1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_GraphBuilder.hpp"
  29 #include "c1/c1_IR.hpp"
  30 #include "c1/c1_InstructionPrinter.hpp"
  31 #include "c1/c1_Optimizer.hpp"
  32 #include "utilities/bitMap.inline.hpp"
  33 
  34 
  35 // Implementation of XHandlers
  36 //
  37 // Note: This code could eventually go away if we are
  38 //       just using the ciExceptionHandlerStream.
  39 
  40 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
  41   ciExceptionHandlerStream s(method);
  42   while (!s.is_done()) {
  43     _list.append(new XHandler(s.handler()));
  44     s.next();
  45   }
  46   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
  47 }
  48 
  49 // deep copy of all XHandler contained in list
  50 XHandlers::XHandlers(XHandlers* other) :
  51   _list(other->length())
  52 {
  53   for (int i = 0; i < other->length(); i++) {
  54     _list.append(new XHandler(other->handler_at(i)));
  55   }
  56 }
  57 
  58 // Returns whether a particular exception type can be caught.  Also
  59 // returns true if klass is unloaded or any exception handler
  60 // classes are unloaded.  type_is_exact indicates whether the throw
  61 // is known to be exactly that class or it might throw a subtype.
  62 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
  63   // the type is unknown so be conservative
  64   if (!klass->is_loaded()) {
  65     return true;
  66   }
  67 
  68   for (int i = 0; i < length(); i++) {
  69     XHandler* handler = handler_at(i);
  70     if (handler->is_catch_all()) {
  71       // catch of ANY
  72       return true;
  73     }
  74     ciInstanceKlass* handler_klass = handler->catch_klass();
  75     // if it's unknown it might be catchable
  76     if (!handler_klass->is_loaded()) {
  77       return true;
  78     }
  79     // if the throw type is definitely a subtype of the catch type
  80     // then it can be caught.
  81     if (klass->is_subtype_of(handler_klass)) {
  82       return true;
  83     }
  84     if (!type_is_exact) {
  85       // If the type isn't exactly known then it can also be caught by
  86       // catch statements where the inexact type is a subtype of the
  87       // catch type.
  88       // given: foo extends bar extends Exception
  89       // throw bar can be caught by catch foo, catch bar, and catch
  90       // Exception, however it can't be caught by any handlers without
  91       // bar in its type hierarchy.
  92       if (handler_klass->is_subtype_of(klass)) {
  93         return true;
  94       }
  95     }
  96   }
  97 
  98   return false;
  99 }
 100 
 101 
 102 bool XHandlers::equals(XHandlers* others) const {
 103   if (others == NULL) return false;
 104   if (length() != others->length()) return false;
 105 
 106   for (int i = 0; i < length(); i++) {
 107     if (!handler_at(i)->equals(others->handler_at(i))) return false;
 108   }
 109   return true;
 110 }
 111 
 112 bool XHandler::equals(XHandler* other) const {
 113   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
 114 
 115   if (entry_pco() != other->entry_pco()) return false;
 116   if (scope_count() != other->scope_count()) return false;
 117   if (_desc != other->_desc) return false;
 118 
 119   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
 120   return true;
 121 }
 122 
 123 
 124 // Implementation of IRScope
 125 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
 126   GraphBuilder gm(compilation, this);
 127   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
 128   if (compilation->bailed_out()) return NULL;
 129   return gm.start();
 130 }
 131 
 132 
 133 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
 134 : _callees(2)
 135 , _compilation(compilation)
 136 , _requires_phi_function(method->max_locals())
 137 {
 138   _caller             = caller;
 139   _level              = caller == NULL ?  0 : caller->level() + 1;
 140   _method             = method;
 141   _xhandlers          = new XHandlers(method);
 142   _number_of_locks    = 0;
 143   _monitor_pairing_ok = method->has_balanced_monitors();
 144   _start              = NULL;
 145 
 146   if (osr_bci == -1) {
 147     _requires_phi_function.clear();
 148   } else {
 149         // selective creation of phi functions is not possibel in osr-methods
 150     _requires_phi_function.set_range(0, method->max_locals());
 151   }
 152 
 153   assert(method->holder()->is_loaded() , "method holder must be loaded");
 154 
 155   // build graph if monitor pairing is ok
 156   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
 157 }
 158 
 159 
 160 int IRScope::max_stack() const {
 161   int my_max = method()->max_stack();
 162   int callee_max = 0;
 163   for (int i = 0; i < number_of_callees(); i++) {
 164     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
 165   }
 166   return my_max + callee_max;
 167 }
 168 
 169 
 170 bool IRScopeDebugInfo::should_reexecute() {
 171   ciMethod* cur_method = scope()->method();
 172   int       cur_bci    = bci();
 173   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
 174     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 175     return Interpreter::bytecode_should_reexecute(code);
 176   } else
 177     return false;
 178 }
 179 
 180 
 181 // Implementation of CodeEmitInfo
 182 
 183 // Stack must be NON-null
 184 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers)
 185   : _scope(stack->scope())
 186   , _scope_debug_info(NULL)
 187   , _oop_map(NULL)
 188   , _stack(stack)
 189   , _exception_handlers(exception_handlers)
 190   , _is_method_handle_invoke(false) {
 191   assert(_stack != NULL, "must be non null");
 192 }
 193 
 194 
 195 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
 196   : _scope(info->_scope)
 197   , _exception_handlers(NULL)
 198   , _scope_debug_info(NULL)
 199   , _oop_map(NULL)
 200   , _stack(stack == NULL ? info->_stack : stack)
 201   , _is_method_handle_invoke(info->_is_method_handle_invoke) {
 202 
 203   // deep copy of exception handlers
 204   if (info->_exception_handlers != NULL) {
 205     _exception_handlers = new XHandlers(info->_exception_handlers);
 206   }
 207 }
 208 
 209 
 210 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
 211   // record the safepoint before recording the debug info for enclosing scopes
 212   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
 213   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
 214   recorder->end_safepoint(pc_offset);
 215 }
 216 
 217 
 218 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
 219   assert(_oop_map != NULL, "oop map must already exist");
 220   assert(opr->is_single_cpu(), "should not call otherwise");
 221 
 222   VMReg name = frame_map()->regname(opr);
 223   _oop_map->set_oop(name);
 224 }
 225 
 226 
 227 
 228 
 229 // Implementation of IR
 230 
 231 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
 232     _locals_size(in_WordSize(-1))
 233   , _num_loops(0) {
 234   // setup IR fields
 235   _compilation = compilation;
 236   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
 237   _code        = NULL;
 238 }
 239 
 240 
 241 void IR::optimize() {
 242   Optimizer opt(this);
 243   if (!compilation()->profile_branches()) {
 244     if (DoCEE) {
 245       opt.eliminate_conditional_expressions();
 246 #ifndef PRODUCT
 247       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
 248       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
 249 #endif
 250     }
 251     if (EliminateBlocks) {
 252       opt.eliminate_blocks();
 253 #ifndef PRODUCT
 254       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
 255       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
 256 #endif
 257     }
 258   }
 259   if (EliminateNullChecks) {
 260     opt.eliminate_null_checks();
 261 #ifndef PRODUCT
 262     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
 263     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
 264 #endif
 265   }
 266 }
 267 
 268 
 269 static int sort_pairs(BlockPair** a, BlockPair** b) {
 270   if ((*a)->from() == (*b)->from()) {
 271     return (*a)->to()->block_id() - (*b)->to()->block_id();
 272   } else {
 273     return (*a)->from()->block_id() - (*b)->from()->block_id();
 274   }
 275 }
 276 
 277 
 278 class CriticalEdgeFinder: public BlockClosure {
 279   BlockPairList blocks;
 280   IR*       _ir;
 281 
 282  public:
 283   CriticalEdgeFinder(IR* ir): _ir(ir) {}
 284   void block_do(BlockBegin* bb) {
 285     BlockEnd* be = bb->end();
 286     int nos = be->number_of_sux();
 287     if (nos >= 2) {
 288       for (int i = 0; i < nos; i++) {
 289         BlockBegin* sux = be->sux_at(i);
 290         if (sux->number_of_preds() >= 2) {
 291           blocks.append(new BlockPair(bb, sux));
 292         }
 293       }
 294     }
 295   }
 296 
 297   void split_edges() {
 298     BlockPair* last_pair = NULL;
 299     blocks.sort(sort_pairs);
 300     for (int i = 0; i < blocks.length(); i++) {
 301       BlockPair* pair = blocks.at(i);
 302       if (last_pair != NULL && pair->is_same(last_pair)) continue;
 303       BlockBegin* from = pair->from();
 304       BlockBegin* to = pair->to();
 305       BlockBegin* split = from->insert_block_between(to);
 306 #ifndef PRODUCT
 307       if ((PrintIR || PrintIR1) && Verbose) {
 308         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
 309                       from->block_id(), to->block_id(), split->block_id());
 310       }
 311 #endif
 312       last_pair = pair;
 313     }
 314   }
 315 };
 316 
 317 void IR::split_critical_edges() {
 318   CriticalEdgeFinder cef(this);
 319 
 320   iterate_preorder(&cef);
 321   cef.split_edges();
 322 }
 323 
 324 
 325 class UseCountComputer: public ValueVisitor, BlockClosure {
 326  private:
 327   void visit(Value* n) {
 328     // Local instructions and Phis for expression stack values at the
 329     // start of basic blocks are not added to the instruction list
 330     if (!(*n)->is_linked()&& (*n)->can_be_linked()) {
 331       assert(false, "a node was not appended to the graph");
 332       Compilation::current()->bailout("a node was not appended to the graph");
 333     }
 334     // use n's input if not visited before
 335     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
 336       // note: a) if the instruction is pinned, it will be handled by compute_use_count
 337       //       b) if the instruction has uses, it was touched before
 338       //       => in both cases we don't need to update n's values
 339       uses_do(n);
 340     }
 341     // use n
 342     (*n)->_use_count++;
 343   }
 344 
 345   Values* worklist;
 346   int depth;
 347   enum {
 348     max_recurse_depth = 20
 349   };
 350 
 351   void uses_do(Value* n) {
 352     depth++;
 353     if (depth > max_recurse_depth) {
 354       // don't allow the traversal to recurse too deeply
 355       worklist->push(*n);
 356     } else {
 357       (*n)->input_values_do(this);
 358       // special handling for some instructions
 359       if ((*n)->as_BlockEnd() != NULL) {
 360         // note on BlockEnd:
 361         //   must 'use' the stack only if the method doesn't
 362         //   terminate, however, in those cases stack is empty
 363         (*n)->state_values_do(this);
 364       }
 365     }
 366     depth--;
 367   }
 368 
 369   void block_do(BlockBegin* b) {
 370     depth = 0;
 371     // process all pinned nodes as the roots of expression trees
 372     for (Instruction* n = b; n != NULL; n = n->next()) {
 373       if (n->is_pinned()) uses_do(&n);
 374     }
 375     assert(depth == 0, "should have counted back down");
 376 
 377     // now process any unpinned nodes which recursed too deeply
 378     while (worklist->length() > 0) {
 379       Value t = worklist->pop();
 380       if (!t->is_pinned()) {
 381         // compute the use count
 382         uses_do(&t);
 383 
 384         // pin the instruction so that LIRGenerator doesn't recurse
 385         // too deeply during it's evaluation.
 386         t->pin();
 387       }
 388     }
 389     assert(depth == 0, "should have counted back down");
 390   }
 391 
 392   UseCountComputer() {
 393     worklist = new Values();
 394     depth = 0;
 395   }
 396 
 397  public:
 398   static void compute(BlockList* blocks) {
 399     UseCountComputer ucc;
 400     blocks->iterate_backward(&ucc);
 401   }
 402 };
 403 
 404 
 405 // helper macro for short definition of trace-output inside code
 406 #ifndef PRODUCT
 407   #define TRACE_LINEAR_SCAN(level, code)       \
 408     if (TraceLinearScanLevel >= level) {       \
 409       code;                                    \
 410     }
 411 #else
 412   #define TRACE_LINEAR_SCAN(level, code)
 413 #endif
 414 
 415 class ComputeLinearScanOrder : public StackObj {
 416  private:
 417   int        _max_block_id;        // the highest block_id of a block
 418   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
 419   int        _num_loops;           // total number of loops
 420   bool       _iterative_dominators;// method requires iterative computation of dominatiors
 421 
 422   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
 423 
 424   BitMap     _visited_blocks;      // used for recursive processing of blocks
 425   BitMap     _active_blocks;       // used for recursive processing of blocks
 426   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
 427   intArray   _forward_branches;    // number of incoming forward branches for each block
 428   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
 429   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
 430   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
 431 
 432   Compilation* _compilation;
 433 
 434   // accessors for _visited_blocks and _active_blocks
 435   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
 436   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
 437   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
 438   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
 439   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
 440   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
 441 
 442   // accessors for _forward_branches
 443   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
 444   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
 445 
 446   // accessors for _loop_map
 447   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
 448   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
 449   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
 450 
 451   // count edges between blocks
 452   void count_edges(BlockBegin* cur, BlockBegin* parent);
 453 
 454   // loop detection
 455   void mark_loops();
 456   void clear_non_natural_loops(BlockBegin* start_block);
 457   void assign_loop_depth(BlockBegin* start_block);
 458 
 459   // computation of final block order
 460   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
 461   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
 462   int  compute_weight(BlockBegin* cur);
 463   bool ready_for_processing(BlockBegin* cur);
 464   void sort_into_work_list(BlockBegin* b);
 465   void append_block(BlockBegin* cur);
 466   void compute_order(BlockBegin* start_block);
 467 
 468   // fixup of dominators for non-natural loops
 469   bool compute_dominators_iter();
 470   void compute_dominators();
 471 
 472   // debug functions
 473   NOT_PRODUCT(void print_blocks();)
 474   DEBUG_ONLY(void verify();)
 475 
 476   Compilation* compilation() const { return _compilation; }
 477  public:
 478   ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
 479 
 480   // accessors for final result
 481   BlockList* linear_scan_order() const    { return _linear_scan_order; }
 482   int        num_loops() const            { return _num_loops; }
 483 };
 484 
 485 
 486 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
 487   _max_block_id(BlockBegin::number_of_blocks()),
 488   _num_blocks(0),
 489   _num_loops(0),
 490   _iterative_dominators(false),
 491   _visited_blocks(_max_block_id),
 492   _active_blocks(_max_block_id),
 493   _dominator_blocks(_max_block_id),
 494   _forward_branches(_max_block_id, 0),
 495   _loop_end_blocks(8),
 496   _work_list(8),
 497   _linear_scan_order(NULL), // initialized later with correct size
 498   _loop_map(0, 0),          // initialized later with correct size
 499   _compilation(c)
 500 {
 501   TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
 502 
 503   init_visited();
 504   count_edges(start_block, NULL);
 505 
 506   if (compilation()->is_profiling()) {
 507     compilation()->method()->method_data()->set_compilation_stats(_num_loops, _num_blocks);
 508   }
 509 
 510   if (_num_loops > 0) {
 511     mark_loops();
 512     clear_non_natural_loops(start_block);
 513     assign_loop_depth(start_block);
 514   }
 515 
 516   compute_order(start_block);
 517   compute_dominators();
 518 
 519   NOT_PRODUCT(print_blocks());
 520   DEBUG_ONLY(verify());
 521 }
 522 
 523 
 524 // Traverse the CFG:
 525 // * count total number of blocks
 526 // * count all incoming edges and backward incoming edges
 527 // * number loop header blocks
 528 // * create a list with all loop end blocks
 529 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
 530   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
 531   assert(cur->dominator() == NULL, "dominator already initialized");
 532 
 533   if (is_active(cur)) {
 534     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
 535     assert(is_visited(cur), "block must be visisted when block is active");
 536     assert(parent != NULL, "must have parent");
 537 
 538     cur->set(BlockBegin::linear_scan_loop_header_flag);
 539     cur->set(BlockBegin::backward_branch_target_flag);
 540 
 541     parent->set(BlockBegin::linear_scan_loop_end_flag);
 542 
 543     // When a loop header is also the start of an exception handler, then the backward branch is
 544     // an exception edge. Because such edges are usually critical edges which cannot be split, the
 545     // loop must be excluded here from processing.
 546     if (cur->is_set(BlockBegin::exception_entry_flag)) {
 547       // Make sure that dominators are correct in this weird situation
 548       _iterative_dominators = true;
 549       return;
 550     }
 551     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
 552            "loop end blocks must have one successor (critical edges are split)");
 553 
 554     _loop_end_blocks.append(parent);
 555     return;
 556   }
 557 
 558   // increment number of incoming forward branches
 559   inc_forward_branches(cur);
 560 
 561   if (is_visited(cur)) {
 562     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
 563     return;
 564   }
 565 
 566   _num_blocks++;
 567   set_visited(cur);
 568   set_active(cur);
 569 
 570   // recursive call for all successors
 571   int i;
 572   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 573     count_edges(cur->sux_at(i), cur);
 574   }
 575   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 576     count_edges(cur->exception_handler_at(i), cur);
 577   }
 578 
 579   clear_active(cur);
 580 
 581   // Each loop has a unique number.
 582   // When multiple loops are nested, assign_loop_depth assumes that the
 583   // innermost loop has the lowest number. This is guaranteed by setting
 584   // the loop number after the recursive calls for the successors above
 585   // have returned.
 586   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
 587     assert(cur->loop_index() == -1, "cannot set loop-index twice");
 588     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
 589 
 590     cur->set_loop_index(_num_loops);
 591     _num_loops++;
 592   }
 593 
 594   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
 595 }
 596 
 597 
 598 void ComputeLinearScanOrder::mark_loops() {
 599   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
 600 
 601   _loop_map = BitMap2D(_num_loops, _max_block_id);
 602   _loop_map.clear();
 603 
 604   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
 605     BlockBegin* loop_end   = _loop_end_blocks.at(i);
 606     BlockBegin* loop_start = loop_end->sux_at(0);
 607     int         loop_idx   = loop_start->loop_index();
 608 
 609     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
 610     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
 611     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
 612     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
 613     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
 614     assert(_work_list.is_empty(), "work list must be empty before processing");
 615 
 616     // add the end-block of the loop to the working list
 617     _work_list.push(loop_end);
 618     set_block_in_loop(loop_idx, loop_end);
 619     do {
 620       BlockBegin* cur = _work_list.pop();
 621 
 622       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
 623       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
 624 
 625       // recursive processing of all predecessors ends when start block of loop is reached
 626       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
 627         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
 628           BlockBegin* pred = cur->pred_at(j);
 629 
 630           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
 631             // this predecessor has not been processed yet, so add it to work list
 632             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
 633             _work_list.push(pred);
 634             set_block_in_loop(loop_idx, pred);
 635           }
 636         }
 637       }
 638     } while (!_work_list.is_empty());
 639   }
 640 }
 641 
 642 
 643 // check for non-natural loops (loops where the loop header does not dominate
 644 // all other loop blocks = loops with mulitple entries).
 645 // such loops are ignored
 646 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
 647   for (int i = _num_loops - 1; i >= 0; i--) {
 648     if (is_block_in_loop(i, start_block)) {
 649       // loop i contains the entry block of the method
 650       // -> this is not a natural loop, so ignore it
 651       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
 652 
 653       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
 654         clear_block_in_loop(i, block_id);
 655       }
 656       _iterative_dominators = true;
 657     }
 658   }
 659 }
 660 
 661 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
 662   TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
 663   init_visited();
 664 
 665   assert(_work_list.is_empty(), "work list must be empty before processing");
 666   _work_list.append(start_block);
 667 
 668   do {
 669     BlockBegin* cur = _work_list.pop();
 670 
 671     if (!is_visited(cur)) {
 672       set_visited(cur);
 673       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
 674 
 675       // compute loop-depth and loop-index for the block
 676       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
 677       int i;
 678       int loop_depth = 0;
 679       int min_loop_idx = -1;
 680       for (i = _num_loops - 1; i >= 0; i--) {
 681         if (is_block_in_loop(i, cur)) {
 682           loop_depth++;
 683           min_loop_idx = i;
 684         }
 685       }
 686       cur->set_loop_depth(loop_depth);
 687       cur->set_loop_index(min_loop_idx);
 688 
 689       // append all unvisited successors to work list
 690       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 691         _work_list.append(cur->sux_at(i));
 692       }
 693       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 694         _work_list.append(cur->exception_handler_at(i));
 695       }
 696     }
 697   } while (!_work_list.is_empty());
 698 }
 699 
 700 
 701 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
 702   assert(a != NULL && b != NULL, "must have input blocks");
 703 
 704   _dominator_blocks.clear();
 705   while (a != NULL) {
 706     _dominator_blocks.set_bit(a->block_id());
 707     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
 708     a = a->dominator();
 709   }
 710   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
 711     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
 712     b = b->dominator();
 713   }
 714 
 715   assert(b != NULL, "could not find dominator");
 716   return b;
 717 }
 718 
 719 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
 720   if (cur->dominator() == NULL) {
 721     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
 722     cur->set_dominator(parent);
 723 
 724   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
 725     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
 726     assert(cur->number_of_preds() > 1, "");
 727     cur->set_dominator(common_dominator(cur->dominator(), parent));
 728   }
 729 }
 730 
 731 
 732 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
 733   BlockBegin* single_sux = NULL;
 734   if (cur->number_of_sux() == 1) {
 735     single_sux = cur->sux_at(0);
 736   }
 737 
 738   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
 739   int weight = (cur->loop_depth() & 0x7FFF) << 16;
 740 
 741   // general macro for short definition of weight flags
 742   // the first instance of INC_WEIGHT_IF has the highest priority
 743   int cur_bit = 15;
 744   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
 745 
 746   // this is necessery for the (very rare) case that two successing blocks have
 747   // the same loop depth, but a different loop index (can happen for endless loops
 748   // with exception handlers)
 749   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
 750 
 751   // loop end blocks (blocks that end with a backward branch) are added
 752   // after all other blocks of the loop.
 753   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
 754 
 755   // critical edge split blocks are prefered because than they have a bigger
 756   // proability to be completely empty
 757   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
 758 
 759   // exceptions should not be thrown in normal control flow, so these blocks
 760   // are added as late as possible
 761   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
 762   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
 763 
 764   // exceptions handlers are added as late as possible
 765   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
 766 
 767   // guarantee that weight is > 0
 768   weight |= 1;
 769 
 770   #undef INC_WEIGHT_IF
 771   assert(cur_bit >= 0, "too many flags");
 772   assert(weight > 0, "weight cannot become negative");
 773 
 774   return weight;
 775 }
 776 
 777 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
 778   // Discount the edge just traveled.
 779   // When the number drops to zero, all forward branches were processed
 780   if (dec_forward_branches(cur) != 0) {
 781     return false;
 782   }
 783 
 784   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
 785   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
 786   return true;
 787 }
 788 
 789 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
 790   assert(_work_list.index_of(cur) == -1, "block already in work list");
 791 
 792   int cur_weight = compute_weight(cur);
 793 
 794   // the linear_scan_number is used to cache the weight of a block
 795   cur->set_linear_scan_number(cur_weight);
 796 
 797 #ifndef PRODUCT
 798   if (StressLinearScan) {
 799     _work_list.insert_before(0, cur);
 800     return;
 801   }
 802 #endif
 803 
 804   _work_list.append(NULL); // provide space for new element
 805 
 806   int insert_idx = _work_list.length() - 1;
 807   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
 808     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
 809     insert_idx--;
 810   }
 811   _work_list.at_put(insert_idx, cur);
 812 
 813   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
 814   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
 815 
 816 #ifdef ASSERT
 817   for (int i = 0; i < _work_list.length(); i++) {
 818     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
 819     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
 820   }
 821 #endif
 822 }
 823 
 824 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
 825   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
 826   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
 827 
 828   // currently, the linear scan order and code emit order are equal.
 829   // therefore the linear_scan_number and the weight of a block must also
 830   // be equal.
 831   cur->set_linear_scan_number(_linear_scan_order->length());
 832   _linear_scan_order->append(cur);
 833 }
 834 
 835 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
 836   TRACE_LINEAR_SCAN(3, "----- computing final block order");
 837 
 838   // the start block is always the first block in the linear scan order
 839   _linear_scan_order = new BlockList(_num_blocks);
 840   append_block(start_block);
 841 
 842   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
 843   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
 844   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
 845 
 846   BlockBegin* sux_of_osr_entry = NULL;
 847   if (osr_entry != NULL) {
 848     // special handling for osr entry:
 849     // ignore the edge between the osr entry and its successor for processing
 850     // the osr entry block is added manually below
 851     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
 852     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
 853 
 854     sux_of_osr_entry = osr_entry->sux_at(0);
 855     dec_forward_branches(sux_of_osr_entry);
 856 
 857     compute_dominator(osr_entry, start_block);
 858     _iterative_dominators = true;
 859   }
 860   compute_dominator(std_entry, start_block);
 861 
 862   // start processing with standard entry block
 863   assert(_work_list.is_empty(), "list must be empty before processing");
 864 
 865   if (ready_for_processing(std_entry)) {
 866     sort_into_work_list(std_entry);
 867   } else {
 868     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
 869   }
 870 
 871   do {
 872     BlockBegin* cur = _work_list.pop();
 873 
 874     if (cur == sux_of_osr_entry) {
 875       // the osr entry block is ignored in normal processing, it is never added to the
 876       // work list. Instead, it is added as late as possible manually here.
 877       append_block(osr_entry);
 878       compute_dominator(cur, osr_entry);
 879     }
 880     append_block(cur);
 881 
 882     int i;
 883     int num_sux = cur->number_of_sux();
 884     // changed loop order to get "intuitive" order of if- and else-blocks
 885     for (i = 0; i < num_sux; i++) {
 886       BlockBegin* sux = cur->sux_at(i);
 887       compute_dominator(sux, cur);
 888       if (ready_for_processing(sux)) {
 889         sort_into_work_list(sux);
 890       }
 891     }
 892     num_sux = cur->number_of_exception_handlers();
 893     for (i = 0; i < num_sux; i++) {
 894       BlockBegin* sux = cur->exception_handler_at(i);
 895       compute_dominator(sux, cur);
 896       if (ready_for_processing(sux)) {
 897         sort_into_work_list(sux);
 898       }
 899     }
 900   } while (_work_list.length() > 0);
 901 }
 902 
 903 
 904 bool ComputeLinearScanOrder::compute_dominators_iter() {
 905   bool changed = false;
 906   int num_blocks = _linear_scan_order->length();
 907 
 908   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
 909   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
 910   for (int i = 1; i < num_blocks; i++) {
 911     BlockBegin* block = _linear_scan_order->at(i);
 912 
 913     BlockBegin* dominator = block->pred_at(0);
 914     int num_preds = block->number_of_preds();
 915     for (int i = 1; i < num_preds; i++) {
 916       dominator = common_dominator(dominator, block->pred_at(i));
 917     }
 918 
 919     if (dominator != block->dominator()) {
 920       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
 921 
 922       block->set_dominator(dominator);
 923       changed = true;
 924     }
 925   }
 926   return changed;
 927 }
 928 
 929 void ComputeLinearScanOrder::compute_dominators() {
 930   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
 931 
 932   // iterative computation of dominators is only required for methods with non-natural loops
 933   // and OSR-methods. For all other methods, the dominators computed when generating the
 934   // linear scan block order are correct.
 935   if (_iterative_dominators) {
 936     do {
 937       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
 938     } while (compute_dominators_iter());
 939   }
 940 
 941   // check that dominators are correct
 942   assert(!compute_dominators_iter(), "fix point not reached");
 943 }
 944 
 945 
 946 #ifndef PRODUCT
 947 void ComputeLinearScanOrder::print_blocks() {
 948   if (TraceLinearScanLevel >= 2) {
 949     tty->print_cr("----- loop information:");
 950     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
 951       BlockBegin* cur = _linear_scan_order->at(block_idx);
 952 
 953       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
 954       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
 955         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
 956       }
 957       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
 958     }
 959   }
 960 
 961   if (TraceLinearScanLevel >= 1) {
 962     tty->print_cr("----- linear-scan block order:");
 963     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
 964       BlockBegin* cur = _linear_scan_order->at(block_idx);
 965       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
 966 
 967       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
 968       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
 969       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
 970       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
 971 
 972       if (cur->dominator() != NULL) {
 973         tty->print("    dom: B%d ", cur->dominator()->block_id());
 974       } else {
 975         tty->print("    dom: NULL ");
 976       }
 977 
 978       if (cur->number_of_preds() > 0) {
 979         tty->print("    preds: ");
 980         for (int j = 0; j < cur->number_of_preds(); j++) {
 981           BlockBegin* pred = cur->pred_at(j);
 982           tty->print("B%d ", pred->block_id());
 983         }
 984       }
 985       if (cur->number_of_sux() > 0) {
 986         tty->print("    sux: ");
 987         for (int j = 0; j < cur->number_of_sux(); j++) {
 988           BlockBegin* sux = cur->sux_at(j);
 989           tty->print("B%d ", sux->block_id());
 990         }
 991       }
 992       if (cur->number_of_exception_handlers() > 0) {
 993         tty->print("    ex: ");
 994         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
 995           BlockBegin* ex = cur->exception_handler_at(j);
 996           tty->print("B%d ", ex->block_id());
 997         }
 998       }
 999       tty->cr();
1000     }
1001   }
1002 }
1003 #endif
1004 
1005 #ifdef ASSERT
1006 void ComputeLinearScanOrder::verify() {
1007   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1008 
1009   if (StressLinearScan) {
1010     // blocks are scrambled when StressLinearScan is used
1011     return;
1012   }
1013 
1014   // check that all successors of a block have a higher linear-scan-number
1015   // and that all predecessors of a block have a lower linear-scan-number
1016   // (only backward branches of loops are ignored)
1017   int i;
1018   for (i = 0; i < _linear_scan_order->length(); i++) {
1019     BlockBegin* cur = _linear_scan_order->at(i);
1020 
1021     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1022     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
1023 
1024     int j;
1025     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1026       BlockBegin* sux = cur->sux_at(j);
1027 
1028       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
1029       if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
1030         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1031       }
1032       if (cur->loop_depth() == sux->loop_depth()) {
1033         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1034       }
1035     }
1036 
1037     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1038       BlockBegin* pred = cur->pred_at(j);
1039 
1040       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
1041       if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
1042         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1043       }
1044       if (cur->loop_depth() == pred->loop_depth()) {
1045         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1046       }
1047 
1048       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1049     }
1050 
1051     // check dominator
1052     if (i == 0) {
1053       assert(cur->dominator() == NULL, "first block has no dominator");
1054     } else {
1055       assert(cur->dominator() != NULL, "all but first block must have dominator");
1056     }
1057     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
1058   }
1059 
1060   // check that all loops are continuous
1061   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1062     int block_idx = 0;
1063     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1064 
1065     // skip blocks before the loop
1066     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1067       block_idx++;
1068     }
1069     // skip blocks of loop
1070     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1071       block_idx++;
1072     }
1073     // after the first non-loop block, there must not be another loop-block
1074     while (block_idx < _num_blocks) {
1075       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1076       block_idx++;
1077     }
1078   }
1079 }
1080 #endif
1081 
1082 
1083 void IR::compute_code() {
1084   assert(is_valid(), "IR must be valid");
1085 
1086   ComputeLinearScanOrder compute_order(compilation(), start());
1087   _num_loops = compute_order.num_loops();
1088   _code = compute_order.linear_scan_order();
1089 }
1090 
1091 
1092 void IR::compute_use_counts() {
1093   // make sure all values coming out of this block get evaluated.
1094   int num_blocks = _code->length();
1095   for (int i = 0; i < num_blocks; i++) {
1096     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
1097   }
1098 
1099   // compute use counts
1100   UseCountComputer::compute(_code);
1101 }
1102 
1103 
1104 void IR::iterate_preorder(BlockClosure* closure) {
1105   assert(is_valid(), "IR must be valid");
1106   start()->iterate_preorder(closure);
1107 }
1108 
1109 
1110 void IR::iterate_postorder(BlockClosure* closure) {
1111   assert(is_valid(), "IR must be valid");
1112   start()->iterate_postorder(closure);
1113 }
1114 
1115 void IR::iterate_linear_scan_order(BlockClosure* closure) {
1116   linear_scan_order()->iterate_forward(closure);
1117 }
1118 
1119 
1120 #ifndef PRODUCT
1121 class BlockPrinter: public BlockClosure {
1122  private:
1123   InstructionPrinter* _ip;
1124   bool                _cfg_only;
1125   bool                _live_only;
1126 
1127  public:
1128   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1129     _ip       = ip;
1130     _cfg_only = cfg_only;
1131     _live_only = live_only;
1132   }
1133 
1134   virtual void block_do(BlockBegin* block) {
1135     if (_cfg_only) {
1136       _ip->print_instr(block); tty->cr();
1137     } else {
1138       block->print_block(*_ip, _live_only);
1139     }
1140   }
1141 };
1142 
1143 
1144 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1145   ttyLocker ttyl;
1146   InstructionPrinter ip(!cfg_only);
1147   BlockPrinter bp(&ip, cfg_only, live_only);
1148   start->iterate_preorder(&bp);
1149   tty->cr();
1150 }
1151 
1152 void IR::print(bool cfg_only, bool live_only) {
1153   if (is_valid()) {
1154     print(start(), cfg_only, live_only);
1155   } else {
1156     tty->print_cr("invalid IR");
1157   }
1158 }
1159 
1160 
1161 define_array(BlockListArray, BlockList*)
1162 define_stack(BlockListList, BlockListArray)
1163 
1164 class PredecessorValidator : public BlockClosure {
1165  private:
1166   BlockListList* _predecessors;
1167   BlockList*     _blocks;
1168 
1169   static int cmp(BlockBegin** a, BlockBegin** b) {
1170     return (*a)->block_id() - (*b)->block_id();
1171   }
1172 
1173  public:
1174   PredecessorValidator(IR* hir) {
1175     ResourceMark rm;
1176     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
1177     _blocks = new BlockList();
1178 
1179     int i;
1180     hir->start()->iterate_preorder(this);
1181     if (hir->code() != NULL) {
1182       assert(hir->code()->length() == _blocks->length(), "must match");
1183       for (i = 0; i < _blocks->length(); i++) {
1184         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1185       }
1186     }
1187 
1188     for (i = 0; i < _blocks->length(); i++) {
1189       BlockBegin* block = _blocks->at(i);
1190       BlockList* preds = _predecessors->at(block->block_id());
1191       if (preds == NULL) {
1192         assert(block->number_of_preds() == 0, "should be the same");
1193         continue;
1194       }
1195 
1196       // clone the pred list so we can mutate it
1197       BlockList* pred_copy = new BlockList();
1198       int j;
1199       for (j = 0; j < block->number_of_preds(); j++) {
1200         pred_copy->append(block->pred_at(j));
1201       }
1202       // sort them in the same order
1203       preds->sort(cmp);
1204       pred_copy->sort(cmp);
1205       int length = MIN2(preds->length(), block->number_of_preds());
1206       for (j = 0; j < block->number_of_preds(); j++) {
1207         assert(preds->at(j) == pred_copy->at(j), "must match");
1208       }
1209 
1210       assert(preds->length() == block->number_of_preds(), "should be the same");
1211     }
1212   }
1213 
1214   virtual void block_do(BlockBegin* block) {
1215     _blocks->append(block);
1216     BlockEnd* be = block->end();
1217     int n = be->number_of_sux();
1218     int i;
1219     for (i = 0; i < n; i++) {
1220       BlockBegin* sux = be->sux_at(i);
1221       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1222 
1223       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1224       if (preds == NULL) {
1225         preds = new BlockList();
1226         _predecessors->at_put(sux->block_id(), preds);
1227       }
1228       preds->append(block);
1229     }
1230 
1231     n = block->number_of_exception_handlers();
1232     for (i = 0; i < n; i++) {
1233       BlockBegin* sux = block->exception_handler_at(i);
1234       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1235 
1236       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1237       if (preds == NULL) {
1238         preds = new BlockList();
1239         _predecessors->at_put(sux->block_id(), preds);
1240       }
1241       preds->append(block);
1242     }
1243   }
1244 };
1245 
1246 void IR::verify() {
1247 #ifdef ASSERT
1248   PredecessorValidator pv(this);
1249 #endif
1250 }
1251 
1252 #endif // PRODUCT
1253 
1254 void SubstitutionResolver::visit(Value* v) {
1255   Value v0 = *v;
1256   if (v0) {
1257     Value vs = v0->subst();
1258     if (vs != v0) {
1259       *v = v0->subst();
1260     }
1261   }
1262 }
1263 
1264 #ifdef ASSERT
1265 class SubstitutionChecker: public ValueVisitor {
1266   void visit(Value* v) {
1267     Value v0 = *v;
1268     if (v0) {
1269       Value vs = v0->subst();
1270       assert(vs == v0, "missed substitution");
1271     }
1272   }
1273 };
1274 #endif
1275 
1276 
1277 void SubstitutionResolver::block_do(BlockBegin* block) {
1278   Instruction* last = NULL;
1279   for (Instruction* n = block; n != NULL;) {
1280     n->values_do(this);
1281     // need to remove this instruction from the instruction stream
1282     if (n->subst() != n) {
1283       assert(last != NULL, "must have last");
1284       last->set_next(n->next());
1285     } else {
1286       last = n;
1287     }
1288     n = last->next();
1289   }
1290 
1291 #ifdef ASSERT
1292   SubstitutionChecker check_substitute;
1293   if (block->state()) block->state()->values_do(&check_substitute);
1294   block->block_values_do(&check_substitute);
1295   if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
1296 #endif
1297 }