1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // ConcurrentMarkSweepGeneration is in support of a concurrent
  26 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
  27 // style. We assume, for now, that this generation is always the
  28 // seniormost generation (modulo the PermGeneration), and for simplicity
  29 // in the first implementation, that this generation is a single compactible
  30 // space. Neither of these restrictions appears essential, and will be
  31 // relaxed in the future when more time is available to implement the
  32 // greater generality (and there's a need for it).
  33 //
  34 // Concurrent mode failures are currently handled by
  35 // means of a sliding mark-compact.
  36 
  37 class CMSAdaptiveSizePolicy;
  38 class CMSConcMarkingTask;
  39 class CMSGCAdaptivePolicyCounters;
  40 class ConcurrentMarkSweepGeneration;
  41 class ConcurrentMarkSweepPolicy;
  42 class ConcurrentMarkSweepThread;
  43 class CompactibleFreeListSpace;
  44 class FreeChunk;
  45 class PromotionInfo;
  46 class ScanMarkedObjectsAgainCarefullyClosure;
  47 
  48 // A generic CMS bit map. It's the basis for both the CMS marking bit map
  49 // as well as for the mod union table (in each case only a subset of the
  50 // methods are used). This is essentially a wrapper around the BitMap class,
  51 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
  52 // we have _shifter == 0. and for the mod union table we have
  53 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
  54 // XXX 64-bit issues in BitMap?
  55 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
  56   friend class VMStructs;
  57 
  58   HeapWord* _bmStartWord;   // base address of range covered by map
  59   size_t    _bmWordSize;    // map size (in #HeapWords covered)
  60   const int _shifter;       // shifts to convert HeapWord to bit position
  61   VirtualSpace _virtual_space; // underlying the bit map
  62   BitMap    _bm;            // the bit map itself
  63  public:
  64   Mutex* const _lock;       // mutex protecting _bm;
  65 
  66  public:
  67   // constructor
  68   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
  69 
  70   // allocates the actual storage for the map
  71   bool allocate(MemRegion mr);
  72   // field getter
  73   Mutex* lock() const { return _lock; }
  74   // locking verifier convenience function
  75   void assert_locked() const PRODUCT_RETURN;
  76 
  77   // inquiries
  78   HeapWord* startWord()   const { return _bmStartWord; }
  79   size_t    sizeInWords() const { return _bmWordSize;  }
  80   size_t    sizeInBits()  const { return _bm.size();   }
  81   // the following is one past the last word in space
  82   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  83 
  84   // reading marks
  85   bool isMarked(HeapWord* addr) const;
  86   bool par_isMarked(HeapWord* addr) const; // do not lock checks
  87   bool isUnmarked(HeapWord* addr) const;
  88   bool isAllClear() const;
  89 
  90   // writing marks
  91   void mark(HeapWord* addr);
  92   // For marking by parallel GC threads;
  93   // returns true if we did, false if another thread did
  94   bool par_mark(HeapWord* addr);
  95 
  96   void mark_range(MemRegion mr);
  97   void par_mark_range(MemRegion mr);
  98   void mark_large_range(MemRegion mr);
  99   void par_mark_large_range(MemRegion mr);
 100   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
 101   void clear_range(MemRegion mr);
 102   void par_clear_range(MemRegion mr);
 103   void clear_large_range(MemRegion mr);
 104   void par_clear_large_range(MemRegion mr);
 105   void clear_all();
 106   void clear_all_incrementally();  // Not yet implemented!!
 107 
 108   NOT_PRODUCT(
 109     // checks the memory region for validity
 110     void region_invariant(MemRegion mr);
 111   )
 112 
 113   // iteration
 114   void iterate(BitMapClosure* cl) {
 115     _bm.iterate(cl);
 116   }
 117   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
 118   void dirty_range_iterate_clear(MemRegionClosure* cl);
 119   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
 120 
 121   // auxiliary support for iteration
 122   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
 123   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
 124                                             HeapWord* end_addr) const;
 125   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
 126   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
 127                                               HeapWord* end_addr) const;
 128   MemRegion getAndClearMarkedRegion(HeapWord* addr);
 129   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
 130                                            HeapWord* end_addr);
 131 
 132   // conversion utilities
 133   HeapWord* offsetToHeapWord(size_t offset) const;
 134   size_t    heapWordToOffset(HeapWord* addr) const;
 135   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
 136 
 137   // debugging
 138   // is this address range covered by the bit-map?
 139   NOT_PRODUCT(
 140     bool covers(MemRegion mr) const;
 141     bool covers(HeapWord* start, size_t size = 0) const;
 142   )
 143   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
 144 };
 145 
 146 // Represents a marking stack used by the CMS collector.
 147 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
 148 class CMSMarkStack: public CHeapObj  {
 149   //
 150   friend class CMSCollector;   // to get at expasion stats further below
 151   //
 152 
 153   VirtualSpace _virtual_space;  // space for the stack
 154   oop*   _base;      // bottom of stack
 155   size_t _index;     // one more than last occupied index
 156   size_t _capacity;  // max #elements
 157   Mutex  _par_lock;  // an advisory lock used in case of parallel access
 158   NOT_PRODUCT(size_t _max_depth;)  // max depth plumbed during run
 159 
 160  protected:
 161   size_t _hit_limit;      // we hit max stack size limit
 162   size_t _failed_double;  // we failed expansion before hitting limit
 163 
 164  public:
 165   CMSMarkStack():
 166     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true),
 167     _hit_limit(0),
 168     _failed_double(0) {}
 169 
 170   bool allocate(size_t size);
 171 
 172   size_t capacity() const { return _capacity; }
 173 
 174   oop pop() {
 175     if (!isEmpty()) {
 176       return _base[--_index] ;
 177     }
 178     return NULL;
 179   }
 180 
 181   bool push(oop ptr) {
 182     if (isFull()) {
 183       return false;
 184     } else {
 185       _base[_index++] = ptr;
 186       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 187       return true;
 188     }
 189   }
 190 
 191   bool isEmpty() const { return _index == 0; }
 192   bool isFull()  const {
 193     assert(_index <= _capacity, "buffer overflow");
 194     return _index == _capacity;
 195   }
 196 
 197   size_t length() { return _index; }
 198 
 199   // "Parallel versions" of some of the above
 200   oop par_pop() {
 201     // lock and pop
 202     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 203     return pop();
 204   }
 205 
 206   bool par_push(oop ptr) {
 207     // lock and push
 208     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 209     return push(ptr);
 210   }
 211 
 212   // Forcibly reset the stack, losing all of its contents.
 213   void reset() {
 214     _index = 0;
 215   }
 216 
 217   // Expand the stack, typically in response to an overflow condition
 218   void expand();
 219 
 220   // Compute the least valued stack element.
 221   oop least_value(HeapWord* low) {
 222      oop least = (oop)low;
 223      for (size_t i = 0; i < _index; i++) {
 224        least = MIN2(least, _base[i]);
 225      }
 226      return least;
 227   }
 228 
 229   // Exposed here to allow stack expansion in || case
 230   Mutex* par_lock() { return &_par_lock; }
 231 };
 232 
 233 class CardTableRS;
 234 class CMSParGCThreadState;
 235 
 236 class ModUnionClosure: public MemRegionClosure {
 237  protected:
 238   CMSBitMap* _t;
 239  public:
 240   ModUnionClosure(CMSBitMap* t): _t(t) { }
 241   void do_MemRegion(MemRegion mr);
 242 };
 243 
 244 class ModUnionClosurePar: public ModUnionClosure {
 245  public:
 246   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
 247   void do_MemRegion(MemRegion mr);
 248 };
 249 
 250 // Survivor Chunk Array in support of parallelization of
 251 // Survivor Space rescan.
 252 class ChunkArray: public CHeapObj {
 253   size_t _index;
 254   size_t _capacity;
 255   size_t _overflows;
 256   HeapWord** _array;   // storage for array
 257 
 258  public:
 259   ChunkArray() : _index(0), _capacity(0), _overflows(0), _array(NULL) {}
 260   ChunkArray(HeapWord** a, size_t c):
 261     _index(0), _capacity(c), _overflows(0), _array(a) {}
 262 
 263   HeapWord** array() { return _array; }
 264   void set_array(HeapWord** a) { _array = a; }
 265 
 266   size_t capacity() { return _capacity; }
 267   void set_capacity(size_t c) { _capacity = c; }
 268 
 269   size_t end() {
 270     assert(_index <= capacity(),
 271            err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT "): out of bounds",
 272                    _index, _capacity));
 273     return _index;
 274   }  // exclusive
 275 
 276   HeapWord* nth(size_t n) {
 277     assert(n < end(), "Out of bounds access");
 278     return _array[n];
 279   }
 280 
 281   void reset() {
 282     _index = 0;
 283     if (_overflows > 0 && PrintCMSStatistics > 1) {
 284       warning("CMS: ChunkArray[" SIZE_FORMAT "] overflowed " SIZE_FORMAT " times",
 285               _capacity, _overflows);
 286     }
 287     _overflows = 0;
 288   }
 289 
 290   void record_sample(HeapWord* p, size_t sz) {
 291     // For now we do not do anything with the size
 292     if (_index < _capacity) {
 293       _array[_index++] = p;
 294     } else {
 295       ++_overflows;
 296       assert(_index == _capacity,
 297              err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
 298                      "): out of bounds at overflow#" SIZE_FORMAT,
 299                      _index, _capacity, _overflows));
 300     }
 301   }
 302 };
 303 
 304 //
 305 // Timing, allocation and promotion statistics for gc scheduling and incremental
 306 // mode pacing.  Most statistics are exponential averages.
 307 //
 308 class CMSStats VALUE_OBJ_CLASS_SPEC {
 309  private:
 310   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
 311 
 312   // The following are exponential averages with factor alpha:
 313   //   avg = (100 - alpha) * avg + alpha * cur_sample
 314   //
 315   //   The durations measure:  end_time[n] - start_time[n]
 316   //   The periods measure:    start_time[n] - start_time[n-1]
 317   //
 318   // The cms period and duration include only concurrent collections; time spent
 319   // in foreground cms collections due to System.gc() or because of a failure to
 320   // keep up are not included.
 321   //
 322   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
 323   // real value, but is used only after the first period.  A value of 100 is
 324   // used for the first sample so it gets the entire weight.
 325   unsigned int _saved_alpha; // 0-100
 326   unsigned int _gc0_alpha;
 327   unsigned int _cms_alpha;
 328 
 329   double _gc0_duration;
 330   double _gc0_period;
 331   size_t _gc0_promoted;         // bytes promoted per gc0
 332   double _cms_duration;
 333   double _cms_duration_pre_sweep; // time from initiation to start of sweep
 334   double _cms_duration_per_mb;
 335   double _cms_period;
 336   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
 337 
 338   // Timers.
 339   elapsedTimer _cms_timer;
 340   TimeStamp    _gc0_begin_time;
 341   TimeStamp    _cms_begin_time;
 342   TimeStamp    _cms_end_time;
 343 
 344   // Snapshots of the amount used in the CMS generation.
 345   size_t _cms_used_at_gc0_begin;
 346   size_t _cms_used_at_gc0_end;
 347   size_t _cms_used_at_cms_begin;
 348 
 349   // Used to prevent the duty cycle from being reduced in the middle of a cms
 350   // cycle.
 351   bool _allow_duty_cycle_reduction;
 352 
 353   enum {
 354     _GC0_VALID = 0x1,
 355     _CMS_VALID = 0x2,
 356     _ALL_VALID = _GC0_VALID | _CMS_VALID
 357   };
 358 
 359   unsigned int _valid_bits;
 360 
 361   unsigned int _icms_duty_cycle;        // icms duty cycle (0-100).
 362 
 363  protected:
 364 
 365   // Return a duty cycle that avoids wild oscillations, by limiting the amount
 366   // of change between old_duty_cycle and new_duty_cycle (the latter is treated
 367   // as a recommended value).
 368   static unsigned int icms_damped_duty_cycle(unsigned int old_duty_cycle,
 369                                              unsigned int new_duty_cycle);
 370   unsigned int icms_update_duty_cycle_impl();
 371 
 372   // In support of adjusting of cms trigger ratios based on history
 373   // of concurrent mode failure.
 374   double cms_free_adjustment_factor(size_t free) const;
 375   void   adjust_cms_free_adjustment_factor(bool fail, size_t free);
 376 
 377  public:
 378   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
 379            unsigned int alpha = CMSExpAvgFactor);
 380 
 381   // Whether or not the statistics contain valid data; higher level statistics
 382   // cannot be called until this returns true (they require at least one young
 383   // gen and one cms cycle to have completed).
 384   bool valid() const;
 385 
 386   // Record statistics.
 387   void record_gc0_begin();
 388   void record_gc0_end(size_t cms_gen_bytes_used);
 389   void record_cms_begin();
 390   void record_cms_end();
 391 
 392   // Allow management of the cms timer, which must be stopped/started around
 393   // yield points.
 394   elapsedTimer& cms_timer()     { return _cms_timer; }
 395   void start_cms_timer()        { _cms_timer.start(); }
 396   void stop_cms_timer()         { _cms_timer.stop(); }
 397 
 398   // Basic statistics; units are seconds or bytes.
 399   double gc0_period() const     { return _gc0_period; }
 400   double gc0_duration() const   { return _gc0_duration; }
 401   size_t gc0_promoted() const   { return _gc0_promoted; }
 402   double cms_period() const          { return _cms_period; }
 403   double cms_duration() const        { return _cms_duration; }
 404   double cms_duration_per_mb() const { return _cms_duration_per_mb; }
 405   size_t cms_allocated() const       { return _cms_allocated; }
 406 
 407   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
 408 
 409   // Seconds since the last background cms cycle began or ended.
 410   double cms_time_since_begin() const;
 411   double cms_time_since_end() const;
 412 
 413   // Higher level statistics--caller must check that valid() returns true before
 414   // calling.
 415 
 416   // Returns bytes promoted per second of wall clock time.
 417   double promotion_rate() const;
 418 
 419   // Returns bytes directly allocated per second of wall clock time.
 420   double cms_allocation_rate() const;
 421 
 422   // Rate at which space in the cms generation is being consumed (sum of the
 423   // above two).
 424   double cms_consumption_rate() const;
 425 
 426   // Returns an estimate of the number of seconds until the cms generation will
 427   // fill up, assuming no collection work is done.
 428   double time_until_cms_gen_full() const;
 429 
 430   // Returns an estimate of the number of seconds remaining until
 431   // the cms generation collection should start.
 432   double time_until_cms_start() const;
 433 
 434   // End of higher level statistics.
 435 
 436   // Returns the cms incremental mode duty cycle, as a percentage (0-100).
 437   unsigned int icms_duty_cycle() const { return _icms_duty_cycle; }
 438 
 439   // Update the duty cycle and return the new value.
 440   unsigned int icms_update_duty_cycle();
 441 
 442   // Debugging.
 443   void print_on(outputStream* st) const PRODUCT_RETURN;
 444   void print() const { print_on(gclog_or_tty); }
 445 };
 446 
 447 // A closure related to weak references processing which
 448 // we embed in the CMSCollector, since we need to pass
 449 // it to the reference processor for secondary filtering
 450 // of references based on reachability of referent;
 451 // see role of _is_alive_non_header closure in the
 452 // ReferenceProcessor class.
 453 // For objects in the CMS generation, this closure checks
 454 // if the object is "live" (reachable). Used in weak
 455 // reference processing.
 456 class CMSIsAliveClosure: public BoolObjectClosure {
 457   const MemRegion  _span;
 458   const CMSBitMap* _bit_map;
 459 
 460   friend class CMSCollector;
 461  public:
 462   CMSIsAliveClosure(MemRegion span,
 463                     CMSBitMap* bit_map):
 464     _span(span),
 465     _bit_map(bit_map) {
 466     assert(!span.is_empty(), "Empty span could spell trouble");
 467   }
 468 
 469   void do_object(oop obj) {
 470     assert(false, "not to be invoked");
 471   }
 472 
 473   bool do_object_b(oop obj);
 474 };
 475 
 476 
 477 // Implements AbstractRefProcTaskExecutor for CMS.
 478 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
 479 public:
 480 
 481   CMSRefProcTaskExecutor(CMSCollector& collector)
 482     : _collector(collector)
 483   { }
 484 
 485   // Executes a task using worker threads.
 486   virtual void execute(ProcessTask& task);
 487   virtual void execute(EnqueueTask& task);
 488 private:
 489   CMSCollector& _collector;
 490 };
 491 
 492 
 493 class CMSCollector: public CHeapObj {
 494   friend class VMStructs;
 495   friend class ConcurrentMarkSweepThread;
 496   friend class ConcurrentMarkSweepGeneration;
 497   friend class CompactibleFreeListSpace;
 498   friend class CMSParRemarkTask;
 499   friend class CMSConcMarkingTask;
 500   friend class CMSRefProcTaskProxy;
 501   friend class CMSRefProcTaskExecutor;
 502   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
 503   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
 504   friend class PushOrMarkClosure;             // to access _restart_addr
 505   friend class Par_PushOrMarkClosure;             // to access _restart_addr
 506   friend class MarkFromRootsClosure;          //  -- ditto --
 507                                               // ... and for clearing cards
 508   friend class Par_MarkFromRootsClosure;      //  to access _restart_addr
 509                                               // ... and for clearing cards
 510   friend class Par_ConcMarkingClosure;        //  to access _restart_addr etc.
 511   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
 512   friend class PushAndMarkVerifyClosure;      //  -- ditto --
 513   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
 514   friend class PushAndMarkClosure;            //  -- ditto --
 515   friend class Par_PushAndMarkClosure;        //  -- ditto --
 516   friend class CMSKeepAliveClosure;           //  -- ditto --
 517   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
 518   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
 519   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
 520   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
 521   friend class VM_CMS_Operation;
 522   friend class VM_CMS_Initial_Mark;
 523   friend class VM_CMS_Final_Remark;
 524   friend class TraceCMSMemoryManagerStats;
 525 
 526  private:
 527   jlong _time_of_last_gc;
 528   void update_time_of_last_gc(jlong now) {
 529     _time_of_last_gc = now;
 530   }
 531 
 532   OopTaskQueueSet* _task_queues;
 533 
 534   // Overflow list of grey objects, threaded through mark-word
 535   // Manipulated with CAS in the parallel/multi-threaded case.
 536   oop _overflow_list;
 537   // The following array-pair keeps track of mark words
 538   // displaced for accomodating overflow list above.
 539   // This code will likely be revisited under RFE#4922830.
 540   Stack<oop>     _preserved_oop_stack;
 541   Stack<markOop> _preserved_mark_stack;
 542 
 543   int*             _hash_seed;
 544 
 545   // In support of multi-threaded concurrent phases
 546   YieldingFlexibleWorkGang* _conc_workers;
 547 
 548   // Performance Counters
 549   CollectorCounters* _gc_counters;
 550 
 551   // Initialization Errors
 552   bool _completed_initialization;
 553 
 554   // In support of ExplicitGCInvokesConcurrent
 555   static   bool _full_gc_requested;
 556   unsigned int  _collection_count_start;
 557 
 558   // Should we unload classes this concurrent cycle?
 559   bool _should_unload_classes;
 560   unsigned int  _concurrent_cycles_since_last_unload;
 561   unsigned int concurrent_cycles_since_last_unload() const {
 562     return _concurrent_cycles_since_last_unload;
 563   }
 564   // Did we (allow) unload classes in the previous concurrent cycle?
 565   bool unloaded_classes_last_cycle() const {
 566     return concurrent_cycles_since_last_unload() == 0;
 567   }
 568   // Root scanning options for perm gen
 569   int _roots_scanning_options;
 570   int roots_scanning_options() const      { return _roots_scanning_options; }
 571   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
 572   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
 573 
 574   // Verification support
 575   CMSBitMap     _verification_mark_bm;
 576   void verify_after_remark_work_1();
 577   void verify_after_remark_work_2();
 578 
 579   // true if any verification flag is on.
 580   bool _verifying;
 581   bool verifying() const { return _verifying; }
 582   void set_verifying(bool v) { _verifying = v; }
 583 
 584   // Collector policy
 585   ConcurrentMarkSweepPolicy* _collector_policy;
 586   ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
 587 
 588   // XXX Move these to CMSStats ??? FIX ME !!!
 589   elapsedTimer _inter_sweep_timer;   // time between sweeps
 590   elapsedTimer _intra_sweep_timer;   // time _in_ sweeps
 591   // padded decaying average estimates of the above
 592   AdaptivePaddedAverage _inter_sweep_estimate;
 593   AdaptivePaddedAverage _intra_sweep_estimate;
 594 
 595  protected:
 596   ConcurrentMarkSweepGeneration* _cmsGen;  // old gen (CMS)
 597   ConcurrentMarkSweepGeneration* _permGen; // perm gen
 598   MemRegion                      _span;    // span covering above two
 599   CardTableRS*                   _ct;      // card table
 600 
 601   // CMS marking support structures
 602   CMSBitMap     _markBitMap;
 603   CMSBitMap     _modUnionTable;
 604   CMSMarkStack  _markStack;
 605   CMSMarkStack  _revisitStack;            // used to keep track of klassKlass objects
 606                                           // to revisit
 607   CMSBitMap     _perm_gen_verify_bit_map; // Mark bit map for perm gen verification support.
 608 
 609   HeapWord*     _restart_addr; // in support of marking stack overflow
 610   void          lower_restart_addr(HeapWord* low);
 611 
 612   // Counters in support of marking stack / work queue overflow handling:
 613   // a non-zero value indicates certain types of overflow events during
 614   // the current CMS cycle and could lead to stack resizing efforts at
 615   // an opportune future time.
 616   size_t        _ser_pmc_preclean_ovflw;
 617   size_t        _ser_pmc_remark_ovflw;
 618   size_t        _par_pmc_remark_ovflw;
 619   size_t        _ser_kac_preclean_ovflw;
 620   size_t        _ser_kac_ovflw;
 621   size_t        _par_kac_ovflw;
 622   NOT_PRODUCT(ssize_t _num_par_pushes;)
 623 
 624   // ("Weak") Reference processing support
 625   ReferenceProcessor*            _ref_processor;
 626   CMSIsAliveClosure              _is_alive_closure;
 627       // keep this textually after _markBitMap and _span; c'tor dependency
 628 
 629   ConcurrentMarkSweepThread*     _cmsThread;   // the thread doing the work
 630   ModUnionClosure    _modUnionClosure;
 631   ModUnionClosurePar _modUnionClosurePar;
 632 
 633   // CMS abstract state machine
 634   // initial_state: Idling
 635   // next_state(Idling)            = {Marking}
 636   // next_state(Marking)           = {Precleaning, Sweeping}
 637   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
 638   // next_state(AbortablePreclean) = {FinalMarking}
 639   // next_state(FinalMarking)      = {Sweeping}
 640   // next_state(Sweeping)          = {Resizing}
 641   // next_state(Resizing)          = {Resetting}
 642   // next_state(Resetting)         = {Idling}
 643   // The numeric values below are chosen so that:
 644   // . _collectorState <= Idling ==  post-sweep && pre-mark
 645   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
 646   //                                            precleaning || abortablePrecleanb
 647  public:
 648   enum CollectorState {
 649     Resizing            = 0,
 650     Resetting           = 1,
 651     Idling              = 2,
 652     InitialMarking      = 3,
 653     Marking             = 4,
 654     Precleaning         = 5,
 655     AbortablePreclean   = 6,
 656     FinalMarking        = 7,
 657     Sweeping            = 8
 658   };
 659  protected:
 660   static CollectorState _collectorState;
 661 
 662   // State related to prologue/epilogue invocation for my generations
 663   bool _between_prologue_and_epilogue;
 664 
 665   // Signalling/State related to coordination between fore- and backgroud GC
 666   // Note: When the baton has been passed from background GC to foreground GC,
 667   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
 668   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
 669                                  // wants to go active
 670   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
 671                                  // yet passed the baton to the foreground GC
 672 
 673   // Support for CMSScheduleRemark (abortable preclean)
 674   bool _abort_preclean;
 675   bool _start_sampling;
 676 
 677   int    _numYields;
 678   size_t _numDirtyCards;
 679   size_t _sweep_count;
 680   // number of full gc's since the last concurrent gc.
 681   uint   _full_gcs_since_conc_gc;
 682 
 683   // occupancy used for bootstrapping stats
 684   double _bootstrap_occupancy;
 685 
 686   // timer
 687   elapsedTimer _timer;
 688 
 689   // Timing, allocation and promotion statistics, used for scheduling.
 690   CMSStats      _stats;
 691 
 692   // Allocation limits installed in the young gen, used only in
 693   // CMSIncrementalMode.  When an allocation in the young gen would cross one of
 694   // these limits, the cms generation is notified and the cms thread is started
 695   // or stopped, respectively.
 696   HeapWord*     _icms_start_limit;
 697   HeapWord*     _icms_stop_limit;
 698 
 699   enum CMS_op_type {
 700     CMS_op_checkpointRootsInitial,
 701     CMS_op_checkpointRootsFinal
 702   };
 703 
 704   void do_CMS_operation(CMS_op_type op);
 705   bool stop_world_and_do(CMS_op_type op);
 706 
 707   OopTaskQueueSet* task_queues() { return _task_queues; }
 708   int*             hash_seed(int i) { return &_hash_seed[i]; }
 709   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
 710 
 711   // Support for parallelizing Eden rescan in CMS remark phase
 712   void sample_eden(); // ... sample Eden space top
 713 
 714  private:
 715   // Support for parallelizing young gen rescan in CMS remark phase
 716   Generation* _young_gen;  // the younger gen
 717   HeapWord** _top_addr;    // ... Top of Eden
 718   HeapWord** _end_addr;    // ... End of Eden
 719   HeapWord** _eden_chunk_array; // ... Eden partitioning array
 720   size_t     _eden_chunk_index; // ... top (exclusive) of array
 721   size_t     _eden_chunk_capacity;  // ... max entries in array
 722 
 723   // Support for parallelizing survivor space rescan
 724   HeapWord** _survivor_chunk_array;
 725   size_t     _survivor_chunk_index;
 726   size_t     _survivor_chunk_capacity;
 727   size_t*    _cursor;
 728   ChunkArray* _survivor_plab_array;
 729 
 730   // Support for marking stack overflow handling
 731   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
 732   bool par_take_from_overflow_list(size_t num,
 733                                    OopTaskQueue* to_work_q,
 734                                    int no_of_gc_threads);
 735   void push_on_overflow_list(oop p);
 736   void par_push_on_overflow_list(oop p);
 737   // the following is, obviously, not, in general, "MT-stable"
 738   bool overflow_list_is_empty() const;
 739 
 740   void preserve_mark_if_necessary(oop p);
 741   void par_preserve_mark_if_necessary(oop p);
 742   void preserve_mark_work(oop p, markOop m);
 743   void restore_preserved_marks_if_any();
 744   NOT_PRODUCT(bool no_preserved_marks() const;)
 745   // in support of testing overflow code
 746   NOT_PRODUCT(int _overflow_counter;)
 747   NOT_PRODUCT(bool simulate_overflow();)       // sequential
 748   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
 749 
 750   // CMS work methods
 751   void checkpointRootsInitialWork(bool asynch); // initial checkpoint work
 752 
 753   // a return value of false indicates failure due to stack overflow
 754   bool markFromRootsWork(bool asynch);  // concurrent marking work
 755 
 756  public:   // FIX ME!!! only for testing
 757   bool do_marking_st(bool asynch);      // single-threaded marking
 758   bool do_marking_mt(bool asynch);      // multi-threaded  marking
 759 
 760  private:
 761 
 762   // concurrent precleaning work
 763   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
 764                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
 765   size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
 766                              ScanMarkedObjectsAgainCarefullyClosure* cl);
 767   // Does precleaning work, returning a quantity indicative of
 768   // the amount of "useful work" done.
 769   size_t preclean_work(bool clean_refs, bool clean_survivors);
 770   void abortable_preclean(); // Preclean while looking for possible abort
 771   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
 772   // Helper function for above; merge-sorts the per-thread plab samples
 773   void merge_survivor_plab_arrays(ContiguousSpace* surv, int no_of_gc_threads);
 774   // Resets (i.e. clears) the per-thread plab sample vectors
 775   void reset_survivor_plab_arrays();
 776 
 777   // final (second) checkpoint work
 778   void checkpointRootsFinalWork(bool asynch, bool clear_all_soft_refs,
 779                                 bool init_mark_was_synchronous);
 780   // work routine for parallel version of remark
 781   void do_remark_parallel();
 782   // work routine for non-parallel version of remark
 783   void do_remark_non_parallel();
 784   // reference processing work routine (during second checkpoint)
 785   void refProcessingWork(bool asynch, bool clear_all_soft_refs);
 786 
 787   // concurrent sweeping work
 788   void sweepWork(ConcurrentMarkSweepGeneration* gen, bool asynch);
 789 
 790   // (concurrent) resetting of support data structures
 791   void reset(bool asynch);
 792 
 793   // Clear _expansion_cause fields of constituent generations
 794   void clear_expansion_cause();
 795 
 796   // An auxilliary method used to record the ends of
 797   // used regions of each generation to limit the extent of sweep
 798   void save_sweep_limits();
 799 
 800   // Resize the generations included in the collector.
 801   void compute_new_size();
 802 
 803   // A work method used by foreground collection to determine
 804   // what type of collection (compacting or not, continuing or fresh)
 805   // it should do.
 806   void decide_foreground_collection_type(bool clear_all_soft_refs,
 807     bool* should_compact, bool* should_start_over);
 808 
 809   // A work method used by the foreground collector to do
 810   // a mark-sweep-compact.
 811   void do_compaction_work(bool clear_all_soft_refs);
 812 
 813   // A work method used by the foreground collector to do
 814   // a mark-sweep, after taking over from a possibly on-going
 815   // concurrent mark-sweep collection.
 816   void do_mark_sweep_work(bool clear_all_soft_refs,
 817     CollectorState first_state, bool should_start_over);
 818 
 819   // If the backgrould GC is active, acquire control from the background
 820   // GC and do the collection.
 821   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
 822 
 823   // For synchronizing passing of control from background to foreground
 824   // GC.  waitForForegroundGC() is called by the background
 825   // collector.  It if had to wait for a foreground collection,
 826   // it returns true and the background collection should assume
 827   // that the collection was finished by the foreground
 828   // collector.
 829   bool waitForForegroundGC();
 830 
 831   // Incremental mode triggering:  recompute the icms duty cycle and set the
 832   // allocation limits in the young gen.
 833   void icms_update_allocation_limits();
 834 
 835   size_t block_size_using_printezis_bits(HeapWord* addr) const;
 836   size_t block_size_if_printezis_bits(HeapWord* addr) const;
 837   HeapWord* next_card_start_after_block(HeapWord* addr) const;
 838 
 839   void setup_cms_unloading_and_verification_state();
 840  public:
 841   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 842                ConcurrentMarkSweepGeneration* permGen,
 843                CardTableRS*                   ct,
 844                ConcurrentMarkSweepPolicy*     cp);
 845   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
 846 
 847   ReferenceProcessor* ref_processor() { return _ref_processor; }
 848   void ref_processor_init();
 849 
 850   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
 851   static CollectorState abstract_state() { return _collectorState;  }
 852 
 853   bool should_abort_preclean() const; // Whether preclean should be aborted.
 854   size_t get_eden_used() const;
 855   size_t get_eden_capacity() const;
 856 
 857   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
 858 
 859   // locking checks
 860   NOT_PRODUCT(static bool have_cms_token();)
 861 
 862   // XXXPERM bool should_collect(bool full, size_t size, bool tlab);
 863   bool shouldConcurrentCollect();
 864 
 865   void collect(bool   full,
 866                bool   clear_all_soft_refs,
 867                size_t size,
 868                bool   tlab);
 869   void collect_in_background(bool clear_all_soft_refs);
 870   void collect_in_foreground(bool clear_all_soft_refs);
 871 
 872   // In support of ExplicitGCInvokesConcurrent
 873   static void request_full_gc(unsigned int full_gc_count);
 874   // Should we unload classes in a particular concurrent cycle?
 875   bool should_unload_classes() const {
 876     return _should_unload_classes;
 877   }
 878   bool update_should_unload_classes();
 879 
 880   void direct_allocated(HeapWord* start, size_t size);
 881 
 882   // Object is dead if not marked and current phase is sweeping.
 883   bool is_dead_obj(oop obj) const;
 884 
 885   // After a promotion (of "start"), do any necessary marking.
 886   // If "par", then it's being done by a parallel GC thread.
 887   // The last two args indicate if we need precise marking
 888   // and if so the size of the object so it can be dirtied
 889   // in its entirety.
 890   void promoted(bool par, HeapWord* start,
 891                 bool is_obj_array, size_t obj_size);
 892 
 893   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
 894                                      size_t word_size);
 895 
 896   void getFreelistLocks() const;
 897   void releaseFreelistLocks() const;
 898   bool haveFreelistLocks() const;
 899 
 900   // GC prologue and epilogue
 901   void gc_prologue(bool full);
 902   void gc_epilogue(bool full);
 903 
 904   jlong time_of_last_gc(jlong now) {
 905     if (_collectorState <= Idling) {
 906       // gc not in progress
 907       return _time_of_last_gc;
 908     } else {
 909       // collection in progress
 910       return now;
 911     }
 912   }
 913 
 914   // Support for parallel remark of survivor space
 915   void* get_data_recorder(int thr_num);
 916 
 917   CMSBitMap* markBitMap()  { return &_markBitMap; }
 918   void directAllocated(HeapWord* start, size_t size);
 919 
 920   // main CMS steps and related support
 921   void checkpointRootsInitial(bool asynch);
 922   bool markFromRoots(bool asynch);  // a return value of false indicates failure
 923                                     // due to stack overflow
 924   void preclean();
 925   void checkpointRootsFinal(bool asynch, bool clear_all_soft_refs,
 926                             bool init_mark_was_synchronous);
 927   void sweep(bool asynch);
 928 
 929   // Check that the currently executing thread is the expected
 930   // one (foreground collector or background collector).
 931   static void check_correct_thread_executing() PRODUCT_RETURN;
 932   // XXXPERM void print_statistics()           PRODUCT_RETURN;
 933 
 934   bool is_cms_reachable(HeapWord* addr);
 935 
 936   // Performance Counter Support
 937   CollectorCounters* counters()    { return _gc_counters; }
 938 
 939   // timer stuff
 940   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
 941   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
 942   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
 943   double  timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
 944 
 945   int  yields()          { return _numYields; }
 946   void resetYields()     { _numYields = 0;    }
 947   void incrementYields() { _numYields++;      }
 948   void resetNumDirtyCards()               { _numDirtyCards = 0; }
 949   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
 950   size_t  numDirtyCards()                 { return _numDirtyCards; }
 951 
 952   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
 953   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
 954   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
 955   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
 956   size_t sweep_count() const             { return _sweep_count; }
 957   void   increment_sweep_count()         { _sweep_count++; }
 958 
 959   // Timers/stats for gc scheduling and incremental mode pacing.
 960   CMSStats& stats() { return _stats; }
 961 
 962   // Convenience methods that check whether CMSIncrementalMode is enabled and
 963   // forward to the corresponding methods in ConcurrentMarkSweepThread.
 964   static void start_icms();
 965   static void stop_icms();    // Called at the end of the cms cycle.
 966   static void disable_icms(); // Called before a foreground collection.
 967   static void enable_icms();  // Called after a foreground collection.
 968   void icms_wait();          // Called at yield points.
 969 
 970   // Adaptive size policy
 971   CMSAdaptiveSizePolicy* size_policy();
 972   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
 973 
 974   // debugging
 975   void verify(bool);
 976   bool verify_after_remark();
 977   void verify_ok_to_terminate() const PRODUCT_RETURN;
 978   void verify_work_stacks_empty() const PRODUCT_RETURN;
 979   void verify_overflow_empty() const PRODUCT_RETURN;
 980 
 981   // convenience methods in support of debugging
 982   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
 983   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
 984 
 985   // accessors
 986   CMSMarkStack* verification_mark_stack() { return &_markStack; }
 987   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
 988 
 989   // Get the bit map with a perm gen "deadness" information.
 990   CMSBitMap* perm_gen_verify_bit_map()       { return &_perm_gen_verify_bit_map; }
 991 
 992   // Initialization errors
 993   bool completed_initialization() { return _completed_initialization; }
 994 };
 995 
 996 class CMSExpansionCause : public AllStatic  {
 997  public:
 998   enum Cause {
 999     _no_expansion,
1000     _satisfy_free_ratio,
1001     _satisfy_promotion,
1002     _satisfy_allocation,
1003     _allocate_par_lab,
1004     _allocate_par_spooling_space,
1005     _adaptive_size_policy
1006   };
1007   // Return a string describing the cause of the expansion.
1008   static const char* to_string(CMSExpansionCause::Cause cause);
1009 };
1010 
1011 class ConcurrentMarkSweepGeneration: public CardGeneration {
1012   friend class VMStructs;
1013   friend class ConcurrentMarkSweepThread;
1014   friend class ConcurrentMarkSweep;
1015   friend class CMSCollector;
1016  protected:
1017   static CMSCollector*       _collector; // the collector that collects us
1018   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
1019 
1020   // Performance Counters
1021   GenerationCounters*      _gen_counters;
1022   GSpaceCounters*          _space_counters;
1023 
1024   // Words directly allocated, used by CMSStats.
1025   size_t _direct_allocated_words;
1026 
1027   // Non-product stat counters
1028   NOT_PRODUCT(
1029     size_t _numObjectsPromoted;
1030     size_t _numWordsPromoted;
1031     size_t _numObjectsAllocated;
1032     size_t _numWordsAllocated;
1033   )
1034 
1035   // Used for sizing decisions
1036   bool _incremental_collection_failed;
1037   bool incremental_collection_failed() {
1038     return _incremental_collection_failed;
1039   }
1040   void set_incremental_collection_failed() {
1041     _incremental_collection_failed = true;
1042   }
1043   void clear_incremental_collection_failed() {
1044     _incremental_collection_failed = false;
1045   }
1046 
1047   // accessors
1048   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
1049   CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
1050 
1051  private:
1052   // For parallel young-gen GC support.
1053   CMSParGCThreadState** _par_gc_thread_states;
1054 
1055   // Reason generation was expanded
1056   CMSExpansionCause::Cause _expansion_cause;
1057 
1058   // In support of MinChunkSize being larger than min object size
1059   const double _dilatation_factor;
1060 
1061   enum CollectionTypes {
1062     Concurrent_collection_type          = 0,
1063     MS_foreground_collection_type       = 1,
1064     MSC_foreground_collection_type      = 2,
1065     Unknown_collection_type             = 3
1066   };
1067 
1068   CollectionTypes _debug_collection_type;
1069 
1070   // Fraction of current occupancy at which to start a CMS collection which
1071   // will collect this generation (at least).
1072   double _initiating_occupancy;
1073 
1074  protected:
1075   // Shrink generation by specified size (returns false if unable to shrink)
1076   virtual void shrink_by(size_t bytes);
1077 
1078   // Update statistics for GC
1079   virtual void update_gc_stats(int level, bool full);
1080 
1081   // Maximum available space in the generation (including uncommitted)
1082   // space.
1083   size_t max_available() const;
1084 
1085   // getter and initializer for _initiating_occupancy field.
1086   double initiating_occupancy() const { return _initiating_occupancy; }
1087   void   init_initiating_occupancy(intx io, intx tr);
1088 
1089  public:
1090   ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
1091                                 int level, CardTableRS* ct,
1092                                 bool use_adaptive_freelists,
1093                                 FreeBlockDictionary::DictionaryChoice);
1094 
1095   // Accessors
1096   CMSCollector* collector() const { return _collector; }
1097   static void set_collector(CMSCollector* collector) {
1098     assert(_collector == NULL, "already set");
1099     _collector = collector;
1100   }
1101   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
1102 
1103   Mutex* freelistLock() const;
1104 
1105   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
1106 
1107   // Adaptive size policy
1108   CMSAdaptiveSizePolicy* size_policy();
1109 
1110   bool refs_discovery_is_atomic() const { return false; }
1111   bool refs_discovery_is_mt()     const {
1112     // Note: CMS does MT-discovery during the parallel-remark
1113     // phases. Use ReferenceProcessorMTMutator to make refs
1114     // discovery MT-safe during such phases or other parallel
1115     // discovery phases in the future. This may all go away
1116     // if/when we decide that refs discovery is sufficiently
1117     // rare that the cost of the CAS's involved is in the
1118     // noise. That's a measurement that should be done, and
1119     // the code simplified if that turns out to be the case.
1120     return false;
1121   }
1122 
1123   // Override
1124   virtual void ref_processor_init();
1125 
1126   // Grow generation by specified size (returns false if unable to grow)
1127   bool grow_by(size_t bytes);
1128   // Grow generation to reserved size.
1129   bool grow_to_reserved();
1130 
1131   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
1132 
1133   // Space enquiries
1134   size_t capacity() const;
1135   size_t used() const;
1136   size_t free() const;
1137   double occupancy() const { return ((double)used())/((double)capacity()); }
1138   size_t contiguous_available() const;
1139   size_t unsafe_max_alloc_nogc() const;
1140 
1141   // over-rides
1142   MemRegion used_region() const;
1143   MemRegion used_region_at_save_marks() const;
1144 
1145   // Does a "full" (forced) collection invoked on this generation collect
1146   // all younger generations as well? Note that the second conjunct is a
1147   // hack to allow the collection of the younger gen first if the flag is
1148   // set. This is better than using th policy's should_collect_gen0_first()
1149   // since that causes us to do an extra unnecessary pair of restart-&-stop-world.
1150   virtual bool full_collects_younger_generations() const {
1151     return UseCMSCompactAtFullCollection && !CollectGen0First;
1152   }
1153 
1154   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
1155 
1156   // Support for compaction
1157   CompactibleSpace* first_compaction_space() const;
1158   // Adjust quantites in the generation affected by
1159   // the compaction.
1160   void reset_after_compaction();
1161 
1162   // Allocation support
1163   HeapWord* allocate(size_t size, bool tlab);
1164   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
1165   oop       promote(oop obj, size_t obj_size);
1166   HeapWord* par_allocate(size_t size, bool tlab) {
1167     return allocate(size, tlab);
1168   }
1169 
1170   // Incremental mode triggering.
1171   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
1172                                      size_t word_size);
1173 
1174   // Used by CMSStats to track direct allocation.  The value is sampled and
1175   // reset after each young gen collection.
1176   size_t direct_allocated_words() const { return _direct_allocated_words; }
1177   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
1178 
1179   // Overrides for parallel promotion.
1180   virtual oop par_promote(int thread_num,
1181                           oop obj, markOop m, size_t word_sz);
1182   // This one should not be called for CMS.
1183   virtual void par_promote_alloc_undo(int thread_num,
1184                                       HeapWord* obj, size_t word_sz);
1185   virtual void par_promote_alloc_done(int thread_num);
1186   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
1187 
1188   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes,
1189     bool younger_handles_promotion_failure) const;
1190 
1191   // Inform this (non-young) generation that a promotion failure was
1192   // encountered during a collection of a younger generation that
1193   // promotes into this generation.
1194   virtual void promotion_failure_occurred();
1195 
1196   bool should_collect(bool full, size_t size, bool tlab);
1197   virtual bool should_concurrent_collect() const;
1198   virtual bool is_too_full() const;
1199   void collect(bool   full,
1200                bool   clear_all_soft_refs,
1201                size_t size,
1202                bool   tlab);
1203 
1204   HeapWord* expand_and_allocate(size_t word_size,
1205                                 bool tlab,
1206                                 bool parallel = false);
1207 
1208   // GC prologue and epilogue
1209   void gc_prologue(bool full);
1210   void gc_prologue_work(bool full, bool registerClosure,
1211                         ModUnionClosure* modUnionClosure);
1212   void gc_epilogue(bool full);
1213   void gc_epilogue_work(bool full);
1214 
1215   // Time since last GC of this generation
1216   jlong time_of_last_gc(jlong now) {
1217     return collector()->time_of_last_gc(now);
1218   }
1219   void update_time_of_last_gc(jlong now) {
1220     collector()-> update_time_of_last_gc(now);
1221   }
1222 
1223   // Allocation failure
1224   void expand(size_t bytes, size_t expand_bytes,
1225     CMSExpansionCause::Cause cause);
1226   virtual bool expand(size_t bytes, size_t expand_bytes);
1227   void shrink(size_t bytes);
1228   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
1229   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
1230 
1231   // Iteration support and related enquiries
1232   void save_marks();
1233   bool no_allocs_since_save_marks();
1234   void object_iterate_since_last_GC(ObjectClosure* cl);
1235   void younger_refs_iterate(OopsInGenClosure* cl);
1236 
1237   // Iteration support specific to CMS generations
1238   void save_sweep_limit();
1239 
1240   // More iteration support
1241   virtual void oop_iterate(MemRegion mr, OopClosure* cl);
1242   virtual void oop_iterate(OopClosure* cl);
1243   virtual void safe_object_iterate(ObjectClosure* cl);
1244   virtual void object_iterate(ObjectClosure* cl);
1245 
1246   // Need to declare the full complement of closures, whether we'll
1247   // override them or not, or get message from the compiler:
1248   //   oop_since_save_marks_iterate_nv hides virtual function...
1249   #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
1250     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
1251   ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
1252 
1253   // Smart allocation  XXX -- move to CFLSpace?
1254   void setNearLargestChunk();
1255   bool isNearLargestChunk(HeapWord* addr);
1256 
1257   // Get the chunk at the end of the space.  Delagates to
1258   // the space.
1259   FreeChunk* find_chunk_at_end();
1260 
1261   // Overriding of unused functionality (sharing not yet supported with CMS)
1262   void pre_adjust_pointers();
1263   void post_compact();
1264 
1265   // Debugging
1266   void prepare_for_verify();
1267   void verify(bool allow_dirty);
1268   void print_statistics()               PRODUCT_RETURN;
1269 
1270   // Performance Counters support
1271   virtual void update_counters();
1272   virtual void update_counters(size_t used);
1273   void initialize_performance_counters();
1274   CollectorCounters* counters()  { return collector()->counters(); }
1275 
1276   // Support for parallel remark of survivor space
1277   void* get_data_recorder(int thr_num) {
1278     //Delegate to collector
1279     return collector()->get_data_recorder(thr_num);
1280   }
1281 
1282   // Printing
1283   const char* name() const;
1284   virtual const char* short_name() const { return "CMS"; }
1285   void        print() const;
1286   void printOccupancy(const char* s);
1287   bool must_be_youngest() const { return false; }
1288   bool must_be_oldest()   const { return true; }
1289 
1290   void compute_new_size();
1291 
1292   CollectionTypes debug_collection_type() { return _debug_collection_type; }
1293   void rotate_debug_collection_type();
1294 };
1295 
1296 class ASConcurrentMarkSweepGeneration : public ConcurrentMarkSweepGeneration {
1297 
1298   // Return the size policy from the heap's collector
1299   // policy casted to CMSAdaptiveSizePolicy*.
1300   CMSAdaptiveSizePolicy* cms_size_policy() const;
1301 
1302   // Resize the generation based on the adaptive size
1303   // policy.
1304   void resize(size_t cur_promo, size_t desired_promo);
1305 
1306   // Return the GC counters from the collector policy
1307   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
1308 
1309   virtual void shrink_by(size_t bytes);
1310 
1311  public:
1312   virtual void compute_new_size();
1313   ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
1314                                   int level, CardTableRS* ct,
1315                                   bool use_adaptive_freelists,
1316                                   FreeBlockDictionary::DictionaryChoice
1317                                     dictionaryChoice) :
1318     ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
1319       use_adaptive_freelists, dictionaryChoice) {}
1320 
1321   virtual const char* short_name() const { return "ASCMS"; }
1322   virtual Generation::Name kind() { return Generation::ASConcurrentMarkSweep; }
1323 
1324   virtual void update_counters();
1325   virtual void update_counters(size_t used);
1326 };
1327 
1328 //
1329 // Closures of various sorts used by CMS to accomplish its work
1330 //
1331 
1332 // This closure is used to check that a certain set of oops is empty.
1333 class FalseClosure: public OopClosure {
1334  public:
1335   void do_oop(oop* p)       { guarantee(false, "Should be an empty set"); }
1336   void do_oop(narrowOop* p) { guarantee(false, "Should be an empty set"); }
1337 };
1338 
1339 // This closure is used to do concurrent marking from the roots
1340 // following the first checkpoint.
1341 class MarkFromRootsClosure: public BitMapClosure {
1342   CMSCollector*  _collector;
1343   MemRegion      _span;
1344   CMSBitMap*     _bitMap;
1345   CMSBitMap*     _mut;
1346   CMSMarkStack*  _markStack;
1347   CMSMarkStack*  _revisitStack;
1348   bool           _yield;
1349   int            _skipBits;
1350   HeapWord*      _finger;
1351   HeapWord*      _threshold;
1352   DEBUG_ONLY(bool _verifying;)
1353 
1354  public:
1355   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
1356                        CMSBitMap* bitMap,
1357                        CMSMarkStack*  markStack,
1358                        CMSMarkStack*  revisitStack,
1359                        bool should_yield, bool verifying = false);
1360   bool do_bit(size_t offset);
1361   void reset(HeapWord* addr);
1362   inline void do_yield_check();
1363 
1364  private:
1365   void scanOopsInOop(HeapWord* ptr);
1366   void do_yield_work();
1367 };
1368 
1369 // This closure is used to do concurrent multi-threaded
1370 // marking from the roots following the first checkpoint.
1371 // XXX This should really be a subclass of The serial version
1372 // above, but i have not had the time to refactor things cleanly.
1373 // That willbe done for Dolphin.
1374 class Par_MarkFromRootsClosure: public BitMapClosure {
1375   CMSCollector*  _collector;
1376   MemRegion      _whole_span;
1377   MemRegion      _span;
1378   CMSBitMap*     _bit_map;
1379   CMSBitMap*     _mut;
1380   OopTaskQueue*  _work_queue;
1381   CMSMarkStack*  _overflow_stack;
1382   CMSMarkStack*  _revisit_stack;
1383   bool           _yield;
1384   int            _skip_bits;
1385   HeapWord*      _finger;
1386   HeapWord*      _threshold;
1387   CMSConcMarkingTask* _task;
1388  public:
1389   Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
1390                        MemRegion span,
1391                        CMSBitMap* bit_map,
1392                        OopTaskQueue* work_queue,
1393                        CMSMarkStack*  overflow_stack,
1394                        CMSMarkStack*  revisit_stack,
1395                        bool should_yield);
1396   bool do_bit(size_t offset);
1397   inline void do_yield_check();
1398 
1399  private:
1400   void scan_oops_in_oop(HeapWord* ptr);
1401   void do_yield_work();
1402   bool get_work_from_overflow_stack();
1403 };
1404 
1405 // The following closures are used to do certain kinds of verification of
1406 // CMS marking.
1407 class PushAndMarkVerifyClosure: public OopClosure {
1408   CMSCollector*    _collector;
1409   MemRegion        _span;
1410   CMSBitMap*       _verification_bm;
1411   CMSBitMap*       _cms_bm;
1412   CMSMarkStack*    _mark_stack;
1413  protected:
1414   void do_oop(oop p);
1415   template <class T> inline void do_oop_work(T *p) {
1416     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
1417     do_oop(obj);
1418   }
1419  public:
1420   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
1421                            MemRegion span,
1422                            CMSBitMap* verification_bm,
1423                            CMSBitMap* cms_bm,
1424                            CMSMarkStack*  mark_stack);
1425   void do_oop(oop* p);
1426   void do_oop(narrowOop* p);
1427   // Deal with a stack overflow condition
1428   void handle_stack_overflow(HeapWord* lost);
1429 };
1430 
1431 class MarkFromRootsVerifyClosure: public BitMapClosure {
1432   CMSCollector*  _collector;
1433   MemRegion      _span;
1434   CMSBitMap*     _verification_bm;
1435   CMSBitMap*     _cms_bm;
1436   CMSMarkStack*  _mark_stack;
1437   HeapWord*      _finger;
1438   PushAndMarkVerifyClosure _pam_verify_closure;
1439  public:
1440   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
1441                              CMSBitMap* verification_bm,
1442                              CMSBitMap* cms_bm,
1443                              CMSMarkStack*  mark_stack);
1444   bool do_bit(size_t offset);
1445   void reset(HeapWord* addr);
1446 };
1447 
1448 
1449 // This closure is used to check that a certain set of bits is
1450 // "empty" (i.e. the bit vector doesn't have any 1-bits).
1451 class FalseBitMapClosure: public BitMapClosure {
1452  public:
1453   bool do_bit(size_t offset) {
1454     guarantee(false, "Should not have a 1 bit");
1455     return true;
1456   }
1457 };
1458 
1459 // This closure is used during the second checkpointing phase
1460 // to rescan the marked objects on the dirty cards in the mod
1461 // union table and the card table proper. It's invoked via
1462 // MarkFromDirtyCardsClosure below. It uses either
1463 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
1464 // declared in genOopClosures.hpp to accomplish some of its work.
1465 // In the parallel case the bitMap is shared, so access to
1466 // it needs to be suitably synchronized for updates by embedded
1467 // closures that update it; however, this closure itself only
1468 // reads the bit_map and because it is idempotent, is immune to
1469 // reading stale values.
1470 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
1471   #ifdef ASSERT
1472     CMSCollector*          _collector;
1473     MemRegion              _span;
1474     union {
1475       CMSMarkStack*        _mark_stack;
1476       OopTaskQueue*        _work_queue;
1477     };
1478   #endif // ASSERT
1479   bool                       _parallel;
1480   CMSBitMap*                 _bit_map;
1481   union {
1482     MarkRefsIntoAndScanClosure*     _scan_closure;
1483     Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
1484   };
1485 
1486  public:
1487   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1488                                 MemRegion span,
1489                                 ReferenceProcessor* rp,
1490                                 CMSBitMap* bit_map,
1491                                 CMSMarkStack*  mark_stack,
1492                                 CMSMarkStack*  revisit_stack,
1493                                 MarkRefsIntoAndScanClosure* cl):
1494     #ifdef ASSERT
1495       _collector(collector),
1496       _span(span),
1497       _mark_stack(mark_stack),
1498     #endif // ASSERT
1499     _parallel(false),
1500     _bit_map(bit_map),
1501     _scan_closure(cl) { }
1502 
1503   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1504                                 MemRegion span,
1505                                 ReferenceProcessor* rp,
1506                                 CMSBitMap* bit_map,
1507                                 OopTaskQueue* work_queue,
1508                                 CMSMarkStack* revisit_stack,
1509                                 Par_MarkRefsIntoAndScanClosure* cl):
1510     #ifdef ASSERT
1511       _collector(collector),
1512       _span(span),
1513       _work_queue(work_queue),
1514     #endif // ASSERT
1515     _parallel(true),
1516     _bit_map(bit_map),
1517     _par_scan_closure(cl) { }
1518 
1519   void do_object(oop obj) {
1520     guarantee(false, "Call do_object_b(oop, MemRegion) instead");
1521   }
1522   bool do_object_b(oop obj) {
1523     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
1524     return false;
1525   }
1526   bool do_object_bm(oop p, MemRegion mr);
1527 };
1528 
1529 // This closure is used during the second checkpointing phase
1530 // to rescan the marked objects on the dirty cards in the mod
1531 // union table and the card table proper. It invokes
1532 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
1533 // In the parallel case, the bit map is shared and requires
1534 // synchronized access.
1535 class MarkFromDirtyCardsClosure: public MemRegionClosure {
1536   CompactibleFreeListSpace*      _space;
1537   ScanMarkedObjectsAgainClosure  _scan_cl;
1538   size_t                         _num_dirty_cards;
1539 
1540  public:
1541   MarkFromDirtyCardsClosure(CMSCollector* collector,
1542                             MemRegion span,
1543                             CompactibleFreeListSpace* space,
1544                             CMSBitMap* bit_map,
1545                             CMSMarkStack* mark_stack,
1546                             CMSMarkStack* revisit_stack,
1547                             MarkRefsIntoAndScanClosure* cl):
1548     _space(space),
1549     _num_dirty_cards(0),
1550     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1551                  mark_stack, revisit_stack, cl) { }
1552 
1553   MarkFromDirtyCardsClosure(CMSCollector* collector,
1554                             MemRegion span,
1555                             CompactibleFreeListSpace* space,
1556                             CMSBitMap* bit_map,
1557                             OopTaskQueue* work_queue,
1558                             CMSMarkStack* revisit_stack,
1559                             Par_MarkRefsIntoAndScanClosure* cl):
1560     _space(space),
1561     _num_dirty_cards(0),
1562     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1563              work_queue, revisit_stack, cl) { }
1564 
1565   void do_MemRegion(MemRegion mr);
1566   void set_space(CompactibleFreeListSpace* space) { _space = space; }
1567   size_t num_dirty_cards() { return _num_dirty_cards; }
1568 };
1569 
1570 // This closure is used in the non-product build to check
1571 // that there are no MemRegions with a certain property.
1572 class FalseMemRegionClosure: public MemRegionClosure {
1573   void do_MemRegion(MemRegion mr) {
1574     guarantee(!mr.is_empty(), "Shouldn't be empty");
1575     guarantee(false, "Should never be here");
1576   }
1577 };
1578 
1579 // This closure is used during the precleaning phase
1580 // to "carefully" rescan marked objects on dirty cards.
1581 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
1582 // to accomplish some of its work.
1583 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
1584   CMSCollector*                  _collector;
1585   MemRegion                      _span;
1586   bool                           _yield;
1587   Mutex*                         _freelistLock;
1588   CMSBitMap*                     _bitMap;
1589   CMSMarkStack*                  _markStack;
1590   MarkRefsIntoAndScanClosure*    _scanningClosure;
1591 
1592  public:
1593   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
1594                                          MemRegion     span,
1595                                          CMSBitMap* bitMap,
1596                                          CMSMarkStack*  markStack,
1597                                          CMSMarkStack*  revisitStack,
1598                                          MarkRefsIntoAndScanClosure* cl,
1599                                          bool should_yield):
1600     _collector(collector),
1601     _span(span),
1602     _yield(should_yield),
1603     _bitMap(bitMap),
1604     _markStack(markStack),
1605     _scanningClosure(cl) {
1606   }
1607 
1608   void do_object(oop p) {
1609     guarantee(false, "call do_object_careful instead");
1610   }
1611 
1612   size_t      do_object_careful(oop p) {
1613     guarantee(false, "Unexpected caller");
1614     return 0;
1615   }
1616 
1617   size_t      do_object_careful_m(oop p, MemRegion mr);
1618 
1619   void setFreelistLock(Mutex* m) {
1620     _freelistLock = m;
1621     _scanningClosure->set_freelistLock(m);
1622   }
1623 
1624  private:
1625   inline bool do_yield_check();
1626 
1627   void do_yield_work();
1628 };
1629 
1630 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
1631   CMSCollector*                  _collector;
1632   MemRegion                      _span;
1633   bool                           _yield;
1634   CMSBitMap*                     _bit_map;
1635   CMSMarkStack*                  _mark_stack;
1636   PushAndMarkClosure*            _scanning_closure;
1637   unsigned int                   _before_count;
1638 
1639  public:
1640   SurvivorSpacePrecleanClosure(CMSCollector* collector,
1641                                MemRegion     span,
1642                                CMSBitMap*    bit_map,
1643                                CMSMarkStack* mark_stack,
1644                                PushAndMarkClosure* cl,
1645                                unsigned int  before_count,
1646                                bool          should_yield):
1647     _collector(collector),
1648     _span(span),
1649     _yield(should_yield),
1650     _bit_map(bit_map),
1651     _mark_stack(mark_stack),
1652     _scanning_closure(cl),
1653     _before_count(before_count)
1654   { }
1655 
1656   void do_object(oop p) {
1657     guarantee(false, "call do_object_careful instead");
1658   }
1659 
1660   size_t      do_object_careful(oop p);
1661 
1662   size_t      do_object_careful_m(oop p, MemRegion mr) {
1663     guarantee(false, "Unexpected caller");
1664     return 0;
1665   }
1666 
1667  private:
1668   inline void do_yield_check();
1669   void do_yield_work();
1670 };
1671 
1672 // This closure is used to accomplish the sweeping work
1673 // after the second checkpoint but before the concurrent reset
1674 // phase.
1675 //
1676 // Terminology
1677 //   left hand chunk (LHC) - block of one or more chunks currently being
1678 //     coalesced.  The LHC is available for coalescing with a new chunk.
1679 //   right hand chunk (RHC) - block that is currently being swept that is
1680 //     free or garbage that can be coalesced with the LHC.
1681 // _inFreeRange is true if there is currently a LHC
1682 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
1683 // _freeRangeInFreeLists is true if the LHC is in the free lists.
1684 // _freeFinger is the address of the current LHC
1685 class SweepClosure: public BlkClosureCareful {
1686   CMSCollector*                  _collector;  // collector doing the work
1687   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
1688   CompactibleFreeListSpace*      _sp;   // Space being swept
1689   HeapWord*                      _limit;
1690   Mutex*                         _freelistLock; // Free list lock (in space)
1691   CMSBitMap*                     _bitMap;       // Marking bit map (in
1692                                                 // generation)
1693   bool                           _inFreeRange;  // Indicates if we are in the
1694                                                 // midst of a free run
1695   bool                           _freeRangeInFreeLists;
1696                                         // Often, we have just found
1697                                         // a free chunk and started
1698                                         // a new free range; we do not
1699                                         // eagerly remove this chunk from
1700                                         // the free lists unless there is
1701                                         // a possibility of coalescing.
1702                                         // When true, this flag indicates
1703                                         // that the _freeFinger below
1704                                         // points to a potentially free chunk
1705                                         // that may still be in the free lists
1706   bool                           _lastFreeRangeCoalesced;
1707                                         // free range contains chunks
1708                                         // coalesced
1709   bool                           _yield;
1710                                         // Whether sweeping should be
1711                                         // done with yields. For instance
1712                                         // when done by the foreground
1713                                         // collector we shouldn't yield.
1714   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
1715                                                 // pointer to the "left hand
1716                                                 // chunk"
1717   size_t                         _freeRangeSize;
1718                                         // When _inFreeRange is set, this
1719                                         // indicates the accumulated size
1720                                         // of the "left hand chunk"
1721   NOT_PRODUCT(
1722     size_t                       _numObjectsFreed;
1723     size_t                       _numWordsFreed;
1724     size_t                       _numObjectsLive;
1725     size_t                       _numWordsLive;
1726     size_t                       _numObjectsAlreadyFree;
1727     size_t                       _numWordsAlreadyFree;
1728     FreeChunk*                   _last_fc;
1729   )
1730  private:
1731   // Code that is common to a free chunk or garbage when
1732   // encountered during sweeping.
1733   void doPostIsFreeOrGarbageChunk(FreeChunk *fc,
1734                                   size_t chunkSize);
1735   // Process a free chunk during sweeping.
1736   void doAlreadyFreeChunk(FreeChunk *fc);
1737   // Process a garbage chunk during sweeping.
1738   size_t doGarbageChunk(FreeChunk *fc);
1739   // Process a live chunk during sweeping.
1740   size_t doLiveChunk(FreeChunk* fc);
1741 
1742   // Accessors.
1743   HeapWord* freeFinger() const          { return _freeFinger; }
1744   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
1745   size_t freeRangeSize() const          { return _freeRangeSize; }
1746   void set_freeRangeSize(size_t v)      { _freeRangeSize = v; }
1747   bool inFreeRange()    const           { return _inFreeRange; }
1748   void set_inFreeRange(bool v)          { _inFreeRange = v; }
1749   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
1750   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
1751   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
1752   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
1753 
1754   // Initialize a free range.
1755   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
1756   // Return this chunk to the free lists.
1757   void flushCurFreeChunk(HeapWord* chunk, size_t size);
1758 
1759   // Check if we should yield and do so when necessary.
1760   inline void do_yield_check(HeapWord* addr);
1761 
1762   // Yield
1763   void do_yield_work(HeapWord* addr);
1764 
1765   // Debugging/Printing
1766   void record_free_block_coalesced(FreeChunk* fc) const PRODUCT_RETURN;
1767 
1768  public:
1769   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
1770                CMSBitMap* bitMap, bool should_yield);
1771   ~SweepClosure();
1772 
1773   size_t       do_blk_careful(HeapWord* addr);
1774 };
1775 
1776 // Closures related to weak references processing
1777 
1778 // During CMS' weak reference processing, this is a
1779 // work-routine/closure used to complete transitive
1780 // marking of objects as live after a certain point
1781 // in which an initial set has been completely accumulated.
1782 // This closure is currently used both during the final
1783 // remark stop-world phase, as well as during the concurrent
1784 // precleaning of the discovered reference lists.
1785 class CMSDrainMarkingStackClosure: public VoidClosure {
1786   CMSCollector*        _collector;
1787   MemRegion            _span;
1788   CMSMarkStack*        _mark_stack;
1789   CMSBitMap*           _bit_map;
1790   CMSKeepAliveClosure* _keep_alive;
1791   bool                 _concurrent_precleaning;
1792  public:
1793   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
1794                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
1795                       CMSKeepAliveClosure* keep_alive,
1796                       bool cpc):
1797     _collector(collector),
1798     _span(span),
1799     _bit_map(bit_map),
1800     _mark_stack(mark_stack),
1801     _keep_alive(keep_alive),
1802     _concurrent_precleaning(cpc) {
1803     assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
1804            "Mismatch");
1805   }
1806 
1807   void do_void();
1808 };
1809 
1810 // A parallel version of CMSDrainMarkingStackClosure above.
1811 class CMSParDrainMarkingStackClosure: public VoidClosure {
1812   CMSCollector*           _collector;
1813   MemRegion               _span;
1814   OopTaskQueue*           _work_queue;
1815   CMSBitMap*              _bit_map;
1816   CMSInnerParMarkAndPushClosure _mark_and_push;
1817 
1818  public:
1819   CMSParDrainMarkingStackClosure(CMSCollector* collector,
1820                                  MemRegion span, CMSBitMap* bit_map,
1821                                  CMSMarkStack* revisit_stack,
1822                                  OopTaskQueue* work_queue):
1823     _collector(collector),
1824     _span(span),
1825     _bit_map(bit_map),
1826     _work_queue(work_queue),
1827     _mark_and_push(collector, span, bit_map, revisit_stack, work_queue) { }
1828 
1829  public:
1830   void trim_queue(uint max);
1831   void do_void();
1832 };
1833 
1834 // Allow yielding or short-circuiting of reference list
1835 // prelceaning work.
1836 class CMSPrecleanRefsYieldClosure: public YieldClosure {
1837   CMSCollector* _collector;
1838   void do_yield_work();
1839  public:
1840   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
1841     _collector(collector) {}
1842   virtual bool should_return();
1843 };
1844 
1845 
1846 // Convenience class that locks free list locks for given CMS collector
1847 class FreelistLocker: public StackObj {
1848  private:
1849   CMSCollector* _collector;
1850  public:
1851   FreelistLocker(CMSCollector* collector):
1852     _collector(collector) {
1853     _collector->getFreelistLocks();
1854   }
1855 
1856   ~FreelistLocker() {
1857     _collector->releaseFreelistLocks();
1858   }
1859 };
1860 
1861 // Mark all dead objects in a given space.
1862 class MarkDeadObjectsClosure: public BlkClosure {
1863   const CMSCollector*             _collector;
1864   const CompactibleFreeListSpace* _sp;
1865   CMSBitMap*                      _live_bit_map;
1866   CMSBitMap*                      _dead_bit_map;
1867 public:
1868   MarkDeadObjectsClosure(const CMSCollector* collector,
1869                          const CompactibleFreeListSpace* sp,
1870                          CMSBitMap *live_bit_map,
1871                          CMSBitMap *dead_bit_map) :
1872     _collector(collector),
1873     _sp(sp),
1874     _live_bit_map(live_bit_map),
1875     _dead_bit_map(dead_bit_map) {}
1876   size_t do_blk(HeapWord* addr);
1877 };
1878 
1879 class TraceCMSMemoryManagerStats : public TraceMemoryManagerStats {
1880 
1881  public:
1882   TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase);
1883   TraceCMSMemoryManagerStats();
1884 };
1885