1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "asm/codeBuffer.hpp"
  29 #include "runtime/icache.hpp"
  30 #include "runtime/os.hpp"
  31 #ifdef TARGET_ARCH_x86
  32 # include "assembler_x86.inline.hpp"
  33 #endif
  34 #ifdef TARGET_ARCH_sparc
  35 # include "assembler_sparc.inline.hpp"
  36 #endif
  37 #ifdef TARGET_ARCH_zero
  38 # include "assembler_zero.inline.hpp"
  39 #endif
  40 
  41 
  42 // Implementation of AbstractAssembler
  43 //
  44 // The AbstractAssembler is generating code into a CodeBuffer. To make code generation faster,
  45 // the assembler keeps a copy of the code buffers boundaries & modifies them when
  46 // emitting bytes rather than using the code buffers accessor functions all the time.
  47 // The code buffer is updated via set_code_end(...) after emitting a whole instruction.
  48 
  49 AbstractAssembler::AbstractAssembler(CodeBuffer* code) {
  50   if (code == NULL)  return;
  51   CodeSection* cs = code->insts();
  52   cs->clear_mark();   // new assembler kills old mark
  53   _code_section = cs;
  54   _code_begin  = cs->start();
  55   _code_limit  = cs->limit();
  56   _code_pos    = cs->end();
  57   _oop_recorder= code->oop_recorder();
  58   if (_code_begin == NULL)  {
  59     vm_exit_out_of_memory(0, err_msg("CodeCache: no room for %s",
  60                                      code->name()));
  61   }
  62 }
  63 
  64 void AbstractAssembler::set_code_section(CodeSection* cs) {
  65   assert(cs->outer() == code_section()->outer(), "sanity");
  66   assert(cs->is_allocated(), "need to pre-allocate this section");
  67   cs->clear_mark();  // new assembly into this section kills old mark
  68   _code_section = cs;
  69   _code_begin  = cs->start();
  70   _code_limit  = cs->limit();
  71   _code_pos    = cs->end();
  72 }
  73 
  74 // Inform CodeBuffer that incoming code and relocation will be for stubs
  75 address AbstractAssembler::start_a_stub(int required_space) {
  76   CodeBuffer*  cb = code();
  77   CodeSection* cs = cb->stubs();
  78   assert(_code_section == cb->insts(), "not in insts?");
  79   sync();
  80   if (cs->maybe_expand_to_ensure_remaining(required_space)
  81       && cb->blob() == NULL) {
  82     return NULL;
  83   }
  84   set_code_section(cs);
  85   return pc();
  86 }
  87 
  88 // Inform CodeBuffer that incoming code and relocation will be code
  89 // Should not be called if start_a_stub() returned NULL
  90 void AbstractAssembler::end_a_stub() {
  91   assert(_code_section == code()->stubs(), "not in stubs?");
  92   sync();
  93   set_code_section(code()->insts());
  94 }
  95 
  96 // Inform CodeBuffer that incoming code and relocation will be for stubs
  97 address AbstractAssembler::start_a_const(int required_space, int required_align) {
  98   CodeBuffer*  cb = code();
  99   CodeSection* cs = cb->consts();
 100   assert(_code_section == cb->insts(), "not in insts?");
 101   sync();
 102   address end = cs->end();
 103   int pad = -(intptr_t)end & (required_align-1);
 104   if (cs->maybe_expand_to_ensure_remaining(pad + required_space)) {
 105     if (cb->blob() == NULL)  return NULL;
 106     end = cs->end();  // refresh pointer
 107   }
 108   if (pad > 0) {
 109     while (--pad >= 0) { *end++ = 0; }
 110     cs->set_end(end);
 111   }
 112   set_code_section(cs);
 113   return end;
 114 }
 115 
 116 // Inform CodeBuffer that incoming code and relocation will be code
 117 // Should not be called if start_a_const() returned NULL
 118 void AbstractAssembler::end_a_const() {
 119   assert(_code_section == code()->consts(), "not in consts?");
 120   sync();
 121   set_code_section(code()->insts());
 122 }
 123 
 124 
 125 void AbstractAssembler::flush() {
 126   sync();
 127   ICache::invalidate_range(addr_at(0), offset());
 128 }
 129 
 130 
 131 void AbstractAssembler::a_byte(int x) {
 132   emit_byte(x);
 133 }
 134 
 135 
 136 void AbstractAssembler::a_long(jint x) {
 137   emit_long(x);
 138 }
 139 
 140 // Labels refer to positions in the (to be) generated code.  There are bound
 141 // and unbound
 142 //
 143 // Bound labels refer to known positions in the already generated code.
 144 // offset() is the position the label refers to.
 145 //
 146 // Unbound labels refer to unknown positions in the code to be generated; it
 147 // may contain a list of unresolved displacements that refer to it
 148 #ifndef PRODUCT
 149 void AbstractAssembler::print(Label& L) {
 150   if (L.is_bound()) {
 151     tty->print_cr("bound label to %d|%d", L.loc_pos(), L.loc_sect());
 152   } else if (L.is_unbound()) {
 153     L.print_instructions((MacroAssembler*)this);
 154   } else {
 155     tty->print_cr("label in inconsistent state (loc = %d)", L.loc());
 156   }
 157 }
 158 #endif // PRODUCT
 159 
 160 
 161 void AbstractAssembler::bind(Label& L) {
 162   if (L.is_bound()) {
 163     // Assembler can bind a label more than once to the same place.
 164     guarantee(L.loc() == locator(), "attempt to redefine label");
 165     return;
 166   }
 167   L.bind_loc(locator());
 168   L.patch_instructions((MacroAssembler*)this);
 169 }
 170 
 171 void AbstractAssembler::generate_stack_overflow_check( int frame_size_in_bytes) {
 172   if (UseStackBanging) {
 173     // Each code entry causes one stack bang n pages down the stack where n
 174     // is configurable by StackBangPages.  The setting depends on the maximum
 175     // depth of VM call stack or native before going back into java code,
 176     // since only java code can raise a stack overflow exception using the
 177     // stack banging mechanism.  The VM and native code does not detect stack
 178     // overflow.
 179     // The code in JavaCalls::call() checks that there is at least n pages
 180     // available, so all entry code needs to do is bang once for the end of
 181     // this shadow zone.
 182     // The entry code may need to bang additional pages if the framesize
 183     // is greater than a page.
 184 
 185     const int page_size = os::vm_page_size();
 186     int bang_end = StackShadowPages*page_size;
 187 
 188     // This is how far the previous frame's stack banging extended.
 189     const int bang_end_safe = bang_end;
 190 
 191     if (frame_size_in_bytes > page_size) {
 192       bang_end += frame_size_in_bytes;
 193     }
 194 
 195     int bang_offset = bang_end_safe;
 196     while (bang_offset <= bang_end) {
 197       // Need at least one stack bang at end of shadow zone.
 198       bang_stack_with_offset(bang_offset);
 199       bang_offset += page_size;
 200     }
 201   } // end (UseStackBanging)
 202 }
 203 
 204 void Label::add_patch_at(CodeBuffer* cb, int branch_loc) {
 205   assert(_loc == -1, "Label is unbound");
 206   if (_patch_index < PatchCacheSize) {
 207     _patches[_patch_index] = branch_loc;
 208   } else {
 209     if (_patch_overflow == NULL) {
 210       _patch_overflow = cb->create_patch_overflow();
 211     }
 212     _patch_overflow->push(branch_loc);
 213   }
 214   ++_patch_index;
 215 }
 216 
 217 void Label::patch_instructions(MacroAssembler* masm) {
 218   assert(is_bound(), "Label is bound");
 219   CodeBuffer* cb = masm->code();
 220   int target_sect = CodeBuffer::locator_sect(loc());
 221   address target = cb->locator_address(loc());
 222   while (_patch_index > 0) {
 223     --_patch_index;
 224     int branch_loc;
 225     if (_patch_index >= PatchCacheSize) {
 226       branch_loc = _patch_overflow->pop();
 227     } else {
 228       branch_loc = _patches[_patch_index];
 229     }
 230     int branch_sect = CodeBuffer::locator_sect(branch_loc);
 231     address branch = cb->locator_address(branch_loc);
 232     if (branch_sect == CodeBuffer::SECT_CONSTS) {
 233       // The thing to patch is a constant word.
 234       *(address*)branch = target;
 235       continue;
 236     }
 237 
 238 #ifdef ASSERT
 239     // Cross-section branches only work if the
 240     // intermediate section boundaries are frozen.
 241     if (target_sect != branch_sect) {
 242       for (int n = MIN2(target_sect, branch_sect),
 243                nlimit = (target_sect + branch_sect) - n;
 244            n < nlimit; n++) {
 245         CodeSection* cs = cb->code_section(n);
 246         assert(cs->is_frozen(), "cross-section branch needs stable offsets");
 247       }
 248     }
 249 #endif //ASSERT
 250 
 251     // Push the target offset into the branch instruction.
 252     masm->pd_patch_instruction(branch, target);
 253   }
 254 }
 255 
 256 struct DelayedConstant {
 257   typedef void (*value_fn_t)();
 258   BasicType type;
 259   intptr_t value;
 260   value_fn_t value_fn;
 261   // This limit of 20 is generous for initial uses.
 262   // The limit needs to be large enough to store the field offsets
 263   // into classes which do not have statically fixed layouts.
 264   // (Initial use is for method handle object offsets.)
 265   // Look for uses of "delayed_value" in the source code
 266   // and make sure this number is generous enough to handle all of them.
 267   enum { DC_LIMIT = 20 };
 268   static DelayedConstant delayed_constants[DC_LIMIT];
 269   static DelayedConstant* add(BasicType type, value_fn_t value_fn);
 270   bool match(BasicType t, value_fn_t cfn) {
 271     return type == t && value_fn == cfn;
 272   }
 273   static void update_all();
 274 };
 275 
 276 DelayedConstant DelayedConstant::delayed_constants[DC_LIMIT];
 277 // Default C structure initialization rules have the following effect here:
 278 // = { { (BasicType)0, (intptr_t)NULL }, ... };
 279 
 280 DelayedConstant* DelayedConstant::add(BasicType type,
 281                                       DelayedConstant::value_fn_t cfn) {
 282   for (int i = 0; i < DC_LIMIT; i++) {
 283     DelayedConstant* dcon = &delayed_constants[i];
 284     if (dcon->match(type, cfn))
 285       return dcon;
 286     if (dcon->value_fn == NULL) {
 287       // (cmpxchg not because this is multi-threaded but because I'm paranoid)
 288       if (Atomic::cmpxchg_ptr(CAST_FROM_FN_PTR(void*, cfn), &dcon->value_fn, NULL) == NULL) {
 289         dcon->type = type;
 290         return dcon;
 291       }
 292     }
 293   }
 294   // If this assert is hit (in pre-integration testing!) then re-evaluate
 295   // the comment on the definition of DC_LIMIT.
 296   guarantee(false, "too many delayed constants");
 297   return NULL;
 298 }
 299 
 300 void DelayedConstant::update_all() {
 301   for (int i = 0; i < DC_LIMIT; i++) {
 302     DelayedConstant* dcon = &delayed_constants[i];
 303     if (dcon->value_fn != NULL && dcon->value == 0) {
 304       typedef int     (*int_fn_t)();
 305       typedef address (*address_fn_t)();
 306       switch (dcon->type) {
 307       case T_INT:     dcon->value = (intptr_t) ((int_fn_t)    dcon->value_fn)(); break;
 308       case T_ADDRESS: dcon->value = (intptr_t) ((address_fn_t)dcon->value_fn)(); break;
 309       }
 310     }
 311   }
 312 }
 313 
 314 intptr_t* AbstractAssembler::delayed_value_addr(int(*value_fn)()) {
 315   DelayedConstant* dcon = DelayedConstant::add(T_INT, (DelayedConstant::value_fn_t) value_fn);
 316   return &dcon->value;
 317 }
 318 intptr_t* AbstractAssembler::delayed_value_addr(address(*value_fn)()) {
 319   DelayedConstant* dcon = DelayedConstant::add(T_ADDRESS, (DelayedConstant::value_fn_t) value_fn);
 320   return &dcon->value;
 321 }
 322 void AbstractAssembler::update_delayed_values() {
 323   DelayedConstant::update_all();
 324 }
 325 
 326 
 327 
 328 
 329 void AbstractAssembler::block_comment(const char* comment) {
 330   if (sect() == CodeBuffer::SECT_INSTS) {
 331     code_section()->outer()->block_comment(offset(), comment);
 332   }
 333 }
 334 
 335 bool MacroAssembler::needs_explicit_null_check(intptr_t offset) {
 336   // Exception handler checks the nmethod's implicit null checks table
 337   // only when this method returns false.
 338 #ifdef _LP64
 339   if (UseCompressedOops && Universe::narrow_oop_base() != NULL) {
 340     assert (Universe::heap() != NULL, "java heap should be initialized");
 341     // The first page after heap_base is unmapped and
 342     // the 'offset' is equal to [heap_base + offset] for
 343     // narrow oop implicit null checks.
 344     uintptr_t base = (uintptr_t)Universe::narrow_oop_base();
 345     if ((uintptr_t)offset >= base) {
 346       // Normalize offset for the next check.
 347       offset = (intptr_t)(pointer_delta((void*)offset, (void*)base, 1));
 348     }
 349   }
 350 #endif
 351   return offset < 0 || os::vm_page_size() <= offset;
 352 }
 353 
 354 #ifndef PRODUCT
 355 void Label::print_instructions(MacroAssembler* masm) const {
 356   CodeBuffer* cb = masm->code();
 357   for (int i = 0; i < _patch_index; ++i) {
 358     int branch_loc;
 359     if (i >= PatchCacheSize) {
 360       branch_loc = _patch_overflow->at(i - PatchCacheSize);
 361     } else {
 362       branch_loc = _patches[i];
 363     }
 364     int branch_pos  = CodeBuffer::locator_pos(branch_loc);
 365     int branch_sect = CodeBuffer::locator_sect(branch_loc);
 366     address branch = cb->locator_address(branch_loc);
 367     tty->print_cr("unbound label");
 368     tty->print("@ %d|%d ", branch_pos, branch_sect);
 369     if (branch_sect == CodeBuffer::SECT_CONSTS) {
 370       tty->print_cr(PTR_FORMAT, *(address*)branch);
 371       continue;
 372     }
 373     masm->pd_print_patched_instruction(branch);
 374     tty->cr();
 375   }
 376 }
 377 #endif // ndef PRODUCT