1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "assembler_x86.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "nativeInst_x86.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/handles.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 #include "runtime/stubRoutines.hpp"
  33 #include "utilities/ostream.hpp"
  34 #ifdef COMPILER1
  35 #include "c1/c1_Runtime1.hpp"
  36 #endif
  37 
  38 void NativeInstruction::wrote(int offset) {
  39   ICache::invalidate_word(addr_at(offset));
  40 }
  41 
  42 
  43 void NativeCall::verify() {
  44   // Make sure code pattern is actually a call imm32 instruction.
  45   int inst = ubyte_at(0);
  46   if (inst != instruction_code) {
  47     tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", instruction_address(),
  48                                                         inst);
  49     fatal("not a call disp32");
  50   }
  51 }
  52 
  53 address NativeCall::destination() const {
  54   // Getting the destination of a call isn't safe because that call can
  55   // be getting patched while you're calling this.  There's only special
  56   // places where this can be called but not automatically verifiable by
  57   // checking which locks are held.  The solution is true atomic patching
  58   // on x86, nyi.
  59   return return_address() + displacement();
  60 }
  61 
  62 void NativeCall::print() {
  63   tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
  64                 instruction_address(), destination());
  65 }
  66 
  67 // Inserts a native call instruction at a given pc
  68 void NativeCall::insert(address code_pos, address entry) {
  69   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
  70 #ifdef AMD64
  71   guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
  72 #endif // AMD64
  73   *code_pos = instruction_code;
  74   *((int32_t *)(code_pos+1)) = (int32_t) disp;
  75   ICache::invalidate_range(code_pos, instruction_size);
  76 }
  77 
  78 // MT-safe patching of a call instruction.
  79 // First patches first word of instruction to two jmp's that jmps to them
  80 // selfs (spinlock). Then patches the last byte, and then atomicly replaces
  81 // the jmp's with the first 4 byte of the new instruction.
  82 void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
  83   assert(Patching_lock->is_locked() ||
  84          SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
  85   assert (instr_addr != NULL, "illegal address for code patching");
  86 
  87   NativeCall* n_call =  nativeCall_at (instr_addr); // checking that it is a call
  88   if (os::is_MP()) {
  89     guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
  90   }
  91 
  92   // First patch dummy jmp in place
  93   unsigned char patch[4];
  94   assert(sizeof(patch)==sizeof(jint), "sanity check");
  95   patch[0] = 0xEB;       // jmp rel8
  96   patch[1] = 0xFE;       // jmp to self
  97   patch[2] = 0xEB;
  98   patch[3] = 0xFE;
  99 
 100   // First patch dummy jmp in place
 101   *(jint*)instr_addr = *(jint *)patch;
 102 
 103   // Invalidate.  Opteron requires a flush after every write.
 104   n_call->wrote(0);
 105 
 106   // Patch 4th byte
 107   instr_addr[4] = code_buffer[4];
 108 
 109   n_call->wrote(4);
 110 
 111   // Patch bytes 0-3
 112   *(jint*)instr_addr = *(jint *)code_buffer;
 113 
 114   n_call->wrote(0);
 115 
 116 #ifdef ASSERT
 117    // verify patching
 118    for ( int i = 0; i < instruction_size; i++) {
 119      address ptr = (address)((intptr_t)code_buffer + i);
 120      int a_byte = (*ptr) & 0xFF;
 121      assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
 122    }
 123 #endif
 124 
 125 }
 126 
 127 
 128 // Similar to replace_mt_safe, but just changes the destination.  The
 129 // important thing is that free-running threads are able to execute this
 130 // call instruction at all times.  If the displacement field is aligned
 131 // we can simply rely on atomicity of 32-bit writes to make sure other threads
 132 // will see no intermediate states.  Otherwise, the first two bytes of the
 133 // call are guaranteed to be aligned, and can be atomically patched to a
 134 // self-loop to guard the instruction while we change the other bytes.
 135 
 136 // We cannot rely on locks here, since the free-running threads must run at
 137 // full speed.
 138 //
 139 // Used in the runtime linkage of calls; see class CompiledIC.
 140 // (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
 141 void NativeCall::set_destination_mt_safe(address dest) {
 142   debug_only(verify());
 143   // Make sure patching code is locked.  No two threads can patch at the same
 144   // time but one may be executing this code.
 145   assert(Patching_lock->is_locked() ||
 146          SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
 147   // Both C1 and C2 should now be generating code which aligns the patched address
 148   // to be within a single cache line except that C1 does not do the alignment on
 149   // uniprocessor systems.
 150   bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
 151                     ((uintptr_t)displacement_address() + 3) / cache_line_size;
 152 
 153   guarantee(!os::is_MP() || is_aligned, "destination must be aligned");
 154 
 155   if (is_aligned) {
 156     // Simple case:  The destination lies within a single cache line.
 157     set_destination(dest);
 158   } else if ((uintptr_t)instruction_address() / cache_line_size ==
 159              ((uintptr_t)instruction_address()+1) / cache_line_size) {
 160     // Tricky case:  The instruction prefix lies within a single cache line.
 161     intptr_t disp = dest - return_address();
 162 #ifdef AMD64
 163     guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
 164 #endif // AMD64
 165 
 166     int call_opcode = instruction_address()[0];
 167 
 168     // First patch dummy jump in place:
 169     {
 170       u_char patch_jump[2];
 171       patch_jump[0] = 0xEB;       // jmp rel8
 172       patch_jump[1] = 0xFE;       // jmp to self
 173 
 174       assert(sizeof(patch_jump)==sizeof(short), "sanity check");
 175       *(short*)instruction_address() = *(short*)patch_jump;
 176     }
 177     // Invalidate.  Opteron requires a flush after every write.
 178     wrote(0);
 179 
 180     // (Note: We assume any reader which has already started to read
 181     // the unpatched call will completely read the whole unpatched call
 182     // without seeing the next writes we are about to make.)
 183 
 184     // Next, patch the last three bytes:
 185     u_char patch_disp[5];
 186     patch_disp[0] = call_opcode;
 187     *(int32_t*)&patch_disp[1] = (int32_t)disp;
 188     assert(sizeof(patch_disp)==instruction_size, "sanity check");
 189     for (int i = sizeof(short); i < instruction_size; i++)
 190       instruction_address()[i] = patch_disp[i];
 191 
 192     // Invalidate.  Opteron requires a flush after every write.
 193     wrote(sizeof(short));
 194 
 195     // (Note: We assume that any reader which reads the opcode we are
 196     // about to repatch will also read the writes we just made.)
 197 
 198     // Finally, overwrite the jump:
 199     *(short*)instruction_address() = *(short*)patch_disp;
 200     // Invalidate.  Opteron requires a flush after every write.
 201     wrote(0);
 202 
 203     debug_only(verify());
 204     guarantee(destination() == dest, "patch succeeded");
 205   } else {
 206     // Impossible:  One or the other must be atomically writable.
 207     ShouldNotReachHere();
 208   }
 209 }
 210 
 211 
 212 void NativeMovConstReg::verify() {
 213 #ifdef AMD64
 214   // make sure code pattern is actually a mov reg64, imm64 instruction
 215   if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
 216       (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
 217     print();
 218     fatal("not a REX.W[B] mov reg64, imm64");
 219   }
 220 #else
 221   // make sure code pattern is actually a mov reg, imm32 instruction
 222   u_char test_byte = *(u_char*)instruction_address();
 223   u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
 224   if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
 225 #endif // AMD64
 226 }
 227 
 228 
 229 void NativeMovConstReg::print() {
 230   tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
 231                 instruction_address(), data());
 232 }
 233 
 234 //-------------------------------------------------------------------
 235 
 236 int NativeMovRegMem::instruction_start() const {
 237   int off = 0;
 238   u_char instr_0 = ubyte_at(off);
 239 
 240   // First check to see if we have a (prefixed or not) xor
 241   if ( instr_0 >= instruction_prefix_wide_lo &&      // 0x40
 242        instr_0 <= instruction_prefix_wide_hi) { // 0x4f
 243     off++;
 244     instr_0 = ubyte_at(off);
 245   }
 246 
 247   if (instr_0 == instruction_code_xor) {
 248     off += 2;
 249     instr_0 = ubyte_at(off);
 250   }
 251 
 252   // Now look for the real instruction and the many prefix/size specifiers.
 253 
 254   if (instr_0 == instruction_operandsize_prefix ) {  // 0x66
 255     off++; // Not SSE instructions
 256     instr_0 = ubyte_at(off);
 257   }
 258 
 259   if ( instr_0 == instruction_code_xmm_ss_prefix ||      // 0xf3
 260        instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2
 261     off++;
 262     instr_0 = ubyte_at(off);
 263   }
 264 
 265   if ( instr_0 >= instruction_prefix_wide_lo &&      // 0x40
 266        instr_0 <= instruction_prefix_wide_hi) { // 0x4f
 267     off++;
 268     instr_0 = ubyte_at(off);
 269   }
 270 
 271 
 272   if (instr_0 == instruction_extended_prefix ) {  // 0x0f
 273     off++;
 274   }
 275 
 276   return off;
 277 }
 278 
 279 address NativeMovRegMem::instruction_address() const {
 280   return addr_at(instruction_start());
 281 }
 282 
 283 address NativeMovRegMem::next_instruction_address() const {
 284   address ret = instruction_address() + instruction_size;
 285   u_char instr_0 =  *(u_char*) instruction_address();
 286   switch (instr_0) {
 287   case instruction_operandsize_prefix:
 288 
 289     fatal("should have skipped instruction_operandsize_prefix");
 290     break;
 291 
 292   case instruction_extended_prefix:
 293     fatal("should have skipped instruction_extended_prefix");
 294     break;
 295 
 296   case instruction_code_mem2reg_movslq: // 0x63
 297   case instruction_code_mem2reg_movzxb: // 0xB6
 298   case instruction_code_mem2reg_movsxb: // 0xBE
 299   case instruction_code_mem2reg_movzxw: // 0xB7
 300   case instruction_code_mem2reg_movsxw: // 0xBF
 301   case instruction_code_reg2mem:        // 0x89 (q/l)
 302   case instruction_code_mem2reg:        // 0x8B (q/l)
 303   case instruction_code_reg2memb:       // 0x88
 304   case instruction_code_mem2regb:       // 0x8a
 305 
 306   case instruction_code_float_s:        // 0xd9 fld_s a
 307   case instruction_code_float_d:        // 0xdd fld_d a
 308 
 309   case instruction_code_xmm_load:       // 0x10
 310   case instruction_code_xmm_store:      // 0x11
 311   case instruction_code_xmm_lpd:        // 0x12
 312     {
 313       // If there is an SIB then instruction is longer than expected
 314       u_char mod_rm = *(u_char*)(instruction_address() + 1);
 315       if ((mod_rm & 7) == 0x4) {
 316         ret++;
 317       }
 318     }
 319   case instruction_code_xor:
 320     fatal("should have skipped xor lead in");
 321     break;
 322 
 323   default:
 324     fatal("not a NativeMovRegMem");
 325   }
 326   return ret;
 327 
 328 }
 329 
 330 int NativeMovRegMem::offset() const{
 331   int off = data_offset + instruction_start();
 332   u_char mod_rm = *(u_char*)(instruction_address() + 1);
 333   // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
 334   // the encoding to use an SIB byte. Which will have the nnnn
 335   // field off by one byte
 336   if ((mod_rm & 7) == 0x4) {
 337     off++;
 338   }
 339   return int_at(off);
 340 }
 341 
 342 void NativeMovRegMem::set_offset(int x) {
 343   int off = data_offset + instruction_start();
 344   u_char mod_rm = *(u_char*)(instruction_address() + 1);
 345   // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
 346   // the encoding to use an SIB byte. Which will have the nnnn
 347   // field off by one byte
 348   if ((mod_rm & 7) == 0x4) {
 349     off++;
 350   }
 351   set_int_at(off, x);
 352 }
 353 
 354 void NativeMovRegMem::verify() {
 355   // make sure code pattern is actually a mov [reg+offset], reg instruction
 356   u_char test_byte = *(u_char*)instruction_address();
 357   switch (test_byte) {
 358     case instruction_code_reg2memb:  // 0x88 movb a, r
 359     case instruction_code_reg2mem:   // 0x89 movl a, r (can be movq in 64bit)
 360     case instruction_code_mem2regb:  // 0x8a movb r, a
 361     case instruction_code_mem2reg:   // 0x8b movl r, a (can be movq in 64bit)
 362       break;
 363 
 364     case instruction_code_mem2reg_movslq: // 0x63 movsql r, a
 365     case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb)
 366     case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw)
 367     case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb)
 368     case instruction_code_mem2reg_movsxw: // 0xbf  movswl r, a (movsxw)
 369       break;
 370 
 371     case instruction_code_float_s:   // 0xd9 fld_s a
 372     case instruction_code_float_d:   // 0xdd fld_d a
 373     case instruction_code_xmm_load:  // 0x10 movsd xmm, a
 374     case instruction_code_xmm_store: // 0x11 movsd a, xmm
 375     case instruction_code_xmm_lpd:   // 0x12 movlpd xmm, a
 376       break;
 377 
 378     default:
 379           fatal ("not a mov [reg+offs], reg instruction");
 380   }
 381 }
 382 
 383 
 384 void NativeMovRegMem::print() {
 385   tty->print_cr("0x%x: mov reg, [reg + %x]", instruction_address(), offset());
 386 }
 387 
 388 //-------------------------------------------------------------------
 389 
 390 void NativeLoadAddress::verify() {
 391   // make sure code pattern is actually a mov [reg+offset], reg instruction
 392   u_char test_byte = *(u_char*)instruction_address();
 393 #ifdef _LP64
 394   if ( (test_byte == instruction_prefix_wide ||
 395         test_byte == instruction_prefix_wide_extended) ) {
 396     test_byte = *(u_char*)(instruction_address() + 1);
 397   }
 398 #endif // _LP64
 399   if ( ! ((test_byte == lea_instruction_code)
 400           LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) {
 401     fatal ("not a lea reg, [reg+offs] instruction");
 402   }
 403 }
 404 
 405 
 406 void NativeLoadAddress::print() {
 407   tty->print_cr("0x%x: lea [reg + %x], reg", instruction_address(), offset());
 408 }
 409 
 410 //--------------------------------------------------------------------------------
 411 
 412 void NativeJump::verify() {
 413   if (*(u_char*)instruction_address() != instruction_code) {
 414     fatal("not a jump instruction");
 415   }
 416 }
 417 
 418 
 419 void NativeJump::insert(address code_pos, address entry) {
 420   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
 421 #ifdef AMD64
 422   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
 423 #endif // AMD64
 424 
 425   *code_pos = instruction_code;
 426   *((int32_t*)(code_pos + 1)) = (int32_t)disp;
 427 
 428   ICache::invalidate_range(code_pos, instruction_size);
 429 }
 430 
 431 void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
 432   // Patching to not_entrant can happen while activations of the method are
 433   // in use. The patching in that instance must happen only when certain
 434   // alignment restrictions are true. These guarantees check those
 435   // conditions.
 436 #ifdef AMD64
 437   const int linesize = 64;
 438 #else
 439   const int linesize = 32;
 440 #endif // AMD64
 441 
 442   // Must be wordSize aligned
 443   guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
 444             "illegal address for code patching 2");
 445   // First 5 bytes must be within the same cache line - 4827828
 446   guarantee((uintptr_t) verified_entry / linesize ==
 447             ((uintptr_t) verified_entry + 4) / linesize,
 448             "illegal address for code patching 3");
 449 }
 450 
 451 
 452 // MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
 453 // The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
 454 // First patches the first word atomically to be a jump to itself.
 455 // Then patches the last byte  and then atomically patches the first word (4-bytes),
 456 // thus inserting the desired jump
 457 // This code is mt-safe with the following conditions: entry point is 4 byte aligned,
 458 // entry point is in same cache line as unverified entry point, and the instruction being
 459 // patched is >= 5 byte (size of patch).
 460 //
 461 // In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
 462 // In C1 the restriction is enforced by CodeEmitter::method_entry
 463 //
 464 void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
 465   // complete jump instruction (to be inserted) is in code_buffer;
 466   unsigned char code_buffer[5];
 467   code_buffer[0] = instruction_code;
 468   intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
 469 #ifdef AMD64
 470   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
 471 #endif // AMD64
 472   *(int32_t*)(code_buffer + 1) = (int32_t)disp;
 473 
 474   check_verified_entry_alignment(entry, verified_entry);
 475 
 476   // Can't call nativeJump_at() because it's asserts jump exists
 477   NativeJump* n_jump = (NativeJump*) verified_entry;
 478 
 479   //First patch dummy jmp in place
 480 
 481   unsigned char patch[4];
 482   assert(sizeof(patch)==sizeof(int32_t), "sanity check");
 483   patch[0] = 0xEB;       // jmp rel8
 484   patch[1] = 0xFE;       // jmp to self
 485   patch[2] = 0xEB;
 486   patch[3] = 0xFE;
 487 
 488   // First patch dummy jmp in place
 489   *(int32_t*)verified_entry = *(int32_t *)patch;
 490 
 491   n_jump->wrote(0);
 492 
 493   // Patch 5th byte (from jump instruction)
 494   verified_entry[4] = code_buffer[4];
 495 
 496   n_jump->wrote(4);
 497 
 498   // Patch bytes 0-3 (from jump instruction)
 499   *(int32_t*)verified_entry = *(int32_t *)code_buffer;
 500   // Invalidate.  Opteron requires a flush after every write.
 501   n_jump->wrote(0);
 502 
 503 }
 504 
 505 void NativePopReg::insert(address code_pos, Register reg) {
 506   assert(reg->encoding() < 8, "no space for REX");
 507   assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
 508   *code_pos = (u_char)(instruction_code | reg->encoding());
 509   ICache::invalidate_range(code_pos, instruction_size);
 510 }
 511 
 512 
 513 void NativeIllegalInstruction::insert(address code_pos) {
 514   assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
 515   *(short *)code_pos = instruction_code;
 516   ICache::invalidate_range(code_pos, instruction_size);
 517 }
 518 
 519 void NativeGeneralJump::verify() {
 520   assert(((NativeInstruction *)this)->is_jump() ||
 521          ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
 522 }
 523 
 524 
 525 void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
 526   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
 527 #ifdef AMD64
 528   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
 529 #endif // AMD64
 530 
 531   *code_pos = unconditional_long_jump;
 532   *((int32_t *)(code_pos+1)) = (int32_t) disp;
 533   ICache::invalidate_range(code_pos, instruction_size);
 534 }
 535 
 536 
 537 // MT-safe patching of a long jump instruction.
 538 // First patches first word of instruction to two jmp's that jmps to them
 539 // selfs (spinlock). Then patches the last byte, and then atomicly replaces
 540 // the jmp's with the first 4 byte of the new instruction.
 541 void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
 542    assert (instr_addr != NULL, "illegal address for code patching (4)");
 543    NativeGeneralJump* n_jump =  nativeGeneralJump_at (instr_addr); // checking that it is a jump
 544 
 545    // Temporary code
 546    unsigned char patch[4];
 547    assert(sizeof(patch)==sizeof(int32_t), "sanity check");
 548    patch[0] = 0xEB;       // jmp rel8
 549    patch[1] = 0xFE;       // jmp to self
 550    patch[2] = 0xEB;
 551    patch[3] = 0xFE;
 552 
 553    // First patch dummy jmp in place
 554    *(int32_t*)instr_addr = *(int32_t *)patch;
 555     n_jump->wrote(0);
 556 
 557    // Patch 4th byte
 558    instr_addr[4] = code_buffer[4];
 559 
 560     n_jump->wrote(4);
 561 
 562    // Patch bytes 0-3
 563    *(jint*)instr_addr = *(jint *)code_buffer;
 564 
 565     n_jump->wrote(0);
 566 
 567 #ifdef ASSERT
 568    // verify patching
 569    for ( int i = 0; i < instruction_size; i++) {
 570      address ptr = (address)((intptr_t)code_buffer + i);
 571      int a_byte = (*ptr) & 0xFF;
 572      assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
 573    }
 574 #endif
 575 
 576 }
 577 
 578 
 579 
 580 address NativeGeneralJump::jump_destination() const {
 581   int op_code = ubyte_at(0);
 582   bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
 583   int  offset  = (op_code == 0x0F)  ? 2 : 1;
 584   int  length  = offset + ((is_rel32off) ? 4 : 1);
 585 
 586   if (is_rel32off)
 587     return addr_at(0) + length + int_at(offset);
 588   else
 589     return addr_at(0) + length + sbyte_at(offset);
 590 }
 591 
 592 bool NativeInstruction::is_dtrace_trap() {
 593   return (*(int32_t*)this & 0xff) == 0xcc;
 594 }