1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  27 
  28 #include "gc_implementation/g1/heapRegion.hpp"
  29 #include "utilities/taskqueue.hpp"
  30 
  31 class G1CollectedHeap;
  32 class CMTask;
  33 typedef GenericTaskQueue<oop>            CMTaskQueue;
  34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
  35 
  36 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  37 // class, with one bit per (1<<_shifter) HeapWords.
  38 
  39 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  40  protected:
  41   HeapWord* _bmStartWord;      // base address of range covered by map
  42   size_t    _bmWordSize;       // map size (in #HeapWords covered)
  43   const int _shifter;          // map to char or bit
  44   VirtualSpace _virtual_space; // underlying the bit map
  45   BitMap    _bm;               // the bit map itself
  46 
  47  public:
  48   // constructor
  49   CMBitMapRO(ReservedSpace rs, int shifter);
  50 
  51   enum { do_yield = true };
  52 
  53   // inquiries
  54   HeapWord* startWord()   const { return _bmStartWord; }
  55   size_t    sizeInWords() const { return _bmWordSize;  }
  56   // the following is one past the last word in space
  57   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  58 
  59   // read marks
  60 
  61   bool isMarked(HeapWord* addr) const {
  62     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  63            "outside underlying space?");
  64     return _bm.at(heapWordToOffset(addr));
  65   }
  66 
  67   // iteration
  68   bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
  69   bool iterate(BitMapClosure* cl, MemRegion mr);
  70 
  71   // Return the address corresponding to the next marked bit at or after
  72   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  73   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  74   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
  75                                      HeapWord* limit = NULL) const;
  76   // Return the address corresponding to the next unmarked bit at or after
  77   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  78   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  79   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
  80                                        HeapWord* limit = NULL) const;
  81 
  82   // conversion utilities
  83   // XXX Fix these so that offsets are size_t's...
  84   HeapWord* offsetToHeapWord(size_t offset) const {
  85     return _bmStartWord + (offset << _shifter);
  86   }
  87   size_t heapWordToOffset(HeapWord* addr) const {
  88     return pointer_delta(addr, _bmStartWord) >> _shifter;
  89   }
  90   int heapWordDiffToOffsetDiff(size_t diff) const;
  91   HeapWord* nextWord(HeapWord* addr) {
  92     return offsetToHeapWord(heapWordToOffset(addr) + 1);
  93   }
  94 
  95   void mostly_disjoint_range_union(BitMap*   from_bitmap,
  96                                    size_t    from_start_index,
  97                                    HeapWord* to_start_word,
  98                                    size_t    word_num);
  99 
 100   // debugging
 101   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
 102 };
 103 
 104 class CMBitMap : public CMBitMapRO {
 105 
 106  public:
 107   // constructor
 108   CMBitMap(ReservedSpace rs, int shifter) :
 109     CMBitMapRO(rs, shifter) {}
 110 
 111   // write marks
 112   void mark(HeapWord* addr) {
 113     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 114            "outside underlying space?");
 115     _bm.at_put(heapWordToOffset(addr), true);
 116   }
 117   void clear(HeapWord* addr) {
 118     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 119            "outside underlying space?");
 120     _bm.at_put(heapWordToOffset(addr), false);
 121   }
 122   bool parMark(HeapWord* addr) {
 123     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 124            "outside underlying space?");
 125     return _bm.par_at_put(heapWordToOffset(addr), true);
 126   }
 127   bool parClear(HeapWord* addr) {
 128     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
 129            "outside underlying space?");
 130     return _bm.par_at_put(heapWordToOffset(addr), false);
 131   }
 132   void markRange(MemRegion mr);
 133   void clearAll();
 134   void clearRange(MemRegion mr);
 135 
 136   // Starting at the bit corresponding to "addr" (inclusive), find the next
 137   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
 138   // the end of this run (stopping at "end_addr").  Return the MemRegion
 139   // covering from the start of the region corresponding to the first bit
 140   // of the run to the end of the region corresponding to the last bit of
 141   // the run.  If there is no "1" bit at or after "addr", return an empty
 142   // MemRegion.
 143   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
 144 };
 145 
 146 // Represents a marking stack used by the CM collector.
 147 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
 148 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
 149   ConcurrentMark* _cm;
 150   oop*   _base;      // bottom of stack
 151   jint   _index;     // one more than last occupied index
 152   jint   _capacity;  // max #elements
 153   jint   _oops_do_bound;  // Number of elements to include in next iteration.
 154   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
 155 
 156   bool   _overflow;
 157   DEBUG_ONLY(bool _drain_in_progress;)
 158   DEBUG_ONLY(bool _drain_in_progress_yields;)
 159 
 160  public:
 161   CMMarkStack(ConcurrentMark* cm);
 162   ~CMMarkStack();
 163 
 164   void allocate(size_t size);
 165 
 166   oop pop() {
 167     if (!isEmpty()) {
 168       return _base[--_index] ;
 169     }
 170     return NULL;
 171   }
 172 
 173   // If overflow happens, don't do the push, and record the overflow.
 174   // *Requires* that "ptr" is already marked.
 175   void push(oop ptr) {
 176     if (isFull()) {
 177       // Record overflow.
 178       _overflow = true;
 179       return;
 180     } else {
 181       _base[_index++] = ptr;
 182       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 183     }
 184   }
 185   // Non-block impl.  Note: concurrency is allowed only with other
 186   // "par_push" operations, not with "pop" or "drain".  We would need
 187   // parallel versions of them if such concurrency was desired.
 188   void par_push(oop ptr);
 189 
 190   // Pushes the first "n" elements of "ptr_arr" on the stack.
 191   // Non-block impl.  Note: concurrency is allowed only with other
 192   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
 193   void par_adjoin_arr(oop* ptr_arr, int n);
 194 
 195   // Pushes the first "n" elements of "ptr_arr" on the stack.
 196   // Locking impl: concurrency is allowed only with
 197   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 198   // locking strategy.
 199   void par_push_arr(oop* ptr_arr, int n);
 200 
 201   // If returns false, the array was empty.  Otherwise, removes up to "max"
 202   // elements from the stack, and transfers them to "ptr_arr" in an
 203   // unspecified order.  The actual number transferred is given in "n" ("n
 204   // == 0" is deliberately redundant with the return value.)  Locking impl:
 205   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 206   // operations, which use the same locking strategy.
 207   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 208 
 209   // Drain the mark stack, applying the given closure to all fields of
 210   // objects on the stack.  (That is, continue until the stack is empty,
 211   // even if closure applications add entries to the stack.)  The "bm"
 212   // argument, if non-null, may be used to verify that only marked objects
 213   // are on the mark stack.  If "yield_after" is "true", then the
 214   // concurrent marker performing the drain offers to yield after
 215   // processing each object.  If a yield occurs, stops the drain operation
 216   // and returns false.  Otherwise, returns true.
 217   template<class OopClosureClass>
 218   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
 219 
 220   bool isEmpty()    { return _index == 0; }
 221   bool isFull()     { return _index == _capacity; }
 222   int maxElems()    { return _capacity; }
 223 
 224   bool overflow() { return _overflow; }
 225   void clear_overflow() { _overflow = false; }
 226 
 227   int  size() { return _index; }
 228 
 229   void setEmpty()   { _index = 0; clear_overflow(); }
 230 
 231   // Record the current size; a subsequent "oops_do" will iterate only over
 232   // indices valid at the time of this call.
 233   void set_oops_do_bound(jint bound = -1) {
 234     if (bound == -1) {
 235       _oops_do_bound = _index;
 236     } else {
 237       _oops_do_bound = bound;
 238     }
 239   }
 240   jint oops_do_bound() { return _oops_do_bound; }
 241   // iterate over the oops in the mark stack, up to the bound recorded via
 242   // the call above.
 243   void oops_do(OopClosure* f);
 244 };
 245 
 246 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
 247   MemRegion* _base;
 248   jint _capacity;
 249   jint _index;
 250   jint _oops_do_bound;
 251   bool _overflow;
 252 public:
 253   CMRegionStack();
 254   ~CMRegionStack();
 255   void allocate(size_t size);
 256 
 257   // This is lock-free; assumes that it will only be called in parallel
 258   // with other "push" operations (no pops).
 259   void push_lock_free(MemRegion mr);
 260 
 261   // Lock-free; assumes that it will only be called in parallel
 262   // with other "pop" operations (no pushes).
 263   MemRegion pop_lock_free();
 264 
 265 #if 0
 266   // The routines that manipulate the region stack with a lock are
 267   // not currently used. They should be retained, however, as a
 268   // diagnostic aid.
 269 
 270   // These two are the implementations that use a lock. They can be
 271   // called concurrently with each other but they should not be called
 272   // concurrently with the lock-free versions (push() / pop()).
 273   void push_with_lock(MemRegion mr);
 274   MemRegion pop_with_lock();
 275 #endif
 276 
 277   bool isEmpty()    { return _index == 0; }
 278   bool isFull()     { return _index == _capacity; }
 279 
 280   bool overflow() { return _overflow; }
 281   void clear_overflow() { _overflow = false; }
 282 
 283   int  size() { return _index; }
 284 
 285   // It iterates over the entries in the region stack and it
 286   // invalidates (i.e. assigns MemRegion()) the ones that point to
 287   // regions in the collection set.
 288   bool invalidate_entries_into_cset();
 289 
 290   // This gives an upper bound up to which the iteration in
 291   // invalidate_entries_into_cset() will reach. This prevents
 292   // newly-added entries to be unnecessarily scanned.
 293   void set_oops_do_bound() {
 294     _oops_do_bound = _index;
 295   }
 296 
 297   void setEmpty()   { _index = 0; clear_overflow(); }
 298 };
 299 
 300 // this will enable a variety of different statistics per GC task
 301 #define _MARKING_STATS_       0
 302 // this will enable the higher verbose levels
 303 #define _MARKING_VERBOSE_     0
 304 
 305 #if _MARKING_STATS_
 306 #define statsOnly(statement)  \
 307 do {                          \
 308   statement ;                 \
 309 } while (0)
 310 #else // _MARKING_STATS_
 311 #define statsOnly(statement)  \
 312 do {                          \
 313 } while (0)
 314 #endif // _MARKING_STATS_
 315 
 316 typedef enum {
 317   no_verbose  = 0,   // verbose turned off
 318   stats_verbose,     // only prints stats at the end of marking
 319   low_verbose,       // low verbose, mostly per region and per major event
 320   medium_verbose,    // a bit more detailed than low
 321   high_verbose       // per object verbose
 322 } CMVerboseLevel;
 323 
 324 
 325 class ConcurrentMarkThread;
 326 
 327 class ConcurrentMark: public CHeapObj {
 328   friend class ConcurrentMarkThread;
 329   friend class CMTask;
 330   friend class CMBitMapClosure;
 331   friend class CSMarkOopClosure;
 332   friend class CMGlobalObjectClosure;
 333   friend class CMRemarkTask;
 334   friend class CMConcurrentMarkingTask;
 335   friend class G1ParNoteEndTask;
 336   friend class CalcLiveObjectsClosure;
 337 
 338 protected:
 339   ConcurrentMarkThread* _cmThread;   // the thread doing the work
 340   G1CollectedHeap*      _g1h;        // the heap.
 341   size_t                _parallel_marking_threads; // the number of marking
 342                                                    // threads we'll use
 343   double                _sleep_factor; // how much we have to sleep, with
 344                                        // respect to the work we just did, to
 345                                        // meet the marking overhead goal
 346   double                _marking_task_overhead; // marking target overhead for
 347                                                 // a single task
 348 
 349   // same as the two above, but for the cleanup task
 350   double                _cleanup_sleep_factor;
 351   double                _cleanup_task_overhead;
 352 
 353   // Stuff related to age cohort processing.
 354   struct ParCleanupThreadState {
 355     char _pre[64];
 356     UncleanRegionList list;
 357     char _post[64];
 358   };
 359   ParCleanupThreadState** _par_cleanup_thread_state;
 360 
 361   // CMS marking support structures
 362   CMBitMap                _markBitMap1;
 363   CMBitMap                _markBitMap2;
 364   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
 365   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
 366   bool                    _at_least_one_mark_complete;
 367 
 368   BitMap                  _region_bm;
 369   BitMap                  _card_bm;
 370 
 371   // Heap bounds
 372   HeapWord*               _heap_start;
 373   HeapWord*               _heap_end;
 374 
 375   // For gray objects
 376   CMMarkStack             _markStack; // Grey objects behind global finger.
 377   CMRegionStack           _regionStack; // Grey regions behind global finger.
 378   HeapWord* volatile      _finger;  // the global finger, region aligned,
 379                                     // always points to the end of the
 380                                     // last claimed region
 381 
 382   // marking tasks
 383   size_t                  _max_task_num; // maximum task number
 384   size_t                  _active_tasks; // task num currently active
 385   CMTask**                _tasks;        // task queue array (max_task_num len)
 386   CMTaskQueueSet*         _task_queues;  // task queue set
 387   ParallelTaskTerminator  _terminator;   // for termination
 388 
 389   // Two sync barriers that are used to synchronise tasks when an
 390   // overflow occurs. The algorithm is the following. All tasks enter
 391   // the first one to ensure that they have all stopped manipulating
 392   // the global data structures. After they exit it, they re-initialise
 393   // their data structures and task 0 re-initialises the global data
 394   // structures. Then, they enter the second sync barrier. This
 395   // ensure, that no task starts doing work before all data
 396   // structures (local and global) have been re-initialised. When they
 397   // exit it, they are free to start working again.
 398   WorkGangBarrierSync     _first_overflow_barrier_sync;
 399   WorkGangBarrierSync     _second_overflow_barrier_sync;
 400 
 401 
 402   // this is set by any task, when an overflow on the global data
 403   // structures is detected.
 404   volatile bool           _has_overflown;
 405   // true: marking is concurrent, false: we're in remark
 406   volatile bool           _concurrent;
 407   // set at the end of a Full GC so that marking aborts
 408   volatile bool           _has_aborted;
 409 
 410   // used when remark aborts due to an overflow to indicate that
 411   // another concurrent marking phase should start
 412   volatile bool           _restart_for_overflow;
 413 
 414   // This is true from the very start of concurrent marking until the
 415   // point when all the tasks complete their work. It is really used
 416   // to determine the points between the end of concurrent marking and
 417   // time of remark.
 418   volatile bool           _concurrent_marking_in_progress;
 419 
 420   // verbose level
 421   CMVerboseLevel          _verbose_level;
 422 
 423   // These two fields are used to implement the optimisation that
 424   // avoids pushing objects on the global/region stack if there are
 425   // no collection set regions above the lowest finger.
 426 
 427   // This is the lowest finger (among the global and local fingers),
 428   // which is calculated before a new collection set is chosen.
 429   HeapWord* _min_finger;
 430   // If this flag is true, objects/regions that are marked below the
 431   // finger should be pushed on the stack(s). If this is flag is
 432   // false, it is safe not to push them on the stack(s).
 433   bool      _should_gray_objects;
 434 
 435   // All of these times are in ms.
 436   NumberSeq _init_times;
 437   NumberSeq _remark_times;
 438   NumberSeq   _remark_mark_times;
 439   NumberSeq   _remark_weak_ref_times;
 440   NumberSeq _cleanup_times;
 441   double    _total_counting_time;
 442   double    _total_rs_scrub_time;
 443 
 444   double*   _accum_task_vtime;   // accumulated task vtime
 445 
 446   WorkGang* _parallel_workers;
 447 
 448   void weakRefsWork(bool clear_all_soft_refs);
 449 
 450   void swapMarkBitMaps();
 451 
 452   // It resets the global marking data structures, as well as the
 453   // task local ones; should be called during initial mark.
 454   void reset();
 455   // It resets all the marking data structures.
 456   void clear_marking_state();
 457 
 458   // It should be called to indicate which phase we're in (concurrent
 459   // mark or remark) and how many threads are currently active.
 460   void set_phase(size_t active_tasks, bool concurrent);
 461   // We do this after we're done with marking so that the marking data
 462   // structures are initialised to a sensible and predictable state.
 463   void set_non_marking_state();
 464 
 465   // prints all gathered CM-related statistics
 466   void print_stats();
 467 
 468   // accessor methods
 469   size_t parallel_marking_threads() { return _parallel_marking_threads; }
 470   double sleep_factor()             { return _sleep_factor; }
 471   double marking_task_overhead()    { return _marking_task_overhead;}
 472   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
 473   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
 474 
 475   HeapWord*               finger()        { return _finger;   }
 476   bool                    concurrent()    { return _concurrent; }
 477   size_t                  active_tasks()  { return _active_tasks; }
 478   ParallelTaskTerminator* terminator()    { return &_terminator; }
 479 
 480   // It claims the next available region to be scanned by a marking
 481   // task. It might return NULL if the next region is empty or we have
 482   // run out of regions. In the latter case, out_of_regions()
 483   // determines whether we've really run out of regions or the task
 484   // should call claim_region() again.  This might seem a bit
 485   // awkward. Originally, the code was written so that claim_region()
 486   // either successfully returned with a non-empty region or there
 487   // were no more regions to be claimed. The problem with this was
 488   // that, in certain circumstances, it iterated over large chunks of
 489   // the heap finding only empty regions and, while it was working, it
 490   // was preventing the calling task to call its regular clock
 491   // method. So, this way, each task will spend very little time in
 492   // claim_region() and is allowed to call the regular clock method
 493   // frequently.
 494   HeapRegion* claim_region(int task);
 495 
 496   // It determines whether we've run out of regions to scan.
 497   bool        out_of_regions() { return _finger == _heap_end; }
 498 
 499   // Returns the task with the given id
 500   CMTask* task(int id) {
 501     assert(0 <= id && id < (int) _active_tasks,
 502            "task id not within active bounds");
 503     return _tasks[id];
 504   }
 505 
 506   // Returns the task queue with the given id
 507   CMTaskQueue* task_queue(int id) {
 508     assert(0 <= id && id < (int) _active_tasks,
 509            "task queue id not within active bounds");
 510     return (CMTaskQueue*) _task_queues->queue(id);
 511   }
 512 
 513   // Returns the task queue set
 514   CMTaskQueueSet* task_queues()  { return _task_queues; }
 515 
 516   // Access / manipulation of the overflow flag which is set to
 517   // indicate that the global stack or region stack has overflown
 518   bool has_overflown()           { return _has_overflown; }
 519   void set_has_overflown()       { _has_overflown = true; }
 520   void clear_has_overflown()     { _has_overflown = false; }
 521 
 522   bool has_aborted()             { return _has_aborted; }
 523   bool restart_for_overflow()    { return _restart_for_overflow; }
 524 
 525   // Methods to enter the two overflow sync barriers
 526   void enter_first_sync_barrier(int task_num);
 527   void enter_second_sync_barrier(int task_num);
 528 
 529 public:
 530   // Manipulation of the global mark stack.
 531   // Notice that the first mark_stack_push is CAS-based, whereas the
 532   // two below are Mutex-based. This is OK since the first one is only
 533   // called during evacuation pauses and doesn't compete with the
 534   // other two (which are called by the marking tasks during
 535   // concurrent marking or remark).
 536   bool mark_stack_push(oop p) {
 537     _markStack.par_push(p);
 538     if (_markStack.overflow()) {
 539       set_has_overflown();
 540       return false;
 541     }
 542     return true;
 543   }
 544   bool mark_stack_push(oop* arr, int n) {
 545     _markStack.par_push_arr(arr, n);
 546     if (_markStack.overflow()) {
 547       set_has_overflown();
 548       return false;
 549     }
 550     return true;
 551   }
 552   void mark_stack_pop(oop* arr, int max, int* n) {
 553     _markStack.par_pop_arr(arr, max, n);
 554   }
 555   size_t mark_stack_size()              { return _markStack.size(); }
 556   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 557   bool mark_stack_overflow()            { return _markStack.overflow(); }
 558   bool mark_stack_empty()               { return _markStack.isEmpty(); }
 559 
 560   // (Lock-free) Manipulation of the region stack
 561   bool region_stack_push_lock_free(MemRegion mr) {
 562     // Currently we only call the lock-free version during evacuation
 563     // pauses.
 564     assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
 565 
 566     _regionStack.push_lock_free(mr);
 567     if (_regionStack.overflow()) {
 568       set_has_overflown();
 569       return false;
 570     }
 571     return true;
 572   }
 573 
 574   // Lock-free version of region-stack pop. Should only be
 575   // called in tandem with other lock-free pops.
 576   MemRegion region_stack_pop_lock_free() {
 577     return _regionStack.pop_lock_free();
 578   }
 579 
 580 #if 0
 581   // The routines that manipulate the region stack with a lock are
 582   // not currently used. They should be retained, however, as a
 583   // diagnostic aid.
 584 
 585   bool region_stack_push_with_lock(MemRegion mr) {
 586     // Currently we only call the lock-based version during either
 587     // concurrent marking or remark.
 588     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
 589            "if we are at a safepoint it should be the remark safepoint");
 590 
 591     _regionStack.push_with_lock(mr);
 592     if (_regionStack.overflow()) {
 593       set_has_overflown();
 594       return false;
 595     }
 596     return true;
 597   }
 598 
 599   MemRegion region_stack_pop_with_lock() {
 600     // Currently we only call the lock-based version during either
 601     // concurrent marking or remark.
 602     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
 603            "if we are at a safepoint it should be the remark safepoint");
 604 
 605     return _regionStack.pop_with_lock();
 606   }
 607 #endif
 608 
 609   int region_stack_size()               { return _regionStack.size(); }
 610   bool region_stack_overflow()          { return _regionStack.overflow(); }
 611   bool region_stack_empty()             { return _regionStack.isEmpty(); }
 612 
 613   // Iterate over any regions that were aborted while draining the
 614   // region stack (any such regions are saved in the corresponding
 615   // CMTask) and invalidate (i.e. assign to the empty MemRegion())
 616   // any regions that point into the collection set.
 617   bool invalidate_aborted_regions_in_cset();
 618 
 619   // Returns true if there are any aborted memory regions.
 620   bool has_aborted_regions();
 621 
 622   bool concurrent_marking_in_progress() {
 623     return _concurrent_marking_in_progress;
 624   }
 625   void set_concurrent_marking_in_progress() {
 626     _concurrent_marking_in_progress = true;
 627   }
 628   void clear_concurrent_marking_in_progress() {
 629     _concurrent_marking_in_progress = false;
 630   }
 631 
 632   void update_accum_task_vtime(int i, double vtime) {
 633     _accum_task_vtime[i] += vtime;
 634   }
 635 
 636   double all_task_accum_vtime() {
 637     double ret = 0.0;
 638     for (int i = 0; i < (int)_max_task_num; ++i)
 639       ret += _accum_task_vtime[i];
 640     return ret;
 641   }
 642 
 643   // Attempts to steal an object from the task queues of other tasks
 644   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
 645     return _task_queues->steal(task_num, hash_seed, obj);
 646   }
 647 
 648   // It grays an object by first marking it. Then, if it's behind the
 649   // global finger, it also pushes it on the global stack.
 650   void deal_with_reference(oop obj);
 651 
 652   ConcurrentMark(ReservedSpace rs, int max_regions);
 653   ~ConcurrentMark();
 654   ConcurrentMarkThread* cmThread() { return _cmThread; }
 655 
 656   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 657   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 658 
 659   // The following three are interaction between CM and
 660   // G1CollectedHeap
 661 
 662   // This notifies CM that a root during initial-mark needs to be
 663   // grayed and it's MT-safe. Currently, we just mark it. But, in the
 664   // future, we can experiment with pushing it on the stack and we can
 665   // do this without changing G1CollectedHeap.
 666   void grayRoot(oop p);
 667   // It's used during evacuation pauses to gray a region, if
 668   // necessary, and it's MT-safe. It assumes that the caller has
 669   // marked any objects on that region. If _should_gray_objects is
 670   // true and we're still doing concurrent marking, the region is
 671   // pushed on the region stack, if it is located below the global
 672   // finger, otherwise we do nothing.
 673   void grayRegionIfNecessary(MemRegion mr);
 674   // It's used during evacuation pauses to mark and, if necessary,
 675   // gray a single object and it's MT-safe. It assumes the caller did
 676   // not mark the object. If _should_gray_objects is true and we're
 677   // still doing concurrent marking, the objects is pushed on the
 678   // global stack, if it is located below the global finger, otherwise
 679   // we do nothing.
 680   void markAndGrayObjectIfNecessary(oop p);
 681 
 682   // It iterates over the heap and for each object it comes across it
 683   // will dump the contents of its reference fields, as well as
 684   // liveness information for the object and its referents. The dump
 685   // will be written to a file with the following name:
 686   // G1PrintReachableBaseFile + "." + str. use_prev_marking decides
 687   // whether the prev (use_prev_marking == true) or next
 688   // (use_prev_marking == false) marking information will be used to
 689   // determine the liveness of each object / referent. If all is true,
 690   // all objects in the heap will be dumped, otherwise only the live
 691   // ones. In the dump the following symbols / abbreviations are used:
 692   //   M : an explicitly live object (its bitmap bit is set)
 693   //   > : an implicitly live object (over tams)
 694   //   O : an object outside the G1 heap (typically: in the perm gen)
 695   //   NOT : a reference field whose referent is not live
 696   //   AND MARKED : indicates that an object is both explicitly and
 697   //   implicitly live (it should be one or the other, not both)
 698   void print_reachable(const char* str,
 699                        bool use_prev_marking, bool all) PRODUCT_RETURN;
 700 
 701   // Clear the next marking bitmap (will be called concurrently).
 702   void clearNextBitmap();
 703 
 704   // main CMS steps and related support
 705   void checkpointRootsInitial();
 706 
 707   // These two do the work that needs to be done before and after the
 708   // initial root checkpoint. Since this checkpoint can be done at two
 709   // different points (i.e. an explicit pause or piggy-backed on a
 710   // young collection), then it's nice to be able to easily share the
 711   // pre/post code. It might be the case that we can put everything in
 712   // the post method. TP
 713   void checkpointRootsInitialPre();
 714   void checkpointRootsInitialPost();
 715 
 716   // Do concurrent phase of marking, to a tentative transitive closure.
 717   void markFromRoots();
 718 
 719   // Process all unprocessed SATB buffers. It is called at the
 720   // beginning of an evacuation pause.
 721   void drainAllSATBBuffers();
 722 
 723   void checkpointRootsFinal(bool clear_all_soft_refs);
 724   void checkpointRootsFinalWork();
 725   void calcDesiredRegions();
 726   void cleanup();
 727   void completeCleanup();
 728 
 729   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 730   // this carefully!
 731   void markPrev(oop p);
 732   void clear(oop p);
 733   // Clears marks for all objects in the given range, for both prev and
 734   // next bitmaps.  NB: the previous bitmap is usually read-only, so use
 735   // this carefully!
 736   void clearRangeBothMaps(MemRegion mr);
 737 
 738   // Record the current top of the mark and region stacks; a
 739   // subsequent oops_do() on the mark stack and
 740   // invalidate_entries_into_cset() on the region stack will iterate
 741   // only over indices valid at the time of this call.
 742   void set_oops_do_bound() {
 743     _markStack.set_oops_do_bound();
 744     _regionStack.set_oops_do_bound();
 745   }
 746   // Iterate over the oops in the mark stack and all local queues. It
 747   // also calls invalidate_entries_into_cset() on the region stack.
 748   void oops_do(OopClosure* f);
 749   // It is called at the end of an evacuation pause during marking so
 750   // that CM is notified of where the new end of the heap is. It
 751   // doesn't do anything if concurrent_marking_in_progress() is false,
 752   // unless the force parameter is true.
 753   void update_g1_committed(bool force = false);
 754 
 755   void complete_marking_in_collection_set();
 756 
 757   // It indicates that a new collection set is being chosen.
 758   void newCSet();
 759   // It registers a collection set heap region with CM. This is used
 760   // to determine whether any heap regions are located above the finger.
 761   void registerCSetRegion(HeapRegion* hr);
 762 
 763   // Registers the maximum region-end associated with a set of
 764   // regions with CM. Again this is used to determine whether any
 765   // heap regions are located above the finger.
 766   void register_collection_set_finger(HeapWord* max_finger) {
 767     // max_finger is the highest heap region end of the regions currently
 768     // contained in the collection set. If this value is larger than
 769     // _min_finger then we need to gray objects.
 770     // This routine is like registerCSetRegion but for an entire
 771     // collection of regions.
 772     if (max_finger > _min_finger)
 773       _should_gray_objects = true;
 774   }
 775 
 776   // Returns "true" if at least one mark has been completed.
 777   bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
 778 
 779   bool isMarked(oop p) const {
 780     assert(p != NULL && p->is_oop(), "expected an oop");
 781     HeapWord* addr = (HeapWord*)p;
 782     assert(addr >= _nextMarkBitMap->startWord() ||
 783            addr < _nextMarkBitMap->endWord(), "in a region");
 784 
 785     return _nextMarkBitMap->isMarked(addr);
 786   }
 787 
 788   inline bool not_yet_marked(oop p) const;
 789 
 790   // XXX Debug code
 791   bool containing_card_is_marked(void* p);
 792   bool containing_cards_are_marked(void* start, void* last);
 793 
 794   bool isPrevMarked(oop p) const {
 795     assert(p != NULL && p->is_oop(), "expected an oop");
 796     HeapWord* addr = (HeapWord*)p;
 797     assert(addr >= _prevMarkBitMap->startWord() ||
 798            addr < _prevMarkBitMap->endWord(), "in a region");
 799 
 800     return _prevMarkBitMap->isMarked(addr);
 801   }
 802 
 803   inline bool do_yield_check(int worker_i = 0);
 804   inline bool should_yield();
 805 
 806   // Called to abort the marking cycle after a Full GC takes palce.
 807   void abort();
 808 
 809   // This prints the global/local fingers. It is used for debugging.
 810   NOT_PRODUCT(void print_finger();)
 811 
 812   void print_summary_info();
 813 
 814   void print_worker_threads_on(outputStream* st) const;
 815 
 816   // The following indicate whether a given verbose level has been
 817   // set. Notice that anything above stats is conditional to
 818   // _MARKING_VERBOSE_ having been set to 1
 819   bool verbose_stats()
 820     { return _verbose_level >= stats_verbose; }
 821   bool verbose_low()
 822     { return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; }
 823   bool verbose_medium()
 824     { return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; }
 825   bool verbose_high()
 826     { return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; }
 827 };
 828 
 829 // A class representing a marking task.
 830 class CMTask : public TerminatorTerminator {
 831 private:
 832   enum PrivateConstants {
 833     // the regular clock call is called once the scanned words reaches
 834     // this limit
 835     words_scanned_period          = 12*1024,
 836     // the regular clock call is called once the number of visited
 837     // references reaches this limit
 838     refs_reached_period           = 384,
 839     // initial value for the hash seed, used in the work stealing code
 840     init_hash_seed                = 17,
 841     // how many entries will be transferred between global stack and
 842     // local queues
 843     global_stack_transfer_size    = 16
 844   };
 845 
 846   int                         _task_id;
 847   G1CollectedHeap*            _g1h;
 848   ConcurrentMark*             _cm;
 849   CMBitMap*                   _nextMarkBitMap;
 850   // the task queue of this task
 851   CMTaskQueue*                _task_queue;
 852 private:
 853   // the task queue set---needed for stealing
 854   CMTaskQueueSet*             _task_queues;
 855   // indicates whether the task has been claimed---this is only  for
 856   // debugging purposes
 857   bool                        _claimed;
 858 
 859   // number of calls to this task
 860   int                         _calls;
 861 
 862   // when the virtual timer reaches this time, the marking step should
 863   // exit
 864   double                      _time_target_ms;
 865   // the start time of the current marking step
 866   double                      _start_time_ms;
 867 
 868   // the oop closure used for iterations over oops
 869   OopClosure*                 _oop_closure;
 870 
 871   // the region this task is scanning, NULL if we're not scanning any
 872   HeapRegion*                 _curr_region;
 873   // the local finger of this task, NULL if we're not scanning a region
 874   HeapWord*                   _finger;
 875   // limit of the region this task is scanning, NULL if we're not scanning one
 876   HeapWord*                   _region_limit;
 877 
 878   // This is used only when we scan regions popped from the region
 879   // stack. It records what the last object on such a region we
 880   // scanned was. It is used to ensure that, if we abort region
 881   // iteration, we do not rescan the first part of the region. This
 882   // should be NULL when we're not scanning a region from the region
 883   // stack.
 884   HeapWord*                   _region_finger;
 885 
 886   // If we abort while scanning a region we record the remaining
 887   // unscanned portion and check this field when marking restarts.
 888   // This avoids having to push on the region stack while other
 889   // marking threads may still be popping regions.
 890   // If we were to push the unscanned portion directly to the
 891   // region stack then we would need to using locking versions
 892   // of the push and pop operations.
 893   MemRegion                   _aborted_region;
 894 
 895   // the number of words this task has scanned
 896   size_t                      _words_scanned;
 897   // When _words_scanned reaches this limit, the regular clock is
 898   // called. Notice that this might be decreased under certain
 899   // circumstances (i.e. when we believe that we did an expensive
 900   // operation).
 901   size_t                      _words_scanned_limit;
 902   // the initial value of _words_scanned_limit (i.e. what it was
 903   // before it was decreased).
 904   size_t                      _real_words_scanned_limit;
 905 
 906   // the number of references this task has visited
 907   size_t                      _refs_reached;
 908   // When _refs_reached reaches this limit, the regular clock is
 909   // called. Notice this this might be decreased under certain
 910   // circumstances (i.e. when we believe that we did an expensive
 911   // operation).
 912   size_t                      _refs_reached_limit;
 913   // the initial value of _refs_reached_limit (i.e. what it was before
 914   // it was decreased).
 915   size_t                      _real_refs_reached_limit;
 916 
 917   // used by the work stealing stuff
 918   int                         _hash_seed;
 919   // if this is true, then the task has aborted for some reason
 920   bool                        _has_aborted;
 921   // set when the task aborts because it has met its time quota
 922   bool                        _has_aborted_timed_out;
 923   // true when we're draining SATB buffers; this avoids the task
 924   // aborting due to SATB buffers being available (as we're already
 925   // dealing with them)
 926   bool                        _draining_satb_buffers;
 927 
 928   // number sequence of past step times
 929   NumberSeq                   _step_times_ms;
 930   // elapsed time of this task
 931   double                      _elapsed_time_ms;
 932   // termination time of this task
 933   double                      _termination_time_ms;
 934   // when this task got into the termination protocol
 935   double                      _termination_start_time_ms;
 936 
 937   // true when the task is during a concurrent phase, false when it is
 938   // in the remark phase (so, in the latter case, we do not have to
 939   // check all the things that we have to check during the concurrent
 940   // phase, i.e. SATB buffer availability...)
 941   bool                        _concurrent;
 942 
 943   TruncatedSeq                _marking_step_diffs_ms;
 944 
 945   // LOTS of statistics related with this task
 946 #if _MARKING_STATS_
 947   NumberSeq                   _all_clock_intervals_ms;
 948   double                      _interval_start_time_ms;
 949 
 950   int                         _aborted;
 951   int                         _aborted_overflow;
 952   int                         _aborted_cm_aborted;
 953   int                         _aborted_yield;
 954   int                         _aborted_timed_out;
 955   int                         _aborted_satb;
 956   int                         _aborted_termination;
 957 
 958   int                         _steal_attempts;
 959   int                         _steals;
 960 
 961   int                         _clock_due_to_marking;
 962   int                         _clock_due_to_scanning;
 963 
 964   int                         _local_pushes;
 965   int                         _local_pops;
 966   int                         _local_max_size;
 967   int                         _objs_scanned;
 968 
 969   int                         _global_pushes;
 970   int                         _global_pops;
 971   int                         _global_max_size;
 972 
 973   int                         _global_transfers_to;
 974   int                         _global_transfers_from;
 975 
 976   int                         _region_stack_pops;
 977 
 978   int                         _regions_claimed;
 979   int                         _objs_found_on_bitmap;
 980 
 981   int                         _satb_buffers_processed;
 982 #endif // _MARKING_STATS_
 983 
 984   // it updates the local fields after this task has claimed
 985   // a new region to scan
 986   void setup_for_region(HeapRegion* hr);
 987   // it brings up-to-date the limit of the region
 988   void update_region_limit();
 989   // it resets the local fields after a task has finished scanning a
 990   // region
 991   void giveup_current_region();
 992 
 993   // called when either the words scanned or the refs visited limit
 994   // has been reached
 995   void reached_limit();
 996   // recalculates the words scanned and refs visited limits
 997   void recalculate_limits();
 998   // decreases the words scanned and refs visited limits when we reach
 999   // an expensive operation
1000   void decrease_limits();
1001   // it checks whether the words scanned or refs visited reached their
1002   // respective limit and calls reached_limit() if they have
1003   void check_limits() {
1004     if (_words_scanned >= _words_scanned_limit ||
1005         _refs_reached >= _refs_reached_limit)
1006       reached_limit();
1007   }
1008   // this is supposed to be called regularly during a marking step as
1009   // it checks a bunch of conditions that might cause the marking step
1010   // to abort
1011   void regular_clock_call();
1012   bool concurrent() { return _concurrent; }
1013 
1014 public:
1015   // It resets the task; it should be called right at the beginning of
1016   // a marking phase.
1017   void reset(CMBitMap* _nextMarkBitMap);
1018   // it clears all the fields that correspond to a claimed region.
1019   void clear_region_fields();
1020 
1021   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
1022 
1023   // The main method of this class which performs a marking step
1024   // trying not to exceed the given duration. However, it might exit
1025   // prematurely, according to some conditions (i.e. SATB buffers are
1026   // available for processing).
1027   void do_marking_step(double target_ms);
1028 
1029   // These two calls start and stop the timer
1030   void record_start_time() {
1031     _elapsed_time_ms = os::elapsedTime() * 1000.0;
1032   }
1033   void record_end_time() {
1034     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
1035   }
1036 
1037   // returns the task ID
1038   int task_id() { return _task_id; }
1039 
1040   // From TerminatorTerminator. It determines whether this task should
1041   // exit the termination protocol after it's entered it.
1042   virtual bool should_exit_termination();
1043 
1044   HeapWord* finger()            { return _finger; }
1045 
1046   bool has_aborted()            { return _has_aborted; }
1047   void set_has_aborted()        { _has_aborted = true; }
1048   void clear_has_aborted()      { _has_aborted = false; }
1049   bool claimed() { return _claimed; }
1050 
1051   // Support routines for the partially scanned region that may be
1052   // recorded as a result of aborting while draining the CMRegionStack
1053   MemRegion aborted_region()    { return _aborted_region; }
1054   void set_aborted_region(MemRegion mr)
1055                                 { _aborted_region = mr; }
1056 
1057   // Clears any recorded partially scanned region
1058   void clear_aborted_region()   { set_aborted_region(MemRegion()); }
1059 
1060   void set_oop_closure(OopClosure* oop_closure) {
1061     _oop_closure = oop_closure;
1062   }
1063 
1064   // It grays the object by marking it and, if necessary, pushing it
1065   // on the local queue
1066   void deal_with_reference(oop obj);
1067 
1068   // It scans an object and visits its children.
1069   void scan_object(oop obj) {
1070     assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
1071 
1072     if (_cm->verbose_high())
1073       gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
1074                              _task_id, (void*) obj);
1075 
1076     size_t obj_size = obj->size();
1077     _words_scanned += obj_size;
1078 
1079     obj->oop_iterate(_oop_closure);
1080     statsOnly( ++_objs_scanned );
1081     check_limits();
1082   }
1083 
1084   // It pushes an object on the local queue.
1085   void push(oop obj);
1086 
1087   // These two move entries to/from the global stack.
1088   void move_entries_to_global_stack();
1089   void get_entries_from_global_stack();
1090 
1091   // It pops and scans objects from the local queue. If partially is
1092   // true, then it stops when the queue size is of a given limit. If
1093   // partially is false, then it stops when the queue is empty.
1094   void drain_local_queue(bool partially);
1095   // It moves entries from the global stack to the local queue and
1096   // drains the local queue. If partially is true, then it stops when
1097   // both the global stack and the local queue reach a given size. If
1098   // partially if false, it tries to empty them totally.
1099   void drain_global_stack(bool partially);
1100   // It keeps picking SATB buffers and processing them until no SATB
1101   // buffers are available.
1102   void drain_satb_buffers();
1103   // It keeps popping regions from the region stack and processing
1104   // them until the region stack is empty.
1105   void drain_region_stack(BitMapClosure* closure);
1106 
1107   // moves the local finger to a new location
1108   inline void move_finger_to(HeapWord* new_finger) {
1109     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
1110     _finger = new_finger;
1111   }
1112 
1113   // moves the region finger to a new location
1114   inline void move_region_finger_to(HeapWord* new_finger) {
1115     assert(new_finger < _cm->finger(), "invariant");
1116     _region_finger = new_finger;
1117   }
1118 
1119   CMTask(int task_num, ConcurrentMark *cm,
1120          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
1121 
1122   // it prints statistics associated with this task
1123   void print_stats();
1124 
1125 #if _MARKING_STATS_
1126   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
1127 #endif // _MARKING_STATS_
1128 };
1129 
1130 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP