/* * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #ifndef HEADLESS #include #include "OGLBufImgOps.h" #include "OGLContext.h" #include "OGLRenderQueue.h" #include "OGLSurfaceData.h" #include "GraphicsPrimitiveMgr.h" /** Evaluates to true if the given bit is set on the local flags variable. */ #define IS_SET(flagbit) \ (((flags) & (flagbit)) != 0) /**************************** ConvolveOp support ****************************/ /** * The ConvolveOp shader is fairly straightforward. For each texel in * the source texture, the shader samples the MxN texels in the surrounding * area, multiplies each by its corresponding kernel value, and then sums * them all together to produce a single color result. Finally, the * resulting value is multiplied by the current OpenGL color, which contains * the extra alpha value. * * Note that this shader source code includes some "holes" marked by "%s". * This allows us to build different shader programs (e.g. one for * 3x3, one for 5x5, and so on) simply by filling in these "holes" with * a call to sprintf(). See the OGLBufImgOps_CreateConvolveProgram() method * for more details. * * REMIND: Currently this shader (and the supporting code in the * EnableConvolveOp() method) only supports 3x3 and 5x5 filters. * Early shader-level hardware did not support non-constant sized * arrays but modern hardware should support them (although I * don't know of any simple way to find out, other than to compile * the shader at runtime and see if the drivers complain). */ /** * Flags that can be bitwise-or'ed together to control how the shader * source code is generated. */ #define CONVOLVE_RECT (1 << 0) #define CONVOLVE_EDGE_ZERO_FILL (1 << 1) #define CONVOLVE_5X5 (1 << 2) /** * The handles to the ConvolveOp fragment program objects. The index to * the array should be a bitwise-or'ing of the CONVOLVE_* flags defined * above. Note that most applications will likely need to initialize one * or two of these elements, so the array is usually sparsely populated. */ static GLhandleARB convolvePrograms[8]; /** * The maximum kernel size supported by the ConvolveOp shader. */ #define MAX_KERNEL_SIZE 25 /** * Compiles and links the ConvolveOp shader program. If successful, this * function returns a handle to the newly created shader program; otherwise * returns 0. */ static GLhandleARB OGLBufImgOps_CreateConvolveProgram(jint flags) { GLhandleARB convolveProgram; GLint loc; char *kernelMax = IS_SET(CONVOLVE_5X5) ? "25" : "9"; char *target = IS_SET(CONVOLVE_RECT) ? "2DRect" : "2D"; char edge[100]; char finalSource[2000]; J2dTraceLn1(J2D_TRACE_INFO, "OGLBufImgOps_CreateConvolveProgram: flags=%d", flags); if (IS_SET(CONVOLVE_EDGE_ZERO_FILL)) { // EDGE_ZERO_FILL: fill in zero at the edges sprintf(edge, "sum = vec4(0.0);"); } else { // EDGE_NO_OP: use the source pixel color at the edges sprintf(edge, "sum = texture%s(baseImage, gl_TexCoord[0].st);", target); } // compose the final source code string from the various pieces sprintf(finalSource, // maximum size supported by this shader "const int MAX_KERNEL_SIZE = %s;" // image to be convolved "uniform sampler%s baseImage;" // image edge limits: // imgEdge.xy = imgMin.xy (anything < will be treated as edge case) // imgEdge.zw = imgMax.xy (anything > will be treated as edge case) "uniform vec4 imgEdge;" // value for each location in the convolution kernel: // kernelVals[i].x = offsetX[i] // kernelVals[i].y = offsetY[i] // kernelVals[i].z = kernel[i] "uniform vec3 kernelVals[MAX_KERNEL_SIZE];" "" "void main(void)" "{" " int i;" " vec4 sum;" "" " if (any(lessThan(gl_TexCoord[0].st, imgEdge.xy)) ||" " any(greaterThan(gl_TexCoord[0].st, imgEdge.zw)))" " {" // (placeholder for edge condition code) " %s" " } else {" " sum = vec4(0.0);" " for (i = 0; i < MAX_KERNEL_SIZE; i++) {" " sum +=" " kernelVals[i].z *" " texture%s(baseImage," " gl_TexCoord[0].st + kernelVals[i].xy);" " }" " }" "" // modulate with gl_Color in order to apply extra alpha " gl_FragColor = sum * gl_Color;" "}", kernelMax, target, edge, target); convolveProgram = OGLContext_CreateFragmentProgram(finalSource); if (convolveProgram == 0) { J2dRlsTraceLn(J2D_TRACE_ERROR, "OGLBufImgOps_CreateConvolveProgram: error creating program"); return 0; } // "use" the program object temporarily so that we can set the uniforms j2d_glUseProgramObjectARB(convolveProgram); // set the "uniform" texture unit binding loc = j2d_glGetUniformLocationARB(convolveProgram, "baseImage"); j2d_glUniform1iARB(loc, 0); // texture unit 0 // "unuse" the program object; it will be re-bound later as needed j2d_glUseProgramObjectARB(0); return convolveProgram; } void OGLBufImgOps_EnableConvolveOp(OGLContext *oglc, jlong pSrcOps, jboolean edgeZeroFill, jint kernelWidth, jint kernelHeight, unsigned char *kernel) { OGLSDOps *srcOps = (OGLSDOps *)jlong_to_ptr(pSrcOps); jint kernelSize = kernelWidth * kernelHeight; GLhandleARB convolveProgram; GLfloat xoff, yoff; GLfloat edgeX, edgeY, minX, minY, maxX, maxY; GLfloat kernelVals[MAX_KERNEL_SIZE*3]; jint i, j, kIndex; GLint loc; jint flags = 0; J2dTraceLn2(J2D_TRACE_INFO, "OGLBufImgOps_EnableConvolveOp: kernelW=%d kernelH=%d", kernelWidth, kernelHeight); RETURN_IF_NULL(oglc); RETURN_IF_NULL(srcOps); RESET_PREVIOUS_OP(); if (srcOps->textureTarget == GL_TEXTURE_RECTANGLE_ARB) { flags |= CONVOLVE_RECT; // for GL_TEXTURE_RECTANGLE_ARB, texcoords are specified in the // range [0,srcw] and [0,srch], so to achieve an x/y offset of // exactly one pixel we simply use the value 1 here xoff = 1.0f; yoff = 1.0f; } else { // for GL_TEXTURE_2D, texcoords are specified in the range [0,1], // so to achieve an x/y offset of approximately one pixel we have // to normalize to that range here xoff = 1.0f / srcOps->textureWidth; yoff = 1.0f / srcOps->textureHeight; } if (edgeZeroFill) { flags |= CONVOLVE_EDGE_ZERO_FILL; } if (kernelWidth == 5 && kernelHeight == 5) { flags |= CONVOLVE_5X5; } // locate/initialize the shader program for the given flags if (convolvePrograms[flags] == 0) { convolvePrograms[flags] = OGLBufImgOps_CreateConvolveProgram(flags); if (convolvePrograms[flags] == 0) { // shouldn't happen, but just in case... return; } } convolveProgram = convolvePrograms[flags]; // enable the convolve shader j2d_glUseProgramObjectARB(convolveProgram); // update the "uniform" image min/max values edgeX = (kernelWidth/2) * xoff; edgeY = (kernelHeight/2) * yoff; minX = edgeX; minY = edgeY; if (srcOps->textureTarget == GL_TEXTURE_RECTANGLE_ARB) { // texcoords are in the range [0,srcw] and [0,srch] maxX = ((GLfloat)srcOps->width) - edgeX; maxY = ((GLfloat)srcOps->height) - edgeY; } else { // texcoords are in the range [0,1] maxX = (((GLfloat)srcOps->width) / srcOps->textureWidth) - edgeX; maxY = (((GLfloat)srcOps->height) / srcOps->textureHeight) - edgeY; } loc = j2d_glGetUniformLocationARB(convolveProgram, "imgEdge"); j2d_glUniform4fARB(loc, minX, minY, maxX, maxY); // update the "uniform" kernel offsets and values loc = j2d_glGetUniformLocationARB(convolveProgram, "kernelVals"); kIndex = 0; for (i = -kernelHeight/2; i < kernelHeight/2+1; i++) { for (j = -kernelWidth/2; j < kernelWidth/2+1; j++) { kernelVals[kIndex+0] = j*xoff; kernelVals[kIndex+1] = i*yoff; kernelVals[kIndex+2] = NEXT_FLOAT(kernel); kIndex += 3; } } j2d_glUniform3fvARB(loc, kernelSize, kernelVals); } void OGLBufImgOps_DisableConvolveOp(OGLContext *oglc) { J2dTraceLn(J2D_TRACE_INFO, "OGLBufImgOps_DisableConvolveOp"); RETURN_IF_NULL(oglc); // disable the ConvolveOp shader j2d_glUseProgramObjectARB(0); } /**************************** RescaleOp support *****************************/ /** * The RescaleOp shader is one of the simplest possible. Each fragment * from the source image is multiplied by the user's scale factor and added * to the user's offset value (these are component-wise operations). * Finally, the resulting value is multiplied by the current OpenGL color, * which contains the extra alpha value. * * The RescaleOp spec says that the operation is performed regardless of * whether the source data is premultiplied or non-premultiplied. This is * a problem for the OpenGL pipeline in that a non-premultiplied * BufferedImage will have already been converted into premultiplied * when uploaded to an OpenGL texture. Therefore, we have a special mode * called RESCALE_NON_PREMULT (used only for source images that were * originally non-premultiplied) that un-premultiplies the source color * prior to the rescale operation, then re-premultiplies the resulting * color before returning from the fragment shader. * * Note that this shader source code includes some "holes" marked by "%s". * This allows us to build different shader programs (e.g. one for * GL_TEXTURE_2D targets, one for GL_TEXTURE_RECTANGLE_ARB targets, and so on) * simply by filling in these "holes" with a call to sprintf(). See the * OGLBufImgOps_CreateRescaleProgram() method for more details. */ /** * Flags that can be bitwise-or'ed together to control how the shader * source code is generated. */ #define RESCALE_RECT (1 << 0) #define RESCALE_NON_PREMULT (1 << 1) /** * The handles to the RescaleOp fragment program objects. The index to * the array should be a bitwise-or'ing of the RESCALE_* flags defined * above. Note that most applications will likely need to initialize one * or two of these elements, so the array is usually sparsely populated. */ static GLhandleARB rescalePrograms[4]; /** * Compiles and links the RescaleOp shader program. If successful, this * function returns a handle to the newly created shader program; otherwise * returns 0. */ static GLhandleARB OGLBufImgOps_CreateRescaleProgram(jint flags) { GLhandleARB rescaleProgram; GLint loc; char *target = IS_SET(RESCALE_RECT) ? "2DRect" : "2D"; char *preRescale = ""; char *postRescale = ""; char finalSource[2000]; J2dTraceLn1(J2D_TRACE_INFO, "OGLBufImgOps_CreateRescaleProgram: flags=%d", flags); if (IS_SET(RESCALE_NON_PREMULT)) { preRescale = "srcColor.rgb /= srcColor.a;"; postRescale = "result.rgb *= result.a;"; } // compose the final source code string from the various pieces sprintf(finalSource, // image to be rescaled "uniform sampler%s baseImage;" // vector containing scale factors "uniform vec4 scaleFactors;" // vector containing offsets "uniform vec4 offsets;" "" "void main(void)" "{" " vec4 srcColor = texture%s(baseImage, gl_TexCoord[0].st);" // (placeholder for un-premult code) " %s" // rescale source value " vec4 result = (srcColor * scaleFactors) + offsets;" // (placeholder for re-premult code) " %s" // modulate with gl_Color in order to apply extra alpha " gl_FragColor = result * gl_Color;" "}", target, target, preRescale, postRescale); rescaleProgram = OGLContext_CreateFragmentProgram(finalSource); if (rescaleProgram == 0) { J2dRlsTraceLn(J2D_TRACE_ERROR, "OGLBufImgOps_CreateRescaleProgram: error creating program"); return 0; } // "use" the program object temporarily so that we can set the uniforms j2d_glUseProgramObjectARB(rescaleProgram); // set the "uniform" values loc = j2d_glGetUniformLocationARB(rescaleProgram, "baseImage"); j2d_glUniform1iARB(loc, 0); // texture unit 0 // "unuse" the program object; it will be re-bound later as needed j2d_glUseProgramObjectARB(0); return rescaleProgram; } void OGLBufImgOps_EnableRescaleOp(OGLContext *oglc, jlong pSrcOps, jboolean nonPremult, unsigned char *scaleFactors, unsigned char *offsets) { OGLSDOps *srcOps = (OGLSDOps *)jlong_to_ptr(pSrcOps); GLhandleARB rescaleProgram; GLint loc; jint flags = 0; J2dTraceLn(J2D_TRACE_INFO, "OGLBufImgOps_EnableRescaleOp"); RETURN_IF_NULL(oglc); RETURN_IF_NULL(srcOps); RESET_PREVIOUS_OP(); // choose the appropriate shader, depending on the source texture target if (srcOps->textureTarget == GL_TEXTURE_RECTANGLE_ARB) { flags |= RESCALE_RECT; } if (nonPremult) { flags |= RESCALE_NON_PREMULT; } // locate/initialize the shader program for the given flags if (rescalePrograms[flags] == 0) { rescalePrograms[flags] = OGLBufImgOps_CreateRescaleProgram(flags); if (rescalePrograms[flags] == 0) { // shouldn't happen, but just in case... return; } } rescaleProgram = rescalePrograms[flags]; // enable the rescale shader j2d_glUseProgramObjectARB(rescaleProgram); // update the "uniform" scale factor values (note that the Java-level // dispatching code always passes down 4 values here, regardless of // the original source image type) loc = j2d_glGetUniformLocationARB(rescaleProgram, "scaleFactors"); { GLfloat sf1 = NEXT_FLOAT(scaleFactors); GLfloat sf2 = NEXT_FLOAT(scaleFactors); GLfloat sf3 = NEXT_FLOAT(scaleFactors); GLfloat sf4 = NEXT_FLOAT(scaleFactors); j2d_glUniform4fARB(loc, sf1, sf2, sf3, sf4); } // update the "uniform" offset values (note that the Java-level // dispatching code always passes down 4 values here, and that the // offsets will have already been normalized to the range [0,1]) loc = j2d_glGetUniformLocationARB(rescaleProgram, "offsets"); { GLfloat off1 = NEXT_FLOAT(offsets); GLfloat off2 = NEXT_FLOAT(offsets); GLfloat off3 = NEXT_FLOAT(offsets); GLfloat off4 = NEXT_FLOAT(offsets); j2d_glUniform4fARB(loc, off1, off2, off3, off4); } } void OGLBufImgOps_DisableRescaleOp(OGLContext *oglc) { J2dTraceLn(J2D_TRACE_INFO, "OGLBufImgOps_DisableRescaleOp"); RETURN_IF_NULL(oglc); // disable the RescaleOp shader j2d_glUseProgramObjectARB(0); } /**************************** LookupOp support ******************************/ /** * The LookupOp shader takes a fragment color (from the source texture) as * input, subtracts the optional user offset value, and then uses the * resulting value to index into the lookup table texture to provide * a new color result. Finally, the resulting value is multiplied by * the current OpenGL color, which contains the extra alpha value. * * The lookup step requires 3 texture accesses (or 4, when alpha is included), * which is somewhat unfortunate because it's not ideal from a performance * standpoint, but that sort of thing is getting faster with newer hardware. * In the 3-band case, we could consider using a three-dimensional texture * and performing the lookup with a single texture access step. We already * use this approach in the LCD text shader, and it works well, but for the * purposes of this LookupOp shader, it's probably overkill. Also, there's * a difference in that the LCD text shader only needs to populate the 3D LUT * once, but here we would need to populate it on every invocation, which * would likely be a waste of VRAM and CPU/GPU cycles. * * The LUT texture is currently hardcoded as 4 rows/bands, each containing * 256 elements. This means that we currently only support user-provided * tables with no more than 256 elements in each band (this is checked at * at the Java level). If the user provides a table with less than 256 * elements per band, our shader will still work fine, but if elements are * accessed with an index >= the size of the LUT, then the shader will simply * produce undefined values. Typically the user would provide an offset * value that would prevent this from happening, but it's worth pointing out * this fact because the software LookupOp implementation would usually * throw an ArrayIndexOutOfBoundsException in this scenario (although it is * not something demanded by the spec). * * The LookupOp spec says that the operation is performed regardless of * whether the source data is premultiplied or non-premultiplied. This is * a problem for the OpenGL pipeline in that a non-premultiplied * BufferedImage will have already been converted into premultiplied * when uploaded to an OpenGL texture. Therefore, we have a special mode * called LOOKUP_NON_PREMULT (used only for source images that were * originally non-premultiplied) that un-premultiplies the source color * prior to the lookup operation, then re-premultiplies the resulting * color before returning from the fragment shader. * * Note that this shader source code includes some "holes" marked by "%s". * This allows us to build different shader programs (e.g. one for * GL_TEXTURE_2D targets, one for GL_TEXTURE_RECTANGLE_ARB targets, and so on) * simply by filling in these "holes" with a call to sprintf(). See the * OGLBufImgOps_CreateLookupProgram() method for more details. */ /** * Flags that can be bitwise-or'ed together to control how the shader * source code is generated. */ #define LOOKUP_RECT (1 << 0) #define LOOKUP_USE_SRC_ALPHA (1 << 1) #define LOOKUP_NON_PREMULT (1 << 2) /** * The handles to the LookupOp fragment program objects. The index to * the array should be a bitwise-or'ing of the LOOKUP_* flags defined * above. Note that most applications will likely need to initialize one * or two of these elements, so the array is usually sparsely populated. */ static GLhandleARB lookupPrograms[8]; /** * The handle to the lookup table texture object used by the shader. */ static GLuint lutTextureID = 0; /** * Compiles and links the LookupOp shader program. If successful, this * function returns a handle to the newly created shader program; otherwise * returns 0. */ static GLhandleARB OGLBufImgOps_CreateLookupProgram(jint flags) { GLhandleARB lookupProgram; GLint loc; char *target = IS_SET(LOOKUP_RECT) ? "2DRect" : "2D"; char *alpha; char *preLookup = ""; char *postLookup = ""; char finalSource[2000]; J2dTraceLn1(J2D_TRACE_INFO, "OGLBufImgOps_CreateLookupProgram: flags=%d", flags); if (IS_SET(LOOKUP_USE_SRC_ALPHA)) { // when numComps is 1 or 3, the alpha is not looked up in the table; // just keep the alpha from the source fragment alpha = "result.a = srcColor.a;"; } else { // when numComps is 4, the alpha is looked up in the table, just // like the other color components from the source fragment alpha = "result.a = texture2D(lookupTable, vec2(srcIndex.a, 0.875)).r;"; } if (IS_SET(LOOKUP_NON_PREMULT)) { preLookup = "srcColor.rgb /= srcColor.a;"; postLookup = "result.rgb *= result.a;"; } // compose the final source code string from the various pieces sprintf(finalSource, // source image (bound to texture unit 0) "uniform sampler%s baseImage;" // lookup table (bound to texture unit 1) "uniform sampler2D lookupTable;" // offset subtracted from source index prior to lookup step "uniform vec4 offset;" "" "void main(void)" "{" " vec4 srcColor = texture%s(baseImage, gl_TexCoord[0].st);" // (placeholder for un-premult code) " %s" // subtract offset from original index " vec4 srcIndex = srcColor - offset;" // use source value as input to lookup table (note that // "v" texcoords are hardcoded to hit texel centers of // each row/band in texture) " vec4 result;" " result.r = texture2D(lookupTable, vec2(srcIndex.r, 0.125)).r;" " result.g = texture2D(lookupTable, vec2(srcIndex.g, 0.375)).r;" " result.b = texture2D(lookupTable, vec2(srcIndex.b, 0.625)).r;" // (placeholder for alpha store code) " %s" // (placeholder for re-premult code) " %s" // modulate with gl_Color in order to apply extra alpha " gl_FragColor = result * gl_Color;" "}", target, target, preLookup, alpha, postLookup); lookupProgram = OGLContext_CreateFragmentProgram(finalSource); if (lookupProgram == 0) { J2dRlsTraceLn(J2D_TRACE_ERROR, "OGLBufImgOps_CreateLookupProgram: error creating program"); return 0; } // "use" the program object temporarily so that we can set the uniforms j2d_glUseProgramObjectARB(lookupProgram); // set the "uniform" values loc = j2d_glGetUniformLocationARB(lookupProgram, "baseImage"); j2d_glUniform1iARB(loc, 0); // texture unit 0 loc = j2d_glGetUniformLocationARB(lookupProgram, "lookupTable"); j2d_glUniform1iARB(loc, 1); // texture unit 1 // "unuse" the program object; it will be re-bound later as needed j2d_glUseProgramObjectARB(0); return lookupProgram; } void OGLBufImgOps_EnableLookupOp(OGLContext *oglc, jlong pSrcOps, jboolean nonPremult, jboolean shortData, jint numBands, jint bandLength, jint offset, void *tableValues) { OGLSDOps *srcOps = (OGLSDOps *)jlong_to_ptr(pSrcOps); int bytesPerElem = (shortData ? 2 : 1); GLhandleARB lookupProgram; GLfloat foff; GLint loc; void *bands[4]; int i; jint flags = 0; J2dTraceLn4(J2D_TRACE_INFO, "OGLBufImgOps_EnableLookupOp: short=%d num=%d len=%d off=%d", shortData, numBands, bandLength, offset); for (i = 0; i < 4; i++) { bands[i] = NULL; } RETURN_IF_NULL(oglc); RETURN_IF_NULL(srcOps); RESET_PREVIOUS_OP(); // choose the appropriate shader, depending on the source texture target // and the number of bands involved if (srcOps->textureTarget == GL_TEXTURE_RECTANGLE_ARB) { flags |= LOOKUP_RECT; } if (numBands != 4) { flags |= LOOKUP_USE_SRC_ALPHA; } if (nonPremult) { flags |= LOOKUP_NON_PREMULT; } // locate/initialize the shader program for the given flags if (lookupPrograms[flags] == 0) { lookupPrograms[flags] = OGLBufImgOps_CreateLookupProgram(flags); if (lookupPrograms[flags] == 0) { // shouldn't happen, but just in case... return; } } lookupProgram = lookupPrograms[flags]; // enable the lookup shader j2d_glUseProgramObjectARB(lookupProgram); // update the "uniform" offset value loc = j2d_glGetUniformLocationARB(lookupProgram, "offset"); foff = offset / 255.0f; j2d_glUniform4fARB(loc, foff, foff, foff, foff); // bind the lookup table to texture unit 1 and enable texturing j2d_glActiveTextureARB(GL_TEXTURE1_ARB); if (lutTextureID == 0) { /* * Create the lookup table texture with 4 rows (one band per row) * and 256 columns (one LUT band element per column) and with an * internal format of 16-bit luminance values, which will be * sufficient for either byte or short LUT data. Note that the * texture wrap mode will be set to the default of GL_CLAMP_TO_EDGE, * which means that out-of-range index value will be clamped * appropriately. */ lutTextureID = OGLContext_CreateBlitTexture(GL_LUMINANCE16, GL_LUMINANCE, 256, 4); if (lutTextureID == 0) { // should never happen, but just to be safe... return; } } j2d_glBindTexture(GL_TEXTURE_2D, lutTextureID); j2d_glEnable(GL_TEXTURE_2D); // update the lookup table with the user-provided values if (numBands == 1) { // replicate the single band for R/G/B; alpha band is unused for (i = 0; i < 3; i++) { bands[i] = tableValues; } bands[3] = NULL; } else if (numBands == 3) { // user supplied band for each of R/G/B; alpha band is unused for (i = 0; i < 3; i++) { bands[i] = PtrAddBytes(tableValues, i*bandLength*bytesPerElem); } bands[3] = NULL; } else if (numBands == 4) { // user supplied band for each of R/G/B/A for (i = 0; i < 4; i++) { bands[i] = PtrAddBytes(tableValues, i*bandLength*bytesPerElem); } } // upload the bands one row at a time into our lookup table texture for (i = 0; i < 4; i++) { if (bands[i] == NULL) { continue; } j2d_glTexSubImage2D(GL_TEXTURE_2D, 0, 0, i, bandLength, 1, GL_LUMINANCE, shortData ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE, bands[i]); } // restore texture unit 0 (the default) as the active one since // the OGLBlitTextureToSurface() method is responsible for binding the // source image texture, which will happen later j2d_glActiveTextureARB(GL_TEXTURE0_ARB); } void OGLBufImgOps_DisableLookupOp(OGLContext *oglc) { J2dTraceLn(J2D_TRACE_INFO, "OGLBufImgOps_DisableLookupOp"); RETURN_IF_NULL(oglc); // disable the LookupOp shader j2d_glUseProgramObjectARB(0); // disable the lookup table on texture unit 1 j2d_glActiveTextureARB(GL_TEXTURE1_ARB); j2d_glDisable(GL_TEXTURE_2D); j2d_glActiveTextureARB(GL_TEXTURE0_ARB); } #endif /* !HEADLESS */