1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # define __STDC_FORMAT_MACROS
  26 
  27 // no precompiled headers
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "jvm_linux.h"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "mutex_linux.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/hpi.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/perfMemory.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/statSampler.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "services/attachListener.hpp"
  61 #include "services/runtimeService.hpp"
  62 #include "thread_linux.inline.hpp"
  63 #include "utilities/defaultStream.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/growableArray.hpp"
  66 #include "utilities/vmError.hpp"
  67 #ifdef TARGET_ARCH_x86
  68 # include "assembler_x86.inline.hpp"
  69 # include "nativeInst_x86.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_sparc
  72 # include "assembler_sparc.inline.hpp"
  73 # include "nativeInst_sparc.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_zero
  76 # include "assembler_zero.inline.hpp"
  77 # include "nativeInst_zero.hpp"
  78 #endif
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #endif
  82 #ifdef COMPILER2
  83 #include "opto/runtime.hpp"
  84 #endif
  85 
  86 // put OS-includes here
  87 # include <sys/types.h>
  88 # include <sys/mman.h>
  89 # include <sys/stat.h>
  90 # include <sys/select.h>
  91 # include <pthread.h>
  92 # include <signal.h>
  93 # include <errno.h>
  94 # include <dlfcn.h>
  95 # include <stdio.h>
  96 # include <unistd.h>
  97 # include <sys/resource.h>
  98 # include <pthread.h>
  99 # include <sys/stat.h>
 100 # include <sys/time.h>
 101 # include <sys/times.h>
 102 # include <sys/utsname.h>
 103 # include <sys/socket.h>
 104 # include <sys/wait.h>
 105 # include <pwd.h>
 106 # include <poll.h>
 107 # include <semaphore.h>
 108 # include <fcntl.h>
 109 # include <string.h>
 110 # include <syscall.h>
 111 # include <sys/sysinfo.h>
 112 # include <gnu/libc-version.h>
 113 # include <sys/ipc.h>
 114 # include <sys/shm.h>
 115 # include <link.h>
 116 # include <stdint.h>
 117 # include <inttypes.h>
 118 
 119 #define MAX_PATH    (2 * K)
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 #define SEC_IN_NANOSECS  1000000000LL
 124 
 125 ////////////////////////////////////////////////////////////////////////////////
 126 // global variables
 127 julong os::Linux::_physical_memory = 0;
 128 
 129 address   os::Linux::_initial_thread_stack_bottom = NULL;
 130 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 131 
 132 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 133 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 134 Mutex* os::Linux::_createThread_lock = NULL;
 135 pthread_t os::Linux::_main_thread;
 136 int os::Linux::_page_size = -1;
 137 bool os::Linux::_is_floating_stack = false;
 138 bool os::Linux::_is_NPTL = false;
 139 bool os::Linux::_supports_fast_thread_cpu_time = false;
 140 const char * os::Linux::_glibc_version = NULL;
 141 const char * os::Linux::_libpthread_version = NULL;
 142 
 143 static jlong initial_time_count=0;
 144 
 145 static int clock_tics_per_sec = 100;
 146 
 147 // For diagnostics to print a message once. see run_periodic_checks
 148 static sigset_t check_signal_done;
 149 static bool check_signals = true;;
 150 
 151 static pid_t _initial_pid = 0;
 152 
 153 /* Signal number used to suspend/resume a thread */
 154 
 155 /* do not use any signal number less than SIGSEGV, see 4355769 */
 156 static int SR_signum = SIGUSR2;
 157 sigset_t SR_sigset;
 158 
 159 /* Used to protect dlsym() calls */
 160 static pthread_mutex_t dl_mutex;
 161 
 162 ////////////////////////////////////////////////////////////////////////////////
 163 // utility functions
 164 
 165 static int SR_initialize();
 166 static int SR_finalize();
 167 
 168 julong os::available_memory() {
 169   return Linux::available_memory();
 170 }
 171 
 172 julong os::Linux::available_memory() {
 173   // values in struct sysinfo are "unsigned long"
 174   struct sysinfo si;
 175   sysinfo(&si);
 176 
 177   return (julong)si.freeram * si.mem_unit;
 178 }
 179 
 180 julong os::physical_memory() {
 181   return Linux::physical_memory();
 182 }
 183 
 184 julong os::allocatable_physical_memory(julong size) {
 185 #ifdef _LP64
 186   return size;
 187 #else
 188   julong result = MIN2(size, (julong)3800*M);
 189    if (!is_allocatable(result)) {
 190      // See comments under solaris for alignment considerations
 191      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
 192      result =  MIN2(size, reasonable_size);
 193    }
 194    return result;
 195 #endif // _LP64
 196 }
 197 
 198 ////////////////////////////////////////////////////////////////////////////////
 199 // environment support
 200 
 201 bool os::getenv(const char* name, char* buf, int len) {
 202   const char* val = ::getenv(name);
 203   if (val != NULL && strlen(val) < (size_t)len) {
 204     strcpy(buf, val);
 205     return true;
 206   }
 207   if (len > 0) buf[0] = 0;  // return a null string
 208   return false;
 209 }
 210 
 211 
 212 // Return true if user is running as root.
 213 
 214 bool os::have_special_privileges() {
 215   static bool init = false;
 216   static bool privileges = false;
 217   if (!init) {
 218     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 219     init = true;
 220   }
 221   return privileges;
 222 }
 223 
 224 
 225 #ifndef SYS_gettid
 226 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 227 #ifdef __ia64__
 228 #define SYS_gettid 1105
 229 #elif __i386__
 230 #define SYS_gettid 224
 231 #elif __amd64__
 232 #define SYS_gettid 186
 233 #elif __sparc__
 234 #define SYS_gettid 143
 235 #else
 236 #error define gettid for the arch
 237 #endif
 238 #endif
 239 
 240 // Cpu architecture string
 241 #if   defined(ZERO)
 242 static char cpu_arch[] = ZERO_LIBARCH;
 243 #elif defined(IA64)
 244 static char cpu_arch[] = "ia64";
 245 #elif defined(IA32)
 246 static char cpu_arch[] = "i386";
 247 #elif defined(AMD64)
 248 static char cpu_arch[] = "amd64";
 249 #elif defined(ARM)
 250 static char cpu_arch[] = "arm";
 251 #elif defined(PPC)
 252 static char cpu_arch[] = "ppc";
 253 #elif defined(SPARC)
 254 #  ifdef _LP64
 255 static char cpu_arch[] = "sparcv9";
 256 #  else
 257 static char cpu_arch[] = "sparc";
 258 #  endif
 259 #else
 260 #error Add appropriate cpu_arch setting
 261 #endif
 262 
 263 
 264 // pid_t gettid()
 265 //
 266 // Returns the kernel thread id of the currently running thread. Kernel
 267 // thread id is used to access /proc.
 268 //
 269 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 270 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 271 //
 272 pid_t os::Linux::gettid() {
 273   int rslt = syscall(SYS_gettid);
 274   if (rslt == -1) {
 275      // old kernel, no NPTL support
 276      return getpid();
 277   } else {
 278      return (pid_t)rslt;
 279   }
 280 }
 281 
 282 // Most versions of linux have a bug where the number of processors are
 283 // determined by looking at the /proc file system.  In a chroot environment,
 284 // the system call returns 1.  This causes the VM to act as if it is
 285 // a single processor and elide locking (see is_MP() call).
 286 static bool unsafe_chroot_detected = false;
 287 static const char *unstable_chroot_error = "/proc file system not found.\n"
 288                      "Java may be unstable running multithreaded in a chroot "
 289                      "environment on Linux when /proc filesystem is not mounted.";
 290 
 291 void os::Linux::initialize_system_info() {
 292   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 293   if (processor_count() == 1) {
 294     pid_t pid = os::Linux::gettid();
 295     char fname[32];
 296     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 297     FILE *fp = fopen(fname, "r");
 298     if (fp == NULL) {
 299       unsafe_chroot_detected = true;
 300     } else {
 301       fclose(fp);
 302     }
 303   }
 304   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 305   assert(processor_count() > 0, "linux error");
 306 }
 307 
 308 void os::init_system_properties_values() {
 309 //  char arch[12];
 310 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 311 
 312   // The next steps are taken in the product version:
 313   //
 314   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
 315   // This library should be located at:
 316   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
 317   //
 318   // If "/jre/lib/" appears at the right place in the path, then we
 319   // assume libjvm[_g].so is installed in a JDK and we use this path.
 320   //
 321   // Otherwise exit with message: "Could not create the Java virtual machine."
 322   //
 323   // The following extra steps are taken in the debugging version:
 324   //
 325   // If "/jre/lib/" does NOT appear at the right place in the path
 326   // instead of exit check for $JAVA_HOME environment variable.
 327   //
 328   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 329   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
 330   // it looks like libjvm[_g].so is installed there
 331   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
 332   //
 333   // Otherwise exit.
 334   //
 335   // Important note: if the location of libjvm.so changes this
 336   // code needs to be changed accordingly.
 337 
 338   // The next few definitions allow the code to be verbatim:
 339 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
 340 #define getenv(n) ::getenv(n)
 341 
 342 /*
 343  * See ld(1):
 344  *      The linker uses the following search paths to locate required
 345  *      shared libraries:
 346  *        1: ...
 347  *        ...
 348  *        7: The default directories, normally /lib and /usr/lib.
 349  */
 350 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 351 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 352 #else
 353 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 354 #endif
 355 
 356 #define EXTENSIONS_DIR  "/lib/ext"
 357 #define ENDORSED_DIR    "/lib/endorsed"
 358 #define REG_DIR         "/usr/java/packages"
 359 
 360   {
 361     /* sysclasspath, java_home, dll_dir */
 362     {
 363         char *home_path;
 364         char *dll_path;
 365         char *pslash;
 366         char buf[MAXPATHLEN];
 367         os::jvm_path(buf, sizeof(buf));
 368 
 369         // Found the full path to libjvm.so.
 370         // Now cut the path to <java_home>/jre if we can.
 371         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 372         pslash = strrchr(buf, '/');
 373         if (pslash != NULL)
 374             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 375         dll_path = malloc(strlen(buf) + 1);
 376         if (dll_path == NULL)
 377             return;
 378         strcpy(dll_path, buf);
 379         Arguments::set_dll_dir(dll_path);
 380 
 381         if (pslash != NULL) {
 382             pslash = strrchr(buf, '/');
 383             if (pslash != NULL) {
 384                 *pslash = '\0';       /* get rid of /<arch> */
 385                 pslash = strrchr(buf, '/');
 386                 if (pslash != NULL)
 387                     *pslash = '\0';   /* get rid of /lib */
 388             }
 389         }
 390 
 391         home_path = malloc(strlen(buf) + 1);
 392         if (home_path == NULL)
 393             return;
 394         strcpy(home_path, buf);
 395         Arguments::set_java_home(home_path);
 396 
 397         if (!set_boot_path('/', ':'))
 398             return;
 399     }
 400 
 401     /*
 402      * Where to look for native libraries
 403      *
 404      * Note: Due to a legacy implementation, most of the library path
 405      * is set in the launcher.  This was to accomodate linking restrictions
 406      * on legacy Linux implementations (which are no longer supported).
 407      * Eventually, all the library path setting will be done here.
 408      *
 409      * However, to prevent the proliferation of improperly built native
 410      * libraries, the new path component /usr/java/packages is added here.
 411      * Eventually, all the library path setting will be done here.
 412      */
 413     {
 414         char *ld_library_path;
 415 
 416         /*
 417          * Construct the invariant part of ld_library_path. Note that the
 418          * space for the colon and the trailing null are provided by the
 419          * nulls included by the sizeof operator (so actually we allocate
 420          * a byte more than necessary).
 421          */
 422         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 423             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 424         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 425 
 426         /*
 427          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 428          * should always exist (until the legacy problem cited above is
 429          * addressed).
 430          */
 431         char *v = getenv("LD_LIBRARY_PATH");
 432         if (v != NULL) {
 433             char *t = ld_library_path;
 434             /* That's +1 for the colon and +1 for the trailing '\0' */
 435             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 436             sprintf(ld_library_path, "%s:%s", v, t);
 437         }
 438         Arguments::set_library_path(ld_library_path);
 439     }
 440 
 441     /*
 442      * Extensions directories.
 443      *
 444      * Note that the space for the colon and the trailing null are provided
 445      * by the nulls included by the sizeof operator (so actually one byte more
 446      * than necessary is allocated).
 447      */
 448     {
 449         char *buf = malloc(strlen(Arguments::get_java_home()) +
 450             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 451         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 452             Arguments::get_java_home());
 453         Arguments::set_ext_dirs(buf);
 454     }
 455 
 456     /* Endorsed standards default directory. */
 457     {
 458         char * buf;
 459         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 460         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 461         Arguments::set_endorsed_dirs(buf);
 462     }
 463   }
 464 
 465 #undef malloc
 466 #undef getenv
 467 #undef EXTENSIONS_DIR
 468 #undef ENDORSED_DIR
 469 
 470   // Done
 471   return;
 472 }
 473 
 474 ////////////////////////////////////////////////////////////////////////////////
 475 // breakpoint support
 476 
 477 void os::breakpoint() {
 478   BREAKPOINT;
 479 }
 480 
 481 extern "C" void breakpoint() {
 482   // use debugger to set breakpoint here
 483 }
 484 
 485 ////////////////////////////////////////////////////////////////////////////////
 486 // signal support
 487 
 488 debug_only(static bool signal_sets_initialized = false);
 489 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 490 
 491 bool os::Linux::is_sig_ignored(int sig) {
 492       struct sigaction oact;
 493       sigaction(sig, (struct sigaction*)NULL, &oact);
 494       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 495                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 496       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 497            return true;
 498       else
 499            return false;
 500 }
 501 
 502 void os::Linux::signal_sets_init() {
 503   // Should also have an assertion stating we are still single-threaded.
 504   assert(!signal_sets_initialized, "Already initialized");
 505   // Fill in signals that are necessarily unblocked for all threads in
 506   // the VM. Currently, we unblock the following signals:
 507   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 508   //                         by -Xrs (=ReduceSignalUsage));
 509   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 510   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 511   // the dispositions or masks wrt these signals.
 512   // Programs embedding the VM that want to use the above signals for their
 513   // own purposes must, at this time, use the "-Xrs" option to prevent
 514   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 515   // (See bug 4345157, and other related bugs).
 516   // In reality, though, unblocking these signals is really a nop, since
 517   // these signals are not blocked by default.
 518   sigemptyset(&unblocked_sigs);
 519   sigemptyset(&allowdebug_blocked_sigs);
 520   sigaddset(&unblocked_sigs, SIGILL);
 521   sigaddset(&unblocked_sigs, SIGSEGV);
 522   sigaddset(&unblocked_sigs, SIGBUS);
 523   sigaddset(&unblocked_sigs, SIGFPE);
 524   sigaddset(&unblocked_sigs, SR_signum);
 525 
 526   if (!ReduceSignalUsage) {
 527    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 528       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 529       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 530    }
 531    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 532       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 533       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 534    }
 535    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 536       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 537       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 538    }
 539   }
 540   // Fill in signals that are blocked by all but the VM thread.
 541   sigemptyset(&vm_sigs);
 542   if (!ReduceSignalUsage)
 543     sigaddset(&vm_sigs, BREAK_SIGNAL);
 544   debug_only(signal_sets_initialized = true);
 545 
 546 }
 547 
 548 // These are signals that are unblocked while a thread is running Java.
 549 // (For some reason, they get blocked by default.)
 550 sigset_t* os::Linux::unblocked_signals() {
 551   assert(signal_sets_initialized, "Not initialized");
 552   return &unblocked_sigs;
 553 }
 554 
 555 // These are the signals that are blocked while a (non-VM) thread is
 556 // running Java. Only the VM thread handles these signals.
 557 sigset_t* os::Linux::vm_signals() {
 558   assert(signal_sets_initialized, "Not initialized");
 559   return &vm_sigs;
 560 }
 561 
 562 // These are signals that are blocked during cond_wait to allow debugger in
 563 sigset_t* os::Linux::allowdebug_blocked_signals() {
 564   assert(signal_sets_initialized, "Not initialized");
 565   return &allowdebug_blocked_sigs;
 566 }
 567 
 568 void os::Linux::hotspot_sigmask(Thread* thread) {
 569 
 570   //Save caller's signal mask before setting VM signal mask
 571   sigset_t caller_sigmask;
 572   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 573 
 574   OSThread* osthread = thread->osthread();
 575   osthread->set_caller_sigmask(caller_sigmask);
 576 
 577   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 578 
 579   if (!ReduceSignalUsage) {
 580     if (thread->is_VM_thread()) {
 581       // Only the VM thread handles BREAK_SIGNAL ...
 582       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 583     } else {
 584       // ... all other threads block BREAK_SIGNAL
 585       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 586     }
 587   }
 588 }
 589 
 590 //////////////////////////////////////////////////////////////////////////////
 591 // detecting pthread library
 592 
 593 void os::Linux::libpthread_init() {
 594   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 595   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 596   // generic name for earlier versions.
 597   // Define macros here so we can build HotSpot on old systems.
 598 # ifndef _CS_GNU_LIBC_VERSION
 599 # define _CS_GNU_LIBC_VERSION 2
 600 # endif
 601 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 602 # define _CS_GNU_LIBPTHREAD_VERSION 3
 603 # endif
 604 
 605   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 606   if (n > 0) {
 607      char *str = (char *)malloc(n);
 608      confstr(_CS_GNU_LIBC_VERSION, str, n);
 609      os::Linux::set_glibc_version(str);
 610   } else {
 611      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 612      static char _gnu_libc_version[32];
 613      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 614               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 615      os::Linux::set_glibc_version(_gnu_libc_version);
 616   }
 617 
 618   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 619   if (n > 0) {
 620      char *str = (char *)malloc(n);
 621      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 622      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 623      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 624      // is the case. LinuxThreads has a hard limit on max number of threads.
 625      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 626      // On the other hand, NPTL does not have such a limit, sysconf()
 627      // will return -1 and errno is not changed. Check if it is really NPTL.
 628      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 629          strstr(str, "NPTL") &&
 630          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 631        free(str);
 632        os::Linux::set_libpthread_version("linuxthreads");
 633      } else {
 634        os::Linux::set_libpthread_version(str);
 635      }
 636   } else {
 637     // glibc before 2.3.2 only has LinuxThreads.
 638     os::Linux::set_libpthread_version("linuxthreads");
 639   }
 640 
 641   if (strstr(libpthread_version(), "NPTL")) {
 642      os::Linux::set_is_NPTL();
 643   } else {
 644      os::Linux::set_is_LinuxThreads();
 645   }
 646 
 647   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 648   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 649   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 650      os::Linux::set_is_floating_stack();
 651   }
 652 }
 653 
 654 /////////////////////////////////////////////////////////////////////////////
 655 // thread stack
 656 
 657 // Force Linux kernel to expand current thread stack. If "bottom" is close
 658 // to the stack guard, caller should block all signals.
 659 //
 660 // MAP_GROWSDOWN:
 661 //   A special mmap() flag that is used to implement thread stacks. It tells
 662 //   kernel that the memory region should extend downwards when needed. This
 663 //   allows early versions of LinuxThreads to only mmap the first few pages
 664 //   when creating a new thread. Linux kernel will automatically expand thread
 665 //   stack as needed (on page faults).
 666 //
 667 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 668 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 669 //   region, it's hard to tell if the fault is due to a legitimate stack
 670 //   access or because of reading/writing non-exist memory (e.g. buffer
 671 //   overrun). As a rule, if the fault happens below current stack pointer,
 672 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 673 //   application (see Linux kernel fault.c).
 674 //
 675 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 676 //   stack overflow detection.
 677 //
 678 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 679 //   not use this flag. However, the stack of initial thread is not created
 680 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 681 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 682 //   and then attach the thread to JVM.
 683 //
 684 // To get around the problem and allow stack banging on Linux, we need to
 685 // manually expand thread stack after receiving the SIGSEGV.
 686 //
 687 // There are two ways to expand thread stack to address "bottom", we used
 688 // both of them in JVM before 1.5:
 689 //   1. adjust stack pointer first so that it is below "bottom", and then
 690 //      touch "bottom"
 691 //   2. mmap() the page in question
 692 //
 693 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 694 // if current sp is already near the lower end of page 101, and we need to
 695 // call mmap() to map page 100, it is possible that part of the mmap() frame
 696 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 697 // That will destroy the mmap() frame and cause VM to crash.
 698 //
 699 // The following code works by adjusting sp first, then accessing the "bottom"
 700 // page to force a page fault. Linux kernel will then automatically expand the
 701 // stack mapping.
 702 //
 703 // _expand_stack_to() assumes its frame size is less than page size, which
 704 // should always be true if the function is not inlined.
 705 
 706 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 707 #define NOINLINE
 708 #else
 709 #define NOINLINE __attribute__ ((noinline))
 710 #endif
 711 
 712 static void _expand_stack_to(address bottom) NOINLINE;
 713 
 714 static void _expand_stack_to(address bottom) {
 715   address sp;
 716   size_t size;
 717   volatile char *p;
 718 
 719   // Adjust bottom to point to the largest address within the same page, it
 720   // gives us a one-page buffer if alloca() allocates slightly more memory.
 721   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 722   bottom += os::Linux::page_size() - 1;
 723 
 724   // sp might be slightly above current stack pointer; if that's the case, we
 725   // will alloca() a little more space than necessary, which is OK. Don't use
 726   // os::current_stack_pointer(), as its result can be slightly below current
 727   // stack pointer, causing us to not alloca enough to reach "bottom".
 728   sp = (address)&sp;
 729 
 730   if (sp > bottom) {
 731     size = sp - bottom;
 732     p = (volatile char *)alloca(size);
 733     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 734     p[0] = '\0';
 735   }
 736 }
 737 
 738 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 739   assert(t!=NULL, "just checking");
 740   assert(t->osthread()->expanding_stack(), "expand should be set");
 741   assert(t->stack_base() != NULL, "stack_base was not initialized");
 742 
 743   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 744     sigset_t mask_all, old_sigset;
 745     sigfillset(&mask_all);
 746     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 747     _expand_stack_to(addr);
 748     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 749     return true;
 750   }
 751   return false;
 752 }
 753 
 754 //////////////////////////////////////////////////////////////////////////////
 755 // create new thread
 756 
 757 static address highest_vm_reserved_address();
 758 
 759 // check if it's safe to start a new thread
 760 static bool _thread_safety_check(Thread* thread) {
 761   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 762     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 763     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 764     //   allocated (MAP_FIXED) from high address space. Every thread stack
 765     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 766     //   it to other values if they rebuild LinuxThreads).
 767     //
 768     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 769     // the memory region has already been mmap'ed. That means if we have too
 770     // many threads and/or very large heap, eventually thread stack will
 771     // collide with heap.
 772     //
 773     // Here we try to prevent heap/stack collision by comparing current
 774     // stack bottom with the highest address that has been mmap'ed by JVM
 775     // plus a safety margin for memory maps created by native code.
 776     //
 777     // This feature can be disabled by setting ThreadSafetyMargin to 0
 778     //
 779     if (ThreadSafetyMargin > 0) {
 780       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 781 
 782       // not safe if our stack extends below the safety margin
 783       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 784     } else {
 785       return true;
 786     }
 787   } else {
 788     // Floating stack LinuxThreads or NPTL:
 789     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 790     //   there's not enough space left, pthread_create() will fail. If we come
 791     //   here, that means enough space has been reserved for stack.
 792     return true;
 793   }
 794 }
 795 
 796 // Thread start routine for all newly created threads
 797 static void *java_start(Thread *thread) {
 798   // Try to randomize the cache line index of hot stack frames.
 799   // This helps when threads of the same stack traces evict each other's
 800   // cache lines. The threads can be either from the same JVM instance, or
 801   // from different JVM instances. The benefit is especially true for
 802   // processors with hyperthreading technology.
 803   static int counter = 0;
 804   int pid = os::current_process_id();
 805   alloca(((pid ^ counter++) & 7) * 128);
 806 
 807   ThreadLocalStorage::set_thread(thread);
 808 
 809   OSThread* osthread = thread->osthread();
 810   Monitor* sync = osthread->startThread_lock();
 811 
 812   // non floating stack LinuxThreads needs extra check, see above
 813   if (!_thread_safety_check(thread)) {
 814     // notify parent thread
 815     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 816     osthread->set_state(ZOMBIE);
 817     sync->notify_all();
 818     return NULL;
 819   }
 820 
 821   // thread_id is kernel thread id (similar to Solaris LWP id)
 822   osthread->set_thread_id(os::Linux::gettid());
 823 
 824   if (UseNUMA) {
 825     int lgrp_id = os::numa_get_group_id();
 826     if (lgrp_id != -1) {
 827       thread->set_lgrp_id(lgrp_id);
 828     }
 829   }
 830   // initialize signal mask for this thread
 831   os::Linux::hotspot_sigmask(thread);
 832 
 833   // initialize floating point control register
 834   os::Linux::init_thread_fpu_state();
 835 
 836   // handshaking with parent thread
 837   {
 838     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 839 
 840     // notify parent thread
 841     osthread->set_state(INITIALIZED);
 842     sync->notify_all();
 843 
 844     // wait until os::start_thread()
 845     while (osthread->get_state() == INITIALIZED) {
 846       sync->wait(Mutex::_no_safepoint_check_flag);
 847     }
 848   }
 849 
 850   // call one more level start routine
 851   thread->run();
 852 
 853   return 0;
 854 }
 855 
 856 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 857   assert(thread->osthread() == NULL, "caller responsible");
 858 
 859   // Allocate the OSThread object
 860   OSThread* osthread = new OSThread(NULL, NULL);
 861   if (osthread == NULL) {
 862     return false;
 863   }
 864 
 865   // set the correct thread state
 866   osthread->set_thread_type(thr_type);
 867 
 868   // Initial state is ALLOCATED but not INITIALIZED
 869   osthread->set_state(ALLOCATED);
 870 
 871   thread->set_osthread(osthread);
 872 
 873   // init thread attributes
 874   pthread_attr_t attr;
 875   pthread_attr_init(&attr);
 876   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 877 
 878   // stack size
 879   if (os::Linux::supports_variable_stack_size()) {
 880     // calculate stack size if it's not specified by caller
 881     if (stack_size == 0) {
 882       stack_size = os::Linux::default_stack_size(thr_type);
 883 
 884       switch (thr_type) {
 885       case os::java_thread:
 886         // Java threads use ThreadStackSize which default value can be
 887         // changed with the flag -Xss
 888         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 889         stack_size = JavaThread::stack_size_at_create();
 890         break;
 891       case os::compiler_thread:
 892         if (CompilerThreadStackSize > 0) {
 893           stack_size = (size_t)(CompilerThreadStackSize * K);
 894           break;
 895         } // else fall through:
 896           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 897       case os::vm_thread:
 898       case os::pgc_thread:
 899       case os::cgc_thread:
 900       case os::watcher_thread:
 901         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 902         break;
 903       }
 904     }
 905 
 906     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 907     pthread_attr_setstacksize(&attr, stack_size);
 908   } else {
 909     // let pthread_create() pick the default value.
 910   }
 911 
 912   // glibc guard page
 913   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 914 
 915   ThreadState state;
 916 
 917   {
 918     // Serialize thread creation if we are running with fixed stack LinuxThreads
 919     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 920     if (lock) {
 921       os::Linux::createThread_lock()->lock_without_safepoint_check();
 922     }
 923 
 924     pthread_t tid;
 925     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 926 
 927     pthread_attr_destroy(&attr);
 928 
 929     if (ret != 0) {
 930       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 931         perror("pthread_create()");
 932       }
 933       // Need to clean up stuff we've allocated so far
 934       thread->set_osthread(NULL);
 935       delete osthread;
 936       if (lock) os::Linux::createThread_lock()->unlock();
 937       return false;
 938     }
 939 
 940     // Store pthread info into the OSThread
 941     osthread->set_pthread_id(tid);
 942 
 943     // Wait until child thread is either initialized or aborted
 944     {
 945       Monitor* sync_with_child = osthread->startThread_lock();
 946       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 947       while ((state = osthread->get_state()) == ALLOCATED) {
 948         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 949       }
 950     }
 951 
 952     if (lock) {
 953       os::Linux::createThread_lock()->unlock();
 954     }
 955   }
 956 
 957   // Aborted due to thread limit being reached
 958   if (state == ZOMBIE) {
 959       thread->set_osthread(NULL);
 960       delete osthread;
 961       return false;
 962   }
 963 
 964   // The thread is returned suspended (in state INITIALIZED),
 965   // and is started higher up in the call chain
 966   assert(state == INITIALIZED, "race condition");
 967   return true;
 968 }
 969 
 970 /////////////////////////////////////////////////////////////////////////////
 971 // attach existing thread
 972 
 973 // bootstrap the main thread
 974 bool os::create_main_thread(JavaThread* thread) {
 975   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 976   return create_attached_thread(thread);
 977 }
 978 
 979 bool os::create_attached_thread(JavaThread* thread) {
 980 #ifdef ASSERT
 981     thread->verify_not_published();
 982 #endif
 983 
 984   // Allocate the OSThread object
 985   OSThread* osthread = new OSThread(NULL, NULL);
 986 
 987   if (osthread == NULL) {
 988     return false;
 989   }
 990 
 991   // Store pthread info into the OSThread
 992   osthread->set_thread_id(os::Linux::gettid());
 993   osthread->set_pthread_id(::pthread_self());
 994 
 995   // initialize floating point control register
 996   os::Linux::init_thread_fpu_state();
 997 
 998   // Initial thread state is RUNNABLE
 999   osthread->set_state(RUNNABLE);
1000 
1001   thread->set_osthread(osthread);
1002 
1003   if (UseNUMA) {
1004     int lgrp_id = os::numa_get_group_id();
1005     if (lgrp_id != -1) {
1006       thread->set_lgrp_id(lgrp_id);
1007     }
1008   }
1009 
1010   if (os::Linux::is_initial_thread()) {
1011     // If current thread is initial thread, its stack is mapped on demand,
1012     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1013     // the entire stack region to avoid SEGV in stack banging.
1014     // It is also useful to get around the heap-stack-gap problem on SuSE
1015     // kernel (see 4821821 for details). We first expand stack to the top
1016     // of yellow zone, then enable stack yellow zone (order is significant,
1017     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1018     // is no gap between the last two virtual memory regions.
1019 
1020     JavaThread *jt = (JavaThread *)thread;
1021     address addr = jt->stack_yellow_zone_base();
1022     assert(addr != NULL, "initialization problem?");
1023     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1024 
1025     osthread->set_expanding_stack();
1026     os::Linux::manually_expand_stack(jt, addr);
1027     osthread->clear_expanding_stack();
1028   }
1029 
1030   // initialize signal mask for this thread
1031   // and save the caller's signal mask
1032   os::Linux::hotspot_sigmask(thread);
1033 
1034   return true;
1035 }
1036 
1037 void os::pd_start_thread(Thread* thread) {
1038   OSThread * osthread = thread->osthread();
1039   assert(osthread->get_state() != INITIALIZED, "just checking");
1040   Monitor* sync_with_child = osthread->startThread_lock();
1041   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1042   sync_with_child->notify();
1043 }
1044 
1045 // Free Linux resources related to the OSThread
1046 void os::free_thread(OSThread* osthread) {
1047   assert(osthread != NULL, "osthread not set");
1048 
1049   if (Thread::current()->osthread() == osthread) {
1050     // Restore caller's signal mask
1051     sigset_t sigmask = osthread->caller_sigmask();
1052     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1053    }
1054 
1055   delete osthread;
1056 }
1057 
1058 //////////////////////////////////////////////////////////////////////////////
1059 // thread local storage
1060 
1061 int os::allocate_thread_local_storage() {
1062   pthread_key_t key;
1063   int rslt = pthread_key_create(&key, NULL);
1064   assert(rslt == 0, "cannot allocate thread local storage");
1065   return (int)key;
1066 }
1067 
1068 // Note: This is currently not used by VM, as we don't destroy TLS key
1069 // on VM exit.
1070 void os::free_thread_local_storage(int index) {
1071   int rslt = pthread_key_delete((pthread_key_t)index);
1072   assert(rslt == 0, "invalid index");
1073 }
1074 
1075 void os::thread_local_storage_at_put(int index, void* value) {
1076   int rslt = pthread_setspecific((pthread_key_t)index, value);
1077   assert(rslt == 0, "pthread_setspecific failed");
1078 }
1079 
1080 extern "C" Thread* get_thread() {
1081   return ThreadLocalStorage::thread();
1082 }
1083 
1084 //////////////////////////////////////////////////////////////////////////////
1085 // initial thread
1086 
1087 // Check if current thread is the initial thread, similar to Solaris thr_main.
1088 bool os::Linux::is_initial_thread(void) {
1089   char dummy;
1090   // If called before init complete, thread stack bottom will be null.
1091   // Can be called if fatal error occurs before initialization.
1092   if (initial_thread_stack_bottom() == NULL) return false;
1093   assert(initial_thread_stack_bottom() != NULL &&
1094          initial_thread_stack_size()   != 0,
1095          "os::init did not locate initial thread's stack region");
1096   if ((address)&dummy >= initial_thread_stack_bottom() &&
1097       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1098        return true;
1099   else return false;
1100 }
1101 
1102 // Find the virtual memory area that contains addr
1103 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1104   FILE *fp = fopen("/proc/self/maps", "r");
1105   if (fp) {
1106     address low, high;
1107     while (!feof(fp)) {
1108       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1109         if (low <= addr && addr < high) {
1110            if (vma_low)  *vma_low  = low;
1111            if (vma_high) *vma_high = high;
1112            fclose (fp);
1113            return true;
1114         }
1115       }
1116       for (;;) {
1117         int ch = fgetc(fp);
1118         if (ch == EOF || ch == (int)'\n') break;
1119       }
1120     }
1121     fclose(fp);
1122   }
1123   return false;
1124 }
1125 
1126 // Locate initial thread stack. This special handling of initial thread stack
1127 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1128 // bogus value for initial thread.
1129 void os::Linux::capture_initial_stack(size_t max_size) {
1130   // stack size is the easy part, get it from RLIMIT_STACK
1131   size_t stack_size;
1132   struct rlimit rlim;
1133   getrlimit(RLIMIT_STACK, &rlim);
1134   stack_size = rlim.rlim_cur;
1135 
1136   // 6308388: a bug in ld.so will relocate its own .data section to the
1137   //   lower end of primordial stack; reduce ulimit -s value a little bit
1138   //   so we won't install guard page on ld.so's data section.
1139   stack_size -= 2 * page_size();
1140 
1141   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1142   //   7.1, in both cases we will get 2G in return value.
1143   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1144   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1145   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1146   //   in case other parts in glibc still assumes 2M max stack size.
1147   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1148 #ifndef IA64
1149   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1150 #else
1151   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1152   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1153 #endif
1154 
1155   // Try to figure out where the stack base (top) is. This is harder.
1156   //
1157   // When an application is started, glibc saves the initial stack pointer in
1158   // a global variable "__libc_stack_end", which is then used by system
1159   // libraries. __libc_stack_end should be pretty close to stack top. The
1160   // variable is available since the very early days. However, because it is
1161   // a private interface, it could disappear in the future.
1162   //
1163   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1164   // to __libc_stack_end, it is very close to stack top, but isn't the real
1165   // stack top. Note that /proc may not exist if VM is running as a chroot
1166   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1167   // /proc/<pid>/stat could change in the future (though unlikely).
1168   //
1169   // We try __libc_stack_end first. If that doesn't work, look for
1170   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1171   // as a hint, which should work well in most cases.
1172 
1173   uintptr_t stack_start;
1174 
1175   // try __libc_stack_end first
1176   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1177   if (p && *p) {
1178     stack_start = *p;
1179   } else {
1180     // see if we can get the start_stack field from /proc/self/stat
1181     FILE *fp;
1182     int pid;
1183     char state;
1184     int ppid;
1185     int pgrp;
1186     int session;
1187     int nr;
1188     int tpgrp;
1189     unsigned long flags;
1190     unsigned long minflt;
1191     unsigned long cminflt;
1192     unsigned long majflt;
1193     unsigned long cmajflt;
1194     unsigned long utime;
1195     unsigned long stime;
1196     long cutime;
1197     long cstime;
1198     long prio;
1199     long nice;
1200     long junk;
1201     long it_real;
1202     uintptr_t start;
1203     uintptr_t vsize;
1204     intptr_t rss;
1205     uintptr_t rsslim;
1206     uintptr_t scodes;
1207     uintptr_t ecode;
1208     int i;
1209 
1210     // Figure what the primordial thread stack base is. Code is inspired
1211     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1212     // followed by command name surrounded by parentheses, state, etc.
1213     char stat[2048];
1214     int statlen;
1215 
1216     fp = fopen("/proc/self/stat", "r");
1217     if (fp) {
1218       statlen = fread(stat, 1, 2047, fp);
1219       stat[statlen] = '\0';
1220       fclose(fp);
1221 
1222       // Skip pid and the command string. Note that we could be dealing with
1223       // weird command names, e.g. user could decide to rename java launcher
1224       // to "java 1.4.2 :)", then the stat file would look like
1225       //                1234 (java 1.4.2 :)) R ... ...
1226       // We don't really need to know the command string, just find the last
1227       // occurrence of ")" and then start parsing from there. See bug 4726580.
1228       char * s = strrchr(stat, ')');
1229 
1230       i = 0;
1231       if (s) {
1232         // Skip blank chars
1233         do s++; while (isspace(*s));
1234 
1235 #define _UFM UINTX_FORMAT
1236 #define _DFM INTX_FORMAT
1237 
1238         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1239         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1240         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1241              &state,          /* 3  %c  */
1242              &ppid,           /* 4  %d  */
1243              &pgrp,           /* 5  %d  */
1244              &session,        /* 6  %d  */
1245              &nr,             /* 7  %d  */
1246              &tpgrp,          /* 8  %d  */
1247              &flags,          /* 9  %lu  */
1248              &minflt,         /* 10 %lu  */
1249              &cminflt,        /* 11 %lu  */
1250              &majflt,         /* 12 %lu  */
1251              &cmajflt,        /* 13 %lu  */
1252              &utime,          /* 14 %lu  */
1253              &stime,          /* 15 %lu  */
1254              &cutime,         /* 16 %ld  */
1255              &cstime,         /* 17 %ld  */
1256              &prio,           /* 18 %ld  */
1257              &nice,           /* 19 %ld  */
1258              &junk,           /* 20 %ld  */
1259              &it_real,        /* 21 %ld  */
1260              &start,          /* 22 UINTX_FORMAT */
1261              &vsize,          /* 23 UINTX_FORMAT */
1262              &rss,            /* 24 INTX_FORMAT  */
1263              &rsslim,         /* 25 UINTX_FORMAT */
1264              &scodes,         /* 26 UINTX_FORMAT */
1265              &ecode,          /* 27 UINTX_FORMAT */
1266              &stack_start);   /* 28 UINTX_FORMAT */
1267       }
1268 
1269 #undef _UFM
1270 #undef _DFM
1271 
1272       if (i != 28 - 2) {
1273          assert(false, "Bad conversion from /proc/self/stat");
1274          // product mode - assume we are the initial thread, good luck in the
1275          // embedded case.
1276          warning("Can't detect initial thread stack location - bad conversion");
1277          stack_start = (uintptr_t) &rlim;
1278       }
1279     } else {
1280       // For some reason we can't open /proc/self/stat (for example, running on
1281       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1282       // most cases, so don't abort:
1283       warning("Can't detect initial thread stack location - no /proc/self/stat");
1284       stack_start = (uintptr_t) &rlim;
1285     }
1286   }
1287 
1288   // Now we have a pointer (stack_start) very close to the stack top, the
1289   // next thing to do is to figure out the exact location of stack top. We
1290   // can find out the virtual memory area that contains stack_start by
1291   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1292   // and its upper limit is the real stack top. (again, this would fail if
1293   // running inside chroot, because /proc may not exist.)
1294 
1295   uintptr_t stack_top;
1296   address low, high;
1297   if (find_vma((address)stack_start, &low, &high)) {
1298     // success, "high" is the true stack top. (ignore "low", because initial
1299     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1300     stack_top = (uintptr_t)high;
1301   } else {
1302     // failed, likely because /proc/self/maps does not exist
1303     warning("Can't detect initial thread stack location - find_vma failed");
1304     // best effort: stack_start is normally within a few pages below the real
1305     // stack top, use it as stack top, and reduce stack size so we won't put
1306     // guard page outside stack.
1307     stack_top = stack_start;
1308     stack_size -= 16 * page_size();
1309   }
1310 
1311   // stack_top could be partially down the page so align it
1312   stack_top = align_size_up(stack_top, page_size());
1313 
1314   if (max_size && stack_size > max_size) {
1315      _initial_thread_stack_size = max_size;
1316   } else {
1317      _initial_thread_stack_size = stack_size;
1318   }
1319 
1320   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1321   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1322 }
1323 
1324 ////////////////////////////////////////////////////////////////////////////////
1325 // time support
1326 
1327 // Time since start-up in seconds to a fine granularity.
1328 // Used by VMSelfDestructTimer and the MemProfiler.
1329 double os::elapsedTime() {
1330 
1331   return (double)(os::elapsed_counter()) * 0.000001;
1332 }
1333 
1334 jlong os::elapsed_counter() {
1335   timeval time;
1336   int status = gettimeofday(&time, NULL);
1337   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1338 }
1339 
1340 jlong os::elapsed_frequency() {
1341   return (1000 * 1000);
1342 }
1343 
1344 // For now, we say that linux does not support vtime.  I have no idea
1345 // whether it can actually be made to (DLD, 9/13/05).
1346 
1347 bool os::supports_vtime() { return false; }
1348 bool os::enable_vtime()   { return false; }
1349 bool os::vtime_enabled()  { return false; }
1350 double os::elapsedVTime() {
1351   // better than nothing, but not much
1352   return elapsedTime();
1353 }
1354 
1355 jlong os::javaTimeMillis() {
1356   timeval time;
1357   int status = gettimeofday(&time, NULL);
1358   assert(status != -1, "linux error");
1359   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1360 }
1361 
1362 #ifndef CLOCK_MONOTONIC
1363 #define CLOCK_MONOTONIC (1)
1364 #endif
1365 
1366 void os::Linux::clock_init() {
1367   // we do dlopen's in this particular order due to bug in linux
1368   // dynamical loader (see 6348968) leading to crash on exit
1369   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1370   if (handle == NULL) {
1371     handle = dlopen("librt.so", RTLD_LAZY);
1372   }
1373 
1374   if (handle) {
1375     int (*clock_getres_func)(clockid_t, struct timespec*) =
1376            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1377     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1378            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1379     if (clock_getres_func && clock_gettime_func) {
1380       // See if monotonic clock is supported by the kernel. Note that some
1381       // early implementations simply return kernel jiffies (updated every
1382       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1383       // for nano time (though the monotonic property is still nice to have).
1384       // It's fixed in newer kernels, however clock_getres() still returns
1385       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1386       // resolution for now. Hopefully as people move to new kernels, this
1387       // won't be a problem.
1388       struct timespec res;
1389       struct timespec tp;
1390       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1391           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1392         // yes, monotonic clock is supported
1393         _clock_gettime = clock_gettime_func;
1394       } else {
1395         // close librt if there is no monotonic clock
1396         dlclose(handle);
1397       }
1398     }
1399   }
1400 }
1401 
1402 #ifndef SYS_clock_getres
1403 
1404 #if defined(IA32) || defined(AMD64)
1405 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1406 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1407 #else
1408 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1409 #define sys_clock_getres(x,y)  -1
1410 #endif
1411 
1412 #else
1413 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1414 #endif
1415 
1416 void os::Linux::fast_thread_clock_init() {
1417   if (!UseLinuxPosixThreadCPUClocks) {
1418     return;
1419   }
1420   clockid_t clockid;
1421   struct timespec tp;
1422   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1423       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1424 
1425   // Switch to using fast clocks for thread cpu time if
1426   // the sys_clock_getres() returns 0 error code.
1427   // Note, that some kernels may support the current thread
1428   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1429   // returned by the pthread_getcpuclockid().
1430   // If the fast Posix clocks are supported then the sys_clock_getres()
1431   // must return at least tp.tv_sec == 0 which means a resolution
1432   // better than 1 sec. This is extra check for reliability.
1433 
1434   if(pthread_getcpuclockid_func &&
1435      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1436      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1437 
1438     _supports_fast_thread_cpu_time = true;
1439     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1440   }
1441 }
1442 
1443 jlong os::javaTimeNanos() {
1444   if (Linux::supports_monotonic_clock()) {
1445     struct timespec tp;
1446     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1447     assert(status == 0, "gettime error");
1448     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1449     return result;
1450   } else {
1451     timeval time;
1452     int status = gettimeofday(&time, NULL);
1453     assert(status != -1, "linux error");
1454     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1455     return 1000 * usecs;
1456   }
1457 }
1458 
1459 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1460   if (Linux::supports_monotonic_clock()) {
1461     info_ptr->max_value = ALL_64_BITS;
1462 
1463     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1464     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1465     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1466   } else {
1467     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1468     info_ptr->max_value = ALL_64_BITS;
1469 
1470     // gettimeofday is a real time clock so it skips
1471     info_ptr->may_skip_backward = true;
1472     info_ptr->may_skip_forward = true;
1473   }
1474 
1475   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1476 }
1477 
1478 // Return the real, user, and system times in seconds from an
1479 // arbitrary fixed point in the past.
1480 bool os::getTimesSecs(double* process_real_time,
1481                       double* process_user_time,
1482                       double* process_system_time) {
1483   struct tms ticks;
1484   clock_t real_ticks = times(&ticks);
1485 
1486   if (real_ticks == (clock_t) (-1)) {
1487     return false;
1488   } else {
1489     double ticks_per_second = (double) clock_tics_per_sec;
1490     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1491     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1492     *process_real_time = ((double) real_ticks) / ticks_per_second;
1493 
1494     return true;
1495   }
1496 }
1497 
1498 
1499 char * os::local_time_string(char *buf, size_t buflen) {
1500   struct tm t;
1501   time_t long_time;
1502   time(&long_time);
1503   localtime_r(&long_time, &t);
1504   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1505                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1506                t.tm_hour, t.tm_min, t.tm_sec);
1507   return buf;
1508 }
1509 
1510 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1511   return localtime_r(clock, res);
1512 }
1513 
1514 ////////////////////////////////////////////////////////////////////////////////
1515 // runtime exit support
1516 
1517 // Note: os::shutdown() might be called very early during initialization, or
1518 // called from signal handler. Before adding something to os::shutdown(), make
1519 // sure it is async-safe and can handle partially initialized VM.
1520 void os::shutdown() {
1521 
1522   // allow PerfMemory to attempt cleanup of any persistent resources
1523   perfMemory_exit();
1524 
1525   // needs to remove object in file system
1526   AttachListener::abort();
1527 
1528   // flush buffered output, finish log files
1529   ostream_abort();
1530 
1531   // Check for abort hook
1532   abort_hook_t abort_hook = Arguments::abort_hook();
1533   if (abort_hook != NULL) {
1534     abort_hook();
1535   }
1536 
1537 }
1538 
1539 // Note: os::abort() might be called very early during initialization, or
1540 // called from signal handler. Before adding something to os::abort(), make
1541 // sure it is async-safe and can handle partially initialized VM.
1542 void os::abort(bool dump_core) {
1543   os::shutdown();
1544   if (dump_core) {
1545 #ifndef PRODUCT
1546     fdStream out(defaultStream::output_fd());
1547     out.print_raw("Current thread is ");
1548     char buf[16];
1549     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1550     out.print_raw_cr(buf);
1551     out.print_raw_cr("Dumping core ...");
1552 #endif
1553     ::abort(); // dump core
1554   }
1555 
1556   ::exit(1);
1557 }
1558 
1559 // Die immediately, no exit hook, no abort hook, no cleanup.
1560 void os::die() {
1561   // _exit() on LinuxThreads only kills current thread
1562   ::abort();
1563 }
1564 
1565 // unused on linux for now.
1566 void os::set_error_file(const char *logfile) {}
1567 
1568 intx os::current_thread_id() { return (intx)pthread_self(); }
1569 int os::current_process_id() {
1570 
1571   // Under the old linux thread library, linux gives each thread
1572   // its own process id. Because of this each thread will return
1573   // a different pid if this method were to return the result
1574   // of getpid(2). Linux provides no api that returns the pid
1575   // of the launcher thread for the vm. This implementation
1576   // returns a unique pid, the pid of the launcher thread
1577   // that starts the vm 'process'.
1578 
1579   // Under the NPTL, getpid() returns the same pid as the
1580   // launcher thread rather than a unique pid per thread.
1581   // Use gettid() if you want the old pre NPTL behaviour.
1582 
1583   // if you are looking for the result of a call to getpid() that
1584   // returns a unique pid for the calling thread, then look at the
1585   // OSThread::thread_id() method in osThread_linux.hpp file
1586 
1587   return (int)(_initial_pid ? _initial_pid : getpid());
1588 }
1589 
1590 // DLL functions
1591 
1592 const char* os::dll_file_extension() { return ".so"; }
1593 
1594 const char* os::get_temp_directory() {
1595   const char *prop = Arguments::get_property("java.io.tmpdir");
1596   return prop == NULL ? "/tmp" : prop;
1597 }
1598 
1599 static bool file_exists(const char* filename) {
1600   struct stat statbuf;
1601   if (filename == NULL || strlen(filename) == 0) {
1602     return false;
1603   }
1604   return os::stat(filename, &statbuf) == 0;
1605 }
1606 
1607 void os::dll_build_name(char* buffer, size_t buflen,
1608                         const char* pname, const char* fname) {
1609   // Copied from libhpi
1610   const size_t pnamelen = pname ? strlen(pname) : 0;
1611 
1612   // Quietly truncate on buffer overflow.  Should be an error.
1613   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1614       *buffer = '\0';
1615       return;
1616   }
1617 
1618   if (pnamelen == 0) {
1619     snprintf(buffer, buflen, "lib%s.so", fname);
1620   } else if (strchr(pname, *os::path_separator()) != NULL) {
1621     int n;
1622     char** pelements = split_path(pname, &n);
1623     for (int i = 0 ; i < n ; i++) {
1624       // Really shouldn't be NULL, but check can't hurt
1625       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1626         continue; // skip the empty path values
1627       }
1628       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1629       if (file_exists(buffer)) {
1630         break;
1631       }
1632     }
1633     // release the storage
1634     for (int i = 0 ; i < n ; i++) {
1635       if (pelements[i] != NULL) {
1636         FREE_C_HEAP_ARRAY(char, pelements[i]);
1637       }
1638     }
1639     if (pelements != NULL) {
1640       FREE_C_HEAP_ARRAY(char*, pelements);
1641     }
1642   } else {
1643     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1644   }
1645 }
1646 
1647 const char* os::get_current_directory(char *buf, int buflen) {
1648   return getcwd(buf, buflen);
1649 }
1650 
1651 // check if addr is inside libjvm[_g].so
1652 bool os::address_is_in_vm(address addr) {
1653   static address libjvm_base_addr;
1654   Dl_info dlinfo;
1655 
1656   if (libjvm_base_addr == NULL) {
1657     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1658     libjvm_base_addr = (address)dlinfo.dli_fbase;
1659     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1660   }
1661 
1662   if (dladdr((void *)addr, &dlinfo)) {
1663     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1664   }
1665 
1666   return false;
1667 }
1668 
1669 bool os::dll_address_to_function_name(address addr, char *buf,
1670                                       int buflen, int *offset) {
1671   Dl_info dlinfo;
1672 
1673   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1674     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1675     if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1676     return true;
1677   } else {
1678     if (buf) buf[0] = '\0';
1679     if (offset) *offset = -1;
1680     return false;
1681   }
1682 }
1683 
1684 struct _address_to_library_name {
1685   address addr;          // input : memory address
1686   size_t  buflen;        //         size of fname
1687   char*   fname;         // output: library name
1688   address base;          //         library base addr
1689 };
1690 
1691 static int address_to_library_name_callback(struct dl_phdr_info *info,
1692                                             size_t size, void *data) {
1693   int i;
1694   bool found = false;
1695   address libbase = NULL;
1696   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1697 
1698   // iterate through all loadable segments
1699   for (i = 0; i < info->dlpi_phnum; i++) {
1700     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1701     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1702       // base address of a library is the lowest address of its loaded
1703       // segments.
1704       if (libbase == NULL || libbase > segbase) {
1705         libbase = segbase;
1706       }
1707       // see if 'addr' is within current segment
1708       if (segbase <= d->addr &&
1709           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1710         found = true;
1711       }
1712     }
1713   }
1714 
1715   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1716   // so dll_address_to_library_name() can fall through to use dladdr() which
1717   // can figure out executable name from argv[0].
1718   if (found && info->dlpi_name && info->dlpi_name[0]) {
1719     d->base = libbase;
1720     if (d->fname) {
1721       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1722     }
1723     return 1;
1724   }
1725   return 0;
1726 }
1727 
1728 bool os::dll_address_to_library_name(address addr, char* buf,
1729                                      int buflen, int* offset) {
1730   Dl_info dlinfo;
1731   struct _address_to_library_name data;
1732 
1733   // There is a bug in old glibc dladdr() implementation that it could resolve
1734   // to wrong library name if the .so file has a base address != NULL. Here
1735   // we iterate through the program headers of all loaded libraries to find
1736   // out which library 'addr' really belongs to. This workaround can be
1737   // removed once the minimum requirement for glibc is moved to 2.3.x.
1738   data.addr = addr;
1739   data.fname = buf;
1740   data.buflen = buflen;
1741   data.base = NULL;
1742   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1743 
1744   if (rslt) {
1745      // buf already contains library name
1746      if (offset) *offset = addr - data.base;
1747      return true;
1748   } else if (dladdr((void*)addr, &dlinfo)){
1749      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1750      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1751      return true;
1752   } else {
1753      if (buf) buf[0] = '\0';
1754      if (offset) *offset = -1;
1755      return false;
1756   }
1757 }
1758 
1759   // Loads .dll/.so and
1760   // in case of error it checks if .dll/.so was built for the
1761   // same architecture as Hotspot is running on
1762 
1763 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1764 {
1765   void * result= ::dlopen(filename, RTLD_LAZY);
1766   if (result != NULL) {
1767     // Successful loading
1768     return result;
1769   }
1770 
1771   Elf32_Ehdr elf_head;
1772 
1773   // Read system error message into ebuf
1774   // It may or may not be overwritten below
1775   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1776   ebuf[ebuflen-1]='\0';
1777   int diag_msg_max_length=ebuflen-strlen(ebuf);
1778   char* diag_msg_buf=ebuf+strlen(ebuf);
1779 
1780   if (diag_msg_max_length==0) {
1781     // No more space in ebuf for additional diagnostics message
1782     return NULL;
1783   }
1784 
1785 
1786   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1787 
1788   if (file_descriptor < 0) {
1789     // Can't open library, report dlerror() message
1790     return NULL;
1791   }
1792 
1793   bool failed_to_read_elf_head=
1794     (sizeof(elf_head)!=
1795         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1796 
1797   ::close(file_descriptor);
1798   if (failed_to_read_elf_head) {
1799     // file i/o error - report dlerror() msg
1800     return NULL;
1801   }
1802 
1803   typedef struct {
1804     Elf32_Half  code;         // Actual value as defined in elf.h
1805     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1806     char        elf_class;    // 32 or 64 bit
1807     char        endianess;    // MSB or LSB
1808     char*       name;         // String representation
1809   } arch_t;
1810 
1811   #ifndef EM_486
1812   #define EM_486          6               /* Intel 80486 */
1813   #endif
1814 
1815   static const arch_t arch_array[]={
1816     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1817     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1818     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1819     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1820     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1821     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1822     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1823     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1824     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1825     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1826     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1827     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1828     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1829     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1830     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1831     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1832   };
1833 
1834   #if  (defined IA32)
1835     static  Elf32_Half running_arch_code=EM_386;
1836   #elif   (defined AMD64)
1837     static  Elf32_Half running_arch_code=EM_X86_64;
1838   #elif  (defined IA64)
1839     static  Elf32_Half running_arch_code=EM_IA_64;
1840   #elif  (defined __sparc) && (defined _LP64)
1841     static  Elf32_Half running_arch_code=EM_SPARCV9;
1842   #elif  (defined __sparc) && (!defined _LP64)
1843     static  Elf32_Half running_arch_code=EM_SPARC;
1844   #elif  (defined __powerpc64__)
1845     static  Elf32_Half running_arch_code=EM_PPC64;
1846   #elif  (defined __powerpc__)
1847     static  Elf32_Half running_arch_code=EM_PPC;
1848   #elif  (defined ARM)
1849     static  Elf32_Half running_arch_code=EM_ARM;
1850   #elif  (defined S390)
1851     static  Elf32_Half running_arch_code=EM_S390;
1852   #elif  (defined ALPHA)
1853     static  Elf32_Half running_arch_code=EM_ALPHA;
1854   #elif  (defined MIPSEL)
1855     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1856   #elif  (defined PARISC)
1857     static  Elf32_Half running_arch_code=EM_PARISC;
1858   #elif  (defined MIPS)
1859     static  Elf32_Half running_arch_code=EM_MIPS;
1860   #elif  (defined M68K)
1861     static  Elf32_Half running_arch_code=EM_68K;
1862   #else
1863     #error Method os::dll_load requires that one of following is defined:\
1864          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1865   #endif
1866 
1867   // Identify compatability class for VM's architecture and library's architecture
1868   // Obtain string descriptions for architectures
1869 
1870   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1871   int running_arch_index=-1;
1872 
1873   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1874     if (running_arch_code == arch_array[i].code) {
1875       running_arch_index    = i;
1876     }
1877     if (lib_arch.code == arch_array[i].code) {
1878       lib_arch.compat_class = arch_array[i].compat_class;
1879       lib_arch.name         = arch_array[i].name;
1880     }
1881   }
1882 
1883   assert(running_arch_index != -1,
1884     "Didn't find running architecture code (running_arch_code) in arch_array");
1885   if (running_arch_index == -1) {
1886     // Even though running architecture detection failed
1887     // we may still continue with reporting dlerror() message
1888     return NULL;
1889   }
1890 
1891   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1892     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1893     return NULL;
1894   }
1895 
1896 #ifndef S390
1897   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1898     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1899     return NULL;
1900   }
1901 #endif // !S390
1902 
1903   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1904     if ( lib_arch.name!=NULL ) {
1905       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1906         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1907         lib_arch.name, arch_array[running_arch_index].name);
1908     } else {
1909       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1910       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1911         lib_arch.code,
1912         arch_array[running_arch_index].name);
1913     }
1914   }
1915 
1916   return NULL;
1917 }
1918 
1919 /*
1920  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1921  * chances are you might want to run the generated bits against glibc-2.0
1922  * libdl.so, so always use locking for any version of glibc.
1923  */
1924 void* os::dll_lookup(void* handle, const char* name) {
1925   pthread_mutex_lock(&dl_mutex);
1926   void* res = dlsym(handle, name);
1927   pthread_mutex_unlock(&dl_mutex);
1928   return res;
1929 }
1930 
1931 
1932 bool _print_ascii_file(const char* filename, outputStream* st) {
1933   int fd = open(filename, O_RDONLY);
1934   if (fd == -1) {
1935      return false;
1936   }
1937 
1938   char buf[32];
1939   int bytes;
1940   while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1941     st->print_raw(buf, bytes);
1942   }
1943 
1944   close(fd);
1945 
1946   return true;
1947 }
1948 
1949 void os::print_dll_info(outputStream *st) {
1950    st->print_cr("Dynamic libraries:");
1951 
1952    char fname[32];
1953    pid_t pid = os::Linux::gettid();
1954 
1955    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1956 
1957    if (!_print_ascii_file(fname, st)) {
1958      st->print("Can not get library information for pid = %d\n", pid);
1959    }
1960 }
1961 
1962 
1963 void os::print_os_info(outputStream* st) {
1964   st->print("OS:");
1965 
1966   // Try to identify popular distros.
1967   // Most Linux distributions have /etc/XXX-release file, which contains
1968   // the OS version string. Some have more than one /etc/XXX-release file
1969   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1970   // so the order is important.
1971   if (!_print_ascii_file("/etc/mandrake-release", st) &&
1972       !_print_ascii_file("/etc/sun-release", st) &&
1973       !_print_ascii_file("/etc/redhat-release", st) &&
1974       !_print_ascii_file("/etc/SuSE-release", st) &&
1975       !_print_ascii_file("/etc/turbolinux-release", st) &&
1976       !_print_ascii_file("/etc/gentoo-release", st) &&
1977       !_print_ascii_file("/etc/debian_version", st) &&
1978       !_print_ascii_file("/etc/ltib-release", st) &&
1979       !_print_ascii_file("/etc/angstrom-version", st)) {
1980       st->print("Linux");
1981   }
1982   st->cr();
1983 
1984   // kernel
1985   st->print("uname:");
1986   struct utsname name;
1987   uname(&name);
1988   st->print(name.sysname); st->print(" ");
1989   st->print(name.release); st->print(" ");
1990   st->print(name.version); st->print(" ");
1991   st->print(name.machine);
1992   st->cr();
1993 
1994   // Print warning if unsafe chroot environment detected
1995   if (unsafe_chroot_detected) {
1996     st->print("WARNING!! ");
1997     st->print_cr(unstable_chroot_error);
1998   }
1999 
2000   // libc, pthread
2001   st->print("libc:");
2002   st->print(os::Linux::glibc_version()); st->print(" ");
2003   st->print(os::Linux::libpthread_version()); st->print(" ");
2004   if (os::Linux::is_LinuxThreads()) {
2005      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2006   }
2007   st->cr();
2008 
2009   // rlimit
2010   st->print("rlimit:");
2011   struct rlimit rlim;
2012 
2013   st->print(" STACK ");
2014   getrlimit(RLIMIT_STACK, &rlim);
2015   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2016   else st->print("%uk", rlim.rlim_cur >> 10);
2017 
2018   st->print(", CORE ");
2019   getrlimit(RLIMIT_CORE, &rlim);
2020   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2021   else st->print("%uk", rlim.rlim_cur >> 10);
2022 
2023   st->print(", NPROC ");
2024   getrlimit(RLIMIT_NPROC, &rlim);
2025   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2026   else st->print("%d", rlim.rlim_cur);
2027 
2028   st->print(", NOFILE ");
2029   getrlimit(RLIMIT_NOFILE, &rlim);
2030   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2031   else st->print("%d", rlim.rlim_cur);
2032 
2033   st->print(", AS ");
2034   getrlimit(RLIMIT_AS, &rlim);
2035   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2036   else st->print("%uk", rlim.rlim_cur >> 10);
2037   st->cr();
2038 
2039   // load average
2040   st->print("load average:");
2041   double loadavg[3];
2042   os::loadavg(loadavg, 3);
2043   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2044   st->cr();
2045 
2046   // meminfo
2047   st->print("\n/proc/meminfo:\n");
2048   _print_ascii_file("/proc/meminfo", st);
2049   st->cr();
2050 }
2051 
2052 void os::print_memory_info(outputStream* st) {
2053 
2054   st->print("Memory:");
2055   st->print(" %dk page", os::vm_page_size()>>10);
2056 
2057   // values in struct sysinfo are "unsigned long"
2058   struct sysinfo si;
2059   sysinfo(&si);
2060 
2061   st->print(", physical " UINT64_FORMAT "k",
2062             os::physical_memory() >> 10);
2063   st->print("(" UINT64_FORMAT "k free)",
2064             os::available_memory() >> 10);
2065   st->print(", swap " UINT64_FORMAT "k",
2066             ((jlong)si.totalswap * si.mem_unit) >> 10);
2067   st->print("(" UINT64_FORMAT "k free)",
2068             ((jlong)si.freeswap * si.mem_unit) >> 10);
2069   st->cr();
2070 }
2071 
2072 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2073 // but they're the same for all the linux arch that we support
2074 // and they're the same for solaris but there's no common place to put this.
2075 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2076                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2077                           "ILL_COPROC", "ILL_BADSTK" };
2078 
2079 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2080                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2081                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2082 
2083 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2084 
2085 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2086 
2087 void os::print_siginfo(outputStream* st, void* siginfo) {
2088   st->print("siginfo:");
2089 
2090   const int buflen = 100;
2091   char buf[buflen];
2092   siginfo_t *si = (siginfo_t*)siginfo;
2093   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2094   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2095     st->print("si_errno=%s", buf);
2096   } else {
2097     st->print("si_errno=%d", si->si_errno);
2098   }
2099   const int c = si->si_code;
2100   assert(c > 0, "unexpected si_code");
2101   switch (si->si_signo) {
2102   case SIGILL:
2103     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2104     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2105     break;
2106   case SIGFPE:
2107     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2108     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2109     break;
2110   case SIGSEGV:
2111     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2112     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2113     break;
2114   case SIGBUS:
2115     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2116     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2117     break;
2118   default:
2119     st->print(", si_code=%d", si->si_code);
2120     // no si_addr
2121   }
2122 
2123   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2124       UseSharedSpaces) {
2125     FileMapInfo* mapinfo = FileMapInfo::current_info();
2126     if (mapinfo->is_in_shared_space(si->si_addr)) {
2127       st->print("\n\nError accessing class data sharing archive."   \
2128                 " Mapped file inaccessible during execution, "      \
2129                 " possible disk/network problem.");
2130     }
2131   }
2132   st->cr();
2133 }
2134 
2135 
2136 static void print_signal_handler(outputStream* st, int sig,
2137                                  char* buf, size_t buflen);
2138 
2139 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2140   st->print_cr("Signal Handlers:");
2141   print_signal_handler(st, SIGSEGV, buf, buflen);
2142   print_signal_handler(st, SIGBUS , buf, buflen);
2143   print_signal_handler(st, SIGFPE , buf, buflen);
2144   print_signal_handler(st, SIGPIPE, buf, buflen);
2145   print_signal_handler(st, SIGXFSZ, buf, buflen);
2146   print_signal_handler(st, SIGILL , buf, buflen);
2147   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2148   print_signal_handler(st, SR_signum, buf, buflen);
2149   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2150   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2151   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2152   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2153 }
2154 
2155 static char saved_jvm_path[MAXPATHLEN] = {0};
2156 
2157 // Find the full path to the current module, libjvm.so or libjvm_g.so
2158 void os::jvm_path(char *buf, jint buflen) {
2159   // Error checking.
2160   if (buflen < MAXPATHLEN) {
2161     assert(false, "must use a large-enough buffer");
2162     buf[0] = '\0';
2163     return;
2164   }
2165   // Lazy resolve the path to current module.
2166   if (saved_jvm_path[0] != 0) {
2167     strcpy(buf, saved_jvm_path);
2168     return;
2169   }
2170 
2171   char dli_fname[MAXPATHLEN];
2172   bool ret = dll_address_to_library_name(
2173                 CAST_FROM_FN_PTR(address, os::jvm_path),
2174                 dli_fname, sizeof(dli_fname), NULL);
2175   assert(ret != 0, "cannot locate libjvm");
2176   char *rp = realpath(dli_fname, buf);
2177   if (rp == NULL)
2178     return;
2179 
2180   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2181     // Support for the gamma launcher.  Typical value for buf is
2182     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2183     // the right place in the string, then assume we are installed in a JDK and
2184     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2185     // up the path so it looks like libjvm.so is installed there (append a
2186     // fake suffix hotspot/libjvm.so).
2187     const char *p = buf + strlen(buf) - 1;
2188     for (int count = 0; p > buf && count < 5; ++count) {
2189       for (--p; p > buf && *p != '/'; --p)
2190         /* empty */ ;
2191     }
2192 
2193     if (strncmp(p, "/jre/lib/", 9) != 0) {
2194       // Look for JAVA_HOME in the environment.
2195       char* java_home_var = ::getenv("JAVA_HOME");
2196       if (java_home_var != NULL && java_home_var[0] != 0) {
2197         char* jrelib_p;
2198         int len;
2199 
2200         // Check the current module name "libjvm.so" or "libjvm_g.so".
2201         p = strrchr(buf, '/');
2202         assert(strstr(p, "/libjvm") == p, "invalid library name");
2203         p = strstr(p, "_g") ? "_g" : "";
2204 
2205         rp = realpath(java_home_var, buf);
2206         if (rp == NULL)
2207           return;
2208 
2209         // determine if this is a legacy image or modules image
2210         // modules image doesn't have "jre" subdirectory
2211         len = strlen(buf);
2212         jrelib_p = buf + len;
2213         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2214         if (0 != access(buf, F_OK)) {
2215           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2216         }
2217 
2218         if (0 == access(buf, F_OK)) {
2219           // Use current module name "libjvm[_g].so" instead of
2220           // "libjvm"debug_only("_g")".so" since for fastdebug version
2221           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2222           // It is used when we are choosing the HPI library's name
2223           // "libhpi[_g].so" in hpi::initialize_get_interface().
2224           len = strlen(buf);
2225           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2226         } else {
2227           // Go back to path of .so
2228           rp = realpath(dli_fname, buf);
2229           if (rp == NULL)
2230             return;
2231         }
2232       }
2233     }
2234   }
2235 
2236   strcpy(saved_jvm_path, buf);
2237 }
2238 
2239 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2240   // no prefix required, not even "_"
2241 }
2242 
2243 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2244   // no suffix required
2245 }
2246 
2247 ////////////////////////////////////////////////////////////////////////////////
2248 // sun.misc.Signal support
2249 
2250 static volatile jint sigint_count = 0;
2251 
2252 static void
2253 UserHandler(int sig, void *siginfo, void *context) {
2254   // 4511530 - sem_post is serialized and handled by the manager thread. When
2255   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2256   // don't want to flood the manager thread with sem_post requests.
2257   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2258       return;
2259 
2260   // Ctrl-C is pressed during error reporting, likely because the error
2261   // handler fails to abort. Let VM die immediately.
2262   if (sig == SIGINT && is_error_reported()) {
2263      os::die();
2264   }
2265 
2266   os::signal_notify(sig);
2267 }
2268 
2269 void* os::user_handler() {
2270   return CAST_FROM_FN_PTR(void*, UserHandler);
2271 }
2272 
2273 extern "C" {
2274   typedef void (*sa_handler_t)(int);
2275   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2276 }
2277 
2278 void* os::signal(int signal_number, void* handler) {
2279   struct sigaction sigAct, oldSigAct;
2280 
2281   sigfillset(&(sigAct.sa_mask));
2282   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2283   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2284 
2285   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2286     // -1 means registration failed
2287     return (void *)-1;
2288   }
2289 
2290   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2291 }
2292 
2293 void os::signal_raise(int signal_number) {
2294   ::raise(signal_number);
2295 }
2296 
2297 /*
2298  * The following code is moved from os.cpp for making this
2299  * code platform specific, which it is by its very nature.
2300  */
2301 
2302 // Will be modified when max signal is changed to be dynamic
2303 int os::sigexitnum_pd() {
2304   return NSIG;
2305 }
2306 
2307 // a counter for each possible signal value
2308 static volatile jint pending_signals[NSIG+1] = { 0 };
2309 
2310 // Linux(POSIX) specific hand shaking semaphore.
2311 static sem_t sig_sem;
2312 
2313 void os::signal_init_pd() {
2314   // Initialize signal structures
2315   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2316 
2317   // Initialize signal semaphore
2318   ::sem_init(&sig_sem, 0, 0);
2319 }
2320 
2321 void os::signal_notify(int sig) {
2322   Atomic::inc(&pending_signals[sig]);
2323   ::sem_post(&sig_sem);
2324 }
2325 
2326 static int check_pending_signals(bool wait) {
2327   Atomic::store(0, &sigint_count);
2328   for (;;) {
2329     for (int i = 0; i < NSIG + 1; i++) {
2330       jint n = pending_signals[i];
2331       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2332         return i;
2333       }
2334     }
2335     if (!wait) {
2336       return -1;
2337     }
2338     JavaThread *thread = JavaThread::current();
2339     ThreadBlockInVM tbivm(thread);
2340 
2341     bool threadIsSuspended;
2342     do {
2343       thread->set_suspend_equivalent();
2344       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2345       ::sem_wait(&sig_sem);
2346 
2347       // were we externally suspended while we were waiting?
2348       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2349       if (threadIsSuspended) {
2350         //
2351         // The semaphore has been incremented, but while we were waiting
2352         // another thread suspended us. We don't want to continue running
2353         // while suspended because that would surprise the thread that
2354         // suspended us.
2355         //
2356         ::sem_post(&sig_sem);
2357 
2358         thread->java_suspend_self();
2359       }
2360     } while (threadIsSuspended);
2361   }
2362 }
2363 
2364 int os::signal_lookup() {
2365   return check_pending_signals(false);
2366 }
2367 
2368 int os::signal_wait() {
2369   return check_pending_signals(true);
2370 }
2371 
2372 ////////////////////////////////////////////////////////////////////////////////
2373 // Virtual Memory
2374 
2375 int os::vm_page_size() {
2376   // Seems redundant as all get out
2377   assert(os::Linux::page_size() != -1, "must call os::init");
2378   return os::Linux::page_size();
2379 }
2380 
2381 // Solaris allocates memory by pages.
2382 int os::vm_allocation_granularity() {
2383   assert(os::Linux::page_size() != -1, "must call os::init");
2384   return os::Linux::page_size();
2385 }
2386 
2387 // Rationale behind this function:
2388 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2389 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2390 //  samples for JITted code. Here we create private executable mapping over the code cache
2391 //  and then we can use standard (well, almost, as mapping can change) way to provide
2392 //  info for the reporting script by storing timestamp and location of symbol
2393 void linux_wrap_code(char* base, size_t size) {
2394   static volatile jint cnt = 0;
2395 
2396   if (!UseOprofile) {
2397     return;
2398   }
2399 
2400   char buf[PATH_MAX+1];
2401   int num = Atomic::add(1, &cnt);
2402 
2403   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2404            os::get_temp_directory(), os::current_process_id(), num);
2405   unlink(buf);
2406 
2407   int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2408 
2409   if (fd != -1) {
2410     off_t rv = lseek(fd, size-2, SEEK_SET);
2411     if (rv != (off_t)-1) {
2412       if (write(fd, "", 1) == 1) {
2413         mmap(base, size,
2414              PROT_READ|PROT_WRITE|PROT_EXEC,
2415              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2416       }
2417     }
2418     close(fd);
2419     unlink(buf);
2420   }
2421 }
2422 
2423 // NOTE: Linux kernel does not really reserve the pages for us.
2424 //       All it does is to check if there are enough free pages
2425 //       left at the time of mmap(). This could be a potential
2426 //       problem.
2427 bool os::commit_memory(char* addr, size_t size, bool exec) {
2428   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2429   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2430                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2431   return res != (uintptr_t) MAP_FAILED;
2432 }
2433 
2434 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2435                        bool exec) {
2436   return commit_memory(addr, size, exec);
2437 }
2438 
2439 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2440 
2441 void os::free_memory(char *addr, size_t bytes) {
2442   ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
2443          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2444 }
2445 
2446 void os::numa_make_global(char *addr, size_t bytes) {
2447   Linux::numa_interleave_memory(addr, bytes);
2448 }
2449 
2450 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2451   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2452 }
2453 
2454 bool os::numa_topology_changed()   { return false; }
2455 
2456 size_t os::numa_get_groups_num() {
2457   int max_node = Linux::numa_max_node();
2458   return max_node > 0 ? max_node + 1 : 1;
2459 }
2460 
2461 int os::numa_get_group_id() {
2462   int cpu_id = Linux::sched_getcpu();
2463   if (cpu_id != -1) {
2464     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2465     if (lgrp_id != -1) {
2466       return lgrp_id;
2467     }
2468   }
2469   return 0;
2470 }
2471 
2472 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2473   for (size_t i = 0; i < size; i++) {
2474     ids[i] = i;
2475   }
2476   return size;
2477 }
2478 
2479 bool os::get_page_info(char *start, page_info* info) {
2480   return false;
2481 }
2482 
2483 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2484   return end;
2485 }
2486 
2487 extern "C" void numa_warn(int number, char *where, ...) { }
2488 extern "C" void numa_error(char *where) { }
2489 
2490 
2491 // If we are running with libnuma version > 2, then we should
2492 // be trying to use symbols with versions 1.1
2493 // If we are running with earlier version, which did not have symbol versions,
2494 // we should use the base version.
2495 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2496   void *f = dlvsym(handle, name, "libnuma_1.1");
2497   if (f == NULL) {
2498     f = dlsym(handle, name);
2499   }
2500   return f;
2501 }
2502 
2503 bool os::Linux::libnuma_init() {
2504   // sched_getcpu() should be in libc.
2505   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2506                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2507 
2508   if (sched_getcpu() != -1) { // Does it work?
2509     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2510     if (handle != NULL) {
2511       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2512                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2513       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2514                                        libnuma_dlsym(handle, "numa_max_node")));
2515       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2516                                         libnuma_dlsym(handle, "numa_available")));
2517       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2518                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2519       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2520                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2521 
2522 
2523       if (numa_available() != -1) {
2524         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2525         // Create a cpu -> node mapping
2526         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2527         rebuild_cpu_to_node_map();
2528         return true;
2529       }
2530     }
2531   }
2532   return false;
2533 }
2534 
2535 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2536 // The table is later used in get_node_by_cpu().
2537 void os::Linux::rebuild_cpu_to_node_map() {
2538   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2539                               // in libnuma (possible values are starting from 16,
2540                               // and continuing up with every other power of 2, but less
2541                               // than the maximum number of CPUs supported by kernel), and
2542                               // is a subject to change (in libnuma version 2 the requirements
2543                               // are more reasonable) we'll just hardcode the number they use
2544                               // in the library.
2545   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2546 
2547   size_t cpu_num = os::active_processor_count();
2548   size_t cpu_map_size = NCPUS / BitsPerCLong;
2549   size_t cpu_map_valid_size =
2550     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2551 
2552   cpu_to_node()->clear();
2553   cpu_to_node()->at_grow(cpu_num - 1);
2554   size_t node_num = numa_get_groups_num();
2555 
2556   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2557   for (size_t i = 0; i < node_num; i++) {
2558     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2559       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2560         if (cpu_map[j] != 0) {
2561           for (size_t k = 0; k < BitsPerCLong; k++) {
2562             if (cpu_map[j] & (1UL << k)) {
2563               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2564             }
2565           }
2566         }
2567       }
2568     }
2569   }
2570   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2571 }
2572 
2573 int os::Linux::get_node_by_cpu(int cpu_id) {
2574   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2575     return cpu_to_node()->at(cpu_id);
2576   }
2577   return -1;
2578 }
2579 
2580 GrowableArray<int>* os::Linux::_cpu_to_node;
2581 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2582 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2583 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2584 os::Linux::numa_available_func_t os::Linux::_numa_available;
2585 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2586 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2587 unsigned long* os::Linux::_numa_all_nodes;
2588 
2589 bool os::uncommit_memory(char* addr, size_t size) {
2590   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2591                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2592   return res  != (uintptr_t) MAP_FAILED;
2593 }
2594 
2595 // Linux uses a growable mapping for the stack, and if the mapping for
2596 // the stack guard pages is not removed when we detach a thread the
2597 // stack cannot grow beyond the pages where the stack guard was
2598 // mapped.  If at some point later in the process the stack expands to
2599 // that point, the Linux kernel cannot expand the stack any further
2600 // because the guard pages are in the way, and a segfault occurs.
2601 //
2602 // However, it's essential not to split the stack region by unmapping
2603 // a region (leaving a hole) that's already part of the stack mapping,
2604 // so if the stack mapping has already grown beyond the guard pages at
2605 // the time we create them, we have to truncate the stack mapping.
2606 // So, we need to know the extent of the stack mapping when
2607 // create_stack_guard_pages() is called.
2608 
2609 // Find the bounds of the stack mapping.  Return true for success.
2610 //
2611 // We only need this for stacks that are growable: at the time of
2612 // writing thread stacks don't use growable mappings (i.e. those
2613 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2614 // only applies to the main thread.
2615 static bool
2616 get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
2617 {
2618   FILE *f = fopen("/proc/self/maps", "r");
2619   if (f == NULL)
2620     return false;
2621 
2622   while (!feof(f)) {
2623     size_t dummy;
2624     char *str = NULL;
2625     ssize_t len = getline(&str, &dummy, f);
2626     if (len == -1) {
2627       fclose(f);
2628       return false;
2629     }
2630 
2631     if (len > 0 && str[len-1] == '\n') {
2632       str[len-1] = 0;
2633       len--;
2634     }
2635 
2636     static const char *stack_str = "[stack]";
2637     if (len > (ssize_t)strlen(stack_str)
2638        && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
2639       if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2640         uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
2641         if (sp >= *bottom && sp <= *top) {
2642           free(str);
2643           fclose(f);
2644           return true;
2645         }
2646       }
2647     }
2648     free(str);
2649   }
2650   fclose(f);
2651   return false;
2652 }
2653 
2654 // If the (growable) stack mapping already extends beyond the point
2655 // where we're going to put our guard pages, truncate the mapping at
2656 // that point by munmap()ping it.  This ensures that when we later
2657 // munmap() the guard pages we don't leave a hole in the stack
2658 // mapping. This only affects the main/initial thread, but guard
2659 // against future OS changes
2660 bool os::create_stack_guard_pages(char* addr, size_t size) {
2661   uintptr_t stack_extent, stack_base;
2662   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2663   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2664       assert(os::Linux::is_initial_thread(),
2665            "growable stack in non-initial thread");
2666     if (stack_extent < (uintptr_t)addr)
2667       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2668   }
2669 
2670   return os::commit_memory(addr, size);
2671 }
2672 
2673 // If this is a growable mapping, remove the guard pages entirely by
2674 // munmap()ping them.  If not, just call uncommit_memory(). This only
2675 // affects the main/initial thread, but guard against future OS changes
2676 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2677   uintptr_t stack_extent, stack_base;
2678   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2679   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2680       assert(os::Linux::is_initial_thread(),
2681            "growable stack in non-initial thread");
2682 
2683     return ::munmap(addr, size) == 0;
2684   }
2685 
2686   return os::uncommit_memory(addr, size);
2687 }
2688 
2689 static address _highest_vm_reserved_address = NULL;
2690 
2691 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2692 // at 'requested_addr'. If there are existing memory mappings at the same
2693 // location, however, they will be overwritten. If 'fixed' is false,
2694 // 'requested_addr' is only treated as a hint, the return value may or
2695 // may not start from the requested address. Unlike Linux mmap(), this
2696 // function returns NULL to indicate failure.
2697 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2698   char * addr;
2699   int flags;
2700 
2701   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2702   if (fixed) {
2703     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2704     flags |= MAP_FIXED;
2705   }
2706 
2707   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2708   // to PROT_EXEC if executable when we commit the page.
2709   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2710                        flags, -1, 0);
2711 
2712   if (addr != MAP_FAILED) {
2713     // anon_mmap() should only get called during VM initialization,
2714     // don't need lock (actually we can skip locking even it can be called
2715     // from multiple threads, because _highest_vm_reserved_address is just a
2716     // hint about the upper limit of non-stack memory regions.)
2717     if ((address)addr + bytes > _highest_vm_reserved_address) {
2718       _highest_vm_reserved_address = (address)addr + bytes;
2719     }
2720   }
2721 
2722   return addr == MAP_FAILED ? NULL : addr;
2723 }
2724 
2725 // Don't update _highest_vm_reserved_address, because there might be memory
2726 // regions above addr + size. If so, releasing a memory region only creates
2727 // a hole in the address space, it doesn't help prevent heap-stack collision.
2728 //
2729 static int anon_munmap(char * addr, size_t size) {
2730   return ::munmap(addr, size) == 0;
2731 }
2732 
2733 char* os::reserve_memory(size_t bytes, char* requested_addr,
2734                          size_t alignment_hint) {
2735   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2736 }
2737 
2738 bool os::release_memory(char* addr, size_t size) {
2739   return anon_munmap(addr, size);
2740 }
2741 
2742 static address highest_vm_reserved_address() {
2743   return _highest_vm_reserved_address;
2744 }
2745 
2746 static bool linux_mprotect(char* addr, size_t size, int prot) {
2747   // Linux wants the mprotect address argument to be page aligned.
2748   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2749 
2750   // According to SUSv3, mprotect() should only be used with mappings
2751   // established by mmap(), and mmap() always maps whole pages. Unaligned
2752   // 'addr' likely indicates problem in the VM (e.g. trying to change
2753   // protection of malloc'ed or statically allocated memory). Check the
2754   // caller if you hit this assert.
2755   assert(addr == bottom, "sanity check");
2756 
2757   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2758   return ::mprotect(bottom, size, prot) == 0;
2759 }
2760 
2761 // Set protections specified
2762 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2763                         bool is_committed) {
2764   unsigned int p = 0;
2765   switch (prot) {
2766   case MEM_PROT_NONE: p = PROT_NONE; break;
2767   case MEM_PROT_READ: p = PROT_READ; break;
2768   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2769   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2770   default:
2771     ShouldNotReachHere();
2772   }
2773   // is_committed is unused.
2774   return linux_mprotect(addr, bytes, p);
2775 }
2776 
2777 bool os::guard_memory(char* addr, size_t size) {
2778   return linux_mprotect(addr, size, PROT_NONE);
2779 }
2780 
2781 bool os::unguard_memory(char* addr, size_t size) {
2782   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2783 }
2784 
2785 // Large page support
2786 
2787 static size_t _large_page_size = 0;
2788 
2789 bool os::large_page_init() {
2790   if (!UseLargePages) return false;
2791 
2792   if (LargePageSizeInBytes) {
2793     _large_page_size = LargePageSizeInBytes;
2794   } else {
2795     // large_page_size on Linux is used to round up heap size. x86 uses either
2796     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2797     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2798     // page as large as 256M.
2799     //
2800     // Here we try to figure out page size by parsing /proc/meminfo and looking
2801     // for a line with the following format:
2802     //    Hugepagesize:     2048 kB
2803     //
2804     // If we can't determine the value (e.g. /proc is not mounted, or the text
2805     // format has been changed), we'll use the largest page size supported by
2806     // the processor.
2807 
2808 #ifndef ZERO
2809     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2810                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2811 #endif // ZERO
2812 
2813     FILE *fp = fopen("/proc/meminfo", "r");
2814     if (fp) {
2815       while (!feof(fp)) {
2816         int x = 0;
2817         char buf[16];
2818         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2819           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2820             _large_page_size = x * K;
2821             break;
2822           }
2823         } else {
2824           // skip to next line
2825           for (;;) {
2826             int ch = fgetc(fp);
2827             if (ch == EOF || ch == (int)'\n') break;
2828           }
2829         }
2830       }
2831       fclose(fp);
2832     }
2833   }
2834 
2835   const size_t default_page_size = (size_t)Linux::page_size();
2836   if (_large_page_size > default_page_size) {
2837     _page_sizes[0] = _large_page_size;
2838     _page_sizes[1] = default_page_size;
2839     _page_sizes[2] = 0;
2840   }
2841 
2842   // Large page support is available on 2.6 or newer kernel, some vendors
2843   // (e.g. Redhat) have backported it to their 2.4 based distributions.
2844   // We optimistically assume the support is available. If later it turns out
2845   // not true, VM will automatically switch to use regular page size.
2846   return true;
2847 }
2848 
2849 #ifndef SHM_HUGETLB
2850 #define SHM_HUGETLB 04000
2851 #endif
2852 
2853 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2854   // "exec" is passed in but not used.  Creating the shared image for
2855   // the code cache doesn't have an SHM_X executable permission to check.
2856   assert(UseLargePages, "only for large pages");
2857 
2858   key_t key = IPC_PRIVATE;
2859   char *addr;
2860 
2861   bool warn_on_failure = UseLargePages &&
2862                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2863                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2864                         );
2865   char msg[128];
2866 
2867   // Create a large shared memory region to attach to based on size.
2868   // Currently, size is the total size of the heap
2869   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2870   if (shmid == -1) {
2871      // Possible reasons for shmget failure:
2872      // 1. shmmax is too small for Java heap.
2873      //    > check shmmax value: cat /proc/sys/kernel/shmmax
2874      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2875      // 2. not enough large page memory.
2876      //    > check available large pages: cat /proc/meminfo
2877      //    > increase amount of large pages:
2878      //          echo new_value > /proc/sys/vm/nr_hugepages
2879      //      Note 1: different Linux may use different name for this property,
2880      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2881      //      Note 2: it's possible there's enough physical memory available but
2882      //            they are so fragmented after a long run that they can't
2883      //            coalesce into large pages. Try to reserve large pages when
2884      //            the system is still "fresh".
2885      if (warn_on_failure) {
2886        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2887        warning(msg);
2888      }
2889      return NULL;
2890   }
2891 
2892   // attach to the region
2893   addr = (char*)shmat(shmid, req_addr, 0);
2894   int err = errno;
2895 
2896   // Remove shmid. If shmat() is successful, the actual shared memory segment
2897   // will be deleted when it's detached by shmdt() or when the process
2898   // terminates. If shmat() is not successful this will remove the shared
2899   // segment immediately.
2900   shmctl(shmid, IPC_RMID, NULL);
2901 
2902   if ((intptr_t)addr == -1) {
2903      if (warn_on_failure) {
2904        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2905        warning(msg);
2906      }
2907      return NULL;
2908   }
2909 
2910   return addr;
2911 }
2912 
2913 bool os::release_memory_special(char* base, size_t bytes) {
2914   // detaching the SHM segment will also delete it, see reserve_memory_special()
2915   int rslt = shmdt(base);
2916   return rslt == 0;
2917 }
2918 
2919 size_t os::large_page_size() {
2920   return _large_page_size;
2921 }
2922 
2923 // Linux does not support anonymous mmap with large page memory. The only way
2924 // to reserve large page memory without file backing is through SysV shared
2925 // memory API. The entire memory region is committed and pinned upfront.
2926 // Hopefully this will change in the future...
2927 bool os::can_commit_large_page_memory() {
2928   return false;
2929 }
2930 
2931 bool os::can_execute_large_page_memory() {
2932   return false;
2933 }
2934 
2935 // Reserve memory at an arbitrary address, only if that area is
2936 // available (and not reserved for something else).
2937 
2938 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2939   const int max_tries = 10;
2940   char* base[max_tries];
2941   size_t size[max_tries];
2942   const size_t gap = 0x000000;
2943 
2944   // Assert only that the size is a multiple of the page size, since
2945   // that's all that mmap requires, and since that's all we really know
2946   // about at this low abstraction level.  If we need higher alignment,
2947   // we can either pass an alignment to this method or verify alignment
2948   // in one of the methods further up the call chain.  See bug 5044738.
2949   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2950 
2951   // Repeatedly allocate blocks until the block is allocated at the
2952   // right spot. Give up after max_tries. Note that reserve_memory() will
2953   // automatically update _highest_vm_reserved_address if the call is
2954   // successful. The variable tracks the highest memory address every reserved
2955   // by JVM. It is used to detect heap-stack collision if running with
2956   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2957   // space than needed, it could confuse the collision detecting code. To
2958   // solve the problem, save current _highest_vm_reserved_address and
2959   // calculate the correct value before return.
2960   address old_highest = _highest_vm_reserved_address;
2961 
2962   // Linux mmap allows caller to pass an address as hint; give it a try first,
2963   // if kernel honors the hint then we can return immediately.
2964   char * addr = anon_mmap(requested_addr, bytes, false);
2965   if (addr == requested_addr) {
2966      return requested_addr;
2967   }
2968 
2969   if (addr != NULL) {
2970      // mmap() is successful but it fails to reserve at the requested address
2971      anon_munmap(addr, bytes);
2972   }
2973 
2974   int i;
2975   for (i = 0; i < max_tries; ++i) {
2976     base[i] = reserve_memory(bytes);
2977 
2978     if (base[i] != NULL) {
2979       // Is this the block we wanted?
2980       if (base[i] == requested_addr) {
2981         size[i] = bytes;
2982         break;
2983       }
2984 
2985       // Does this overlap the block we wanted? Give back the overlapped
2986       // parts and try again.
2987 
2988       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2989       if (top_overlap >= 0 && top_overlap < bytes) {
2990         unmap_memory(base[i], top_overlap);
2991         base[i] += top_overlap;
2992         size[i] = bytes - top_overlap;
2993       } else {
2994         size_t bottom_overlap = base[i] + bytes - requested_addr;
2995         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2996           unmap_memory(requested_addr, bottom_overlap);
2997           size[i] = bytes - bottom_overlap;
2998         } else {
2999           size[i] = bytes;
3000         }
3001       }
3002     }
3003   }
3004 
3005   // Give back the unused reserved pieces.
3006 
3007   for (int j = 0; j < i; ++j) {
3008     if (base[j] != NULL) {
3009       unmap_memory(base[j], size[j]);
3010     }
3011   }
3012 
3013   if (i < max_tries) {
3014     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3015     return requested_addr;
3016   } else {
3017     _highest_vm_reserved_address = old_highest;
3018     return NULL;
3019   }
3020 }
3021 
3022 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3023   return ::read(fd, buf, nBytes);
3024 }
3025 
3026 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3027 // Solaris uses poll(), linux uses park().
3028 // Poll() is likely a better choice, assuming that Thread.interrupt()
3029 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3030 // SIGSEGV, see 4355769.
3031 
3032 const int NANOSECS_PER_MILLISECS = 1000000;
3033 
3034 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3035   assert(thread == Thread::current(),  "thread consistency check");
3036 
3037   ParkEvent * const slp = thread->_SleepEvent ;
3038   slp->reset() ;
3039   OrderAccess::fence() ;
3040 
3041   if (interruptible) {
3042     jlong prevtime = javaTimeNanos();
3043 
3044     for (;;) {
3045       if (os::is_interrupted(thread, true)) {
3046         return OS_INTRPT;
3047       }
3048 
3049       jlong newtime = javaTimeNanos();
3050 
3051       if (newtime - prevtime < 0) {
3052         // time moving backwards, should only happen if no monotonic clock
3053         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3054         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3055       } else {
3056         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3057       }
3058 
3059       if(millis <= 0) {
3060         return OS_OK;
3061       }
3062 
3063       prevtime = newtime;
3064 
3065       {
3066         assert(thread->is_Java_thread(), "sanity check");
3067         JavaThread *jt = (JavaThread *) thread;
3068         ThreadBlockInVM tbivm(jt);
3069         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3070 
3071         jt->set_suspend_equivalent();
3072         // cleared by handle_special_suspend_equivalent_condition() or
3073         // java_suspend_self() via check_and_wait_while_suspended()
3074 
3075         slp->park(millis);
3076 
3077         // were we externally suspended while we were waiting?
3078         jt->check_and_wait_while_suspended();
3079       }
3080     }
3081   } else {
3082     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3083     jlong prevtime = javaTimeNanos();
3084 
3085     for (;;) {
3086       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3087       // the 1st iteration ...
3088       jlong newtime = javaTimeNanos();
3089 
3090       if (newtime - prevtime < 0) {
3091         // time moving backwards, should only happen if no monotonic clock
3092         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3093         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3094       } else {
3095         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3096       }
3097 
3098       if(millis <= 0) break ;
3099 
3100       prevtime = newtime;
3101       slp->park(millis);
3102     }
3103     return OS_OK ;
3104   }
3105 }
3106 
3107 int os::naked_sleep() {
3108   // %% make the sleep time an integer flag. for now use 1 millisec.
3109   return os::sleep(Thread::current(), 1, false);
3110 }
3111 
3112 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3113 void os::infinite_sleep() {
3114   while (true) {    // sleep forever ...
3115     ::sleep(100);   // ... 100 seconds at a time
3116   }
3117 }
3118 
3119 // Used to convert frequent JVM_Yield() to nops
3120 bool os::dont_yield() {
3121   return DontYieldALot;
3122 }
3123 
3124 void os::yield() {
3125   sched_yield();
3126 }
3127 
3128 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3129 
3130 void os::yield_all(int attempts) {
3131   // Yields to all threads, including threads with lower priorities
3132   // Threads on Linux are all with same priority. The Solaris style
3133   // os::yield_all() with nanosleep(1ms) is not necessary.
3134   sched_yield();
3135 }
3136 
3137 // Called from the tight loops to possibly influence time-sharing heuristics
3138 void os::loop_breaker(int attempts) {
3139   os::yield_all(attempts);
3140 }
3141 
3142 ////////////////////////////////////////////////////////////////////////////////
3143 // thread priority support
3144 
3145 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3146 // only supports dynamic priority, static priority must be zero. For real-time
3147 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3148 // However, for large multi-threaded applications, SCHED_RR is not only slower
3149 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3150 // of 5 runs - Sep 2005).
3151 //
3152 // The following code actually changes the niceness of kernel-thread/LWP. It
3153 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3154 // not the entire user process, and user level threads are 1:1 mapped to kernel
3155 // threads. It has always been the case, but could change in the future. For
3156 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3157 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3158 
3159 int os::java_to_os_priority[MaxPriority + 1] = {
3160   19,              // 0 Entry should never be used
3161 
3162    4,              // 1 MinPriority
3163    3,              // 2
3164    2,              // 3
3165 
3166    1,              // 4
3167    0,              // 5 NormPriority
3168   -1,              // 6
3169 
3170   -2,              // 7
3171   -3,              // 8
3172   -4,              // 9 NearMaxPriority
3173 
3174   -5               // 10 MaxPriority
3175 };
3176 
3177 static int prio_init() {
3178   if (ThreadPriorityPolicy == 1) {
3179     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3180     // if effective uid is not root. Perhaps, a more elegant way of doing
3181     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3182     if (geteuid() != 0) {
3183       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3184         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3185       }
3186       ThreadPriorityPolicy = 0;
3187     }
3188   }
3189   return 0;
3190 }
3191 
3192 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3193   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3194 
3195   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3196   return (ret == 0) ? OS_OK : OS_ERR;
3197 }
3198 
3199 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3200   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3201     *priority_ptr = java_to_os_priority[NormPriority];
3202     return OS_OK;
3203   }
3204 
3205   errno = 0;
3206   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3207   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3208 }
3209 
3210 // Hint to the underlying OS that a task switch would not be good.
3211 // Void return because it's a hint and can fail.
3212 void os::hint_no_preempt() {}
3213 
3214 ////////////////////////////////////////////////////////////////////////////////
3215 // suspend/resume support
3216 
3217 //  the low-level signal-based suspend/resume support is a remnant from the
3218 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3219 //  within hotspot. Now there is a single use-case for this:
3220 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3221 //      that runs in the watcher thread.
3222 //  The remaining code is greatly simplified from the more general suspension
3223 //  code that used to be used.
3224 //
3225 //  The protocol is quite simple:
3226 //  - suspend:
3227 //      - sends a signal to the target thread
3228 //      - polls the suspend state of the osthread using a yield loop
3229 //      - target thread signal handler (SR_handler) sets suspend state
3230 //        and blocks in sigsuspend until continued
3231 //  - resume:
3232 //      - sets target osthread state to continue
3233 //      - sends signal to end the sigsuspend loop in the SR_handler
3234 //
3235 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3236 //
3237 
3238 static void resume_clear_context(OSThread *osthread) {
3239   osthread->set_ucontext(NULL);
3240   osthread->set_siginfo(NULL);
3241 
3242   // notify the suspend action is completed, we have now resumed
3243   osthread->sr.clear_suspended();
3244 }
3245 
3246 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3247   osthread->set_ucontext(context);
3248   osthread->set_siginfo(siginfo);
3249 }
3250 
3251 //
3252 // Handler function invoked when a thread's execution is suspended or
3253 // resumed. We have to be careful that only async-safe functions are
3254 // called here (Note: most pthread functions are not async safe and
3255 // should be avoided.)
3256 //
3257 // Note: sigwait() is a more natural fit than sigsuspend() from an
3258 // interface point of view, but sigwait() prevents the signal hander
3259 // from being run. libpthread would get very confused by not having
3260 // its signal handlers run and prevents sigwait()'s use with the
3261 // mutex granting granting signal.
3262 //
3263 // Currently only ever called on the VMThread
3264 //
3265 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3266   // Save and restore errno to avoid confusing native code with EINTR
3267   // after sigsuspend.
3268   int old_errno = errno;
3269 
3270   Thread* thread = Thread::current();
3271   OSThread* osthread = thread->osthread();
3272   assert(thread->is_VM_thread(), "Must be VMThread");
3273   // read current suspend action
3274   int action = osthread->sr.suspend_action();
3275   if (action == SR_SUSPEND) {
3276     suspend_save_context(osthread, siginfo, context);
3277 
3278     // Notify the suspend action is about to be completed. do_suspend()
3279     // waits until SR_SUSPENDED is set and then returns. We will wait
3280     // here for a resume signal and that completes the suspend-other
3281     // action. do_suspend/do_resume is always called as a pair from
3282     // the same thread - so there are no races
3283 
3284     // notify the caller
3285     osthread->sr.set_suspended();
3286 
3287     sigset_t suspend_set;  // signals for sigsuspend()
3288 
3289     // get current set of blocked signals and unblock resume signal
3290     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3291     sigdelset(&suspend_set, SR_signum);
3292 
3293     // wait here until we are resumed
3294     do {
3295       sigsuspend(&suspend_set);
3296       // ignore all returns until we get a resume signal
3297     } while (osthread->sr.suspend_action() != SR_CONTINUE);
3298 
3299     resume_clear_context(osthread);
3300 
3301   } else {
3302     assert(action == SR_CONTINUE, "unexpected sr action");
3303     // nothing special to do - just leave the handler
3304   }
3305 
3306   errno = old_errno;
3307 }
3308 
3309 
3310 static int SR_initialize() {
3311   struct sigaction act;
3312   char *s;
3313   /* Get signal number to use for suspend/resume */
3314   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3315     int sig = ::strtol(s, 0, 10);
3316     if (sig > 0 || sig < _NSIG) {
3317         SR_signum = sig;
3318     }
3319   }
3320 
3321   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3322         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3323 
3324   sigemptyset(&SR_sigset);
3325   sigaddset(&SR_sigset, SR_signum);
3326 
3327   /* Set up signal handler for suspend/resume */
3328   act.sa_flags = SA_RESTART|SA_SIGINFO;
3329   act.sa_handler = (void (*)(int)) SR_handler;
3330 
3331   // SR_signum is blocked by default.
3332   // 4528190 - We also need to block pthread restart signal (32 on all
3333   // supported Linux platforms). Note that LinuxThreads need to block
3334   // this signal for all threads to work properly. So we don't have
3335   // to use hard-coded signal number when setting up the mask.
3336   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3337 
3338   if (sigaction(SR_signum, &act, 0) == -1) {
3339     return -1;
3340   }
3341 
3342   // Save signal flag
3343   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3344   return 0;
3345 }
3346 
3347 static int SR_finalize() {
3348   return 0;
3349 }
3350 
3351 
3352 // returns true on success and false on error - really an error is fatal
3353 // but this seems the normal response to library errors
3354 static bool do_suspend(OSThread* osthread) {
3355   // mark as suspended and send signal
3356   osthread->sr.set_suspend_action(SR_SUSPEND);
3357   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3358   assert_status(status == 0, status, "pthread_kill");
3359 
3360   // check status and wait until notified of suspension
3361   if (status == 0) {
3362     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3363       os::yield_all(i);
3364     }
3365     osthread->sr.set_suspend_action(SR_NONE);
3366     return true;
3367   }
3368   else {
3369     osthread->sr.set_suspend_action(SR_NONE);
3370     return false;
3371   }
3372 }
3373 
3374 static void do_resume(OSThread* osthread) {
3375   assert(osthread->sr.is_suspended(), "thread should be suspended");
3376   osthread->sr.set_suspend_action(SR_CONTINUE);
3377 
3378   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3379   assert_status(status == 0, status, "pthread_kill");
3380   // check status and wait unit notified of resumption
3381   if (status == 0) {
3382     for (int i = 0; osthread->sr.is_suspended(); i++) {
3383       os::yield_all(i);
3384     }
3385   }
3386   osthread->sr.set_suspend_action(SR_NONE);
3387 }
3388 
3389 ////////////////////////////////////////////////////////////////////////////////
3390 // interrupt support
3391 
3392 void os::interrupt(Thread* thread) {
3393   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3394     "possibility of dangling Thread pointer");
3395 
3396   OSThread* osthread = thread->osthread();
3397 
3398   if (!osthread->interrupted()) {
3399     osthread->set_interrupted(true);
3400     // More than one thread can get here with the same value of osthread,
3401     // resulting in multiple notifications.  We do, however, want the store
3402     // to interrupted() to be visible to other threads before we execute unpark().
3403     OrderAccess::fence();
3404     ParkEvent * const slp = thread->_SleepEvent ;
3405     if (slp != NULL) slp->unpark() ;
3406   }
3407 
3408   // For JSR166. Unpark even if interrupt status already was set
3409   if (thread->is_Java_thread())
3410     ((JavaThread*)thread)->parker()->unpark();
3411 
3412   ParkEvent * ev = thread->_ParkEvent ;
3413   if (ev != NULL) ev->unpark() ;
3414 
3415 }
3416 
3417 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3418   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3419     "possibility of dangling Thread pointer");
3420 
3421   OSThread* osthread = thread->osthread();
3422 
3423   bool interrupted = osthread->interrupted();
3424 
3425   if (interrupted && clear_interrupted) {
3426     osthread->set_interrupted(false);
3427     // consider thread->_SleepEvent->reset() ... optional optimization
3428   }
3429 
3430   return interrupted;
3431 }
3432 
3433 ///////////////////////////////////////////////////////////////////////////////////
3434 // signal handling (except suspend/resume)
3435 
3436 // This routine may be used by user applications as a "hook" to catch signals.
3437 // The user-defined signal handler must pass unrecognized signals to this
3438 // routine, and if it returns true (non-zero), then the signal handler must
3439 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3440 // routine will never retun false (zero), but instead will execute a VM panic
3441 // routine kill the process.
3442 //
3443 // If this routine returns false, it is OK to call it again.  This allows
3444 // the user-defined signal handler to perform checks either before or after
3445 // the VM performs its own checks.  Naturally, the user code would be making
3446 // a serious error if it tried to handle an exception (such as a null check
3447 // or breakpoint) that the VM was generating for its own correct operation.
3448 //
3449 // This routine may recognize any of the following kinds of signals:
3450 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3451 // It should be consulted by handlers for any of those signals.
3452 //
3453 // The caller of this routine must pass in the three arguments supplied
3454 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3455 // field of the structure passed to sigaction().  This routine assumes that
3456 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3457 //
3458 // Note that the VM will print warnings if it detects conflicting signal
3459 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3460 //
3461 extern "C" int
3462 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3463                         void* ucontext, int abort_if_unrecognized);
3464 
3465 void signalHandler(int sig, siginfo_t* info, void* uc) {
3466   assert(info != NULL && uc != NULL, "it must be old kernel");
3467   JVM_handle_linux_signal(sig, info, uc, true);
3468 }
3469 
3470 
3471 // This boolean allows users to forward their own non-matching signals
3472 // to JVM_handle_linux_signal, harmlessly.
3473 bool os::Linux::signal_handlers_are_installed = false;
3474 
3475 // For signal-chaining
3476 struct sigaction os::Linux::sigact[MAXSIGNUM];
3477 unsigned int os::Linux::sigs = 0;
3478 bool os::Linux::libjsig_is_loaded = false;
3479 typedef struct sigaction *(*get_signal_t)(int);
3480 get_signal_t os::Linux::get_signal_action = NULL;
3481 
3482 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3483   struct sigaction *actp = NULL;
3484 
3485   if (libjsig_is_loaded) {
3486     // Retrieve the old signal handler from libjsig
3487     actp = (*get_signal_action)(sig);
3488   }
3489   if (actp == NULL) {
3490     // Retrieve the preinstalled signal handler from jvm
3491     actp = get_preinstalled_handler(sig);
3492   }
3493 
3494   return actp;
3495 }
3496 
3497 static bool call_chained_handler(struct sigaction *actp, int sig,
3498                                  siginfo_t *siginfo, void *context) {
3499   // Call the old signal handler
3500   if (actp->sa_handler == SIG_DFL) {
3501     // It's more reasonable to let jvm treat it as an unexpected exception
3502     // instead of taking the default action.
3503     return false;
3504   } else if (actp->sa_handler != SIG_IGN) {
3505     if ((actp->sa_flags & SA_NODEFER) == 0) {
3506       // automaticlly block the signal
3507       sigaddset(&(actp->sa_mask), sig);
3508     }
3509 
3510     sa_handler_t hand;
3511     sa_sigaction_t sa;
3512     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3513     // retrieve the chained handler
3514     if (siginfo_flag_set) {
3515       sa = actp->sa_sigaction;
3516     } else {
3517       hand = actp->sa_handler;
3518     }
3519 
3520     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3521       actp->sa_handler = SIG_DFL;
3522     }
3523 
3524     // try to honor the signal mask
3525     sigset_t oset;
3526     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3527 
3528     // call into the chained handler
3529     if (siginfo_flag_set) {
3530       (*sa)(sig, siginfo, context);
3531     } else {
3532       (*hand)(sig);
3533     }
3534 
3535     // restore the signal mask
3536     pthread_sigmask(SIG_SETMASK, &oset, 0);
3537   }
3538   // Tell jvm's signal handler the signal is taken care of.
3539   return true;
3540 }
3541 
3542 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3543   bool chained = false;
3544   // signal-chaining
3545   if (UseSignalChaining) {
3546     struct sigaction *actp = get_chained_signal_action(sig);
3547     if (actp != NULL) {
3548       chained = call_chained_handler(actp, sig, siginfo, context);
3549     }
3550   }
3551   return chained;
3552 }
3553 
3554 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3555   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3556     return &sigact[sig];
3557   }
3558   return NULL;
3559 }
3560 
3561 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3562   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3563   sigact[sig] = oldAct;
3564   sigs |= (unsigned int)1 << sig;
3565 }
3566 
3567 // for diagnostic
3568 int os::Linux::sigflags[MAXSIGNUM];
3569 
3570 int os::Linux::get_our_sigflags(int sig) {
3571   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3572   return sigflags[sig];
3573 }
3574 
3575 void os::Linux::set_our_sigflags(int sig, int flags) {
3576   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3577   sigflags[sig] = flags;
3578 }
3579 
3580 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3581   // Check for overwrite.
3582   struct sigaction oldAct;
3583   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3584 
3585   void* oldhand = oldAct.sa_sigaction
3586                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3587                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3588   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3589       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3590       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3591     if (AllowUserSignalHandlers || !set_installed) {
3592       // Do not overwrite; user takes responsibility to forward to us.
3593       return;
3594     } else if (UseSignalChaining) {
3595       // save the old handler in jvm
3596       save_preinstalled_handler(sig, oldAct);
3597       // libjsig also interposes the sigaction() call below and saves the
3598       // old sigaction on it own.
3599     } else {
3600       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3601                     "%#lx for signal %d.", (long)oldhand, sig));
3602     }
3603   }
3604 
3605   struct sigaction sigAct;
3606   sigfillset(&(sigAct.sa_mask));
3607   sigAct.sa_handler = SIG_DFL;
3608   if (!set_installed) {
3609     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3610   } else {
3611     sigAct.sa_sigaction = signalHandler;
3612     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3613   }
3614   // Save flags, which are set by ours
3615   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3616   sigflags[sig] = sigAct.sa_flags;
3617 
3618   int ret = sigaction(sig, &sigAct, &oldAct);
3619   assert(ret == 0, "check");
3620 
3621   void* oldhand2  = oldAct.sa_sigaction
3622                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3623                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3624   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3625 }
3626 
3627 // install signal handlers for signals that HotSpot needs to
3628 // handle in order to support Java-level exception handling.
3629 
3630 void os::Linux::install_signal_handlers() {
3631   if (!signal_handlers_are_installed) {
3632     signal_handlers_are_installed = true;
3633 
3634     // signal-chaining
3635     typedef void (*signal_setting_t)();
3636     signal_setting_t begin_signal_setting = NULL;
3637     signal_setting_t end_signal_setting = NULL;
3638     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3639                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3640     if (begin_signal_setting != NULL) {
3641       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3642                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3643       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3644                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3645       libjsig_is_loaded = true;
3646       assert(UseSignalChaining, "should enable signal-chaining");
3647     }
3648     if (libjsig_is_loaded) {
3649       // Tell libjsig jvm is setting signal handlers
3650       (*begin_signal_setting)();
3651     }
3652 
3653     set_signal_handler(SIGSEGV, true);
3654     set_signal_handler(SIGPIPE, true);
3655     set_signal_handler(SIGBUS, true);
3656     set_signal_handler(SIGILL, true);
3657     set_signal_handler(SIGFPE, true);
3658     set_signal_handler(SIGXFSZ, true);
3659 
3660     if (libjsig_is_loaded) {
3661       // Tell libjsig jvm finishes setting signal handlers
3662       (*end_signal_setting)();
3663     }
3664 
3665     // We don't activate signal checker if libjsig is in place, we trust ourselves
3666     // and if UserSignalHandler is installed all bets are off
3667     if (CheckJNICalls) {
3668       if (libjsig_is_loaded) {
3669         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3670         check_signals = false;
3671       }
3672       if (AllowUserSignalHandlers) {
3673         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3674         check_signals = false;
3675       }
3676     }
3677   }
3678 }
3679 
3680 // This is the fastest way to get thread cpu time on Linux.
3681 // Returns cpu time (user+sys) for any thread, not only for current.
3682 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3683 // It might work on 2.6.10+ with a special kernel/glibc patch.
3684 // For reference, please, see IEEE Std 1003.1-2004:
3685 //   http://www.unix.org/single_unix_specification
3686 
3687 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3688   struct timespec tp;
3689   int rc = os::Linux::clock_gettime(clockid, &tp);
3690   assert(rc == 0, "clock_gettime is expected to return 0 code");
3691 
3692   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3693 }
3694 
3695 /////
3696 // glibc on Linux platform uses non-documented flag
3697 // to indicate, that some special sort of signal
3698 // trampoline is used.
3699 // We will never set this flag, and we should
3700 // ignore this flag in our diagnostic
3701 #ifdef SIGNIFICANT_SIGNAL_MASK
3702 #undef SIGNIFICANT_SIGNAL_MASK
3703 #endif
3704 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3705 
3706 static const char* get_signal_handler_name(address handler,
3707                                            char* buf, int buflen) {
3708   int offset;
3709   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3710   if (found) {
3711     // skip directory names
3712     const char *p1, *p2;
3713     p1 = buf;
3714     size_t len = strlen(os::file_separator());
3715     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3716     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3717   } else {
3718     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3719   }
3720   return buf;
3721 }
3722 
3723 static void print_signal_handler(outputStream* st, int sig,
3724                                  char* buf, size_t buflen) {
3725   struct sigaction sa;
3726 
3727   sigaction(sig, NULL, &sa);
3728 
3729   // See comment for SIGNIFICANT_SIGNAL_MASK define
3730   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3731 
3732   st->print("%s: ", os::exception_name(sig, buf, buflen));
3733 
3734   address handler = (sa.sa_flags & SA_SIGINFO)
3735     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3736     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3737 
3738   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3739     st->print("SIG_DFL");
3740   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3741     st->print("SIG_IGN");
3742   } else {
3743     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3744   }
3745 
3746   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3747 
3748   address rh = VMError::get_resetted_sighandler(sig);
3749   // May be, handler was resetted by VMError?
3750   if(rh != NULL) {
3751     handler = rh;
3752     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3753   }
3754 
3755   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3756 
3757   // Check: is it our handler?
3758   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3759      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3760     // It is our signal handler
3761     // check for flags, reset system-used one!
3762     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3763       st->print(
3764                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3765                 os::Linux::get_our_sigflags(sig));
3766     }
3767   }
3768   st->cr();
3769 }
3770 
3771 
3772 #define DO_SIGNAL_CHECK(sig) \
3773   if (!sigismember(&check_signal_done, sig)) \
3774     os::Linux::check_signal_handler(sig)
3775 
3776 // This method is a periodic task to check for misbehaving JNI applications
3777 // under CheckJNI, we can add any periodic checks here
3778 
3779 void os::run_periodic_checks() {
3780 
3781   if (check_signals == false) return;
3782 
3783   // SEGV and BUS if overridden could potentially prevent
3784   // generation of hs*.log in the event of a crash, debugging
3785   // such a case can be very challenging, so we absolutely
3786   // check the following for a good measure:
3787   DO_SIGNAL_CHECK(SIGSEGV);
3788   DO_SIGNAL_CHECK(SIGILL);
3789   DO_SIGNAL_CHECK(SIGFPE);
3790   DO_SIGNAL_CHECK(SIGBUS);
3791   DO_SIGNAL_CHECK(SIGPIPE);
3792   DO_SIGNAL_CHECK(SIGXFSZ);
3793 
3794 
3795   // ReduceSignalUsage allows the user to override these handlers
3796   // see comments at the very top and jvm_solaris.h
3797   if (!ReduceSignalUsage) {
3798     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3799     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3800     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3801     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3802   }
3803 
3804   DO_SIGNAL_CHECK(SR_signum);
3805   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3806 }
3807 
3808 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3809 
3810 static os_sigaction_t os_sigaction = NULL;
3811 
3812 void os::Linux::check_signal_handler(int sig) {
3813   char buf[O_BUFLEN];
3814   address jvmHandler = NULL;
3815 
3816 
3817   struct sigaction act;
3818   if (os_sigaction == NULL) {
3819     // only trust the default sigaction, in case it has been interposed
3820     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3821     if (os_sigaction == NULL) return;
3822   }
3823 
3824   os_sigaction(sig, (struct sigaction*)NULL, &act);
3825 
3826 
3827   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3828 
3829   address thisHandler = (act.sa_flags & SA_SIGINFO)
3830     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3831     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3832 
3833 
3834   switch(sig) {
3835   case SIGSEGV:
3836   case SIGBUS:
3837   case SIGFPE:
3838   case SIGPIPE:
3839   case SIGILL:
3840   case SIGXFSZ:
3841     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3842     break;
3843 
3844   case SHUTDOWN1_SIGNAL:
3845   case SHUTDOWN2_SIGNAL:
3846   case SHUTDOWN3_SIGNAL:
3847   case BREAK_SIGNAL:
3848     jvmHandler = (address)user_handler();
3849     break;
3850 
3851   case INTERRUPT_SIGNAL:
3852     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3853     break;
3854 
3855   default:
3856     if (sig == SR_signum) {
3857       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3858     } else {
3859       return;
3860     }
3861     break;
3862   }
3863 
3864   if (thisHandler != jvmHandler) {
3865     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3866     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3867     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3868     // No need to check this sig any longer
3869     sigaddset(&check_signal_done, sig);
3870   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3871     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3872     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3873     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3874     // No need to check this sig any longer
3875     sigaddset(&check_signal_done, sig);
3876   }
3877 
3878   // Dump all the signal
3879   if (sigismember(&check_signal_done, sig)) {
3880     print_signal_handlers(tty, buf, O_BUFLEN);
3881   }
3882 }
3883 
3884 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3885 
3886 extern bool signal_name(int signo, char* buf, size_t len);
3887 
3888 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3889   if (0 < exception_code && exception_code <= SIGRTMAX) {
3890     // signal
3891     if (!signal_name(exception_code, buf, size)) {
3892       jio_snprintf(buf, size, "SIG%d", exception_code);
3893     }
3894     return buf;
3895   } else {
3896     return NULL;
3897   }
3898 }
3899 
3900 // this is called _before_ the most of global arguments have been parsed
3901 void os::init(void) {
3902   char dummy;   /* used to get a guess on initial stack address */
3903 //  first_hrtime = gethrtime();
3904 
3905   // With LinuxThreads the JavaMain thread pid (primordial thread)
3906   // is different than the pid of the java launcher thread.
3907   // So, on Linux, the launcher thread pid is passed to the VM
3908   // via the sun.java.launcher.pid property.
3909   // Use this property instead of getpid() if it was correctly passed.
3910   // See bug 6351349.
3911   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3912 
3913   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3914 
3915   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3916 
3917   init_random(1234567);
3918 
3919   ThreadCritical::initialize();
3920 
3921   Linux::set_page_size(sysconf(_SC_PAGESIZE));
3922   if (Linux::page_size() == -1) {
3923     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
3924                   strerror(errno)));
3925   }
3926   init_page_sizes((size_t) Linux::page_size());
3927 
3928   Linux::initialize_system_info();
3929 
3930   // main_thread points to the aboriginal thread
3931   Linux::_main_thread = pthread_self();
3932 
3933   Linux::clock_init();
3934   initial_time_count = os::elapsed_counter();
3935   pthread_mutex_init(&dl_mutex, NULL);
3936 }
3937 
3938 // To install functions for atexit system call
3939 extern "C" {
3940   static void perfMemory_exit_helper() {
3941     perfMemory_exit();
3942   }
3943 }
3944 
3945 // this is called _after_ the global arguments have been parsed
3946 jint os::init_2(void)
3947 {
3948   Linux::fast_thread_clock_init();
3949 
3950   // Allocate a single page and mark it as readable for safepoint polling
3951   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3952   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3953 
3954   os::set_polling_page( polling_page );
3955 
3956 #ifndef PRODUCT
3957   if(Verbose && PrintMiscellaneous)
3958     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3959 #endif
3960 
3961   if (!UseMembar) {
3962     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3963     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3964     os::set_memory_serialize_page( mem_serialize_page );
3965 
3966 #ifndef PRODUCT
3967     if(Verbose && PrintMiscellaneous)
3968       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3969 #endif
3970   }
3971 
3972   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3973 
3974   // initialize suspend/resume support - must do this before signal_sets_init()
3975   if (SR_initialize() != 0) {
3976     perror("SR_initialize failed");
3977     return JNI_ERR;
3978   }
3979 
3980   Linux::signal_sets_init();
3981   Linux::install_signal_handlers();
3982 
3983   // Check minimum allowable stack size for thread creation and to initialize
3984   // the java system classes, including StackOverflowError - depends on page
3985   // size.  Add a page for compiler2 recursion in main thread.
3986   // Add in 2*BytesPerWord times page size to account for VM stack during
3987   // class initialization depending on 32 or 64 bit VM.
3988   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
3989             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3990                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
3991 
3992   size_t threadStackSizeInBytes = ThreadStackSize * K;
3993   if (threadStackSizeInBytes != 0 &&
3994       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
3995         tty->print_cr("\nThe stack size specified is too small, "
3996                       "Specify at least %dk",
3997                       os::Linux::min_stack_allowed/ K);
3998         return JNI_ERR;
3999   }
4000 
4001   // Make the stack size a multiple of the page size so that
4002   // the yellow/red zones can be guarded.
4003   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4004         vm_page_size()));
4005 
4006   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4007 
4008   Linux::libpthread_init();
4009   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4010      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4011           Linux::glibc_version(), Linux::libpthread_version(),
4012           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4013   }
4014 
4015   if (UseNUMA) {
4016     if (!Linux::libnuma_init()) {
4017       UseNUMA = false;
4018     } else {
4019       if ((Linux::numa_max_node() < 1)) {
4020         // There's only one node(they start from 0), disable NUMA.
4021         UseNUMA = false;
4022       }
4023     }
4024     if (!UseNUMA && ForceNUMA) {
4025       UseNUMA = true;
4026     }
4027   }
4028 
4029   if (MaxFDLimit) {
4030     // set the number of file descriptors to max. print out error
4031     // if getrlimit/setrlimit fails but continue regardless.
4032     struct rlimit nbr_files;
4033     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4034     if (status != 0) {
4035       if (PrintMiscellaneous && (Verbose || WizardMode))
4036         perror("os::init_2 getrlimit failed");
4037     } else {
4038       nbr_files.rlim_cur = nbr_files.rlim_max;
4039       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4040       if (status != 0) {
4041         if (PrintMiscellaneous && (Verbose || WizardMode))
4042           perror("os::init_2 setrlimit failed");
4043       }
4044     }
4045   }
4046 
4047   // Initialize lock used to serialize thread creation (see os::create_thread)
4048   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4049 
4050   // Initialize HPI.
4051   jint hpi_result = hpi::initialize();
4052   if (hpi_result != JNI_OK) {
4053     tty->print_cr("There was an error trying to initialize the HPI library.");
4054     return hpi_result;
4055   }
4056 
4057   // at-exit methods are called in the reverse order of their registration.
4058   // atexit functions are called on return from main or as a result of a
4059   // call to exit(3C). There can be only 32 of these functions registered
4060   // and atexit() does not set errno.
4061 
4062   if (PerfAllowAtExitRegistration) {
4063     // only register atexit functions if PerfAllowAtExitRegistration is set.
4064     // atexit functions can be delayed until process exit time, which
4065     // can be problematic for embedded VM situations. Embedded VMs should
4066     // call DestroyJavaVM() to assure that VM resources are released.
4067 
4068     // note: perfMemory_exit_helper atexit function may be removed in
4069     // the future if the appropriate cleanup code can be added to the
4070     // VM_Exit VMOperation's doit method.
4071     if (atexit(perfMemory_exit_helper) != 0) {
4072       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4073     }
4074   }
4075 
4076   // initialize thread priority policy
4077   prio_init();
4078 
4079   return JNI_OK;
4080 }
4081 
4082 // this is called at the end of vm_initialization
4083 void os::init_3(void) { }
4084 
4085 // Mark the polling page as unreadable
4086 void os::make_polling_page_unreadable(void) {
4087   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4088     fatal("Could not disable polling page");
4089 };
4090 
4091 // Mark the polling page as readable
4092 void os::make_polling_page_readable(void) {
4093   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4094     fatal("Could not enable polling page");
4095   }
4096 };
4097 
4098 int os::active_processor_count() {
4099   // Linux doesn't yet have a (official) notion of processor sets,
4100   // so just return the number of online processors.
4101   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4102   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4103   return online_cpus;
4104 }
4105 
4106 bool os::distribute_processes(uint length, uint* distribution) {
4107   // Not yet implemented.
4108   return false;
4109 }
4110 
4111 bool os::bind_to_processor(uint processor_id) {
4112   // Not yet implemented.
4113   return false;
4114 }
4115 
4116 ///
4117 
4118 // Suspends the target using the signal mechanism and then grabs the PC before
4119 // resuming the target. Used by the flat-profiler only
4120 ExtendedPC os::get_thread_pc(Thread* thread) {
4121   // Make sure that it is called by the watcher for the VMThread
4122   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4123   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4124 
4125   ExtendedPC epc;
4126 
4127   OSThread* osthread = thread->osthread();
4128   if (do_suspend(osthread)) {
4129     if (osthread->ucontext() != NULL) {
4130       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4131     } else {
4132       // NULL context is unexpected, double-check this is the VMThread
4133       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4134     }
4135     do_resume(osthread);
4136   }
4137   // failure means pthread_kill failed for some reason - arguably this is
4138   // a fatal problem, but such problems are ignored elsewhere
4139 
4140   return epc;
4141 }
4142 
4143 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4144 {
4145    if (is_NPTL()) {
4146       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4147    } else {
4148 #ifndef IA64
4149       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4150       // word back to default 64bit precision if condvar is signaled. Java
4151       // wants 53bit precision.  Save and restore current value.
4152       int fpu = get_fpu_control_word();
4153 #endif // IA64
4154       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4155 #ifndef IA64
4156       set_fpu_control_word(fpu);
4157 #endif // IA64
4158       return status;
4159    }
4160 }
4161 
4162 ////////////////////////////////////////////////////////////////////////////////
4163 // debug support
4164 
4165 static address same_page(address x, address y) {
4166   int page_bits = -os::vm_page_size();
4167   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4168     return x;
4169   else if (x > y)
4170     return (address)(intptr_t(y) | ~page_bits) + 1;
4171   else
4172     return (address)(intptr_t(y) & page_bits);
4173 }
4174 
4175 bool os::find(address addr, outputStream* st) {
4176   Dl_info dlinfo;
4177   memset(&dlinfo, 0, sizeof(dlinfo));
4178   if (dladdr(addr, &dlinfo)) {
4179     st->print(PTR_FORMAT ": ", addr);
4180     if (dlinfo.dli_sname != NULL) {
4181       st->print("%s+%#x", dlinfo.dli_sname,
4182                  addr - (intptr_t)dlinfo.dli_saddr);
4183     } else if (dlinfo.dli_fname) {
4184       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4185     } else {
4186       st->print("<absolute address>");
4187     }
4188     if (dlinfo.dli_fname) {
4189       st->print(" in %s", dlinfo.dli_fname);
4190     }
4191     if (dlinfo.dli_fbase) {
4192       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4193     }
4194     st->cr();
4195 
4196     if (Verbose) {
4197       // decode some bytes around the PC
4198       address begin = same_page(addr-40, addr);
4199       address end   = same_page(addr+40, addr);
4200       address       lowest = (address) dlinfo.dli_sname;
4201       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4202       if (begin < lowest)  begin = lowest;
4203       Dl_info dlinfo2;
4204       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4205           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4206         end = (address) dlinfo2.dli_saddr;
4207       Disassembler::decode(begin, end, st);
4208     }
4209     return true;
4210   }
4211   return false;
4212 }
4213 
4214 ////////////////////////////////////////////////////////////////////////////////
4215 // misc
4216 
4217 // This does not do anything on Linux. This is basically a hook for being
4218 // able to use structured exception handling (thread-local exception filters)
4219 // on, e.g., Win32.
4220 void
4221 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4222                          JavaCallArguments* args, Thread* thread) {
4223   f(value, method, args, thread);
4224 }
4225 
4226 void os::print_statistics() {
4227 }
4228 
4229 int os::message_box(const char* title, const char* message) {
4230   int i;
4231   fdStream err(defaultStream::error_fd());
4232   for (i = 0; i < 78; i++) err.print_raw("=");
4233   err.cr();
4234   err.print_raw_cr(title);
4235   for (i = 0; i < 78; i++) err.print_raw("-");
4236   err.cr();
4237   err.print_raw_cr(message);
4238   for (i = 0; i < 78; i++) err.print_raw("=");
4239   err.cr();
4240 
4241   char buf[16];
4242   // Prevent process from exiting upon "read error" without consuming all CPU
4243   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4244 
4245   return buf[0] == 'y' || buf[0] == 'Y';
4246 }
4247 
4248 int os::stat(const char *path, struct stat *sbuf) {
4249   char pathbuf[MAX_PATH];
4250   if (strlen(path) > MAX_PATH - 1) {
4251     errno = ENAMETOOLONG;
4252     return -1;
4253   }
4254   hpi::native_path(strcpy(pathbuf, path));
4255   return ::stat(pathbuf, sbuf);
4256 }
4257 
4258 bool os::check_heap(bool force) {
4259   return true;
4260 }
4261 
4262 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4263   return ::vsnprintf(buf, count, format, args);
4264 }
4265 
4266 // Is a (classpath) directory empty?
4267 bool os::dir_is_empty(const char* path) {
4268   DIR *dir = NULL;
4269   struct dirent *ptr;
4270 
4271   dir = opendir(path);
4272   if (dir == NULL) return true;
4273 
4274   /* Scan the directory */
4275   bool result = true;
4276   char buf[sizeof(struct dirent) + MAX_PATH];
4277   while (result && (ptr = ::readdir(dir)) != NULL) {
4278     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4279       result = false;
4280     }
4281   }
4282   closedir(dir);
4283   return result;
4284 }
4285 
4286 // create binary file, rewriting existing file if required
4287 int os::create_binary_file(const char* path, bool rewrite_existing) {
4288   int oflags = O_WRONLY | O_CREAT;
4289   if (!rewrite_existing) {
4290     oflags |= O_EXCL;
4291   }
4292   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4293 }
4294 
4295 // return current position of file pointer
4296 jlong os::current_file_offset(int fd) {
4297   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4298 }
4299 
4300 // move file pointer to the specified offset
4301 jlong os::seek_to_file_offset(int fd, jlong offset) {
4302   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4303 }
4304 
4305 // Map a block of memory.
4306 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4307                      char *addr, size_t bytes, bool read_only,
4308                      bool allow_exec) {
4309   int prot;
4310   int flags;
4311 
4312   if (read_only) {
4313     prot = PROT_READ;
4314     flags = MAP_SHARED;
4315   } else {
4316     prot = PROT_READ | PROT_WRITE;
4317     flags = MAP_PRIVATE;
4318   }
4319 
4320   if (allow_exec) {
4321     prot |= PROT_EXEC;
4322   }
4323 
4324   if (addr != NULL) {
4325     flags |= MAP_FIXED;
4326   }
4327 
4328   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4329                                      fd, file_offset);
4330   if (mapped_address == MAP_FAILED) {
4331     return NULL;
4332   }
4333   return mapped_address;
4334 }
4335 
4336 
4337 // Remap a block of memory.
4338 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4339                        char *addr, size_t bytes, bool read_only,
4340                        bool allow_exec) {
4341   // same as map_memory() on this OS
4342   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4343                         allow_exec);
4344 }
4345 
4346 
4347 // Unmap a block of memory.
4348 bool os::unmap_memory(char* addr, size_t bytes) {
4349   return munmap(addr, bytes) == 0;
4350 }
4351 
4352 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4353 
4354 static clockid_t thread_cpu_clockid(Thread* thread) {
4355   pthread_t tid = thread->osthread()->pthread_id();
4356   clockid_t clockid;
4357 
4358   // Get thread clockid
4359   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4360   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4361   return clockid;
4362 }
4363 
4364 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4365 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4366 // of a thread.
4367 //
4368 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4369 // the fast estimate available on the platform.
4370 
4371 jlong os::current_thread_cpu_time() {
4372   if (os::Linux::supports_fast_thread_cpu_time()) {
4373     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4374   } else {
4375     // return user + sys since the cost is the same
4376     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4377   }
4378 }
4379 
4380 jlong os::thread_cpu_time(Thread* thread) {
4381   // consistent with what current_thread_cpu_time() returns
4382   if (os::Linux::supports_fast_thread_cpu_time()) {
4383     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4384   } else {
4385     return slow_thread_cpu_time(thread, true /* user + sys */);
4386   }
4387 }
4388 
4389 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4390   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4391     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4392   } else {
4393     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4394   }
4395 }
4396 
4397 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4398   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4399     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4400   } else {
4401     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4402   }
4403 }
4404 
4405 //
4406 //  -1 on error.
4407 //
4408 
4409 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4410   static bool proc_pid_cpu_avail = true;
4411   static bool proc_task_unchecked = true;
4412   static const char *proc_stat_path = "/proc/%d/stat";
4413   pid_t  tid = thread->osthread()->thread_id();
4414   int i;
4415   char *s;
4416   char stat[2048];
4417   int statlen;
4418   char proc_name[64];
4419   int count;
4420   long sys_time, user_time;
4421   char string[64];
4422   char cdummy;
4423   int idummy;
4424   long ldummy;
4425   FILE *fp;
4426 
4427   // We first try accessing /proc/<pid>/cpu since this is faster to
4428   // process.  If this file is not present (linux kernels 2.5 and above)
4429   // then we open /proc/<pid>/stat.
4430   if ( proc_pid_cpu_avail ) {
4431     sprintf(proc_name, "/proc/%d/cpu", tid);
4432     fp =  fopen(proc_name, "r");
4433     if ( fp != NULL ) {
4434       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4435       fclose(fp);
4436       if ( count != 3 ) return -1;
4437 
4438       if (user_sys_cpu_time) {
4439         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4440       } else {
4441         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4442       }
4443     }
4444     else proc_pid_cpu_avail = false;
4445   }
4446 
4447   // The /proc/<tid>/stat aggregates per-process usage on
4448   // new Linux kernels 2.6+ where NPTL is supported.
4449   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4450   // See bug 6328462.
4451   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4452   // and possibly in some other cases, so we check its availability.
4453   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4454     // This is executed only once
4455     proc_task_unchecked = false;
4456     fp = fopen("/proc/self/task", "r");
4457     if (fp != NULL) {
4458       proc_stat_path = "/proc/self/task/%d/stat";
4459       fclose(fp);
4460     }
4461   }
4462 
4463   sprintf(proc_name, proc_stat_path, tid);
4464   fp = fopen(proc_name, "r");
4465   if ( fp == NULL ) return -1;
4466   statlen = fread(stat, 1, 2047, fp);
4467   stat[statlen] = '\0';
4468   fclose(fp);
4469 
4470   // Skip pid and the command string. Note that we could be dealing with
4471   // weird command names, e.g. user could decide to rename java launcher
4472   // to "java 1.4.2 :)", then the stat file would look like
4473   //                1234 (java 1.4.2 :)) R ... ...
4474   // We don't really need to know the command string, just find the last
4475   // occurrence of ")" and then start parsing from there. See bug 4726580.
4476   s = strrchr(stat, ')');
4477   i = 0;
4478   if (s == NULL ) return -1;
4479 
4480   // Skip blank chars
4481   do s++; while (isspace(*s));
4482 
4483   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4484                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4485                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4486                  &user_time, &sys_time);
4487   if ( count != 13 ) return -1;
4488   if (user_sys_cpu_time) {
4489     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4490   } else {
4491     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4492   }
4493 }
4494 
4495 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4496   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4497   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4498   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4499   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4500 }
4501 
4502 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4503   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4504   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4505   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4506   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4507 }
4508 
4509 bool os::is_thread_cpu_time_supported() {
4510   return true;
4511 }
4512 
4513 // System loadavg support.  Returns -1 if load average cannot be obtained.
4514 // Linux doesn't yet have a (official) notion of processor sets,
4515 // so just return the system wide load average.
4516 int os::loadavg(double loadavg[], int nelem) {
4517   return ::getloadavg(loadavg, nelem);
4518 }
4519 
4520 void os::pause() {
4521   char filename[MAX_PATH];
4522   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4523     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4524   } else {
4525     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4526   }
4527 
4528   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4529   if (fd != -1) {
4530     struct stat buf;
4531     close(fd);
4532     while (::stat(filename, &buf) == 0) {
4533       (void)::poll(NULL, 0, 100);
4534     }
4535   } else {
4536     jio_fprintf(stderr,
4537       "Could not open pause file '%s', continuing immediately.\n", filename);
4538   }
4539 }
4540 
4541 extern "C" {
4542 
4543 /**
4544  * NOTE: the following code is to keep the green threads code
4545  * in the libjava.so happy. Once the green threads is removed,
4546  * these code will no longer be needed.
4547  */
4548 int
4549 jdk_waitpid(pid_t pid, int* status, int options) {
4550     return waitpid(pid, status, options);
4551 }
4552 
4553 int
4554 fork1() {
4555     return fork();
4556 }
4557 
4558 int
4559 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4560     return sem_init(sem, pshared, value);
4561 }
4562 
4563 int
4564 jdk_sem_post(sem_t *sem) {
4565     return sem_post(sem);
4566 }
4567 
4568 int
4569 jdk_sem_wait(sem_t *sem) {
4570     return sem_wait(sem);
4571 }
4572 
4573 int
4574 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4575     return pthread_sigmask(how , newmask, oldmask);
4576 }
4577 
4578 }
4579 
4580 // Refer to the comments in os_solaris.cpp park-unpark.
4581 //
4582 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4583 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4584 // For specifics regarding the bug see GLIBC BUGID 261237 :
4585 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4586 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4587 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4588 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4589 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4590 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4591 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4592 // of libpthread avoids the problem, but isn't practical.
4593 //
4594 // Possible remedies:
4595 //
4596 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4597 //      This is palliative and probabilistic, however.  If the thread is preempted
4598 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4599 //      than the minimum period may have passed, and the abstime may be stale (in the
4600 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4601 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4602 //
4603 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4604 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4605 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4606 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4607 //      thread.
4608 //
4609 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4610 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4611 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4612 //      This also works well.  In fact it avoids kernel-level scalability impediments
4613 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4614 //      timers in a graceful fashion.
4615 //
4616 // 4.   When the abstime value is in the past it appears that control returns
4617 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4618 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4619 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4620 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4621 //      It may be possible to avoid reinitialization by checking the return
4622 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4623 //      condvar we must establish the invariant that cond_signal() is only called
4624 //      within critical sections protected by the adjunct mutex.  This prevents
4625 //      cond_signal() from "seeing" a condvar that's in the midst of being
4626 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4627 //      desirable signal-after-unlock optimization that avoids futile context switching.
4628 //
4629 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4630 //      structure when a condvar is used or initialized.  cond_destroy()  would
4631 //      release the helper structure.  Our reinitialize-after-timedwait fix
4632 //      put excessive stress on malloc/free and locks protecting the c-heap.
4633 //
4634 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4635 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4636 // and only enabling the work-around for vulnerable environments.
4637 
4638 // utility to compute the abstime argument to timedwait:
4639 // millis is the relative timeout time
4640 // abstime will be the absolute timeout time
4641 // TODO: replace compute_abstime() with unpackTime()
4642 
4643 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4644   if (millis < 0)  millis = 0;
4645   struct timeval now;
4646   int status = gettimeofday(&now, NULL);
4647   assert(status == 0, "gettimeofday");
4648   jlong seconds = millis / 1000;
4649   millis %= 1000;
4650   if (seconds > 50000000) { // see man cond_timedwait(3T)
4651     seconds = 50000000;
4652   }
4653   abstime->tv_sec = now.tv_sec  + seconds;
4654   long       usec = now.tv_usec + millis * 1000;
4655   if (usec >= 1000000) {
4656     abstime->tv_sec += 1;
4657     usec -= 1000000;
4658   }
4659   abstime->tv_nsec = usec * 1000;
4660   return abstime;
4661 }
4662 
4663 
4664 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4665 // Conceptually TryPark() should be equivalent to park(0).
4666 
4667 int os::PlatformEvent::TryPark() {
4668   for (;;) {
4669     const int v = _Event ;
4670     guarantee ((v == 0) || (v == 1), "invariant") ;
4671     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4672   }
4673 }
4674 
4675 void os::PlatformEvent::park() {       // AKA "down()"
4676   // Invariant: Only the thread associated with the Event/PlatformEvent
4677   // may call park().
4678   // TODO: assert that _Assoc != NULL or _Assoc == Self
4679   int v ;
4680   for (;;) {
4681       v = _Event ;
4682       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4683   }
4684   guarantee (v >= 0, "invariant") ;
4685   if (v == 0) {
4686      // Do this the hard way by blocking ...
4687      int status = pthread_mutex_lock(_mutex);
4688      assert_status(status == 0, status, "mutex_lock");
4689      guarantee (_nParked == 0, "invariant") ;
4690      ++ _nParked ;
4691      while (_Event < 0) {
4692         status = pthread_cond_wait(_cond, _mutex);
4693         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4694         // Treat this the same as if the wait was interrupted
4695         if (status == ETIME) { status = EINTR; }
4696         assert_status(status == 0 || status == EINTR, status, "cond_wait");
4697      }
4698      -- _nParked ;
4699 
4700     // In theory we could move the ST of 0 into _Event past the unlock(),
4701     // but then we'd need a MEMBAR after the ST.
4702     _Event = 0 ;
4703      status = pthread_mutex_unlock(_mutex);
4704      assert_status(status == 0, status, "mutex_unlock");
4705   }
4706   guarantee (_Event >= 0, "invariant") ;
4707 }
4708 
4709 int os::PlatformEvent::park(jlong millis) {
4710   guarantee (_nParked == 0, "invariant") ;
4711 
4712   int v ;
4713   for (;;) {
4714       v = _Event ;
4715       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4716   }
4717   guarantee (v >= 0, "invariant") ;
4718   if (v != 0) return OS_OK ;
4719 
4720   // We do this the hard way, by blocking the thread.
4721   // Consider enforcing a minimum timeout value.
4722   struct timespec abst;
4723   compute_abstime(&abst, millis);
4724 
4725   int ret = OS_TIMEOUT;
4726   int status = pthread_mutex_lock(_mutex);
4727   assert_status(status == 0, status, "mutex_lock");
4728   guarantee (_nParked == 0, "invariant") ;
4729   ++_nParked ;
4730 
4731   // Object.wait(timo) will return because of
4732   // (a) notification
4733   // (b) timeout
4734   // (c) thread.interrupt
4735   //
4736   // Thread.interrupt and object.notify{All} both call Event::set.
4737   // That is, we treat thread.interrupt as a special case of notification.
4738   // The underlying Solaris implementation, cond_timedwait, admits
4739   // spurious/premature wakeups, but the JLS/JVM spec prevents the
4740   // JVM from making those visible to Java code.  As such, we must
4741   // filter out spurious wakeups.  We assume all ETIME returns are valid.
4742   //
4743   // TODO: properly differentiate simultaneous notify+interrupt.
4744   // In that case, we should propagate the notify to another waiter.
4745 
4746   while (_Event < 0) {
4747     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4748     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4749       pthread_cond_destroy (_cond);
4750       pthread_cond_init (_cond, NULL) ;
4751     }
4752     assert_status(status == 0 || status == EINTR ||
4753                   status == ETIME || status == ETIMEDOUT,
4754                   status, "cond_timedwait");
4755     if (!FilterSpuriousWakeups) break ;                 // previous semantics
4756     if (status == ETIME || status == ETIMEDOUT) break ;
4757     // We consume and ignore EINTR and spurious wakeups.
4758   }
4759   --_nParked ;
4760   if (_Event >= 0) {
4761      ret = OS_OK;
4762   }
4763   _Event = 0 ;
4764   status = pthread_mutex_unlock(_mutex);
4765   assert_status(status == 0, status, "mutex_unlock");
4766   assert (_nParked == 0, "invariant") ;
4767   return ret;
4768 }
4769 
4770 void os::PlatformEvent::unpark() {
4771   int v, AnyWaiters ;
4772   for (;;) {
4773       v = _Event ;
4774       if (v > 0) {
4775          // The LD of _Event could have reordered or be satisfied
4776          // by a read-aside from this processor's write buffer.
4777          // To avoid problems execute a barrier and then
4778          // ratify the value.
4779          OrderAccess::fence() ;
4780          if (_Event == v) return ;
4781          continue ;
4782       }
4783       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4784   }
4785   if (v < 0) {
4786      // Wait for the thread associated with the event to vacate
4787      int status = pthread_mutex_lock(_mutex);
4788      assert_status(status == 0, status, "mutex_lock");
4789      AnyWaiters = _nParked ;
4790      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4791      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4792         AnyWaiters = 0 ;
4793         pthread_cond_signal (_cond);
4794      }
4795      status = pthread_mutex_unlock(_mutex);
4796      assert_status(status == 0, status, "mutex_unlock");
4797      if (AnyWaiters != 0) {
4798         status = pthread_cond_signal(_cond);
4799         assert_status(status == 0, status, "cond_signal");
4800      }
4801   }
4802 
4803   // Note that we signal() _after dropping the lock for "immortal" Events.
4804   // This is safe and avoids a common class of  futile wakeups.  In rare
4805   // circumstances this can cause a thread to return prematurely from
4806   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4807   // simply re-test the condition and re-park itself.
4808 }
4809 
4810 
4811 // JSR166
4812 // -------------------------------------------------------
4813 
4814 /*
4815  * The solaris and linux implementations of park/unpark are fairly
4816  * conservative for now, but can be improved. They currently use a
4817  * mutex/condvar pair, plus a a count.
4818  * Park decrements count if > 0, else does a condvar wait.  Unpark
4819  * sets count to 1 and signals condvar.  Only one thread ever waits
4820  * on the condvar. Contention seen when trying to park implies that someone
4821  * is unparking you, so don't wait. And spurious returns are fine, so there
4822  * is no need to track notifications.
4823  */
4824 
4825 
4826 #define NANOSECS_PER_SEC 1000000000
4827 #define NANOSECS_PER_MILLISEC 1000000
4828 #define MAX_SECS 100000000
4829 /*
4830  * This code is common to linux and solaris and will be moved to a
4831  * common place in dolphin.
4832  *
4833  * The passed in time value is either a relative time in nanoseconds
4834  * or an absolute time in milliseconds. Either way it has to be unpacked
4835  * into suitable seconds and nanoseconds components and stored in the
4836  * given timespec structure.
4837  * Given time is a 64-bit value and the time_t used in the timespec is only
4838  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4839  * overflow if times way in the future are given. Further on Solaris versions
4840  * prior to 10 there is a restriction (see cond_timedwait) that the specified
4841  * number of seconds, in abstime, is less than current_time  + 100,000,000.
4842  * As it will be 28 years before "now + 100000000" will overflow we can
4843  * ignore overflow and just impose a hard-limit on seconds using the value
4844  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4845  * years from "now".
4846  */
4847 
4848 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4849   assert (time > 0, "convertTime");
4850 
4851   struct timeval now;
4852   int status = gettimeofday(&now, NULL);
4853   assert(status == 0, "gettimeofday");
4854 
4855   time_t max_secs = now.tv_sec + MAX_SECS;
4856 
4857   if (isAbsolute) {
4858     jlong secs = time / 1000;
4859     if (secs > max_secs) {
4860       absTime->tv_sec = max_secs;
4861     }
4862     else {
4863       absTime->tv_sec = secs;
4864     }
4865     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4866   }
4867   else {
4868     jlong secs = time / NANOSECS_PER_SEC;
4869     if (secs >= MAX_SECS) {
4870       absTime->tv_sec = max_secs;
4871       absTime->tv_nsec = 0;
4872     }
4873     else {
4874       absTime->tv_sec = now.tv_sec + secs;
4875       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4876       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4877         absTime->tv_nsec -= NANOSECS_PER_SEC;
4878         ++absTime->tv_sec; // note: this must be <= max_secs
4879       }
4880     }
4881   }
4882   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4883   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4884   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4885   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4886 }
4887 
4888 void Parker::park(bool isAbsolute, jlong time) {
4889   // Optional fast-path check:
4890   // Return immediately if a permit is available.
4891   if (_counter > 0) {
4892       _counter = 0 ;
4893       OrderAccess::fence();
4894       return ;
4895   }
4896 
4897   Thread* thread = Thread::current();
4898   assert(thread->is_Java_thread(), "Must be JavaThread");
4899   JavaThread *jt = (JavaThread *)thread;
4900 
4901   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4902   // Check interrupt before trying to wait
4903   if (Thread::is_interrupted(thread, false)) {
4904     return;
4905   }
4906 
4907   // Next, demultiplex/decode time arguments
4908   timespec absTime;
4909   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4910     return;
4911   }
4912   if (time > 0) {
4913     unpackTime(&absTime, isAbsolute, time);
4914   }
4915 
4916 
4917   // Enter safepoint region
4918   // Beware of deadlocks such as 6317397.
4919   // The per-thread Parker:: mutex is a classic leaf-lock.
4920   // In particular a thread must never block on the Threads_lock while
4921   // holding the Parker:: mutex.  If safepoints are pending both the
4922   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4923   ThreadBlockInVM tbivm(jt);
4924 
4925   // Don't wait if cannot get lock since interference arises from
4926   // unblocking.  Also. check interrupt before trying wait
4927   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4928     return;
4929   }
4930 
4931   int status ;
4932   if (_counter > 0)  { // no wait needed
4933     _counter = 0;
4934     status = pthread_mutex_unlock(_mutex);
4935     assert (status == 0, "invariant") ;
4936     OrderAccess::fence();
4937     return;
4938   }
4939 
4940 #ifdef ASSERT
4941   // Don't catch signals while blocked; let the running threads have the signals.
4942   // (This allows a debugger to break into the running thread.)
4943   sigset_t oldsigs;
4944   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4945   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4946 #endif
4947 
4948   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4949   jt->set_suspend_equivalent();
4950   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4951 
4952   if (time == 0) {
4953     status = pthread_cond_wait (_cond, _mutex) ;
4954   } else {
4955     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4956     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4957       pthread_cond_destroy (_cond) ;
4958       pthread_cond_init    (_cond, NULL);
4959     }
4960   }
4961   assert_status(status == 0 || status == EINTR ||
4962                 status == ETIME || status == ETIMEDOUT,
4963                 status, "cond_timedwait");
4964 
4965 #ifdef ASSERT
4966   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4967 #endif
4968 
4969   _counter = 0 ;
4970   status = pthread_mutex_unlock(_mutex) ;
4971   assert_status(status == 0, status, "invariant") ;
4972   // If externally suspended while waiting, re-suspend
4973   if (jt->handle_special_suspend_equivalent_condition()) {
4974     jt->java_suspend_self();
4975   }
4976 
4977   OrderAccess::fence();
4978 }
4979 
4980 void Parker::unpark() {
4981   int s, status ;
4982   status = pthread_mutex_lock(_mutex);
4983   assert (status == 0, "invariant") ;
4984   s = _counter;
4985   _counter = 1;
4986   if (s < 1) {
4987      if (WorkAroundNPTLTimedWaitHang) {
4988         status = pthread_cond_signal (_cond) ;
4989         assert (status == 0, "invariant") ;
4990         status = pthread_mutex_unlock(_mutex);
4991         assert (status == 0, "invariant") ;
4992      } else {
4993         status = pthread_mutex_unlock(_mutex);
4994         assert (status == 0, "invariant") ;
4995         status = pthread_cond_signal (_cond) ;
4996         assert (status == 0, "invariant") ;
4997      }
4998   } else {
4999     pthread_mutex_unlock(_mutex);
5000     assert (status == 0, "invariant") ;
5001   }
5002 }
5003 
5004 
5005 extern char** environ;
5006 
5007 #ifndef __NR_fork
5008 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5009 #endif
5010 
5011 #ifndef __NR_execve
5012 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5013 #endif
5014 
5015 // Run the specified command in a separate process. Return its exit value,
5016 // or -1 on failure (e.g. can't fork a new process).
5017 // Unlike system(), this function can be called from signal handler. It
5018 // doesn't block SIGINT et al.
5019 int os::fork_and_exec(char* cmd) {
5020   const char * argv[4] = {"sh", "-c", cmd, NULL};
5021 
5022   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5023   // pthread_atfork handlers and reset pthread library. All we need is a
5024   // separate process to execve. Make a direct syscall to fork process.
5025   // On IA64 there's no fork syscall, we have to use fork() and hope for
5026   // the best...
5027   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5028               IA64_ONLY(fork();)
5029 
5030   if (pid < 0) {
5031     // fork failed
5032     return -1;
5033 
5034   } else if (pid == 0) {
5035     // child process
5036 
5037     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5038     // first to kill every thread on the thread list. Because this list is
5039     // not reset by fork() (see notes above), execve() will instead kill
5040     // every thread in the parent process. We know this is the only thread
5041     // in the new process, so make a system call directly.
5042     // IA64 should use normal execve() from glibc to match the glibc fork()
5043     // above.
5044     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5045     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5046 
5047     // execve failed
5048     _exit(-1);
5049 
5050   } else  {
5051     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5052     // care about the actual exit code, for now.
5053 
5054     int status;
5055 
5056     // Wait for the child process to exit.  This returns immediately if
5057     // the child has already exited. */
5058     while (waitpid(pid, &status, 0) < 0) {
5059         switch (errno) {
5060         case ECHILD: return 0;
5061         case EINTR: break;
5062         default: return -1;
5063         }
5064     }
5065 
5066     if (WIFEXITED(status)) {
5067        // The child exited normally; get its exit code.
5068        return WEXITSTATUS(status);
5069     } else if (WIFSIGNALED(status)) {
5070        // The child exited because of a signal
5071        // The best value to return is 0x80 + signal number,
5072        // because that is what all Unix shells do, and because
5073        // it allows callers to distinguish between process exit and
5074        // process death by signal.
5075        return 0x80 + WTERMSIG(status);
5076     } else {
5077        // Unknown exit code; pass it through
5078        return status;
5079     }
5080   }
5081 }
5082 
5083 // is_headless_jre()
5084 //
5085 // Test for the existence of libmawt in motif21 or xawt directories
5086 // in order to report if we are running in a headless jre
5087 //
5088 bool os::is_headless_jre() {
5089     struct stat statbuf;
5090     char buf[MAXPATHLEN];
5091     char libmawtpath[MAXPATHLEN];
5092     const char *xawtstr  = "/xawt/libmawt.so";
5093     const char *motifstr = "/motif21/libmawt.so";
5094     char *p;
5095 
5096     // Get path to libjvm.so
5097     os::jvm_path(buf, sizeof(buf));
5098 
5099     // Get rid of libjvm.so
5100     p = strrchr(buf, '/');
5101     if (p == NULL) return false;
5102     else *p = '\0';
5103 
5104     // Get rid of client or server
5105     p = strrchr(buf, '/');
5106     if (p == NULL) return false;
5107     else *p = '\0';
5108 
5109     // check xawt/libmawt.so
5110     strcpy(libmawtpath, buf);
5111     strcat(libmawtpath, xawtstr);
5112     if (::stat(libmawtpath, &statbuf) == 0) return false;
5113 
5114     // check motif21/libmawt.so
5115     strcpy(libmawtpath, buf);
5116     strcat(libmawtpath, motifstr);
5117     if (::stat(libmawtpath, &statbuf) == 0) return false;
5118 
5119     return true;
5120 }
5121