1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_IR.cpp.incl"
  27 
  28 
  29 // Implementation of XHandlers
  30 //
  31 // Note: This code could eventually go away if we are
  32 //       just using the ciExceptionHandlerStream.
  33 
  34 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
  35   ciExceptionHandlerStream s(method);
  36   while (!s.is_done()) {
  37     _list.append(new XHandler(s.handler()));
  38     s.next();
  39   }
  40   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
  41 }
  42 
  43 // deep copy of all XHandler contained in list
  44 XHandlers::XHandlers(XHandlers* other) :
  45   _list(other->length())
  46 {
  47   for (int i = 0; i < other->length(); i++) {
  48     _list.append(new XHandler(other->handler_at(i)));
  49   }
  50 }
  51 
  52 // Returns whether a particular exception type can be caught.  Also
  53 // returns true if klass is unloaded or any exception handler
  54 // classes are unloaded.  type_is_exact indicates whether the throw
  55 // is known to be exactly that class or it might throw a subtype.
  56 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
  57   // the type is unknown so be conservative
  58   if (!klass->is_loaded()) {
  59     return true;
  60   }
  61 
  62   for (int i = 0; i < length(); i++) {
  63     XHandler* handler = handler_at(i);
  64     if (handler->is_catch_all()) {
  65       // catch of ANY
  66       return true;
  67     }
  68     ciInstanceKlass* handler_klass = handler->catch_klass();
  69     // if it's unknown it might be catchable
  70     if (!handler_klass->is_loaded()) {
  71       return true;
  72     }
  73     // if the throw type is definitely a subtype of the catch type
  74     // then it can be caught.
  75     if (klass->is_subtype_of(handler_klass)) {
  76       return true;
  77     }
  78     if (!type_is_exact) {
  79       // If the type isn't exactly known then it can also be caught by
  80       // catch statements where the inexact type is a subtype of the
  81       // catch type.
  82       // given: foo extends bar extends Exception
  83       // throw bar can be caught by catch foo, catch bar, and catch
  84       // Exception, however it can't be caught by any handlers without
  85       // bar in its type hierarchy.
  86       if (handler_klass->is_subtype_of(klass)) {
  87         return true;
  88       }
  89     }
  90   }
  91 
  92   return false;
  93 }
  94 
  95 
  96 bool XHandlers::equals(XHandlers* others) const {
  97   if (others == NULL) return false;
  98   if (length() != others->length()) return false;
  99 
 100   for (int i = 0; i < length(); i++) {
 101     if (!handler_at(i)->equals(others->handler_at(i))) return false;
 102   }
 103   return true;
 104 }
 105 
 106 bool XHandler::equals(XHandler* other) const {
 107   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
 108 
 109   if (entry_pco() != other->entry_pco()) return false;
 110   if (scope_count() != other->scope_count()) return false;
 111   if (_desc != other->_desc) return false;
 112 
 113   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
 114   return true;
 115 }
 116 
 117 
 118 // Implementation of IRScope
 119 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
 120   GraphBuilder gm(compilation, this);
 121   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
 122   if (compilation->bailed_out()) return NULL;
 123   return gm.start();
 124 }
 125 
 126 
 127 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
 128 : _callees(2)
 129 , _compilation(compilation)
 130 , _requires_phi_function(method->max_locals())
 131 {
 132   _caller             = caller;
 133   _level              = caller == NULL ?  0 : caller->level() + 1;
 134   _method             = method;
 135   _xhandlers          = new XHandlers(method);
 136   _number_of_locks    = 0;
 137   _monitor_pairing_ok = method->has_balanced_monitors();
 138   _start              = NULL;
 139 
 140   if (osr_bci == -1) {
 141     _requires_phi_function.clear();
 142   } else {
 143         // selective creation of phi functions is not possibel in osr-methods
 144     _requires_phi_function.set_range(0, method->max_locals());
 145   }
 146 
 147   assert(method->holder()->is_loaded() , "method holder must be loaded");
 148 
 149   // build graph if monitor pairing is ok
 150   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
 151 }
 152 
 153 
 154 int IRScope::max_stack() const {
 155   int my_max = method()->max_stack();
 156   int callee_max = 0;
 157   for (int i = 0; i < number_of_callees(); i++) {
 158     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
 159   }
 160   return my_max + callee_max;
 161 }
 162 
 163 
 164 bool IRScopeDebugInfo::should_reexecute() {
 165   ciMethod* cur_method = scope()->method();
 166   int       cur_bci    = bci();
 167   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
 168     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 169     return Interpreter::bytecode_should_reexecute(code);
 170   } else
 171     return false;
 172 }
 173 
 174 
 175 // Implementation of CodeEmitInfo
 176 
 177 // Stack must be NON-null
 178 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers)
 179   : _scope(stack->scope())
 180   , _scope_debug_info(NULL)
 181   , _oop_map(NULL)
 182   , _stack(stack)
 183   , _exception_handlers(exception_handlers)
 184   , _is_method_handle_invoke(false) {
 185   assert(_stack != NULL, "must be non null");
 186 }
 187 
 188 
 189 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
 190   : _scope(info->_scope)
 191   , _exception_handlers(NULL)
 192   , _scope_debug_info(NULL)
 193   , _oop_map(NULL)
 194   , _stack(stack == NULL ? info->_stack : stack)
 195   , _is_method_handle_invoke(info->_is_method_handle_invoke) {
 196 
 197   // deep copy of exception handlers
 198   if (info->_exception_handlers != NULL) {
 199     _exception_handlers = new XHandlers(info->_exception_handlers);
 200   }
 201 }
 202 
 203 
 204 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
 205   // record the safepoint before recording the debug info for enclosing scopes
 206   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
 207   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
 208   recorder->end_safepoint(pc_offset);
 209 }
 210 
 211 
 212 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
 213   assert(_oop_map != NULL, "oop map must already exist");
 214   assert(opr->is_single_cpu(), "should not call otherwise");
 215 
 216   VMReg name = frame_map()->regname(opr);
 217   _oop_map->set_oop(name);
 218 }
 219 
 220 
 221 
 222 
 223 // Implementation of IR
 224 
 225 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
 226     _locals_size(in_WordSize(-1))
 227   , _num_loops(0) {
 228   // setup IR fields
 229   _compilation = compilation;
 230   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
 231   _code        = NULL;
 232 }
 233 
 234 
 235 void IR::optimize() {
 236   Optimizer opt(this);
 237   if (!compilation()->profile_branches()) {
 238     if (DoCEE) {
 239       opt.eliminate_conditional_expressions();
 240 #ifndef PRODUCT
 241       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
 242       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
 243 #endif
 244     }
 245     if (EliminateBlocks) {
 246       opt.eliminate_blocks();
 247 #ifndef PRODUCT
 248       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
 249       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
 250 #endif
 251     }
 252   }
 253   if (EliminateNullChecks) {
 254     opt.eliminate_null_checks();
 255 #ifndef PRODUCT
 256     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
 257     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
 258 #endif
 259   }
 260 }
 261 
 262 
 263 static int sort_pairs(BlockPair** a, BlockPair** b) {
 264   if ((*a)->from() == (*b)->from()) {
 265     return (*a)->to()->block_id() - (*b)->to()->block_id();
 266   } else {
 267     return (*a)->from()->block_id() - (*b)->from()->block_id();
 268   }
 269 }
 270 
 271 
 272 class CriticalEdgeFinder: public BlockClosure {
 273   BlockPairList blocks;
 274   IR*       _ir;
 275 
 276  public:
 277   CriticalEdgeFinder(IR* ir): _ir(ir) {}
 278   void block_do(BlockBegin* bb) {
 279     BlockEnd* be = bb->end();
 280     int nos = be->number_of_sux();
 281     if (nos >= 2) {
 282       for (int i = 0; i < nos; i++) {
 283         BlockBegin* sux = be->sux_at(i);
 284         if (sux->number_of_preds() >= 2) {
 285           blocks.append(new BlockPair(bb, sux));
 286         }
 287       }
 288     }
 289   }
 290 
 291   void split_edges() {
 292     BlockPair* last_pair = NULL;
 293     blocks.sort(sort_pairs);
 294     for (int i = 0; i < blocks.length(); i++) {
 295       BlockPair* pair = blocks.at(i);
 296       if (last_pair != NULL && pair->is_same(last_pair)) continue;
 297       BlockBegin* from = pair->from();
 298       BlockBegin* to = pair->to();
 299       BlockBegin* split = from->insert_block_between(to);
 300 #ifndef PRODUCT
 301       if ((PrintIR || PrintIR1) && Verbose) {
 302         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
 303                       from->block_id(), to->block_id(), split->block_id());
 304       }
 305 #endif
 306       last_pair = pair;
 307     }
 308   }
 309 };
 310 
 311 void IR::split_critical_edges() {
 312   CriticalEdgeFinder cef(this);
 313 
 314   iterate_preorder(&cef);
 315   cef.split_edges();
 316 }
 317 
 318 
 319 class UseCountComputer: public ValueVisitor, BlockClosure {
 320  private:
 321   void visit(Value* n) {
 322     // Local instructions and Phis for expression stack values at the
 323     // start of basic blocks are not added to the instruction list
 324     if (!(*n)->is_linked()&& (*n)->can_be_linked()) {
 325       assert(false, "a node was not appended to the graph");
 326       Compilation::current()->bailout("a node was not appended to the graph");
 327     }
 328     // use n's input if not visited before
 329     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
 330       // note: a) if the instruction is pinned, it will be handled by compute_use_count
 331       //       b) if the instruction has uses, it was touched before
 332       //       => in both cases we don't need to update n's values
 333       uses_do(n);
 334     }
 335     // use n
 336     (*n)->_use_count++;
 337   }
 338 
 339   Values* worklist;
 340   int depth;
 341   enum {
 342     max_recurse_depth = 20
 343   };
 344 
 345   void uses_do(Value* n) {
 346     depth++;
 347     if (depth > max_recurse_depth) {
 348       // don't allow the traversal to recurse too deeply
 349       worklist->push(*n);
 350     } else {
 351       (*n)->input_values_do(this);
 352       // special handling for some instructions
 353       if ((*n)->as_BlockEnd() != NULL) {
 354         // note on BlockEnd:
 355         //   must 'use' the stack only if the method doesn't
 356         //   terminate, however, in those cases stack is empty
 357         (*n)->state_values_do(this);
 358       }
 359     }
 360     depth--;
 361   }
 362 
 363   void block_do(BlockBegin* b) {
 364     depth = 0;
 365     // process all pinned nodes as the roots of expression trees
 366     for (Instruction* n = b; n != NULL; n = n->next()) {
 367       if (n->is_pinned()) uses_do(&n);
 368     }
 369     assert(depth == 0, "should have counted back down");
 370 
 371     // now process any unpinned nodes which recursed too deeply
 372     while (worklist->length() > 0) {
 373       Value t = worklist->pop();
 374       if (!t->is_pinned()) {
 375         // compute the use count
 376         uses_do(&t);
 377 
 378         // pin the instruction so that LIRGenerator doesn't recurse
 379         // too deeply during it's evaluation.
 380         t->pin();
 381       }
 382     }
 383     assert(depth == 0, "should have counted back down");
 384   }
 385 
 386   UseCountComputer() {
 387     worklist = new Values();
 388     depth = 0;
 389   }
 390 
 391  public:
 392   static void compute(BlockList* blocks) {
 393     UseCountComputer ucc;
 394     blocks->iterate_backward(&ucc);
 395   }
 396 };
 397 
 398 
 399 // helper macro for short definition of trace-output inside code
 400 #ifndef PRODUCT
 401   #define TRACE_LINEAR_SCAN(level, code)       \
 402     if (TraceLinearScanLevel >= level) {       \
 403       code;                                    \
 404     }
 405 #else
 406   #define TRACE_LINEAR_SCAN(level, code)
 407 #endif
 408 
 409 class ComputeLinearScanOrder : public StackObj {
 410  private:
 411   int        _max_block_id;        // the highest block_id of a block
 412   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
 413   int        _num_loops;           // total number of loops
 414   bool       _iterative_dominators;// method requires iterative computation of dominatiors
 415 
 416   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
 417 
 418   BitMap     _visited_blocks;      // used for recursive processing of blocks
 419   BitMap     _active_blocks;       // used for recursive processing of blocks
 420   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
 421   intArray   _forward_branches;    // number of incoming forward branches for each block
 422   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
 423   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
 424   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
 425 
 426   Compilation* _compilation;
 427 
 428   // accessors for _visited_blocks and _active_blocks
 429   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
 430   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
 431   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
 432   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
 433   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
 434   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
 435 
 436   // accessors for _forward_branches
 437   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
 438   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
 439 
 440   // accessors for _loop_map
 441   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
 442   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
 443   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
 444 
 445   // count edges between blocks
 446   void count_edges(BlockBegin* cur, BlockBegin* parent);
 447 
 448   // loop detection
 449   void mark_loops();
 450   void clear_non_natural_loops(BlockBegin* start_block);
 451   void assign_loop_depth(BlockBegin* start_block);
 452 
 453   // computation of final block order
 454   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
 455   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
 456   int  compute_weight(BlockBegin* cur);
 457   bool ready_for_processing(BlockBegin* cur);
 458   void sort_into_work_list(BlockBegin* b);
 459   void append_block(BlockBegin* cur);
 460   void compute_order(BlockBegin* start_block);
 461 
 462   // fixup of dominators for non-natural loops
 463   bool compute_dominators_iter();
 464   void compute_dominators();
 465 
 466   // debug functions
 467   NOT_PRODUCT(void print_blocks();)
 468   DEBUG_ONLY(void verify();)
 469 
 470   Compilation* compilation() const { return _compilation; }
 471  public:
 472   ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
 473 
 474   // accessors for final result
 475   BlockList* linear_scan_order() const    { return _linear_scan_order; }
 476   int        num_loops() const            { return _num_loops; }
 477 };
 478 
 479 
 480 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
 481   _max_block_id(BlockBegin::number_of_blocks()),
 482   _num_blocks(0),
 483   _num_loops(0),
 484   _iterative_dominators(false),
 485   _visited_blocks(_max_block_id),
 486   _active_blocks(_max_block_id),
 487   _dominator_blocks(_max_block_id),
 488   _forward_branches(_max_block_id, 0),
 489   _loop_end_blocks(8),
 490   _work_list(8),
 491   _linear_scan_order(NULL), // initialized later with correct size
 492   _loop_map(0, 0),          // initialized later with correct size
 493   _compilation(c)
 494 {
 495   TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
 496 
 497   init_visited();
 498   count_edges(start_block, NULL);
 499 
 500   if (compilation()->is_profiling()) {
 501     compilation()->method()->method_data()->set_compilation_stats(_num_loops, _num_blocks);
 502   }
 503 
 504   if (_num_loops > 0) {
 505     mark_loops();
 506     clear_non_natural_loops(start_block);
 507     assign_loop_depth(start_block);
 508   }
 509 
 510   compute_order(start_block);
 511   compute_dominators();
 512 
 513   NOT_PRODUCT(print_blocks());
 514   DEBUG_ONLY(verify());
 515 }
 516 
 517 
 518 // Traverse the CFG:
 519 // * count total number of blocks
 520 // * count all incoming edges and backward incoming edges
 521 // * number loop header blocks
 522 // * create a list with all loop end blocks
 523 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
 524   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
 525   assert(cur->dominator() == NULL, "dominator already initialized");
 526 
 527   if (is_active(cur)) {
 528     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
 529     assert(is_visited(cur), "block must be visisted when block is active");
 530     assert(parent != NULL, "must have parent");
 531 
 532     cur->set(BlockBegin::linear_scan_loop_header_flag);
 533     cur->set(BlockBegin::backward_branch_target_flag);
 534 
 535     parent->set(BlockBegin::linear_scan_loop_end_flag);
 536 
 537     // When a loop header is also the start of an exception handler, then the backward branch is
 538     // an exception edge. Because such edges are usually critical edges which cannot be split, the
 539     // loop must be excluded here from processing.
 540     if (cur->is_set(BlockBegin::exception_entry_flag)) {
 541       // Make sure that dominators are correct in this weird situation
 542       _iterative_dominators = true;
 543       return;
 544     }
 545     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
 546            "loop end blocks must have one successor (critical edges are split)");
 547 
 548     _loop_end_blocks.append(parent);
 549     return;
 550   }
 551 
 552   // increment number of incoming forward branches
 553   inc_forward_branches(cur);
 554 
 555   if (is_visited(cur)) {
 556     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
 557     return;
 558   }
 559 
 560   _num_blocks++;
 561   set_visited(cur);
 562   set_active(cur);
 563 
 564   // recursive call for all successors
 565   int i;
 566   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 567     count_edges(cur->sux_at(i), cur);
 568   }
 569   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 570     count_edges(cur->exception_handler_at(i), cur);
 571   }
 572 
 573   clear_active(cur);
 574 
 575   // Each loop has a unique number.
 576   // When multiple loops are nested, assign_loop_depth assumes that the
 577   // innermost loop has the lowest number. This is guaranteed by setting
 578   // the loop number after the recursive calls for the successors above
 579   // have returned.
 580   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
 581     assert(cur->loop_index() == -1, "cannot set loop-index twice");
 582     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
 583 
 584     cur->set_loop_index(_num_loops);
 585     _num_loops++;
 586   }
 587 
 588   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
 589 }
 590 
 591 
 592 void ComputeLinearScanOrder::mark_loops() {
 593   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
 594 
 595   _loop_map = BitMap2D(_num_loops, _max_block_id);
 596   _loop_map.clear();
 597 
 598   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
 599     BlockBegin* loop_end   = _loop_end_blocks.at(i);
 600     BlockBegin* loop_start = loop_end->sux_at(0);
 601     int         loop_idx   = loop_start->loop_index();
 602 
 603     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
 604     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
 605     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
 606     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
 607     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
 608     assert(_work_list.is_empty(), "work list must be empty before processing");
 609 
 610     // add the end-block of the loop to the working list
 611     _work_list.push(loop_end);
 612     set_block_in_loop(loop_idx, loop_end);
 613     do {
 614       BlockBegin* cur = _work_list.pop();
 615 
 616       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
 617       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
 618 
 619       // recursive processing of all predecessors ends when start block of loop is reached
 620       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
 621         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
 622           BlockBegin* pred = cur->pred_at(j);
 623 
 624           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
 625             // this predecessor has not been processed yet, so add it to work list
 626             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
 627             _work_list.push(pred);
 628             set_block_in_loop(loop_idx, pred);
 629           }
 630         }
 631       }
 632     } while (!_work_list.is_empty());
 633   }
 634 }
 635 
 636 
 637 // check for non-natural loops (loops where the loop header does not dominate
 638 // all other loop blocks = loops with mulitple entries).
 639 // such loops are ignored
 640 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
 641   for (int i = _num_loops - 1; i >= 0; i--) {
 642     if (is_block_in_loop(i, start_block)) {
 643       // loop i contains the entry block of the method
 644       // -> this is not a natural loop, so ignore it
 645       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
 646 
 647       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
 648         clear_block_in_loop(i, block_id);
 649       }
 650       _iterative_dominators = true;
 651     }
 652   }
 653 }
 654 
 655 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
 656   TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
 657   init_visited();
 658 
 659   assert(_work_list.is_empty(), "work list must be empty before processing");
 660   _work_list.append(start_block);
 661 
 662   do {
 663     BlockBegin* cur = _work_list.pop();
 664 
 665     if (!is_visited(cur)) {
 666       set_visited(cur);
 667       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
 668 
 669       // compute loop-depth and loop-index for the block
 670       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
 671       int i;
 672       int loop_depth = 0;
 673       int min_loop_idx = -1;
 674       for (i = _num_loops - 1; i >= 0; i--) {
 675         if (is_block_in_loop(i, cur)) {
 676           loop_depth++;
 677           min_loop_idx = i;
 678         }
 679       }
 680       cur->set_loop_depth(loop_depth);
 681       cur->set_loop_index(min_loop_idx);
 682 
 683       // append all unvisited successors to work list
 684       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 685         _work_list.append(cur->sux_at(i));
 686       }
 687       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 688         _work_list.append(cur->exception_handler_at(i));
 689       }
 690     }
 691   } while (!_work_list.is_empty());
 692 }
 693 
 694 
 695 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
 696   assert(a != NULL && b != NULL, "must have input blocks");
 697 
 698   _dominator_blocks.clear();
 699   while (a != NULL) {
 700     _dominator_blocks.set_bit(a->block_id());
 701     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
 702     a = a->dominator();
 703   }
 704   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
 705     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
 706     b = b->dominator();
 707   }
 708 
 709   assert(b != NULL, "could not find dominator");
 710   return b;
 711 }
 712 
 713 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
 714   if (cur->dominator() == NULL) {
 715     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
 716     cur->set_dominator(parent);
 717 
 718   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
 719     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
 720     assert(cur->number_of_preds() > 1, "");
 721     cur->set_dominator(common_dominator(cur->dominator(), parent));
 722   }
 723 }
 724 
 725 
 726 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
 727   BlockBegin* single_sux = NULL;
 728   if (cur->number_of_sux() == 1) {
 729     single_sux = cur->sux_at(0);
 730   }
 731 
 732   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
 733   int weight = (cur->loop_depth() & 0x7FFF) << 16;
 734 
 735   // general macro for short definition of weight flags
 736   // the first instance of INC_WEIGHT_IF has the highest priority
 737   int cur_bit = 15;
 738   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
 739 
 740   // this is necessery for the (very rare) case that two successing blocks have
 741   // the same loop depth, but a different loop index (can happen for endless loops
 742   // with exception handlers)
 743   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
 744 
 745   // loop end blocks (blocks that end with a backward branch) are added
 746   // after all other blocks of the loop.
 747   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
 748 
 749   // critical edge split blocks are prefered because than they have a bigger
 750   // proability to be completely empty
 751   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
 752 
 753   // exceptions should not be thrown in normal control flow, so these blocks
 754   // are added as late as possible
 755   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
 756   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
 757 
 758   // exceptions handlers are added as late as possible
 759   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
 760 
 761   // guarantee that weight is > 0
 762   weight |= 1;
 763 
 764   #undef INC_WEIGHT_IF
 765   assert(cur_bit >= 0, "too many flags");
 766   assert(weight > 0, "weight cannot become negative");
 767 
 768   return weight;
 769 }
 770 
 771 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
 772   // Discount the edge just traveled.
 773   // When the number drops to zero, all forward branches were processed
 774   if (dec_forward_branches(cur) != 0) {
 775     return false;
 776   }
 777 
 778   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
 779   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
 780   return true;
 781 }
 782 
 783 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
 784   assert(_work_list.index_of(cur) == -1, "block already in work list");
 785 
 786   int cur_weight = compute_weight(cur);
 787 
 788   // the linear_scan_number is used to cache the weight of a block
 789   cur->set_linear_scan_number(cur_weight);
 790 
 791 #ifndef PRODUCT
 792   if (StressLinearScan) {
 793     _work_list.insert_before(0, cur);
 794     return;
 795   }
 796 #endif
 797 
 798   _work_list.append(NULL); // provide space for new element
 799 
 800   int insert_idx = _work_list.length() - 1;
 801   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
 802     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
 803     insert_idx--;
 804   }
 805   _work_list.at_put(insert_idx, cur);
 806 
 807   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
 808   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
 809 
 810 #ifdef ASSERT
 811   for (int i = 0; i < _work_list.length(); i++) {
 812     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
 813     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
 814   }
 815 #endif
 816 }
 817 
 818 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
 819   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
 820   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
 821 
 822   // currently, the linear scan order and code emit order are equal.
 823   // therefore the linear_scan_number and the weight of a block must also
 824   // be equal.
 825   cur->set_linear_scan_number(_linear_scan_order->length());
 826   _linear_scan_order->append(cur);
 827 }
 828 
 829 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
 830   TRACE_LINEAR_SCAN(3, "----- computing final block order");
 831 
 832   // the start block is always the first block in the linear scan order
 833   _linear_scan_order = new BlockList(_num_blocks);
 834   append_block(start_block);
 835 
 836   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
 837   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
 838   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
 839 
 840   BlockBegin* sux_of_osr_entry = NULL;
 841   if (osr_entry != NULL) {
 842     // special handling for osr entry:
 843     // ignore the edge between the osr entry and its successor for processing
 844     // the osr entry block is added manually below
 845     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
 846     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
 847 
 848     sux_of_osr_entry = osr_entry->sux_at(0);
 849     dec_forward_branches(sux_of_osr_entry);
 850 
 851     compute_dominator(osr_entry, start_block);
 852     _iterative_dominators = true;
 853   }
 854   compute_dominator(std_entry, start_block);
 855 
 856   // start processing with standard entry block
 857   assert(_work_list.is_empty(), "list must be empty before processing");
 858 
 859   if (ready_for_processing(std_entry)) {
 860     sort_into_work_list(std_entry);
 861   } else {
 862     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
 863   }
 864 
 865   do {
 866     BlockBegin* cur = _work_list.pop();
 867 
 868     if (cur == sux_of_osr_entry) {
 869       // the osr entry block is ignored in normal processing, it is never added to the
 870       // work list. Instead, it is added as late as possible manually here.
 871       append_block(osr_entry);
 872       compute_dominator(cur, osr_entry);
 873     }
 874     append_block(cur);
 875 
 876     int i;
 877     int num_sux = cur->number_of_sux();
 878     // changed loop order to get "intuitive" order of if- and else-blocks
 879     for (i = 0; i < num_sux; i++) {
 880       BlockBegin* sux = cur->sux_at(i);
 881       compute_dominator(sux, cur);
 882       if (ready_for_processing(sux)) {
 883         sort_into_work_list(sux);
 884       }
 885     }
 886     num_sux = cur->number_of_exception_handlers();
 887     for (i = 0; i < num_sux; i++) {
 888       BlockBegin* sux = cur->exception_handler_at(i);
 889       compute_dominator(sux, cur);
 890       if (ready_for_processing(sux)) {
 891         sort_into_work_list(sux);
 892       }
 893     }
 894   } while (_work_list.length() > 0);
 895 }
 896 
 897 
 898 bool ComputeLinearScanOrder::compute_dominators_iter() {
 899   bool changed = false;
 900   int num_blocks = _linear_scan_order->length();
 901 
 902   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
 903   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
 904   for (int i = 1; i < num_blocks; i++) {
 905     BlockBegin* block = _linear_scan_order->at(i);
 906 
 907     BlockBegin* dominator = block->pred_at(0);
 908     int num_preds = block->number_of_preds();
 909     for (int i = 1; i < num_preds; i++) {
 910       dominator = common_dominator(dominator, block->pred_at(i));
 911     }
 912 
 913     if (dominator != block->dominator()) {
 914       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
 915 
 916       block->set_dominator(dominator);
 917       changed = true;
 918     }
 919   }
 920   return changed;
 921 }
 922 
 923 void ComputeLinearScanOrder::compute_dominators() {
 924   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
 925 
 926   // iterative computation of dominators is only required for methods with non-natural loops
 927   // and OSR-methods. For all other methods, the dominators computed when generating the
 928   // linear scan block order are correct.
 929   if (_iterative_dominators) {
 930     do {
 931       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
 932     } while (compute_dominators_iter());
 933   }
 934 
 935   // check that dominators are correct
 936   assert(!compute_dominators_iter(), "fix point not reached");
 937 }
 938 
 939 
 940 #ifndef PRODUCT
 941 void ComputeLinearScanOrder::print_blocks() {
 942   if (TraceLinearScanLevel >= 2) {
 943     tty->print_cr("----- loop information:");
 944     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
 945       BlockBegin* cur = _linear_scan_order->at(block_idx);
 946 
 947       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
 948       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
 949         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
 950       }
 951       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
 952     }
 953   }
 954 
 955   if (TraceLinearScanLevel >= 1) {
 956     tty->print_cr("----- linear-scan block order:");
 957     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
 958       BlockBegin* cur = _linear_scan_order->at(block_idx);
 959       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
 960 
 961       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
 962       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
 963       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
 964       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
 965 
 966       if (cur->dominator() != NULL) {
 967         tty->print("    dom: B%d ", cur->dominator()->block_id());
 968       } else {
 969         tty->print("    dom: NULL ");
 970       }
 971 
 972       if (cur->number_of_preds() > 0) {
 973         tty->print("    preds: ");
 974         for (int j = 0; j < cur->number_of_preds(); j++) {
 975           BlockBegin* pred = cur->pred_at(j);
 976           tty->print("B%d ", pred->block_id());
 977         }
 978       }
 979       if (cur->number_of_sux() > 0) {
 980         tty->print("    sux: ");
 981         for (int j = 0; j < cur->number_of_sux(); j++) {
 982           BlockBegin* sux = cur->sux_at(j);
 983           tty->print("B%d ", sux->block_id());
 984         }
 985       }
 986       if (cur->number_of_exception_handlers() > 0) {
 987         tty->print("    ex: ");
 988         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
 989           BlockBegin* ex = cur->exception_handler_at(j);
 990           tty->print("B%d ", ex->block_id());
 991         }
 992       }
 993       tty->cr();
 994     }
 995   }
 996 }
 997 #endif
 998 
 999 #ifdef ASSERT
1000 void ComputeLinearScanOrder::verify() {
1001   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1002 
1003   if (StressLinearScan) {
1004     // blocks are scrambled when StressLinearScan is used
1005     return;
1006   }
1007 
1008   // check that all successors of a block have a higher linear-scan-number
1009   // and that all predecessors of a block have a lower linear-scan-number
1010   // (only backward branches of loops are ignored)
1011   int i;
1012   for (i = 0; i < _linear_scan_order->length(); i++) {
1013     BlockBegin* cur = _linear_scan_order->at(i);
1014 
1015     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1016     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
1017 
1018     int j;
1019     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1020       BlockBegin* sux = cur->sux_at(j);
1021 
1022       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
1023       if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
1024         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1025       }
1026       if (cur->loop_depth() == sux->loop_depth()) {
1027         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1028       }
1029     }
1030 
1031     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1032       BlockBegin* pred = cur->pred_at(j);
1033 
1034       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
1035       if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
1036         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1037       }
1038       if (cur->loop_depth() == pred->loop_depth()) {
1039         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1040       }
1041 
1042       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1043     }
1044 
1045     // check dominator
1046     if (i == 0) {
1047       assert(cur->dominator() == NULL, "first block has no dominator");
1048     } else {
1049       assert(cur->dominator() != NULL, "all but first block must have dominator");
1050     }
1051     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
1052   }
1053 
1054   // check that all loops are continuous
1055   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1056     int block_idx = 0;
1057     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1058 
1059     // skip blocks before the loop
1060     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1061       block_idx++;
1062     }
1063     // skip blocks of loop
1064     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1065       block_idx++;
1066     }
1067     // after the first non-loop block, there must not be another loop-block
1068     while (block_idx < _num_blocks) {
1069       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1070       block_idx++;
1071     }
1072   }
1073 }
1074 #endif
1075 
1076 
1077 void IR::compute_code() {
1078   assert(is_valid(), "IR must be valid");
1079 
1080   ComputeLinearScanOrder compute_order(compilation(), start());
1081   _num_loops = compute_order.num_loops();
1082   _code = compute_order.linear_scan_order();
1083 }
1084 
1085 
1086 void IR::compute_use_counts() {
1087   // make sure all values coming out of this block get evaluated.
1088   int num_blocks = _code->length();
1089   for (int i = 0; i < num_blocks; i++) {
1090     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
1091   }
1092 
1093   // compute use counts
1094   UseCountComputer::compute(_code);
1095 }
1096 
1097 
1098 void IR::iterate_preorder(BlockClosure* closure) {
1099   assert(is_valid(), "IR must be valid");
1100   start()->iterate_preorder(closure);
1101 }
1102 
1103 
1104 void IR::iterate_postorder(BlockClosure* closure) {
1105   assert(is_valid(), "IR must be valid");
1106   start()->iterate_postorder(closure);
1107 }
1108 
1109 void IR::iterate_linear_scan_order(BlockClosure* closure) {
1110   linear_scan_order()->iterate_forward(closure);
1111 }
1112 
1113 
1114 #ifndef PRODUCT
1115 class BlockPrinter: public BlockClosure {
1116  private:
1117   InstructionPrinter* _ip;
1118   bool                _cfg_only;
1119   bool                _live_only;
1120 
1121  public:
1122   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1123     _ip       = ip;
1124     _cfg_only = cfg_only;
1125     _live_only = live_only;
1126   }
1127 
1128   virtual void block_do(BlockBegin* block) {
1129     if (_cfg_only) {
1130       _ip->print_instr(block); tty->cr();
1131     } else {
1132       block->print_block(*_ip, _live_only);
1133     }
1134   }
1135 };
1136 
1137 
1138 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1139   ttyLocker ttyl;
1140   InstructionPrinter ip(!cfg_only);
1141   BlockPrinter bp(&ip, cfg_only, live_only);
1142   start->iterate_preorder(&bp);
1143   tty->cr();
1144 }
1145 
1146 void IR::print(bool cfg_only, bool live_only) {
1147   if (is_valid()) {
1148     print(start(), cfg_only, live_only);
1149   } else {
1150     tty->print_cr("invalid IR");
1151   }
1152 }
1153 
1154 
1155 define_array(BlockListArray, BlockList*)
1156 define_stack(BlockListList, BlockListArray)
1157 
1158 class PredecessorValidator : public BlockClosure {
1159  private:
1160   BlockListList* _predecessors;
1161   BlockList*     _blocks;
1162 
1163   static int cmp(BlockBegin** a, BlockBegin** b) {
1164     return (*a)->block_id() - (*b)->block_id();
1165   }
1166 
1167  public:
1168   PredecessorValidator(IR* hir) {
1169     ResourceMark rm;
1170     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
1171     _blocks = new BlockList();
1172 
1173     int i;
1174     hir->start()->iterate_preorder(this);
1175     if (hir->code() != NULL) {
1176       assert(hir->code()->length() == _blocks->length(), "must match");
1177       for (i = 0; i < _blocks->length(); i++) {
1178         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1179       }
1180     }
1181 
1182     for (i = 0; i < _blocks->length(); i++) {
1183       BlockBegin* block = _blocks->at(i);
1184       BlockList* preds = _predecessors->at(block->block_id());
1185       if (preds == NULL) {
1186         assert(block->number_of_preds() == 0, "should be the same");
1187         continue;
1188       }
1189 
1190       // clone the pred list so we can mutate it
1191       BlockList* pred_copy = new BlockList();
1192       int j;
1193       for (j = 0; j < block->number_of_preds(); j++) {
1194         pred_copy->append(block->pred_at(j));
1195       }
1196       // sort them in the same order
1197       preds->sort(cmp);
1198       pred_copy->sort(cmp);
1199       int length = MIN2(preds->length(), block->number_of_preds());
1200       for (j = 0; j < block->number_of_preds(); j++) {
1201         assert(preds->at(j) == pred_copy->at(j), "must match");
1202       }
1203 
1204       assert(preds->length() == block->number_of_preds(), "should be the same");
1205     }
1206   }
1207 
1208   virtual void block_do(BlockBegin* block) {
1209     _blocks->append(block);
1210     BlockEnd* be = block->end();
1211     int n = be->number_of_sux();
1212     int i;
1213     for (i = 0; i < n; i++) {
1214       BlockBegin* sux = be->sux_at(i);
1215       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1216 
1217       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1218       if (preds == NULL) {
1219         preds = new BlockList();
1220         _predecessors->at_put(sux->block_id(), preds);
1221       }
1222       preds->append(block);
1223     }
1224 
1225     n = block->number_of_exception_handlers();
1226     for (i = 0; i < n; i++) {
1227       BlockBegin* sux = block->exception_handler_at(i);
1228       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1229 
1230       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1231       if (preds == NULL) {
1232         preds = new BlockList();
1233         _predecessors->at_put(sux->block_id(), preds);
1234       }
1235       preds->append(block);
1236     }
1237   }
1238 };
1239 
1240 void IR::verify() {
1241 #ifdef ASSERT
1242   PredecessorValidator pv(this);
1243 #endif
1244 }
1245 
1246 #endif // PRODUCT
1247 
1248 void SubstitutionResolver::visit(Value* v) {
1249   Value v0 = *v;
1250   if (v0) {
1251     Value vs = v0->subst();
1252     if (vs != v0) {
1253       *v = v0->subst();
1254     }
1255   }
1256 }
1257 
1258 #ifdef ASSERT
1259 class SubstitutionChecker: public ValueVisitor {
1260   void visit(Value* v) {
1261     Value v0 = *v;
1262     if (v0) {
1263       Value vs = v0->subst();
1264       assert(vs == v0, "missed substitution");
1265     }
1266   }
1267 };
1268 #endif
1269 
1270 
1271 void SubstitutionResolver::block_do(BlockBegin* block) {
1272   Instruction* last = NULL;
1273   for (Instruction* n = block; n != NULL;) {
1274     n->values_do(this);
1275     // need to remove this instruction from the instruction stream
1276     if (n->subst() != n) {
1277       assert(last != NULL, "must have last");
1278       last->set_next(n->next());
1279     } else {
1280       last = n;
1281     }
1282     n = last->next();
1283   }
1284 
1285 #ifdef ASSERT
1286   SubstitutionChecker check_substitute;
1287   if (block->state()) block->state()->values_do(&check_substitute);
1288   block->block_values_do(&check_substitute);
1289   if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
1290 #endif
1291 }