1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp"
  27 #include "gc_implementation/shared/allocationStats.hpp"
  28 #include "gc_implementation/shared/spaceDecorator.hpp"
  29 #include "memory/space.inline.hpp"
  30 #include "runtime/globals.hpp"
  31 #include "utilities/ostream.hpp"
  32 
  33 ////////////////////////////////////////////////////////////////////////////////
  34 // A binary tree based search structure for free blocks.
  35 // This is currently used in the Concurrent Mark&Sweep implementation.
  36 ////////////////////////////////////////////////////////////////////////////////
  37 
  38 TreeChunk* TreeChunk::as_TreeChunk(FreeChunk* fc) {
  39   // Do some assertion checking here.
  40   return (TreeChunk*) fc;
  41 }
  42 
  43 void TreeChunk::verifyTreeChunkList() const {
  44   TreeChunk* nextTC = (TreeChunk*)next();
  45   if (prev() != NULL) { // interior list node shouldn'r have tree fields
  46     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
  47               embedded_list()->right()  == NULL, "should be clear");
  48   }
  49   if (nextTC != NULL) {
  50     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
  51     guarantee(nextTC->size() == size(), "wrong size");
  52     nextTC->verifyTreeChunkList();
  53   }
  54 }
  55 
  56 
  57 TreeList* TreeList::as_TreeList(TreeChunk* tc) {
  58   // This first free chunk in the list will be the tree list.
  59   assert(tc->size() >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
  60   TreeList* tl = tc->embedded_list();
  61   tc->set_list(tl);
  62 #ifdef ASSERT
  63   tl->set_protecting_lock(NULL);
  64 #endif
  65   tl->set_hint(0);
  66   tl->set_size(tc->size());
  67   tl->link_head(tc);
  68   tl->link_tail(tc);
  69   tl->set_count(1);
  70   tl->init_statistics(true /* split_birth */);
  71   tl->setParent(NULL);
  72   tl->setLeft(NULL);
  73   tl->setRight(NULL);
  74   return tl;
  75 }
  76 
  77 TreeList* TreeList::as_TreeList(HeapWord* addr, size_t size) {
  78   TreeChunk* tc = (TreeChunk*) addr;
  79   assert(size >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
  80   // The space in the heap will have been mangled initially but
  81   // is not remangled when a free chunk is returned to the free list
  82   // (since it is used to maintain the chunk on the free list).
  83   assert((ZapUnusedHeapArea &&
  84           SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
  85           SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
  86           SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
  87           (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
  88     "Space should be clear or mangled");
  89   tc->setSize(size);
  90   tc->linkPrev(NULL);
  91   tc->linkNext(NULL);
  92   TreeList* tl = TreeList::as_TreeList(tc);
  93   return tl;
  94 }
  95 
  96 TreeList* TreeList::removeChunkReplaceIfNeeded(TreeChunk* tc) {
  97 
  98   TreeList* retTL = this;
  99   FreeChunk* list = head();
 100   assert(!list || list != list->next(), "Chunk on list twice");
 101   assert(tc != NULL, "Chunk being removed is NULL");
 102   assert(parent() == NULL || this == parent()->left() ||
 103     this == parent()->right(), "list is inconsistent");
 104   assert(tc->isFree(), "Header is not marked correctly");
 105   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 106   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 107 
 108   FreeChunk* prevFC = tc->prev();
 109   TreeChunk* nextTC = TreeChunk::as_TreeChunk(tc->next());
 110   assert(list != NULL, "should have at least the target chunk");
 111 
 112   // Is this the first item on the list?
 113   if (tc == list) {
 114     // The "getChunk..." functions for a TreeList will not return the
 115     // first chunk in the list unless it is the last chunk in the list
 116     // because the first chunk is also acting as the tree node.
 117     // When coalescing happens, however, the first chunk in the a tree
 118     // list can be the start of a free range.  Free ranges are removed
 119     // from the free lists so that they are not available to be
 120     // allocated when the sweeper yields (giving up the free list lock)
 121     // to allow mutator activity.  If this chunk is the first in the
 122     // list and is not the last in the list, do the work to copy the
 123     // TreeList from the first chunk to the next chunk and update all
 124     // the TreeList pointers in the chunks in the list.
 125     if (nextTC == NULL) {
 126       assert(prevFC == NULL, "Not last chunk in the list");
 127       set_tail(NULL);
 128       set_head(NULL);
 129     } else {
 130       // copy embedded list.
 131       nextTC->set_embedded_list(tc->embedded_list());
 132       retTL = nextTC->embedded_list();
 133       // Fix the pointer to the list in each chunk in the list.
 134       // This can be slow for a long list.  Consider having
 135       // an option that does not allow the first chunk on the
 136       // list to be coalesced.
 137       for (TreeChunk* curTC = nextTC; curTC != NULL;
 138           curTC = TreeChunk::as_TreeChunk(curTC->next())) {
 139         curTC->set_list(retTL);
 140       }
 141       // Fix the parent to point to the new TreeList.
 142       if (retTL->parent() != NULL) {
 143         if (this == retTL->parent()->left()) {
 144           retTL->parent()->setLeft(retTL);
 145         } else {
 146           assert(this == retTL->parent()->right(), "Parent is incorrect");
 147           retTL->parent()->setRight(retTL);
 148         }
 149       }
 150       // Fix the children's parent pointers to point to the
 151       // new list.
 152       assert(right() == retTL->right(), "Should have been copied");
 153       if (retTL->right() != NULL) {
 154         retTL->right()->setParent(retTL);
 155       }
 156       assert(left() == retTL->left(), "Should have been copied");
 157       if (retTL->left() != NULL) {
 158         retTL->left()->setParent(retTL);
 159       }
 160       retTL->link_head(nextTC);
 161       assert(nextTC->isFree(), "Should be a free chunk");
 162     }
 163   } else {
 164     if (nextTC == NULL) {
 165       // Removing chunk at tail of list
 166       link_tail(prevFC);
 167     }
 168     // Chunk is interior to the list
 169     prevFC->linkAfter(nextTC);
 170   }
 171 
 172   // Below this point the embeded TreeList being used for the
 173   // tree node may have changed. Don't use "this"
 174   // TreeList*.
 175   // chunk should still be a free chunk (bit set in _prev)
 176   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
 177     "Wrong sized chunk in list");
 178   debug_only(
 179     tc->linkPrev(NULL);
 180     tc->linkNext(NULL);
 181     tc->set_list(NULL);
 182     bool prev_found = false;
 183     bool next_found = false;
 184     for (FreeChunk* curFC = retTL->head();
 185          curFC != NULL; curFC = curFC->next()) {
 186       assert(curFC != tc, "Chunk is still in list");
 187       if (curFC == prevFC) {
 188         prev_found = true;
 189       }
 190       if (curFC == nextTC) {
 191         next_found = true;
 192       }
 193     }
 194     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
 195     assert(nextTC == NULL || next_found, "Chunk was lost from list");
 196     assert(retTL->parent() == NULL ||
 197            retTL == retTL->parent()->left() ||
 198            retTL == retTL->parent()->right(),
 199            "list is inconsistent");
 200   )
 201   retTL->decrement_count();
 202 
 203   assert(tc->isFree(), "Should still be a free chunk");
 204   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
 205     "list invariant");
 206   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
 207     "list invariant");
 208   return retTL;
 209 }
 210 void TreeList::returnChunkAtTail(TreeChunk* chunk) {
 211   assert(chunk != NULL, "returning NULL chunk");
 212   assert(chunk->list() == this, "list should be set for chunk");
 213   assert(tail() != NULL, "The tree list is embedded in the first chunk");
 214   // which means that the list can never be empty.
 215   assert(!verifyChunkInFreeLists(chunk), "Double entry");
 216   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 217   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 218 
 219   FreeChunk* fc = tail();
 220   fc->linkAfter(chunk);
 221   link_tail(chunk);
 222 
 223   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
 224   increment_count();
 225   debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
 226   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 227   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 228 }
 229 
 230 // Add this chunk at the head of the list.  "At the head of the list"
 231 // is defined to be after the chunk pointer to by head().  This is
 232 // because the TreeList is embedded in the first TreeChunk in the
 233 // list.  See the definition of TreeChunk.
 234 void TreeList::returnChunkAtHead(TreeChunk* chunk) {
 235   assert(chunk->list() == this, "list should be set for chunk");
 236   assert(head() != NULL, "The tree list is embedded in the first chunk");
 237   assert(chunk != NULL, "returning NULL chunk");
 238   assert(!verifyChunkInFreeLists(chunk), "Double entry");
 239   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 240   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 241 
 242   FreeChunk* fc = head()->next();
 243   if (fc != NULL) {
 244     chunk->linkAfter(fc);
 245   } else {
 246     assert(tail() == NULL, "List is inconsistent");
 247     link_tail(chunk);
 248   }
 249   head()->linkAfter(chunk);
 250   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
 251   increment_count();
 252   debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
 253   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 254   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 255 }
 256 
 257 TreeChunk* TreeList::head_as_TreeChunk() {
 258   assert(head() == NULL || TreeChunk::as_TreeChunk(head())->list() == this,
 259     "Wrong type of chunk?");
 260   return TreeChunk::as_TreeChunk(head());
 261 }
 262 
 263 TreeChunk* TreeList::first_available() {
 264   assert(head() != NULL, "The head of the list cannot be NULL");
 265   FreeChunk* fc = head()->next();
 266   TreeChunk* retTC;
 267   if (fc == NULL) {
 268     retTC = head_as_TreeChunk();
 269   } else {
 270     retTC = TreeChunk::as_TreeChunk(fc);
 271   }
 272   assert(retTC->list() == this, "Wrong type of chunk.");
 273   return retTC;
 274 }
 275 
 276 // Returns the block with the largest heap address amongst
 277 // those in the list for this size; potentially slow and expensive,
 278 // use with caution!
 279 TreeChunk* TreeList::largest_address() {
 280   assert(head() != NULL, "The head of the list cannot be NULL");
 281   FreeChunk* fc = head()->next();
 282   TreeChunk* retTC;
 283   if (fc == NULL) {
 284     retTC = head_as_TreeChunk();
 285   } else {
 286     // walk down the list and return the one with the highest
 287     // heap address among chunks of this size.
 288     FreeChunk* last = fc;
 289     while (fc->next() != NULL) {
 290       if ((HeapWord*)last < (HeapWord*)fc) {
 291         last = fc;
 292       }
 293       fc = fc->next();
 294     }
 295     retTC = TreeChunk::as_TreeChunk(last);
 296   }
 297   assert(retTC->list() == this, "Wrong type of chunk.");
 298   return retTC;
 299 }
 300 
 301 BinaryTreeDictionary::BinaryTreeDictionary(MemRegion mr, bool splay):
 302   _splay(splay)
 303 {
 304   assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
 305 
 306   reset(mr);
 307   assert(root()->left() == NULL, "reset check failed");
 308   assert(root()->right() == NULL, "reset check failed");
 309   assert(root()->head()->next() == NULL, "reset check failed");
 310   assert(root()->head()->prev() == NULL, "reset check failed");
 311   assert(totalSize() == root()->size(), "reset check failed");
 312   assert(totalFreeBlocks() == 1, "reset check failed");
 313 }
 314 
 315 void BinaryTreeDictionary::inc_totalSize(size_t inc) {
 316   _totalSize = _totalSize + inc;
 317 }
 318 
 319 void BinaryTreeDictionary::dec_totalSize(size_t dec) {
 320   _totalSize = _totalSize - dec;
 321 }
 322 
 323 void BinaryTreeDictionary::reset(MemRegion mr) {
 324   assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
 325   set_root(TreeList::as_TreeList(mr.start(), mr.word_size()));
 326   set_totalSize(mr.word_size());
 327   set_totalFreeBlocks(1);
 328 }
 329 
 330 void BinaryTreeDictionary::reset(HeapWord* addr, size_t byte_size) {
 331   MemRegion mr(addr, heap_word_size(byte_size));
 332   reset(mr);
 333 }
 334 
 335 void BinaryTreeDictionary::reset() {
 336   set_root(NULL);
 337   set_totalSize(0);
 338   set_totalFreeBlocks(0);
 339 }
 340 
 341 // Get a free block of size at least size from tree, or NULL.
 342 // If a splay step is requested, the removal algorithm (only) incorporates
 343 // a splay step as follows:
 344 // . the search proceeds down the tree looking for a possible
 345 //   match. At the (closest) matching location, an appropriate splay step is applied
 346 //   (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
 347 //   if available, and if it's the last chunk, the node is deleted. A deteleted
 348 //   node is replaced in place by its tree successor.
 349 TreeChunk*
 350 BinaryTreeDictionary::getChunkFromTree(size_t size, Dither dither, bool splay)
 351 {
 352   TreeList *curTL, *prevTL;
 353   TreeChunk* retTC = NULL;
 354   assert(size >= MIN_TREE_CHUNK_SIZE, "minimum chunk size");
 355   if (FLSVerifyDictionary) {
 356     verifyTree();
 357   }
 358   // starting at the root, work downwards trying to find match.
 359   // Remember the last node of size too great or too small.
 360   for (prevTL = curTL = root(); curTL != NULL;) {
 361     if (curTL->size() == size) {        // exact match
 362       break;
 363     }
 364     prevTL = curTL;
 365     if (curTL->size() < size) {        // proceed to right sub-tree
 366       curTL = curTL->right();
 367     } else {                           // proceed to left sub-tree
 368       assert(curTL->size() > size, "size inconsistency");
 369       curTL = curTL->left();
 370     }
 371   }
 372   if (curTL == NULL) { // couldn't find exact match
 373     // try and find the next larger size by walking back up the search path
 374     for (curTL = prevTL; curTL != NULL;) {
 375       if (curTL->size() >= size) break;
 376       else curTL = curTL->parent();
 377     }
 378     assert(curTL == NULL || curTL->count() > 0,
 379       "An empty list should not be in the tree");
 380   }
 381   if (curTL != NULL) {
 382     assert(curTL->size() >= size, "size inconsistency");
 383     if (UseCMSAdaptiveFreeLists) {
 384 
 385       // A candidate chunk has been found.  If it is already under
 386       // populated, get a chunk associated with the hint for this
 387       // chunk.
 388       if (curTL->surplus() <= 0) {
 389         /* Use the hint to find a size with a surplus, and reset the hint. */
 390         TreeList* hintTL = curTL;
 391         while (hintTL->hint() != 0) {
 392           assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
 393             "hint points in the wrong direction");
 394           hintTL = findList(hintTL->hint());
 395           assert(curTL != hintTL, "Infinite loop");
 396           if (hintTL == NULL ||
 397               hintTL == curTL /* Should not happen but protect against it */ ) {
 398             // No useful hint.  Set the hint to NULL and go on.
 399             curTL->set_hint(0);
 400             break;
 401           }
 402           assert(hintTL->size() > size, "hint is inconsistent");
 403           if (hintTL->surplus() > 0) {
 404             // The hint led to a list that has a surplus.  Use it.
 405             // Set the hint for the candidate to an overpopulated
 406             // size.
 407             curTL->set_hint(hintTL->size());
 408             // Change the candidate.
 409             curTL = hintTL;
 410             break;
 411           }
 412           // The evm code reset the hint of the candidate as
 413           // at an interim point.  Why?  Seems like this leaves
 414           // the hint pointing to a list that didn't work.
 415           // curTL->set_hint(hintTL->size());
 416         }
 417       }
 418     }
 419     // don't waste time splaying if chunk's singleton
 420     if (splay && curTL->head()->next() != NULL) {
 421       semiSplayStep(curTL);
 422     }
 423     retTC = curTL->first_available();
 424     assert((retTC != NULL) && (curTL->count() > 0),
 425       "A list in the binary tree should not be NULL");
 426     assert(retTC->size() >= size,
 427       "A chunk of the wrong size was found");
 428     removeChunkFromTree(retTC);
 429     assert(retTC->isFree(), "Header is not marked correctly");
 430   }
 431 
 432   if (FLSVerifyDictionary) {
 433     verify();
 434   }
 435   return retTC;
 436 }
 437 
 438 TreeList* BinaryTreeDictionary::findList(size_t size) const {
 439   TreeList* curTL;
 440   for (curTL = root(); curTL != NULL;) {
 441     if (curTL->size() == size) {        // exact match
 442       break;
 443     }
 444 
 445     if (curTL->size() < size) {        // proceed to right sub-tree
 446       curTL = curTL->right();
 447     } else {                           // proceed to left sub-tree
 448       assert(curTL->size() > size, "size inconsistency");
 449       curTL = curTL->left();
 450     }
 451   }
 452   return curTL;
 453 }
 454 
 455 
 456 bool BinaryTreeDictionary::verifyChunkInFreeLists(FreeChunk* tc) const {
 457   size_t size = tc->size();
 458   TreeList* tl = findList(size);
 459   if (tl == NULL) {
 460     return false;
 461   } else {
 462     return tl->verifyChunkInFreeLists(tc);
 463   }
 464 }
 465 
 466 FreeChunk* BinaryTreeDictionary::findLargestDict() const {
 467   TreeList *curTL = root();
 468   if (curTL != NULL) {
 469     while(curTL->right() != NULL) curTL = curTL->right();
 470     return curTL->largest_address();
 471   } else {
 472     return NULL;
 473   }
 474 }
 475 
 476 // Remove the current chunk from the tree.  If it is not the last
 477 // chunk in a list on a tree node, just unlink it.
 478 // If it is the last chunk in the list (the next link is NULL),
 479 // remove the node and repair the tree.
 480 TreeChunk*
 481 BinaryTreeDictionary::removeChunkFromTree(TreeChunk* tc) {
 482   assert(tc != NULL, "Should not call with a NULL chunk");
 483   assert(tc->isFree(), "Header is not marked correctly");
 484 
 485   TreeList *newTL, *parentTL;
 486   TreeChunk* retTC;
 487   TreeList* tl = tc->list();
 488   debug_only(
 489     bool removing_only_chunk = false;
 490     if (tl == _root) {
 491       if ((_root->left() == NULL) && (_root->right() == NULL)) {
 492         if (_root->count() == 1) {
 493           assert(_root->head() == tc, "Should only be this one chunk");
 494           removing_only_chunk = true;
 495         }
 496       }
 497     }
 498   )
 499   assert(tl != NULL, "List should be set");
 500   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
 501          tl == tl->parent()->right(), "list is inconsistent");
 502 
 503   bool complicatedSplice = false;
 504 
 505   retTC = tc;
 506   // Removing this chunk can have the side effect of changing the node
 507   // (TreeList*) in the tree.  If the node is the root, update it.
 508   TreeList* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
 509   assert(tc->isFree(), "Chunk should still be free");
 510   assert(replacementTL->parent() == NULL ||
 511          replacementTL == replacementTL->parent()->left() ||
 512          replacementTL == replacementTL->parent()->right(),
 513          "list is inconsistent");
 514   if (tl == root()) {
 515     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
 516     set_root(replacementTL);
 517   }
 518   debug_only(
 519     if (tl != replacementTL) {
 520       assert(replacementTL->head() != NULL,
 521         "If the tree list was replaced, it should not be a NULL list");
 522       TreeList* rhl = replacementTL->head_as_TreeChunk()->list();
 523       TreeList* rtl = TreeChunk::as_TreeChunk(replacementTL->tail())->list();
 524       assert(rhl == replacementTL, "Broken head");
 525       assert(rtl == replacementTL, "Broken tail");
 526       assert(replacementTL->size() == tc->size(),  "Broken size");
 527     }
 528   )
 529 
 530   // Does the tree need to be repaired?
 531   if (replacementTL->count() == 0) {
 532     assert(replacementTL->head() == NULL &&
 533            replacementTL->tail() == NULL, "list count is incorrect");
 534     // Find the replacement node for the (soon to be empty) node being removed.
 535     // if we have a single (or no) child, splice child in our stead
 536     if (replacementTL->left() == NULL) {
 537       // left is NULL so pick right.  right may also be NULL.
 538       newTL = replacementTL->right();
 539       debug_only(replacementTL->clearRight();)
 540     } else if (replacementTL->right() == NULL) {
 541       // right is NULL
 542       newTL = replacementTL->left();
 543       debug_only(replacementTL->clearLeft();)
 544     } else {  // we have both children, so, by patriarchal convention,
 545               // my replacement is least node in right sub-tree
 546       complicatedSplice = true;
 547       newTL = removeTreeMinimum(replacementTL->right());
 548       assert(newTL != NULL && newTL->left() == NULL &&
 549              newTL->right() == NULL, "sub-tree minimum exists");
 550     }
 551     // newTL is the replacement for the (soon to be empty) node.
 552     // newTL may be NULL.
 553     // should verify; we just cleanly excised our replacement
 554     if (FLSVerifyDictionary) {
 555       verifyTree();
 556     }
 557     // first make newTL my parent's child
 558     if ((parentTL = replacementTL->parent()) == NULL) {
 559       // newTL should be root
 560       assert(tl == root(), "Incorrectly replacing root");
 561       set_root(newTL);
 562       if (newTL != NULL) {
 563         newTL->clearParent();
 564       }
 565     } else if (parentTL->right() == replacementTL) {
 566       // replacementTL is a right child
 567       parentTL->setRight(newTL);
 568     } else {                                // replacementTL is a left child
 569       assert(parentTL->left() == replacementTL, "should be left child");
 570       parentTL->setLeft(newTL);
 571     }
 572     debug_only(replacementTL->clearParent();)
 573     if (complicatedSplice) {  // we need newTL to get replacementTL's
 574                               // two children
 575       assert(newTL != NULL &&
 576              newTL->left() == NULL && newTL->right() == NULL,
 577             "newTL should not have encumbrances from the past");
 578       // we'd like to assert as below:
 579       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
 580       //       "else !complicatedSplice");
 581       // ... however, the above assertion is too strong because we aren't
 582       // guaranteed that replacementTL->right() is still NULL.
 583       // Recall that we removed
 584       // the right sub-tree minimum from replacementTL.
 585       // That may well have been its right
 586       // child! So we'll just assert half of the above:
 587       assert(replacementTL->left() != NULL, "else !complicatedSplice");
 588       newTL->setLeft(replacementTL->left());
 589       newTL->setRight(replacementTL->right());
 590       debug_only(
 591         replacementTL->clearRight();
 592         replacementTL->clearLeft();
 593       )
 594     }
 595     assert(replacementTL->right() == NULL &&
 596            replacementTL->left() == NULL &&
 597            replacementTL->parent() == NULL,
 598         "delete without encumbrances");
 599   }
 600 
 601   assert(totalSize() >= retTC->size(), "Incorrect total size");
 602   dec_totalSize(retTC->size());     // size book-keeping
 603   assert(totalFreeBlocks() > 0, "Incorrect total count");
 604   set_totalFreeBlocks(totalFreeBlocks() - 1);
 605 
 606   assert(retTC != NULL, "null chunk?");
 607   assert(retTC->prev() == NULL && retTC->next() == NULL,
 608          "should return without encumbrances");
 609   if (FLSVerifyDictionary) {
 610     verifyTree();
 611   }
 612   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
 613   return TreeChunk::as_TreeChunk(retTC);
 614 }
 615 
 616 // Remove the leftmost node (lm) in the tree and return it.
 617 // If lm has a right child, link it to the left node of
 618 // the parent of lm.
 619 TreeList* BinaryTreeDictionary::removeTreeMinimum(TreeList* tl) {
 620   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
 621   // locate the subtree minimum by walking down left branches
 622   TreeList* curTL = tl;
 623   for (; curTL->left() != NULL; curTL = curTL->left());
 624   // obviously curTL now has at most one child, a right child
 625   if (curTL != root()) {  // Should this test just be removed?
 626     TreeList* parentTL = curTL->parent();
 627     if (parentTL->left() == curTL) { // curTL is a left child
 628       parentTL->setLeft(curTL->right());
 629     } else {
 630       // If the list tl has no left child, then curTL may be
 631       // the right child of parentTL.
 632       assert(parentTL->right() == curTL, "should be a right child");
 633       parentTL->setRight(curTL->right());
 634     }
 635   } else {
 636     // The only use of this method would not pass the root of the
 637     // tree (as indicated by the assertion above that the tree list
 638     // has a parent) but the specification does not explicitly exclude the
 639     // passing of the root so accomodate it.
 640     set_root(NULL);
 641   }
 642   debug_only(
 643     curTL->clearParent();  // Test if this needs to be cleared
 644     curTL->clearRight();    // recall, above, left child is already null
 645   )
 646   // we just excised a (non-root) node, we should still verify all tree invariants
 647   if (FLSVerifyDictionary) {
 648     verifyTree();
 649   }
 650   return curTL;
 651 }
 652 
 653 // Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
 654 // The simplifications are the following:
 655 // . we splay only when we delete (not when we insert)
 656 // . we apply a single spay step per deletion/access
 657 // By doing such partial splaying, we reduce the amount of restructuring,
 658 // while getting a reasonably efficient search tree (we think).
 659 // [Measurements will be needed to (in)validate this expectation.]
 660 
 661 void BinaryTreeDictionary::semiSplayStep(TreeList* tc) {
 662   // apply a semi-splay step at the given node:
 663   // . if root, norting needs to be done
 664   // . if child of root, splay once
 665   // . else zig-zig or sig-zag depending on path from grandparent
 666   if (root() == tc) return;
 667   warning("*** Splaying not yet implemented; "
 668           "tree operations may be inefficient ***");
 669 }
 670 
 671 void BinaryTreeDictionary::insertChunkInTree(FreeChunk* fc) {
 672   TreeList *curTL, *prevTL;
 673   size_t size = fc->size();
 674 
 675   assert(size >= MIN_TREE_CHUNK_SIZE, "too small to be a TreeList");
 676   if (FLSVerifyDictionary) {
 677     verifyTree();
 678   }
 679   // XXX: do i need to clear the FreeChunk fields, let me do it just in case
 680   // Revisit this later
 681 
 682   fc->clearNext();
 683   fc->linkPrev(NULL);
 684 
 685   // work down from the _root, looking for insertion point
 686   for (prevTL = curTL = root(); curTL != NULL;) {
 687     if (curTL->size() == size)  // exact match
 688       break;
 689     prevTL = curTL;
 690     if (curTL->size() > size) { // follow left branch
 691       curTL = curTL->left();
 692     } else {                    // follow right branch
 693       assert(curTL->size() < size, "size inconsistency");
 694       curTL = curTL->right();
 695     }
 696   }
 697   TreeChunk* tc = TreeChunk::as_TreeChunk(fc);
 698   // This chunk is being returned to the binary tree.  Its embedded
 699   // TreeList should be unused at this point.
 700   tc->initialize();
 701   if (curTL != NULL) {          // exact match
 702     tc->set_list(curTL);
 703     curTL->returnChunkAtTail(tc);
 704   } else {                     // need a new node in tree
 705     tc->clearNext();
 706     tc->linkPrev(NULL);
 707     TreeList* newTL = TreeList::as_TreeList(tc);
 708     assert(((TreeChunk*)tc)->list() == newTL,
 709       "List was not initialized correctly");
 710     if (prevTL == NULL) {      // we are the only tree node
 711       assert(root() == NULL, "control point invariant");
 712       set_root(newTL);
 713     } else {                   // insert under prevTL ...
 714       if (prevTL->size() < size) {   // am right child
 715         assert(prevTL->right() == NULL, "control point invariant");
 716         prevTL->setRight(newTL);
 717       } else {                       // am left child
 718         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
 719         prevTL->setLeft(newTL);
 720       }
 721     }
 722   }
 723   assert(tc->list() != NULL, "Tree list should be set");
 724 
 725   inc_totalSize(size);
 726   // Method 'totalSizeInTree' walks through the every block in the
 727   // tree, so it can cause significant performance loss if there are
 728   // many blocks in the tree
 729   assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
 730   set_totalFreeBlocks(totalFreeBlocks() + 1);
 731   if (FLSVerifyDictionary) {
 732     verifyTree();
 733   }
 734 }
 735 
 736 size_t BinaryTreeDictionary::maxChunkSize() const {
 737   verify_par_locked();
 738   TreeList* tc = root();
 739   if (tc == NULL) return 0;
 740   for (; tc->right() != NULL; tc = tc->right());
 741   return tc->size();
 742 }
 743 
 744 size_t BinaryTreeDictionary::totalListLength(TreeList* tl) const {
 745   size_t res;
 746   res = tl->count();
 747 #ifdef ASSERT
 748   size_t cnt;
 749   FreeChunk* tc = tl->head();
 750   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
 751   assert(res == cnt, "The count is not being maintained correctly");
 752 #endif
 753   return res;
 754 }
 755 
 756 size_t BinaryTreeDictionary::totalSizeInTree(TreeList* tl) const {
 757   if (tl == NULL)
 758     return 0;
 759   return (tl->size() * totalListLength(tl)) +
 760          totalSizeInTree(tl->left())    +
 761          totalSizeInTree(tl->right());
 762 }
 763 
 764 double BinaryTreeDictionary::sum_of_squared_block_sizes(TreeList* const tl) const {
 765   if (tl == NULL) {
 766     return 0.0;
 767   }
 768   double size = (double)(tl->size());
 769   double curr = size * size * totalListLength(tl);
 770   curr += sum_of_squared_block_sizes(tl->left());
 771   curr += sum_of_squared_block_sizes(tl->right());
 772   return curr;
 773 }
 774 
 775 size_t BinaryTreeDictionary::totalFreeBlocksInTree(TreeList* tl) const {
 776   if (tl == NULL)
 777     return 0;
 778   return totalListLength(tl) +
 779          totalFreeBlocksInTree(tl->left()) +
 780          totalFreeBlocksInTree(tl->right());
 781 }
 782 
 783 size_t BinaryTreeDictionary::numFreeBlocks() const {
 784   assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
 785          "_totalFreeBlocks inconsistency");
 786   return totalFreeBlocks();
 787 }
 788 
 789 size_t BinaryTreeDictionary::treeHeightHelper(TreeList* tl) const {
 790   if (tl == NULL)
 791     return 0;
 792   return 1 + MAX2(treeHeightHelper(tl->left()),
 793                   treeHeightHelper(tl->right()));
 794 }
 795 
 796 size_t BinaryTreeDictionary::treeHeight() const {
 797   return treeHeightHelper(root());
 798 }
 799 
 800 size_t BinaryTreeDictionary::totalNodesHelper(TreeList* tl) const {
 801   if (tl == NULL) {
 802     return 0;
 803   }
 804   return 1 + totalNodesHelper(tl->left()) +
 805     totalNodesHelper(tl->right());
 806 }
 807 
 808 size_t BinaryTreeDictionary::totalNodesInTree(TreeList* tl) const {
 809   return totalNodesHelper(root());
 810 }
 811 
 812 void BinaryTreeDictionary::dictCensusUpdate(size_t size, bool split, bool birth){
 813   TreeList* nd = findList(size);
 814   if (nd) {
 815     if (split) {
 816       if (birth) {
 817         nd->increment_splitBirths();
 818         nd->increment_surplus();
 819       }  else {
 820         nd->increment_splitDeaths();
 821         nd->decrement_surplus();
 822       }
 823     } else {
 824       if (birth) {
 825         nd->increment_coalBirths();
 826         nd->increment_surplus();
 827       } else {
 828         nd->increment_coalDeaths();
 829         nd->decrement_surplus();
 830       }
 831     }
 832   }
 833   // A list for this size may not be found (nd == 0) if
 834   //   This is a death where the appropriate list is now
 835   //     empty and has been removed from the list.
 836   //   This is a birth associated with a LinAB.  The chunk
 837   //     for the LinAB is not in the dictionary.
 838 }
 839 
 840 bool BinaryTreeDictionary::coalDictOverPopulated(size_t size) {
 841   if (FLSAlwaysCoalesceLarge) return true;
 842 
 843   TreeList* list_of_size = findList(size);
 844   // None of requested size implies overpopulated.
 845   return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
 846          list_of_size->count() > list_of_size->coalDesired();
 847 }
 848 
 849 // Closures for walking the binary tree.
 850 //   do_list() walks the free list in a node applying the closure
 851 //     to each free chunk in the list
 852 //   do_tree() walks the nodes in the binary tree applying do_list()
 853 //     to each list at each node.
 854 
 855 class TreeCensusClosure : public StackObj {
 856  protected:
 857   virtual void do_list(FreeList* fl) = 0;
 858  public:
 859   virtual void do_tree(TreeList* tl) = 0;
 860 };
 861 
 862 class AscendTreeCensusClosure : public TreeCensusClosure {
 863  public:
 864   void do_tree(TreeList* tl) {
 865     if (tl != NULL) {
 866       do_tree(tl->left());
 867       do_list(tl);
 868       do_tree(tl->right());
 869     }
 870   }
 871 };
 872 
 873 class DescendTreeCensusClosure : public TreeCensusClosure {
 874  public:
 875   void do_tree(TreeList* tl) {
 876     if (tl != NULL) {
 877       do_tree(tl->right());
 878       do_list(tl);
 879       do_tree(tl->left());
 880     }
 881   }
 882 };
 883 
 884 // For each list in the tree, calculate the desired, desired
 885 // coalesce, count before sweep, and surplus before sweep.
 886 class BeginSweepClosure : public AscendTreeCensusClosure {
 887   double _percentage;
 888   float _inter_sweep_current;
 889   float _inter_sweep_estimate;
 890   float _intra_sweep_estimate;
 891 
 892  public:
 893   BeginSweepClosure(double p, float inter_sweep_current,
 894                               float inter_sweep_estimate,
 895                               float intra_sweep_estimate) :
 896    _percentage(p),
 897    _inter_sweep_current(inter_sweep_current),
 898    _inter_sweep_estimate(inter_sweep_estimate),
 899    _intra_sweep_estimate(intra_sweep_estimate) { }
 900 
 901   void do_list(FreeList* fl) {
 902     double coalSurplusPercent = _percentage;
 903     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
 904     fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
 905     fl->set_beforeSweep(fl->count());
 906     fl->set_bfrSurp(fl->surplus());
 907   }
 908 };
 909 
 910 // Used to search the tree until a condition is met.
 911 // Similar to TreeCensusClosure but searches the
 912 // tree and returns promptly when found.
 913 
 914 class TreeSearchClosure : public StackObj {
 915  protected:
 916   virtual bool do_list(FreeList* fl) = 0;
 917  public:
 918   virtual bool do_tree(TreeList* tl) = 0;
 919 };
 920 
 921 #if 0 //  Don't need this yet but here for symmetry.
 922 class AscendTreeSearchClosure : public TreeSearchClosure {
 923  public:
 924   bool do_tree(TreeList* tl) {
 925     if (tl != NULL) {
 926       if (do_tree(tl->left())) return true;
 927       if (do_list(tl)) return true;
 928       if (do_tree(tl->right())) return true;
 929     }
 930     return false;
 931   }
 932 };
 933 #endif
 934 
 935 class DescendTreeSearchClosure : public TreeSearchClosure {
 936  public:
 937   bool do_tree(TreeList* tl) {
 938     if (tl != NULL) {
 939       if (do_tree(tl->right())) return true;
 940       if (do_list(tl)) return true;
 941       if (do_tree(tl->left())) return true;
 942     }
 943     return false;
 944   }
 945 };
 946 
 947 // Searches the tree for a chunk that ends at the
 948 // specified address.
 949 class EndTreeSearchClosure : public DescendTreeSearchClosure {
 950   HeapWord* _target;
 951   FreeChunk* _found;
 952 
 953  public:
 954   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
 955   bool do_list(FreeList* fl) {
 956     FreeChunk* item = fl->head();
 957     while (item != NULL) {
 958       if (item->end() == _target) {
 959         _found = item;
 960         return true;
 961       }
 962       item = item->next();
 963     }
 964     return false;
 965   }
 966   FreeChunk* found() { return _found; }
 967 };
 968 
 969 FreeChunk* BinaryTreeDictionary::find_chunk_ends_at(HeapWord* target) const {
 970   EndTreeSearchClosure etsc(target);
 971   bool found_target = etsc.do_tree(root());
 972   assert(found_target || etsc.found() == NULL, "Consistency check");
 973   assert(!found_target || etsc.found() != NULL, "Consistency check");
 974   return etsc.found();
 975 }
 976 
 977 void BinaryTreeDictionary::beginSweepDictCensus(double coalSurplusPercent,
 978   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
 979   BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current,
 980                                             inter_sweep_estimate,
 981                                             intra_sweep_estimate);
 982   bsc.do_tree(root());
 983 }
 984 
 985 // Closures and methods for calculating total bytes returned to the
 986 // free lists in the tree.
 987 NOT_PRODUCT(
 988   class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure {
 989    public:
 990     void do_list(FreeList* fl) {
 991       fl->set_returnedBytes(0);
 992     }
 993   };
 994 
 995   void BinaryTreeDictionary::initializeDictReturnedBytes() {
 996     InitializeDictReturnedBytesClosure idrb;
 997     idrb.do_tree(root());
 998   }
 999 
1000   class ReturnedBytesClosure : public AscendTreeCensusClosure {
1001     size_t _dictReturnedBytes;
1002    public:
1003     ReturnedBytesClosure() { _dictReturnedBytes = 0; }
1004     void do_list(FreeList* fl) {
1005       _dictReturnedBytes += fl->returnedBytes();
1006     }
1007     size_t dictReturnedBytes() { return _dictReturnedBytes; }
1008   };
1009 
1010   size_t BinaryTreeDictionary::sumDictReturnedBytes() {
1011     ReturnedBytesClosure rbc;
1012     rbc.do_tree(root());
1013 
1014     return rbc.dictReturnedBytes();
1015   }
1016 
1017   // Count the number of entries in the tree.
1018   class treeCountClosure : public DescendTreeCensusClosure {
1019    public:
1020     uint count;
1021     treeCountClosure(uint c) { count = c; }
1022     void do_list(FreeList* fl) {
1023       count++;
1024     }
1025   };
1026 
1027   size_t BinaryTreeDictionary::totalCount() {
1028     treeCountClosure ctc(0);
1029     ctc.do_tree(root());
1030     return ctc.count;
1031   }
1032 )
1033 
1034 // Calculate surpluses for the lists in the tree.
1035 class setTreeSurplusClosure : public AscendTreeCensusClosure {
1036   double percentage;
1037  public:
1038   setTreeSurplusClosure(double v) { percentage = v; }
1039   void do_list(FreeList* fl) {
1040     double splitSurplusPercent = percentage;
1041     fl->set_surplus(fl->count() -
1042                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
1043   }
1044 };
1045 
1046 void BinaryTreeDictionary::setTreeSurplus(double splitSurplusPercent) {
1047   setTreeSurplusClosure sts(splitSurplusPercent);
1048   sts.do_tree(root());
1049 }
1050 
1051 // Set hints for the lists in the tree.
1052 class setTreeHintsClosure : public DescendTreeCensusClosure {
1053   size_t hint;
1054  public:
1055   setTreeHintsClosure(size_t v) { hint = v; }
1056   void do_list(FreeList* fl) {
1057     fl->set_hint(hint);
1058     assert(fl->hint() == 0 || fl->hint() > fl->size(),
1059       "Current hint is inconsistent");
1060     if (fl->surplus() > 0) {
1061       hint = fl->size();
1062     }
1063   }
1064 };
1065 
1066 void BinaryTreeDictionary::setTreeHints(void) {
1067   setTreeHintsClosure sth(0);
1068   sth.do_tree(root());
1069 }
1070 
1071 // Save count before previous sweep and splits and coalesces.
1072 class clearTreeCensusClosure : public AscendTreeCensusClosure {
1073   void do_list(FreeList* fl) {
1074     fl->set_prevSweep(fl->count());
1075     fl->set_coalBirths(0);
1076     fl->set_coalDeaths(0);
1077     fl->set_splitBirths(0);
1078     fl->set_splitDeaths(0);
1079   }
1080 };
1081 
1082 void BinaryTreeDictionary::clearTreeCensus(void) {
1083   clearTreeCensusClosure ctc;
1084   ctc.do_tree(root());
1085 }
1086 
1087 // Do reporting and post sweep clean up.
1088 void BinaryTreeDictionary::endSweepDictCensus(double splitSurplusPercent) {
1089   // Does walking the tree 3 times hurt?
1090   setTreeSurplus(splitSurplusPercent);
1091   setTreeHints();
1092   if (PrintGC && Verbose) {
1093     reportStatistics();
1094   }
1095   clearTreeCensus();
1096 }
1097 
1098 // Print summary statistics
1099 void BinaryTreeDictionary::reportStatistics() const {
1100   verify_par_locked();
1101   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
1102          "------------------------------------\n");
1103   size_t totalSize = totalChunkSize(debug_only(NULL));
1104   size_t    freeBlocks = numFreeBlocks();
1105   gclog_or_tty->print("Total Free Space: %d\n", totalSize);
1106   gclog_or_tty->print("Max   Chunk Size: %d\n", maxChunkSize());
1107   gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
1108   if (freeBlocks > 0) {
1109     gclog_or_tty->print("Av.  Block  Size: %d\n", totalSize/freeBlocks);
1110   }
1111   gclog_or_tty->print("Tree      Height: %d\n", treeHeight());
1112 }
1113 
1114 // Print census information - counts, births, deaths, etc.
1115 // for each list in the tree.  Also print some summary
1116 // information.
1117 class PrintTreeCensusClosure : public AscendTreeCensusClosure {
1118   int _print_line;
1119   size_t _totalFree;
1120   FreeList _total;
1121 
1122  public:
1123   PrintTreeCensusClosure() {
1124     _print_line = 0;
1125     _totalFree = 0;
1126   }
1127   FreeList* total() { return &_total; }
1128   size_t totalFree() { return _totalFree; }
1129   void do_list(FreeList* fl) {
1130     if (++_print_line >= 40) {
1131       FreeList::print_labels_on(gclog_or_tty, "size");
1132       _print_line = 0;
1133     }
1134     fl->print_on(gclog_or_tty);
1135     _totalFree +=            fl->count()            * fl->size()        ;
1136     total()->set_count(      total()->count()       + fl->count()      );
1137     total()->set_bfrSurp(    total()->bfrSurp()     + fl->bfrSurp()    );
1138     total()->set_surplus(    total()->splitDeaths() + fl->surplus()    );
1139     total()->set_desired(    total()->desired()     + fl->desired()    );
1140     total()->set_prevSweep(  total()->prevSweep()   + fl->prevSweep()  );
1141     total()->set_beforeSweep(total()->beforeSweep() + fl->beforeSweep());
1142     total()->set_coalBirths( total()->coalBirths()  + fl->coalBirths() );
1143     total()->set_coalDeaths( total()->coalDeaths()  + fl->coalDeaths() );
1144     total()->set_splitBirths(total()->splitBirths() + fl->splitBirths());
1145     total()->set_splitDeaths(total()->splitDeaths() + fl->splitDeaths());
1146   }
1147 };
1148 
1149 void BinaryTreeDictionary::printDictCensus(void) const {
1150 
1151   gclog_or_tty->print("\nBinaryTree\n");
1152   FreeList::print_labels_on(gclog_or_tty, "size");
1153   PrintTreeCensusClosure ptc;
1154   ptc.do_tree(root());
1155 
1156   FreeList* total = ptc.total();
1157   FreeList::print_labels_on(gclog_or_tty, " ");
1158   total->print_on(gclog_or_tty, "TOTAL\t");
1159   gclog_or_tty->print(
1160               "totalFree(words): " SIZE_FORMAT_W(16)
1161               " growth: %8.5f  deficit: %8.5f\n",
1162               ptc.totalFree(),
1163               (double)(total->splitBirths() + total->coalBirths()
1164                      - total->splitDeaths() - total->coalDeaths())
1165               /(total->prevSweep() != 0 ? (double)total->prevSweep() : 1.0),
1166              (double)(total->desired() - total->count())
1167              /(total->desired() != 0 ? (double)total->desired() : 1.0));
1168 }
1169 
1170 class PrintFreeListsClosure : public AscendTreeCensusClosure {
1171   outputStream* _st;
1172   int _print_line;
1173 
1174  public:
1175   PrintFreeListsClosure(outputStream* st) {
1176     _st = st;
1177     _print_line = 0;
1178   }
1179   void do_list(FreeList* fl) {
1180     if (++_print_line >= 40) {
1181       FreeList::print_labels_on(_st, "size");
1182       _print_line = 0;
1183     }
1184     fl->print_on(gclog_or_tty);
1185     size_t sz = fl->size();
1186     for (FreeChunk* fc = fl->head(); fc != NULL;
1187          fc = fc->next()) {
1188       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
1189                     fc, (HeapWord*)fc + sz,
1190                     fc->cantCoalesce() ? "\t CC" : "");
1191     }
1192   }
1193 };
1194 
1195 void BinaryTreeDictionary::print_free_lists(outputStream* st) const {
1196 
1197   FreeList::print_labels_on(st, "size");
1198   PrintFreeListsClosure pflc(st);
1199   pflc.do_tree(root());
1200 }
1201 
1202 // Verify the following tree invariants:
1203 // . _root has no parent
1204 // . parent and child point to each other
1205 // . each node's key correctly related to that of its child(ren)
1206 void BinaryTreeDictionary::verifyTree() const {
1207   guarantee(root() == NULL || totalFreeBlocks() == 0 ||
1208     totalSize() != 0, "_totalSize should't be 0?");
1209   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
1210   verifyTreeHelper(root());
1211 }
1212 
1213 size_t BinaryTreeDictionary::verifyPrevFreePtrs(TreeList* tl) {
1214   size_t ct = 0;
1215   for (FreeChunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
1216     ct++;
1217     assert(curFC->prev() == NULL || curFC->prev()->isFree(),
1218       "Chunk should be free");
1219   }
1220   return ct;
1221 }
1222 
1223 // Note: this helper is recursive rather than iterative, so use with
1224 // caution on very deep trees; and watch out for stack overflow errors;
1225 // In general, to be used only for debugging.
1226 void BinaryTreeDictionary::verifyTreeHelper(TreeList* tl) const {
1227   if (tl == NULL)
1228     return;
1229   guarantee(tl->size() != 0, "A list must has a size");
1230   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
1231          "parent<-/->left");
1232   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
1233          "parent<-/->right");;
1234   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
1235          "parent !> left");
1236   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
1237          "parent !< left");
1238   guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
1239   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
1240     "list inconsistency");
1241   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
1242     "list count is inconsistent");
1243   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
1244     "list is incorrectly constructed");
1245   size_t count = verifyPrevFreePtrs(tl);
1246   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
1247   if (tl->head() != NULL) {
1248     tl->head_as_TreeChunk()->verifyTreeChunkList();
1249   }
1250   verifyTreeHelper(tl->left());
1251   verifyTreeHelper(tl->right());
1252 }
1253 
1254 void BinaryTreeDictionary::verify() const {
1255   verifyTree();
1256   guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");
1257 }