
1263             }
1264         }
1265         return true;
1266     }
1267 
1268     /**
1269      * Tests if two string regions are equal.
1270      * <p>
1271      * A substring of this <tt>String</tt> object is compared to a substring
1272      * of the argument <tt>other</tt>. The result is <tt>true</tt> if these
1273      * substrings represent character sequences that are the same, ignoring
1274      * case if and only if <tt>ignoreCase</tt> is true. The substring of
1275      * this <tt>String</tt> object to be compared begins at index
1276      * <tt>toffset</tt> and has length <tt>len</tt>. The substring of
1277      * <tt>other</tt> to be compared begins at index <tt>ooffset</tt> and
1278      * has length <tt>len</tt>. The result is <tt>false</tt> if and only if
1279      * at least one of the following is true:
1280      * <ul><li><tt>toffset</tt> is negative.
1281      * <li><tt>ooffset</tt> is negative.
1282      * <li><tt>toffset+len</tt> is greater than the length of this
1283      * <tt>String</tt> object.
1284      * <li><tt>ooffset+len</tt> is greater than the length of the other
1285      * argument.
1286      * <li><tt>ignoreCase</tt> is <tt>false</tt> and there is some nonnegative
1287      * integer <i>k</i> less than <tt>len</tt> such that:
1288      * <blockquote><pre>
1289      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1290      * </pre></blockquote>
1291      * <li><tt>ignoreCase</tt> is <tt>true</tt> and there is some nonnegative
1292      * integer <i>k</i> less than <tt>len</tt> such that:
1293      * <blockquote><pre>
1294      * Character.toLowerCase(this.charAt(toffset+k)) !=
1295      Character.toLowerCase(other.charAt(ooffset+k))
1296      * </pre></blockquote>
1297      * and:
1298      * <blockquote><pre>
1299      * Character.toUpperCase(this.charAt(toffset+k)) !=
1300      *         Character.toUpperCase(other.charAt(ooffset+k))
1301      * </pre></blockquote>
1302      * </ul>
1303      *
1304      * @param   ignoreCase   if {@code true}, ignore case when comparing
1305      *                       characters.
1306      * @param   toffset      the starting offset of the subregion in this
1307      *                       string.
1308      * @param   other        the string argument.
1309      * @param   ooffset      the starting offset of the subregion in the string
1310      *                       argument.
1311      * @param   len          the number of characters to compare.
1312      * @return  {@code true} if the specified subregion of this string
1313      *          matches the specified subregion of the string argument;
1314      *          {@code false} otherwise. Whether the matching is exact
1315      *          or case insensitive depends on the {@code ignoreCase}
1316      *          argument.
1317      */
1318     public boolean regionMatches(boolean ignoreCase, int toffset,
1319             String other, int ooffset, int len) {
1320         char ta[] = value;
1321         int to = toffset;
1322         char pa[] = other.value;
1323         int po = ooffset;
1324         // Note: toffset, ooffset, or len might be near -1>>>1.
1325         if ((ooffset < 0) || (toffset < 0)
1326                 || (toffset > (long)value.length - len)
1327                 || (ooffset > (long)other.value.length - len)) {
1328             return false;
1329         }
1330         while (len-- > 0) {
1331             char c1 = ta[to++];
1332             char c2 = pa[po++];
1333             if (c1 == c2) {
1334                 continue;
1335             }
1336             if (ignoreCase) {
1337                 // If characters don't match but case may be ignored,
1338                 // try converting both characters to uppercase.
1339                 // If the results match, then the comparison scan should
1340                 // continue.
1341                 char u1 = Character.toUpperCase(c1);
1342                 char u2 = Character.toUpperCase(c2);
1343                 if (u1 == u2) {
1344                     continue;
1345                 }
1346                 // Unfortunately, conversion to uppercase does not work properly
1347                 // for the Georgian alphabet, which has strange rules about case
1348                 // conversion.  So we need to make one last check before
1349                 // exiting.
1350                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
1351                     continue;
1352                 }
1353             }
1354             return false;
1355         }
1356         return true;
1357     }
1358 
1359     /**
1360      * Tests if the substring of this string beginning at the
1361      * specified index starts with the specified prefix.
1362      *
1363      * @param   prefix    the prefix.
1364      * @param   toffset   where to begin looking in this string.
1365      * @return  {@code true} if the character sequence represented by the
1366      *          argument is a prefix of the substring of this object starting
1367      *          at index {@code toffset}; {@code false} otherwise.
1368      *          The result is {@code false} if {@code toffset} is
1369      *          negative or greater than the length of this
1370      *          {@code String} object; otherwise the result is the same
1371      *          as the result of the expression
1372      *          <pre>
1373      *          this.substring(toffset).startsWith(prefix)
1374      *          </pre>
1375      */
1376     public boolean startsWith(String prefix, int toffset) {
1377         char ta[] = value;
1378         int to = toffset;
1379         char pa[] = prefix.value;
1380         int po = 0;
1381         int pc = prefix.value.length;
1382         // Note: toffset might be near -1>>>1.
1383         if ((toffset < 0) || (toffset > value.length - pc)) {
1384             return false;
1385         }
1386         while (--pc >= 0) {
1387             if (ta[to++] != pa[po++]) {
1388                 return false;
1389             }
1390         }
1391         return true;
1392     }
1393 
1394     /**
1395      * Tests if this string starts with the specified prefix.
1396      *
1397      * @param   prefix   the prefix.
1398      * @return  {@code true} if the character sequence represented by the
1399      *          argument is a prefix of the character sequence represented by
1400      *          this string; {@code false} otherwise.
1401      *          Note also that {@code true} will be returned if the
1402      *          argument is an empty string or is equal to this
1403      *          {@code String} object as determined by the
1404      *          {@link #equals(Object)} method.
1405      * @since   1. 0
1406      */
1407     public boolean startsWith(String prefix) {
1408         return startsWith(prefix, 0);
1409     }
1410 
1411     /**
1412      * Tests if this string ends with the specified suffix.
1413      *
1414      * @param   suffix   the suffix.
1415      * @return  {@code true} if the character sequence represented by the
1416      *          argument is a suffix of the character sequence represented by
1417      *          this object; {@code false} otherwise. Note that the
1418      *          result will be {@code true} if the argument is the
1419      *          empty string or is equal to this {@code String} object
1420      *          as determined by the {@link #equals(Object)} method.
1421      */
1422     public boolean endsWith(String suffix) {
1423         return startsWith(suffix, value.length - suffix.value.length);
1424     }
1425 
1426     /**
1427      * Returns a hash code for this string. The hash code for a
1428      * {@code String} object is computed as
1429      * <blockquote><pre>
1430      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1431      * </pre></blockquote>
1432      * using {@code int} arithmetic, where {@code s[i]} is the
1433      * <i>i</i>th character of the string, {@code n} is the length of
1434      * the string, and {@code ^} indicates exponentiation.
1435      * (The hash value of the empty string is zero.)
1436      *
1437      * @return  a hash code value for this object.
1438      */
1439     public int hashCode() {
1440         int h = hash;
1441         if (h == 0 && value.length > 0) {
1442             char val[] = value;
1443 
1444             for (int i = 0; i < value.length; i++) {
1445                 h = 31 * h + val[i];
1446             }
1447             hash = h;
1448         }
1449         return h;
1450     }
1451 
1452     /**
1453      * Returns the index within this string of the first occurrence of
1454      * the specified character. If a character with value
1455      * {@code ch} occurs in the character sequence represented by
1456      * this {@code String} object, then the index (in Unicode
1457      * code units) of the first such occurrence is returned. For
1458      * values of {@code ch} in the range from 0 to 0xFFFF
1459      * (inclusive), this is the smallest value <i>k</i> such that:
1460      * <blockquote><pre>
1461      * this.charAt(<i>k</i>) == ch
1462      * </pre></blockquote>
1463      * is true. For other values of {@code ch}, it is the
1464      * smallest value <i>k</i> such that:
1465      * <blockquote><pre>
1466      * this.codePointAt(<i>k</i>) == ch
1467      * </pre></blockquote>
1468      * is true. In either case, if no such character occurs in this
1469      * string, then {@code -1} is returned.
1470      *
1471      * @param   ch   a character (Unicode code point).
1472      * @return  the index of the first occurrence of the character in the
1473      *          character sequence represented by this object, or
1474      *          {@code -1} if the character does not occur.
1475      */
1476     public int indexOf(int ch) {
1477         return indexOf(ch, 0);
1478     }
1479 
1480     /**
1481      * Returns the index within this string of the first occurrence of the
1482      * specified character, starting the search at the specified index.
1483      * <p>
1484      * If a character with value {@code ch} occurs in the
1485      * character sequence represented by this {@code String}
1486      * object at an index no smaller than {@code fromIndex}, then
1487      * the index of the first such occurrence is returned. For values
1488      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1489      * this is the smallest value <i>k</i> such that:
1490      * <blockquote><pre>
1491      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
1492      * </pre></blockquote>
1493      * is true. For other values of {@code ch}, it is the
1494      * smallest value <i>k</i> such that:
1495      * <blockquote><pre>
1496      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
1497      * </pre></blockquote>
1498      * is true. In either case, if no such character occurs in this
1499      * string at or after position {@code fromIndex}, then
1500      * {@code -1} is returned.
1501      *
1502      * <p>
1503      * There is no restriction on the value of {@code fromIndex}. If it
1504      * is negative, it has the same effect as if it were zero: this entire
1505      * string may be searched. If it is greater than the length of this
1506      * string, it has the same effect as if it were equal to the length of
1507      * this string: {@code -1} is returned.
1508      *
1509      * <p>All indices are specified in {@code char} values
1510      * (Unicode code units).
1511      *
1512      * @param   ch          a character (Unicode code point).
1513      * @param   fromIndex   the index to start the search from.
1514      * @return  the index of the first occurrence of the character in the
1515      *          character sequence represented by this object that is greater
1516      *          than or equal to {@code fromIndex}, or {@code -1}
1517      *          if the character does not occur.
1518      */
1519     public int indexOf(int ch, int fromIndex) {
1520         final int max = value.length;
1521         if (fromIndex < 0) {
1522             fromIndex = 0;
1523         } else if (fromIndex >= max) {
1524             // Note: fromIndex might be near -1>>>1.
1525             return -1;
1526         }
1527 
1528         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1529             // handle most cases here (ch is a BMP code point or a
1530             // negative value (invalid code point))
1531             final char[] value = this.value;
1532             for (int i = fromIndex; i < max; i++) {
1533                 if (value[i] == ch) {
1534                     return i;
1535                 }
1536             }
1537             return -1;
1538         } else {
1539             return indexOfSupplementary(ch, fromIndex);
1540         }
1541     }
1542 
1543     /**
1544      * Handles (rare) calls of indexOf with a supplementary character.
1545      */
1546     private int indexOfSupplementary(int ch, int fromIndex) {
1547         if (Character.isValidCodePoint(ch)) {
1548             final char[] value = this.value;
1549             final char hi = Character.highSurrogate(ch);
1550             final char lo = Character.lowSurrogate(ch);
1551             final int max = value.length - 1;
1552             for (int i = fromIndex; i < max; i++) {
1553                 if (value[i] == hi && value[i + 1] == lo) {
1554                     return i;
1555                 }
1556             }
1557         }
1558         return -1;
1559     }
1560 
1561     /**
1562      * Returns the index within this string of the last occurrence of
1563      * the specified character. For values of {@code ch} in the
1564      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1565      * units) returned is the largest value <i>k</i> such that:
1566      * <blockquote><pre>
1567      * this.charAt(<i>k</i>) == ch
1568      * </pre></blockquote>
1569      * is true. For other values of {@code ch}, it is the
1570      * largest value <i>k</i> such that:
1571      * <blockquote><pre>
1572      * this.codePointAt(<i>k</i>) == ch
1573      * </pre></blockquote>
1574      * is true.  In either case, if no such character occurs in this
1575      * string, then {@code -1} is returned.  The
1576      * {@code String} is searched backwards starting at the last
1577      * character.
1578      *
1579      * @param   ch   a character (Unicode code point).
1580      * @return  the index of the last occurrence of the character in the
1581      *          character sequence represented by this object, or
1582      *          {@code -1} if the character does not occur.
1583      */
1584     public int lastIndexOf(int ch) {
1585         return lastIndexOf(ch, value.length - 1);
1586     }
1587 
1588     /**
1589      * Returns the index within this string of the last occurrence of
1590      * the specified character, searching backward starting at the
1591      * specified index. For values of {@code ch} in the range
1592      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1593      * value <i>k</i> such that:
1594      * <blockquote><pre>
1595      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
1596      * </pre></blockquote>
1597      * is true. For other values of {@code ch}, it is the
1598      * largest value <i>k</i> such that:
1599      * <blockquote><pre>
1600      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
1601      * </pre></blockquote>
1602      * is true. In either case, if no such character occurs in this
1603      * string at or before position {@code fromIndex}, then
1604      * {@code -1} is returned.
1605      *
1606      * <p>All indices are specified in {@code char} values
1607      * (Unicode code units).
1608      *
1609      * @param   ch          a character (Unicode code point).
1610      * @param   fromIndex   the index to start the search from. There is no
1611      *          restriction on the value of {@code fromIndex}. If it is
1612      *          greater than or equal to the length of this string, it has
1613      *          the same effect as if it were equal to one less than the
1614      *          length of this string: this entire string may be searched.
1615      *          If it is negative, it has the same effect as if it were -1:
1616      *          -1 is returned.
1617      * @return  the index of the last occurrence of the character in the
1618      *          character sequence represented by this object that is less
1619      *          than or equal to {@code fromIndex}, or {@code -1}
1620      *          if the character does not occur before that point.
1621      */
1622     public int lastIndexOf(int ch, int fromIndex) {
1623         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1624             // handle most cases here (ch is a BMP code point or a
1625             // negative value (invalid code point))
1626             final char[] value = this.value;
1627             int i = Math.min(fromIndex, value.length - 1);
1628             for (; i >= 0; i--) {
1629                 if (value[i] == ch) {
1630                     return i;
1631                 }
1632             }
1633             return -1;
1634         } else {
1635             return lastIndexOfSupplementary(ch, fromIndex);
1636         }
1637     }
1638 
1639     /**
1640      * Handles (rare) calls of lastIndexOf with a supplementary character.
1641      */
1642     private int lastIndexOfSupplementary(int ch, int fromIndex) {
1643         if (Character.isValidCodePoint(ch)) {
1644             final char[] value = this.value;
1645             char hi = Character.highSurrogate(ch);
1646             char lo = Character.lowSurrogate(ch);
1647             int i = Math.min(fromIndex, value.length - 2);
1648             for (; i >= 0; i--) {
1649                 if (value[i] == hi && value[i + 1] == lo) {
1650                     return i;
1651                 }
1652             }
1653         }
1654         return -1;
1655     }
1656 
1657     /**
1658      * Returns the index within this string of the first occurrence of the
1659      * specified substring.
1660      *
1661      * <p>The returned index is the smallest value <i>k</i> for which:
1662      * <blockquote><pre>
1663      * this.startsWith(str, <i>k</i>)
1664      * </pre></blockquote>
1665      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1666      *
1667      * @param   str   the substring to search for.
1668      * @return  the index of the first occurrence of the specified substring,
1669      *          or {@code -1} if there is no such occurrence.
1670      */
1671     public int indexOf(String str) {
1672         return indexOf(str, 0);
1673     }
1674 
1675     /**
1676      * Returns the index within this string of the first occurrence of the
1677      * specified substring, starting at the specified index.
1678      *
1679      * <p>The returned index is the smallest value <i>k</i> for which:
1680      * <blockquote><pre>
1681      * <i>k</i> &gt;= fromIndex && this.startsWith(str, <i>k</i>)
1682      * </pre></blockquote>
1683      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1684      *
1685      * @param   str         the substring to search for.
1686      * @param   fromIndex   the index from which to start the search.
1687      * @return  the index of the first occurrence of the specified substring,
1688      *          starting at the specified index,
1689      *          or {@code -1} if there is no such occurrence.
1690      */
1691     public int indexOf(String str, int fromIndex) {
1692         return indexOf(value, 0, value.length,
1693                 str.value, 0, str.value.length, fromIndex);
1694     }
1695 
1696     /**
1697      * Code shared by String and StringBuffer to do searches. The
1698      * source is the character array being searched, and the target
1699      * is the string being searched for.
1700      *
1701      * @param   source       the characters being searched.
1702      * @param   sourceOffset offset of the source string.
1703      * @param   sourceCount  count of the source string.
1704      * @param   target       the characters being searched for.
1705      * @param   targetOffset offset of the target string.
1706      * @param   targetCount  count of the target string.
1707      * @param   fromIndex    the index to begin searching from.
1708      */
1709     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1710             char[] target, int targetOffset, int targetCount,
1711             int fromIndex) {
1712         if (fromIndex >= sourceCount) {
1713             return (targetCount == 0 ? sourceCount : -1);
1714         }
1715         if (fromIndex < 0) {
1716             fromIndex = 0;
1717         }
1718         if (targetCount == 0) {
1719             return fromIndex;
1720         }
1721 
1722         char first = target[targetOffset];
1723         int max = sourceOffset + (sourceCount - targetCount);
1724 
1725         for (int i = sourceOffset + fromIndex; i <= max; i++) {
1726             /* Look for first character. */
1727             if (source[i] != first) {
1728                 while (++i <= max && source[i] != first);
1729             }
1730 
1731             /* Found first character, now look at the rest of v2 */
1732             if (i <= max) {
1733                 int j = i + 1;
1734                 int end = j + targetCount - 1;
1735                 for (int k = targetOffset + 1; j < end && source[j]
1736                         == target[k]; j++, k++);
1737 
1738                 if (j == end) {
1739                     /* Found whole string. */
1740                     return i - sourceOffset;
1741                 }
1742             }
1743         }
1744         return -1;
1745     }
1746 
1747     /**
1748      * Returns the index within this string of the last occurrence of the
1749      * specified substring.  The last occurrence of the empty string ""
1750      * is considered to occur at the index value {@code this.length()}.
1751      *
1752      * <p>The returned index is the largest value <i>k</i> for which:
1753      * <blockquote><pre>
1754      * this.startsWith(str, <i>k</i>)
1755      * </pre></blockquote>
1756      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1757      *
1758      * @param   str   the substring to search for.
1759      * @return  the index of the last occurrence of the specified substring,
1760      *          or {@code -1} if there is no such occurrence.
1761      */
1762     public int lastIndexOf(String str) {
1763         return lastIndexOf(str, value.length);
1764     }
1765 
1766     /**
1767      * Returns the index within this string of the last occurrence of the
1768      * specified substring, searching backward starting at the specified index.
1769      *
1770      * <p>The returned index is the largest value <i>k</i> for which:
1771      * <blockquote><pre>
1772      * <i>k</i> &lt;= fromIndex && this.startsWith(str, <i>k</i>)
1773      * </pre></blockquote>
1774      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1775      *
1776      * @param   str         the substring to search for.
1777      * @param   fromIndex   the index to start the search from.
1778      * @return  the index of the last occurrence of the specified substring,
1779      *          searching backward from the specified index,
1780      *          or {@code -1} if there is no such occurrence.
1781      */
1782     public int lastIndexOf(String str, int fromIndex) {
1783         return lastIndexOf(value, 0, value.length,
1784                 str.value, 0, str.value.length, fromIndex);
1785     }
1786 
1787     /**
1788      * Code shared by String and StringBuffer to do searches. The
1789      * source is the character array being searched, and the target
1790      * is the string being searched for.
1791      *
1792      * @param   source       the characters being searched.
1793      * @param   sourceOffset offset of the source string.
1794      * @param   sourceCount  count of the source string.
1795      * @param   target       the characters being searched for.
1796      * @param   targetOffset offset of the target string.
1797      * @param   targetCount  count of the target string.
1798      * @param   fromIndex    the index to begin searching from.
1799      */
1800     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
1801             char[] target, int targetOffset, int targetCount,
1802             int fromIndex) {
1803         /*
1804          * Check arguments; return immediately where possible. For
1805          * consistency, don't check for null str.
1806          */
1807         int rightIndex = sourceCount - targetCount;
1808         if (fromIndex < 0) {
1809             return -1;
1810         }
1811         if (fromIndex > rightIndex) {
1812             fromIndex = rightIndex;
1813         }
1814         /* Empty string always matches. */
1815         if (targetCount == 0) {
1816             return fromIndex;
1817         }
1818 
1819         int strLastIndex = targetOffset + targetCount - 1;
1820         char strLastChar = target[strLastIndex];
1821         int min = sourceOffset + targetCount - 1;
1822         int i = min + fromIndex;
1823 
1824         startSearchForLastChar:
1825         while (true) {
1826             while (i >= min && source[i] != strLastChar) {
1827                 i--;
1828             }
1829             if (i < min) {
1830                 return -1;
1831             }
1832             int j = i - 1;
1833             int start = j - (targetCount - 1);
1834             int k = strLastIndex - 1;
1835 
1836             while (j > start) {
1837                 if (source[j--] != target[k--]) {
1838                     i--;
1839                     continue startSearchForLastChar;
1840                 }
1841             }
1842             return start - sourceOffset + 1;
1843         }
1844     }
1845 
1846     /**
1847      * Returns a new string that is a substring of this string. The
1848      * substring begins with the character at the specified index and
1849      * extends to the end of this string. <p>
1850      * Examples:
1851      * <blockquote><pre>
1852      * "unhappy".substring(2) returns "happy"
1853      * "Harbison".substring(3) returns "bison"
1854      * "emptiness".substring(9) returns "" (an empty string)
1855      * </pre></blockquote>
1856      *
1857      * @param      beginIndex   the beginning index, inclusive.
1858      * @return     the specified substring.
1859      * @exception  IndexOutOfBoundsException  if
1860      *             {@code beginIndex} is negative or larger than the
1861      *             length of this {@code String} object.
1862      */
1863     public String substring(int beginIndex) {
1864         if (beginIndex < 0) {
1865             throw new StringIndexOutOfBoundsException(beginIndex);
1866         }
1867         int subLen = value.length - beginIndex;
1868         if (subLen < 0) {
1869             throw new StringIndexOutOfBoundsException(subLen);
1870         }
1871         return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
1872     }
1873 
1874     /**
1875      * Returns a new string that is a substring of this string. The
1876      * substring begins at the specified {@code beginIndex} and
1877      * extends to the character at index {@code endIndex - 1}.
1878      * Thus the length of the substring is {@code endIndex-beginIndex}.
1879      * <p>
1880      * Examples:
1881      * <blockquote><pre>
1882      * "hamburger".substring(4, 8) returns "urge"
1883      * "smiles".substring(1, 5) returns "mile"
1884      * </pre></blockquote>
1885      *
1886      * @param      beginIndex   the beginning index, inclusive.
1887      * @param      endIndex     the ending index, exclusive.
1888      * @return     the specified substring.
1889      * @exception  IndexOutOfBoundsException  if the
1890      *             {@code beginIndex} is negative, or
1891      *             {@code endIndex} is larger than the length of
1892      *             this {@code String} object, or
1893      *             {@code beginIndex} is larger than
1894      *             {@code endIndex}.
1895      */
1896     public String substring(int beginIndex, int endIndex) {
1897         if (beginIndex < 0) {
1898             throw new StringIndexOutOfBoundsException(beginIndex);
1899         }
1900         if (endIndex > value.length) {
1901             throw new StringIndexOutOfBoundsException(endIndex);
1902         }
1903         int subLen = endIndex - beginIndex;
1904         if (subLen < 0) {
1905             throw new StringIndexOutOfBoundsException(subLen);
1906         }
1907         return ((beginIndex == 0) && (endIndex == value.length)) ? this
1908                 : new String(value, beginIndex, subLen);
1909     }
1910 
1911     /**
1912      * Returns a new character sequence that is a subsequence of this sequence.
1913      *
1914      * <p> An invocation of this method of the form
1915      *
1916      * <blockquote><pre>
1917      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1918      *
1919      * behaves in exactly the same way as the invocation
1920      *
1921      * <blockquote><pre>
1922      * str.substring(begin,&nbsp;end)</pre></blockquote>
1923      *
1924      * This method is defined so that the {@code String} class can implement
1925      * the {@link CharSequence} interface. </p>
1926      *
1927      * @param      beginIndex   the begin index, inclusive.
1928      * @param      endIndex     the end index, exclusive.
1929      * @return     the specified subsequence.
1930      *
1931      * @throws  IndexOutOfBoundsException
1932      *          if {@code beginIndex} or {@code endIndex} is negative,
1933      *          if {@code endIndex} is greater than {@code length()},
1934      *          or if {@code beginIndex} is greater than {@code endIndex}
1935      *
1936      * @since 1.4
1937      * @spec JSR-51
1938      */
1939     public CharSequence subSequence(int beginIndex, int endIndex) {
1940         return this.substring(beginIndex, endIndex);
1941     }
1942 
1943     /**
1944      * Concatenates the specified string to the end of this string.
1945      * <p>
1946      * If the length of the argument string is {@code 0}, then this
1947      * {@code String} object is returned. Otherwise, a new
1948      * {@code String} object is created, representing a character
1949      * sequence that is the concatenation of the character sequence
1950      * represented by this {@code String} object and the character
1951      * sequence represented by the argument string.<p>
1952      * Examples:
1953      * <blockquote><pre>
1954      * "cares".concat("s") returns "caress"
1955      * "to".concat("get").concat("her") returns "together"
1956      * </pre></blockquote>
1957      *
1958      * @param   str   the {@code String} that is concatenated to the end
1959      *                of this {@code String}.
1960      * @return  a string that represents the concatenation of this object's
1961      *          characters followed by the string argument's characters.
1962      */
1963     public String concat(String str) {
1964         int otherLen = str.length();
1965         if (otherLen == 0) {
1966             return this;
1967         }
1968         int len = value.length;
1969         char buf[] = Arrays.copyOf(value, len + otherLen);
1970         str.getChars(buf, len);
1971         return new String(buf, true);
1972     }
1973 
1974     /**
1975      * Returns a new string resulting from replacing all occurrences of
1976      * {@code oldChar} in this string with {@code newChar}.
1977      * <p>
1978      * If the character {@code oldChar} does not occur in the
1979      * character sequence represented by this {@code String} object,
1980      * then a reference to this {@code String} object is returned.
1981      * Otherwise, a new {@code String} object is created that
1982      * represents a character sequence identical to the character sequence
1983      * represented by this {@code String} object, except that every
1984      * occurrence of {@code oldChar} is replaced by an occurrence
1985      * of {@code newChar}.
1986      * <p>
1987      * Examples:
1988      * <blockquote><pre>
1989      * "mesquite in your cellar".replace('e', 'o')
1990      *         returns "mosquito in your collar"
1991      * "the war of baronets".replace('r', 'y')
1992      *         returns "the way of bayonets"
1993      * "sparring with a purple porpoise".replace('p', 't')
1994      *         returns "starring with a turtle tortoise"
1995      * "JonL".replace('q', 'x') returns "JonL" (no change)
1996      * </pre></blockquote>
1997      *
1998      * @param   oldChar   the old character.
1999      * @param   newChar   the new character.
2000      * @return  a string derived from this string by replacing every
2001      *          occurrence of {@code oldChar} with {@code newChar}.
2002      */
2003     public String replace(char oldChar, char newChar) {
2004         if (oldChar != newChar) {
2005             int len = value.length;
2006             int i = -1;
2007             char[] val = value; /* avoid getfield opcode */
2008 
2009             while (++i < len) {
2010                 if (val[i] == oldChar) {
2011                     break;
2012                 }
2013             }
2014             if (i < len) {
2015                 char buf[] = new char[len];
2016                 for (int j = 0; j < i; j++) {
2017                     buf[j] = val[j];
2018                 }
2019                 while (i < len) {
2020                     char c = val[i];
2021                     buf[i] = (c == oldChar) ? newChar : c;
2022                     i++;
2023                 }
2024                 return new String(buf, true);
2025             }
2026         }
2027         return this;
2028     }
2029 
2030     /**
2031      * Tells whether or not this string matches the given <a
2032      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2033      *
2034      * <p> An invocation of this method of the form
2035      * <i>str</i><tt>.matches(</tt><i>regex</i><tt>)</tt> yields exactly the
2036      * same result as the expression
2037      *
2038      * <blockquote><tt> {@link java.util.regex.Pattern}.{@link
2039      * java.util.regex.Pattern#matches(String,CharSequence)
2040      * matches}(</tt><i>regex</i><tt>,</tt> <i>str</i><tt>)</tt></blockquote>
2041      *
2042      * @param   regex
2043      *          the regular expression to which this string is to be matched
2044      *
2045      * @return  <tt>true</tt> if, and only if, this string matches the
2046      *          given regular expression
2047      *
2048      * @throws  PatternSyntaxException
2049      *          if the regular expression's syntax is invalid
2050      *
2051      * @see java.util.regex.Pattern
2052      *
2053      * @since 1.4
2054      * @spec JSR-51
2055      */
2056     public boolean matches(String regex) {
2057         return Pattern.matches(regex, this);
2058     }
2059 
2060     /**
2061      * Returns true if and only if this string contains the specified
2062      * sequence of char values.
2063      *
2064      * @param s the sequence to search for
2065      * @return true if this string contains {@code s}, false otherwise
2066      * @throws NullPointerException if {@code s} is {@code null}
2067      * @since 1.5
2068      */
2069     public boolean contains(CharSequence s) {
2070         return indexOf(s.toString()) > -1;
2071     }
2072 
2073     /**
2074      * Replaces the first substring of this string that matches the given <a
2075      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2076      * given replacement.
2077      *
2078      * <p> An invocation of this method of the form
2079      * <i>str</i><tt>.replaceFirst(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
2080      * yields exactly the same result as the expression
2081      *
2082      * <blockquote><tt>
2083      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
2084      * compile}(</tt><i>regex</i><tt>).{@link
2085      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
2086      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceFirst
2087      * replaceFirst}(</tt><i>repl</i><tt>)</tt></blockquote>
2088      *
2089      *<p>
2090      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
2091      * replacement string may cause the results to be different than if it were
2092      * being treated as a literal replacement string; see
2093      * {@link java.util.regex.Matcher#replaceFirst}.
2094      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2095      * meaning of these characters, if desired.
2096      *
2097      * @param   regex
2098      *          the regular expression to which this string is to be matched
2099      * @param   replacement
2100      *          the string to be substituted for the first match
2101      *
2102      * @return  The resulting <tt>String</tt>
2103      *
2104      * @throws  PatternSyntaxException
2105      *          if the regular expression's syntax is invalid
2106      *
2107      * @see java.util.regex.Pattern
2108      *
2109      * @since 1.4
2110      * @spec JSR-51
2111      */
2112     public String replaceFirst(String regex, String replacement) {
2113         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2114     }
2115 
2116     /**
2117      * Replaces each substring of this string that matches the given <a
2118      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2119      * given replacement.
2120      *
2121      * <p> An invocation of this method of the form
2122      * <i>str</i><tt>.replaceAll(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
2123      * yields exactly the same result as the expression
2124      *
2125      * <blockquote><tt>
2126      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
2127      * compile}(</tt><i>regex</i><tt>).{@link
2128      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
2129      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceAll
2130      * replaceAll}(</tt><i>repl</i><tt>)</tt></blockquote>
2131      *
2132      *<p>
2133      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
2134      * replacement string may cause the results to be different than if it were
2135      * being treated as a literal replacement string; see
2136      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2137      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2138      * meaning of these characters, if desired.
2139      *
2140      * @param   regex
2141      *          the regular expression to which this string is to be matched
2142      * @param   replacement
2143      *          the string to be substituted for each match
2144      *
2145      * @return  The resulting <tt>String</tt>
2146      *
2147      * @throws  PatternSyntaxException
2148      *          if the regular expression's syntax is invalid
2149      *
2150      * @see java.util.regex.Pattern
2151      *
2152      * @since 1.4
2153      * @spec JSR-51
2154      */
2155     public String replaceAll(String regex, String replacement) {
2156         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2157     }
2158 
2159     /**
2160      * Replaces each substring of this string that matches the literal target
2161      * sequence with the specified literal replacement sequence. The
2162      * replacement proceeds from the beginning of the string to the end, for
2163      * example, replacing "aa" with "b" in the string "aaa" will result in
2164      * "ba" rather than "ab".
2165      *
2166      * @param  target The sequence of char values to be replaced
2167      * @param  replacement The replacement sequence of char values
2168      * @return  The resulting string
2169      * @throws NullPointerException if {@code target} or
2170      *         {@code replacement} is {@code null}.
2171      * @since 1.5
2172      */
2173     public String replace(CharSequence target, CharSequence replacement) {
2174         return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(
2175                 this).replaceAll(Matcher.quoteReplacement(replacement.toString()));
2176     }
2177 
2178     /**
2179      * Splits this string around matches of the given
2180      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2181      *
2182      * <p> The array returned by this method contains each substring of this
2183      * string that is terminated by another substring that matches the given
2184      * expression or is terminated by the end of the string.  The substrings in
2185      * the array are in the order in which they occur in this string.  If the
2186      * expression does not match any part of the input then the resulting array
2187      * has just one element, namely this string.
2188      *
2189      * <p> The <tt>limit</tt> parameter controls the number of times the
2190      * pattern is applied and therefore affects the length of the resulting
2191      * array.  If the limit <i>n</i> is greater than zero then the pattern
2192      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2193      * length will be no greater than <i>n</i>, and the array's last entry
2194      * will contain all input beyond the last matched delimiter.  If <i>n</i>
2195      * is non-positive then the pattern will be applied as many times as
2196      * possible and the array can have any length.  If <i>n</i> is zero then
2197      * the pattern will be applied as many times as possible, the array can
2198      * have any length, and trailing empty strings will be discarded.
2199      *
2200      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the
2201      * following results with these parameters:
2202      *
2203      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
2204      * <tr>
2205      *     <th>Regex</th>
2206      *     <th>Limit</th>
2207      *     <th>Result</th>
2208      * </tr>
2209      * <tr><td align=center>:</td>
2210      *     <td align=center>2</td>
2211      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
2212      * <tr><td align=center>:</td>
2213      *     <td align=center>5</td>
2214      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
2215      * <tr><td align=center>:</td>
2216      *     <td align=center>-2</td>
2217      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
2218      * <tr><td align=center>o</td>
2219      *     <td align=center>5</td>
2220      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
2221      * <tr><td align=center>o</td>
2222      *     <td align=center>-2</td>
2223      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
2224      * <tr><td align=center>o</td>
2225      *     <td align=center>0</td>
2226      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
2227      * </table></blockquote>
2228      *
2229      * <p> An invocation of this method of the form
2230      * <i>str.</i><tt>split(</tt><i>regex</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
2231      * yields the same result as the expression
2232      *
2233      * <blockquote>
2234      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
2235      * compile}<tt>(</tt><i>regex</i><tt>)</tt>.{@link
2236      * java.util.regex.Pattern#split(java.lang.CharSequence,int)
2237      * split}<tt>(</tt><i>str</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
2238      * </blockquote>
2239      *
2240      *
2241      * @param  regex
2242      *         the delimiting regular expression
2243      *
2244      * @param  limit
2245      *         the result threshold, as described above
2246      *
2247      * @return  the array of strings computed by splitting this string
2248      *          around matches of the given regular expression
2249      *
2250      * @throws  PatternSyntaxException
2251      *          if the regular expression's syntax is invalid
2252      *
2253      * @see java.util.regex.Pattern
2254      *
2255      * @since 1.4
2256      * @spec JSR-51
2257      */
2258     public String[] split(String regex, int limit) {
2259         /* fastpath if the regex is a
2260          (1)one-char String and this character is not one of the
2261             RegEx's meta characters ".$|()[{^?*+\\", or
2262          (2)two-char String and the first char is the backslash and
2263             the second is not the ascii digit or ascii letter.
2264          */
2265         char ch = 0;
2266         if (((regex.value.length == 1 &&
2267              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2268              (regex.length() == 2 &&
2269               regex.charAt(0) == '\\' &&
2270               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2271               ((ch-'a')|('z'-ch)) < 0 &&
2272               ((ch-'A')|('Z'-ch)) < 0)) &&
2273             (ch < Character.MIN_HIGH_SURROGATE ||
2274              ch > Character.MAX_LOW_SURROGATE))
2275         {
2276             int off = 0;
2277             int next = 0;
2278             boolean limited = limit > 0;
2279             ArrayList<String> list = new ArrayList<>();
2280             while ((next = indexOf(ch, off)) != -1) {
2281                 if (!limited || list.size() < limit - 1) {
2282                     list.add(substring(off, next));
2283                     off = next + 1;
2284                 } else {    // last one
2285                     //assert (list.size() == limit - 1);
2286                     list.add(substring(off, value.length));
2287                     off = value.length;
2288                     break;
2289                 }
2290             }
2291             // If no match was found, return this
2292             if (off == 0)
2293                 return new String[]{this};
2294 
2295             // Add remaining segment
2296             if (!limited || list.size() < limit)
2297                 list.add(substring(off, value.length));
2298 
2299             // Construct result
2300             int resultSize = list.size();
2301             if (limit == 0)
2302                 while (resultSize > 0 && list.get(resultSize - 1).length() == 0)
2303                     resultSize--;
2304             String[] result = new String[resultSize];
2305             return list.subList(0, resultSize).toArray(result);
2306         }
2307         return Pattern.compile(regex).split(this, limit);
2308     }
2309 
2310     /**
2311      * Splits this string around matches of the given <a
2312      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2313      *
2314      * <p> This method works as if by invoking the two-argument {@link
2315      * #split(String, int) split} method with the given expression and a limit
2316      * argument of zero.  Trailing empty strings are therefore not included in
2317      * the resulting array.
2318      *
2319      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the following
2320      * results with these expressions:
2321      *
2322      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
2323      * <tr>
2324      *  <th>Regex</th>
2325      *  <th>Result</th>
2326      * </tr>
2327      * <tr><td align=center>:</td>
2328      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
2329      * <tr><td align=center>o</td>
2330      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
2331      * </table></blockquote>
2332      *
2333      *
2334      * @param  regex
2335      *         the delimiting regular expression
2336      *
2337      * @return  the array of strings computed by splitting this string
2338      *          around matches of the given regular expression
2339      *
2340      * @throws  PatternSyntaxException
2341      *          if the regular expression's syntax is invalid
2342      *
2343      * @see java.util.regex.Pattern
2344      *
2345      * @since 1.4
2346      * @spec JSR-51
2347      */
2348     public String[] split(String regex) {
2349         return split(regex, 0);
2350     }
2351 
2352     /**
2353      * Converts all of the characters in this {@code String} to lower
2354      * case using the rules of the given {@code Locale}.  Case mapping is based
2355      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2356      * class. Since case mappings are not always 1:1 char mappings, the resulting
2357      * {@code String} may be a different length than the original {@code String}.
2358      * <p>
2359      * Examples of lowercase  mappings are in the following table:
2360      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
2361      * <tr>
2362      *   <th>Language Code of Locale</th>
2363      *   <th>Upper Case</th>
2364      *   <th>Lower Case</th>
2365      *   <th>Description</th>
2366      * </tr>
2367      * <tr>
2368      *   <td>tr (Turkish)</td>
2369      *   <td>&#92;u0130</td>
2370      *   <td>&#92;u0069</td>
2371      *   <td>capital letter I with dot above -&gt; small letter i</td>
2372      * </tr>
2373      * <tr>
2374      *   <td>tr (Turkish)</td>
2375      *   <td>&#92;u0049</td>
2376      *   <td>&#92;u0131</td>
2377      *   <td>capital letter I -&gt; small letter dotless i </td>
2378      * </tr>
2379      * <tr>
2380      *   <td>(all)</td>
2381      *   <td>French Fries</td>
2382      *   <td>french fries</td>
2383      *   <td>lowercased all chars in String</td>
2384      * </tr>
2385      * <tr>
2386      *   <td>(all)</td>
2387      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
2388      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
2389      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
2390      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
2391      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
2392      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
2393      *   <td>lowercased all chars in String</td>
2394      * </tr>
2395      * </table>
2396      *
2397      * @param locale use the case transformation rules for this locale
2398      * @return the {@code String}, converted to lowercase.
2399      * @see     java.lang.String#toLowerCase()
2400      * @see     java.lang.String#toUpperCase()
2401      * @see     java.lang.String#toUpperCase(Locale)
2402      * @since   1.1
2403      */
2404     public String toLowerCase(Locale locale) {
2405         if (locale == null) {
2406             throw new NullPointerException();
2407         }
2408 
2409         int firstUpper;
2410         final int len = value.length;
2411 
2412         /* Now check if there are any characters that need to be changed. */
2413         scan: {
2414             for (firstUpper = 0 ; firstUpper < len; ) {
2415                 char c = value[firstUpper];
2416                 if ((c >= Character.MIN_HIGH_SURROGATE)
2417                         && (c <= Character.MAX_HIGH_SURROGATE)) {
2418                     int supplChar = codePointAt(firstUpper);
2419                     if (supplChar != Character.toLowerCase(supplChar)) {
2420                         break scan;
2421                     }
2422                     firstUpper += Character.charCount(supplChar);
2423                 } else {
2424                     if (c != Character.toLowerCase(c)) {
2425                         break scan;
2426                     }
2427                     firstUpper++;
2428                 }
2429             }
2430             return this;
2431         }
2432 
2433         char[] result = new char[len];
2434         int resultOffset = 0;  /* result may grow, so i+resultOffset
2435                                 * is the write location in result */
2436 
2437         /* Just copy the first few lowerCase characters. */
2438         System.arraycopy(value, 0, result, 0, firstUpper);
2439 
2440         String lang = locale.getLanguage();
2441         boolean localeDependent =
2442                 (lang == "tr" || lang == "az" || lang == "lt");
2443         char[] lowerCharArray;
2444         int lowerChar;
2445         int srcChar;
2446         int srcCount;
2447         for (int i = firstUpper; i < len; i += srcCount) {
2448             srcChar = (int)value[i];
2449             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE
2450                     && (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
2451                 srcChar = codePointAt(i);
2452                 srcCount = Character.charCount(srcChar);
2453             } else {
2454                 srcCount = 1;
2455             }
2456             if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
2457                 lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
2458             } else if (srcChar == '\u0130') { // LATIN CAPITAL LETTER I DOT
2459                 lowerChar = Character.ERROR;
2460             } else {
2461                 lowerChar = Character.toLowerCase(srcChar);
2462             }
2463             if ((lowerChar == Character.ERROR)
2464                     || (lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
2465                 if (lowerChar == Character.ERROR) {
2466                     if (!localeDependent && srcChar == '\u0130') {
2467                         lowerCharArray =
2468                                 ConditionalSpecialCasing.toLowerCaseCharArray(this, i, Locale.ENGLISH);
2469                     } else {
2470                         lowerCharArray =
2471                                 ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
2472                     }
2473                 } else if (srcCount == 2) {
2474                     resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;
2475                     continue;
2476                 } else {
2477                     lowerCharArray = Character.toChars(lowerChar);
2478                 }
2479 
2480                 /* Grow result if needed */
2481                 int mapLen = lowerCharArray.length;
2482                 if (mapLen > srcCount) {
2483                     char[] result2 = new char[result.length + mapLen - srcCount];
2484                     System.arraycopy(result, 0, result2, 0, i + resultOffset);
2485                     result = result2;
2486                 }
2487                 for (int x = 0; x < mapLen; ++x) {
2488                     result[i + resultOffset + x] = lowerCharArray[x];
2489                 }
2490                 resultOffset += (mapLen - srcCount);
2491             } else {
2492                 result[i + resultOffset] = (char)lowerChar;
2493             }
2494         }
2495         return new String(result, 0, len + resultOffset);
2496     }
2497 
2498     /**
2499      * Converts all of the characters in this {@code String} to lower
2500      * case using the rules of the default locale. This is equivalent to calling
2501      * {@code toLowerCase(Locale.getDefault())}.
2502      * <p>
2503      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2504      * results if used for strings that are intended to be interpreted locale
2505      * independently.
2506      * Examples are programming language identifiers, protocol keys, and HTML
2507      * tags.
2508      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2509      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2510      * LATIN SMALL LETTER DOTLESS I character.
2511      * To obtain correct results for locale insensitive strings, use
2512      * {@code toLowerCase(Locale.ENGLISH)}.
2513      * <p>
2514      * @return  the {@code String}, converted to lowercase.
2515      * @see     java.lang.String#toLowerCase(Locale)
2516      */
2517     public String toLowerCase() {
2518         return toLowerCase(Locale.getDefault());
2519     }
2520 
2521     /**
2522      * Converts all of the characters in this {@code String} to upper
2523      * case using the rules of the given {@code Locale}. Case mapping is based
2524      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2525      * class. Since case mappings are not always 1:1 char mappings, the resulting
2526      * {@code String} may be a different length than the original {@code String}.
2527      * <p>
2528      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2529      * <p>
2530      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
2531      * <tr>
2532      *   <th>Language Code of Locale</th>
2533      *   <th>Lower Case</th>
2534      *   <th>Upper Case</th>
2535      *   <th>Description</th>
2536      * </tr>
2537      * <tr>
2538      *   <td>tr (Turkish)</td>
2539      *   <td>&#92;u0069</td>
2540      *   <td>&#92;u0130</td>
2541      *   <td>small letter i -&gt; capital letter I with dot above</td>
2542      * </tr>
2543      * <tr>
2544      *   <td>tr (Turkish)</td>
2545      *   <td>&#92;u0131</td>
2546      *   <td>&#92;u0049</td>
2547      *   <td>small letter dotless i -&gt; capital letter I</td>
2548      * </tr>
2549      * <tr>
2550      *   <td>(all)</td>
2551      *   <td>&#92;u00df</td>
2552      *   <td>&#92;u0053 &#92;u0053</td>
2553      *   <td>small letter sharp s -&gt; two letters: SS</td>
2554      * </tr>
2555      * <tr>
2556      *   <td>(all)</td>
2557      *   <td>Fahrvergn&uuml;gen</td>
2558      *   <td>FAHRVERGN&Uuml;GEN</td>
2559      *   <td></td>
2560      * </tr>
2561      * </table>
2562      * @param locale use the case transformation rules for this locale
2563      * @return the {@code String}, converted to uppercase.
2564      * @see     java.lang.String#toUpperCase()
2565      * @see     java.lang.String#toLowerCase()
2566      * @see     java.lang.String#toLowerCase(Locale)
2567      * @since   1.1
2568      */
2569     public String toUpperCase(Locale locale) {
2570         if (locale == null) {
2571             throw new NullPointerException();
2572         }
2573 
2574         int firstLower;
2575         final int len = value.length;
2576 
2577         /* Now check if there are any characters that need to be changed. */
2578         scan: {
2579             for (firstLower = 0 ; firstLower < len; ) {
2580                 int c = (int)value[firstLower];
2581                 int srcCount;
2582                 if ((c >= Character.MIN_HIGH_SURROGATE)
2583                         && (c <= Character.MAX_HIGH_SURROGATE)) {
2584                     c = codePointAt(firstLower);
2585                     srcCount = Character.charCount(c);
2586                 } else {
2587                     srcCount = 1;
2588                 }
2589                 int upperCaseChar = Character.toUpperCaseEx(c);
2590                 if ((upperCaseChar == Character.ERROR)
2591                         || (c != upperCaseChar)) {
2592                     break scan;
2593                 }
2594                 firstLower += srcCount;
2595             }
2596             return this;
2597         }
2598 
2599         char[] result = new char[len]; /* may grow */
2600         int resultOffset = 0;  /* result may grow, so i+resultOffset
2601          * is the write location in result */
2602 
2603         /* Just copy the first few upperCase characters. */
2604         System.arraycopy(value, 0, result, 0, firstLower);
2605 
2606         String lang = locale.getLanguage();
2607         boolean localeDependent =
2608                 (lang == "tr" || lang == "az" || lang == "lt");
2609         char[] upperCharArray;
2610         int upperChar;
2611         int srcChar;
2612         int srcCount;
2613         for (int i = firstLower; i < len; i += srcCount) {
2614             srcChar = (int)value[i];
2615             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
2616                 (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
2617                 srcChar = codePointAt(i);
2618                 srcCount = Character.charCount(srcChar);
2619             } else {
2620                 srcCount = 1;
2621             }
2622             if (localeDependent) {
2623                 upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
2624             } else {
2625                 upperChar = Character.toUpperCaseEx(srcChar);
2626             }
2627             if ((upperChar == Character.ERROR)
2628                     || (upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
2629                 if (upperChar == Character.ERROR) {
2630                     if (localeDependent) {
2631                         upperCharArray =
2632                                 ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
2633                     } else {
2634                         upperCharArray = Character.toUpperCaseCharArray(srcChar);
2635                     }
2636                 } else if (srcCount == 2) {
2637                     resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;
2638                     continue;
2639                 } else {
2640                     upperCharArray = Character.toChars(upperChar);
2641                 }
2642 
2643                 /* Grow result if needed */
2644                 int mapLen = upperCharArray.length;
2645                 if (mapLen > srcCount) {
2646                     char[] result2 = new char[result.length + mapLen - srcCount];
2647                     System.arraycopy(result, 0, result2, 0, i + resultOffset);
2648                     result = result2;
2649                 }
2650                 for (int x = 0; x < mapLen; ++x) {
2651                     result[i + resultOffset + x] = upperCharArray[x];
2652                 }
2653                 resultOffset += (mapLen - srcCount);
2654             } else {
2655                 result[i + resultOffset] = (char)upperChar;
2656             }
2657         }
2658         return new String(result, 0, len + resultOffset);
2659     }
2660 
2661     /**
2662      * Converts all of the characters in this {@code String} to upper
2663      * case using the rules of the default locale. This method is equivalent to
2664      * {@code toUpperCase(Locale.getDefault())}.
2665      * <p>
2666      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2667      * results if used for strings that are intended to be interpreted locale
2668      * independently.
2669      * Examples are programming language identifiers, protocol keys, and HTML
2670      * tags.
2671      * For instance, {@code "title".toUpperCase()} in a Turkish locale
2672      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2673      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2674      * To obtain correct results for locale insensitive strings, use
2675      * {@code toUpperCase(Locale.ENGLISH)}.
2676      * <p>
2677      * @return  the {@code String}, converted to uppercase.
2678      * @see     java.lang.String#toUpperCase(Locale)
2679      */
2680     public String toUpperCase() {
2681         return toUpperCase(Locale.getDefault());
2682     }
2683 
2684     /**
2685      * Returns a copy of the string, with leading and trailing whitespace
2686      * omitted.
2687      * <p>
2688      * If this {@code String} object represents an empty character
2689      * sequence, or the first and last characters of character sequence
2690      * represented by this {@code String} object both have codes
2691      * greater than {@code '\u005Cu0020'} (the space character), then a
2692      * reference to this {@code String} object is returned.
2693      * <p>
2694      * Otherwise, if there is no character with a code greater than
2695      * {@code '\u005Cu0020'} in the string, then a new
2696      * {@code String} object representing an empty string is created
2697      * and returned.
2698      * <p>
2699      * Otherwise, let <i>k</i> be the index of the first character in the
2700      * string whose code is greater than {@code '\u005Cu0020'}, and let
2701      * <i>m</i> be the index of the last character in the string whose code
2702      * is greater than {@code '\u005Cu0020'}. A new {@code String}
2703      * object is created, representing the substring of this string that
2704      * begins with the character at index <i>k</i> and ends with the
2705      * character at index <i>m</i>-that is, the result of
2706      * <code>this.substring(<i>k</i>,&nbsp;<i>m</i>+1)</code>.
2707      * <p>
2708      * This method may be used to trim whitespace (as defined above) from
2709      * the beginning and end of a string.
2710      *
2711      * @return  A copy of this string with leading and trailing white
2712      *          space removed, or this string if it has no leading or
2713      *          trailing white space.
2714      */
2715     public String trim() {
2716         int len = value.length;
2717         int st = 0;
2718         char[] val = value;    /* avoid getfield opcode */
2719 
2720         while ((st < len) && (val[st] <= ' ')) {
2721             st++;
2722         }
2723         while ((st < len) && (val[len - 1] <= ' ')) {
2724             len--;
2725         }
2726         return ((st > 0) || (len < value.length)) ? substring(st, len) : this;
2727     }
2728 
2729     /**
2730      * This object (which is already a string!) is itself returned.
2731      *
2732      * @return  the string itself.
2733      */
2734     public String toString() {
2735         return this;
2736     }
2737 
2738     /**
2739      * Converts this string to a new character array.
2740      *
2741      * @return  a newly allocated character array whose length is the length
2742      *          of this string and whose contents are initialized to contain
2743      *          the character sequence represented by this string.
2744      */
2745     public char[] toCharArray() {
2746         // Cannot use Arrays.copyOf because of class initialization order issues
2747         char result[] = new char[value.length];
2748         System.arraycopy(value, 0, result, 0, value.length);
2749         return result;
2750     }
2751 
2752     /**
2753      * Returns a formatted string using the specified format string and
2754      * arguments.
2755      *
2756      * <p> The locale always used is the one returned by {@link
2757      * java.util.Locale#getDefault() Locale.getDefault()}.
2758      *
2759      * @param  format
2760      *         A <a href="../util/Formatter.html#syntax">format string</a>
2761      *
2762      * @param  args
2763      *         Arguments referenced by the format specifiers in the format
2764      *         string.  If there are more arguments than format specifiers, the
2765      *         extra arguments are ignored.  The number of arguments is
2766      *         variable and may be zero.  The maximum number of arguments is
2767      *         limited by the maximum dimension of a Java array as defined by
2768      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2769      *         The behaviour on a
2770      *         <tt>null</tt> argument depends on the <a
2771      *         href="../util/Formatter.html#syntax">conversion</a>.
2772      *
2773      * @throws  IllegalFormatException
2774      *          If a format string contains an illegal syntax, a format
2775      *          specifier that is incompatible with the given arguments,
2776      *          insufficient arguments given the format string, or other
2777      *          illegal conditions.  For specification of all possible
2778      *          formatting errors, see the <a
2779      *          href="../util/Formatter.html#detail">Details</a> section of the
2780      *          formatter class specification.
2781      *
2782      * @throws  NullPointerException
2783      *          If the <tt>format</tt> is <tt>null</tt>
2784      *
2785      * @return  A formatted string
2786      *
2787      * @see  java.util.Formatter
2788      * @since  1.5
2789      */
2790     public static String format(String format, Object... args) {
2791         return new Formatter().format(format, args).toString();
2792     }
2793 
2794     /**
2795      * Returns a formatted string using the specified locale, format string,
2796      * and arguments.
2797      *
2798      * @param  l
2799      *         The {@linkplain java.util.Locale locale} to apply during
2800      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
2801      *         is applied.
2802      *
2803      * @param  format
2804      *         A <a href="../util/Formatter.html#syntax">format string</a>
2805      *
2806      * @param  args
2807      *         Arguments referenced by the format specifiers in the format
2808      *         string.  If there are more arguments than format specifiers, the
2809      *         extra arguments are ignored.  The number of arguments is
2810      *         variable and may be zero.  The maximum number of arguments is
2811      *         limited by the maximum dimension of a Java array as defined by
2812      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2813      *         The behaviour on a
2814      *         <tt>null</tt> argument depends on the <a
2815      *         href="../util/Formatter.html#syntax">conversion</a>.
2816      *
2817      * @throws  IllegalFormatException
2818      *          If a format string contains an illegal syntax, a format
2819      *          specifier that is incompatible with the given arguments,
2820      *          insufficient arguments given the format string, or other
2821      *          illegal conditions.  For specification of all possible
2822      *          formatting errors, see the <a
2823      *          href="../util/Formatter.html#detail">Details</a> section of the
2824      *          formatter class specification
2825      *
2826      * @throws  NullPointerException
2827      *          If the <tt>format</tt> is <tt>null</tt>
2828      *
2829      * @return  A formatted string
2830      *
2831      * @see  java.util.Formatter
2832      * @since  1.5
2833      */
2834     public static String format(Locale l, String format, Object... args) {
2835         return new Formatter(l).format(format, args).toString();
2836     }
2837 
2838     /**
2839      * Returns the string representation of the {@code Object} argument.
2840      *
2841      * @param   obj   an {@code Object}.
2842      * @return  if the argument is {@code null}, then a string equal to
2843      *          {@code "null"}; otherwise, the value of
2844      *          {@code obj.toString()} is returned.
2845      * @see     java.lang.Object#toString()
2846      */
2847     public static String valueOf(Object obj) {
2848         return (obj == null) ? "null" : obj.toString();
2849     }
2850 
2851     /**
2852      * Returns the string representation of the {@code char} array
2853      * argument. The contents of the character array are copied; subsequent
2854      * modification of the character array does not affect the newly
2855      * created string.
2856      *
2857      * @param   data   a {@code char} array.
2858      * @return  a newly allocated string representing the same sequence of
2859      *          characters contained in the character array argument.
2860      */
2861     public static String valueOf(char data[]) {
2862         return new String(data);
2863     }
2864 
2865     /**
2866      * Returns the string representation of a specific subarray of the
2867      * {@code char} array argument.
2868      * <p>
2869      * The {@code offset} argument is the index of the first
2870      * character of the subarray. The {@code count} argument
2871      * specifies the length of the subarray. The contents of the subarray
2872      * are copied; subsequent modification of the character array does not
2873      * affect the newly created string.
2874      *
2875      * @param   data     the character array.
2876      * @param   offset   the initial offset into the value of the
2877      *                  {@code String}.
2878      * @param   count    the length of the value of the {@code String}.
2879      * @return  a string representing the sequence of characters contained
2880      *          in the subarray of the character array argument.
2881      * @exception IndexOutOfBoundsException if {@code offset} is
2882      *          negative, or {@code count} is negative, or
2883      *          {@code offset+count} is larger than
2884      *          {@code data.length}.
2885      */
2886     public static String valueOf(char data[], int offset, int count) {
2887         return new String(data, offset, count);
2888     }
2889 
2890     /**
2891      * Returns a String that represents the character sequence in the
2892      * array specified.
2893      *
2894      * @param   data     the character array.
2895      * @param   offset   initial offset of the subarray.
2896      * @param   count    length of the subarray.
2897      * @return  a {@code String} that contains the characters of the
2898      *          specified subarray of the character array.
2899      */
2900     public static String copyValueOf(char data[], int offset, int count) {
2901         // All public String constructors now copy the data.
2902         return new String(data, offset, count);
2903     }
2904 
2905     /**
2906      * Returns a String that represents the character sequence in the
2907      * array specified.
2908      *
2909      * @param   data   the character array.
2910      * @return  a {@code String} that contains the characters of the
2911      *          character array.
2912      */
2913     public static String copyValueOf(char data[]) {
2914         return new String(data);
2915     }
2916 
2917     /**
2918      * Returns the string representation of the {@code boolean} argument.
2919      *
2920      * @param   b   a {@code boolean}.
2921      * @return  if the argument is {@code true}, a string equal to
2922      *          {@code "true"} is returned; otherwise, a string equal to
2923      *          {@code "false"} is returned.
2924      */
2925     public static String valueOf(boolean b) {
2926         return b ? "true" : "false";
2927     }
2928 
2929     /**
2930      * Returns the string representation of the {@code char}
2931      * argument.
2932      *
2933      * @param   c   a {@code char}.
2934      * @return  a string of length {@code 1} containing
2935      *          as its single character the argument {@code c}.
2936      */
2937     public static String valueOf(char c) {
2938         char data[] = {c};
2939         return new String(data, true);
2940     }
2941 
2942     /**
2943      * Returns the string representation of the {@code int} argument.
2944      * <p>
2945      * The representation is exactly the one returned by the
2946      * {@code Integer.toString} method of one argument.
2947      *
2948      * @param   i   an {@code int}.
2949      * @return  a string representation of the {@code int} argument.
2950      * @see     java.lang.Integer#toString(int, int)
2951      */
2952     public static String valueOf(int i) {
2953         return Integer.toString(i);
2954     }
2955 
2956     /**
2957      * Returns the string representation of the {@code long} argument.
2958      * <p>
2959      * The representation is exactly the one returned by the
2960      * {@code Long.toString} method of one argument.
2961      *
2962      * @param   l   a {@code long}.
2963      * @return  a string representation of the {@code long} argument.
2964      * @see     java.lang.Long#toString(long)
2965      */
2966     public static String valueOf(long l) {
2967         return Long.toString(l);
2968     }
2969 
2970     /**
2971      * Returns the string representation of the {@code float} argument.
2972      * <p>
2973      * The representation is exactly the one returned by the
2974      * {@code Float.toString} method of one argument.
2975      *
2976      * @param   f   a {@code float}.
2977      * @return  a string representation of the {@code float} argument.
2978      * @see     java.lang.Float#toString(float)
2979      */
2980     public static String valueOf(float f) {
2981         return Float.toString(f);
2982     }
2983 
2984     /**
2985      * Returns the string representation of the {@code double} argument.
2986      * <p>
2987      * The representation is exactly the one returned by the
2988      * {@code Double.toString} method of one argument.
2989      *
2990      * @param   d   a {@code double}.
2991      * @return  a  string representation of the {@code double} argument.
2992      * @see     java.lang.Double#toString(double)
2993      */
2994     public static String valueOf(double d) {
2995         return Double.toString(d);
2996     }
2997 
2998     /**
2999      * Returns a canonical representation for the string object.
3000      * <p>
3001      * A pool of strings, initially empty, is maintained privately by the
3002      * class {@code String}.
3003      * <p>
3004      * When the intern method is invoked, if the pool already contains a
3005      * string equal to this {@code String} object as determined by
3006      * the {@link #equals(Object)} method, then the string from the pool is
3007      * returned. Otherwise, this {@code String} object is added to the
3008      * pool and a reference to this {@code String} object is returned.
3009      * <p>
3010      * It follows that for any two strings {@code s} and {@code t},
3011      * {@code s.intern() == t.intern()} is {@code true}
3012      * if and only if {@code s.equals(t)} is {@code true}.
3013      * <p>
3014      * All literal strings and string-valued constant expressions are
3015      * interned. String literals are defined in section 3.10.5 of the
3016      * <cite>The Java&trade; Language Specification</cite>.
3017      *
3018      * @return  a string that has the same contents as this string, but is
3019      *          guaranteed to be from a pool of unique strings.
3020      */
3021     public native String intern();
3022 
3023     /**
3024      * Seed value used for each alternative hash calculated.
3025      */
3026     private static final int HASHING_SEED;
3027 
3028     static {
3029         long nanos = System.nanoTime();
3030         long now = System.currentTimeMillis();
3031         int SEED_MATERIAL[] = {
3032                 System.identityHashCode(String.class),
3033                 System.identityHashCode(System.class),
3034                 (int) (nanos >>> 32),
3035                 (int) nanos,
3036                 (int) (now >>> 32),
3037                 (int) now,
3038                 (int) (System.nanoTime() >>> 2)
3039         };
3040 
3041         // Use murmur3 to scramble the seeding material.
3042         // Inline implementation to avoid loading classes
3043         int h1 = 0;
3044 
3045         // body
3046         for(int k1 : SEED_MATERIAL) {
3047             k1 *= 0xcc9e2d51;
3048             k1 = (k1 << 15) | (k1 >>> 17);
3049             k1 *= 0x1b873593;
3050 
3051             h1 ^= k1;
3052             h1 = (h1 << 13) | (h1 >>> 19);
3053             h1 = h1 * 5 + 0xe6546b64;
3054         }
3055 
3056         // tail (always empty, as body is always 32-bit chunks)
3057 
3058         // finalization
3059 
3060         h1 ^= SEED_MATERIAL.length * 4;
3061 
3062         // finalization mix force all bits of a hash block to avalanche
3063         h1 ^= h1 >>> 16;
3064         h1 *= 0x85ebca6b;
3065         h1 ^= h1 >>> 13;
3066         h1 *= 0xc2b2ae35;
3067         h1 ^= h1 >>> 16;
3068 
3069         HASHING_SEED = h1;
3070     }
3071 
3072     /**
3073      * Cached value of the hashing algorithm result
3074      */
3075     private transient int hash32 = 0;
3076 
3077     /**
3078     * Return a 32-bit hash code value for this object.
3079     * <p>
3080     * The general contract of {@code hash32} is:
3081     * <ul>
3082     * <li>Whenever it is invoked on the same object more than once during
3083     *     an execution of a Java application, the {@code hash32} method
3084     *     must consistently return the same integer, provided no information
3085     *     used in {@code equals} comparisons on the object is modified.
3086     *     This integer need not remain consistent from one execution of an
3087     *     application to another execution of the same application.
3088     * <li>If two objects are equal according to the {@code equals(Object)}
3089     *     method, then calling the {@code hash32} method on each of
3090     *     the two objects must produce the same integer result.
3091     * <li>It is <em>not</em> required that if two objects are unequal
3092     *     according to the {@link java.lang.Object#equals(java.lang.Object)}
3093     *     method, then calling the {@code hash32} method on each of the
3094     *     two objects must produce distinct integer results.  However, the
3095     *     programmer should be aware that producing distinct integer results
3096     *     for unequal objects may improve the performance of hash tables.
3097     * </ul>
3098     * <p/>
3099      * The hash value will never be zero.
3100     *
3101     * @return  a hash code value for this object.
3102     * @see     java.lang.Object#equals(java.lang.Object)
3103     */
3104     public int hash32() {
3105         int h = hash32;
3106         if (0 == h) {
3107            // harmless data race on hash32 here.
3108            h = sun.misc.Hashing.murmur3_32(HASHING_SEED, value, 0, value.length);
3109 
3110            // ensure result is not zero to avoid recalcing
3111            h = (0 != h) ? h : 1;
3112 
3113            hash32 = h;
3114         }
3115 
3116         return h;
3117     }
3118 
3119 }