/* * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "gc/z/zArray.inline.hpp" #include "gc/z/zBackingFile_linux_aarch64.hpp" #include "gc/z/zBackingPath_linux_aarch64.hpp" #include "gc/z/zErrno.hpp" #include "gc/z/zGlobals.hpp" #include "gc/z/zLargePages.inline.hpp" #include "logging/log.hpp" #include "runtime/init.hpp" #include "runtime/os.hpp" #include "utilities/align.hpp" #include "utilities/debug.hpp" #include #include #include #include #include #include #include // // Support for building on older Linux systems // // System calls #ifndef SYS_fallocate #define SYS_fallocate 47 #endif #ifndef SYS_memfd_create #define SYS_memfd_create 279 #endif // memfd_create(2) flags #ifndef MFD_CLOEXEC #define MFD_CLOEXEC 0x0001U #endif #ifndef MFD_HUGETLB #define MFD_HUGETLB 0x0004U #endif // open(2) flags #ifndef O_CLOEXEC #define O_CLOEXEC 02000000 #endif #ifndef O_TMPFILE #define O_TMPFILE (020000000 | O_DIRECTORY) #endif // fallocate(2) flags #ifndef FALLOC_FL_KEEP_SIZE #define FALLOC_FL_KEEP_SIZE 0x01 #endif #ifndef FALLOC_FL_PUNCH_HOLE #define FALLOC_FL_PUNCH_HOLE 0x02 #endif // Filesystem types, see statfs(2) #ifndef TMPFS_MAGIC #define TMPFS_MAGIC 0x01021994 #endif #ifndef HUGETLBFS_MAGIC #define HUGETLBFS_MAGIC 0x958458f6 #endif // Filesystem names #define ZFILESYSTEM_TMPFS "tmpfs" #define ZFILESYSTEM_HUGETLBFS "hugetlbfs" // Sysfs file for transparent huge page on tmpfs #define ZFILENAME_SHMEM_ENABLED "/sys/kernel/mm/transparent_hugepage/shmem_enabled" // Java heap filename #define ZFILENAME_HEAP "java_heap" // Preferred tmpfs mount points, ordered by priority static const char* z_preferred_tmpfs_mountpoints[] = { "/dev/shm", "/run/shm", NULL }; // Preferred hugetlbfs mount points, ordered by priority static const char* z_preferred_hugetlbfs_mountpoints[] = { "/dev/hugepages", "/hugepages", NULL }; static int z_fallocate_hugetlbfs_attempts = 3; static bool z_fallocate_supported = true; static int z_fallocate(int fd, int mode, size_t offset, size_t length) { return syscall(SYS_fallocate, fd, mode, offset, length); } static int z_memfd_create(const char *name, unsigned int flags) { return syscall(SYS_memfd_create, name, flags); } ZBackingFile::ZBackingFile() : _fd(-1), _size(0), _filesystem(0), _block_size(0), _available(0), _initialized(false) { // Create backing file _fd = create_fd(ZFILENAME_HEAP); if (_fd == -1) { return; } // Get filesystem statistics struct statfs buf; if (fstatfs(_fd, &buf) == -1) { ZErrno err; log_error(gc)("Failed to determine filesystem type for backing file (%s)", err.to_string()); return; } _filesystem = buf.f_type; _block_size = buf.f_bsize; _available = buf.f_bavail * _block_size; // Make sure we're on a supported filesystem if (!is_tmpfs() && !is_hugetlbfs()) { log_error(gc)("Backing file must be located on a %s or a %s filesystem", ZFILESYSTEM_TMPFS, ZFILESYSTEM_HUGETLBFS); return; } // Make sure the filesystem type matches requested large page type if (ZLargePages::is_transparent() && !is_tmpfs()) { log_error(gc)("-XX:+UseTransparentHugePages can only be enable when using a %s filesystem", ZFILESYSTEM_TMPFS); return; } if (ZLargePages::is_transparent() && !tmpfs_supports_transparent_huge_pages()) { log_error(gc)("-XX:+UseTransparentHugePages on a %s filesystem not supported by kernel", ZFILESYSTEM_TMPFS); return; } if (ZLargePages::is_explicit() && !is_hugetlbfs()) { log_error(gc)("-XX:+UseLargePages (without -XX:+UseTransparentHugePages) can only be enabled " "when using a %s filesystem", ZFILESYSTEM_HUGETLBFS); return; } if (!ZLargePages::is_explicit() && is_hugetlbfs()) { log_error(gc)("-XX:+UseLargePages must be enabled when using a %s filesystem", ZFILESYSTEM_HUGETLBFS); return; } const size_t expected_block_size = is_tmpfs() ? os::vm_page_size() : os::large_page_size(); if (expected_block_size != _block_size) { log_error(gc)("%s filesystem has unexpected block size " SIZE_FORMAT " (expected " SIZE_FORMAT ")", is_tmpfs() ? ZFILESYSTEM_TMPFS : ZFILESYSTEM_HUGETLBFS, _block_size, expected_block_size); return; } // Successfully initialized _initialized = true; } int ZBackingFile::create_mem_fd(const char* name) const { // Create file name char filename[PATH_MAX]; snprintf(filename, sizeof(filename), "%s%s", name, ZLargePages::is_explicit() ? ".hugetlb" : ""); // Create file const int extra_flags = ZLargePages::is_explicit() ? MFD_HUGETLB : 0; const int fd = z_memfd_create(filename, MFD_CLOEXEC | extra_flags); if (fd == -1) { ZErrno err; log_debug(gc, init)("Failed to create memfd file (%s)", ((ZLargePages::is_explicit() && err == EINVAL) ? "Hugepages not supported" : err.to_string())); return -1; } log_info(gc, init)("Heap backed by file: /memfd:%s", filename); return fd; } int ZBackingFile::create_file_fd(const char* name) const { const char* const filesystem = ZLargePages::is_explicit() ? ZFILESYSTEM_HUGETLBFS : ZFILESYSTEM_TMPFS; const char** const preferred_mountpoints = ZLargePages::is_explicit() ? z_preferred_hugetlbfs_mountpoints : z_preferred_tmpfs_mountpoints; // Find mountpoint ZBackingPath path(filesystem, preferred_mountpoints); if (path.get() == NULL) { log_error(gc)("Use -XX:ZPath to specify the path to a %s filesystem", filesystem); return -1; } // Try to create an anonymous file using the O_TMPFILE flag. Note that this // flag requires kernel >= 3.11. If this fails we fall back to open/unlink. const int fd_anon = os::open(path.get(), O_TMPFILE|O_EXCL|O_RDWR|O_CLOEXEC, S_IRUSR|S_IWUSR); if (fd_anon == -1) { ZErrno err; log_debug(gc, init)("Failed to create anonymous file in %s (%s)", path.get(), (err == EINVAL ? "Not supported" : err.to_string())); } else { // Get inode number for anonymous file struct stat stat_buf; if (fstat(fd_anon, &stat_buf) == -1) { ZErrno err; log_error(gc)("Failed to determine inode number for anonymous file (%s)", err.to_string()); return -1; } log_info(gc, init)("Heap backed by file: %s/#" UINT64_FORMAT, path.get(), (uint64_t)stat_buf.st_ino); return fd_anon; } log_debug(gc, init)("Falling back to open/unlink"); // Create file name char filename[PATH_MAX]; snprintf(filename, sizeof(filename), "%s/%s.%d", path.get(), name, os::current_process_id()); // Create file const int fd = os::open(filename, O_CREAT|O_EXCL|O_RDWR|O_CLOEXEC, S_IRUSR|S_IWUSR); if (fd == -1) { ZErrno err; log_error(gc)("Failed to create file %s (%s)", filename, err.to_string()); return -1; } // Unlink file if (unlink(filename) == -1) { ZErrno err; log_error(gc)("Failed to unlink file %s (%s)", filename, err.to_string()); return -1; } log_info(gc, init)("Heap backed by file: %s", filename); return fd; } int ZBackingFile::create_fd(const char* name) const { if (ZPath == NULL) { // If the path is not explicitly specified, then we first try to create a memfd file // instead of looking for a tmpfd/hugetlbfs mount point. Note that memfd_create() might // not be supported at all (requires kernel >= 3.17), or it might not support large // pages (requires kernel >= 4.14). If memfd_create() fails, then we try to create a // file on an accessible tmpfs or hugetlbfs mount point. const int fd = create_mem_fd(name); if (fd != -1) { return fd; } log_debug(gc, init)("Falling back to searching for an accessible mount point"); } return create_file_fd(name); } bool ZBackingFile::is_initialized() const { return _initialized; } int ZBackingFile::fd() const { return _fd; } size_t ZBackingFile::size() const { return _size; } size_t ZBackingFile::available() const { return _available; } bool ZBackingFile::is_tmpfs() const { return _filesystem == TMPFS_MAGIC; } bool ZBackingFile::is_hugetlbfs() const { return _filesystem == HUGETLBFS_MAGIC; } bool ZBackingFile::tmpfs_supports_transparent_huge_pages() const { // If the shmem_enabled file exists and is readable then we // know the kernel supports transparent huge pages for tmpfs. return access(ZFILENAME_SHMEM_ENABLED, R_OK) == 0; } ZErrno ZBackingFile::fallocate_compat_ftruncate(size_t size) const { while (ftruncate(_fd, size) == -1) { if (errno != EINTR) { // Failed return errno; } } // Success return 0; } ZErrno ZBackingFile::fallocate_compat_mmap(size_t offset, size_t length, bool touch) const { // On hugetlbfs, mapping a file segment will fail immediately, without // the need to touch the mapped pages first, if there aren't enough huge // pages available to back the mapping. void* const addr = mmap(0, length, PROT_READ|PROT_WRITE, MAP_SHARED, _fd, offset); if (addr == MAP_FAILED) { // Failed return errno; } // Once mapped, the huge pages are only reserved. We need to touch them // to associate them with the file segment. Note that we can not punch // hole in file segments which only have reserved pages. if (touch) { char* const start = (char*)addr; char* const end = start + length; os::pretouch_memory(start, end, _block_size); } // Unmap again. From now on, the huge pages that were mapped are allocated // to this file. There's no risk in getting SIGBUS when touching them. if (munmap(addr, length) == -1) { // Failed return errno; } // Success return 0; } ZErrno ZBackingFile::fallocate_compat_pwrite(size_t offset, size_t length) const { uint8_t data = 0; // Allocate backing memory by writing to each block for (size_t pos = offset; pos < offset + length; pos += _block_size) { if (pwrite(_fd, &data, sizeof(data), pos) == -1) { // Failed return errno; } } // Success return 0; } ZErrno ZBackingFile::fallocate_fill_hole_compat(size_t offset, size_t length) { // fallocate(2) is only supported by tmpfs since Linux 3.5, and by hugetlbfs // since Linux 4.3. When fallocate(2) is not supported we emulate it using // ftruncate/pwrite (for tmpfs) or ftruncate/mmap/munmap (for hugetlbfs). const size_t end = offset + length; if (end > _size) { // Increase file size const ZErrno err = fallocate_compat_ftruncate(end); if (err) { // Failed return err; } } // Allocate backing memory const ZErrno err = is_hugetlbfs() ? fallocate_compat_mmap(offset, length, false /* touch */) : fallocate_compat_pwrite(offset, length); if (err) { if (end > _size) { // Restore file size fallocate_compat_ftruncate(_size); } // Failed return err; } if (end > _size) { // Record new file size _size = end; } // Success return 0; } ZErrno ZBackingFile::fallocate_fill_hole_syscall(size_t offset, size_t length) { const int mode = 0; // Allocate const int res = z_fallocate(_fd, mode, offset, length); if (res == -1) { // Failed return errno; } const size_t end = offset + length; if (end > _size) { // Record new file size _size = end; } // Success return 0; } ZErrno ZBackingFile::fallocate_fill_hole(size_t offset, size_t length) { // Using compat mode is more efficient when allocating space on hugetlbfs. // Note that allocating huge pages this way will only reserve them, and not // associate them with segments of the file. We must guarantee that we at // some point touch these segments, otherwise we can not punch hole in them. if (z_fallocate_supported && !is_hugetlbfs()) { const ZErrno err = fallocate_fill_hole_syscall(offset, length); if (!err) { // Success return 0; } if (err != ENOSYS && err != EOPNOTSUPP) { // Failed return err; } // Not supported log_debug(gc)("Falling back to fallocate() compatibility mode"); z_fallocate_supported = false; } return fallocate_fill_hole_compat(offset, length); } ZErrno ZBackingFile::fallocate_punch_hole(size_t offset, size_t length) { if (is_hugetlbfs()) { // We can only punch hole in pages that have been touched. Non-touched // pages are only reserved, and not associated with any specific file // segment. We don't know which pages have been previously touched, so // we always touch them here to guarantee that we can punch hole. const ZErrno err = fallocate_compat_mmap(offset, length, true /* touch */); if (err) { // Failed return err; } } const int mode = FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE; if (z_fallocate(_fd, mode, offset, length) == -1) { // Failed return errno; } // Success return 0; } ZErrno ZBackingFile::split_and_fallocate(bool punch_hole, size_t offset, size_t length) { // Try first half const size_t offset0 = offset; const size_t length0 = align_up(length / 2, _block_size); const ZErrno err0 = fallocate(punch_hole, offset0, length0); if (err0) { return err0; } // Try second half const size_t offset1 = offset0 + length0; const size_t length1 = length - length0; const ZErrno err1 = fallocate(punch_hole, offset1, length1); if (err1) { return err1; } // Success return 0; } ZErrno ZBackingFile::fallocate(bool punch_hole, size_t offset, size_t length) { assert(is_aligned(offset, _block_size), "Invalid offset"); assert(is_aligned(length, _block_size), "Invalid length"); const ZErrno err = punch_hole ? fallocate_punch_hole(offset, length) : fallocate_fill_hole(offset, length); if (err == EINTR && length > _block_size) { // Calling fallocate(2) with a large length can take a long time to // complete. When running profilers, such as VTune, this syscall will // be constantly interrupted by signals. Expanding the file in smaller // steps avoids this problem. return split_and_fallocate(punch_hole, offset, length); } return err; } bool ZBackingFile::commit_inner(size_t offset, size_t length) { log_trace(gc, heap)("Committing memory: " SIZE_FORMAT "M-" SIZE_FORMAT "M (" SIZE_FORMAT "M)", offset / M, (offset + length) / M, length / M); retry: const ZErrno err = fallocate(false /* punch_hole */, offset, length); if (err) { if (err == ENOSPC && !is_init_completed() && is_hugetlbfs() && z_fallocate_hugetlbfs_attempts-- > 0) { // If we fail to allocate during initialization, due to lack of space on // the hugetlbfs filesystem, then we wait and retry a few times before // giving up. Otherwise there is a risk that running JVMs back-to-back // will fail, since there is a delay between process termination and the // huge pages owned by that process being returned to the huge page pool // and made available for new allocations. log_debug(gc, init)("Failed to commit memory (%s), retrying", err.to_string()); // Wait and retry in one second, in the hope that huge pages will be // available by then. sleep(1); goto retry; } // Failed log_error(gc)("Failed to commit memory (%s)", err.to_string()); return false; } // Success return true; } size_t ZBackingFile::commit(size_t offset, size_t length) { // Try to commit the whole region if (commit_inner(offset, length)) { // Success return length; } // Failed, try to commit as much as possible size_t start = offset; size_t end = offset + length; for (;;) { length = align_down((end - start) / 2, ZGranuleSize); if (length < ZGranuleSize) { // Done, don't commit more return start - offset; } if (commit_inner(start, length)) { // Success, try commit more start += length; } else { // Failed, try commit less end -= length; } } } size_t ZBackingFile::uncommit(size_t offset, size_t length) { log_trace(gc, heap)("Uncommitting memory: " SIZE_FORMAT "M-" SIZE_FORMAT "M (" SIZE_FORMAT "M)", offset / M, (offset + length) / M, length / M); const ZErrno err = fallocate(true /* punch_hole */, offset, length); if (err) { log_error(gc)("Failed to uncommit memory (%s)", err.to_string()); return 0; } return length; }