1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_templateInterpreter_x86_32.cpp.incl"
  27 
  28 #define __ _masm->
  29 
  30 
  31 #ifndef CC_INTERP
  32 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  33 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
  34 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
  35 
  36 //------------------------------------------------------------------------------------------------------------------------
  37 
  38 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
  39   address entry = __ pc();
  40 
  41   // Note: There should be a minimal interpreter frame set up when stack
  42   // overflow occurs since we check explicitly for it now.
  43   //
  44 #ifdef ASSERT
  45   { Label L;
  46     __ lea(rax, Address(rbp,
  47                 frame::interpreter_frame_monitor_block_top_offset * wordSize));
  48     __ cmpptr(rax, rsp);  // rax, = maximal rsp for current rbp,
  49                         //  (stack grows negative)
  50     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
  51     __ stop ("interpreter frame not set up");
  52     __ bind(L);
  53   }
  54 #endif // ASSERT
  55   // Restore bcp under the assumption that the current frame is still
  56   // interpreted
  57   __ restore_bcp();
  58 
  59   // expression stack must be empty before entering the VM if an exception
  60   // happened
  61   __ empty_expression_stack();
  62   __ empty_FPU_stack();
  63   // throw exception
  64   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
  65   return entry;
  66 }
  67 
  68 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
  69   address entry = __ pc();
  70   // expression stack must be empty before entering the VM if an exception happened
  71   __ empty_expression_stack();
  72   __ empty_FPU_stack();
  73   // setup parameters
  74   // ??? convention: expect aberrant index in register rbx,
  75   __ lea(rax, ExternalAddress((address)name));
  76   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
  77   return entry;
  78 }
  79 
  80 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
  81   address entry = __ pc();
  82   // object is at TOS
  83   __ pop(rax);
  84   // expression stack must be empty before entering the VM if an exception
  85   // happened
  86   __ empty_expression_stack();
  87   __ empty_FPU_stack();
  88   __ call_VM(noreg,
  89              CAST_FROM_FN_PTR(address,
  90                               InterpreterRuntime::throw_ClassCastException),
  91              rax);
  92   return entry;
  93 }
  94 
  95 // Arguments are: required type at TOS+4, failing object (or NULL) at TOS.
  96 address TemplateInterpreterGenerator::generate_WrongMethodType_handler() {
  97   address entry = __ pc();
  98 
  99   __ pop(rbx);                  // actual failing object is at TOS
 100   __ pop(rax);                  // required type is at TOS+4
 101 
 102   __ verify_oop(rbx);
 103   __ verify_oop(rax);
 104 
 105   // Various method handle types use interpreter registers as temps.
 106   __ restore_bcp();
 107   __ restore_locals();
 108 
 109   // Expression stack must be empty before entering the VM for an exception.
 110   __ empty_expression_stack();
 111   __ empty_FPU_stack();
 112   __ call_VM(noreg,
 113              CAST_FROM_FN_PTR(address,
 114                               InterpreterRuntime::throw_WrongMethodTypeException),
 115              // pass required type, failing object (or NULL)
 116              rax, rbx);
 117   return entry;
 118 }
 119 
 120 
 121 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 122   assert(!pass_oop || message == NULL, "either oop or message but not both");
 123   address entry = __ pc();
 124   if (pass_oop) {
 125     // object is at TOS
 126     __ pop(rbx);
 127   }
 128   // expression stack must be empty before entering the VM if an exception happened
 129   __ empty_expression_stack();
 130   __ empty_FPU_stack();
 131   // setup parameters
 132   __ lea(rax, ExternalAddress((address)name));
 133   if (pass_oop) {
 134     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
 135   } else {
 136     if (message != NULL) {
 137       __ lea(rbx, ExternalAddress((address)message));
 138     } else {
 139       __ movptr(rbx, NULL_WORD);
 140     }
 141     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
 142   }
 143   // throw exception
 144   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 145   return entry;
 146 }
 147 
 148 
 149 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 150   address entry = __ pc();
 151   // NULL last_sp until next java call
 152   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 153   __ dispatch_next(state);
 154   return entry;
 155 }
 156 
 157 
 158 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
 159   TosState incoming_state = state;
 160 
 161   Label interpreter_entry;
 162   address compiled_entry = __ pc();
 163 
 164 #ifdef COMPILER2
 165   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
 166   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
 167     for (int i = 1; i < 8; i++) {
 168         __ ffree(i);
 169     }
 170   } else if (UseSSE < 2) {
 171     __ empty_FPU_stack();
 172   }
 173 #endif
 174   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
 175     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
 176   } else {
 177     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
 178   }
 179 
 180   __ jmp(interpreter_entry, relocInfo::none);
 181   // emit a sentinel we can test for when converting an interpreter
 182   // entry point to a compiled entry point.
 183   __ a_long(Interpreter::return_sentinel);
 184   __ a_long((int)compiled_entry);
 185   address entry = __ pc();
 186   __ bind(interpreter_entry);
 187 
 188   // In SSE mode, interpreter returns FP results in xmm0 but they need
 189   // to end up back on the FPU so it can operate on them.
 190   if (incoming_state == ftos && UseSSE >= 1) {
 191     __ subptr(rsp, wordSize);
 192     __ movflt(Address(rsp, 0), xmm0);
 193     __ fld_s(Address(rsp, 0));
 194     __ addptr(rsp, wordSize);
 195   } else if (incoming_state == dtos && UseSSE >= 2) {
 196     __ subptr(rsp, 2*wordSize);
 197     __ movdbl(Address(rsp, 0), xmm0);
 198     __ fld_d(Address(rsp, 0));
 199     __ addptr(rsp, 2*wordSize);
 200   }
 201 
 202   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
 203 
 204   // Restore stack bottom in case i2c adjusted stack
 205   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
 206   // and NULL it as marker that rsp is now tos until next java call
 207   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 208 
 209   __ restore_bcp();
 210   __ restore_locals();
 211 
 212   Label L_got_cache, L_giant_index;
 213   if (EnableInvokeDynamic) {
 214     __ cmpb(Address(rsi, 0), Bytecodes::_invokedynamic);
 215     __ jcc(Assembler::equal, L_giant_index);
 216   }
 217   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
 218   __ bind(L_got_cache);
 219   __ movl(rbx, Address(rbx, rcx,
 220                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() +
 221                     ConstantPoolCacheEntry::flags_offset()));
 222   __ andptr(rbx, 0xFF);
 223   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));
 224   __ dispatch_next(state, step);
 225 
 226   // out of the main line of code...
 227   if (EnableInvokeDynamic) {
 228     __ bind(L_giant_index);
 229     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
 230     __ jmp(L_got_cache);
 231   }
 232 
 233   return entry;
 234 }
 235 
 236 
 237 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 238   address entry = __ pc();
 239 
 240   // In SSE mode, FP results are in xmm0
 241   if (state == ftos && UseSSE > 0) {
 242     __ subptr(rsp, wordSize);
 243     __ movflt(Address(rsp, 0), xmm0);
 244     __ fld_s(Address(rsp, 0));
 245     __ addptr(rsp, wordSize);
 246   } else if (state == dtos && UseSSE >= 2) {
 247     __ subptr(rsp, 2*wordSize);
 248     __ movdbl(Address(rsp, 0), xmm0);
 249     __ fld_d(Address(rsp, 0));
 250     __ addptr(rsp, 2*wordSize);
 251   }
 252 
 253   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
 254 
 255   // The stack is not extended by deopt but we must NULL last_sp as this
 256   // entry is like a "return".
 257   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
 258   __ restore_bcp();
 259   __ restore_locals();
 260   // handle exceptions
 261   { Label L;
 262     const Register thread = rcx;
 263     __ get_thread(thread);
 264     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 265     __ jcc(Assembler::zero, L);
 266     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 267     __ should_not_reach_here();
 268     __ bind(L);
 269   }
 270   __ dispatch_next(state, step);
 271   return entry;
 272 }
 273 
 274 
 275 int AbstractInterpreter::BasicType_as_index(BasicType type) {
 276   int i = 0;
 277   switch (type) {
 278     case T_BOOLEAN: i = 0; break;
 279     case T_CHAR   : i = 1; break;
 280     case T_BYTE   : i = 2; break;
 281     case T_SHORT  : i = 3; break;
 282     case T_INT    : // fall through
 283     case T_LONG   : // fall through
 284     case T_VOID   : i = 4; break;
 285     case T_FLOAT  : i = 5; break;  // have to treat float and double separately for SSE
 286     case T_DOUBLE : i = 6; break;
 287     case T_OBJECT : // fall through
 288     case T_ARRAY  : i = 7; break;
 289     default       : ShouldNotReachHere();
 290   }
 291   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
 292   return i;
 293 }
 294 
 295 
 296 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 297   address entry = __ pc();
 298   switch (type) {
 299     case T_BOOLEAN: __ c2bool(rax);            break;
 300     case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
 301     case T_BYTE   : __ sign_extend_byte (rax); break;
 302     case T_SHORT  : __ sign_extend_short(rax); break;
 303     case T_INT    : /* nothing to do */        break;
 304     case T_DOUBLE :
 305     case T_FLOAT  :
 306       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 307         __ pop(t);                            // remove return address first
 308         // Must return a result for interpreter or compiler. In SSE
 309         // mode, results are returned in xmm0 and the FPU stack must
 310         // be empty.
 311         if (type == T_FLOAT && UseSSE >= 1) {
 312           // Load ST0
 313           __ fld_d(Address(rsp, 0));
 314           // Store as float and empty fpu stack
 315           __ fstp_s(Address(rsp, 0));
 316           // and reload
 317           __ movflt(xmm0, Address(rsp, 0));
 318         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
 319           __ movdbl(xmm0, Address(rsp, 0));
 320         } else {
 321           // restore ST0
 322           __ fld_d(Address(rsp, 0));
 323         }
 324         // and pop the temp
 325         __ addptr(rsp, 2 * wordSize);
 326         __ push(t);                           // restore return address
 327       }
 328       break;
 329     case T_OBJECT :
 330       // retrieve result from frame
 331       __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
 332       // and verify it
 333       __ verify_oop(rax);
 334       break;
 335     default       : ShouldNotReachHere();
 336   }
 337   __ ret(0);                                   // return from result handler
 338   return entry;
 339 }
 340 
 341 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 342   address entry = __ pc();
 343   __ push(state);
 344   __ call_VM(noreg, runtime_entry);
 345   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 346   return entry;
 347 }
 348 
 349 
 350 // Helpers for commoning out cases in the various type of method entries.
 351 //
 352 
 353 // increment invocation count & check for overflow
 354 //
 355 // Note: checking for negative value instead of overflow
 356 //       so we have a 'sticky' overflow test
 357 //
 358 // rbx,: method
 359 // rcx: invocation counter
 360 //
 361 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 362   const Address invocation_counter(rbx, in_bytes(methodOopDesc::invocation_counter_offset()) +
 363                                         in_bytes(InvocationCounter::counter_offset()));
 364   // Note: In tiered we increment either counters in methodOop or in MDO depending if we're profiling or not.
 365   if (TieredCompilation) {
 366     int increment = InvocationCounter::count_increment;
 367     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
 368     Label no_mdo, done;
 369     if (ProfileInterpreter) {
 370       // Are we profiling?
 371       __ movptr(rax, Address(rbx, methodOopDesc::method_data_offset()));
 372       __ testptr(rax, rax);
 373       __ jccb(Assembler::zero, no_mdo);
 374       // Increment counter in the MDO
 375       const Address mdo_invocation_counter(rax, in_bytes(methodDataOopDesc::invocation_counter_offset()) +
 376                                                 in_bytes(InvocationCounter::counter_offset()));
 377       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
 378       __ jmpb(done);
 379     }
 380     __ bind(no_mdo);
 381     // Increment counter in methodOop (we don't need to load it, it's in rcx).
 382     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, true, Assembler::zero, overflow);
 383     __ bind(done);
 384   } else {
 385     const Address backedge_counter  (rbx, methodOopDesc::backedge_counter_offset() +
 386                                           InvocationCounter::counter_offset());
 387 
 388     if (ProfileInterpreter) { // %%% Merge this into methodDataOop
 389       __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
 390     }
 391     // Update standard invocation counters
 392     __ movl(rax, backedge_counter);               // load backedge counter
 393 
 394     __ incrementl(rcx, InvocationCounter::count_increment);
 395     __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
 396 
 397     __ movl(invocation_counter, rcx);             // save invocation count
 398     __ addl(rcx, rax);                            // add both counters
 399 
 400     // profile_method is non-null only for interpreted method so
 401     // profile_method != NULL == !native_call
 402     // BytecodeInterpreter only calls for native so code is elided.
 403 
 404     if (ProfileInterpreter && profile_method != NULL) {
 405       // Test to see if we should create a method data oop
 406       __ cmp32(rcx,
 407                ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
 408       __ jcc(Assembler::less, *profile_method_continue);
 409 
 410       // if no method data exists, go to profile_method
 411       __ test_method_data_pointer(rax, *profile_method);
 412     }
 413 
 414     __ cmp32(rcx,
 415              ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
 416     __ jcc(Assembler::aboveEqual, *overflow);
 417   }
 418 }
 419 
 420 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
 421 
 422   // Asm interpreter on entry
 423   // rdi - locals
 424   // rsi - bcp
 425   // rbx, - method
 426   // rdx - cpool
 427   // rbp, - interpreter frame
 428 
 429   // C++ interpreter on entry
 430   // rsi - new interpreter state pointer
 431   // rbp - interpreter frame pointer
 432   // rbx - method
 433 
 434   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 435   // rbx, - method
 436   // rcx - rcvr (assuming there is one)
 437   // top of stack return address of interpreter caller
 438   // rsp - sender_sp
 439 
 440   // C++ interpreter only
 441   // rsi - previous interpreter state pointer
 442 
 443   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
 444 
 445   // InterpreterRuntime::frequency_counter_overflow takes one argument
 446   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
 447   // The call returns the address of the verified entry point for the method or NULL
 448   // if the compilation did not complete (either went background or bailed out).
 449   __ movptr(rax, (intptr_t)false);
 450   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
 451 
 452   __ movptr(rbx, Address(rbp, method_offset));   // restore methodOop
 453 
 454   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
 455   // and jump to the interpreted entry.
 456   __ jmp(*do_continue, relocInfo::none);
 457 
 458 }
 459 
 460 void InterpreterGenerator::generate_stack_overflow_check(void) {
 461   // see if we've got enough room on the stack for locals plus overhead.
 462   // the expression stack grows down incrementally, so the normal guard
 463   // page mechanism will work for that.
 464   //
 465   // Registers live on entry:
 466   //
 467   // Asm interpreter
 468   // rdx: number of additional locals this frame needs (what we must check)
 469   // rbx,: methodOop
 470 
 471   // destroyed on exit
 472   // rax,
 473 
 474   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
 475   // generate_method_entry) so the guard should work for them too.
 476   //
 477 
 478   // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
 479   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
 480 
 481   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
 482   // be sure to change this if you add/subtract anything to/from the overhead area
 483   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
 484 
 485   const int page_size = os::vm_page_size();
 486 
 487   Label after_frame_check;
 488 
 489   // see if the frame is greater than one page in size. If so,
 490   // then we need to verify there is enough stack space remaining
 491   // for the additional locals.
 492   __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
 493   __ jcc(Assembler::belowEqual, after_frame_check);
 494 
 495   // compute rsp as if this were going to be the last frame on
 496   // the stack before the red zone
 497 
 498   Label after_frame_check_pop;
 499 
 500   __ push(rsi);
 501 
 502   const Register thread = rsi;
 503 
 504   __ get_thread(thread);
 505 
 506   const Address stack_base(thread, Thread::stack_base_offset());
 507   const Address stack_size(thread, Thread::stack_size_offset());
 508 
 509   // locals + overhead, in bytes
 510   __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
 511 
 512 #ifdef ASSERT
 513   Label stack_base_okay, stack_size_okay;
 514   // verify that thread stack base is non-zero
 515   __ cmpptr(stack_base, (int32_t)NULL_WORD);
 516   __ jcc(Assembler::notEqual, stack_base_okay);
 517   __ stop("stack base is zero");
 518   __ bind(stack_base_okay);
 519   // verify that thread stack size is non-zero
 520   __ cmpptr(stack_size, 0);
 521   __ jcc(Assembler::notEqual, stack_size_okay);
 522   __ stop("stack size is zero");
 523   __ bind(stack_size_okay);
 524 #endif
 525 
 526   // Add stack base to locals and subtract stack size
 527   __ addptr(rax, stack_base);
 528   __ subptr(rax, stack_size);
 529 
 530   // Use the maximum number of pages we might bang.
 531   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
 532                                                                               (StackRedPages+StackYellowPages);
 533   __ addptr(rax, max_pages * page_size);
 534 
 535   // check against the current stack bottom
 536   __ cmpptr(rsp, rax);
 537   __ jcc(Assembler::above, after_frame_check_pop);
 538 
 539   __ pop(rsi);  // get saved bcp / (c++ prev state ).
 540 
 541   __ pop(rax);  // get return address
 542   __ jump(ExternalAddress(Interpreter::throw_StackOverflowError_entry()));
 543 
 544   // all done with frame size check
 545   __ bind(after_frame_check_pop);
 546   __ pop(rsi);
 547 
 548   __ bind(after_frame_check);
 549 }
 550 
 551 // Allocate monitor and lock method (asm interpreter)
 552 // rbx, - methodOop
 553 //
 554 void InterpreterGenerator::lock_method(void) {
 555   // synchronize method
 556   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 557   const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 558   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 559 
 560   #ifdef ASSERT
 561     { Label L;
 562       __ movl(rax, access_flags);
 563       __ testl(rax, JVM_ACC_SYNCHRONIZED);
 564       __ jcc(Assembler::notZero, L);
 565       __ stop("method doesn't need synchronization");
 566       __ bind(L);
 567     }
 568   #endif // ASSERT
 569   // get synchronization object
 570   { Label done;
 571     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 572     __ movl(rax, access_flags);
 573     __ testl(rax, JVM_ACC_STATIC);
 574     __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0)));  // get receiver (assume this is frequent case)
 575     __ jcc(Assembler::zero, done);
 576     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
 577     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
 578     __ movptr(rax, Address(rax, mirror_offset));
 579     __ bind(done);
 580   }
 581   // add space for monitor & lock
 582   __ subptr(rsp, entry_size);                                           // add space for a monitor entry
 583   __ movptr(monitor_block_top, rsp);                                    // set new monitor block top
 584   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
 585   __ mov(rdx, rsp);                                                    // object address
 586   __ lock_object(rdx);
 587 }
 588 
 589 //
 590 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
 591 // and for native methods hence the shared code.
 592 
 593 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 594   // initialize fixed part of activation frame
 595   __ push(rax);                                       // save return address
 596   __ enter();                                         // save old & set new rbp,
 597 
 598 
 599   __ push(rsi);                                       // set sender sp
 600   __ push((int32_t)NULL_WORD);                        // leave last_sp as null
 601   __ movptr(rsi, Address(rbx,methodOopDesc::const_offset())); // get constMethodOop
 602   __ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset())); // get codebase
 603   __ push(rbx);                                      // save methodOop
 604   if (ProfileInterpreter) {
 605     Label method_data_continue;
 606     __ movptr(rdx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
 607     __ testptr(rdx, rdx);
 608     __ jcc(Assembler::zero, method_data_continue);
 609     __ addptr(rdx, in_bytes(methodDataOopDesc::data_offset()));
 610     __ bind(method_data_continue);
 611     __ push(rdx);                                       // set the mdp (method data pointer)
 612   } else {
 613     __ push(0);
 614   }
 615 
 616   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
 617   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
 618   __ push(rdx);                                       // set constant pool cache
 619   __ push(rdi);                                       // set locals pointer
 620   if (native_call) {
 621     __ push(0);                                       // no bcp
 622   } else {
 623     __ push(rsi);                                     // set bcp
 624     }
 625   __ push(0);                                         // reserve word for pointer to expression stack bottom
 626   __ movptr(Address(rsp, 0), rsp);                    // set expression stack bottom
 627 }
 628 
 629 // End of helpers
 630 
 631 //
 632 // Various method entries
 633 //------------------------------------------------------------------------------------------------------------------------
 634 //
 635 //
 636 
 637 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
 638 
 639 address InterpreterGenerator::generate_accessor_entry(void) {
 640 
 641   // rbx,: methodOop
 642   // rcx: receiver (preserve for slow entry into asm interpreter)
 643 
 644   // rsi: senderSP must preserved for slow path, set SP to it on fast path
 645 
 646   address entry_point = __ pc();
 647   Label xreturn_path;
 648 
 649   // do fastpath for resolved accessor methods
 650   if (UseFastAccessorMethods) {
 651     Label slow_path;
 652     // If we need a safepoint check, generate full interpreter entry.
 653     ExternalAddress state(SafepointSynchronize::address_of_state());
 654     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
 655              SafepointSynchronize::_not_synchronized);
 656 
 657     __ jcc(Assembler::notEqual, slow_path);
 658     // ASM/C++ Interpreter
 659     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
 660     // Note: We can only use this code if the getfield has been resolved
 661     //       and if we don't have a null-pointer exception => check for
 662     //       these conditions first and use slow path if necessary.
 663     // rbx,: method
 664     // rcx: receiver
 665     __ movptr(rax, Address(rsp, wordSize));
 666 
 667     // check if local 0 != NULL and read field
 668     __ testptr(rax, rax);
 669     __ jcc(Assembler::zero, slow_path);
 670 
 671     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
 672     // read first instruction word and extract bytecode @ 1 and index @ 2
 673     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
 674     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
 675     // Shift codes right to get the index on the right.
 676     // The bytecode fetched looks like <index><0xb4><0x2a>
 677     __ shrl(rdx, 2*BitsPerByte);
 678     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
 679     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
 680 
 681     // rax,: local 0
 682     // rbx,: method
 683     // rcx: receiver - do not destroy since it is needed for slow path!
 684     // rcx: scratch
 685     // rdx: constant pool cache index
 686     // rdi: constant pool cache
 687     // rsi: sender sp
 688 
 689     // check if getfield has been resolved and read constant pool cache entry
 690     // check the validity of the cache entry by testing whether _indices field
 691     // contains Bytecode::_getfield in b1 byte.
 692     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
 693     __ movl(rcx,
 694             Address(rdi,
 695                     rdx,
 696                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 697     __ shrl(rcx, 2*BitsPerByte);
 698     __ andl(rcx, 0xFF);
 699     __ cmpl(rcx, Bytecodes::_getfield);
 700     __ jcc(Assembler::notEqual, slow_path);
 701 
 702     // Note: constant pool entry is not valid before bytecode is resolved
 703     __ movptr(rcx,
 704               Address(rdi,
 705                       rdx,
 706                       Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
 707     __ movl(rdx,
 708             Address(rdi,
 709                     rdx,
 710                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 711 
 712     Label notByte, notShort, notChar;
 713     const Address field_address (rax, rcx, Address::times_1);
 714 
 715     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 716     // because they are different sizes.
 717     // Use the type from the constant pool cache
 718     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
 719     // Make sure we don't need to mask rdx for tosBits after the above shift
 720     ConstantPoolCacheEntry::verify_tosBits();
 721     __ cmpl(rdx, btos);
 722     __ jcc(Assembler::notEqual, notByte);
 723     __ load_signed_byte(rax, field_address);
 724     __ jmp(xreturn_path);
 725 
 726     __ bind(notByte);
 727     __ cmpl(rdx, stos);
 728     __ jcc(Assembler::notEqual, notShort);
 729     __ load_signed_short(rax, field_address);
 730     __ jmp(xreturn_path);
 731 
 732     __ bind(notShort);
 733     __ cmpl(rdx, ctos);
 734     __ jcc(Assembler::notEqual, notChar);
 735     __ load_unsigned_short(rax, field_address);
 736     __ jmp(xreturn_path);
 737 
 738     __ bind(notChar);
 739 #ifdef ASSERT
 740     Label okay;
 741     __ cmpl(rdx, atos);
 742     __ jcc(Assembler::equal, okay);
 743     __ cmpl(rdx, itos);
 744     __ jcc(Assembler::equal, okay);
 745     __ stop("what type is this?");
 746     __ bind(okay);
 747 #endif // ASSERT
 748     // All the rest are a 32 bit wordsize
 749     // This is ok for now. Since fast accessors should be going away
 750     __ movptr(rax, field_address);
 751 
 752     __ bind(xreturn_path);
 753 
 754     // _ireturn/_areturn
 755     __ pop(rdi);                               // get return address
 756     __ mov(rsp, rsi);                          // set sp to sender sp
 757     __ jmp(rdi);
 758 
 759     // generate a vanilla interpreter entry as the slow path
 760     __ bind(slow_path);
 761 
 762     (void) generate_normal_entry(false);
 763     return entry_point;
 764   }
 765   return NULL;
 766 
 767 }
 768 
 769 //
 770 // Interpreter stub for calling a native method. (asm interpreter)
 771 // This sets up a somewhat different looking stack for calling the native method
 772 // than the typical interpreter frame setup.
 773 //
 774 
 775 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 776   // determine code generation flags
 777   bool inc_counter  = UseCompiler || CountCompiledCalls;
 778 
 779   // rbx,: methodOop
 780   // rsi: sender sp
 781   // rsi: previous interpreter state (C++ interpreter) must preserve
 782   address entry_point = __ pc();
 783 
 784 
 785   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
 786   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
 787   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 788 
 789   // get parameter size (always needed)
 790   __ load_unsigned_short(rcx, size_of_parameters);
 791 
 792   // native calls don't need the stack size check since they have no expression stack
 793   // and the arguments are already on the stack and we only add a handful of words
 794   // to the stack
 795 
 796   // rbx,: methodOop
 797   // rcx: size of parameters
 798   // rsi: sender sp
 799 
 800   __ pop(rax);                                       // get return address
 801   // for natives the size of locals is zero
 802 
 803   // compute beginning of parameters (rdi)
 804   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
 805 
 806 
 807   // add 2 zero-initialized slots for native calls
 808   // NULL result handler
 809   __ push((int32_t)NULL_WORD);
 810   // NULL oop temp (mirror or jni oop result)
 811   __ push((int32_t)NULL_WORD);
 812 
 813   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
 814   // initialize fixed part of activation frame
 815 
 816   generate_fixed_frame(true);
 817 
 818   // make sure method is native & not abstract
 819 #ifdef ASSERT
 820   __ movl(rax, access_flags);
 821   {
 822     Label L;
 823     __ testl(rax, JVM_ACC_NATIVE);
 824     __ jcc(Assembler::notZero, L);
 825     __ stop("tried to execute non-native method as native");
 826     __ bind(L);
 827   }
 828   { Label L;
 829     __ testl(rax, JVM_ACC_ABSTRACT);
 830     __ jcc(Assembler::zero, L);
 831     __ stop("tried to execute abstract method in interpreter");
 832     __ bind(L);
 833   }
 834 #endif
 835 
 836   // Since at this point in the method invocation the exception handler
 837   // would try to exit the monitor of synchronized methods which hasn't
 838   // been entered yet, we set the thread local variable
 839   // _do_not_unlock_if_synchronized to true. The remove_activation will
 840   // check this flag.
 841 
 842   __ get_thread(rax);
 843   const Address do_not_unlock_if_synchronized(rax,
 844         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 845   __ movbool(do_not_unlock_if_synchronized, true);
 846 
 847   // increment invocation count & check for overflow
 848   Label invocation_counter_overflow;
 849   if (inc_counter) {
 850     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 851   }
 852 
 853   Label continue_after_compile;
 854   __ bind(continue_after_compile);
 855 
 856   bang_stack_shadow_pages(true);
 857 
 858   // reset the _do_not_unlock_if_synchronized flag
 859   __ get_thread(rax);
 860   __ movbool(do_not_unlock_if_synchronized, false);
 861 
 862   // check for synchronized methods
 863   // Must happen AFTER invocation_counter check and stack overflow check,
 864   // so method is not locked if overflows.
 865   //
 866   if (synchronized) {
 867     lock_method();
 868   } else {
 869     // no synchronization necessary
 870 #ifdef ASSERT
 871       { Label L;
 872         __ movl(rax, access_flags);
 873         __ testl(rax, JVM_ACC_SYNCHRONIZED);
 874         __ jcc(Assembler::zero, L);
 875         __ stop("method needs synchronization");
 876         __ bind(L);
 877       }
 878 #endif
 879   }
 880 
 881   // start execution
 882 #ifdef ASSERT
 883   { Label L;
 884     const Address monitor_block_top (rbp,
 885                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
 886     __ movptr(rax, monitor_block_top);
 887     __ cmpptr(rax, rsp);
 888     __ jcc(Assembler::equal, L);
 889     __ stop("broken stack frame setup in interpreter");
 890     __ bind(L);
 891   }
 892 #endif
 893 
 894   // jvmti/dtrace support
 895   __ notify_method_entry();
 896 
 897   // work registers
 898   const Register method = rbx;
 899   const Register thread = rdi;
 900   const Register t      = rcx;
 901 
 902   // allocate space for parameters
 903   __ get_method(method);
 904   __ verify_oop(method);
 905   __ load_unsigned_short(t, Address(method, methodOopDesc::size_of_parameters_offset()));
 906   __ shlptr(t, Interpreter::logStackElementSize);
 907   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
 908   __ subptr(rsp, t);
 909   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
 910 
 911   // get signature handler
 912   { Label L;
 913     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
 914     __ testptr(t, t);
 915     __ jcc(Assembler::notZero, L);
 916     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
 917     __ get_method(method);
 918     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
 919     __ bind(L);
 920   }
 921 
 922   // call signature handler
 923   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
 924   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
 925   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
 926   // The generated handlers do not touch RBX (the method oop).
 927   // However, large signatures cannot be cached and are generated
 928   // each time here.  The slow-path generator will blow RBX
 929   // sometime, so we must reload it after the call.
 930   __ call(t);
 931   __ get_method(method);        // slow path call blows RBX on DevStudio 5.0
 932 
 933   // result handler is in rax,
 934   // set result handler
 935   __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
 936 
 937   // pass mirror handle if static call
 938   { Label L;
 939     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 940     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
 941     __ testl(t, JVM_ACC_STATIC);
 942     __ jcc(Assembler::zero, L);
 943     // get mirror
 944     __ movptr(t, Address(method, methodOopDesc:: constants_offset()));
 945     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
 946     __ movptr(t, Address(t, mirror_offset));
 947     // copy mirror into activation frame
 948     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
 949     // pass handle to mirror
 950     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
 951     __ movptr(Address(rsp, wordSize), t);
 952     __ bind(L);
 953   }
 954 
 955   // get native function entry point
 956   { Label L;
 957     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
 958     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
 959     __ cmpptr(rax, unsatisfied.addr());
 960     __ jcc(Assembler::notEqual, L);
 961     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
 962     __ get_method(method);
 963     __ verify_oop(method);
 964     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
 965     __ bind(L);
 966   }
 967 
 968   // pass JNIEnv
 969   __ get_thread(thread);
 970   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
 971   __ movptr(Address(rsp, 0), t);
 972 
 973   // set_last_Java_frame_before_call
 974   // It is enough that the pc()
 975   // points into the right code segment. It does not have to be the correct return pc.
 976   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
 977 
 978   // change thread state
 979 #ifdef ASSERT
 980   { Label L;
 981     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
 982     __ cmpl(t, _thread_in_Java);
 983     __ jcc(Assembler::equal, L);
 984     __ stop("Wrong thread state in native stub");
 985     __ bind(L);
 986   }
 987 #endif
 988 
 989   // Change state to native
 990   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
 991   __ call(rax);
 992 
 993   // result potentially in rdx:rax or ST0
 994 
 995   // Either restore the MXCSR register after returning from the JNI Call
 996   // or verify that it wasn't changed.
 997   if (VM_Version::supports_sse()) {
 998     if (RestoreMXCSROnJNICalls) {
 999       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
1000     }
1001     else if (CheckJNICalls ) {
1002       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
1003     }
1004   }
1005 
1006   // Either restore the x87 floating pointer control word after returning
1007   // from the JNI call or verify that it wasn't changed.
1008   if (CheckJNICalls) {
1009     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
1010   }
1011 
1012   // save potential result in ST(0) & rdx:rax
1013   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
1014   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
1015   // It is safe to do this push because state is _thread_in_native and return address will be found
1016   // via _last_native_pc and not via _last_jave_sp
1017 
1018   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
1019   // If the order changes or anything else is added to the stack the code in
1020   // interpreter_frame_result will have to be changed.
1021 
1022   { Label L;
1023     Label push_double;
1024     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
1025     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
1026     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
1027               float_handler.addr());
1028     __ jcc(Assembler::equal, push_double);
1029     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
1030               double_handler.addr());
1031     __ jcc(Assembler::notEqual, L);
1032     __ bind(push_double);
1033     __ push(dtos);
1034     __ bind(L);
1035   }
1036   __ push(ltos);
1037 
1038   // change thread state
1039   __ get_thread(thread);
1040   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1041   if(os::is_MP()) {
1042     if (UseMembar) {
1043       // Force this write out before the read below
1044       __ membar(Assembler::Membar_mask_bits(
1045            Assembler::LoadLoad | Assembler::LoadStore |
1046            Assembler::StoreLoad | Assembler::StoreStore));
1047     } else {
1048       // Write serialization page so VM thread can do a pseudo remote membar.
1049       // We use the current thread pointer to calculate a thread specific
1050       // offset to write to within the page. This minimizes bus traffic
1051       // due to cache line collision.
1052       __ serialize_memory(thread, rcx);
1053     }
1054   }
1055 
1056   if (AlwaysRestoreFPU) {
1057     //  Make sure the control word is correct.
1058     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1059   }
1060 
1061   // check for safepoint operation in progress and/or pending suspend requests
1062   { Label Continue;
1063 
1064     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1065              SafepointSynchronize::_not_synchronized);
1066 
1067     Label L;
1068     __ jcc(Assembler::notEqual, L);
1069     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1070     __ jcc(Assembler::equal, Continue);
1071     __ bind(L);
1072 
1073     // Don't use call_VM as it will see a possible pending exception and forward it
1074     // and never return here preventing us from clearing _last_native_pc down below.
1075     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1076     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1077     // by hand.
1078     //
1079     __ push(thread);
1080     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1081                                             JavaThread::check_special_condition_for_native_trans)));
1082     __ increment(rsp, wordSize);
1083     __ get_thread(thread);
1084 
1085     __ bind(Continue);
1086   }
1087 
1088   // change thread state
1089   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1090 
1091   __ reset_last_Java_frame(thread, true, true);
1092 
1093   // reset handle block
1094   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
1095   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
1096 
1097   // If result was an oop then unbox and save it in the frame
1098   { Label L;
1099     Label no_oop, store_result;
1100     ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
1101     __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
1102               handler.addr());
1103     __ jcc(Assembler::notEqual, no_oop);
1104     __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
1105     __ pop(ltos);
1106     __ testptr(rax, rax);
1107     __ jcc(Assembler::zero, store_result);
1108     // unbox
1109     __ movptr(rax, Address(rax, 0));
1110     __ bind(store_result);
1111     __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
1112     // keep stack depth as expected by pushing oop which will eventually be discarded
1113     __ push(ltos);
1114     __ bind(no_oop);
1115   }
1116 
1117   {
1118      Label no_reguard;
1119      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1120      __ jcc(Assembler::notEqual, no_reguard);
1121 
1122      __ pusha();
1123      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1124      __ popa();
1125 
1126      __ bind(no_reguard);
1127    }
1128 
1129   // restore rsi to have legal interpreter frame,
1130   // i.e., bci == 0 <=> rsi == code_base()
1131   // Can't call_VM until bcp is within reasonable.
1132   __ get_method(method);      // method is junk from thread_in_native to now.
1133   __ verify_oop(method);
1134   __ movptr(rsi, Address(method,methodOopDesc::const_offset()));   // get constMethodOop
1135   __ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset()));    // get codebase
1136 
1137   // handle exceptions (exception handling will handle unlocking!)
1138   { Label L;
1139     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1140     __ jcc(Assembler::zero, L);
1141     // Note: At some point we may want to unify this with the code used in call_VM_base();
1142     //       i.e., we should use the StubRoutines::forward_exception code. For now this
1143     //       doesn't work here because the rsp is not correctly set at this point.
1144     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1145     __ should_not_reach_here();
1146     __ bind(L);
1147   }
1148 
1149   // do unlocking if necessary
1150   { Label L;
1151     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
1152     __ testl(t, JVM_ACC_SYNCHRONIZED);
1153     __ jcc(Assembler::zero, L);
1154     // the code below should be shared with interpreter macro assembler implementation
1155     { Label unlock;
1156       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1157       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1158       const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
1159 
1160       __ lea(rdx, monitor);                   // address of first monitor
1161 
1162       __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
1163       __ testptr(t, t);
1164       __ jcc(Assembler::notZero, unlock);
1165 
1166       // Entry already unlocked, need to throw exception
1167       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1168       __ should_not_reach_here();
1169 
1170       __ bind(unlock);
1171       __ unlock_object(rdx);
1172     }
1173     __ bind(L);
1174   }
1175 
1176   // jvmti/dtrace support
1177   // Note: This must happen _after_ handling/throwing any exceptions since
1178   //       the exception handler code notifies the runtime of method exits
1179   //       too. If this happens before, method entry/exit notifications are
1180   //       not properly paired (was bug - gri 11/22/99).
1181   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1182 
1183   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
1184   __ pop(ltos);
1185   __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
1186   __ call(t);
1187 
1188   // remove activation
1189   __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1190   __ leave();                                // remove frame anchor
1191   __ pop(rdi);                               // get return address
1192   __ mov(rsp, t);                            // set sp to sender sp
1193   __ jmp(rdi);
1194 
1195   if (inc_counter) {
1196     // Handle overflow of counter and compile method
1197     __ bind(invocation_counter_overflow);
1198     generate_counter_overflow(&continue_after_compile);
1199   }
1200 
1201   return entry_point;
1202 }
1203 
1204 //
1205 // Generic interpreted method entry to (asm) interpreter
1206 //
1207 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1208   // determine code generation flags
1209   bool inc_counter  = UseCompiler || CountCompiledCalls;
1210 
1211   // rbx,: methodOop
1212   // rsi: sender sp
1213   address entry_point = __ pc();
1214 
1215 
1216   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
1217   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
1218   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
1219   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
1220 
1221   // get parameter size (always needed)
1222   __ load_unsigned_short(rcx, size_of_parameters);
1223 
1224   // rbx,: methodOop
1225   // rcx: size of parameters
1226 
1227   // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
1228 
1229   __ load_unsigned_short(rdx, size_of_locals);       // get size of locals in words
1230   __ subl(rdx, rcx);                                // rdx = no. of additional locals
1231 
1232   // see if we've got enough room on the stack for locals plus overhead.
1233   generate_stack_overflow_check();
1234 
1235   // get return address
1236   __ pop(rax);
1237 
1238   // compute beginning of parameters (rdi)
1239   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
1240 
1241   // rdx - # of additional locals
1242   // allocate space for locals
1243   // explicitly initialize locals
1244   {
1245     Label exit, loop;
1246     __ testl(rdx, rdx);
1247     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
1248     __ bind(loop);
1249     __ push((int32_t)NULL_WORD);                      // initialize local variables
1250     __ decrement(rdx);                                // until everything initialized
1251     __ jcc(Assembler::greater, loop);
1252     __ bind(exit);
1253   }
1254 
1255   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
1256   // initialize fixed part of activation frame
1257   generate_fixed_frame(false);
1258 
1259   // make sure method is not native & not abstract
1260 #ifdef ASSERT
1261   __ movl(rax, access_flags);
1262   {
1263     Label L;
1264     __ testl(rax, JVM_ACC_NATIVE);
1265     __ jcc(Assembler::zero, L);
1266     __ stop("tried to execute native method as non-native");
1267     __ bind(L);
1268   }
1269   { Label L;
1270     __ testl(rax, JVM_ACC_ABSTRACT);
1271     __ jcc(Assembler::zero, L);
1272     __ stop("tried to execute abstract method in interpreter");
1273     __ bind(L);
1274   }
1275 #endif
1276 
1277   // Since at this point in the method invocation the exception handler
1278   // would try to exit the monitor of synchronized methods which hasn't
1279   // been entered yet, we set the thread local variable
1280   // _do_not_unlock_if_synchronized to true. The remove_activation will
1281   // check this flag.
1282 
1283   __ get_thread(rax);
1284   const Address do_not_unlock_if_synchronized(rax,
1285         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1286   __ movbool(do_not_unlock_if_synchronized, true);
1287 
1288   // increment invocation count & check for overflow
1289   Label invocation_counter_overflow;
1290   Label profile_method;
1291   Label profile_method_continue;
1292   if (inc_counter) {
1293     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1294     if (ProfileInterpreter) {
1295       __ bind(profile_method_continue);
1296     }
1297   }
1298   Label continue_after_compile;
1299   __ bind(continue_after_compile);
1300 
1301   bang_stack_shadow_pages(false);
1302 
1303   // reset the _do_not_unlock_if_synchronized flag
1304   __ get_thread(rax);
1305   __ movbool(do_not_unlock_if_synchronized, false);
1306 
1307   // check for synchronized methods
1308   // Must happen AFTER invocation_counter check and stack overflow check,
1309   // so method is not locked if overflows.
1310   //
1311   if (synchronized) {
1312     // Allocate monitor and lock method
1313     lock_method();
1314   } else {
1315     // no synchronization necessary
1316 #ifdef ASSERT
1317       { Label L;
1318         __ movl(rax, access_flags);
1319         __ testl(rax, JVM_ACC_SYNCHRONIZED);
1320         __ jcc(Assembler::zero, L);
1321         __ stop("method needs synchronization");
1322         __ bind(L);
1323       }
1324 #endif
1325   }
1326 
1327   // start execution
1328 #ifdef ASSERT
1329   { Label L;
1330      const Address monitor_block_top (rbp,
1331                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1332     __ movptr(rax, monitor_block_top);
1333     __ cmpptr(rax, rsp);
1334     __ jcc(Assembler::equal, L);
1335     __ stop("broken stack frame setup in interpreter");
1336     __ bind(L);
1337   }
1338 #endif
1339 
1340   // jvmti support
1341   __ notify_method_entry();
1342 
1343   __ dispatch_next(vtos);
1344 
1345   // invocation counter overflow
1346   if (inc_counter) {
1347     if (ProfileInterpreter) {
1348       // We have decided to profile this method in the interpreter
1349       __ bind(profile_method);
1350 
1351       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), rsi, true);
1352 
1353       __ movptr(rbx, Address(rbp, method_offset));   // restore methodOop
1354       __ movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
1355       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
1356       __ test_method_data_pointer(rax, profile_method_continue);
1357       __ addptr(rax, in_bytes(methodDataOopDesc::data_offset()));
1358       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
1359       __ jmp(profile_method_continue);
1360     }
1361     // Handle overflow of counter and compile method
1362     __ bind(invocation_counter_overflow);
1363     generate_counter_overflow(&continue_after_compile);
1364   }
1365 
1366   return entry_point;
1367 }
1368 
1369 //------------------------------------------------------------------------------------------------------------------------
1370 // Entry points
1371 //
1372 // Here we generate the various kind of entries into the interpreter.
1373 // The two main entry type are generic bytecode methods and native call method.
1374 // These both come in synchronized and non-synchronized versions but the
1375 // frame layout they create is very similar. The other method entry
1376 // types are really just special purpose entries that are really entry
1377 // and interpretation all in one. These are for trivial methods like
1378 // accessor, empty, or special math methods.
1379 //
1380 // When control flow reaches any of the entry types for the interpreter
1381 // the following holds ->
1382 //
1383 // Arguments:
1384 //
1385 // rbx,: methodOop
1386 // rcx: receiver
1387 //
1388 //
1389 // Stack layout immediately at entry
1390 //
1391 // [ return address     ] <--- rsp
1392 // [ parameter n        ]
1393 //   ...
1394 // [ parameter 1        ]
1395 // [ expression stack   ] (caller's java expression stack)
1396 
1397 // Assuming that we don't go to one of the trivial specialized
1398 // entries the stack will look like below when we are ready to execute
1399 // the first bytecode (or call the native routine). The register usage
1400 // will be as the template based interpreter expects (see interpreter_x86.hpp).
1401 //
1402 // local variables follow incoming parameters immediately; i.e.
1403 // the return address is moved to the end of the locals).
1404 //
1405 // [ monitor entry      ] <--- rsp
1406 //   ...
1407 // [ monitor entry      ]
1408 // [ expr. stack bottom ]
1409 // [ saved rsi          ]
1410 // [ current rdi        ]
1411 // [ methodOop          ]
1412 // [ saved rbp,          ] <--- rbp,
1413 // [ return address     ]
1414 // [ local variable m   ]
1415 //   ...
1416 // [ local variable 1   ]
1417 // [ parameter n        ]
1418 //   ...
1419 // [ parameter 1        ] <--- rdi
1420 
1421 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
1422   // determine code generation flags
1423   bool synchronized = false;
1424   address entry_point = NULL;
1425 
1426   switch (kind) {
1427     case Interpreter::zerolocals             :                                                                             break;
1428     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
1429     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
1430     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
1431     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
1432     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
1433     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
1434     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
1435 
1436     case Interpreter::java_lang_math_sin     : // fall thru
1437     case Interpreter::java_lang_math_cos     : // fall thru
1438     case Interpreter::java_lang_math_tan     : // fall thru
1439     case Interpreter::java_lang_math_abs     : // fall thru
1440     case Interpreter::java_lang_math_log     : // fall thru
1441     case Interpreter::java_lang_math_log10   : // fall thru
1442     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
1443     default                                  : ShouldNotReachHere();                                                       break;
1444   }
1445 
1446   if (entry_point) return entry_point;
1447 
1448   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
1449 
1450 }
1451 
1452 // These should never be compiled since the interpreter will prefer
1453 // the compiled version to the intrinsic version.
1454 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
1455   switch (method_kind(m)) {
1456     case Interpreter::java_lang_math_sin     : // fall thru
1457     case Interpreter::java_lang_math_cos     : // fall thru
1458     case Interpreter::java_lang_math_tan     : // fall thru
1459     case Interpreter::java_lang_math_abs     : // fall thru
1460     case Interpreter::java_lang_math_log     : // fall thru
1461     case Interpreter::java_lang_math_log10   : // fall thru
1462     case Interpreter::java_lang_math_sqrt    :
1463       return false;
1464     default:
1465       return true;
1466   }
1467 }
1468 
1469 // How much stack a method activation needs in words.
1470 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
1471 
1472   const int stub_code = 4;  // see generate_call_stub
1473   // Save space for one monitor to get into the interpreted method in case
1474   // the method is synchronized
1475   int monitor_size    = method->is_synchronized() ?
1476                                 1*frame::interpreter_frame_monitor_size() : 0;
1477 
1478   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
1479   // be sure to change this if you add/subtract anything to/from the overhead area
1480   const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
1481 
1482   const int extra_stack = methodOopDesc::extra_stack_entries();
1483   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
1484                            Interpreter::stackElementWords;
1485   return overhead_size + method_stack + stub_code;
1486 }
1487 
1488 // asm based interpreter deoptimization helpers
1489 
1490 int AbstractInterpreter::layout_activation(methodOop method,
1491                                            int tempcount,
1492                                            int popframe_extra_args,
1493                                            int moncount,
1494                                            int callee_param_count,
1495                                            int callee_locals,
1496                                            frame* caller,
1497                                            frame* interpreter_frame,
1498                                            bool is_top_frame) {
1499   // Note: This calculation must exactly parallel the frame setup
1500   // in AbstractInterpreterGenerator::generate_method_entry.
1501   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
1502   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
1503   // as determined by a previous call to this method.
1504   // It is also guaranteed to be walkable even though it is in a skeletal state
1505   // NOTE: return size is in words not bytes
1506 
1507   // fixed size of an interpreter frame:
1508   int max_locals = method->max_locals() * Interpreter::stackElementWords;
1509   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
1510                      Interpreter::stackElementWords;
1511 
1512   int overhead = frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset;
1513 
1514   // Our locals were accounted for by the caller (or last_frame_adjust on the transistion)
1515   // Since the callee parameters already account for the callee's params we only need to account for
1516   // the extra locals.
1517 
1518 
1519   int size = overhead +
1520          ((callee_locals - callee_param_count)*Interpreter::stackElementWords) +
1521          (moncount*frame::interpreter_frame_monitor_size()) +
1522          tempcount*Interpreter::stackElementWords + popframe_extra_args;
1523 
1524   if (interpreter_frame != NULL) {
1525 #ifdef ASSERT
1526     if (!EnableMethodHandles)
1527       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
1528       // Probably, since deoptimization doesn't work yet.
1529       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
1530     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
1531 #endif
1532 
1533     interpreter_frame->interpreter_frame_set_method(method);
1534     // NOTE the difference in using sender_sp and interpreter_frame_sender_sp
1535     // interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
1536     // and sender_sp is fp+8
1537     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
1538 
1539     interpreter_frame->interpreter_frame_set_locals(locals);
1540     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
1541     BasicObjectLock* monbot = montop - moncount;
1542     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
1543 
1544     // Set last_sp
1545     intptr_t*  rsp = (intptr_t*) monbot  -
1546                      tempcount*Interpreter::stackElementWords -
1547                      popframe_extra_args;
1548     interpreter_frame->interpreter_frame_set_last_sp(rsp);
1549 
1550     // All frames but the initial (oldest) interpreter frame we fill in have a
1551     // value for sender_sp that allows walking the stack but isn't
1552     // truly correct. Correct the value here.
1553 
1554     if (extra_locals != 0 &&
1555         interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) {
1556       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals);
1557     }
1558     *interpreter_frame->interpreter_frame_cache_addr() =
1559       method->constants()->cache();
1560   }
1561   return size;
1562 }
1563 
1564 
1565 //------------------------------------------------------------------------------------------------------------------------
1566 // Exceptions
1567 
1568 void TemplateInterpreterGenerator::generate_throw_exception() {
1569   // Entry point in previous activation (i.e., if the caller was interpreted)
1570   Interpreter::_rethrow_exception_entry = __ pc();
1571   const Register thread = rcx;
1572 
1573   // Restore sp to interpreter_frame_last_sp even though we are going
1574   // to empty the expression stack for the exception processing.
1575   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
1576   // rax,: exception
1577   // rdx: return address/pc that threw exception
1578   __ restore_bcp();                              // rsi points to call/send
1579   __ restore_locals();
1580 
1581   // Entry point for exceptions thrown within interpreter code
1582   Interpreter::_throw_exception_entry = __ pc();
1583   // expression stack is undefined here
1584   // rax,: exception
1585   // rsi: exception bcp
1586   __ verify_oop(rax);
1587 
1588   // expression stack must be empty before entering the VM in case of an exception
1589   __ empty_expression_stack();
1590   __ empty_FPU_stack();
1591   // find exception handler address and preserve exception oop
1592   __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
1593   // rax,: exception handler entry point
1594   // rdx: preserved exception oop
1595   // rsi: bcp for exception handler
1596   __ push_ptr(rdx);                              // push exception which is now the only value on the stack
1597   __ jmp(rax);                                   // jump to exception handler (may be _remove_activation_entry!)
1598 
1599   // If the exception is not handled in the current frame the frame is removed and
1600   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
1601   //
1602   // Note: At this point the bci is still the bxi for the instruction which caused
1603   //       the exception and the expression stack is empty. Thus, for any VM calls
1604   //       at this point, GC will find a legal oop map (with empty expression stack).
1605 
1606   // In current activation
1607   // tos: exception
1608   // rsi: exception bcp
1609 
1610   //
1611   // JVMTI PopFrame support
1612   //
1613 
1614    Interpreter::_remove_activation_preserving_args_entry = __ pc();
1615   __ empty_expression_stack();
1616   __ empty_FPU_stack();
1617   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
1618   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1619   // popframe handling cycles.
1620   __ get_thread(thread);
1621   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
1622   __ orl(rdx, JavaThread::popframe_processing_bit);
1623   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
1624 
1625   {
1626     // Check to see whether we are returning to a deoptimized frame.
1627     // (The PopFrame call ensures that the caller of the popped frame is
1628     // either interpreted or compiled and deoptimizes it if compiled.)
1629     // In this case, we can't call dispatch_next() after the frame is
1630     // popped, but instead must save the incoming arguments and restore
1631     // them after deoptimization has occurred.
1632     //
1633     // Note that we don't compare the return PC against the
1634     // deoptimization blob's unpack entry because of the presence of
1635     // adapter frames in C2.
1636     Label caller_not_deoptimized;
1637     __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
1638     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
1639     __ testl(rax, rax);
1640     __ jcc(Assembler::notZero, caller_not_deoptimized);
1641 
1642     // Compute size of arguments for saving when returning to deoptimized caller
1643     __ get_method(rax);
1644     __ verify_oop(rax);
1645     __ load_unsigned_short(rax, Address(rax, in_bytes(methodOopDesc::size_of_parameters_offset())));
1646     __ shlptr(rax, Interpreter::logStackElementSize);
1647     __ restore_locals();
1648     __ subptr(rdi, rax);
1649     __ addptr(rdi, wordSize);
1650     // Save these arguments
1651     __ get_thread(thread);
1652     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
1653 
1654     __ remove_activation(vtos, rdx,
1655                          /* throw_monitor_exception */ false,
1656                          /* install_monitor_exception */ false,
1657                          /* notify_jvmdi */ false);
1658 
1659     // Inform deoptimization that it is responsible for restoring these arguments
1660     __ get_thread(thread);
1661     __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
1662 
1663     // Continue in deoptimization handler
1664     __ jmp(rdx);
1665 
1666     __ bind(caller_not_deoptimized);
1667   }
1668 
1669   __ remove_activation(vtos, rdx,
1670                        /* throw_monitor_exception */ false,
1671                        /* install_monitor_exception */ false,
1672                        /* notify_jvmdi */ false);
1673 
1674   // Finish with popframe handling
1675   // A previous I2C followed by a deoptimization might have moved the
1676   // outgoing arguments further up the stack. PopFrame expects the
1677   // mutations to those outgoing arguments to be preserved and other
1678   // constraints basically require this frame to look exactly as
1679   // though it had previously invoked an interpreted activation with
1680   // no space between the top of the expression stack (current
1681   // last_sp) and the top of stack. Rather than force deopt to
1682   // maintain this kind of invariant all the time we call a small
1683   // fixup routine to move the mutated arguments onto the top of our
1684   // expression stack if necessary.
1685   __ mov(rax, rsp);
1686   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1687   __ get_thread(thread);
1688   // PC must point into interpreter here
1689   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1690   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
1691   __ get_thread(thread);
1692   __ reset_last_Java_frame(thread, true, true);
1693   // Restore the last_sp and null it out
1694   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1695   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
1696 
1697   __ restore_bcp();
1698   __ restore_locals();
1699   // The method data pointer was incremented already during
1700   // call profiling. We have to restore the mdp for the current bcp.
1701   if (ProfileInterpreter) {
1702     __ set_method_data_pointer_for_bcp();
1703   }
1704 
1705   // Clear the popframe condition flag
1706   __ get_thread(thread);
1707   __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
1708 
1709   __ dispatch_next(vtos);
1710   // end of PopFrame support
1711 
1712   Interpreter::_remove_activation_entry = __ pc();
1713 
1714   // preserve exception over this code sequence
1715   __ pop_ptr(rax);
1716   __ get_thread(thread);
1717   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
1718   // remove the activation (without doing throws on illegalMonitorExceptions)
1719   __ remove_activation(vtos, rdx, false, true, false);
1720   // restore exception
1721   __ get_thread(thread);
1722   __ movptr(rax, Address(thread, JavaThread::vm_result_offset()));
1723   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
1724   __ verify_oop(rax);
1725 
1726   // Inbetween activations - previous activation type unknown yet
1727   // compute continuation point - the continuation point expects
1728   // the following registers set up:
1729   //
1730   // rax: exception
1731   // rdx: return address/pc that threw exception
1732   // rsp: expression stack of caller
1733   // rbp: rbp, of caller
1734   __ push(rax);                                  // save exception
1735   __ push(rdx);                                  // save return address
1736   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
1737   __ mov(rbx, rax);                              // save exception handler
1738   __ pop(rdx);                                   // restore return address
1739   __ pop(rax);                                   // restore exception
1740   // Note that an "issuing PC" is actually the next PC after the call
1741   __ jmp(rbx);                                   // jump to exception handler of caller
1742 }
1743 
1744 
1745 //
1746 // JVMTI ForceEarlyReturn support
1747 //
1748 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1749   address entry = __ pc();
1750   const Register thread = rcx;
1751 
1752   __ restore_bcp();
1753   __ restore_locals();
1754   __ empty_expression_stack();
1755   __ empty_FPU_stack();
1756   __ load_earlyret_value(state);
1757 
1758   __ get_thread(thread);
1759   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
1760   const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
1761 
1762   // Clear the earlyret state
1763   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
1764 
1765   __ remove_activation(state, rsi,
1766                        false, /* throw_monitor_exception */
1767                        false, /* install_monitor_exception */
1768                        true); /* notify_jvmdi */
1769   __ jmp(rsi);
1770   return entry;
1771 } // end of ForceEarlyReturn support
1772 
1773 
1774 //------------------------------------------------------------------------------------------------------------------------
1775 // Helper for vtos entry point generation
1776 
1777 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1778   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1779   Label L;
1780   fep = __ pc(); __ push(ftos); __ jmp(L);
1781   dep = __ pc(); __ push(dtos); __ jmp(L);
1782   lep = __ pc(); __ push(ltos); __ jmp(L);
1783   aep = __ pc(); __ push(atos); __ jmp(L);
1784   bep = cep = sep =             // fall through
1785   iep = __ pc(); __ push(itos); // fall through
1786   vep = __ pc(); __ bind(L);    // fall through
1787   generate_and_dispatch(t);
1788 }
1789 
1790 //------------------------------------------------------------------------------------------------------------------------
1791 // Generation of individual instructions
1792 
1793 // helpers for generate_and_dispatch
1794 
1795 
1796 
1797 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1798  : TemplateInterpreterGenerator(code) {
1799    generate_all(); // down here so it can be "virtual"
1800 }
1801 
1802 //------------------------------------------------------------------------------------------------------------------------
1803 
1804 // Non-product code
1805 #ifndef PRODUCT
1806 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1807   address entry = __ pc();
1808 
1809   // prepare expression stack
1810   __ pop(rcx);          // pop return address so expression stack is 'pure'
1811   __ push(state);       // save tosca
1812 
1813   // pass tosca registers as arguments & call tracer
1814   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
1815   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
1816   __ pop(state);        // restore tosca
1817 
1818   // return
1819   __ jmp(rcx);
1820 
1821   return entry;
1822 }
1823 
1824 
1825 void TemplateInterpreterGenerator::count_bytecode() {
1826   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
1827 }
1828 
1829 
1830 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1831   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
1832 }
1833 
1834 
1835 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1836   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
1837   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
1838   __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
1839   ExternalAddress table((address) BytecodePairHistogram::_counters);
1840   Address index(noreg, rbx, Address::times_4);
1841   __ incrementl(ArrayAddress(table, index));
1842 }
1843 
1844 
1845 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1846   // Call a little run-time stub to avoid blow-up for each bytecode.
1847   // The run-time runtime saves the right registers, depending on
1848   // the tosca in-state for the given template.
1849   assert(Interpreter::trace_code(t->tos_in()) != NULL,
1850          "entry must have been generated");
1851   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
1852 }
1853 
1854 
1855 void TemplateInterpreterGenerator::stop_interpreter_at() {
1856   Label L;
1857   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
1858            StopInterpreterAt);
1859   __ jcc(Assembler::notEqual, L);
1860   __ int3();
1861   __ bind(L);
1862 }
1863 #endif // !PRODUCT
1864 #endif // CC_INTERP