1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  26 // It uses the "Garbage First" heap organization and algorithm, which
  27 // may combine concurrent marking with parallel, incremental compaction of
  28 // heap subsets that will yield large amounts of garbage.
  29 
  30 class HeapRegion;
  31 class HeapRegionSeq;
  32 class PermanentGenerationSpec;
  33 class GenerationSpec;
  34 class OopsInHeapRegionClosure;
  35 class G1ScanHeapEvacClosure;
  36 class ObjectClosure;
  37 class SpaceClosure;
  38 class CompactibleSpaceClosure;
  39 class Space;
  40 class G1CollectorPolicy;
  41 class GenRemSet;
  42 class G1RemSet;
  43 class HeapRegionRemSetIterator;
  44 class ConcurrentMark;
  45 class ConcurrentMarkThread;
  46 class ConcurrentG1Refine;
  47 class ConcurrentZFThread;
  48 
  49 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
  50 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
  51 
  52 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  53 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  54 
  55 enum G1GCThreadGroups {
  56   G1CRGroup = 0,
  57   G1ZFGroup = 1,
  58   G1CMGroup = 2,
  59   G1CLGroup = 3
  60 };
  61 
  62 enum GCAllocPurpose {
  63   GCAllocForTenured,
  64   GCAllocForSurvived,
  65   GCAllocPurposeCount
  66 };
  67 
  68 class YoungList : public CHeapObj {
  69 private:
  70   G1CollectedHeap* _g1h;
  71 
  72   HeapRegion* _head;
  73 
  74   HeapRegion* _survivor_head;
  75   HeapRegion* _survivor_tail;
  76 
  77   HeapRegion* _curr;
  78 
  79   size_t      _length;
  80   size_t      _survivor_length;
  81 
  82   size_t      _last_sampled_rs_lengths;
  83   size_t      _sampled_rs_lengths;
  84 
  85   void         empty_list(HeapRegion* list);
  86 
  87 public:
  88   YoungList(G1CollectedHeap* g1h);
  89 
  90   void         push_region(HeapRegion* hr);
  91   void         add_survivor_region(HeapRegion* hr);
  92 
  93   void         empty_list();
  94   bool         is_empty() { return _length == 0; }
  95   size_t       length() { return _length; }
  96   size_t       survivor_length() { return _survivor_length; }
  97 
  98   void rs_length_sampling_init();
  99   bool rs_length_sampling_more();
 100   void rs_length_sampling_next();
 101 
 102   void reset_sampled_info() {
 103     _last_sampled_rs_lengths =   0;
 104   }
 105   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 106 
 107   // for development purposes
 108   void reset_auxilary_lists();
 109   void clear() { _head = NULL; _length = 0; }
 110 
 111   void clear_survivors() {
 112     _survivor_head    = NULL;
 113     _survivor_tail    = NULL;
 114     _survivor_length  = 0;
 115   }
 116 
 117   HeapRegion* first_region() { return _head; }
 118   HeapRegion* first_survivor_region() { return _survivor_head; }
 119   HeapRegion* last_survivor_region() { return _survivor_tail; }
 120 
 121   // debugging
 122   bool          check_list_well_formed();
 123   bool          check_list_empty(bool check_sample = true);
 124   void          print();
 125 };
 126 
 127 class RefineCardTableEntryClosure;
 128 class G1CollectedHeap : public SharedHeap {
 129   friend class VM_G1CollectForAllocation;
 130   friend class VM_GenCollectForPermanentAllocation;
 131   friend class VM_G1CollectFull;
 132   friend class VM_G1IncCollectionPause;
 133   friend class VMStructs;
 134 
 135   // Closures used in implementation.
 136   friend class G1ParCopyHelper;
 137   friend class G1IsAliveClosure;
 138   friend class G1EvacuateFollowersClosure;
 139   friend class G1ParScanThreadState;
 140   friend class G1ParScanClosureSuper;
 141   friend class G1ParEvacuateFollowersClosure;
 142   friend class G1ParTask;
 143   friend class G1FreeGarbageRegionClosure;
 144   friend class RefineCardTableEntryClosure;
 145   friend class G1PrepareCompactClosure;
 146   friend class RegionSorter;
 147   friend class CountRCClosure;
 148   friend class EvacPopObjClosure;
 149   friend class G1ParCleanupCTTask;
 150 
 151   // Other related classes.
 152   friend class G1MarkSweep;
 153 
 154 private:
 155   // The one and only G1CollectedHeap, so static functions can find it.
 156   static G1CollectedHeap* _g1h;
 157 
 158   static size_t _humongous_object_threshold_in_words;
 159 
 160   // Storage for the G1 heap (excludes the permanent generation).
 161   VirtualSpace _g1_storage;
 162   MemRegion    _g1_reserved;
 163 
 164   // The part of _g1_storage that is currently committed.
 165   MemRegion _g1_committed;
 166 
 167   // The maximum part of _g1_storage that has ever been committed.
 168   MemRegion _g1_max_committed;
 169 
 170   // The number of regions that are completely free.
 171   size_t _free_regions;
 172 
 173   // The number of regions we could create by expansion.
 174   size_t _expansion_regions;
 175 
 176   // Return the number of free regions in the heap (by direct counting.)
 177   size_t count_free_regions();
 178   // Return the number of free regions on the free and unclean lists.
 179   size_t count_free_regions_list();
 180 
 181   // The block offset table for the G1 heap.
 182   G1BlockOffsetSharedArray* _bot_shared;
 183 
 184   // Move all of the regions off the free lists, then rebuild those free
 185   // lists, before and after full GC.
 186   void tear_down_region_lists();
 187   void rebuild_region_lists();
 188   // This sets all non-empty regions to need zero-fill (which they will if
 189   // they are empty after full collection.)
 190   void set_used_regions_to_need_zero_fill();
 191 
 192   // The sequence of all heap regions in the heap.
 193   HeapRegionSeq* _hrs;
 194 
 195   // The region from which normal-sized objects are currently being
 196   // allocated.  May be NULL.
 197   HeapRegion* _cur_alloc_region;
 198 
 199   // Postcondition: cur_alloc_region == NULL.
 200   void abandon_cur_alloc_region();
 201   void abandon_gc_alloc_regions();
 202 
 203   // The to-space memory regions into which objects are being copied during
 204   // a GC.
 205   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
 206   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
 207   // These are the regions, one per GCAllocPurpose, that are half-full
 208   // at the end of a collection and that we want to reuse during the
 209   // next collection.
 210   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
 211   // This specifies whether we will keep the last half-full region at
 212   // the end of a collection so that it can be reused during the next
 213   // collection (this is specified per GCAllocPurpose)
 214   bool _retain_gc_alloc_region[GCAllocPurposeCount];
 215 
 216   // A list of the regions that have been set to be alloc regions in the
 217   // current collection.
 218   HeapRegion* _gc_alloc_region_list;
 219 
 220   // Determines PLAB size for a particular allocation purpose.
 221   static size_t desired_plab_sz(GCAllocPurpose purpose);
 222 
 223   // When called by par thread, require par_alloc_during_gc_lock() to be held.
 224   void push_gc_alloc_region(HeapRegion* hr);
 225 
 226   // This should only be called single-threaded.  Undeclares all GC alloc
 227   // regions.
 228   void forget_alloc_region_list();
 229 
 230   // Should be used to set an alloc region, because there's other
 231   // associated bookkeeping.
 232   void set_gc_alloc_region(int purpose, HeapRegion* r);
 233 
 234   // Check well-formedness of alloc region list.
 235   bool check_gc_alloc_regions();
 236 
 237   // Outside of GC pauses, the number of bytes used in all regions other
 238   // than the current allocation region.
 239   size_t _summary_bytes_used;
 240 
 241   // This is used for a quick test on whether a reference points into
 242   // the collection set or not. Basically, we have an array, with one
 243   // byte per region, and that byte denotes whether the corresponding
 244   // region is in the collection set or not. The entry corresponding
 245   // the bottom of the heap, i.e., region 0, is pointed to by
 246   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
 247   // biased so that it actually points to address 0 of the address
 248   // space, to make the test as fast as possible (we can simply shift
 249   // the address to address into it, instead of having to subtract the
 250   // bottom of the heap from the address before shifting it; basically
 251   // it works in the same way the card table works).
 252   bool* _in_cset_fast_test;
 253 
 254   // The allocated array used for the fast test on whether a reference
 255   // points into the collection set or not. This field is also used to
 256   // free the array.
 257   bool* _in_cset_fast_test_base;
 258 
 259   // The length of the _in_cset_fast_test_base array.
 260   size_t _in_cset_fast_test_length;
 261 
 262   volatile unsigned _gc_time_stamp;
 263 
 264   size_t* _surviving_young_words;
 265 
 266   void setup_surviving_young_words();
 267   void update_surviving_young_words(size_t* surv_young_words);
 268   void cleanup_surviving_young_words();
 269 
 270   // It decides whether an explicit GC should start a concurrent cycle
 271   // instead of doing a STW GC. Currently, a concurrent cycle is
 272   // explicitly started if:
 273   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 274   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 275   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 276 
 277   // Keeps track of how many "full collections" (i.e., Full GCs or
 278   // concurrent cycles) we have completed. The number of them we have
 279   // started is maintained in _total_full_collections in CollectedHeap.
 280   volatile unsigned int _full_collections_completed;
 281 
 282 protected:
 283 
 284   // Returns "true" iff none of the gc alloc regions have any allocations
 285   // since the last call to "save_marks".
 286   bool all_alloc_regions_no_allocs_since_save_marks();
 287   // Perform finalization stuff on all allocation regions.
 288   void retire_all_alloc_regions();
 289 
 290   // The number of regions allocated to hold humongous objects.
 291   int         _num_humongous_regions;
 292   YoungList*  _young_list;
 293 
 294   // The current policy object for the collector.
 295   G1CollectorPolicy* _g1_policy;
 296 
 297   // Parallel allocation lock to protect the current allocation region.
 298   Mutex  _par_alloc_during_gc_lock;
 299   Mutex* par_alloc_during_gc_lock() { return &_par_alloc_during_gc_lock; }
 300 
 301   // If possible/desirable, allocate a new HeapRegion for normal object
 302   // allocation sufficient for an allocation of the given "word_size".
 303   // If "do_expand" is true, will attempt to expand the heap if necessary
 304   // to to satisfy the request.  If "zero_filled" is true, requires a
 305   // zero-filled region.
 306   // (Returning NULL will trigger a GC.)
 307   virtual HeapRegion* newAllocRegion_work(size_t word_size,
 308                                           bool do_expand,
 309                                           bool zero_filled);
 310 
 311   virtual HeapRegion* newAllocRegion(size_t word_size,
 312                                      bool zero_filled = true) {
 313     return newAllocRegion_work(word_size, false, zero_filled);
 314   }
 315   virtual HeapRegion* newAllocRegionWithExpansion(int purpose,
 316                                                   size_t word_size,
 317                                                   bool zero_filled = true);
 318 
 319   // Attempt to allocate an object of the given (very large) "word_size".
 320   // Returns "NULL" on failure.
 321   virtual HeapWord* humongousObjAllocate(size_t word_size);
 322 
 323   // If possible, allocate a block of the given word_size, else return "NULL".
 324   // Returning NULL will trigger GC or heap expansion.
 325   // These two methods have rather awkward pre- and
 326   // post-conditions. If they are called outside a safepoint, then
 327   // they assume that the caller is holding the heap lock. Upon return
 328   // they release the heap lock, if they are returning a non-NULL
 329   // value. attempt_allocation_slow() also dirties the cards of a
 330   // newly-allocated young region after it releases the heap
 331   // lock. This change in interface was the neatest way to achieve
 332   // this card dirtying without affecting mem_allocate(), which is a
 333   // more frequently called method. We tried two or three different
 334   // approaches, but they were even more hacky.
 335   HeapWord* attempt_allocation(size_t word_size,
 336                                bool permit_collection_pause = true);
 337 
 338   HeapWord* attempt_allocation_slow(size_t word_size,
 339                                     bool permit_collection_pause = true);
 340 
 341   // Allocate blocks during garbage collection. Will ensure an
 342   // allocation region, either by picking one or expanding the
 343   // heap, and then allocate a block of the given size. The block
 344   // may not be a humongous - it must fit into a single heap region.
 345   HeapWord* allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 346   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 347 
 348   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
 349                                     HeapRegion*    alloc_region,
 350                                     bool           par,
 351                                     size_t         word_size);
 352 
 353   // Ensure that no further allocations can happen in "r", bearing in mind
 354   // that parallel threads might be attempting allocations.
 355   void par_allocate_remaining_space(HeapRegion* r);
 356 
 357   // Retires an allocation region when it is full or at the end of a
 358   // GC pause.
 359   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
 360 
 361   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 362   // inspection request and should collect the entire heap
 363   // - if clear_all_soft_refs is true, all soft references are cleared
 364   // during the GC
 365   // - if explicit_gc is false, word_size describes the allocation that
 366   // the GC should attempt (at least) to satisfy
 367   void do_collection(bool explicit_gc,
 368                      bool clear_all_soft_refs,
 369                      size_t word_size);
 370 
 371   // Callback from VM_G1CollectFull operation.
 372   // Perform a full collection.
 373   void do_full_collection(bool clear_all_soft_refs);
 374 
 375   // Resize the heap if necessary after a full collection.  If this is
 376   // after a collect-for allocation, "word_size" is the allocation size,
 377   // and will be considered part of the used portion of the heap.
 378   void resize_if_necessary_after_full_collection(size_t word_size);
 379 
 380   // Callback from VM_G1CollectForAllocation operation.
 381   // This function does everything necessary/possible to satisfy a
 382   // failed allocation request (including collection, expansion, etc.)
 383   HeapWord* satisfy_failed_allocation(size_t word_size);
 384 
 385   // Attempting to expand the heap sufficiently
 386   // to support an allocation of the given "word_size".  If
 387   // successful, perform the allocation and return the address of the
 388   // allocated block, or else "NULL".
 389   virtual HeapWord* expand_and_allocate(size_t word_size);
 390 
 391 public:
 392   // Expand the garbage-first heap by at least the given size (in bytes!).
 393   // (Rounds up to a HeapRegion boundary.)
 394   virtual void expand(size_t expand_bytes);
 395 
 396   // Do anything common to GC's.
 397   virtual void gc_prologue(bool full);
 398   virtual void gc_epilogue(bool full);
 399 
 400   // We register a region with the fast "in collection set" test. We
 401   // simply set to true the array slot corresponding to this region.
 402   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 403     assert(_in_cset_fast_test_base != NULL, "sanity");
 404     assert(r->in_collection_set(), "invariant");
 405     int index = r->hrs_index();
 406     assert(0 <= index && (size_t) index < _in_cset_fast_test_length, "invariant");
 407     assert(!_in_cset_fast_test_base[index], "invariant");
 408     _in_cset_fast_test_base[index] = true;
 409   }
 410 
 411   // This is a fast test on whether a reference points into the
 412   // collection set or not. It does not assume that the reference
 413   // points into the heap; if it doesn't, it will return false.
 414   bool in_cset_fast_test(oop obj) {
 415     assert(_in_cset_fast_test != NULL, "sanity");
 416     if (_g1_committed.contains((HeapWord*) obj)) {
 417       // no need to subtract the bottom of the heap from obj,
 418       // _in_cset_fast_test is biased
 419       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
 420       bool ret = _in_cset_fast_test[index];
 421       // let's make sure the result is consistent with what the slower
 422       // test returns
 423       assert( ret || !obj_in_cs(obj), "sanity");
 424       assert(!ret ||  obj_in_cs(obj), "sanity");
 425       return ret;
 426     } else {
 427       return false;
 428     }
 429   }
 430 
 431   void clear_cset_fast_test() {
 432     assert(_in_cset_fast_test_base != NULL, "sanity");
 433     memset(_in_cset_fast_test_base, false,
 434         _in_cset_fast_test_length * sizeof(bool));
 435   }
 436 
 437   // This is called at the end of either a concurrent cycle or a Full
 438   // GC to update the number of full collections completed. Those two
 439   // can happen in a nested fashion, i.e., we start a concurrent
 440   // cycle, a Full GC happens half-way through it which ends first,
 441   // and then the cycle notices that a Full GC happened and ends
 442   // too. The outer parameter is a boolean to help us do a bit tighter
 443   // consistency checking in the method. If outer is false, the caller
 444   // is the inner caller in the nesting (i.e., the Full GC). If outer
 445   // is true, the caller is the outer caller in this nesting (i.e.,
 446   // the concurrent cycle). Further nesting is not currently
 447   // supported. The end of the this call also notifies the
 448   // FullGCCount_lock in case a Java thread is waiting for a full GC
 449   // to happen (e.g., it called System.gc() with
 450   // +ExplicitGCInvokesConcurrent).
 451   void increment_full_collections_completed(bool outer);
 452 
 453   unsigned int full_collections_completed() {
 454     return _full_collections_completed;
 455   }
 456 
 457 protected:
 458 
 459   // Shrink the garbage-first heap by at most the given size (in bytes!).
 460   // (Rounds down to a HeapRegion boundary.)
 461   virtual void shrink(size_t expand_bytes);
 462   void shrink_helper(size_t expand_bytes);
 463 
 464   #if TASKQUEUE_STATS
 465   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 466   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 467   void reset_taskqueue_stats();
 468   #endif // TASKQUEUE_STATS
 469 
 470   // Do an incremental collection: identify a collection set, and evacuate
 471   // its live objects elsewhere.
 472   virtual void do_collection_pause();
 473 
 474   // The guts of the incremental collection pause, executed by the vm
 475   // thread.
 476   virtual void do_collection_pause_at_safepoint(double target_pause_time_ms);
 477 
 478   // Actually do the work of evacuating the collection set.
 479   virtual void evacuate_collection_set();
 480 
 481   // If this is an appropriate right time, do a collection pause.
 482   // The "word_size" argument, if non-zero, indicates the size of an
 483   // allocation request that is prompting this query.
 484   void do_collection_pause_if_appropriate(size_t word_size);
 485 
 486   // The g1 remembered set of the heap.
 487   G1RemSet* _g1_rem_set;
 488   // And it's mod ref barrier set, used to track updates for the above.
 489   ModRefBarrierSet* _mr_bs;
 490 
 491   // A set of cards that cover the objects for which the Rsets should be updated
 492   // concurrently after the collection.
 493   DirtyCardQueueSet _dirty_card_queue_set;
 494 
 495   // The Heap Region Rem Set Iterator.
 496   HeapRegionRemSetIterator** _rem_set_iterator;
 497 
 498   // The closure used to refine a single card.
 499   RefineCardTableEntryClosure* _refine_cte_cl;
 500 
 501   // A function to check the consistency of dirty card logs.
 502   void check_ct_logs_at_safepoint();
 503 
 504   // A DirtyCardQueueSet that is used to hold cards that contain
 505   // references into the current collection set. This is used to
 506   // update the remembered sets of the regions in the collection
 507   // set in the event of an evacuation failure.
 508   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 509 
 510   // After a collection pause, make the regions in the CS into free
 511   // regions.
 512   void free_collection_set(HeapRegion* cs_head);
 513 
 514   // Abandon the current collection set without recording policy
 515   // statistics or updating free lists.
 516   void abandon_collection_set(HeapRegion* cs_head);
 517 
 518   // Applies "scan_non_heap_roots" to roots outside the heap,
 519   // "scan_rs" to roots inside the heap (having done "set_region" to
 520   // indicate the region in which the root resides), and does "scan_perm"
 521   // (setting the generation to the perm generation.)  If "scan_rs" is
 522   // NULL, then this step is skipped.  The "worker_i"
 523   // param is for use with parallel roots processing, and should be
 524   // the "i" of the calling parallel worker thread's work(i) function.
 525   // In the sequential case this param will be ignored.
 526   void g1_process_strong_roots(bool collecting_perm_gen,
 527                                SharedHeap::ScanningOption so,
 528                                OopClosure* scan_non_heap_roots,
 529                                OopsInHeapRegionClosure* scan_rs,
 530                                OopsInGenClosure* scan_perm,
 531                                int worker_i);
 532 
 533   // Apply "blk" to all the weak roots of the system.  These include
 534   // JNI weak roots, the code cache, system dictionary, symbol table,
 535   // string table, and referents of reachable weak refs.
 536   void g1_process_weak_roots(OopClosure* root_closure,
 537                              OopClosure* non_root_closure);
 538 
 539   // Invoke "save_marks" on all heap regions.
 540   void save_marks();
 541 
 542   // Free a heap region.
 543   void free_region(HeapRegion* hr);
 544   // A component of "free_region", exposed for 'batching'.
 545   // All the params after "hr" are out params: the used bytes of the freed
 546   // region(s), the number of H regions cleared, the number of regions
 547   // freed, and pointers to the head and tail of a list of freed contig
 548   // regions, linked throught the "next_on_unclean_list" field.
 549   void free_region_work(HeapRegion* hr,
 550                         size_t& pre_used,
 551                         size_t& cleared_h,
 552                         size_t& freed_regions,
 553                         UncleanRegionList* list,
 554                         bool par = false);
 555 
 556 
 557   // The concurrent marker (and the thread it runs in.)
 558   ConcurrentMark* _cm;
 559   ConcurrentMarkThread* _cmThread;
 560   bool _mark_in_progress;
 561 
 562   // The concurrent refiner.
 563   ConcurrentG1Refine* _cg1r;
 564 
 565   // The concurrent zero-fill thread.
 566   ConcurrentZFThread* _czft;
 567 
 568   // The parallel task queues
 569   RefToScanQueueSet *_task_queues;
 570 
 571   // True iff a evacuation has failed in the current collection.
 572   bool _evacuation_failed;
 573 
 574   // Set the attribute indicating whether evacuation has failed in the
 575   // current collection.
 576   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
 577 
 578   // Failed evacuations cause some logical from-space objects to have
 579   // forwarding pointers to themselves.  Reset them.
 580   void remove_self_forwarding_pointers();
 581 
 582   // When one is non-null, so is the other.  Together, they each pair is
 583   // an object with a preserved mark, and its mark value.
 584   GrowableArray<oop>*     _objs_with_preserved_marks;
 585   GrowableArray<markOop>* _preserved_marks_of_objs;
 586 
 587   // Preserve the mark of "obj", if necessary, in preparation for its mark
 588   // word being overwritten with a self-forwarding-pointer.
 589   void preserve_mark_if_necessary(oop obj, markOop m);
 590 
 591   // The stack of evac-failure objects left to be scanned.
 592   GrowableArray<oop>*    _evac_failure_scan_stack;
 593   // The closure to apply to evac-failure objects.
 594 
 595   OopsInHeapRegionClosure* _evac_failure_closure;
 596   // Set the field above.
 597   void
 598   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 599     _evac_failure_closure = evac_failure_closure;
 600   }
 601 
 602   // Push "obj" on the scan stack.
 603   void push_on_evac_failure_scan_stack(oop obj);
 604   // Process scan stack entries until the stack is empty.
 605   void drain_evac_failure_scan_stack();
 606   // True iff an invocation of "drain_scan_stack" is in progress; to
 607   // prevent unnecessary recursion.
 608   bool _drain_in_progress;
 609 
 610   // Do any necessary initialization for evacuation-failure handling.
 611   // "cl" is the closure that will be used to process evac-failure
 612   // objects.
 613   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 614   // Do any necessary cleanup for evacuation-failure handling data
 615   // structures.
 616   void finalize_for_evac_failure();
 617 
 618   // An attempt to evacuate "obj" has failed; take necessary steps.
 619   void handle_evacuation_failure(oop obj);
 620   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
 621   void handle_evacuation_failure_common(oop obj, markOop m);
 622 
 623 
 624   // Ensure that the relevant gc_alloc regions are set.
 625   void get_gc_alloc_regions();
 626   // We're done with GC alloc regions. We are going to tear down the
 627   // gc alloc list and remove the gc alloc tag from all the regions on
 628   // that list. However, we will also retain the last (i.e., the one
 629   // that is half-full) GC alloc region, per GCAllocPurpose, for
 630   // possible reuse during the next collection, provided
 631   // _retain_gc_alloc_region[] indicates that it should be the
 632   // case. Said regions are kept in the _retained_gc_alloc_regions[]
 633   // array. If the parameter totally is set, we will not retain any
 634   // regions, irrespective of what _retain_gc_alloc_region[]
 635   // indicates.
 636   void release_gc_alloc_regions(bool totally);
 637 #ifndef PRODUCT
 638   // Useful for debugging.
 639   void print_gc_alloc_regions();
 640 #endif // !PRODUCT
 641 
 642   // ("Weak") Reference processing support
 643   ReferenceProcessor* _ref_processor;
 644 
 645   enum G1H_process_strong_roots_tasks {
 646     G1H_PS_mark_stack_oops_do,
 647     G1H_PS_refProcessor_oops_do,
 648     // Leave this one last.
 649     G1H_PS_NumElements
 650   };
 651 
 652   SubTasksDone* _process_strong_tasks;
 653 
 654   // List of regions which require zero filling.
 655   UncleanRegionList _unclean_region_list;
 656   bool _unclean_regions_coming;
 657 
 658 public:
 659 
 660   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
 661 
 662   void set_refine_cte_cl_concurrency(bool concurrent);
 663 
 664   RefToScanQueue *task_queue(int i) const;
 665 
 666   // A set of cards where updates happened during the GC
 667   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 668 
 669   // A DirtyCardQueueSet that is used to hold cards that contain
 670   // references into the current collection set. This is used to
 671   // update the remembered sets of the regions in the collection
 672   // set in the event of an evacuation failure.
 673   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
 674         { return _into_cset_dirty_card_queue_set; }
 675 
 676   // Create a G1CollectedHeap with the specified policy.
 677   // Must call the initialize method afterwards.
 678   // May not return if something goes wrong.
 679   G1CollectedHeap(G1CollectorPolicy* policy);
 680 
 681   // Initialize the G1CollectedHeap to have the initial and
 682   // maximum sizes, permanent generation, and remembered and barrier sets
 683   // specified by the policy object.
 684   jint initialize();
 685 
 686   void ref_processing_init();
 687 
 688   void set_par_threads(int t) {
 689     SharedHeap::set_par_threads(t);
 690     _process_strong_tasks->set_n_threads(t);
 691   }
 692 
 693   virtual CollectedHeap::Name kind() const {
 694     return CollectedHeap::G1CollectedHeap;
 695   }
 696 
 697   // The current policy object for the collector.
 698   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
 699 
 700   // Adaptive size policy.  No such thing for g1.
 701   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
 702 
 703   // The rem set and barrier set.
 704   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 705   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
 706 
 707   // The rem set iterator.
 708   HeapRegionRemSetIterator* rem_set_iterator(int i) {
 709     return _rem_set_iterator[i];
 710   }
 711 
 712   HeapRegionRemSetIterator* rem_set_iterator() {
 713     return _rem_set_iterator[0];
 714   }
 715 
 716   unsigned get_gc_time_stamp() {
 717     return _gc_time_stamp;
 718   }
 719 
 720   void reset_gc_time_stamp() {
 721     _gc_time_stamp = 0;
 722     OrderAccess::fence();
 723   }
 724 
 725   void increment_gc_time_stamp() {
 726     ++_gc_time_stamp;
 727     OrderAccess::fence();
 728   }
 729 
 730   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
 731                                   DirtyCardQueue* into_cset_dcq,
 732                                   bool concurrent, int worker_i);
 733 
 734   // The shared block offset table array.
 735   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
 736 
 737   // Reference Processing accessor
 738   ReferenceProcessor* ref_processor() { return _ref_processor; }
 739 
 740   // Reserved (g1 only; super method includes perm), capacity and the used
 741   // portion in bytes.
 742   size_t g1_reserved_obj_bytes() const { return _g1_reserved.byte_size(); }
 743   virtual size_t capacity() const;
 744   virtual size_t used() const;
 745   // This should be called when we're not holding the heap lock. The
 746   // result might be a bit inaccurate.
 747   size_t used_unlocked() const;
 748   size_t recalculate_used() const;
 749 #ifndef PRODUCT
 750   size_t recalculate_used_regions() const;
 751 #endif // PRODUCT
 752 
 753   // These virtual functions do the actual allocation.
 754   virtual HeapWord* mem_allocate(size_t word_size,
 755                                  bool   is_noref,
 756                                  bool   is_tlab,
 757                                  bool* gc_overhead_limit_was_exceeded);
 758 
 759   // Some heaps may offer a contiguous region for shared non-blocking
 760   // allocation, via inlined code (by exporting the address of the top and
 761   // end fields defining the extent of the contiguous allocation region.)
 762   // But G1CollectedHeap doesn't yet support this.
 763 
 764   // Return an estimate of the maximum allocation that could be performed
 765   // without triggering any collection or expansion activity.  In a
 766   // generational collector, for example, this is probably the largest
 767   // allocation that could be supported (without expansion) in the youngest
 768   // generation.  It is "unsafe" because no locks are taken; the result
 769   // should be treated as an approximation, not a guarantee, for use in
 770   // heuristic resizing decisions.
 771   virtual size_t unsafe_max_alloc();
 772 
 773   virtual bool is_maximal_no_gc() const {
 774     return _g1_storage.uncommitted_size() == 0;
 775   }
 776 
 777   // The total number of regions in the heap.
 778   size_t n_regions();
 779 
 780   // The number of regions that are completely free.
 781   size_t max_regions();
 782 
 783   // The number of regions that are completely free.
 784   size_t free_regions();
 785 
 786   // The number of regions that are not completely free.
 787   size_t used_regions() { return n_regions() - free_regions(); }
 788 
 789   // True iff the ZF thread should run.
 790   bool should_zf();
 791 
 792   // The number of regions available for "regular" expansion.
 793   size_t expansion_regions() { return _expansion_regions; }
 794 
 795 #ifndef PRODUCT
 796   bool regions_accounted_for();
 797   bool print_region_accounting_info();
 798   void print_region_counts();
 799 #endif
 800 
 801   HeapRegion* alloc_region_from_unclean_list(bool zero_filled);
 802   HeapRegion* alloc_region_from_unclean_list_locked(bool zero_filled);
 803 
 804   void put_region_on_unclean_list(HeapRegion* r);
 805   void put_region_on_unclean_list_locked(HeapRegion* r);
 806 
 807   void prepend_region_list_on_unclean_list(UncleanRegionList* list);
 808   void prepend_region_list_on_unclean_list_locked(UncleanRegionList* list);
 809 
 810   void set_unclean_regions_coming(bool b);
 811   void set_unclean_regions_coming_locked(bool b);
 812   // Wait for cleanup to be complete.
 813   void wait_for_cleanup_complete();
 814   // Like above, but assumes that the calling thread owns the Heap_lock.
 815   void wait_for_cleanup_complete_locked();
 816 
 817   // Return the head of the unclean list.
 818   HeapRegion* peek_unclean_region_list_locked();
 819   // Remove and return the head of the unclean list.
 820   HeapRegion* pop_unclean_region_list_locked();
 821 
 822   // List of regions which are zero filled and ready for allocation.
 823   HeapRegion* _free_region_list;
 824   // Number of elements on the free list.
 825   size_t _free_region_list_size;
 826 
 827   // If the head of the unclean list is ZeroFilled, move it to the free
 828   // list.
 829   bool move_cleaned_region_to_free_list_locked();
 830   bool move_cleaned_region_to_free_list();
 831 
 832   void put_free_region_on_list_locked(HeapRegion* r);
 833   void put_free_region_on_list(HeapRegion* r);
 834 
 835   // Remove and return the head element of the free list.
 836   HeapRegion* pop_free_region_list_locked();
 837 
 838   // If "zero_filled" is true, we first try the free list, then we try the
 839   // unclean list, zero-filling the result.  If "zero_filled" is false, we
 840   // first try the unclean list, then the zero-filled list.
 841   HeapRegion* alloc_free_region_from_lists(bool zero_filled);
 842 
 843   // Verify the integrity of the region lists.
 844   void remove_allocated_regions_from_lists();
 845   bool verify_region_lists();
 846   bool verify_region_lists_locked();
 847   size_t unclean_region_list_length();
 848   size_t free_region_list_length();
 849 
 850   // Perform a collection of the heap; intended for use in implementing
 851   // "System.gc".  This probably implies as full a collection as the
 852   // "CollectedHeap" supports.
 853   virtual void collect(GCCause::Cause cause);
 854 
 855   // The same as above but assume that the caller holds the Heap_lock.
 856   void collect_locked(GCCause::Cause cause);
 857 
 858   // This interface assumes that it's being called by the
 859   // vm thread. It collects the heap assuming that the
 860   // heap lock is already held and that we are executing in
 861   // the context of the vm thread.
 862   virtual void collect_as_vm_thread(GCCause::Cause cause);
 863 
 864   // True iff a evacuation has failed in the most-recent collection.
 865   bool evacuation_failed() { return _evacuation_failed; }
 866 
 867   // Free a region if it is totally full of garbage.  Returns the number of
 868   // bytes freed (0 ==> didn't free it).
 869   size_t free_region_if_totally_empty(HeapRegion *hr);
 870   void free_region_if_totally_empty_work(HeapRegion *hr,
 871                                          size_t& pre_used,
 872                                          size_t& cleared_h_regions,
 873                                          size_t& freed_regions,
 874                                          UncleanRegionList* list,
 875                                          bool par = false);
 876 
 877   // If we've done free region work that yields the given changes, update
 878   // the relevant global variables.
 879   void finish_free_region_work(size_t pre_used,
 880                                size_t cleared_h_regions,
 881                                size_t freed_regions,
 882                                UncleanRegionList* list);
 883 
 884 
 885   // Returns "TRUE" iff "p" points into the allocated area of the heap.
 886   virtual bool is_in(const void* p) const;
 887 
 888   // Return "TRUE" iff the given object address is within the collection
 889   // set.
 890   inline bool obj_in_cs(oop obj);
 891 
 892   // Return "TRUE" iff the given object address is in the reserved
 893   // region of g1 (excluding the permanent generation).
 894   bool is_in_g1_reserved(const void* p) const {
 895     return _g1_reserved.contains(p);
 896   }
 897 
 898   // Returns a MemRegion that corresponds to the space that  has been
 899   // committed in the heap
 900   MemRegion g1_committed() {
 901     return _g1_committed;
 902   }
 903 
 904   NOT_PRODUCT(bool is_in_closed_subset(const void* p) const;)
 905 
 906   // Dirty card table entries covering a list of young regions.
 907   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
 908 
 909   // This resets the card table to all zeros.  It is used after
 910   // a collection pause which used the card table to claim cards.
 911   void cleanUpCardTable();
 912 
 913   // Iteration functions.
 914 
 915   // Iterate over all the ref-containing fields of all objects, calling
 916   // "cl.do_oop" on each.
 917   virtual void oop_iterate(OopClosure* cl) {
 918     oop_iterate(cl, true);
 919   }
 920   void oop_iterate(OopClosure* cl, bool do_perm);
 921 
 922   // Same as above, restricted to a memory region.
 923   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
 924     oop_iterate(mr, cl, true);
 925   }
 926   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
 927 
 928   // Iterate over all objects, calling "cl.do_object" on each.
 929   virtual void object_iterate(ObjectClosure* cl) {
 930     object_iterate(cl, true);
 931   }
 932   virtual void safe_object_iterate(ObjectClosure* cl) {
 933     object_iterate(cl, true);
 934   }
 935   void object_iterate(ObjectClosure* cl, bool do_perm);
 936 
 937   // Iterate over all objects allocated since the last collection, calling
 938   // "cl.do_object" on each.  The heap must have been initialized properly
 939   // to support this function, or else this call will fail.
 940   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
 941 
 942   // Iterate over all spaces in use in the heap, in ascending address order.
 943   virtual void space_iterate(SpaceClosure* cl);
 944 
 945   // Iterate over heap regions, in address order, terminating the
 946   // iteration early if the "doHeapRegion" method returns "true".
 947   void heap_region_iterate(HeapRegionClosure* blk);
 948 
 949   // Iterate over heap regions starting with r (or the first region if "r"
 950   // is NULL), in address order, terminating early if the "doHeapRegion"
 951   // method returns "true".
 952   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
 953 
 954   // As above but starting from the region at index idx.
 955   void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
 956 
 957   HeapRegion* region_at(size_t idx);
 958 
 959   // Divide the heap region sequence into "chunks" of some size (the number
 960   // of regions divided by the number of parallel threads times some
 961   // overpartition factor, currently 4).  Assumes that this will be called
 962   // in parallel by ParallelGCThreads worker threads with discinct worker
 963   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
 964   // calls will use the same "claim_value", and that that claim value is
 965   // different from the claim_value of any heap region before the start of
 966   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
 967   // attempting to claim the first region in each chunk, and, if
 968   // successful, applying the closure to each region in the chunk (and
 969   // setting the claim value of the second and subsequent regions of the
 970   // chunk.)  For now requires that "doHeapRegion" always returns "false",
 971   // i.e., that a closure never attempt to abort a traversal.
 972   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
 973                                        int worker,
 974                                        jint claim_value);
 975 
 976   // It resets all the region claim values to the default.
 977   void reset_heap_region_claim_values();
 978 
 979 #ifdef ASSERT
 980   bool check_heap_region_claim_values(jint claim_value);
 981 #endif // ASSERT
 982 
 983   // Iterate over the regions (if any) in the current collection set.
 984   void collection_set_iterate(HeapRegionClosure* blk);
 985 
 986   // As above but starting from region r
 987   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
 988 
 989   // Returns the first (lowest address) compactible space in the heap.
 990   virtual CompactibleSpace* first_compactible_space();
 991 
 992   // A CollectedHeap will contain some number of spaces.  This finds the
 993   // space containing a given address, or else returns NULL.
 994   virtual Space* space_containing(const void* addr) const;
 995 
 996   // A G1CollectedHeap will contain some number of heap regions.  This
 997   // finds the region containing a given address, or else returns NULL.
 998   HeapRegion* heap_region_containing(const void* addr) const;
 999 
1000   // Like the above, but requires "addr" to be in the heap (to avoid a
1001   // null-check), and unlike the above, may return an continuing humongous
1002   // region.
1003   HeapRegion* heap_region_containing_raw(const void* addr) const;
1004 
1005   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1006   // each address in the (reserved) heap is a member of exactly
1007   // one block.  The defining characteristic of a block is that it is
1008   // possible to find its size, and thus to progress forward to the next
1009   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1010   // represent Java objects, or they might be free blocks in a
1011   // free-list-based heap (or subheap), as long as the two kinds are
1012   // distinguishable and the size of each is determinable.
1013 
1014   // Returns the address of the start of the "block" that contains the
1015   // address "addr".  We say "blocks" instead of "object" since some heaps
1016   // may not pack objects densely; a chunk may either be an object or a
1017   // non-object.
1018   virtual HeapWord* block_start(const void* addr) const;
1019 
1020   // Requires "addr" to be the start of a chunk, and returns its size.
1021   // "addr + size" is required to be the start of a new chunk, or the end
1022   // of the active area of the heap.
1023   virtual size_t block_size(const HeapWord* addr) const;
1024 
1025   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1026   // the block is an object.
1027   virtual bool block_is_obj(const HeapWord* addr) const;
1028 
1029   // Does this heap support heap inspection? (+PrintClassHistogram)
1030   virtual bool supports_heap_inspection() const { return true; }
1031 
1032   // Section on thread-local allocation buffers (TLABs)
1033   // See CollectedHeap for semantics.
1034 
1035   virtual bool supports_tlab_allocation() const;
1036   virtual size_t tlab_capacity(Thread* thr) const;
1037   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
1038   virtual HeapWord* allocate_new_tlab(size_t word_size);
1039 
1040   // Can a compiler initialize a new object without store barriers?
1041   // This permission only extends from the creation of a new object
1042   // via a TLAB up to the first subsequent safepoint. If such permission
1043   // is granted for this heap type, the compiler promises to call
1044   // defer_store_barrier() below on any slow path allocation of
1045   // a new object for which such initializing store barriers will
1046   // have been elided. G1, like CMS, allows this, but should be
1047   // ready to provide a compensating write barrier as necessary
1048   // if that storage came out of a non-young region. The efficiency
1049   // of this implementation depends crucially on being able to
1050   // answer very efficiently in constant time whether a piece of
1051   // storage in the heap comes from a young region or not.
1052   // See ReduceInitialCardMarks.
1053   virtual bool can_elide_tlab_store_barriers() const {
1054     // 6920090: Temporarily disabled, because of lingering
1055     // instabilities related to RICM with G1. In the
1056     // interim, the option ReduceInitialCardMarksForG1
1057     // below is left solely as a debugging device at least
1058     // until 6920109 fixes the instabilities.
1059     return ReduceInitialCardMarksForG1;
1060   }
1061 
1062   virtual bool card_mark_must_follow_store() const {
1063     return true;
1064   }
1065 
1066   bool is_in_young(oop obj) {
1067     HeapRegion* hr = heap_region_containing(obj);
1068     return hr != NULL && hr->is_young();
1069   }
1070 
1071   // We don't need barriers for initializing stores to objects
1072   // in the young gen: for the SATB pre-barrier, there is no
1073   // pre-value that needs to be remembered; for the remembered-set
1074   // update logging post-barrier, we don't maintain remembered set
1075   // information for young gen objects. Note that non-generational
1076   // G1 does not have any "young" objects, should not elide
1077   // the rs logging barrier and so should always answer false below.
1078   // However, non-generational G1 (-XX:-G1Gen) appears to have
1079   // bit-rotted so was not tested below.
1080   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
1081     // Re 6920090, 6920109 above.
1082     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
1083     assert(G1Gen || !is_in_young(new_obj),
1084            "Non-generational G1 should never return true below");
1085     return is_in_young(new_obj);
1086   }
1087 
1088   // Can a compiler elide a store barrier when it writes
1089   // a permanent oop into the heap?  Applies when the compiler
1090   // is storing x to the heap, where x->is_perm() is true.
1091   virtual bool can_elide_permanent_oop_store_barriers() const {
1092     // At least until perm gen collection is also G1-ified, at
1093     // which point this should return false.
1094     return true;
1095   }
1096 
1097   virtual bool allocs_are_zero_filled();
1098 
1099   // The boundary between a "large" and "small" array of primitives, in
1100   // words.
1101   virtual size_t large_typearray_limit();
1102 
1103   // Returns "true" iff the given word_size is "very large".
1104   static bool isHumongous(size_t word_size) {
1105     // Note this has to be strictly greater-than as the TLABs
1106     // are capped at the humongous thresold and we want to
1107     // ensure that we don't try to allocate a TLAB as
1108     // humongous and that we don't allocate a humongous
1109     // object in a TLAB.
1110     return word_size > _humongous_object_threshold_in_words;
1111   }
1112 
1113   // Update mod union table with the set of dirty cards.
1114   void updateModUnion();
1115 
1116   // Set the mod union bits corresponding to the given memRegion.  Note
1117   // that this is always a safe operation, since it doesn't clear any
1118   // bits.
1119   void markModUnionRange(MemRegion mr);
1120 
1121   // Records the fact that a marking phase is no longer in progress.
1122   void set_marking_complete() {
1123     _mark_in_progress = false;
1124   }
1125   void set_marking_started() {
1126     _mark_in_progress = true;
1127   }
1128   bool mark_in_progress() {
1129     return _mark_in_progress;
1130   }
1131 
1132   // Print the maximum heap capacity.
1133   virtual size_t max_capacity() const;
1134 
1135   virtual jlong millis_since_last_gc();
1136 
1137   // Perform any cleanup actions necessary before allowing a verification.
1138   virtual void prepare_for_verify();
1139 
1140   // Perform verification.
1141 
1142   // use_prev_marking == true  -> use "prev" marking information,
1143   // use_prev_marking == false -> use "next" marking information
1144   // NOTE: Only the "prev" marking information is guaranteed to be
1145   // consistent most of the time, so most calls to this should use
1146   // use_prev_marking == true. Currently, there is only one case where
1147   // this is called with use_prev_marking == false, which is to verify
1148   // the "next" marking information at the end of remark.
1149   void verify(bool allow_dirty, bool silent, bool use_prev_marking);
1150 
1151   // Override; it uses the "prev" marking information
1152   virtual void verify(bool allow_dirty, bool silent);
1153   // Default behavior by calling print(tty);
1154   virtual void print() const;
1155   // This calls print_on(st, PrintHeapAtGCExtended).
1156   virtual void print_on(outputStream* st) const;
1157   // If extended is true, it will print out information for all
1158   // regions in the heap by calling print_on_extended(st).
1159   virtual void print_on(outputStream* st, bool extended) const;
1160   virtual void print_on_extended(outputStream* st) const;
1161 
1162   virtual void print_gc_threads_on(outputStream* st) const;
1163   virtual void gc_threads_do(ThreadClosure* tc) const;
1164 
1165   // Override
1166   void print_tracing_info() const;
1167 
1168   // If "addr" is a pointer into the (reserved?) heap, returns a positive
1169   // number indicating the "arena" within the heap in which "addr" falls.
1170   // Or else returns 0.
1171   virtual int addr_to_arena_id(void* addr) const;
1172 
1173   // Convenience function to be used in situations where the heap type can be
1174   // asserted to be this type.
1175   static G1CollectedHeap* heap();
1176 
1177   void empty_young_list();
1178   bool should_set_young_locked();
1179 
1180   void set_region_short_lived_locked(HeapRegion* hr);
1181   // add appropriate methods for any other surv rate groups
1182 
1183   YoungList* young_list() { return _young_list; }
1184 
1185   // debugging
1186   bool check_young_list_well_formed() {
1187     return _young_list->check_list_well_formed();
1188   }
1189 
1190   bool check_young_list_empty(bool check_heap,
1191                               bool check_sample = true);
1192 
1193   // *** Stuff related to concurrent marking.  It's not clear to me that so
1194   // many of these need to be public.
1195 
1196   // The functions below are helper functions that a subclass of
1197   // "CollectedHeap" can use in the implementation of its virtual
1198   // functions.
1199   // This performs a concurrent marking of the live objects in a
1200   // bitmap off to the side.
1201   void doConcurrentMark();
1202 
1203   // This is called from the marksweep collector which then does
1204   // a concurrent mark and verifies that the results agree with
1205   // the stop the world marking.
1206   void checkConcurrentMark();
1207   void do_sync_mark();
1208 
1209   bool isMarkedPrev(oop obj) const;
1210   bool isMarkedNext(oop obj) const;
1211 
1212   // use_prev_marking == true  -> use "prev" marking information,
1213   // use_prev_marking == false -> use "next" marking information
1214   bool is_obj_dead_cond(const oop obj,
1215                         const HeapRegion* hr,
1216                         const bool use_prev_marking) const {
1217     if (use_prev_marking) {
1218       return is_obj_dead(obj, hr);
1219     } else {
1220       return is_obj_ill(obj, hr);
1221     }
1222   }
1223 
1224   // Determine if an object is dead, given the object and also
1225   // the region to which the object belongs. An object is dead
1226   // iff a) it was not allocated since the last mark and b) it
1227   // is not marked.
1228 
1229   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1230     return
1231       !hr->obj_allocated_since_prev_marking(obj) &&
1232       !isMarkedPrev(obj);
1233   }
1234 
1235   // This is used when copying an object to survivor space.
1236   // If the object is marked live, then we mark the copy live.
1237   // If the object is allocated since the start of this mark
1238   // cycle, then we mark the copy live.
1239   // If the object has been around since the previous mark
1240   // phase, and hasn't been marked yet during this phase,
1241   // then we don't mark it, we just wait for the
1242   // current marking cycle to get to it.
1243 
1244   // This function returns true when an object has been
1245   // around since the previous marking and hasn't yet
1246   // been marked during this marking.
1247 
1248   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1249     return
1250       !hr->obj_allocated_since_next_marking(obj) &&
1251       !isMarkedNext(obj);
1252   }
1253 
1254   // Determine if an object is dead, given only the object itself.
1255   // This will find the region to which the object belongs and
1256   // then call the region version of the same function.
1257 
1258   // Added if it is in permanent gen it isn't dead.
1259   // Added if it is NULL it isn't dead.
1260 
1261   // use_prev_marking == true  -> use "prev" marking information,
1262   // use_prev_marking == false -> use "next" marking information
1263   bool is_obj_dead_cond(const oop obj,
1264                         const bool use_prev_marking) {
1265     if (use_prev_marking) {
1266       return is_obj_dead(obj);
1267     } else {
1268       return is_obj_ill(obj);
1269     }
1270   }
1271 
1272   bool is_obj_dead(const oop obj) {
1273     const HeapRegion* hr = heap_region_containing(obj);
1274     if (hr == NULL) {
1275       if (Universe::heap()->is_in_permanent(obj))
1276         return false;
1277       else if (obj == NULL) return false;
1278       else return true;
1279     }
1280     else return is_obj_dead(obj, hr);
1281   }
1282 
1283   bool is_obj_ill(const oop obj) {
1284     const HeapRegion* hr = heap_region_containing(obj);
1285     if (hr == NULL) {
1286       if (Universe::heap()->is_in_permanent(obj))
1287         return false;
1288       else if (obj == NULL) return false;
1289       else return true;
1290     }
1291     else return is_obj_ill(obj, hr);
1292   }
1293 
1294   // The following is just to alert the verification code
1295   // that a full collection has occurred and that the
1296   // remembered sets are no longer up to date.
1297   bool _full_collection;
1298   void set_full_collection() { _full_collection = true;}
1299   void clear_full_collection() {_full_collection = false;}
1300   bool full_collection() {return _full_collection;}
1301 
1302   ConcurrentMark* concurrent_mark() const { return _cm; }
1303   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1304 
1305   // The dirty cards region list is used to record a subset of regions
1306   // whose cards need clearing. The list if populated during the
1307   // remembered set scanning and drained during the card table
1308   // cleanup. Although the methods are reentrant, population/draining
1309   // phases must not overlap. For synchronization purposes the last
1310   // element on the list points to itself.
1311   HeapRegion* _dirty_cards_region_list;
1312   void push_dirty_cards_region(HeapRegion* hr);
1313   HeapRegion* pop_dirty_cards_region();
1314 
1315 public:
1316   void stop_conc_gc_threads();
1317 
1318   // <NEW PREDICTION>
1319 
1320   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
1321   void check_if_region_is_too_expensive(double predicted_time_ms);
1322   size_t pending_card_num();
1323   size_t max_pending_card_num();
1324   size_t cards_scanned();
1325 
1326   // </NEW PREDICTION>
1327 
1328 protected:
1329   size_t _max_heap_capacity;
1330 
1331 //  debug_only(static void check_for_valid_allocation_state();)
1332 
1333 public:
1334   // Temporary: call to mark things unimplemented for the G1 heap (e.g.,
1335   // MemoryService).  In productization, we can make this assert false
1336   // to catch such places (as well as searching for calls to this...)
1337   static void g1_unimplemented();
1338 
1339 };
1340 
1341 #define use_local_bitmaps         1
1342 #define verify_local_bitmaps      0
1343 #define oop_buffer_length       256
1344 
1345 #ifndef PRODUCT
1346 class GCLabBitMap;
1347 class GCLabBitMapClosure: public BitMapClosure {
1348 private:
1349   ConcurrentMark* _cm;
1350   GCLabBitMap*    _bitmap;
1351 
1352 public:
1353   GCLabBitMapClosure(ConcurrentMark* cm,
1354                      GCLabBitMap* bitmap) {
1355     _cm     = cm;
1356     _bitmap = bitmap;
1357   }
1358 
1359   virtual bool do_bit(size_t offset);
1360 };
1361 #endif // !PRODUCT
1362 
1363 class GCLabBitMap: public BitMap {
1364 private:
1365   ConcurrentMark* _cm;
1366 
1367   int       _shifter;
1368   size_t    _bitmap_word_covers_words;
1369 
1370   // beginning of the heap
1371   HeapWord* _heap_start;
1372 
1373   // this is the actual start of the GCLab
1374   HeapWord* _real_start_word;
1375 
1376   // this is the actual end of the GCLab
1377   HeapWord* _real_end_word;
1378 
1379   // this is the first word, possibly located before the actual start
1380   // of the GCLab, that corresponds to the first bit of the bitmap
1381   HeapWord* _start_word;
1382 
1383   // size of a GCLab in words
1384   size_t _gclab_word_size;
1385 
1386   static int shifter() {
1387     return MinObjAlignment - 1;
1388   }
1389 
1390   // how many heap words does a single bitmap word corresponds to?
1391   static size_t bitmap_word_covers_words() {
1392     return BitsPerWord << shifter();
1393   }
1394 
1395   size_t gclab_word_size() const {
1396     return _gclab_word_size;
1397   }
1398 
1399   // Calculates actual GCLab size in words
1400   size_t gclab_real_word_size() const {
1401     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
1402            / BitsPerWord;
1403   }
1404 
1405   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
1406     size_t bits_in_bitmap = gclab_word_size >> shifter();
1407     // We are going to ensure that the beginning of a word in this
1408     // bitmap also corresponds to the beginning of a word in the
1409     // global marking bitmap. To handle the case where a GCLab
1410     // starts from the middle of the bitmap, we need to add enough
1411     // space (i.e. up to a bitmap word) to ensure that we have
1412     // enough bits in the bitmap.
1413     return bits_in_bitmap + BitsPerWord - 1;
1414   }
1415 public:
1416   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
1417     : BitMap(bitmap_size_in_bits(gclab_word_size)),
1418       _cm(G1CollectedHeap::heap()->concurrent_mark()),
1419       _shifter(shifter()),
1420       _bitmap_word_covers_words(bitmap_word_covers_words()),
1421       _heap_start(heap_start),
1422       _gclab_word_size(gclab_word_size),
1423       _real_start_word(NULL),
1424       _real_end_word(NULL),
1425       _start_word(NULL)
1426   {
1427     guarantee( size_in_words() >= bitmap_size_in_words(),
1428                "just making sure");
1429   }
1430 
1431   inline unsigned heapWordToOffset(HeapWord* addr) {
1432     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
1433     assert(offset < size(), "offset should be within bounds");
1434     return offset;
1435   }
1436 
1437   inline HeapWord* offsetToHeapWord(size_t offset) {
1438     HeapWord* addr =  _start_word + (offset << _shifter);
1439     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
1440     return addr;
1441   }
1442 
1443   bool fields_well_formed() {
1444     bool ret1 = (_real_start_word == NULL) &&
1445                 (_real_end_word == NULL) &&
1446                 (_start_word == NULL);
1447     if (ret1)
1448       return true;
1449 
1450     bool ret2 = _real_start_word >= _start_word &&
1451       _start_word < _real_end_word &&
1452       (_real_start_word + _gclab_word_size) == _real_end_word &&
1453       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
1454                                                               > _real_end_word;
1455     return ret2;
1456   }
1457 
1458   inline bool mark(HeapWord* addr) {
1459     guarantee(use_local_bitmaps, "invariant");
1460     assert(fields_well_formed(), "invariant");
1461 
1462     if (addr >= _real_start_word && addr < _real_end_word) {
1463       assert(!isMarked(addr), "should not have already been marked");
1464 
1465       // first mark it on the bitmap
1466       at_put(heapWordToOffset(addr), true);
1467 
1468       return true;
1469     } else {
1470       return false;
1471     }
1472   }
1473 
1474   inline bool isMarked(HeapWord* addr) {
1475     guarantee(use_local_bitmaps, "invariant");
1476     assert(fields_well_formed(), "invariant");
1477 
1478     return at(heapWordToOffset(addr));
1479   }
1480 
1481   void set_buffer(HeapWord* start) {
1482     guarantee(use_local_bitmaps, "invariant");
1483     clear();
1484 
1485     assert(start != NULL, "invariant");
1486     _real_start_word = start;
1487     _real_end_word   = start + _gclab_word_size;
1488 
1489     size_t diff =
1490       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
1491     _start_word = start - diff;
1492 
1493     assert(fields_well_formed(), "invariant");
1494   }
1495 
1496 #ifndef PRODUCT
1497   void verify() {
1498     // verify that the marks have been propagated
1499     GCLabBitMapClosure cl(_cm, this);
1500     iterate(&cl);
1501   }
1502 #endif // PRODUCT
1503 
1504   void retire() {
1505     guarantee(use_local_bitmaps, "invariant");
1506     assert(fields_well_formed(), "invariant");
1507 
1508     if (_start_word != NULL) {
1509       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
1510 
1511       // this means that the bitmap was set up for the GCLab
1512       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
1513 
1514       mark_bitmap->mostly_disjoint_range_union(this,
1515                                 0, // always start from the start of the bitmap
1516                                 _start_word,
1517                                 gclab_real_word_size());
1518       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
1519 
1520 #ifndef PRODUCT
1521       if (use_local_bitmaps && verify_local_bitmaps)
1522         verify();
1523 #endif // PRODUCT
1524     } else {
1525       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
1526     }
1527   }
1528 
1529   size_t bitmap_size_in_words() const {
1530     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
1531   }
1532 
1533 };
1534 
1535 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1536 private:
1537   bool        _retired;
1538   bool        _during_marking;
1539   GCLabBitMap _bitmap;
1540 
1541 public:
1542   G1ParGCAllocBuffer(size_t gclab_word_size) :
1543     ParGCAllocBuffer(gclab_word_size),
1544     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
1545     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
1546     _retired(false)
1547   { }
1548 
1549   inline bool mark(HeapWord* addr) {
1550     guarantee(use_local_bitmaps, "invariant");
1551     assert(_during_marking, "invariant");
1552     return _bitmap.mark(addr);
1553   }
1554 
1555   inline void set_buf(HeapWord* buf) {
1556     if (use_local_bitmaps && _during_marking)
1557       _bitmap.set_buffer(buf);
1558     ParGCAllocBuffer::set_buf(buf);
1559     _retired = false;
1560   }
1561 
1562   inline void retire(bool end_of_gc, bool retain) {
1563     if (_retired)
1564       return;
1565     if (use_local_bitmaps && _during_marking) {
1566       _bitmap.retire();
1567     }
1568     ParGCAllocBuffer::retire(end_of_gc, retain);
1569     _retired = true;
1570   }
1571 };
1572 
1573 class G1ParScanThreadState : public StackObj {
1574 protected:
1575   G1CollectedHeap* _g1h;
1576   RefToScanQueue*  _refs;
1577   DirtyCardQueue   _dcq;
1578   CardTableModRefBS* _ct_bs;
1579   G1RemSet* _g1_rem;
1580 
1581   G1ParGCAllocBuffer  _surviving_alloc_buffer;
1582   G1ParGCAllocBuffer  _tenured_alloc_buffer;
1583   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
1584   ageTable            _age_table;
1585 
1586   size_t           _alloc_buffer_waste;
1587   size_t           _undo_waste;
1588 
1589   OopsInHeapRegionClosure*      _evac_failure_cl;
1590   G1ParScanHeapEvacClosure*     _evac_cl;
1591   G1ParScanPartialArrayClosure* _partial_scan_cl;
1592 
1593   int _hash_seed;
1594   int _queue_num;
1595 
1596   size_t _term_attempts;
1597 
1598   double _start;
1599   double _start_strong_roots;
1600   double _strong_roots_time;
1601   double _start_term;
1602   double _term_time;
1603 
1604   // Map from young-age-index (0 == not young, 1 is youngest) to
1605   // surviving words. base is what we get back from the malloc call
1606   size_t* _surviving_young_words_base;
1607   // this points into the array, as we use the first few entries for padding
1608   size_t* _surviving_young_words;
1609 
1610 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1611 
1612   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
1613 
1614   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
1615 
1616   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
1617   CardTableModRefBS* ctbs()                      { return _ct_bs; }
1618 
1619   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
1620     if (!from->is_survivor()) {
1621       _g1_rem->par_write_ref(from, p, tid);
1622     }
1623   }
1624 
1625   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
1626     // If the new value of the field points to the same region or
1627     // is the to-space, we don't need to include it in the Rset updates.
1628     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
1629       size_t card_index = ctbs()->index_for(p);
1630       // If the card hasn't been added to the buffer, do it.
1631       if (ctbs()->mark_card_deferred(card_index)) {
1632         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
1633       }
1634     }
1635   }
1636 
1637 public:
1638   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
1639 
1640   ~G1ParScanThreadState() {
1641     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
1642   }
1643 
1644   RefToScanQueue*   refs()            { return _refs;             }
1645   ageTable*         age_table()       { return &_age_table;       }
1646 
1647   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
1648     return _alloc_buffers[purpose];
1649   }
1650 
1651   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
1652   size_t undo_waste() const                      { return _undo_waste; }
1653 
1654 #ifdef ASSERT
1655   bool verify_ref(narrowOop* ref) const;
1656   bool verify_ref(oop* ref) const;
1657   bool verify_task(StarTask ref) const;
1658 #endif // ASSERT
1659 
1660   template <class T> void push_on_queue(T* ref) {
1661     assert(verify_ref(ref), "sanity");
1662     refs()->push(ref);
1663   }
1664 
1665   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
1666     if (G1DeferredRSUpdate) {
1667       deferred_rs_update(from, p, tid);
1668     } else {
1669       immediate_rs_update(from, p, tid);
1670     }
1671   }
1672 
1673   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
1674 
1675     HeapWord* obj = NULL;
1676     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
1677     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1678       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
1679       assert(gclab_word_size == alloc_buf->word_sz(),
1680              "dynamic resizing is not supported");
1681       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
1682       alloc_buf->retire(false, false);
1683 
1684       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1685       if (buf == NULL) return NULL; // Let caller handle allocation failure.
1686       // Otherwise.
1687       alloc_buf->set_buf(buf);
1688 
1689       obj = alloc_buf->allocate(word_sz);
1690       assert(obj != NULL, "buffer was definitely big enough...");
1691     } else {
1692       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
1693     }
1694     return obj;
1695   }
1696 
1697   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
1698     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
1699     if (obj != NULL) return obj;
1700     return allocate_slow(purpose, word_sz);
1701   }
1702 
1703   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
1704     if (alloc_buffer(purpose)->contains(obj)) {
1705       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
1706              "should contain whole object");
1707       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
1708     } else {
1709       CollectedHeap::fill_with_object(obj, word_sz);
1710       add_to_undo_waste(word_sz);
1711     }
1712   }
1713 
1714   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
1715     _evac_failure_cl = evac_failure_cl;
1716   }
1717   OopsInHeapRegionClosure* evac_failure_closure() {
1718     return _evac_failure_cl;
1719   }
1720 
1721   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
1722     _evac_cl = evac_cl;
1723   }
1724 
1725   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
1726     _partial_scan_cl = partial_scan_cl;
1727   }
1728 
1729   int* hash_seed() { return &_hash_seed; }
1730   int  queue_num() { return _queue_num; }
1731 
1732   size_t term_attempts() const  { return _term_attempts; }
1733   void note_term_attempt() { _term_attempts++; }
1734 
1735   void start_strong_roots() {
1736     _start_strong_roots = os::elapsedTime();
1737   }
1738   void end_strong_roots() {
1739     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
1740   }
1741   double strong_roots_time() const { return _strong_roots_time; }
1742 
1743   void start_term_time() {
1744     note_term_attempt();
1745     _start_term = os::elapsedTime();
1746   }
1747   void end_term_time() {
1748     _term_time += (os::elapsedTime() - _start_term);
1749   }
1750   double term_time() const { return _term_time; }
1751 
1752   double elapsed_time() const {
1753     return os::elapsedTime() - _start;
1754   }
1755 
1756   static void
1757     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
1758   void
1759     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
1760 
1761   size_t* surviving_young_words() {
1762     // We add on to hide entry 0 which accumulates surviving words for
1763     // age -1 regions (i.e. non-young ones)
1764     return _surviving_young_words;
1765   }
1766 
1767   void retire_alloc_buffers() {
1768     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1769       size_t waste = _alloc_buffers[ap]->words_remaining();
1770       add_to_alloc_buffer_waste(waste);
1771       _alloc_buffers[ap]->retire(true, false);
1772     }
1773   }
1774 
1775 private:
1776   template <class T> void deal_with_reference(T* ref_to_scan) {
1777     if (has_partial_array_mask(ref_to_scan)) {
1778       _partial_scan_cl->do_oop_nv(ref_to_scan);
1779     } else {
1780       // Note: we can use "raw" versions of "region_containing" because
1781       // "obj_to_scan" is definitely in the heap, and is not in a
1782       // humongous region.
1783       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
1784       _evac_cl->set_region(r);
1785       _evac_cl->do_oop_nv(ref_to_scan);
1786     }
1787   }
1788 
1789   void deal_with_reference(StarTask ref) {
1790     assert(verify_task(ref), "sanity");
1791     if (ref.is_narrow()) {
1792       deal_with_reference((narrowOop*)ref);
1793     } else {
1794       deal_with_reference((oop*)ref);
1795     }
1796   }
1797 
1798 public:
1799   void trim_queue();
1800 };